- Suarez, Daniel.
Delta-v.
New York: Dutton, 2019.
ISBN 978-1-5247-4241-6.
-
James Tighe is an extreme cave diver, pushing the limits of
human endurance and his equipment to go deeper, farther, and
into unexplored regions of underwater caves around the
world. While exploring the depths of a cavern in China,
an earthquake triggers disastrous rockfalls in the cave,
killing several members of his expedition. Tighe narrowly
escapes with his life, leading the survivors to safety, and
the video he recorded with his helmet camera has made him an
instant celebrity. He is surprised and puzzled when invited
by billionaire and serial entrepreneur Nathan Joyce to a
party on Joyce's private island in the Caribbean. Joyce
meets privately with Tighe and explains that his theory
of economics predicts a catastrophic collapse of the
global debt bubble in the near future, with the potential
to destroy modern civilisation.
Joyce believes that the only way to avert this calamity
is to jump start the human expansion into the solar
system, thus creating an economic expansion into a
much larger sphere of activity than one planet and
allowing humans to “grow out” of the
crushing debt their profligate governments have run up.
In particular, he believes that asteroid mining is
the key to opening the space frontier, as it will
provide a source of raw materials which do not have to
be lifted at prohibitive cost out of Earth's deep
gravity well. Joyce intends to use part of his fortune
to bootstrap such a venture, and invites Tighe to
join a training program to select a team of individuals
ready to face the challenges of long-term industrial
operations in deep space.
Tighe is puzzled, “Why me?” Joyce explains
that much more important than a background in aerospace
or mining is the ability to make the right decisions
under great pressure and uncertainty. Tighe's leadership
in rescuing his dive companions demonstrated that
ability and qualified him to try out for Joyce's team.
By the year 2033, the NewSpace companies founded in the
early years of the 21st century have matured and, although
taking different approaches, have come to dominate the
market for space operations, mostly involving constellations
of Earth satellites. The so-called “NewSpace Titans”
(names have been changed, but you'll recognise them from
their styles) have made their billions developing this
industry, and some have expressed interest in asteroid
mining, but mostly via robotic spacecraft and on a long-term
time scale. Nathan Joyce wants to join their ranks
and advance the schedule by sending humans to do the job.
Besides, he argues, if the human destiny is to expand into
space, why not get on with it, deploying their versatility
and ability to improvise on this difficult challenge?
The whole thing sounds rather dodgy to Tighe, but cave
diving does not pay well, and the signing bonus and
promised progress payments if he meets various milestones in
the training programme sound very attractive, so he signs
on the dotted line. Further off-putting were a draconian
non-disclosure agreement and an “Indemnity for Accidental
Death and Dismemberment” which was sprung on candidates
only after arriving at the remote island training facility.
There were surveillance cameras and microphones everywhere,
and Tighe and others speculated they may be part of an
elaborate reality TV show staged by Joyce, not a genuine
space project.
The other candidates were from all kinds of backgrounds:
ex-military, former astronauts, BASE jumpers, mountaineers,
scientists, and engineers. There were almost all on the
older side for adventurers: mid-thirties to mid-forties—something
about cosmic rays. And most of them had the hallmarks of
DRD4-7R
adventurers.
As the programme gets underway, the candidates discover it
resembles Special Forces training more than astronaut
candidate instruction, with a series of rigorous tests
evaluating personal courage, endurance, psychological
stability, problem-solving skills, tolerance for stress,
and the ability to form and work as a team. Predictably, their
numbers are winnowed as they approach the milestone
where a few will be selected for orbital training and
qualification for the deep space mission.
Tighe and the others discover that their employer is
anything but straightforward, and they begin to twig
to the fact that the kind of people who actually open
the road to human settlement of the solar system may
resemble the ruthless railroad barons of the 19th
century more than the starry-eyed dreamers of science
fiction. These revelations continue as the story unfolds.
After gut-wrenching twists and turns, Tighe finds himself
part of a crew selected to fly to and refine resources
from a near-Earth asteroid first reconnoitered by the
Japanese Hayabusa2
mission in the 2010s. Risks are everywhere, and not just
in space: corporate maneuvering back on Earth can kill the
crew just as surely as radiation, vacuum, explosions, and
collisions in space. Their only hope may be a desperate
option recalling one of the greatest feats of seamanship
in Earth's history.
This is a gripping yarn in which the author confronts his
characters with one seemingly insurmountable obstacle and
disheartening setback after another, then describes how these
carefully selected and honed survivors deal with it. There
are no magical technologies: all of the technical foundations
exist today, at least at the scale of laboratory
demonstrations, and could plausibly be scaled up to those
in the story by the mid-2030s. The intricate plot is a
salutary reminder that deception, greed, dodgy finances,
corporate hijinks, bureaucracy, and destructively
hypertrophied egos do not stop at the
Kármán
line. The conclusion is hopeful and a testament to
the place for humans in the development of space.
A question and
answer document about the details underlying the story is
available on the
author's Web site.
- Murray, Charles and Catherine Bly Cox.
Apollo.
Burkittsville, MD: South Mountain Books, [1989, 2004] 2010.
ISBN 978-0-9760008-0-8.
-
On November 5, 1958, NASA, only four months old at the
time, created the
Space
Task Group (STG) to manage its manned spaceflight programs.
Although there had been earlier military studies of manned space
concepts and many saw eventual manned orbital flights growing
out of the rocket plane projects conducted by NASA's
predecessor, the
National
Advisory Committee for Aeronautics
(NACA) and the U.S. Air Force, at the time of the STG's
formation the U.S. had no formal manned space program. The
initial group numbered 45 in all, including eight secretaries
and “computers”—operators of electromechanical
desk calculators, staffed largely with people from the NACA's
Langley Research Center and initially headquartered there.
There were no firm plans for manned spaceflight, no budget
approved to pay for it, no spacecraft, no boosters, no launch
facilities, no mission control centre, no astronauts, no plans
to select and train them, and no experience either with human
flight above the Earth's atmosphere or with more than a few
seconds of weightlessness. And yet this team, the core of an
effort which would grow to include around 400,000 people at NASA
and its 20,000 industry and academic contractors, would, just
ten years and nine months later, on July 20th, 1969, land two
people on the surface of the Moon and then return them safely to
the Earth.
Ten years is not a long time when it comes to accomplishing
a complicated technological project. Development of the
Boeing
787, a mid-sized commercial airliner which flew no further,
faster, or higher than its predecessors, and was designed and
built using computer-aided design and manufacturing technologies,
took eight years from project launch to entry into service,
and the
F-35
fighter plane only entered service and then only in small
numbers of one model a full twenty-three years after
the start of its development.
In November, 1958, nobody in the Space Task Group was
thinking about landing on the Moon. Certainly, trips to the
Moon had been discussed in fables from antiquity to
Jules Verne's classic
De la terre à la lune
of 1865, and in 1938 members of the British Interplanetary
Society published a (totally impractical) design for a
Moon
rocket powered by more than two thousand solid rocket motors
bundled together, which would be discarded once burned out, but
only a year since the launch of the first Earth satellite and
when nothing had been successfully returned from Earth orbit to
the Earth, talk of manned Moon ships sounded like—lunacy.
The small band of stalwarts at the STG undertook the already
daunting challenge of manned space flight with an incremental
program they called
Project Mercury,
whose goal was to launch a single man into Earth orbit in a
capsule (unable to change its orbit once released from the
booster rocket, it barely deserved the term “spacecraft”)
atop a converted
Atlas
intercontinental ballistic missile. In essence, the idea was to
remove the warhead, replace it with a tiny cone-shaped can with
a man in it, and shoot him into orbit. At the time the project
began, the reliability of the Atlas rocket was around 75%, so
NASA could expect around one in four launches to fail, with the
Atlas known for spectacular explosions on the ground or on the
way to space. When, in early 1960, the newly-chosen Mercury
astronauts watched a test launch of the rocket they were to
ride, it
exploded less
than a minute after launch. This was the fifth consecutive
failure of an Atlas booster (although not all were so
spectacular).
Doing things which were inherently risky on tight schedules with
a shoestring budget (compared to military projects) and
achieving an acceptable degree of safety by fanatic attention to
detail and mountains of paperwork (NASA engineers quipped that
no spacecraft could fly until the mass of paper documenting its
construction and test equalled that of the flight hardware)
became an integral part of the NASA culture. NASA was
proceeding on its deliberate, step-by-step development of
Project Mercury, and in 1961 was preparing for the first space
flight by a U.S. astronaut, not into orbit on an Atlas, just a
15 minute suborbital hop on a version of the reliable
Redstone
rocket that launched the first U.S. satellite in 1958 when,
on April 12, 1961, they were to be sorely disappointed when the
Soviet Union launched Yuri Gagarin into orbit on
Vostok 1. Not
only was the first man in space a Soviet, they had accomplished
an orbital mission, which NASA hadn't planned to attempt until
at least the following year.
On May 5, 1961, NASA got back into the game, or at least the
minor league, when Alan Shepard was launched on
Mercury-Redstone 3.
Sure, it was just a 15 minute up and down, but at least
an American had been in space, if only briefly, and it was
enough to persuade a recently-elected, young U.S. president smarting
from being scooped by the Soviets to “take longer strides”.
On May 25, less than three weeks after Shepard's flight,
before a joint session of Congress, President Kennedy said,
“I believe that this nation should commit itself to
achieving the goal, before this decade is out, of landing
a man on the Moon and returning him safely to Earth.”
Kennedy had asked his vice president, Lyndon Johnson, what
goal the U.S. could realistically hope to achieve before the
Soviets, and after consulting with the NASA administrator,
James Webb,
a Texas oil man and lawyer, and no other NASA
technical people other than Wernher von Braun, he reported
that a manned Moon landing was the only milestone the Soviets,
with their heavy boosters and lead in manned space
flight, were unlikely to do first. So, to the Moon it was.
The Space Task Group people who were, ultimately going to be
charged with accomplishing this goal and had no advance warning
until they heard Kennedy's speech or got urgent telephone calls
from colleagues who had also heard the broadcast were, in the
words of their leader,
Robert Gilruth,
who had no more warning than his staff, “aghast”. He
and his team had, like von Braun in the 1950s, envisioned a
deliberate, step-by-step development of space flight capability:
manned orbital flight, then a more capable spacecraft with a
larger crew able to maneuver in space, a space station to
explore the biomedical issues of long-term space flight and
serve as a base to assemble craft bound farther into space,
perhaps a reusable shuttle craft to ferry crew and cargo to
space without (wastefully and at great cost) throwing away
rockets designed as long-range military artillery on every
mission,followed by careful reconnaissance of the Moon by both
unmanned and manned craft to map its surface, find safe landing
zones, and then demonstrate the technologies that would be
required to get people there and back safely.
All that was now clearly out the window. If Congress
came through with the massive funds it would require, going
to the Moon would be a crash project like the Manhattan
Project to build the atomic bomb in World War II, or the
massive industrial mobilisation to build Liberty Ships
or the B-17 and B-29 bombers. The clock was ticking: when
Kennedy spoke, there were just 3142 days until
December 31, 1969 (yes, I know the decade actually ends at
the end of 1970, since there was no year 0 in the
Gregorian
calendar, but explaining this to clueless Americans is
a lost cause), around eight years and seven months. What
needed to be done? Everything. How much time
was there to do it? Not remotely enough. Well,
at least the economy was booming, politicians
seemed willing to pay the huge bills for what needed
to be done, and there were plenty of twenty-something
newly-minted engineering graduates ready and willing to
work around the clock without a break to make real what
they'd dreamed of since reading science fiction in their
youth.
The Apollo Project was simultaneously one of the most epochal
and inspiring accomplishments of the human species, far more
likely to be remembered a thousand years hence than anything
else that happened in the twentieth century, and at the same
time a politically-motivated blunder which retarded human
expansion into the space frontier. Kennedy's speech was at the
end of May 1961. Perhaps because the Space Task Group was so
small, it and NASA were able to react with a speed which is
stunning to those accustomed to twenty year development projects
for hardware far less complicated than Apollo.
In June and July [1961], detailed specifications
for the spacecraft hardware were completed. By the
end of July, the Requests for Proposals were on
the street.
In August, the first hardware contract was awarded to
M.I.T.'s Instrumentation Laboratory for the
Apollo
guidance system. NASA selected
Merritt Island,
Florida, as the site for a new spaceport and
acquired 125 square miles of land.
In September, NASA selected
Michoud, Louisiana, as the production facility
for the Saturn rockets, acquired a site for the
Manned
Spacecraft Center—the Space Task Group grown up—south
of Houston, and awarded the contract for the
second stage
of the Saturn [V] to North American Aviation.
In October, NASA acquired 34 square miles for a
Saturn
test facility in Mississippi.
In November, the
Saturn C-1
was successfully launched
with a cluster of eight engines, developing 1.3 million
pounds of thrust. The contract for the
command
and service module was awarded to North American Aviation.
In December, the contract for the
first stage of the
Saturn [V] was awarded to Boeing and the contract for
the
third stage
was awarded to Douglas Aircraft.
By January of 1962, construction had begun at all of the
acquired sites and development was under way at all of
the contractors.
Such was the urgency with which NASA was responding to
Kennedy's challenge and deadline that all of these
decisions and work were done before deciding on
how to get to the Moon—the so-called
“mission mode”.
There were three candidates:
direct-ascent, Earth orbit rendezvous (EOR), and lunar
orbit rendezvous (LOR). Direct ascent was the simplest,
and much like idea of a Moon ship in golden age
science fiction. One launch from Earth would send a ship
to the Moon which would land there, then take off and return
directly to Earth. There would be no need for
rendezvous and docking in space (which had never been
attempted, and nobody was sure was even possible), and no
need for multiple launches per mission, which was seen
as an advantage at a time when rockets were only marginally
reliable and notorious for long delays from their scheduled
launch time. The downside of direct-ascent was that it
would require an enormous rocket: planners envisioned a
monster called
Nova
which would have dwarfed the Saturn V eventually used
for Apollo and required new manufacturing, test, and launch
facilities to accommodate its size. Also, it is
impossible to design a ship which is optimised both for
landing under rocket power on the Moon and re-entering
Earth's atmosphere at high speed. Still, direct-ascent
seemed to involve the least number of technological
unknowns. Ever wonder why the Apollo service module had
that enormous
Service
Propulsion System engine? When it was specified, the
mission mode had not been chosen, and it was made powerful
enough to lift the entire command and service module off
the lunar surface and return them to the Earth after a landing
in direct-ascent mode.
Earth orbit rendezvous was similar to what Wernher von Braun
envisioned in his
1950s
popular writings about the conquest
of space. Multiple launches would be used to assemble a
Moon ship in low Earth orbit, and then, when it was complete,
it would fly to the Moon, land, and then return to Earth.
Such a plan would not necessarily even require a booster as
large as the Saturn V. One might, for example, launch the
lunar landing and return vehicle on one Saturn I, the stage
which would propel it to the Moon on a second, and finally
the crew on a third, who would board the ship only after it
was assembled and ready to go. This was attractive in not
requiring the development of a giant rocket, but required
on-time launches of multiple rockets in quick succession,
orbital rendezvous and docking (and in some schemes,
refuelling), and still had the problem of designing a craft
suitable both for landing on the Moon and returning to Earth.
Lunar orbit rendezvous was originally considered a distant
third in the running. A single large rocket (but smaller than
Nova) would launch two craft toward the Moon. One
ship would be optimised for flight through the Earth's
atmosphere and return to Earth, while the other would be
designed solely for landing on the Moon. The Moon lander,
operating only in vacuum and the Moon's weak gravity,
need not be streamlined or structurally strong, and could
be potentially much lighter than a ship able to both land
on the Moon and return to Earth. Finally, once its mission
was complete and the landing crew safely back in the Earth
return ship, it could be discarded, meaning that all of the
hardware needed solely for landing on the Moon need not
be taken back to the Earth. This option was attractive,
requiring only a single launch and no gargantuan rocket, and
allowed optimising the lander for its mission (for example,
providing better visibility to its pilots of the landing
site), but it not only required rendezvous and docking, but
doing it in lunar orbit which, if they failed, would
strand the lander crew in orbit around the Moon with no hope of
rescue.
After a high-stakes technical struggle, in the latter part of
1962, NASA selected lunar orbit rendezvous as the mission
mode, with each landing mission to be launched on a single
Saturn V booster, making the decision final with the selection
of Grumman as contractor for the
Lunar Module
in November of that year. Had another mission mode been chosen,
it is improbable in the extreme that the landing would have been
accomplished in the 1960s.
The Apollo architecture was now in place. All that remained was
building machines which had never been imagined before, learning
to do things (on-time launches, rendezvous and docking in space,
leaving spacecraft and working in the vacuum, precise navigation
over distances no human had ever travelled before, and assessing
all of the “unknown unknowns” [radiation risks,
effects of long-term weightlessness, properties of the lunar
surface, ability to land on lunar terrain, possible chemical or
biological threats on the Moon, etc.]) and developing plans to
cope with them.
This masterful book is the story of how what is possibly the
largest collection of geeks and nerds ever assembled and
directed at a single goal, funded with the abundant revenue
from an economic boom, spurred by a geopolitical competition
against the sworn enemy of liberty, took on these daunting
challenges and, one by one, overcame them, found a way around,
or simply accepted the risk because it was worth it. They
learned how to tame giant rocket engines that randomly
blew up by setting off bombs inside them. They abandoned
the careful step-by-step development of complex rockets
in favour of “all-up testing” (stack all of
the untested pieces the first time, push the button, and see
what happens) because “there wasn't enough time to
do it any other way”. People were working 16–18–20
hours a day, seven days a week. Flight surgeons in Mission
Control handed out “go and whoa pills”—amphetamines
and barbiturates—to keep the kids on the console awake at
work and asleep those few hours they were at home—hey,
it was the Sixties!
This is not a tale of heroic astronauts and their exploits. The
astronauts, as they have been the first to say, were literally
at the “tip of the spear” and would not have been
able to complete their missions without the work of almost half
a million uncelebrated people who made them possible, not to
mention the
hundred
million or so U.S. taxpayers who footed the bill.
This was not a straight march to victory. Three astronauts died
in a launch pad fire
the investigation of which revealed shockingly slapdash quality
control in the assembly of their spacecraft and NASA's ignoring
the lethal risk of fire in a pure oxygen atmosphere at sea level
pressure. The
second flight of
the Saturn V was a near calamity due to multiple problems,
some entirely avoidable (and yet the decision was made to man
the next flight of the booster and send the crew to the Moon).
Neil Armstrong narrowly escaped death in May 1968 when the
Lunar
Landing Research Vehicle he was flying ran out of fuel and
crashed. And the division of responsibility between the crew
in the spacecraft and mission controllers on the ground had
to be worked out before it would be tested in flight where
getting things right could mean the difference between life and
death.
What can we learn from Apollo, fifty years on?
Other than standing in awe at what was accomplished
given the technology and state of the art of the time,
and on a breathtakingly short schedule, little or nothing
that is relevant to the development of space in the
present and future. Apollo was the product of a set of
circumstances which happened to come together at one
point in history and are unlikely to ever recur.
Although some of those who worked on making it a reality
were dreamers and visionaries who saw it as the first
step into expanding the human presence beyond the home
planet, to those who voted to pay the forbidding bills
(at its peak, NASA's budget, mostly devoted to Apollo,
was more than 4% of all Federal spending; in recent
years, it has settled at around one half of one percent:
a national commitment to space eight times smaller as
a fraction of total spending) Apollo was seen as a key
battle in the Cold War. Allowing the Soviet Union to
continue to achieve milestones in space while the U.S.
played catch-up or forfeited the game would reinforce
the Soviet message to the developing world that their
economic and political system was the wave of the future,
leaving decadent capitalism in the dust.
A young, ambitious, forward-looking president, smarting from
being scooped once again by Yuri Gagarin's orbital flight and
the humiliation of the débâcle at the
Bay of Pigs
in Cuba, seized on a bold stroke that would show the world the
superiority of the U.S. by deploying its economic, industrial,
and research resources toward a highly visible goal. And, after
being assassinated two and a half years later, his successor, a
space enthusiast who had directed a substantial part of NASA's
spending to his home state and those of his political allies,
presented the program as the legacy of the martyred president
and vigorously defended it against those who tried to kill it or
reduce its priority. The U.S. was in an economic boom which
would last through most of the Apollo program until after the
first Moon landing, and was the world's unchallenged economic
powerhouse. And finally, the federal budget had not yet been
devoured by uncontrollable “entitlement” spending
and national debt was modest and manageable: if the national
will was there, Apollo was affordable.
This confluence of circumstances was unique to its time
and has not been repeated in the half century thereafter, nor
is it likely to recur in the foreseeable future. Space
enthusiasts who look at Apollo and what it accomplished
in such a short time often err in assuming a similar
program: government funded, on a massive scale with lavish
budgets, focussed on a single goal, and based on special-purpose
disposable hardware suited only for its specific mission, is
the only way to open the space frontier. They are not
only wrong in this assumption, but they are dreaming if
they think there is the public support and political will
to do anything like Apollo today. In fact, Apollo was
not
even particularly popular in the 1960s:
only at one point in 1965 did public support for funding
of human trips to the Moon poll higher than 50% and
only around the time of the Apollo 11 landing did 50%
of the U.S. population believe Apollo was worth what was
being spent on it.
In fact, despite being motivated as a demonstration of the
superiority of free people and free markets, Project Apollo
was a quintessentially socialist space program.
It was funded by money extracted by taxation, its priorities
set by politicians, and its operations centrally planned and
managed in a top-down fashion of which the Soviet functionaries
at Gosplan
could only dream. Its goals were set by politics, not
economic benefits, science, or building a valuable
infrastructure. This was not lost on the Soviets. Here
is Soviet Minister of Defence
Dmitriy Ustinov
speaking at a Central Committee meeting in 1968, quoted by
Boris Chertok in volume 4 of Rockets and People.
…the Americans have borrowed our basic method of
operation—plan-based management and networked
schedules. They have passed us in management and planning
methods—they announce a launch preparation schedule in
advance and strictly adhere to it. In essence, they have
put into effect the principle of democratic
centralism—free discussion followed by the strictest
discipline during implementation.
This kind of socialist operation works fine in a wartime
crash program driven by time pressure, where unlimited
funds and manpower are available, and where there is plenty
of capital which can be consumed or borrowed to pay for it.
But it does not create sustainable enterprises. Once the
goal is achieved, the war won (or lost), or it runs
out of other people's money to spend, the whole thing
grinds to a halt or stumbles along, continuing to
consume resources while accomplishing little. This was
the predictable trajectory of Apollo.
Apollo was one of the noblest achievements of the human species
and we should celebrate it as a milestone in the human
adventure, but
trying
to repeat it is pure poison to the human destiny in the
solar system and beyond.
This book is a superb recounting of the Apollo experience,
told mostly about the largely unknown people who
confronted the daunting technical problems and,
one by one, found solutions which, if not perfect,
were good enough to land on the Moon in 1969. Later
chapters describe key missions, again concentrating on
the problem solving which went on behind the scenes
to achieve their goals or, in the case of Apollo 13,
get home alive. Looking back on something that
happened fifty years ago, especially if you were born
afterward, it may be difficult to appreciate just how
daunting the idea of flying to the Moon was in May 1961.
This book is the story of the people who faced that
challenge, pulled it off, and are largely forgotten
today.
Both the 1989 first edition and
2004 paperback revised edition are
out of print and available only at absurd collectors'
prices. The Kindle edition, which
is based upon the 2004 edition with small revisions to
adapt to digital reader devices is available at a
reasonable price, as is an
unabridged audio book, which is
a reading of the 2004 edition. You'd think there
would have been a paperback reprint of this valuable
book in time for the fiftieth anniversary of the landing
of Apollo 11 (and the thirtieth anniversary of its
original publication), but there wasn't.
Project Apollo is such a huge, sprawling subject that
no book can possibly cover every aspect of it. For
those who wish to delve deeper, here is a reading list
of excellent sources. I have read all of these books
and recommend every one. For those I have reviewed,
I link to my review; for others, I link to a source where
you can obtain the book.
- The NASA History Series
- Spacecraft and Components
- Missions
- Mission Control
- The Cape
- Photo Galleries
If you wish to commemorate the landing of Apollo 11 in a
moving ceremony with friends, consider hosting an
Evoloterra
celebration.
- Egan, Greg.
Schild's Ladder.
New York: Night Shade Books, [2002, 2004, 2013] 2015.
ISBN 978-1-59780-544-5.
-
Greg Egan is one of the most eminent contemporary
authors in the genre of
“hard”
science fiction.
By “hard”, one means not that it is necessarily
difficult to read, but that the author has taken care to
either follow the laws of known science or, if the story
involves alternative laws (for example, a faster than light
drive, anti-gravity, or time travel) to define those
laws and then remain completely consistent with them.
This needn't involve tedious lectures—masters
of science fiction, like Greg Egan,
“show, don't tell”—but the reader
should be able to figure out the rules and the
characters be constrained by them as the story
unfolds. Egan is also a skilled practitioner of
“world
building” which takes hard science fiction to
the next level by constructing entire worlds or universes
in which an alternative set of conditions are worked out
in a logical and consistent way.
Whenever a new large particle collider is proposed,
fear-mongers prattle on about the risk of its unleashing
some new physical phenomenon which might destroy the Earth or,
for those who think big, the universe by, for example, causing
it to collapse into a black hole or causing the quantum
vacuum to
tunnel
to a lower energy state where the laws of
physics are incompatible with the existence of condensed matter
and life. This is, of course, completely absurd. We have
observed cosmic rays, for example the
Oh-My-God
particle detected by an instrument in Utah in 1991,
with energies more than twenty million times greater than
those produced by the Large Hadron Collider, the most
powerful particle accelerator in existence today. These
natural cosmic rays strike the Earth, the Moon, the Sun,
and everything else in the universe all the time and have
been doing so for billions of years and, if you look
around, you'll see that the universe is still here. If a
high energy particle was going to destroy it, it would have
been gone long ago.
No, if somebody's going to destroy the universe, I'd worry
about some quiet lab in the physics building where somebody
is exploring
very
low temperatures, trying to beat the record which stands at,
depending upon how you define it, between 0.006 degrees Kelvin (for
a large block of metal) and 100 picokelvin (for nuclear spins).
These temperatures, and the physical conditions they may
create, are deeply unnatural and, unless there are similar
laboratories and apparatus created by alien scientists on
other worlds, colder than have ever existed anywhere in our universe
ever since the Big Bang.
The cosmic
microwave background radiation pervades the universe, and has
an energy at the present epoch which corresponds to a
temperature of about 2.73 degrees Kelvin. Every natural object
in the universe is bathed in this radiation so, even in the
absence of other energy sources such as starlight, anything
colder than that will heated by the background radiation until
it reaches that temperature and comes into equilibrium. (There
are a few natural processes in the universe which can temporarily
create lower temperatures, but nothing below 1° K has
ever been observed.) The temperature of the universe has been
falling ever since the Big Bang, so no lower temperature has
ever existed in the past. The only way to create a lower
temperature is to expend energy in what amounts to a super-refrigerator
that heats up something else in return for artificially cooling
its contents. In doing so, it creates a region like none other
in the known natural universe.
Whenever you explore some physical circumstance which is completely
new, you never know what you're going to find, and researchers
have been surprised many times in the past. Prior to 1911,
nobody imagined that it was possible for an electrical current
to flow with no resistance at all, and yet in early experiments
with liquid helium, the phenomenon of
superconductivity was
discovered. In 1937, it was discovered that liquid helium could
flow with zero viscosity:
superfluidity.
What might be discovered
at temperatures a tiny fraction of those where these phenomena
became manifest? Answering that question is why researchers strive
to approach ever closer to the (unattainable) absolute zero.
Might one of those phenomena destroy the universe? Could be: you'll
never know until you try.
This is the premise of this book, which is hard science fiction
but also difficult. For twenty thousand years the field of
fundamental physics has found nothing new beyond the unification of
quantum mechanics and general relativity called “Sarumpaet's
rules” or Quantum Graph Theory (QGT). The theory explained
the fabric of space and time and all of the particles and forces
within it as coarse-grained manifestations of
transformations of a graph at the Planck scale.
Researchers at Mimosa Station, 370 light years
from Earth, have built an experimental apparatus, the
Quietener, to explore conditions which have never existed
before in the universe and test Sarumpaet's Rules at the
limits. Perhaps the currently-observed laws of physics were
simply a random choice made by the universe an unimaginably
short time after the Big Bang and frozen into place by
decoherence due to interactions with the environment, analogous
to the quantum
Zeno effect. The Quietener attempts to null out every possible
external influence, even gravitational waves by carefully positioned
local cancelling sources, in the hope of reproducing the conditions
in which the early universe made its random choice and to create,
for a fleeting instant, just trillionths of a second, a region
of space with entirely different laws of physics. Sarumpaet's Rules
guaranteed that this so-called novo-vacuum would quickly
collapse, as it would have a higher energy and decay into the
vacuum we inhabit.
Oops.
Six hundred and five years after the unfortunate event at
Mimosa, the Mimosa novo-vacuum, not just stable but expanding at
half the speed of light, has swallowed more than two thousand
inhabited star systems, and is inexorably expanding through the
galaxy, transforming everything in its path to—nobody
knows. The boundary emits only an unstructured
“borderlight” which provides no clue as to what lies
within. Because the interstellar society has long ago developed
the ability to create backups of individuals, run them as
computer emulations, transmit them at light speed
from star to star, and re-instantiate them in new bodies for
fuddy-duddies demanding corporeal existence, loss of life has
been minimal, but one understands how an inexorably growing
sphere devouring everything in its path might be disturbing. The
Rindler is a research ship racing just ahead of the
advancing novo-vacuum front, providing close-up access to it for
investigators trying to figure out what it conceals.
Humans (who, with their divergently-evolved descendants,
biological and digitally emulated, are the only intelligent
species discovered so far in the galaxy) have divided, as
they remain wont to do, into two factions: Preservationists,
who view the novo-vacuum as an existential threat to the universe
and seek ways to stop its expansion and, ideally, recover
the space it has occupied; and Yielders, who believe
the novo-vacuum to be a phenomenon so unique and potentially
important that destroying it before understanding its
nature and what is on the other side of the horizon
would be unthinkable. Also, being (post-)human, the factions
are willing to resort to violence to have their way.
This leads to an adventure spanning time and space, and eventually
a mission into a region where the universe is making it up as it
goes along. This is one of the most breathtakingly
ambitious attempts at world (indeed, universe) building ever
attempted in science fiction. But for this reader, it
didn't work. First of all, when all of the principal
characters have backups stored in safe locations and can
reset, like a character in a video game with an infinite
number of lives cheat, whenever anything bad happens, it's
difficult to create dramatic tension. Humans have transcended
biological substrates, yet those still choosing them remain
fascinated with curious things about bumping their adaptive
uglies. When we finally go and explore the unknown, it's
mediated through several levels of sensors, translation,
interpretation, and abstraction, so what is described comes
across as something like a hundred pages of the acid trip
scene at the end of 2001.
In the distance, glistening partitions, reminiscent of
the algal membranes that formed the cages in some
aquatic zoos, swayed back and forth gently, as if in
time to mysterious currents. Behind each barrier the
sea changed color abruptly, the green giving way to
other bright hues, like a fastidiously segregated
display of bioluminescent plankton.
Oh, wow.
And then, it stops. I don't mean ends, as that would imply
that everything that's been thrown up in the air is somehow
resolved. There is an attempt to close the circle with the
start of the story, but a whole universe of questions are
left unanswered. The human perspective is inadequate to
describe a place where Planck length objects interact in
Planck time intervals and the laws of physics are made up
on the fly. Ultimately, the story failed for me since it
never engaged me with the characters—I didn't care
what happened to them. I'm a fan of hard science fiction,
but this was just too adamantine to be interesting.
The title, Schild's
Ladder, is taken from a method in differential geometry
which is used to approximate the parallel transport of a vector
along a curve.
- Thor, Brad.
Backlash.
New York: Atria Books, 2019.
ISBN 978-1-9821-0403-0.
-
This is the nineteenth novel in the author's
Scot
Harvath series, which began with
The Lions of Lucerne (October 2010).
This is a very different kind of story from the last several
Harvath outings, which involved high-stakes international
brinkmanship, uncertain loyalties, and threats of mass
terror attacks. This time it's up close and personal. Harvath,
paying what may be his last visit to Reed Carlton, his dying ex-CIA
mentor and employer, is the object of a violent kidnapping
attack which kills those to whom he is closest and spirits
him off, drugged and severely beaten, to Russia, where he
is to be subjected to the hospitality of the rulers
whose nemesis he has been for many years (and books) until
he spills the deepest secrets of the U.S. intelligence
community.
After being spirited out of the U.S., the Russian cargo plane
transporting him to the rendition resort where he is to be
“de-briefed” crashes, leaving him…somewhere.
About all he knows is that it's cold, that nobody
knows where he is or that he is alive, and that he has no way to
contact anybody, anywhere who might help.
This is a spare, stark tale of survival. Starting only
with what he can salvage from the wreck of the plane and the
bodies of its crew (some of whom he had to assist in
becoming casualties), he must overcome the elements,
predators (quadripedal and bipedal), terrain, and
uncertainty about his whereabouts and the knowledge and
intentions of his adversaries, to survive and escape.
Based upon what has been done to him, it is also a
tale of revenge. To Harvath, revenge was not a low
state: it was a necessity,
In his world, you didn't let wrongs go unanswered—not
wrongs like this, and especially when you had the ability to
do something. Vengeance was a necessary function of a
civilized world, particularly at its margins, in its most
remote and wild regions. Evildoers, unwilling to submit to
the rule of law, needed to lie awake in their beds at night
worried about when justice would eventually come for them.
If laws and standards were not worth enforcing, then they
certainly couldn't be worth following.
Harvath forms tenuous alliances with those he encounters, and
then must confront an all-out assault by élite
mercenaries who, apparently unsatisfied with the fear induced by
fanatic Russian operatives, model themselves on the Nazi SS.
Then, after survival, it's time for revenge. Harvath has
done his biochemistry homework and learned well the
off-label
applications
of suxamethonium
chloride. Sux to be you, Boris.
This is a tightly-crafted thriller which is, in my opinion,
one of best of Brad Thor's novels. There is no political
message or agenda nor any of the Washington intrigue which
has occupied recent books. Here it is a pure struggle
between a resourceful individual, on his own against
amoral forces of pure evil, in an environment as deadly
as his human adversaries.
- Dick, Philip K.
The Man in the High Castle.
New York: Mariner Books, [1962] 2011.
ISBN 978-0-547-57248-2.
-
The year is 1962. Following the victory of Nazi Germany
and Imperial Japan in World War II, North America is divided
into spheres of influence by the victors, with the west
coast Pacific States of America controlled by Japan,
the territory east of the Mississippi split north and
south between what is still called the United States of
America and the South, where slavery has been
re-instituted, both puppet states of Germany. In between
are the Rocky Mountain states, a buffer zone between
the Japanese and German sectors with somewhat more
freedom from domination by them.
The point of departure where this alternative history
diverges from our timeline is in 1934, when Franklin
D. Roosevelt is assassinated in Miami, Florida. (In
our history, Roosevelt was uninjured in an
assassination
attempt in Miami in 1933 that killed the mayor of
Chicago, Anton Cermak.) Roosevelt's vice president,
John Nance Garner,
succeeds to the presidency and
is re-elected in 1936. In 1940, the Republican party
retakes the White House, with
John W. Bricker
elected president. Garner and Bricker pursue a policy of strict
neutrality and isolation, which allows Germany, Japan, and Italy
to divide up the most of the world and coerce other nations into
becoming satellites or client states. Then, Japan and Germany
mount simultaneous invasions of the east and west coasts of the
U.S., resulting in a surrender in 1947 and the present division
of the continent.
By 1962, the victors are secure in their domination of the
territories they have subdued. Germany has raced ahead
economically and in technology, draining the Mediterranean to
create new farmland, landing on the Moon and Mars, and
establishing high-speed suborbital rocket transportation service
throughout their far-flung territories. There is no serious
resistance to the occupation in the former United States: its
residents seem to be more or less resigned to second-class
status under their German or Japanese overlords.
In the Pacific States the Japanese occupiers have settled in
to a comfortable superiority over the vanquished, and
many have become collectors of artefacts of the vanished
authentic America. Robert Childan runs a shop in San Francisco
catering to this clientèle, and is contacted by an official
of the Japanese Trade Mission, seeking a gift to impress a
visiting Swedish industrialist. This leads into a maze of
complexity and nothing being as it seems as only
Philip K.
Dick (PKD) can craft. Is the Swede really a Swede or a German,
and is he a Nazi agent or something else? Who is the mysterious
Japanese visitor he has come to San Francisco to meet? Is
Childan a supplier of rare artefacts or a swindler exploiting
gullible Japanese rubes with fakes?
Many characters in the book are reading a novel called
The Grasshopper Lies Heavy, banned in areas
under German occupation but available in the Pacific States
and other territories, which is an alternative history tale
written by an elusive author named Hawthorne Abendsen, about
a world in which the Allies defeated Germany and Japan in
World War II and ushered in a golden age of peace, prosperity,
and freedom. Abendsen is said to have retreated to a
survivalist compound called the High Castle in the Rocky
Mountain states. Characters we meet become obsessed with
tracking down and meeting Abendsen. Who are they, and what
are their motives? Keep reminding yourself, this is a PKD
novel! We're already dealing with a fictional mysterious
author of an alternative history of World War II within
an alternative history novel of World War II by an author who
is himself a grand illusionist.
It seems like everybody in the Pacific States, regardless of
ethnicity or nationality, is obsessed with the
I Ching.
They are constantly consulting “the oracle” and
basing their decisions upon it. Not just the westerners
but even the Japanese are a little embarrassed by this, as
the latter are aware that is it an invention of the Chinese,
who they view as inferior, yet they rely upon it none the less.
Again, the PKD shimmering reality distortion
field comes into play as the author says that he consulted the
I Ching to make decisions while plotting the
novel, as does Hawthorne Abendsen in writing the novel within
the novel.
This is quintessential PKD: the story is not so much about what
happens (indeed, there is little resolution of any of the
obvious conflicts in the circumstances of the plot) but
rather instilling in the reader a sense that nothing is
what it appears to be and, at the meta (or meta meta) level,
that our history and destiny are ruled as much by chance
(exemplified here by the I Ching) as by our
intentions, will, and actions. At the end of the story, little
or nothing has been resolved, and we are left only with
questions and uncertainty. (PKD said that he intended a
sequel, but despite efforts in that direction, never completed
one.)
I understand that some kind of
television
adaptation loosely based upon the novel has been produced by
one of those streaming services which are only available to
people who live in continental-scale, railroad-era, legacy
empires. I have not seen it, and have no interest in doing so.
PKD is notoriously difficult to adapt to visual media, and
today's Hollywood is, shall we say, not strong on nuance and
ambiguity, which is what his fiction is all about.
Nuance and ambiguity…. Here's the funny thing. When I
finished this novel, I was unimpressed and disappointed. I
expected it to be great: I have enjoyed the fiction of PKD since
I started to read his stories in the 1960s, and this novel won
the
Hugo Award
for Best Novel in 1963, then the highest honour in science
fiction. But the story struck me as only an exploration of a
tiny corner of this rich alternative history. Little of what
happens affects events in the large and, if it did, only long
after the story ends. It was only while writing
this that I appreciated that this may have been precisely what
PKD was trying to achieve: that this is all about the
contingency of history—that random chance matters much
more than what we, or “great figures” do, and that
the best we can hope for is to try to do what we believe is
right when presented with the circumstances and events that
confront us as we live our lives. I have no idea if you'll like
this. I thought I would, and then I didn't, and now I, in
retrospect, I do. Welcome to the fiction of Philip K. Dick.
- Rothbard, Murray.
What Has Government Done to Our Money?
Auburn, AL: Ludwig von Mises Institute, [1963, 1985, 1990, 2010] 2015.
ISBN 978-1-61016-645-4.
-
This slim book (just 119 pages of main text in this edition)
was originally published in 1963 when the almighty
gold-backed United States dollar was beginning to crack
up under the pressure of relentless deficit spending and
money printing by the Federal Reserve. Two years later,
as the crumbling of the edifice accelerated, amidst
a miasma of bafflegab about fantasies such as a
“silver shortage” by Keynesian economists and other
charlatans, the
Coinage
Act of 1965 would eliminate sliver from most U.S. coins,
replacing them with counterfeit slugs craftily designed to
fool vending machines into accepting them. (The little-used
half dollar had its silver content reduced from 90% to 40%,
and would be silverless after 1970.) In 1968, the U.S. Treasury
would default upon its obligation to redeem paper
silver
certificates in silver coin or bullion, breaking the link
between the U.S. currency and precious metal entirely.
All of this was precisely foreseen in this clear-as-light
exposition of monetary theory and forty centuries of
government folly by libertarian thinker and
Austrian School
economist Murray Rothbard. He explains the origin of
money as societies progress from barter to indirect
exchange, why most (but not all) cultures have settled
on precious metals such as gold and silver as
a medium of intermediate exchange (they do not deteriorate
over time, can be subdivided into arbitrarily small
units, and are relatively easy to check for
authenticity). He then describes the sorry progression
by which those in authority seize control over this
free money and use it to fleece their subjects. First,
they establish a monopoly over the ability to coin money,
banning private mints and the use of any money other than
their own coins (usually adorned with a graven image of
some tyrant or another). They give this coin and its
subdivisions a name, such as “dollar”, “franc”,
“mark” or some such, which is originally defined as
a unit of mass of some precious metal (for example, the U.S.
dollar, prior to its debasement, was defined as 23.2 grains
[1.5033 grams, or about 1/20 troy ounce] of pure gold).
(Rothbard, as an economist rather than a physicist, and one
working in English customary units, confuses mass with weight
throughout the book. They aren't the same thing, and the
quantity of gold in a coin doesn't vary depending on whether
you weigh it at the
North Pole
or the summit of
Chimborazo.)
Next, the rulers separate the concept of the unit of money
from the mass of precious metal which it originally defined.
A key tool in this are
legal tender
laws which require all debts to be settled in the state-defined
monetary unit. This opens the door to
debasement of
the currency: replacing coins bearing the same unit of money with
replacements containing less precious metal. In ancient Rome, the
denarius
originally contained around 4.5 grams of pure silver.
By the third century A.D., its silver
content had been reduced to about 2%, and was intrinsically
almost worthless. Of course, people aren't stupid, and when the
new debased coins show up, they will save the old, more valuable
ones, and spend the new phoney money. This phenomenon is called
“Gresham's
law”, by which bad money chases out good. But this is
entirely the result of a coercive government requiring its
subjects to honour a monetary unit which it has arbitrarily
reduced in intrinsic value.
This racket has been going on since antiquity, but as the
centuries have passed, it has become ever more sophisticated
and effective. Rothbard explains the origin of paper money,
first as what were essentially warehouse receipts for real money
(precious metal coins or bullion stored by its issuer and
payable on demand), then increasingly abstract assets “backed”
by only a fraction of the total value in circulation, and
finally, with the advent of central banking, a fiction totally
under the control of those who print the paper and their
political masters. The whole grand racket of fractional reserve
banking and the government inflationary engine it enables is
explained in detail.
In the 1985 expanded edition, Rothbard adds a final twenty page
chapter chronicling “The Monetary Breakdown of the
West”, a tragedy in nine acts beginning with the classical
gold standard of 1815–1914 and ending with the total
severing of world currencies from any anchor to gold in March,
1973, ushering in the monetary chaos of endlessly fluctuating
exchange rates, predatory currency manipulation, and a towering
(and tottering) pyramid of completely unproductive financial
speculation. He then explores the monetary utopia envisioned by
the economic slavers: a world paper currency managed by a World
Central Bank. There would no longer be any constraint upon the
ability of those in power to pick the pockets of their subjects
by depreciating the unit of account of the only financial assets
they were permitted to own. Of course, this would lead to a
slow-motion catastrophe, destroying enterprise, innovation, and
investment, pauperising the population, and leading inevitably
to civil unrest and demagogic political movements. Rothbard
saw all of this coming, and those of us who understood his
message knew exactly what was going to happen when they rolled
out the Euro and a European Central Bank in 1991, which is just
a regional version of the same Big Con.
This book remains, if I dare say, the gold standard when it comes
to a short, lucid, and timeless explanation of monetary theory,
history, the folly of governments, and its sad consequences.
Is there any hope of restoring sanity in this age of universal
funny money? Perhaps—the same technology which permits
the establishment of cryptocurrencies such as Bitcoin radically
reduces the transaction costs of using any number of competing
currencies in a free market. While Gresham's Law holds that
in a coercive un-free market bad money will drive out good, in a
totally free market, where participants are able to use any
store of value, unit of account, and medium of exchange they
wish (free of government coercion through legal tender laws or
taxation of currency exchanges), the best money will drive out
its inferior competitors, and the quality of a given money will
be evaluated based upon the transparency of its issuer
and its performance for those who use it.
This book may be purchased from Amazon in either a
print or Kindle
edition, and is also
available
for free from the publisher, the Ludwig von Mises Institute,
in HTML, PDF, and EPUB formats or as an audio book. The PDF
edition is available in the English, Spanish, Danish, and
Hungarian languages. The book is published under the Creative
Commons Attribution License 3.0 and may be redistributed
pursuant to the terms of that license.
- Brennan, Gerald.
Island of Clouds.
Chicago: Tortoise Books, 2017.
ISBN 978-0-9860922-9-9.
-
This is the third book, and the first full-length novel,
in the author's “Altered Space” series of alternative
histories of the cold war space race. Each stand-alone story
explores a space mission which did not take place, but could
have, given the technology and political circumstances at
the time. The first, Zero Phase
(October 2016),
asks what might have happened had Apollo 13's service module
oxygen tank waited to explode until after the lunar module
had landed on the Moon. The present book describes a manned
Venus fly-by mission performed in 1972 using modified Apollo
hardware launched by a single Saturn V.
“But, wait…”, you exclaim, ”that's
crazy!” Why would you put a crew of three
at risk for a mission lasting a full year for just a few
minutes of close-range fly-by of a planet whose surface is
completely obscured by thick clouds? Far from Earth, any
failure of their life support systems, spacecraft systems,
a medical emergency, or any number of other mishaps could
kill them; they'd be racking up a radiation dose
from cosmic rays and solar particle emissions every day in
the mission; and the inexorable laws of orbital mechanics
would provide them no option to come home early if something
went wrong.
Well, crazy it may have been, but in the mid-1960s,
precisely
such a mission was the subject of serious study by NASA and
its contractors as a part of the
Apollo
Applications Program planned to follow the Apollo lunar
landings. Here is a
detailed
study of a manned Venus flyby [PDF] by NASA contractor
Bellcomm, Inc. from February 1967. In addition to observing
Venus during the brief fly-by, the astronauts would deploy
multiple robotic probes which would explore the atmosphere
and surface of Venus and relay their findings either via the
manned spacecraft or directly to Earth.
It was still crazy. For a tiny fraction of the cost of a Saturn
V, Apollo spacecraft, and all the modifications and new development
to support such a long-term mission, and at no risk to humans,
an armada of robotic probes could have been launched on smaller,
far less expensive rockets such as Delta, Atlas, and Titan, which
would have returned all of the science proposed for the manned
fly-by and more. But in the mid-sixties, with NASA's budget
reaching 4% of all federal spending, a level by that metric
eight times higher than in recent years, NASA was
“feeling its oats” and planning as if the good times
were just going to roll on forever.
In this novel, they did. After his re-election in 1968, where
Richard Nixon and George Wallace split the opposition vote,
and the triumphant Moon landing by Ed White and Buzz Aldrin,
President Johnson opts to keep the momentum of Apollo going
and uses his legendary skills in getting what he wants from
Congress to secure the funds for a Venus fly-by in 1972. Deke
Slayton chooses his best friend, just back from the Moon,
Alan Shepard, to command the mission, with the second man
on the Moon Buzz Aldrin and astronaut-medical doctor Joe Kerwin
filling out the crew. Aldrin is sorely disappointed at not
being given command, but accepts the assignment for the
adventure and opportunity to get back into the game after the
post flight let-down of returning from the Moon to a desk job.
The mission in the novel is largely based upon the NASA
plans from the 1960s with a few modifications to simplify
the story (for example, the plan to re-fit the empty
third stage of the Saturn V booster as living quarters
for the journey, as was also considered in planning for
Skylab, is replaced here by a newly-developed
habitation module launched by the Saturn V in place of the
lunar module). There are lots of other little departures
from the timeline in our reality, many just to remind the reader
that this is a parallel universe.
After the mission gets underway, a number of
challenges confront the crew: the mission
hardware, space environment, one other, and the folks back
on Earth. The growing communication delay as the distance
increases from Earth poses difficulties no manned spaceflight
crew have had to deal with before. And then, one of those
things that can happen in space (and could have occurred on
any of the Apollo lunar missions) happens, and the crew
is confronted by existential problems on multiple fronts,
must make difficult and unpleasant decisions, and draw on
their own resources and ingenuity and courage to survive.
This is a completely plausible story which, had a few things
gone the other way, could have happened in the 1970s. The
story is narrated by Buzz Aldrin, which kind of lets you
know at least he got back from the mission. The characters
are believable, consistent with what we know of their counterparts
in our reality, and behave as you'd expect from such consummate
professionals under stress. I have to say, however,
as somebody who has occasionally
committed science
fiction, that I would be uncomfortable writing a story
in which characters based upon and bearing the names of those
of people in the real world, two of whom are alive at this
writing, have their characters and personal lives bared to the
extent they are in this fiction. In the first book in the
series, Zero Phase, Apollo 13 commander James Lovell,
whose fictional incarnation narrates the story, read and
endorsed the manuscript before publication. I was hoping to
find a similar note in this novel, but it wasn't there.
These are public figures, and there's nothing unethical or
improper about having figures based upon them in an
alternative history narrative behaving as the author wishes,
and the story works very well. I'm just saying I wouldn't
have done it that way without clearing it with the individuals
involved.
The Kindle edition is free to Kindle
Unlimited subscribers.