Even now, the world is more apt to think of him as a producer of weird experimental effects than as a practical and useful inventor. Not so the scientific public or the business men. By the latter classes Tesla is properly appreciated, honored, perhaps even envied. For he has given to the world a complete solution of the problem which has taxed the brains and occupied the time of the greatest electro-scientists for the last two decades—namely, the successful adaptation of electrical power transmitted over long distances.After the Niagara project, Tesla continued to invent, demonstrate his work, and obtain patents. With the support of patrons such as John Jacob Astor and J. P. Morgan he pursued his work on wireless transmission of power at laboratories in Colorado Springs and Wardenclyffe on Long Island. He continued to be featured in the popular press, amplifying his public image as an eccentric genius and mad scientist. Tesla lived until 1943, dying at the age of 86 of a heart attack. Over his life, he obtained around 300 patents for devices as varied as a new form of turbine, a radio controlled boat, and a vertical takeoff and landing airplane. He speculated about wireless worldwide distribution of news to personal mobile devices and directed energy weapons to defeat the threat of bombers. While in Colorado, he believed he had detected signals from extraterrestrial beings. In his experiments with high voltage, he accidently detected X-rays before Röntgen announced their discovery, but he didn't understand what he had observed. None of these inventions had any practical consequences. The centrepiece of Tesla's post-Niagara work, the wireless transmission of power, was based upon a flawed theory of how electricity interacts with the Earth. Tesla believed that the Earth was filled with electricity and that if he pumped electricity into it at one point, a resonant receiver anywhere else on the Earth could extract it, just as if you pump air into a soccer ball, it can be drained out by a tap elsewhere on the ball. This is, of course, complete nonsense, as his contemporaries working in the field knew, and said, at the time. While Tesla continued to garner popular press coverage for his increasingly bizarre theories, he was ignored by those who understood they could never work. Undeterred, Tesla proceeded to build an enormous prototype of his transmitter at Wardenclyffe, intended to span the Atlantic, without ever, for example, constructing a smaller-scale facility to verify his theories over a distance of, say, ten miles. Tesla's invention of polyphase current distribution and the induction motor were central to the electrification of nations and continue to be used today. His subsequent work was increasingly unmoored from the growing theoretical understanding of electromagnetism and many of his ideas could not have worked. The turbine worked, but was uncompetitive with the fabrication and materials of the time. The radio controlled boat was clever, but was far from the magic bullet to defeat the threat of the battleship he claimed it to be. The particle beam weapon (death ray) was a fantasy. In recent decades, Tesla has become a magnet for Internet-connected crackpots, who have woven elaborate fantasies around his work. Finally, in this book, written by a historian of engineering and based upon original sources, we have an authoritative and unbiased look at Tesla's life, his inventions, and their impact upon society. You will understand not only what Tesla invented, but why, and how the inventions worked. The flaky aspects of his life are here as well, but never mocked; inventors have to think ahead of accepted knowledge, and sometimes they will inevitably get things wrong.
Propulsion chemists are a rare and special breed. As Isaac Asimov (who worked with the author during World War II) writes in a short memoir at the start of the book:
Now, it is clear that anyone working with rocket fuels is outstandingly mad. I don't mean garden-variety crazy or merely raving lunatic. I mean a record-shattering exponent of far-out insanity.
There are, after all, some chemicals that explode shatteringly, some that flame ravenously, some that corrode hellishly, some that poison sneakily, and some that stink stenchily. As far as I know, though, only liquid rocket fuels have all these delightful properties combined into one delectable whole.
And yet amazingly, as head of propulsion research at the Naval Air Rocket Test Station and its successor organisation for seventeen years, the author not only managed to emerge with all of his limbs and digits intact, his laboratory never suffered a single time-lost mishap. This, despite routinely working with substances such as:
Chlorine trifluoride, ClF3, or “CTF” as the engineers insist on calling it, is a colorless gas, a greenish liquid, or a white solid. … It is also quite probably the most vigorous fluorinating agent in existence—much more vigorous than fluorine itself. … It is, of course, extremely toxic, but that's the least of the problem. It is hypergolic with every known fuel, and so rapidly hypergolic that no ignition delay has ever been measured. It is also hypergolic with such things as cloth, wood, and test engineers, not to mention asbestos, sand, and water—with which it reacts explosively. It can be kept in some of the ordinary structural metals—steel, copper, aluminum, etc.—because the formation of a thin film of insoluble metal fluoride which protects the bulk of the metal, just as the invisible coat of oxide on aluminum keeps it from burning up in the atmosphere. If, however, this coat is melted or scrubbed off, the operator is confronted with the problem of coping with a metal-fluorine fire. For dealing with this situation, I have always recommended a good pair of running shoes. (p. 73)
And ClF3 is pretty benign compared to some of the other dark corners of chemistry into which their research led them. There is extensive coverage of the quest for a high energy monopropellant, the discovery of which would greatly simplify the design of turbomachinery, injectors, and eliminate problems with differential thermal behaviour and mixture ratio over the operating range of an engine which used it. However, the author reminds us:
A monopropellant is a liquid which contains in itself both the fuel and the oxidizer…. But! Any intimate mixture of a fuel and an oxidizer is a potential explosive, and a molecule with one reducing (fuel) end and one oxidizing end, separated by a pair of firmly crossed fingers, is an invitation to disaster. (p. 10)
One gets an excellent sense of just how empirical all of this was. For example, in the quest for “exotic fuel” (which the author defines as “It's expensive, it's got boron in it, and it probably doesn't work.”), straightforward inorganic chemistry suggested that burning a borane with hydrazine, for example:
2B5H9 + 5N2H4 ⟶ 10BN + 19H2
would be a storable propellant with a specific impulse (Isp) of 326 seconds with a combustion chamber temperature of just 2000°K. But this reaction and the calculation of its performance assumes equilibrium conditions and, apart from a detonation (something else with which propulsion chemists are well acquainted), there are few environments as far from equilibrium as a rocket combustion chamber. In fact, when you try to fire these propellants in an engine, you discover the reaction products actually include elemental boron and ammonia, which result in disappointing performance. Check another one off the list.
Other promising propellants ran afoul of economic considerations and engineering constraints. The lithium, fluorine, and hydrogen tripropellant system has been measured (not theoretically calculated) to have a vacuum Isp of an astonishing 542 seconds at a chamber pressure of only 500 psi and temperature of 2200°K. (By comparison, the space shuttle main engine has a vacuum Isp of 452.3 sec. with a chamber pressure of 2994 psi and temperature of 3588°K; a nuclear thermal rocket would have an Isp in the 850–1000 sec. range. Recall that the relationship between Isp and mass ratio is exponential.) This level of engine performance makes a single stage to orbit vehicle not only feasible but relatively straightforward to engineer. Unfortunately, there is a catch or, to be precise, a list of catches. Lithium and fluorine are both relatively scarce and very expensive in the quantities which would be required to launch from the Earth's surface. They are also famously corrosive and toxic, and then you have to cope with designing an engine in which two of the propellants are cryogenic fluids and the third is a metal which is solid below 180°C. In the end, the performance (which is breathtaking for a chemical rocket) just isn't worth the aggravation.
In the final chapter, the author looks toward the future of liquid rocket propulsion and predicts, entirely correctly from a perspective four decades removed, that chemical propulsion was likely to continue to use the technologies upon which almost all rockets had settled by 1970: LOX/hydrocarbon for large first stages, LOX/LH2 for upper stages, and N2O4/hydrazine for storable missiles and in-space propulsion. In the end economics won out over the potential performance gains to be had from the exotic (and often far too exciting) propellants the author and his colleagues devoted their careers to exploring. He concludes as follows.
There appears to be little left to do in liquid propellant chemistry, and very few important developments to be anticipated. In short, we propellant chemists have worked ourselves out of a job. The heroic age is over.
But it was great fun while it lasted. (p. 192)
Now if you've decided that you just have to read this book and innocently click on the title above to buy a copy, you may be at as much risk of a heart attack as those toiling in the author's laboratory. This book has been out of print for decades and is considered such a classic, both for its unique coverage of the golden age of liquid propellant research, comprehensive description of the many avenues explored and eventually abandoned, hands-on chemist-to-chemist presentation of the motivation for projects and the adventures in synthesising and working with these frisky molecules, not to mention the often laugh out loud writing, that used copies, when they are available, sell for hundreds of dollars. As I am writing these remarks, seven copies are offered at Amazon at prices ranging from US$300–595. Now, this is a superb book, but it isn't that good!
If, however, you type the author's name and the title of the book into an Internet search engine, you will probably quickly come across a PDF edition consisting of scanned pages of the original book. I'm not going to link to it here, both because I don't link to works which violate copyright as a matter of principle and since my linking to a copy of the PDF edition might increase its visibility and risk of being taken down. I am not one of those people who believes “information wants to be free”, but I also doubt John Clark would have wanted his unique memoir and invaluable reference to be priced entirely beyond the means of the vast majority of those who would enjoy and be enlightened by reading it. In the case of “orphaned works”, I believe the moral situation is ambiguous (consider: if you do spend a fortune for a used copy of an out of print book, none of the proceeds benefit the author or publisher in any way). You make the call.
When one treats 1,2,3-Trichloropropane with alkali and a little water the reaction is violent; there is a tendency to deposit the reaction product, the raw materials and the apparatus on the ceiling and the attending chemist. I solved this by setting up duplicate 12 liter flasks, each equipped with double reflux condensers and surrounding each with half a dozen large tubs. In practice, when the reaction “took off” I would flee through the door or window and battle the eruption with water from a garden hose. The contents flying from the flasks were deflected by the ceiling and collected under water in the tubs. I used towels to wring out the contents which separated, shipping the lower level to DuPont. They complained of solids suspended in the liquid, but accepted the product and ordered more. I increased the number of flasks to four, doubled the number of wash tubs and completed the new order. They ordered a 55 gallon drum. … (p. 127)All of this was in the days before the EPA, OSHA, and the rest of the suffocating blanket of soft despotism descended upon entrepreneurial ventures in the United States that actually did things and made stuff. In the 1940s and '50s, when Gergel was building his business in South Carolina, he was free to adopt the “whatever it takes” attitude which is the quintessential ingredient for success in start-ups and small business. The flexibility and ingenuity which allowed Gergel not only to compete with the titans of the chemical industry but become a valued supplier to them is precisely what is extinguished by intrusive regulation, which accounts for why sclerotic dinosaurs are so comfortable with it. On the other hand, Max's experience with methyl iodide illustrates why some of these regulations were imposed:
There is no description adequate for the revulsion I felt over handling this musky smelling, high density, deadly liquid. As residue of the toxicity I had chronic insomnia for years, and stayed quite slim. The government had me questioned by Dr. Rotariu of Loyola University for there had been a number of cases of methyl bromide poisoning and the victims were either too befuddled or too dead to be questioned. He asked me why I had not committed suicide which had been the final solution for some of the afflicted and I had to thank again the patience and wisdom of Dr. Screiber. It is to be noted that another factor was our lack of a replacement worker. (p. 130)Whatever it takes. This book was published by Pierce Chemical Company and was never, as best I can determine, assigned either an ISBN or Library of Congress catalogue number. I cite it above by its OCLC Control Number. The book is hopelessly out of print, and used copies, when available, sell for forbidding prices. Your only alternative to lay hands on a print copy is an inter-library loan, for which the OCLC number is a useful reference. (I hear members of the write-off generation asking, “What is this ‘library’ of which you speak?”) I found a scanned PDF edition in the library section of the Sciencemadness.org Web site; the scanned pages are sometimes a little gnarly around the bottom, but readable. You will also find the second volume of Gergel's memoirs, The Ageless Gergel, among the works in this collection.
This is an encyclopedic history and technical description of United States nuclear weapons, delivery systems, manufacturing, storage, maintenance, command and control, security, strategic and tactical doctrine, and interaction with domestic politics and international arms control agreements, covering the period from the inception of these weapons in World War II through 2020. This encompasses a huge amount of subject matter, and covering it in the depth the author undertakes is a large project, with the two volume print edition totalling 1244 20×25 centimetre pages. The level of detail and scope is breathtaking, especially considering that not so long ago much of the information documented here was among the most carefully-guarded secrets of the U.S. military. You will learn the minutiæ of neutron initiators, which fission primaries were used in what thermonuclear weapons, how the goal of “one-point safety” was achieved, the introduction of permissive action links to protect against unauthorised use of weapons and which weapons used what kind of security device, and much, much more.
If the production quality of this work matched its content, it would be an invaluable reference for anybody interested in these weapons, from military historians, students of large-scale government research and development projects, researchers of the Cold War and the nuclear balance of power, and authors setting fiction in that era and wishing to get the details right. Sadly, when it comes to attention to detail, this work, as published in this edition, is sadly lacking—it is both slipshod and shoddy. I was reading it for information, not with the fine-grained attention I devote when proofreading my work or that of others, but in the process I marked 196 errors of fact, spelling, formatting, and grammar, or about one every six printed pages. Now, some of these are just sloppy things (including, or course, misuse of the humble apostrophe) which grate upon the reader but aren't likely to confuse, but others are just glaring errors.
Here are some of the obvious errors. Names misspelled or misstated include Jay Forrester, John von Neumann, Air Force Secretary Hans Mark, and Ronald Reagan. In chapter 11, an entire paragraph is duplicated twice in a row. In chapter 9, it is stated that the Little Feller nuclear test in 1962 was witnessed by president John F. Kennedy; in fact, it was his brother, Attorney General Robert F. Kennedy, who observed the test. There is a long duplicated passage at the start of chapter 20, but this may be a formatting error in the Kindle edition. In chapter 29, it is stated that nitrogen tetroxide was the fuel of the Titan II missile—in fact, it was the oxidiser. In chapter 41, the Northrop B-2 stealth bomber is incorrectly attributed to Lockheed in four places. In chapter 42, the Trident submarine-launched missile is referred to as “Titan” on two occasions.
The problem with such a plethora of errors is that when reading information with which you aren't acquainted or have the ability to check, there's no way to know whether they're correct or nonsense. Before using anything from this book as a source in your own work, I'd advise keeping in mind the Russian proverb, Доверяй, но проверяй—“Trust, but verify”. In this case, I'd go light on the trust and double up on the verification.
In the citation above, I link to the Kindle edition, which is free for Kindle Unlimited subscribers. The print edition is published in two paperbacks, Volume 1 and Volume 2.
The modern technological age has been powered by the exploitation of these fossil fuels: laid down over hundreds of millions of years, often under special conditions which only existed in certain geological epochs, in the twentieth century their consumption exploded, powering our present technological civilisation. For all of human history up to around 1850, world energy consumption was less than 20 exajoules per year, almost all from burning biomass such as wood. (What's an exajoule? Well, it's 1018 joules, which probably tells you absolutely nothing. That's a lot of energy: equivalent to 164 million barrels of oil, or the capacity of around sixty supertankers. But it's small compared to the energy the Earth receives from the Sun, which is around 4 million exajoules per year.) By 1900, the burning of coal had increased this number to 33 exajoules, and this continued to grow slowly until around 1950 when, with oil and natural gas coming into the mix, energy consumption approached 100 exajoules. Then it really took off. By the year 2000, consumption was 400 exajoules, more than 85% from fossil fuels, and today it's more than 550 exajoules per year.
Now, as with the nitrogen revolution, nobody thought about this as geoengineering, but that's what it was. Humans were digging up, or pumping out, or otherwise tapping carbon-rich substances laid down long before their clever species evolved and burning them to release energy banked by the biosystem from sunlight in ages beyond memory. This is a human intervention into the Earth's carbon cycle of a magnitude even greater than the Haber-Bosch process into the nitrogen cycle. “Look out, they're geoengineering again!” When you burn fossil fuels, the combustion products are mostly carbon dioxide and water. There are other trace products, such as ash from coal, oxides of nitrogen, and sulphur compounds, but other than side effects such as various forms of pollution, they don't have much impact on the Earth's recycling of elements. The water vapour from combustion is rapidly recycled by the biosphere and has little impact, but what about the CO₂? Well, that's interesting. CO₂ is a trace gas in the atmosphere (less than a fiftieth of a percent), but it isn't very reactive and hence doesn't get broken down by chemical processes. Once emitted into the atmosphere, CO₂ tends to stay there until it's removed via photosynthesis by plants, weathering of rocks, or being dissolved in the ocean and used by marine organisms. Photosynthesis is an efficient consumer of atmospheric carbon dioxide: a field of growing maize in full sunlight consumes all of the CO₂ within a metre of the ground every five minutes—it's only convection that keeps it growing. You can see the yearly cycle of vegetation growth in measurements of CO₂ in the atmosphere as plants take it up as they grow and then release it after they die. The other two processes are much slower. An increase in the amount of CO₂ causes plants to grow faster (operators of greenhouses routinely enrich their atmosphere with CO₂ to promote growth), and increases the root to shoot ratio of the plants, tending to remove CO₂ from the atmosphere where it will be recycled more slowly into the biosphere. But since the start of the industrial revolution, and especially after 1950, the emission of CO₂ by human activity over a time scale negligible on the geological scale by burning of fossil fuels has released a quantity of carbon into the atmosphere far beyond the ability of natural processes to recycle. For the last half billion years, the CO₂ concentration in the atmosphere has varied between 280 parts per million in interglacial (warm periods) and 180 parts per million during the depths of the ice ages. The pattern is fairly consistent: a rapid rise of CO₂ at the end of an ice age, then a slow decline into the next ice age. The Earth's temperature and CO₂ concentrations are known with reasonable precision in such deep time due to ice cores taken in Greenland and Antarctica, from which temperature and atmospheric composition can be determined from isotope ratios and trapped bubbles of ancient air. While there is a strong correlation between CO₂ concentration and temperature, this doesn't imply causation: the CO₂ may affect the temperature; the temperature may affect the CO₂; they both may be caused by another factor; or the relationship may be even more complicated (which is the way to bet). But what is indisputable is that, as a result of our burning of all of that ancient carbon, we are now in an unprecedented era or, if you like, a New Age. Atmospheric CO₂ is now around 410 parts per million, which is a value not seen in the last half billion years, and it's rising at a rate of 2 parts per million every year, and accelerating as global use of fossil fuels increases. This is a situation which, in the ecosystem, is not only unique in the human experience; it's something which has never happened since the emergence of complex multicellular life in the Cambrian explosion. What does it all mean? What are the consequences? And what, if anything, should we do about it? (Up to this point in this essay, I believe everything I've written is non-controversial and based upon easily-verified facts. Now we depart into matters more speculative, where squishier science such as climate models comes into play. I'm well aware that people have strong opinions about these issues, and I'll not only try to be fair, but I'll try to stay away from taking a position. This isn't to avoid controversy, but because I am a complete agnostic on these matters—I don't think we can either measure the raw data or trust our computer models sufficiently to base policy decisions upon them, especially decisions which might affect the lives of billions of people. But I do believe that we ought to consider the armanentarium of possible responses to the changes we have wrought, and will continue to make, in the Earth's ecosystem, and not reject them out of hand because they bear scary monikers like “geoengineering”.) We have been increasing the fraction of CO₂ in the atmosphere to levels unseen in the history of complex terrestrial life. What can we expect to happen? We know some things pretty well. Plants will grow more rapidly, and many will produce more roots than shoots, and hence tend to return carbon to the soil (although if the roots are ploughed up, it will go back to the atmosphere). The increase in CO₂ to date will have no physiological effects on humans: people who work in greenhouses enriched to up to 1000 parts per million experience no deleterious consequences, and this is more than twice the current fraction in the Earth's atmosphere, and at the current rate of growth, won't be reached for three centuries. The greatest consequence of a growing CO₂ concentration is on the Earth's energy budget. The Earth receives around 1360 watts per square metre on the side facing the Sun. Some of this is immediately reflected back to space (much more from clouds and ice than from land and sea), and the rest is absorbed, processed through the Earth's weather and biosphere, and ultimately radiated back to space at infrared wavelengths. The books balance: the energy absorbed by the Earth from the Sun and that it radiates away are equal. (Other sources of energy on the Earth, such as geothermal energy from radioactive decay of heavy elements in the Earth's core and energy released by human activity are negligible at this scale.) Energy which reaches the Earth's surface tends to be radiated back to space in the infrared, but some of this is absorbed by the atmosphere, in particular by trace gases such as water vapour and CO₂. This raises the temperature of the Earth: the so-called greenhouse effect. The books still balance, but because the temperature of the Earth has risen, it emits more energy. (Due to the Stefan-Boltzmann law, the energy emitted from a black body rises as the fourth power of its temperature, so it doesn't take a large increase in temperature [measured in degrees Kelvin] to radiate away the extra energy.) So, since CO₂ is a strong absorber in the infrared, we should expect it to be a greenhouse gas which will raise the temperature of the Earth. But wait—it's a lot more complicated. Consider: water vapour is a far greater contributor to the Earth's greenhouse effect than CO₂. As the Earth's temperature rises, there is more evaporation of water from the oceans and lakes and rivers on the continents, which amplifies the greenhouse contribution of the CO₂. But all of that water, released into the atmosphere, forms clouds which increase the albedo (reflectivity) of the Earth, and reduce the amount of solar radiation it absorbs. How does all of this interact? Well, that's where the global climate models get into the act, and everything becomes very fuzzy in a vast panel of twiddle knobs, all of which interact with one another and few of which are based upon unambiguous measurements of the climate system. Let's assume, arguendo, that the net effect of the increase in atmospheric CO₂ is an increase in the mean temperature of the Earth: the dreaded “global warming”. What shall we do? The usual prescriptions, from the usual globalist suspects, are remarkably similar to their recommendations for everything else which causes their brows to furrow: more taxes, less freedom, slower growth, forfeit of the aspirations of people in developing countries for the lifestyle they see on their smartphones of the people who got to the industrial age a century before them, and technocratic rule of the masses by their unelected self-styled betters in cheap suits from their tawdry cubicle farms of mediocrity. Now there's something to stir the souls of mankind! But maybe there's an alternative. We've already been doing geoengineering since we began to dig up coal and deploy the steam engine. Maybe we should embrace it, rather than recoil in fear. Suppose we're faced with global warming as a consequence of our inarguable increase in atmospheric CO₂ and we conclude its effects are deleterious? (That conclusion is far from obvious: in recorded human history, the Earth has been both warmer and colder than its present mean temperature. There's an intriguing correlation between warm periods and great civilisations versus cold periods and stagnation and dark ages.) How might we respond? Atmospheric veil. Volcanic eruptions which inject large quantities of particulates into the stratosphere have been directly shown to cool the Earth. A small fleet of high-altitude airplanes injecting sulphate compounds into the stratosphere would increase the albedo of the Earth and reflect sufficient sunlight to reduce or even cancel or reverse the effects of global warming. The cost of such a programme would be affordable by a benevolent tech billionaire or wannabe Bond benefactor (“Greenfinger”), and could be implemented in a couple of years. The effect of the veil project would be much less than a volcanic eruption, and would be imperceptible other than making sunsets a bit more colourful. Marine cloud brightening. By injecting finely-dispersed salt water from the ocean into the atmosphere, nucleation sites would augment the reflectivity of low clouds above the ocean, increasing the reflectivity (albedo) of the Earth. This could be accomplished by a fleet of low-tech ships, and could be applied locally, for example to influence weather. Carbon sequestration. What about taking the carbon dioxide out of the atmosphere? This sounds like a great idea, and appeals to clueless philanthropists like Bill Gates who are ignorant of thermodynamics, but taking out a trace gas is really difficult and expensive. The best place to capture it is where it's densest, such as the flue of a power plant, where it's around 10%. The technology to do this, “carbon capture and sequestration” (CCS) exists, but has not yet been deployed on any full-scale power plant. Fertilising the oceans. One of the greatest reservoirs of carbon is the ocean, and once carbon is incorporated into marine organisms, it is removed from the biosphere for tens to hundreds of millions of years. What constrains how fast critters in the ocean can take up carbon dioxide from the atmosphere and turn it into shells and skeletons? It's iron, which is rare in the oceans. A calculation made in the 1990s suggested that if you added one tonne of iron to the ocean, the bloom of organisms it would spawn would suck a hundred thousand tonnes of carbon out of the atmosphere. Now, that's leverage which would impress even the most jaded Wall Street trader. Subsequent experiments found the ratio to be maybe a hundred times less, but then iron is cheap and it doesn't cost much to dump it from ships. Great Mambo Chicken. All of the previous interventions are modest, feasible with existing technology, capable of being implemented incrementally while monitoring their effects on the climate, and easily and quickly reversed should they be found to have unintended detrimental consequences. But when thinking about affecting something on the scale of the climate of a planet, there's a tendency to think big, and a number of grand scale schemes have been proposed, including deploying giant sunshades, mirrors, or diffraction gratings at the L1 Lagrangian point between the Earth and the Sun. All of these would directly reduce the solar radiation reaching the Earth, and could be adjusted as required to manage the Earth's mean temperature at any desired level regardless of the composition of its atmosphere. Such mega-engineering projects are considered financially infeasible, but if the cost of space transportation falls dramatically in the future, might become increasingly attractive. It's worth observing that the cost estimates for such alternatives, albeit in the tens of billions of dollars, are small compared to re-architecting the entire energy infrastructure of every economy in the world to eliminate carbon-based fuels, as proposed by some glib and innumerate environmentalists. We live in the age of geoengineering, whether we like it or not. Ever since we started to dig up coal and especially since we took over the nitrogen cycle of the Earth, human action has been dominant in the Earth's ecosystem. As we cope with the consequences of that human action, we shouldn't recoil from active interventions which acknowledge that our environment is already human-engineered, and that it is incumbent upon us to preserve and protect it for our descendants. Some environmentalists oppose any form of geoengineering because they feel it is unnatural and provides an alternative to restoring the Earth to an imagined pre-industrial pastoral utopia, or because it may be seized upon as an alternative to their favoured solutions such as vast fields of unsightly bird shredders. But as David Deutsch says in The Beginning of Infinity, “Problems are inevitable“; but “Problems are soluble.” It is inevitable that the large scale geoengineering which is the foundation of our developed society—taking over the Earth's natural carbon and nitrogen cycles—will cause problems. But it is not only unrealistic but foolish to imagine these problems can be solved by abandoning these pillars of modern life and returning to a “sustainable” (in other words, medieval) standard of living and population. Instead, we should get to work solving the problems we've created, employing every tool at our disposal, including new sources of energy, better means of transmitting and storing energy, and geoengineering to mitigate the consequences of our existing technologies as we incrementally transition to those of the future.[…] Merely continue as we are now: innovative technology discouraged by taxes, environmental impact statements, reports, lawsuits, commission hearings, delays, delays, delays; space research not carried out, never officially abandoned but delayed, stretched-out, budgets cut and work confined to the studies without hardware; solving the energy crisis by conservation, with fusion research cut to the bone and beyond, continued at level-of-effort but never to a practical reactor; fission plants never officially banned, but no provision made for waste disposal or storage so that no new plants are built and the operating plants slowly are phased out; riots at nuclear power plant construction sites; legal hearings, lawyers, lawyers, lawyers…
Can you not imagine the dream being lost? Can you not imagine the nation slowly learning to “do without”, making “Smaller is Better” the national slogan, fussing over insulating attics and devoting attention to windmills; production falling, standards of living falling, until one day we discover the investments needed to go to space would be truly costly, would require cuts in essentials like food —
A world slowly settling into satisfaction with less, until there are no resources to invest in That Buck Rogers Stuff?
I can imagine that.As can we all, as now we are living it. And yet, and yet…. One consequence of the Three Lost Decades is that the technological vision and optimistic roadmap of the future presented in these essays is just as relevant to our predicament today as when they were originally published, simply because with a few exceptions we haven't done a thing to achieve them. Indeed, today we have fewer resources with which to pursue them, having squandered our patrimony on consumption, armies of rent-seekers, and placed generations yet unborn in debt to fund our avarice. But for those who look beyond the noise of the headlines and the platitudes of politicians whose time horizon is limited to the next election, here is a roadmap for a true step farther out, in which the problems we perceive as intractable are not “managed” or “coped with”, but rather solved, just as free people have always done when unconstrained to apply their intellect, passion, and resources toward making their fortunes and, incidentally, creating wealth for all. This book is available only in electronic form for the Kindle as cited above, under the given ASIN. The ISBN of the original 1979 paperback edition is 978-0-441-78584-1. The formatting in the Kindle edition is imperfect, but entirely readable. As is often the case with Kindle documents, “images and tables hardest hit”: some of the tables take a bit of head-scratching to figure out, as the Kindle (or at least the iPad application which I use) particularly mangles multi-column tables. (I mean, what's with that, anyway? LaTeX got this perfectly right thirty years ago, and in a manner even beginners could use; and this was pure public domain software anybody could adopt. Sigh—three lost decades….) Formatting quibbles aside, I'm as glad I bought and read this book as I was when I first bought it and read it all those years ago. If you want to experience not just what the future could have been, then, but what it can be, now, here is an excellent place to start. The author's Web site is an essential resource for those interested in these big ideas, grand ambitions, and the destiny of humankind and its descendents.
Still, for all of their considerable faults and stupidities—their huge costs, terrible risks, unintended negative consequences, and in some cases injuries and deaths—pathological technologies possess one crucial saving grace: they can be stopped. Or better yet, never begun.Except, it seems, you can only recognise them in retrospect.