…the Americans have borrowed our basic method of operation—plan-based management and networked schedules. They have passed us in management and planning methods—they announce a launch preparation schedule in advance and strictly adhere to it. In essence, they have put into effect the principle of democratic centralism—free discussion followed by the strictest discipline during implementation.In addition to the Moon program, there is extensive coverage of the development of automated rendezvous and docking and the long duration orbital station programs (Almaz, Salyut, and Mir). There is also an enlightening discussion, building on Chertok's career focus on control systems, of the challenges in integrating humans and automated systems into the decision loop and coping with off-nominal situations in real time. I could go on and on, but there is so much to learn from this narrative, I'll just urge you to read it. Even if you are not particularly interested in space, there is much experience and wisdom to be gained from it which are applicable to all kinds of large complex systems, as well as insight into how things were done in the Soviet Union. It's best to read Volume 1 (May 2012), Volume 2 (August 2012), and Volume 3 (December 2012) first, as they will introduce you to the cast of characters and the events which set the stage for those chronicled here. As with all NASA publications, the work is in the public domain, and an online edition in PDF, EPUB, and MOBI formats is available. A commercial Kindle edition is available which is much better produced than the Kindle editions of the first three volumes. If you have a suitable application on your reading device for one of the electronic book formats provided by NASA, I'd opt for it. They're free. The original Russian edition is available online.
Propulsion chemists are a rare and special breed. As Isaac Asimov (who worked with the author during World War II) writes in a short memoir at the start of the book:
Now, it is clear that anyone working with rocket fuels is outstandingly mad. I don't mean garden-variety crazy or merely raving lunatic. I mean a record-shattering exponent of far-out insanity.
There are, after all, some chemicals that explode shatteringly, some that flame ravenously, some that corrode hellishly, some that poison sneakily, and some that stink stenchily. As far as I know, though, only liquid rocket fuels have all these delightful properties combined into one delectable whole.
And yet amazingly, as head of propulsion research at the Naval Air Rocket Test Station and its successor organisation for seventeen years, the author not only managed to emerge with all of his limbs and digits intact, his laboratory never suffered a single time-lost mishap. This, despite routinely working with substances such as:
Chlorine trifluoride, ClF3, or “CTF” as the engineers insist on calling it, is a colorless gas, a greenish liquid, or a white solid. … It is also quite probably the most vigorous fluorinating agent in existence—much more vigorous than fluorine itself. … It is, of course, extremely toxic, but that's the least of the problem. It is hypergolic with every known fuel, and so rapidly hypergolic that no ignition delay has ever been measured. It is also hypergolic with such things as cloth, wood, and test engineers, not to mention asbestos, sand, and water—with which it reacts explosively. It can be kept in some of the ordinary structural metals—steel, copper, aluminum, etc.—because the formation of a thin film of insoluble metal fluoride which protects the bulk of the metal, just as the invisible coat of oxide on aluminum keeps it from burning up in the atmosphere. If, however, this coat is melted or scrubbed off, the operator is confronted with the problem of coping with a metal-fluorine fire. For dealing with this situation, I have always recommended a good pair of running shoes. (p. 73)
And ClF3 is pretty benign compared to some of the other dark corners of chemistry into which their research led them. There is extensive coverage of the quest for a high energy monopropellant, the discovery of which would greatly simplify the design of turbomachinery, injectors, and eliminate problems with differential thermal behaviour and mixture ratio over the operating range of an engine which used it. However, the author reminds us:
A monopropellant is a liquid which contains in itself both the fuel and the oxidizer…. But! Any intimate mixture of a fuel and an oxidizer is a potential explosive, and a molecule with one reducing (fuel) end and one oxidizing end, separated by a pair of firmly crossed fingers, is an invitation to disaster. (p. 10)
One gets an excellent sense of just how empirical all of this was. For example, in the quest for “exotic fuel” (which the author defines as “It's expensive, it's got boron in it, and it probably doesn't work.”), straightforward inorganic chemistry suggested that burning a borane with hydrazine, for example:
2B5H9 + 5N2H4 ⟶ 10BN + 19H2
would be a storable propellant with a specific impulse (Isp) of 326 seconds with a combustion chamber temperature of just 2000°K. But this reaction and the calculation of its performance assumes equilibrium conditions and, apart from a detonation (something else with which propulsion chemists are well acquainted), there are few environments as far from equilibrium as a rocket combustion chamber. In fact, when you try to fire these propellants in an engine, you discover the reaction products actually include elemental boron and ammonia, which result in disappointing performance. Check another one off the list.
Other promising propellants ran afoul of economic considerations and engineering constraints. The lithium, fluorine, and hydrogen tripropellant system has been measured (not theoretically calculated) to have a vacuum Isp of an astonishing 542 seconds at a chamber pressure of only 500 psi and temperature of 2200°K. (By comparison, the space shuttle main engine has a vacuum Isp of 452.3 sec. with a chamber pressure of 2994 psi and temperature of 3588°K; a nuclear thermal rocket would have an Isp in the 850–1000 sec. range. Recall that the relationship between Isp and mass ratio is exponential.) This level of engine performance makes a single stage to orbit vehicle not only feasible but relatively straightforward to engineer. Unfortunately, there is a catch or, to be precise, a list of catches. Lithium and fluorine are both relatively scarce and very expensive in the quantities which would be required to launch from the Earth's surface. They are also famously corrosive and toxic, and then you have to cope with designing an engine in which two of the propellants are cryogenic fluids and the third is a metal which is solid below 180°C. In the end, the performance (which is breathtaking for a chemical rocket) just isn't worth the aggravation.
In the final chapter, the author looks toward the future of liquid rocket propulsion and predicts, entirely correctly from a perspective four decades removed, that chemical propulsion was likely to continue to use the technologies upon which almost all rockets had settled by 1970: LOX/hydrocarbon for large first stages, LOX/LH2 for upper stages, and N2O4/hydrazine for storable missiles and in-space propulsion. In the end economics won out over the potential performance gains to be had from the exotic (and often far too exciting) propellants the author and his colleagues devoted their careers to exploring. He concludes as follows.
There appears to be little left to do in liquid propellant chemistry, and very few important developments to be anticipated. In short, we propellant chemists have worked ourselves out of a job. The heroic age is over.
But it was great fun while it lasted. (p. 192)
Now if you've decided that you just have to read this book and innocently click on the title above to buy a copy, you may be at as much risk of a heart attack as those toiling in the author's laboratory. This book has been out of print for decades and is considered such a classic, both for its unique coverage of the golden age of liquid propellant research, comprehensive description of the many avenues explored and eventually abandoned, hands-on chemist-to-chemist presentation of the motivation for projects and the adventures in synthesising and working with these frisky molecules, not to mention the often laugh out loud writing, that used copies, when they are available, sell for hundreds of dollars. As I am writing these remarks, seven copies are offered at Amazon at prices ranging from US$300–595. Now, this is a superb book, but it isn't that good!
If, however, you type the author's name and the title of the book into an Internet search engine, you will probably quickly come across a PDF edition consisting of scanned pages of the original book. I'm not going to link to it here, both because I don't link to works which violate copyright as a matter of principle and since my linking to a copy of the PDF edition might increase its visibility and risk of being taken down. I am not one of those people who believes “information wants to be free”, but I also doubt John Clark would have wanted his unique memoir and invaluable reference to be priced entirely beyond the means of the vast majority of those who would enjoy and be enlightened by reading it. In the case of “orphaned works”, I believe the moral situation is ambiguous (consider: if you do spend a fortune for a used copy of an out of print book, none of the proceeds benefit the author or publisher in any way). You make the call.
Whoever invests in the NucRocCorp and subsequent Space Charter Authority should be required to sign a declaration that commits him or her to respect the purpose of the new regime, and conduct their personal lives in a manner that recognizes the rights of their fellow man (What about woman?—JW). They must be made aware that failure to do so could result in forfeiture of their investment.Property rights, anybody? Thought police? Apart from the manifest baroque complexity of the proposed scheme, it entirely ignores Jerry Pournelle's Iron Law of Bureaucracy: regardless of its original mission, any bureaucracy will eventually be predominately populated by those seeking to advance the interests of the bureaucracy itself, not the purpose for which it was created. The structure proposed here, even if enacted (implausible in the extreme) and even if it worked as intended (vanishingly improbable), would inevitably be captured by the Iron Law and become something like, well, NASA. On pp. 36–37, the author likens attempts to stretch chemical rocket technology to its limits to gold plating a nail when what is needed is a bigger hammer (nuclear rockets). But this book brings to my mind another epigram: “When all you have is a hammer, everything looks like a nail.” Dewar passionately supports nuclear rocket technology and believes that it is the way to open the solar system to human settlement. I entirely concur. But when it comes to assuming that boosting people up to a space station (p. 111):
And looking down on the bright Earth and into the black heavens might create a new perspective among Protestant, Roman Catholic, and Orthodox theologians, and perhaps lead to the end of the schism plaguing Christianity. The same might be said of the division between the Sunnis and Shiites in Islam, and the religions of the Near and Far East might benefit from a new perspective.Call me cynical, but I'll wager this particular swing of the hammer is more likely to land on a thumb than the intended nail. Those who cherish individual freedom have often dreamt of a future in which the opening of access to space would, in the words of L. Neil Smith, extend the human prospect to “freedom, immortality, and the stars”—works for me. What is proposed here, if adopted, looks more like, after more than a third of a century of dithering, the space frontier being finally opened to the brave pioneers ready to homestead there, and when they arrive, the tax man and the all-pervasive regulatory state are already there, up and running. The nuclear rocket can expand the human presence throughout the solar system. Let's just hope that when humanity (or some risk-taking subset of it) takes that long-deferred step, it does not propagate the soft tyranny of present day terrestrial governance to worlds beyond.
Again our computations have been flushed and the LM is still flying. In Cambridge someone says, “Something is stealing time.” … Some dreadful thing is active in our computer and we do not know what it is or what it will do next. Unlike Garman [AGC support engineer for Mission Control] in Houston I know too much. If it were in my hands, I would call an abort.As the Lunar Module passed 3000 feet, another alarm, this time a 1201—VAC areas exhausted—flashed. This is another indication of overload, but of a different kind. Mission control immediately calls up “We're go. Same type. We're go.” Well, it wasn't the same type, but they decided to press on. Descending through 2000 feet, the DSKY (computer display and keyboard) goes blank and stays blank for ten agonising seconds. Seventeen seconds later another 1202 alarm, and a blank display for two seconds—Armstrong's heart rate reaches 150. A total of five program alarms and resets had occurred in the final minutes of landing. But why? And could the computer be trusted to fly the return from the Moon's surface to rendezvous with the Command Module? While the Lunar Module was still on the lunar surface Instrumentation Laboratory engineer George Silver figured out what happened. During the landing, the Lunar Module's rendezvous radar (used only during return to the Command Module) was powered on and set to a position where its reference timing signal came from an internal clock rather than the AGC's master timing reference. If these clocks were in a worst case out of phase condition, the rendezvous radar would flood the AGC with what we used to call “nonsense interrupts” back in the day, at a rate of 800 per second, each consuming one 11.72 microsecond memory cycle. This imposed an additional load of more than 13% on the AGC, which pushed it over the edge and caused tasks deemed non-critical (such as updating the DSKY) not to be completed on time, resulting in the program alarms and restarts. The fix was simple: don't enable the rendezvous radar until you need it, and when you do, put the switch in the position that synchronises it with the AGC's clock. But the AGC had proved its excellence as a real-time system: in the face of unexpected and unknown external perturbations it had completed the mission flawlessly, while alerting its developers to a problem which required their attention. The creativity of the AGC software developers and the merit of computer systems sufficiently simple that the small number of people who designed them completely understood every aspect of their operation was demonstrated on Apollo 14. As the Lunar Module was checked out prior to the landing, the astronauts in the spacecraft and Mission Control saw the abort signal come on, which was supposed to indicate the big Abort button on the control panel had been pushed. This button, if pressed during descent to the lunar surface, immediately aborted the landing attempt and initiated a return to lunar orbit. This was a “one and done” operation: no Microsoft-style “Do you really mean it?” tea ceremony before ending the mission. Tapping the switch made the signal come and go, and it was concluded the most likely cause was a piece of metal contamination floating around inside the switch and occasionally shorting the contacts. The abort signal caused no problems during lunar orbit, but if it should happen during descent, perhaps jostled by vibration from the descent engine, it would be disastrous: wrecking a mission costing hundreds of millions of dollars and, coming on the heels of Apollo 13's mission failure and narrow escape from disaster, possibly bring an end to the Apollo lunar landing programme. The Lunar Module AGC team, with Don Eyles as the lead, was faced with an immediate challenge: was there a way to patch the software to ignore the abort switch, protecting the landing, while still allowing an abort to be commanded, if necessary, from the computer keyboard (DSKY)? The answer to this was obvious and immediately apparent: no. The landing software, like all AGC programs, ran from read-only rope memory which had been woven on the ground months before the mission and could not be changed in flight. But perhaps there was another way. Eyles and his colleagues dug into the program listing, traced the path through the logic, and cobbled together a procedure, then tested it in the simulator at the Instrumentation Laboratory. While the AGC's programming was fixed, the AGC operating system provided low-level commands which allowed the crew to examine and change bits in locations in the read-write memory. Eyles discovered that by setting the bit which indicated that an abort was already in progress, the abort switch would be ignored at the critical moments during the descent. As with all software hacks, this had other consequences requiring their own work-arounds, but by the time Apollo 14's Lunar Module emerged from behind the Moon on course for its landing, a complete procedure had been developed which was radioed up from Houston and worked perfectly, resulting in a flawless landing. These and many other stories of the development and flight experience of the AGC lunar landing software are related here by the person who wrote most of it and supported every lunar landing mission as it happened. Where technical detail is required to understand what is happening, no punches are pulled, even to the level of bit-twiddling and hideously clever programming tricks such as using an overflow condition to skip over an EXTEND instruction, converting the following instruction from double precision to single precision, all in order to save around forty words of precious non-bank-switched memory. In addition, this is a personal story, set in the context of the turbulent 1960s and early ’70s, of the author and other young people accomplishing things no humans had ever before attempted. It was a time when everybody was making it up as they went along, learning from experience, and improvising on the fly; a time when a person who had never written a line of computer code would write, as his first program, the code that would land men on the Moon, and when the creativity and hard work of individuals made all the difference. Already, by the end of the Apollo project, the curtain was ringing down on this era. Even though a number of improvements had been developed for the LM AGC software which improved precision landing capability, reduced the workload on the astronauts, and increased robustness, none of these were incorporated in the software for the final three Apollo missions, LUMINARY 210, which was deemed “good enough” and the benefit of the changes not worth the risk and effort to test and incorporate them. Programmers seeking this kind of adventure today will not find it at NASA or its contractors, but instead in the innovative “New Space” and smallsat industries.
CBS coverage of the Apollo 8 launch
Now we step inside Mission Control and listen in on the Flight Director's audio loop during the launch, illustrated with imagery and simulations.The Saturn V performed almost flawlessly. During the second stage burn mild pogo oscillations began but, rather than progressing to the point where they almost tore the rocket apart as had happened on the previous Saturn V launch, von Braun's team's fixes kicked in and seconds later Borman reported, “Pogo's damping out.” A few minutes later Apollo 8 was in Earth orbit. Jim Lovell had sixteen days of spaceflight experience across two Gemini missions, one of them Gemini 7 where he endured almost two weeks in orbit with Frank Borman. Bill Anders was a rookie, on his first space flight. Now weightless, all three were experiencing a spacecraft nothing like the cramped Mercury and Gemini capsules which you put on as much as boarded. The Apollo command module had an interior volume of six cubic metres (218 cubic feet, in the quaint way NASA reckons things) which may not seem like much for a crew of three, but in weightlessness, with every bit of space accessible and usable, felt quite roomy. There were five real windows, not the tiny portholes of Gemini, and plenty of space to move from one to another. With all this roominess and mobility came potential hazards, some verging on slapstick, but, in space, serious nonetheless. NASA safety personnel had required the astronauts to wear life vests over their space suits during the launch just in case the Saturn V malfunctioned and they ended up in the ocean. While moving around the cabin to get to the navigation station after reaching orbit, Lovell, who like the others hadn't yet removed his life vest, snagged its activation tab on a strut within the cabin and it instantly inflated. Lovell looked ridiculous and the situation comical, but it was no laughing matter. The life vests were inflated with carbon dioxide which, if released in the cabin, would pollute their breathing air and removal would use up part of a CO₂ scrubber cartridge, of which they had a limited supply on board. Lovell finally figured out what to do. After being helped out of the vest, he took it down to the urine dump station in the lower equipment bay and vented it into a reservoir which could be dumped out into space. One problem solved, but in space you never know what the next surprise might be. The astronauts wouldn't have much time to admire the Earth through those big windows. Over Australia, just short of three hours after launch, they would re-light the engine on the third stage of the Saturn V for the “trans-lunar injection” (TLI) burn of 318 seconds, which would accelerate the spacecraft to just slightly less than escape velocity, raising its apogee so it would be captured by the Moon's gravity. After housekeeping (presumably including the rest of the crew taking off those pesky life jackets, since there weren't any wet oceans where they were going) and reconfiguring the spacecraft and its computer for the maneuver, they got the call from Houston, “You are go for TLI.” They were bound for the Moon. The third stage, which had failed to re-light on its last outing, worked as advertised this time, with a flawless burn. Its job was done; from here on the astronauts and spacecraft were on their own. The booster had placed them on a free-return trajectory. If they did nothing (apart from minor “trajectory correction maneuvers” easily accomplished by the spacecraft's thrusters) they would fly out to the Moon, swing around its far side, and use its gravity to slingshot back to the Earth (as Lovell would do two years later when he commanded Apollo 13, although there the crew had to use the engine of the LM to get back onto a free-return trajectory after the accident). Apollo 8 rapidly climbed out of the Earth's gravity well, trading speed for altitude, and before long the astronauts beheld a spectacle no human eyes had glimpsed before: an entire hemisphere of Earth at once, floating in the inky black void. On board, there were other concerns: Frank Borman was puking his guts out and having difficulties with the other end of the tubing as well. Borman had logged more than six thousand flight hours in his career as a fighter and test pilot, most of it in high-performance jet aircraft, and fourteen days in space on Gemini 7 without any motion sickness. Many people feel queasy when they experience weightlessness the first time, but this was something entirely different and new in the American space program. And it was very worrisome. The astronauts discussed the problem on private tapes they could downlink to Mission Control without broadcasting to the public, and when NASA got around to playing the tapes, the chief flight surgeon, Dr. Charles Berry, became alarmed. As he saw it, there were three possibilities: motion sickness, a virus of some kind, or radiation sickness. On its way to the Moon, Apollo 8 passed directly through the Van Allen radiation belts, spending two hours in this high radiation environment, the first humans to do so. The total radiation dose was estimated as roughly the same as one would receive from a chest X-ray, but the composition of the radiation was different and the exposure was over an extended time, so nobody could be sure it was safe. The fact that Lovell and Anders had experienced no symptoms argued against the radiation explanation. Berry concluded that a virus was the most probable cause and, based upon the mission rules said, “I'm recommending that we consider canceling the mission.” The risk of proceeding with the commander unable to keep food down and possibly carrying a virus which the other astronauts might contract was too great in his opinion. This recommendation was passed up to the crew. Borman, usually calm and collected even by astronaut standards, exclaimed, “What? That is pure, unadulterated horseshit.” The mission would proceed, and within a day his stomach had settled. This was the first case of space adaptation syndrome to afflict an American astronaut. (Apparently some Soviet cosmonauts had been affected, but this was covered up to preserve their image as invincible exemplars of the New Soviet Man.) It is now known to affect around a third of people experiencing weightlessness in environments large enough to move around, and spontaneously clears up in two to four (miserable) days. The two most dramatic and critical events in Apollo 8's voyage would occur on the far side of the Moon, with 3500 km of rock between the spacecraft and the Earth totally cutting off all communications. The crew would be on their own, aided by the computer and guidance system and calculations performed on the Earth and sent up before passing behind the Moon. The first would be lunar orbit insertion (LOI), scheduled for 69 hours and 8 minutes after launch. The big Service Propulsion System (SPS) engine (it was so big—twice as large as required for Apollo missions as flown—because it was designed to be able to launch the entire Apollo spacecraft from the Moon if a “direct ascent” mission mode had been selected) would burn for exactly four minutes and seven seconds to bend the spacecraft's trajectory around the Moon into a closed orbit around that world. If the SPS failed to fire for the LOI burn, it would be a huge disappointment but survivable. Apollo 8 would simply continue on its free-return trajectory, swing around the Moon, and fall back to Earth where it would perform a normal re-entry and splashdown. But if the engine fired and cut off too soon, the spacecraft would be placed into an orbit which would not return them to Earth, marooning the crew in space to die when their supplies ran out. If it burned just a little too long, the spacecraft's trajectory would intersect the surface of the Moon—lithobraking is no way to land on the Moon. When the SPS engine shut down precisely on time and the computer confirmed the velocity change of the burn and orbital parameters, the three astronauts were elated, but they were the only people in the solar system aware of the success. Apollo 8 was still behind the Moon, cut off from communications. The first clue Mission Control would have of the success or failure of the burn would be when Apollo 8's telemetry signal was reacquired as it swung around the limb of the Moon. If too early, it meant the burn had failed and the spacecraft was coming back to Earth; that moment passed with no signal. Now tension mounted as the clock ticked off the seconds to the time expected for a successful burn. If that time came and went with no word from Apollo 8, it would be a really bad day. Just on time, the telemetry signal locked up and Jim Lovell reported, “Go ahead, Houston, this is Apollo 8. Burn complete. Our orbit 160.9 by 60.5.” (Lovell was using NASA's preferred measure of nautical miles; in proper units it was 311 by 112 km. The orbit would subsequently be circularised by another SPS burn to 112.7 by 114.7 km.) The Mission Control room erupted into an un-NASA-like pandemonium of cheering. Apollo 8 would orbit the Moon ten times, spending twenty hours in a retrograde orbit with an inclination of 12 degrees to the lunar equator, which would allow it to perform high-resolution photography of candidate sites for early landing missions under lighting conditions similar to those expected at the time of landing. In addition, precision tracking of the spacecraft's trajectory in lunar orbit would allow mapping of the Moon's gravitational field, including the “mascons” which perturb the orbits of objects in low lunar orbits and would be important for longer duration Apollo orbital missions in the future. During the mission, the crew were treated to amazing sights and, in particular, the dramatic difference between the near side, with its many flat “seas”, and the rugged highlands of the far side. Coming around the Moon they saw the spectacle of earthrise for the first time and, hastily grabbing a magazine of colour film and setting aside the planned photography schedule, Bill Anders snapped the photo of the Earth rising above the lunar horizon which became one of the most iconic photographs of the twentieth century. Here is a reconstruction of the moment that photo was taken.
On the ninth and next-to-last orbit, the crew conducted a second television transmission which was broadcast worldwide. It was Christmas Eve on much of the Earth, and, coming at the end of the chaotic, turbulent, and often tragic year of 1968, it was a magical event, remembered fondly by almost everybody who witnessed it and felt pride for what the human species had just accomplished. You have probably heard this broadcast from the Moon, often with the audio overlaid on imagery of the Moon from later missions, with much higher resolution than was actually seen in that broadcast. Here, in three parts, is what people, including this scrivener, actually saw on their televisions that enchanted night. The famous reading from Genesis is in the third part. This description is eerily similar to that in Jules Verne's 1870 Autour de la lune.
After the end of the broadcast, it was time to prepare for the next and absolutely crucial maneuver, also performed on the far side of the Moon: trans-Earth injection, or TEI. This would boost the spacecraft out of lunar orbit and send it back on a trajectory to Earth. This time the SPS engine had to work, and perfectly. If it failed to fire, the crew would be trapped in orbit around the Moon with no hope of rescue. If it cut off too soon or burned too long, or the spacecraft was pointed in the wrong direction when it fired, Apollo 8 would miss the Earth and orbit forever far from its home planet or come in too steep and burn up when it hit the atmosphere. Once again the tension rose to a high pitch in Mission Control as the clock counted down to the two fateful times: this time they'd hear from the spacecraft earlier if it was on its way home and later or not at all if things had gone tragically awry. Exactly when expected, the telemetry screens came to life and a second later Jim Lovell called, “Houston, Apollo 8. Please be informed there is a Santa Claus.” Now it was just a matter of falling the 375,000 kilometres from the Moon, hitting the precise re-entry corridor in the Earth's atmosphere, executing the intricate “double dip” re-entry trajectory, and splashing down near the aircraft carrier which would retrieve the Command Module and crew. Earlier unmanned tests gave confidence it would all work, but this was the first time men would be trying it. There was some unexpected and embarrassing excitement on the way home. Mission Control had called up a new set of co-ordinates for the “barbecue roll” which the spacecraft executed to even out temperature. Lovell was asked to enter “verb 3723, noun 501” into the computer. But, weary and short on sleep, he fat-fingered the commands and entered “verb 37, noun 01”. This told the computer the spacecraft was back on the launch pad, pointing straight up, and it immediately slewed to what it thought was that orientation. Lovell quickly figured out what he'd done, “It was my goof”, but by this time he'd “lost the platform”: the stable reference the guidance system used to determine in which direction the spacecraft was pointing in space. He had to perform a manual alignment, taking sightings on a number of stars, to recover the correct orientation of the stable platform. This was completely unplanned but, as it happens, in doing so Lovell acquired experience that would prove valuable when he had to perform the same operation in much more dire circumstances on Apollo 13 after an explosion disabled the computer and guidance system in the Command Module. Here is the author of the book, Jeffrey Kluger, discussing Jim Lovell's goof.
The re-entry went completely as planned, flown entirely under computer control, with the spacecraft splashing into the Pacific Ocean just 6 km from the aircraft carrier Yorktown. But because the splashdown occurred before dawn, it was decided to wait until the sky brightened to recover the crew and spacecraft. Forty-three minutes after splashdown, divers from the Yorktown arrived at the scene, and forty-five minutes after that the crew was back on the ship. Apollo 8 was over, a total success. This milestone in the space race had been won definitively by the U.S., and shortly thereafter the Soviets abandoned their Zond circumlunar project, judging it an anticlimax and admission of defeat to fly by the Moon after the Americans had already successfully orbited it. This is the official NASA contemporary documentary about Apollo 8.
Here is an evening with the Apollo 8 astronauts recorded at the National Air and Space Museum on 2008-11-13 to commemorate the fortieth anniversary of the flight.
This is a reunion of the Apollo 8 astronauts on 2009-04-23.
As of this writing, all of the crew of Apollo 8 are alive, and, in a business where divorce was common, remain married to the women they wed as young military officers.
In June and July [1961], detailed specifications for the spacecraft hardware were completed. By the end of July, the Requests for Proposals were on the street. In August, the first hardware contract was awarded to M.I.T.'s Instrumentation Laboratory for the Apollo guidance system. NASA selected Merritt Island, Florida, as the site for a new spaceport and acquired 125 square miles of land. In September, NASA selected Michoud, Louisiana, as the production facility for the Saturn rockets, acquired a site for the Manned Spacecraft Center—the Space Task Group grown up—south of Houston, and awarded the contract for the second stage of the Saturn [V] to North American Aviation. In October, NASA acquired 34 square miles for a Saturn test facility in Mississippi. In November, the Saturn C-1 was successfully launched with a cluster of eight engines, developing 1.3 million pounds of thrust. The contract for the command and service module was awarded to North American Aviation. In December, the contract for the first stage of the Saturn [V] was awarded to Boeing and the contract for the third stage was awarded to Douglas Aircraft. By January of 1962, construction had begun at all of the acquired sites and development was under way at all of the contractors.Such was the urgency with which NASA was responding to Kennedy's challenge and deadline that all of these decisions and work were done before deciding on how to get to the Moon—the so-called “mission mode”. There were three candidates: direct-ascent, Earth orbit rendezvous (EOR), and lunar orbit rendezvous (LOR). Direct ascent was the simplest, and much like idea of a Moon ship in golden age science fiction. One launch from Earth would send a ship to the Moon which would land there, then take off and return directly to Earth. There would be no need for rendezvous and docking in space (which had never been attempted, and nobody was sure was even possible), and no need for multiple launches per mission, which was seen as an advantage at a time when rockets were only marginally reliable and notorious for long delays from their scheduled launch time. The downside of direct-ascent was that it would require an enormous rocket: planners envisioned a monster called Nova which would have dwarfed the Saturn V eventually used for Apollo and required new manufacturing, test, and launch facilities to accommodate its size. Also, it is impossible to design a ship which is optimised both for landing under rocket power on the Moon and re-entering Earth's atmosphere at high speed. Still, direct-ascent seemed to involve the least number of technological unknowns. Ever wonder why the Apollo service module had that enormous Service Propulsion System engine? When it was specified, the mission mode had not been chosen, and it was made powerful enough to lift the entire command and service module off the lunar surface and return them to the Earth after a landing in direct-ascent mode. Earth orbit rendezvous was similar to what Wernher von Braun envisioned in his 1950s popular writings about the conquest of space. Multiple launches would be used to assemble a Moon ship in low Earth orbit, and then, when it was complete, it would fly to the Moon, land, and then return to Earth. Such a plan would not necessarily even require a booster as large as the Saturn V. One might, for example, launch the lunar landing and return vehicle on one Saturn I, the stage which would propel it to the Moon on a second, and finally the crew on a third, who would board the ship only after it was assembled and ready to go. This was attractive in not requiring the development of a giant rocket, but required on-time launches of multiple rockets in quick succession, orbital rendezvous and docking (and in some schemes, refuelling), and still had the problem of designing a craft suitable both for landing on the Moon and returning to Earth. Lunar orbit rendezvous was originally considered a distant third in the running. A single large rocket (but smaller than Nova) would launch two craft toward the Moon. One ship would be optimised for flight through the Earth's atmosphere and return to Earth, while the other would be designed solely for landing on the Moon. The Moon lander, operating only in vacuum and the Moon's weak gravity, need not be streamlined or structurally strong, and could be potentially much lighter than a ship able to both land on the Moon and return to Earth. Finally, once its mission was complete and the landing crew safely back in the Earth return ship, it could be discarded, meaning that all of the hardware needed solely for landing on the Moon need not be taken back to the Earth. This option was attractive, requiring only a single launch and no gargantuan rocket, and allowed optimising the lander for its mission (for example, providing better visibility to its pilots of the landing site), but it not only required rendezvous and docking, but doing it in lunar orbit which, if they failed, would strand the lander crew in orbit around the Moon with no hope of rescue. After a high-stakes technical struggle, in the latter part of 1962, NASA selected lunar orbit rendezvous as the mission mode, with each landing mission to be launched on a single Saturn V booster, making the decision final with the selection of Grumman as contractor for the Lunar Module in November of that year. Had another mission mode been chosen, it is improbable in the extreme that the landing would have been accomplished in the 1960s. The Apollo architecture was now in place. All that remained was building machines which had never been imagined before, learning to do things (on-time launches, rendezvous and docking in space, leaving spacecraft and working in the vacuum, precise navigation over distances no human had ever travelled before, and assessing all of the “unknown unknowns” [radiation risks, effects of long-term weightlessness, properties of the lunar surface, ability to land on lunar terrain, possible chemical or biological threats on the Moon, etc.]) and developing plans to cope with them. This masterful book is the story of how what is possibly the largest collection of geeks and nerds ever assembled and directed at a single goal, funded with the abundant revenue from an economic boom, spurred by a geopolitical competition against the sworn enemy of liberty, took on these daunting challenges and, one by one, overcame them, found a way around, or simply accepted the risk because it was worth it. They learned how to tame giant rocket engines that randomly blew up by setting off bombs inside them. They abandoned the careful step-by-step development of complex rockets in favour of “all-up testing” (stack all of the untested pieces the first time, push the button, and see what happens) because “there wasn't enough time to do it any other way”. People were working 16–18–20 hours a day, seven days a week. Flight surgeons in Mission Control handed out “go and whoa pills”—amphetamines and barbiturates—to keep the kids on the console awake at work and asleep those few hours they were at home—hey, it was the Sixties! This is not a tale of heroic astronauts and their exploits. The astronauts, as they have been the first to say, were literally at the “tip of the spear” and would not have been able to complete their missions without the work of almost half a million uncelebrated people who made them possible, not to mention the hundred million or so U.S. taxpayers who footed the bill. This was not a straight march to victory. Three astronauts died in a launch pad fire the investigation of which revealed shockingly slapdash quality control in the assembly of their spacecraft and NASA's ignoring the lethal risk of fire in a pure oxygen atmosphere at sea level pressure. The second flight of the Saturn V was a near calamity due to multiple problems, some entirely avoidable (and yet the decision was made to man the next flight of the booster and send the crew to the Moon). Neil Armstrong narrowly escaped death in May 1968 when the Lunar Landing Research Vehicle he was flying ran out of fuel and crashed. And the division of responsibility between the crew in the spacecraft and mission controllers on the ground had to be worked out before it would be tested in flight where getting things right could mean the difference between life and death. What can we learn from Apollo, fifty years on? Other than standing in awe at what was accomplished given the technology and state of the art of the time, and on a breathtakingly short schedule, little or nothing that is relevant to the development of space in the present and future. Apollo was the product of a set of circumstances which happened to come together at one point in history and are unlikely to ever recur. Although some of those who worked on making it a reality were dreamers and visionaries who saw it as the first step into expanding the human presence beyond the home planet, to those who voted to pay the forbidding bills (at its peak, NASA's budget, mostly devoted to Apollo, was more than 4% of all Federal spending; in recent years, it has settled at around one half of one percent: a national commitment to space eight times smaller as a fraction of total spending) Apollo was seen as a key battle in the Cold War. Allowing the Soviet Union to continue to achieve milestones in space while the U.S. played catch-up or forfeited the game would reinforce the Soviet message to the developing world that their economic and political system was the wave of the future, leaving decadent capitalism in the dust. A young, ambitious, forward-looking president, smarting from being scooped once again by Yuri Gagarin's orbital flight and the humiliation of the débâcle at the Bay of Pigs in Cuba, seized on a bold stroke that would show the world the superiority of the U.S. by deploying its economic, industrial, and research resources toward a highly visible goal. And, after being assassinated two and a half years later, his successor, a space enthusiast who had directed a substantial part of NASA's spending to his home state and those of his political allies, presented the program as the legacy of the martyred president and vigorously defended it against those who tried to kill it or reduce its priority. The U.S. was in an economic boom which would last through most of the Apollo program until after the first Moon landing, and was the world's unchallenged economic powerhouse. And finally, the federal budget had not yet been devoured by uncontrollable “entitlement” spending and national debt was modest and manageable: if the national will was there, Apollo was affordable. This confluence of circumstances was unique to its time and has not been repeated in the half century thereafter, nor is it likely to recur in the foreseeable future. Space enthusiasts who look at Apollo and what it accomplished in such a short time often err in assuming a similar program: government funded, on a massive scale with lavish budgets, focussed on a single goal, and based on special-purpose disposable hardware suited only for its specific mission, is the only way to open the space frontier. They are not only wrong in this assumption, but they are dreaming if they think there is the public support and political will to do anything like Apollo today. In fact, Apollo was not even particularly popular in the 1960s: only at one point in 1965 did public support for funding of human trips to the Moon poll higher than 50% and only around the time of the Apollo 11 landing did 50% of the U.S. population believe Apollo was worth what was being spent on it. In fact, despite being motivated as a demonstration of the superiority of free people and free markets, Project Apollo was a quintessentially socialist space program. It was funded by money extracted by taxation, its priorities set by politicians, and its operations centrally planned and managed in a top-down fashion of which the Soviet functionaries at Gosplan could only dream. Its goals were set by politics, not economic benefits, science, or building a valuable infrastructure. This was not lost on the Soviets. Here is Soviet Minister of Defence Dmitriy Ustinov speaking at a Central Committee meeting in 1968, quoted by Boris Chertok in volume 4 of Rockets and People.
…the Americans have borrowed our basic method of operation—plan-based management and networked schedules. They have passed us in management and planning methods—they announce a launch preparation schedule in advance and strictly adhere to it. In essence, they have put into effect the principle of democratic centralism—free discussion followed by the strictest discipline during implementation.This kind of socialist operation works fine in a wartime crash program driven by time pressure, where unlimited funds and manpower are available, and where there is plenty of capital which can be consumed or borrowed to pay for it. But it does not create sustainable enterprises. Once the goal is achieved, the war won (or lost), or it runs out of other people's money to spend, the whole thing grinds to a halt or stumbles along, continuing to consume resources while accomplishing little. This was the predictable trajectory of Apollo. Apollo was one of the noblest achievements of the human species and we should celebrate it as a milestone in the human adventure, but trying to repeat it is pure poison to the human destiny in the solar system and beyond. This book is a superb recounting of the Apollo experience, told mostly about the largely unknown people who confronted the daunting technical problems and, one by one, found solutions which, if not perfect, were good enough to land on the Moon in 1969. Later chapters describe key missions, again concentrating on the problem solving which went on behind the scenes to achieve their goals or, in the case of Apollo 13, get home alive. Looking back on something that happened fifty years ago, especially if you were born afterward, it may be difficult to appreciate just how daunting the idea of flying to the Moon was in May 1961. This book is the story of the people who faced that challenge, pulled it off, and are largely forgotten today. Both the 1989 first edition and 2004 paperback revised edition are out of print and available only at absurd collectors' prices. The Kindle edition, which is based upon the 2004 edition with small revisions to adapt to digital reader devices is available at a reasonable price, as is an unabridged audio book, which is a reading of the 2004 edition. You'd think there would have been a paperback reprint of this valuable book in time for the fiftieth anniversary of the landing of Apollo 11 (and the thirtieth anniversary of its original publication), but there wasn't. Project Apollo is such a huge, sprawling subject that no book can possibly cover every aspect of it. For those who wish to delve deeper, here is a reading list of excellent sources. I have read all of these books and recommend every one. For those I have reviewed, I link to my review; for others, I link to a source where you can obtain the book.
[…] Merely continue as we are now: innovative technology discouraged by taxes, environmental impact statements, reports, lawsuits, commission hearings, delays, delays, delays; space research not carried out, never officially abandoned but delayed, stretched-out, budgets cut and work confined to the studies without hardware; solving the energy crisis by conservation, with fusion research cut to the bone and beyond, continued at level-of-effort but never to a practical reactor; fission plants never officially banned, but no provision made for waste disposal or storage so that no new plants are built and the operating plants slowly are phased out; riots at nuclear power plant construction sites; legal hearings, lawyers, lawyers, lawyers…
Can you not imagine the dream being lost? Can you not imagine the nation slowly learning to “do without”, making “Smaller is Better” the national slogan, fussing over insulating attics and devoting attention to windmills; production falling, standards of living falling, until one day we discover the investments needed to go to space would be truly costly, would require cuts in essentials like food —
A world slowly settling into satisfaction with less, until there are no resources to invest in That Buck Rogers Stuff?
I can imagine that.As can we all, as now we are living it. And yet, and yet…. One consequence of the Three Lost Decades is that the technological vision and optimistic roadmap of the future presented in these essays is just as relevant to our predicament today as when they were originally published, simply because with a few exceptions we haven't done a thing to achieve them. Indeed, today we have fewer resources with which to pursue them, having squandered our patrimony on consumption, armies of rent-seekers, and placed generations yet unborn in debt to fund our avarice. But for those who look beyond the noise of the headlines and the platitudes of politicians whose time horizon is limited to the next election, here is a roadmap for a true step farther out, in which the problems we perceive as intractable are not “managed” or “coped with”, but rather solved, just as free people have always done when unconstrained to apply their intellect, passion, and resources toward making their fortunes and, incidentally, creating wealth for all. This book is available only in electronic form for the Kindle as cited above, under the given ASIN. The ISBN of the original 1979 paperback edition is 978-0-441-78584-1. The formatting in the Kindle edition is imperfect, but entirely readable. As is often the case with Kindle documents, “images and tables hardest hit”: some of the tables take a bit of head-scratching to figure out, as the Kindle (or at least the iPad application which I use) particularly mangles multi-column tables. (I mean, what's with that, anyway? LaTeX got this perfectly right thirty years ago, and in a manner even beginners could use; and this was pure public domain software anybody could adopt. Sigh—three lost decades….) Formatting quibbles aside, I'm as glad I bought and read this book as I was when I first bought it and read it all those years ago. If you want to experience not just what the future could have been, then, but what it can be, now, here is an excellent place to start. The author's Web site is an essential resource for those interested in these big ideas, grand ambitions, and the destiny of humankind and its descendents.