- Wells, David.
The Penguin Dictionary of Curious and Interesting Geometry.
London: Penguin Books, 1991.
ISBN 0-14-011813-6.
-
What a treat—two hundred and seventy-five diagram-rich pages covering
hundreds of geometrical curiosities ranging from the
problem of Apollonius
to
zonohedra. Items range
from classical Euclidean geometry to modern topics such as higher dimensional
space, non-Euclidean geometry, and topological transformations; and from classical
times until the present—it's amazing how many fundamental properties of
objects as simple as triangles were discovered only in the twentieth century!
There are so many wonders here I shall not attempt to list them but
simply commend this book to your own exploration and enjoyment. But
one example…it's obvious that a non-convex room with black
walls cannot be illuminated by a single light placed within it. But what
if all the walls are mirrors? It is possible to design a mirrored room such that
a light within it will still leave some part dark (p. 263)? The illustration
of the Voderberg tile on p. 268 is unfortunate; the width of the lines
makes it appear not to be a proper tile, but rather two tiles joined at a
point. This page
shows a detailed construction which makes it clear that the tile is
indeed well formed and rigid.
I will confess, as a number nerd more than a geometry geek, that this book comes
in second in my estimation behind the author's
Penguin Book of Curious and Interesting Numbers,
one single entry of which motivated me to consume
three years of computer time
in 1987–1990. But there are any number of wonders here, and the
individual items are so short you can open the book at random and find
something worth reading you can finish in a minute or so. Almost all
items are given without proof, but there are citations to publications
for many and you'll be able to find most of the rest on MathWorld.
March 2007