This view of the human prospect is very odd indeed, and to this reader more disturbing (verging on creepy) than the approach of a technological singularity. What we encounter here are beings, whether augmented humans or software intelligences with no human ancestry whatsoever, that despite having at hand, by the end of the century, mental capacity per individual on the order of 1024 times that of the human brain (and maybe hundreds of orders of magnitude more if quantum computing pans out), still have identities, motivations, and goals which remain comprehensible to humans today. This seems dubious in the extreme to me, and my impression from Singularity is that the author has rethought this as well.
Starting from the publication date of 1999, the book serves up surveys of the scene in that year, 2009, 2019, 2029, and 2099. The chapter describing the state of computing in 2009 makes many specific predictions. The following are those which the author lists in the “Time Line” on pp. 277–278. Many of the predictions in the main text seem to me to be more ambitious than these, but I shall go with those the author chose as most important for the summary. I have reformatted these as a numbered list to make them easier to cite.This is just so breathtakingly wrong I am at a loss for where to begin, and it was just as completely wrong when the book was published two decades ago as it is today; nothing relevant to these statements has changed. My guess is that Kurzweil was thinking of “intricate mechanisms” within hadrons and mesons, particles made up of quarks and gluons, and not within quarks themselves, which then and now are believed to be point particles with no internal structure whatsoever and are, in any case, impossible to isolate from the particles they compose. When Richard Feynman envisioned molecular nanotechnology in 1959, he based his argument on the well-understood behaviour of atoms known from chemistry and physics, not a leap of faith based on drawing a straight line on a sheet of semi-log graph paper. I doubt one could find a single current practitioner of subatomic physics equally versed in the subject as was Feynman in atomic physics who would argue that engineering at the level of subatomic particles would be remotely feasible. (For atoms, biology provides an existence proof that complex self-replicating systems of atoms are possible. Despite the multitude of environments in the universe since the big bang, there is precisely zero evidence subatomic particles have ever formed structures more complicated than those we observe today.) I will not further belabour the arguments in this vintage book. It is an entertaining read and will certainly expand your horizons as to what is possible and introduce you to visions of the future you almost certainly have never contemplated. But for a view of the future which is simultaneously more ambitious and plausible, I recommend The Singularity Is Near.If engineering at the nanometer scale (nanotechnology) is practical in the year 2032, then engineering at the picometer scale should be practical in about forty years later (because 5.64 = approximately 1,000), or in the year 2072. Engineering at the femtometer (one thousandth of a trillionth of a meter, also referred to as a quadrillionth of a meter) scale should be feasible, therefore, by around the year 2112. Thus I am being a bit conservative to say that femtoengineering is controversial in 2099.
Nanoengineering involves manipulating individual atoms. Picoengineering will involve engineering at the level of subatomic particles (e.g., electrons). Femtoengineering will involve engineering inside a quark. This should not seem particularly startling, as contemporary theories already postulate intricate mechanisms within quarks.