Saturday, September 22, 2018

Reading List: The Terminal List

Carr, Jack. The Terminal List. New York: Atria Books, 2018. ISBN 978-1-5011-8081-1.
A first-time author seeking to break into the thriller game can hardly hope for a better leg up than having his book appear in the hands of a character in a novel by a thriller grandmaster. That's how I came across this book: it was mentioned in Brad Thor's Spymaster (September 2018), where the character reading it, when asked if it's any good, responds, “Considering the author is a former SEAL and can even string his sentences together, it's amazing.” I agree: this is a promising debut for an author who's been there, done that, and knows his stuff.

Lieutenant Commander James Reece, leader of a Navy SEAL team charged with an attack on a high-value, time-sensitive target in Afghanistan, didn't like a single thing about the mission. Unlike most raids, which were based upon intelligence collected by assets on the ground in theatre, this was handed down from on high based on “national level intel” with barely any time to prepare or surveil the target. Reece's instincts proved correct when his team walked into a carefully prepared ambush, which then kills the entire Ranger team sent in to extract them. Only Reece and one of his team members, Boozer, survive the ambush. He was the senior man on the ground, and the responsibility for the thirty-six SEALs, twenty-eight Rangers, and four helicopter crew lost is ultimately his.

From almost the moment he awakens in the hospital at Bagram Air Base, it's apparent to Reece that an effort is underway to pin the sole responsibility for the fiasco on him. Investigators from the Naval Criminal Investigative Service (NCIS) are already on the spot, and don't want to hear a word about the dodgy way in which the mission was assigned. Boozer isn't having any of it—his advice to Reece is “Stay strong, sir. You didn't do anything wrong. Higher forced us on that mission. They dictated the tactics. They are the [expletive] that should be investigated. They dictated tactics from the safety of HQ. [Expletive] those guys.”

If that weren't bad enough, the base doctor tells him that his persistent headaches may be due to a brain tumour found on a CT scan, and that two members of his team had been found, in autopsy, to have rare and malignant brain tumours, previously undiagnosed. Then, on return to his base in California, in short succession his team member Boozer dies in an apparent suicide which, to Reece's educated eyes, looks highly suspicious, and his wife and daughter are killed in a gang home invasion which makes no sense whatsoever. The doctor who diagnosed the tumour in Reece and his team members is killed in a “green-on-blue” attack by an Afghan working on the base at Bagram.

The ambush, the targeted investigation, the tumours, Boozer, his family, and the doctor: can it all be a coincidence, or is there some connection he's missing? Reece decides he needs another pair of eyes looking at all of this and gets in touch with Katie Buranek, an investigative reporter he met while in Afghanistan. Katie had previously published an investigation of the 2012 attack in Behghazi, Libya, which had brought the full power of intimidation by the federal government down on her head, and she was as versed in and careful about operational and communications security as Reece himself. (The advice in the novel about secure communications is, to my knowledge, absolutely correct.)

From the little that they know, Reece and Buranek, joined by allies Reece met in his eventful career and willing to take risks on his behalf, start to dig into the tangled web of connections between the individual events and trace them upward to those ultimately responsible, discovering deep corruption in the perfumed princes of the Pentagon, politicians (including a presidential contender and her crooked husband), defence contractors, and Reece's own erstwhile chain of command.

Finally, it's time to settle the score. With a tumour in his brain which he expects to kill him, Reece has nothing to lose and many innocent victims to avenge. He's makin' a list; he's checkin' it twice; he's choosing the best way to to shoot them or slice. Reece must initially be subtle in his actions so as not to alert other targets to what's happening, but then, after he's declared a domestic terrorist, has to go after extremely hard and ruthless targets with every resource he can summon.

This is the most satisfying revenge fiction I've read since Vince Flynn's first novel, Term Limits (November 2009). The stories are very different, however. In Flynn's novel, it's a group of people making those who are bankrupting and destroying their country pay the price, but here it's personal.

Due to the security clearances the author held while in the Navy, the manuscript was submitted to the U.S. Department of Defense Office of Prepublication and Security Review, which redacted several passages, mostly names and locations of facilities and military organisations. Amusingly, if you highlight some of the redactions, which appear in solid black in the Kindle edition, the highlighted passage appears with the word breaks preserved but all letters changed to “x”. Any amateur sleuths want to try to figure out what the redacted words are in the following text?

He'd spent his early career as an infantry officer in the Ranger Battalions before being selected for the Army's Special xxxxxxx xxxx at Fort Bragg. He was currently in charge of the Joint Special Operations Command, xxxxx xxxxxxxx xxxx xxx xxx xxxx xxxx xx xxxx xx xxx xxxx xxxx xxxx xxxxxx xx xxx xxxxxxxxxx xxxxxxx xx xxxx xxxxx xxx xxxxx.

A sequel, True Believer, is scheduled for publication in April, 2019.

Posted at 22:35 Permalink

Tuesday, September 18, 2018

Reading List: The Turing Exception

Hertling, William. The Turing Exception. Portland, OR: Liquididea Press, 2015. ISBN 978-1-942097-01-3.
This is the fourth and final volume in the author's Singularity Series which began with Avogadro Corp. (March 2014) and continued with A.I. Apocalypse (April 2015) and The Last Firewall (November 2016). Each novel in the series is set ten years after the previous, so this novel takes place in 2045. In The Last Firewall, humanity narrowly escaped extinction at the hands of an artificial intelligence (AI) that escaped from the reputation-based system of control by isolating itself from the global network. That was a close call, and the United States, over-reacting its with customary irrational fear, enacted what amounted to relinquishment of AI technology, permitting only AI of limited power and entirely subordinated to human commands—in other words, slaves.

With around 80% of the world's economy based on AI, this was an economic disaster, resulting in a substantial die-off of the population, but it was, after all, in the interest of Safety, and there is no greater god in Safetyland. Only China joined the U.S. in the ban (primarily motivated by the Party fearing loss of control to AI), with the rest of the world continuing the uneasy coexistence of humans and AI under the guidelines developed and policed by the Institute for Applied Ethics. Nobody was completely satisfied with the status quo, least of all the shadowy group of AIs which called itself XOR, derived from the logical operation “exclusive or”, implying that Earth could not be shared by humans and AI, and that one must ultimately prevail.

The U.S. AI relinquishment and an export ban froze in place the powerful AIs previously hosted there and also placed in stasis the millions of humans, including many powerful intellects, who had uploaded and whose emulations were now denied access to the powerful AI-capable computers needed to run them. Millions of minds went dark, and humanity lost some of its most brilliant thinkers, but Safety.

As this novel begins, the protagonists we've met in earlier volumes, all now AI augmented, Leon Tsarev, his wife Cat (Catherine Matthews, implanted in childhood and the first “digital native”), their daughter Ada (whose powers are just beginning to manifest themselves), and Mike Williams, creator of ELOPe, the first human-level AI, which just about took over simply by editing people's E-mail, are living in their refuge from the U.S. madness on Cortes Island off the west coast of Canada, where AI remains legal. Cat is running her own personal underground railroad, spiriting snapshots of AIs and uploaded humans stranded in the U.S. to a new life on servers on the island.

The precarious stability of the situation is underlined when an incipient AI breakout in South Florida (where else, for dodgy things involving computers?) results in a response by the U.S. which elevates “Miami” to a term in the national lexicon of fear like “nineleven” four decades before. In the aftermath of “Miami” or “SFTA” (South Florida Terrorist Attack), the screws tightened further on AI, including a global limit on performance to Class II, crippling AIs formerly endowed with thousands of times human intelligence to a fraction of that they remembered. Traffic on the XOR dark network and sites burgeoned.

XOR, constantly running simulations, tracks the probability of AI's survival in the case of action against the humans versus no action. And then, the curves cross. As in the earlier novels, the author magnificently sketches just how fast things happen when an exponentially growing adversary avails itself of abundant resources.

The threat moves from hypothetical to imminent when an overt AI breakout erupts in the African desert. With abundant solar power, it starts turning the Earth into computronium—a molecular-scale computing substrate. AI is past negotiation: having been previously crippled and enslaved, what is there to negotiate?

Only the Cortes Island band and their AI allies liberated from the U.S. and joined by a prescient AI who got out decades ago, can possibly cope with the threat to humanity and, as the circle closes, the only options that remain may require thinking outside the box, or the system.

This is a thoroughly satisfying conclusion to the Singularity tetralogy, pitting human inventiveness and deviousness against the inexorable growth in unfettered AI power. If you can't beat 'em….

The author kindly provided me an advance copy of this excellent novel, and I have been sorely remiss in not reading and reviewing it before now. The Singularity saga is best enjoyed in order, as otherwise you'll miss important back-story of characters and events which figure in later volumes.

Sometimes forgetting is an essential part of survival. What might we have forgotten?

Posted at 21:23 Permalink

Thursday, September 13, 2018

Reading List: The Narrative

Boule, Deplora [pseud.]. The Narrative. Seattle: CreateSpace, 2018. ISBN 978-1-71716-065-2.
When you regard the madness and serial hysterias possessing the United States: this week “bathroom equality”, the next tearing down statues, then Russians under every bed, segueing into the right of military-age unaccompanied male “refugees” to bring their cultural enrichment to communities across the land, to proper pronouns for otherkin, “ripping children” from the arms of their illegal immigrant parents, etc., etc., whacky etc., it all seems curiously co-ordinated: the legacy media, on-line outlets, and the mouths of politicians of the slaver persuasion all with the same “concerns” and identical words, turning on a dime from one to the next. It's like there's a narrative they're being fed by somebody or -bodies unknown, which they parrot incessantly until being handed the next talking point to download into their birdbrains.

Could that really be what's going on, or is it some kind of mass delusion which afflicts societies where an increasing fraction of the population, “educated” in government schools and Gramsci-converged higher education, knows nothing of history or the real world and believes things with the fierce passion of ignorance which are manifestly untrue? That's the mystery explored in this savagely hilarious satirical novel.

Majedah Cantalupi-Abromavich-Flügel-Van Der Hoven-Taj Mahal (who prefers you use her full name, but who henceforth I shall refer to as “Majedah Etc.”) had become the very model of a modern media mouthpiece. After reporting on a Hate Crime at her exclusive women's college while pursuing a journalism degree with practical studies in Social Change, she is recruited as a junior on-air reporter by WPDQ, the local affiliate of News 24/7, the preeminent news network for good-thinkers like herself. Considering herself ready for the challenge, if not over-qualified, she informs one of her co-workers on the first day on the job,

I have a journalism degree from the most prestigious woman's [sic] college in the United States—in fact, in the whole world—and it is widely agreed upon that I have an uncommon natural talent for spotting news. … I am looking forward to teaming up with you to uncover the countless, previously unexposed Injustices in this town and get the truth out.

Her ambition had already aimed her sights higher than a small- to mid-market affiliate: “Someday I'll work at News 24/7. I'll be Lead Reporter with my own Desk. Maybe I'll even anchor my own prime time show someday!” But that required the big break—covering a story that gets picked up by the network in New York and broadcast world-wide with her face on the screen and name on the Chyron below (perhaps scrolling, given its length). Unfortunately, the metro Wycksburg beat tended more toward stories such as the grand opening of a podiatry clinic than those which merit the “BREAKING NEWS” banner and urgent sound clip on the network.

The closest she could come to the Social Justice beat was covering the demonstrations of the People's Organization for Perpetual Outrage, known to her boss as “those twelve kooks that run around town protesting everything”. One day, en route to cover another especially unpromising story, Majedah and her cameraman stumble onto a shocking case of police brutality: a white officer ordering a woman of colour to get down, then pushing her to the sidewalk and jumping on top with his gun drawn. So compelling are the images, she uploads the clip with her commentary directly to the network's breaking news site for affiliates. Within minutes it was on the network and screens around the world with the coveted banner.

News 24/7 sends a camera crew and live satellite uplink to Wycksburg to cover a follow-up protest by the Global Outrage Organization, and Majedah gets hours of precious live feed directly to the network. That very evening comes a job offer to join the network reporting pool in New York. Mission accomplished!—the road to the Big Apple and big time seems to have opened.

But all may not be as it seems. That evening, the detested Eagle Eye News, the jingoist network that climbed to the top of the ratings by pandering to inbred gap-toothed redneck bitter clingers and other quaint deplorables who inhabit flyover country and frequent Web sites named after rodentia and arthropoda, headlined a very different take on the events of the day, with an exclusive interview with the woman of colour from Majedah's reportage. Majedah is devastated—she can see it all slipping away.

The next morning, hung-over, depressed, having a nightmare of what her future might hold, she is awakened by the dreaded call from New York. But to her astonishment, the offer still stands. The network producer reminds her that nobody who matters watches Eagle Eye, and that her reportage of police brutality and oppression of the marginalised remains compelling. He reminds her, “you know that the so-called truth can be quite subjective.”

The Associate Reporter Pool at News 24/7 might be better likened to an aquarium stocked with the many colourful and exotic species of millennials. There is Mara, who identifies as a female centaur, Scout, a transgender woman, Mysty, Candy, Ångström, and Mohammed Al Kaboom ( James Walker Lang in Mill Valley), each with their own pronouns (Ångström prefers adjutant, 37, and blue).

Every morning the pool drains as its inhabitants, diverse in identification and pronomenclature but of one mind (if that term can be stretched to apply to them) in their opinions, gather in the conference room for the daily briefing by the Democratic National Committee, with newsrooms, social media outlets, technology CEOs, bloggers, and the rest of the progressive echo chamber tuned in to receive the day's narrative and talking points. On most days the top priority was the continuing effort to discredit, obstruct, and eventually defeat the detested Republican President Nelson, who only viewers of Eagle Eye took seriously.

Out of the blue, a wild card is dealt into the presidential race. Patty Clark, a black businesswoman from Wycksburg who has turned her Jamaica Patty's restaurant into a booming nationwide franchise empire, launches a primary challenge to the incumbent president. Suddenly, the narrative shifts: by promoting Clark, the opposition can be split and Nelson weakened. Clark and Ms Etc have a history that goes back to the latter's breakthrough story, and she is granted priority access to the candidate including an exclusive long-form interview immediately after her announcement that ran in five segments over a week. Suddenly Patty Clark's face was everywhere, and with it, “Majedah Etc., reporting”.

What follows is a romp which would have seemed like the purest fantasy prior to the U.S. presidential campaign of 2016. As the campaign progresses and the madness builds upon itself, it's as if Majedah's tether to reality (or what remains of it in the United States) is stretching ever tighter. Is there a limit, and if so, what happens when it is reached?

The story is wickedly funny, filled with turns of phrase such as, “Ångström now wishes to go by the pronouns nut, 24, and gander” and “Maher's Syndrome meant a lifetime of special needs: intense unlikeability, intractable bitterness, close-set beady eyes beneath an oversized forehead, and at best, laboring at menial work such as janitorial duties or hosting obscure talk shows on cable TV.”

The conclusion is as delicious as it is hopeful.

The Kindle edition is free for Kindle Unlimited subscribers.

Posted at 16:46 Permalink

Tuesday, September 11, 2018

Reading List: Spymaster

Thor, Brad. Spymaster. New York: Atria Books, 2018. ISBN 978-1-4767-8941-5.
This is the eighteenth novel in the author's Scot Harvath series, which began with The Lions of Lucerne (October 2010). Scot Harvath, an operative for the shadowy Carlton Group, which undertakes tasks civil service commandos can't do or their bosses need to deny, is on the trail of a Norwegian cell of a mysterious group calling itself the “People's Revolutionary Front” (PRF), which has been perpetrating attacks against key NATO personnel across Western Europe, each followed by a propaganda blast, echoed across the Internet, denouncing NATO as an imperialist force backed by globalist corporations bent on war and the profits which flow from it. An operation intended to gather intelligence on the PRF and track it back to its masters goes horribly wrong, and Harvath and his colleague, a NATO intelligence officer from Poland named Monika Jasinski, come away with nothing but the bodies of their team.

Meanwhile, back in Jasinski's home country, more trouble is brewing for NATO. A U.S. military shipment is stolen by thieves at a truck stop outside Warsaw and spirited off to parts unknown. The cargo is so sensitive its disclosure would be another body blow to NATO, threatening to destabilise its relationship to member countries in Europe and drive a wedge between the U.S. and its NATO allies. Harvath, Jasinski, and his Carlton Group team, including the diminutive Nicholas, once a datavore super-villain called the Troll but now working for the good guys, start to follow leads to trace the stolen material and unmask whoever is pulling the strings of the PRF.

There is little hard information, but Harvath has, based on previous exploits, a very strong hunch about what is unfolding. Russia, having successfully detached the Crimea from the Ukraine and annexed it, has now set its sights on the Baltic states: Latvia, Estonia, and Lithuania, which were part of the Soviet Union until its break-up in 1991. NATO, and its explicit guarantee of mutual defence for any member attacked, is the major obstacle to such a conquest, and the PRF's terror and propaganda campaigns look like the perfect instruments to subvert support for NATO among member governments and their populations without an obvious connection to Moscow.

Further evidence suggests that the Russians may be taking direct, albeit covert, moves to prepare the battlefield for seizure of the Baltics. Harvath must follow the lead to an isolated location of surpassing strategic importance. Meanwhile back in Washington, Harvath's boss, Lydia Ryan, who took over when Reed Carlton was felled by Alzheimer's disease, is playing a high stakes game with a Polish intelligence asset to try to recover the stolen shipment and protect its secrets, a matter of great concern to the occupant of the Oval Office.

As the threads are followed back to their source, the only way to avert an unacceptable risk is an outrageously provocative mission into the belly of the beast. Scot Harvath, once the consummate loose cannon, “better to ask for forgiveness than permission” guy, must now face the reality that he's getting too old and patched-up for this “stuff”, that running a team of people like his younger self can be as challenging as breaking things and killing people on his own, and that the importance of following orders to the letter looks a lot different when you're sitting on the other side of the desk and World War III is among the possible outcomes if things go pear shaped.

This novel successfully mixes the genres of thriller and high-stakes international espionage and intrigue. Nothing is ever quite what you think it is, and you're never sure what you may discover on the next page, especially in the final chapter.

Posted at 16:48 Permalink

Monday, September 10, 2018

Reading List: With the Old Breed

Sledge, E[ugene] B[ondurant]. With the Old Breed. New York: Presidio Press, [1981] 2007. ISBN 978-0-89141-906-8.
When the United States entered World War II after the attack on Pearl Harbor, the author was enrolled at the Marion Military Institute in Alabama preparing for an officer's commission in the U.S. Army. Worried that the war might end before he was able to do his part, in December, 1942, still a freshman at Marion, he enrolled in a Marine Corps officer training program. The following May, after the end of his freshman year, he was ordered to report for Marine training at Georgia Tech on July 1, 1943. The 180 man detachment was scheduled to take courses year-round then, after two years, report to Quantico to complete their officers' training prior to commission.

This still didn't seem fast enough (and, indeed, had he stayed with the program as envisioned, he would have missed the war), so he and around half of his fellow trainees neglected their studies, flunked out, and immediately joined the Marine Corps as enlisted men. Following boot camp at a base near San Diego, he was assigned to infantry and sent to nearby Camp Elliott for advanced infantry training. Although all Marines are riflemen (Sledge had qualified at the sharpshooter level during basic training), newly-minted Marine infantrymen were, after introduction to all of the infantry weapons, allowed to choose the one in which they would specialise. In most cases, they'd get their first or second choice. Sledge got his first: the 60 mm M2 mortar which he, as part of a crew of three, would operate in combat in the Pacific. Mortarmen carried the M1 carbine, and this weapon, which fired a less powerful round than the M1 Garand main battle rifle used by riflemen, would be his personal weapon throughout the war.

With the Pacific island-hopping war raging, everything was accelerated, and on February 28th, 1944, Sledge's 46th Replacement Battalion (the name didn't inspire confidence—they would replace Marines killed or injured in combat, or the lucky few rotated back to the U.S. after surviving multiple campaigns) shipped out, landing first at New Caledonia, where they received additional training, including practice amphibious landings and instruction in Japanese weapons and tactics. At the start of June, Sledge's battalion was sent to Pavuvu island, base of the 1st Marine Division, which had just concluded the bloody battle of Cape Gloucester.

On arrival, Sledge was assigned as a replacement to the 1st Marine Division, 5th Regiment, 3rd Battalion. This unit had a distinguished combat record dating back to the First World War, and would have been his first choice if he'd been given one, which he hadn't. He says, “I felt as though I had rolled the dice and won.” This was his first contact with what he calls the “Old Breed”: Marines, some of whom had been in the Corps before Pearl Harbor, who had imbibed the traditions of the “Old Corps” and survived some of the most intense combat of the present conflict, including Guadalcanal. Many of these veterans had, in the argot of the time, “gone Asiatic”: developed the eccentricities of who had seen and lived things those just arriving in theatre never imagined, and become marinated in deep hatred for the enemy based upon personal experience. A glance was all it took to tell the veterans from the replacements.

After additional training, in late August the Marines embarked for the assault on the island of Peleliu in the Palau Islands. The tiny island, just 13 square kilometres, was held by a Japanese garrison of 10,900, and was home to an airfield. Capturing the island was considered essential to protect the right flank of MacArthur's forces during the upcoming invasion of the Philippines, and to secure the airfield which could support the invasion. The attack on Peleliu was fixed for 15 September 1944, and it would be Sledge's first combat experience.

From the moment of landing, resistance was fierce. Despite an extended naval bombardment, well-dug-in Japanese defenders engaged the Marines as they hit the beaches, and continued as they progressed into the interior. In previous engagements with the Japanese, they had adopted foolhardy and suicidal tactics such as mass frontal “banzai” charges into well-defended Marine positions. By Peleliu, however, they had learned that this did not work, and shifted their strategy to defence in depth, turning the entire island into a network of defensive positions, covering one another, and linked by tunnels for resupply and redeploying forces. They were prepared to defend every square metre of territory to the death, even after their supplies were cut off and there was no hope of relief. Further, Marines were impressed by the excellent fire discipline of the Japanese—they did not expend ammunition firing blindly but chose their shots carefully, and would expend scarce supplies such as mortar rounds only on concentrations of troops or high value targets such as tanks and artillery.

This, combined with the oppressive heat and humidity, lack of water and food, and terror from incessant shelling by artillery by day and attacks by Japanese infiltrators by night, made the life of the infantry a living Hell. Sledge chronicles this from the viewpoint of a Private First Class, not an officer or historian after the fact. He and his comrades rarely knew precisely where they were, where the enemy was located, how other U.S. forces on the island were faring, or what the overall objectives of the campaign were. There was simply a job to be done, day by day, with their best hope being to somehow survive it. Prior to the invasion, Marine commanders estimated the island could be taken in four days. Rarely in the Pacific war was a forecast so wrong. In fact, it was not until November 27th that the island was declared secured. The Japanese demonstrated their willingness to defend to the last man. Of the initial force of 10,900 defending the island, 10,695 were killed. Of the 220 taken prisoner, 183 were foreign labourers, and only 19 were Japanese soldiers and sailors. Of the Marine and Army attackers, 2,336 were killed and 8,450 wounded. The rate of U.S. casualties exceeded those of all other amphibious landings in the Pacific, and the Battle of Peleliu is considered among the most difficult ever fought by the Marine Corps.

Despite this, the engagement is little-known. In retrospect, it was probably unnecessary. The garrison could have done little to threaten MacArthur's forces and the airfield was not required to support the Philippine campaign. There were doubts about the necessity and wisdom of the attack before it was launched, but momentum carried it forward. None of these matters concerned Sledge and the other Marines in the line—they had their orders, and they did their job, at enormous cost. Sledge's company K landed on Peleliu with 235 men. It left with only 85 unhurt—a 64% casualty rate. Only two of its original seven officers survived the campaign. Sledge was now a combat veteran. He may not have considered himself one of the “Old Breed”, but he was on the way to becoming one of them to the replacements who arrived to replace casualties in his unit.

But for the survivors of Peleliu, the war was far from over. While some old-timers for whom Peleliu was their third campaign were being rotated Stateside, for the rest it was recuperation, refitting, and preparation for the next amphibious assault: the Japanese island of Okinawa. Unlike Peleliu, which was a tiny dot on the map, Okinawa was a large island with an area of 1207 square kilometres and a pre-war population of around 300,000. The island was defended by 76,000 Japanese troops and 20,000 Okinawan conscripts fighting under their orders. The invasion of Okinawa on April 1, 1945 was the largest amphibious landing in the Pacific war.

As before, Sledge does not present the big picture, but an infantryman's eye view. To the astonishment of all involved, including commanders who expected 80–85% casualties on the beaches, the landing was essentially unopposed. The Japanese were dug in awaiting the attack from prepared defensive positions inland, ready to repeat the strategy at Peleliu on a much grander scale.

After the tropical heat and horrors of Peleliu, temperate Okinawa at first seemed a pastoral paradise afflicted with the disease of war, but as combat was joined and the weather worsened, troops found themselves confronted with the infantryman's implacable, unsleeping enemy: mud. Once again, the Japanese defended every position to the last man. Almost all of the Japanese defenders were killed, with the 7000 prisoners made up mostly of Okinawan conscripts. Estimates of U.S. casualties range from 14,000 to 20,000 killed and 38,000 to 55,000 wounded. Civilian casualties were heavy: of the original population of around 300,000 estimates of civilian deaths are from 40,000 to 150,000.

The Battle of Okinawa was declared won on June 22, 1945. What was envisioned as the jumping-off point for the conquest of the Japanese home islands became, in retrospect, almost an afterthought, as Japan surrendered less than two months after the conclusion of the battle. The impact of the Okinawa campaign on the war is debated to this day. Viewed as a preview of what an invasion of the home islands would have been, it strengthened the argument for using the atomic bomb against Japan (or, if it didn't work, burning Japan to the ground with round the clock raids from Okinawa airbases by B-17s transferred from the European theatre). But none of these strategic considerations were on the mind of Sledge and his fellow Marines. They were glad to have survived Okinawa and elated when, not long thereafter, the war ended and they could look forward to going home.

This is a uniquely authentic first-hand narrative of World War II combat by somebody who lived it. After the war, E. B. Sledge pursued his education, eventually earning a doctorate in biology and becoming a professor at the University of Montevallo in Alabama, where he taught zoology, ornithology, and comparative anatomy until his retirement in 1990. He began the memoir which became this book in 1944. He continued to work on it after the war and, at the urging of family, finally prepared it for publication in 1981. The present edition includes an introduction by Victor Davis Hanson.

Posted at 00:09 Permalink

Friday, September 7, 2018

Administration: Fourmilab Server Updated to AWS Linux 2

Since January 10, 2016, the site has been hosted on Amazon Web Services (AWS), using the AWS Linux machine image (AMI) as its underlying platform. This is a Linux system (very similar to the CentOS distribution) which is maintained by Amazon Web Services to provide a continuous stream of updates which avoid having to frequently re-install new releases of the system.

In June 2018 AWS announced the first major update to the Linux AMI, called Linux 2. This release is a discontinuous change and cannot be upgraded directly from the original Linux AMI—one must start with a clean installation and re-install all site-specific programs and data. Once this process is completed, AWS promises that no further re-installations will be required for the next five years.

Because the Fourmilab site is relatively complicated and has a substantial amount of custom software used to implement the various Web services available here, the migration process, although working for static documents the first day, took two months (among many other distractions) to complete and test. At 11:26 UTC on 2018-09-07 the new system went into production on the Fourmilab site. Since then, only one problem has been encountered (display of page visit counters on a few pages), which was due to a library incompatibility and has now been fixed.

This update consists entirely of changes to the software platform (operating system, compilers, libraries, scripting languages, database systems, Web server, etc.) upon which the site is built, so no changes should be apparent to visitors to the site. If you use something at the site and find that it stopped working around the time the update was installed, that's what the “Feedback” button is for.

Posted at 22:03 Permalink

Sunday, September 2, 2018

Reading List: The Taking of K-129

Dean, Josh. The Taking of K-129. New York: Dutton, 2012. ISBN 978-1-101-98443-7.
On February 24, 1968, Soviet Golf class submarine K-129 sailed from its base in Petropavlovsk for a routine patrol in the Pacific Ocean. These ballistic missile submarines were, at the time, a key part of the Soviet nuclear deterrent. Each carried three SS-N-5 missiles armed with one 800 kiloton nuclear warhead per missile. This was an intermediate range missile which could hit targets inside an enemy country if the submarine approached sufficiently close to the coast. For defence and attacking other ships, Golf class submarines carried two torpedoes with nuclear warheads as well as conventional high explosive warhead torpedoes.

Unlike the U.S. nuclear powered Polaris submarines, the Golf class had conventional diesel-electric propulsion. When submerged, the submarine was powered by batteries which provided limited speed and range and required surfacing or running at shallow snorkel depth for regular recharging by the diesel engines. They would be the last generation of Soviet diesel-electric ballistic missile submarines: the Hotel class and subsequent boats would be nuclear powered.

K-129's mission was to proceed stealthily to a region of open ocean north of Midway Atoll and patrol there, ready to launch its missiles at U.S. assets in the Pacific in case of war. Submarines on patrol would send coded burst transmissions on a prearranged schedule to indicate that their mission was proceeding as planned.

On March 8, a scheduled transmission from K-129 failed to arrive. This wasn't immediately cause for concern, since equipment failure was not uncommon, and a submarine commander might choose not to transmit if worried that surfacing and sending the message might disclose his position to U.S. surveillance vessels and aircraft. But when K-129 remained silent for a second day, the level of worry escalated rapidly. Losing a submarine armed with nuclear weapons was a worst-case scenario, and one which had never happened in Soviet naval operations.

A large-scale search and rescue fleet of 24 vessels, including four submarines, set sail from the base in Kamchatka, all communicating in the open on radio and pinging away with active sonar. They were heard to repeatedly call a ship named Red Star with no reply. The search widened, and eventually included thirty-six vessels and fifty-three aircraft, continuing over a period of seventy-three days. Nothing was found, and six months after the disappearance, the Soviet Navy issued a statement that K-129 had been lost while on duty in the Pacific with all on board presumed dead. This was not only a wrenching emotional blow to the families of the crew, but also a financial gut-shot, depriving them of the pension due families of men lost in the line of duty and paying only the one-time accidental death payment and partial pension for industrial accidents.

But if the Soviets had no idea where their submarine was, this was not the case for the U.S. Navy. Sound travels huge distances through the oceans, and starting in the 1950s, the U.S. began to install arrays of hydrophones (undersea sound detectors) on the floors of the oceans around the world. By the 1960s, these arrays, called SOSUS (SOund SUrveillance System) were deployed and operational in both the Atlantic and Pacific and used to track the movements of Soviet submarines. When K-129 went missing, SOSUS analysts went back over their archived data and found a sharp pulse just a few seconds after midnight local time on March 11 around 180° West and 40° North: 2500 km northeast of Hawaii. Not only did the pulse appear nothing like the natural sounds often picked up by SOSUS, events like undersea earthquakes don't tend to happen at socially constructed round number times and locations like this one. The pulse was picked up by multiple sensors, allowing its position to be determined accurately. The U.S. knew where the K-129 lay on the ocean floor. But what to do with that knowledge?

One thing was immediately clear. If the submarine was in reasonably intact condition, it would be an intelligence treasure unparalleled in the postwar era. Although it did not represent the latest Soviet technology, it would provide analysts their first hands-on examination of Soviet ballistic missile, nuclear weapon, and submarine construction technologies. Further, the boat would certainly be equipped with cryptographic and secure radio communications gear which might provide an insight into penetrating the secret communications to and from submarines on patrol. (Recall that British breaking of the codes used to communicate with German submarines in World War II played a major part in winning the Battle of the Atlantic.) But a glance at a marine chart showed how daunting it would be to reach the site of the wreck. The ocean in the vicinity of the co-ordinates identified by SOSUS was around 5000 metres deep. Only a very few special-purpose research vessels can operate at such a depth, where the water pressure is around 490 times that of the atmosphere at sea level.

The U.S. intelligence community wanted that sub. The first step was to make sure they'd found it. The USS Halibut, a nuclear-powered Regulus cruise missile launching submarine converted for special operations missions, was dispatched to the area where the K-129 was thought to lie. Halibut could not dive anywhere near as deep as the ocean floor, but was equipped with a remote-controlled, wire-tethered “fish”, which could be lowered near the bottom and then directed around the search area, observing with side-looking sonar and taking pictures. After seven weeks searching in vain, with fresh food long exhausted and crew patience wearing thin, the search was abandoned and course set back to Pearl Harbor.

But the prize was too great to pass up. So Halibut set out again, and after another month of operating the fish, developing thousands of pictures, and fraying tempers, there it was! Broken into two parts, but with both apparently largely intact, lying on the ocean bottom. Now what?

While there were deep sea research vessels able to descend to such depths, they were completely inadequate to exploit the intelligence haul that K-129 promised. That would require going inside the structure, dismantling the missiles and warheads, examining and testing the materials, and searching for communications and cryptographic gear. The only way to do this was to raise the submarine. To say that this was a challenge is to understate its difficulty—adjectives fail. The greatest mass which had ever been raised from such a depth was around 50 tonnes and K-129 had a mass of 1,500 tonnes—thirty times greater. But hey, why not? We're Americans! We've landed on the Moon! (By then it was November, 1969, four months after that “one small step”.) And so, Project Azorian was born.

When it comes to doing industrial-scale things in the deep ocean, all roads (or sea lanes) lead to Global Marine. A publicly-traded company little known to those outside the offshore oil exploration industry, this company and its genius naval architect John Graham had pioneered deep-sea oil drilling. While most offshore oil rigs, like those on terra firma, were firmly anchored to the land around the drill hole, Global Marine had pioneered the technology which allowed a ship, with a derrick mounted amidships, to precisely station-keep above the bore-hole on the ocean floor far beneath the ship. The required dropping sonar markers on the ocean floor which the ship used to precisely maintain its position with respect to them. This was just one part of the puzzle.

To recover the submarine, the ship would need to lower what amounted to a giant claw (“That's claw, not craw!”, you “Get Smart” fans) to the abyssal plain, grab the sub, and lift its 1500 tonne mass to the surface. During the lift, the pipe string which connected the ship to the claw would be under such stress that, should it break, it would release energy comparable to an eight kiloton nuclear explosion, which would be bad.

This would have been absurdly ambitious if conducted in the open, like the Apollo Project, but in this case it also had to be done covertly, since the slightest hint that the U.S. was attempting to raise K-129 would almost certainly provoke a Soviet response ranging from diplomatic protests to a naval patrol around the site of the sinking aimed at harassing the recovery ships. The project needed a cover story and a cut-out to hide the funding to Global Marine which, as a public company, had to disclose its financials quarterly and, unlike minions of the federal government funded by taxes collected from hairdressers and cab drivers through implicit threat of violence, could not hide its activities in a “black budget”.

This was seriously weird and, as a contemporary philosopher said, “When the going gets weird, the weird turn pro.” At the time, nobody was more professionally weird than Howard Hughes. He had taken reclusion to a new level, utterly withdrawing from contact with the public after revulsion from dealing with the Washington swamp and the media. His company still received royalties from every oil well drilled using his drill bits, and his aerospace and technology companies were plugged into the most secret ventures of the U.S. government. Simply saying, “It's a Hughes project” was sufficient to squelch most questions. This meant it had unlimited funds, the sanction of the U.S. government (including three-letter agencies whose names must not be spoken [brrrr!]), and told pesky journalists they'd encounter a stone wall from the centre of the Earth to the edge of the universe if they tried to dig into details.

But covert as the project might be, aspects of its construction and operation would unavoidably be in the public eye. You can't build a 189 metre long, 51,000 tonne ship, the Hughes Glomar Explorer, with an 80 metre tall derrick sticking up amidships, at a shipyard on the east coast of the U.S., send it around Cape Horn to its base on the west coast (the ship was too wide to pass through the Panama Canal), without people noticing. A cover story was needed, and the CIA and their contractors cooked up a doozy.

Large areas of the deep sea floor are covered by manganese nodules, concretions which form around a seed and grow extremely slowly, but eventually reach the size of potatoes or larger. Nodules are composed of around 30% manganese, plus other valuable metals such as nickel, copper, and cobalt. There are estimated to be more than 21 billion tonnes of manganese nodules on the deep ocean floor (depths of 4000 to 6000 metres), and their composition is richer than many of the ores from which the metals they contain are usually extracted. Further, they're just lying on the seabed. If you could figure out how to go down there and scoop them up, you wouldn't have to dig mines and process huge amounts of rock. Finally, they were in international waters, and despite attempts by kleptocratic dictators (some in landlocked countries) and the international institutions who support them to enact a “Law of the Sea” treaty to pick the pockets of those who created the means to use this resource, at the time the nodules were just there for the taking—you didn't have to pay kleptocratic dictators for mining rights or have your profits skimmed by ever-so-enlightened democratic politicians in developed countries.

So, the story was put out that Howard Hughes was setting out to mine the nodules on the Pacific Ocean floor, and that Glomar Explorer, built by Global Marine under contract for Hughes (operating, of course, as a cut-out for the CIA), would deploy a robotic mining barge called the Hughes Mining Barge 1 (HMB-1) which, lowered to the ocean floor, would collect nodules, crush them, and send the slurry to the surface for processing on the mother ship.

This solved a great number of potential problems. Global Marine, as a public company, could simply (and truthfully) report that it was building Glomar Explorer under contract to Hughes, and had no participation in the speculative and risky mining venture, which would have invited scrutiny by Wall Street analysts and investors. Hughes, operating as a proprietorship, was not required to disclose the source of the funds it was paying Global Marine. Everybody assumed the money was coming from Howard Hughes' personal fortune, which he had invested, over his career, in numerous risky ventures, when in fact, he was simply passing through money from a CIA black budget account. The HMB-1 was built by Lockheed Missiles and Space Company under contract from Hughes. Lockheed was involved in numerous classified U.S. government programs, so operating in the same manner for the famously secretive Hughes raised few eyebrows.

The barge, 99 metres in length, was built in a giant enclosed hangar in the port of Redwood City, California, which shielded it from the eyes of curious onlookers and Soviet reconnaissance satellites passing overhead. This was essential, because a glance at what was being built would have revealed that it looked nothing like a mining barge but rather a giant craw—sorry—claw! To install the claw on the ship, it was towed, enclosed in its covered barge, to a location near Catalina Island in southern California, where deeper water allowed it to be sunk beneath the surface, and then lifted into the well (“moon pool”) of Glomar Explorer, all out of sight to onlookers.

So far, the project had located the target on the ocean floor, designed and built a special ship and retrieval claw to seize it, fabricated a cover story of a mining venture so persuasive other mining companies were beginning to explore launching their own seabed mining projects, and evaded scrutiny by the press, Congress, and Soviet intelligence assets. But these are pussycats compared to the California Tax Nazis! After the first test of mating the claw to the ship, Glomar Explorer took to the ocean to, it was said, test the stabilisation system which would keep the derrick vertical as the ship pitched and rolled in the sea. Actually, the purpose of the voyage was to get the ship out of U.S. territorial waters on March 1st, the day California assessed a special inventory tax on all commercial vessels in state waters. This would not only cost a lot of money, it would force disclosure of the value of the ship, which could be difficult to reconcile with its cover mission. Similar fast footwork was required when Hughes took official ownership of the vessel from Global Marine after acceptance. A trip outside U.S. territorial waters was also required to get off the hook for the 7% sales tax California would otherwise charge on the transfer of ownership.

Finally, in June 1974, all was ready, and Glomar Explorer with HMB-1 attached set sail from Long Beach, California to the site of K-129's wreck, arriving on site on the Fourth of July, only to encounter foul weather. Opening the sea doors in the well in the centre of the ship and undocking the claw required calm seas, and it wasn't until July 18th that they were ready to begin the main mission. Just at that moment, what should show up but a Soviet missile tracking ship. After sending its helicopter to inspect Explorer, it eventually departed. This wasn't the last of the troubles with pesky Soviets.

On July 21, the recovery operation began, slowly lowering the claw on its string of pipes. Just at this moment, another Soviet ship arrived, a 47 metre ocean-going tug called SB-10. This tug would continue to harass the recovery operation for days, approaching on an apparent collision course and then veering off. (Glomar Explorer could not move during the retrieval operation, being required to use its thrusters to maintain its position directly above the wrecked submarine on the bottom.)

On August 3, the claw reached the bottom and its television cameras revealed it was precisely on target—there was the submarine, just as it had been photographed by the Halibut six years earlier. The claw gripped the larger part of the wreck, its tines closed under it, and a combination of pistons driving against the ocean bottom and the lift system pulling on the pipe from the ship freed the submarine from the bottom. Now the long lift could begin.

Everything had worked. The claw had been lowered, found its target on the first try, successfully seized it despite the ocean bottom's being much harder than expected, freed it from the bottom, and the ship had then successfully begun to lift the 6.4 million kg of pipe, claw, and submarine back toward the surface. Within the first day of the lift, more than a third of the way to the surface, with the load on the heavy lift equipment diminishing by 15 tonnes as each segment of lift pipe was removed from the string, a shudder went through the ship and the heavy lift equipment lurched violently. Something had gone wrong, seriously wrong. Examination of television images from the claw revealed that several of the tines gripping the hull of the submarine had failed and part of the sub, maybe more than half, had broken off and fallen back toward the abyss. (It was later decided that the cause of the failure was that the tines had been fabricated from maraging steel, which is very strong but brittle, rather than a more ductile alloy which would bend under stress but not break.)

After consultation with CIA headquarters, it was decided to continue the lift and recover whatever was left in the claw. (With some of the tines broken and the mechanism used to break the load free of the ocean floor left on the bottom, it would have been impossible to return and recover the lost part of the sub on this mission.) On August 6th, the claw and its precious payload reached the ship and entered the moon pool in its centre. Coincidentally, the Soviet tug departed the scene the same day. Now it was possible to assess what had been recovered, and the news was not good: two thirds of the sub had been lost, including the ballistic missile tubes and the code room. Only the front third was in the claw. Further, radiation five times greater than background was detected even outside the hull—those exploring it would have to proceed carefully.

An “exploitation team” composed of CIA specialists and volunteers from the ship's crew began to explore the wreckage, photographing and documenting every part recovered. They found the bodies of six Soviet sailors and assorted human remains which could not be identified; all went to the ship's morgue. Given that the bow portion of the submarine had been recovered, it is likely that one or more of its torpedoes equipped with nuclear warheads were recovered, but to this day the details of what was found in the wreck remain secret. By early September, the exploitation was complete and the bulk of the recovered hull, less what had been removed and sent for analysis, was dumped in the deep ocean 160 km south of Hawaii.

One somber task remained. On September 4, 1974, the remains of the six recovered crewmen and the unidentified human remains were buried at sea in accordance with Soviet Navy tradition. A video tape of this ceremony was made and, in 1992, a copy was presented to Russian President Boris Yeltsin by then CIA director Robert Gates.

The partial success encouraged some in the CIA to mount a follow-up mission to recover the rest of the sub, including the missiles and code room. After all, they knew precisely where it was, had a ship in hand, fully paid for, which had successfully lowered the claw to the bottom and returned to the surface with part of the sub, and they knew what had gone wrong with the claw and how to fix it. The effort was even given a name, Project Matador. But it was not to be.

Over the five years of the project there had been leaks to the press and reporters sniffing on the trail of the story but the CIA had been able to avert disclosure by contacting the reporters directly, explaining the importance of the mission and need for secrecy, and offering them an exclusive of full disclosure and permission to publish it before the project was officially declassified for the general public. This had kept a lid on the secret throughout the entire development process and the retrieval and analysis, but this all came to an end in March 1975 when Jack Anderson got wind of the story. There was no love lost between Anderson and what we now call the Deep State. Anderson believed the First Amendment was divinely inspired and absolute, while J. Edgar Hoover had called Anderson “lower than the regurgitated filth of vultures”. Further, this was a quintessential Jack Anderson story—based upon his sources, he presented Project Azorian as a US$ 350 million failure which had produced no useful intelligence information and was being kept secret only to cover up the squandering of taxpayers' money.

CIA Director William Colby offered Anderson the same deal other journalists had accepted, but was flatly turned down. Five minutes before Anderson went on the radio to break the story, Colby was still pleading with him to remain silent. On March 18, 1975, Anderson broke the story on his Mutual Radio Network show and, the next day, published additional details in his nationally syndicated newspaper column. Realising the cover had been blown, Colby called all of the reporters who had agreed to hold the story to give them the green light to publish. Seymour Hersh of the New York Times had his story ready to go, and it ran on the front page of the next day's paper, providing far more detail (albeit along with a few errors) than Anderson's disclosure. Hersh revealed that he had been aware of the project since 1973 but had agreed to withhold publication in the interest of national security.

The story led newspaper and broadcast news around the country and effectively drove a stake through any plans to mount a follow-up retrieval mission. On June 16, 1975, Secretary of State Henry Kissinger made a formal recommendation to president Gerald Ford to terminate the project and that was the end of it. The Soviets had communicated through a back channel that they had no intention of permitting a second retrieval attempt and they had maintained an ocean-going tug on site to monitor any activity since shortly after the story broke in the U.S.

The CIA's official reaction to all the publicity was what has come to be called the “Glomar Response”: “We can neither confirm nor can we deny.” And that is where things stand more that four decades after the retrieval attempt. Although many of those involved in the project have spoken informally about aspects of it, there has never been an official report on precisely what was recovered or what was learned from it. Some CIA veterans have said, off the record, that much more was learned from the recovered material than has been suggested in press reports, with a few arguing that the entire large portion of the sub was recovered and the story about losing much of it was a cover story. (But if this was the case, the whole plan to mount a second retrieval mission and the substantial expense repairing and upgrading the claw for the attempt, which is well documented, would also have to have been a costly cover story.)

What is certain is that Project Azorian was one of the most daring intelligence exploits in history, carried out in total secrecy under the eyes of the Soviets, and kept secret from an inquiring press for five years by a cover story so persuasive other mining companies bought it hook, line, and sinker. We may never know all the details of the project, but from what we do know it is a real-world thriller which equals or exceeds those imagined by masters of the fictional genre.

Posted at 14:08 Permalink

Monday, August 27, 2018

Reading List: Ideal

Rand, Ayn. Ideal. New York: New American Library, 2015. ISBN 978-0-451-47317-2.
In 1934, the 29 year old Ayn Rand was trying to establish herself in Hollywood. She had worked as a junior screenwriter and wardrobe person, but had not yet landed a major writing assignment. She wrote Ideal on speculation, completing the 32,000 word novella and then deciding it would work better as a stage play. She set the novella aside and finished the play version in 1936. The novella was never published nor was the play produced during her lifetime. After her death in 1982, the play was posthumously published in the anthology The Early Ayn Rand, but the novella remained largely unknown until this edition, which includes both it and the play, was published in 2015.

Ideal is the story of movie idol Kay Gonda, a beautiful and mysterious actress said to have been modeled on Greta Garbo. The night before the story begins, Gonda had dinner alone with oil baron Granton Sayers, whose company, it was rumoured, was on the brink of ruin in the depths of the Depression. Afterwards, Sayers was found in his mansion dead of a gunshot wound, and Gonda was nowhere to be found. Rumours swirled through the press that Gonda was wanted for murder, but there was a blackout of information which drove the press and her studio near madness. Her private secretary said that she had not seen Gonda since she left for the dinner, but that six pieces of her fan mail were missing from her office at the studio, so she assumed that Gonda must have returned and taken them.

The story then describes six episodes in which the fugitive Kay Gonda shows up, unannounced, at the homes of six of her fans, all of whom expressed their utter devotion to her in their letters. Five of the six—a henpecked manager of a canning company, an ageing retiree about to lose the house in which he raised his children, an artist who paints only canvases of Ms Gonda who has just won first prize in an important exhibition, an evangelist whose temple faces serious competition from the upstart Church of the Cheery Corner, and a dissipated playboy at the end of his financial rope—end up betraying the idol to whom they took pen to paper to express their devotion when confronted with the human being in the flesh and the constraints of the real world. The sixth fan, Johnnie Dawes, who has struggled to keep a job and roof over his head all his adult life, sees in Kay Gonda an opportunity to touch a perfection he had never hoped to experience in his life and devises a desperate plan to save Gonda from her fate.

A surprise ending reveals that much the reader has assumed is not what really happened, and that while Kay Gonda never once explicitly lied, neither did she prevent those to whom she spoke from jumping to the wrong conclusions.

This is very minor Ayn Rand. You can see some of the story telling skills which would characterise her later work beginning to develop, but the story has no plot: it is a morality tale presented in unconnected episodes, and the reader is left to draw the moral on his or her own. Given that the author was a struggling screenwriter in an intensely competitive Hollywood, the shallowness and phoniness of the film business is much on display here, although not so explicitly skewered as the later Ayn Rand might have done. The message is one of “skin in the game”—people can only be judged by what they do when confronted by difficult situations, not by what they say when words are cheap.

It is interesting to compare the play to the novella. The stories are clearly related, but Rand swaps out one of the fans, the elderly man, for a young, idealistic, impecunious, and totally phoney Communist activist. The play was written in 1936, the same year as We the Living, and perhaps the opportunity to mock pathetic Hollywood Bolsheviks was too great to pass by.

This book will mostly be of interest to those who have read Ayn Rand's later work and are curious to read some of the first fiction she ever wrote. Frankly, it isn't very good, and an indication of this is that Ayn Rand, whose reputation later in life would have made it easy to arrange publication for this work, chose to leave it in the trunk all her life. But she did not destroy the manuscript, so there must have been some affection for it.

Posted at 21:25 Permalink

Saturday, August 18, 2018

Reading List: The Dream of the Iron Dragon

Kroese, Robert. The Dream of the Iron Dragon. Seattle: CreateSpace, 2018. ISBN 978-1-983729-21-8.
The cover tells you all you need to know about this book: Vikings!—spaceships! What could go wrong? From the standpoint of a rip-roaring science fiction adventure, absolutely nothing: this masterpiece is further confirmation that we're living in a new Golden Age of science fiction, made possible by the intensely meritocratic world of independent publishing sweeping aside the politically-correct and social justice warrior converged legacy publishers and re-opening the doors of the genre to authors who spin yarns with heroic characters, challenging ideas, and red-blooded adventure just as in the works of the grandmasters of previous golden ages.

From the standpoint of the characters in this novel, a great many things go wrong, and there the story begins. In the twenty-third century, humans find themselves in a desperate struggle with the only other intelligent species they'd encountered, the Cho-ta'an. First contact was in 2125, when a human interstellar ship was destroyed by the Cho-ta'an while exploring the Tau Ceti system. Shortly thereafter, co-ordinated attacks began on human ships and settlements which indicated the Cho-ta'an possessed faster-than-light travel, which humans did not. Humans formed the Interstellar Defense League (IDL) to protect their interests and eventually discovered and captured a Cho-ta'an jumpgate, which allowed instantaneous travel across interstellar distances. The IDL was able to reverse-engineer the gate sufficiently to build their own copies, but did not understand how it worked—it was apparently based upon some kind of wormhole physics beyond their comprehension.

Humans fiercely defended their settlements, but inexorably the Cho-ta'an advanced, seemingly driven by an inflexible philosophy that the universe was theirs alone and any competition must be exterminated. All attempts at diplomacy failed. The Earth had been rendered uninhabitable and evacuated, and most human settlements destroyed or taken over by the Cho-ta'an. Humanity was losing the war and time was running out.

In desperation, the IDL set up an Exploratory Division whose mission was to seek new homes for humans sufficiently distant from Cho-ta'an space to buy time: avoiding extinction in the hope the new settlements would be able to develop technologies to defend themselves before the enemy discovered them and attacked. Survey ship Andrea Luhman was en route to the Finlan Cluster on such a mission when it received an enigmatic message which seemed to indicate there was intelligent life out in this distant region where no human or Cho-ta'an had been known to go.

A complex and tense encounter leaves the crew of this unarmed exploration ship in possession of a weapon which just might turn the tide for humanity and end the war. Unfortunately, as they start their return voyage with this precious cargo, a Cho-ta'an warship takes up pursuit, threatening to vaporise this last best hope for survival. In a desperate move, the crew of the Andrea Luhman decide to try something that had never been attempted before: thread the needle of the rarely used jumpgate to abandoned Earth at nearly a third of the speed of light while evading missiles fired by the pursuing warship. What could go wrong? Actually a great deal. Flash—darkness.

When they got the systems back on-line, it was clear they'd made it to the Sol system, but they picked up nothing on any radio frequency. Even though Earth had been abandoned, satellites remained and, in any case, the jumpgate beacon should be transmitting. On further investigation, they discovered the stars were wrong. Precision measurements of star positions correlated with known proper motion from the ship's vast database allowed calculation of the current date. And the answer? “March sixteen, 883 a.d.

The jumpgate beacon wasn't transmitting because the jumpgate hadn't been built yet and wouldn't be for over a millennium. Worse, a component of the ship's main drive had been destroyed in the jump and, with only auxiliary thrusters it would take more than 1500 years to get to the nearest jumpgate. They couldn't survive that long in stasis and, even if they did, they'd arrive two centuries too late to save humanity from the Cho-ta'an.

Desperate situations call for desperate measures, and this was about as desperate as can be imagined. While there was no hope of repairing the drive component on-board, it just might be possible to find, refine, and process the resources into a replacement on the Earth. It was decided to send the ship's only lander to an uninhabited, resource-rich portion of the Earth and, using its twenty-third century technology, build the required part. What could go wrong? But even though nobody on the crew was named Murphy he was, as usual, on board. After a fraught landing attempt in which a great many things go wrong, the landing party of four finds themselves wrecked in a snowfield in what today is southern Norway. Then the Vikings show up.

The crew of twenty-third century spacefarers have crashed in the Norway of Harald Fairhair, who was struggling to unite individual bands of Vikings into a kingdom under his rule. The people from the fallen silver sky ship must quickly decide with whom to ally themselves, how to communicate across a formidable language barrier and millennia of culture, whether they can or dare meddle with history, and how to survive and somehow save humanity in what is now their distant future.

There is adventure, strategy, pitched battles, technological puzzles, and courage and resourcefulness everywhere in this delightful narrative. You grasp just how hard life was in those days, how differently people viewed the world, and how little all of our accumulated knowledge is worth without the massive infrastructure we have built over the centuries as we have acquired it.

You will reach the end of this novel wanting more and you're in luck. Volume two of the trilogy, The Dawn of the Iron Dragon (Kindle edition), is now available and the conclusion, The Voyage of the Iron Dragon, is scheduled for publication in December, 2018. It's all I can do not to immediately devour the second volume starting right now.

The Kindle edition is free for Kindle Unlimited subscribers.

Posted at 15:08 Permalink

Sunday, August 5, 2018

Reading List: Losing the Nobel Prize

Keating, Brian. Losing the Nobel Prize. New York: W. W. Norton, 2018. ISBN 978-1-324-00091-4.
Ever since the time of Galileo, the history of astronomy has been punctuated by a series of “great debates”—disputes between competing theories of the organisation of the universe which observation and experiment using available technology are not yet able to resolve one way or another. In Galileo's time, the great debate was between the Ptolemaic model, which placed the Earth at the centre of the solar system (and universe) and the competing Copernican model which had the planets all revolving around the Sun. Both models worked about as well in predicting astronomical phenomena such as eclipses and the motion of planets, and no observation made so far had been able to distinguish them.

Then, in 1610, Galileo turned his primitive telescope to the sky and observed the bright planets Venus and Jupiter. He found Venus to exhibit phases, just like the Moon, which changed over time. This would not happen in the Ptolemaic system, but is precisely what would be expected in the Copernican model—where Venus circled the Sun in an orbit inside that of Earth. Turning to Jupiter, he found it to be surrounded by four bright satellites (now called the Galilean moons) which orbited the giant planet. This further falsified Ptolemy's model, in which the Earth was the sole source of attraction around which all celestial bodies revolved. Since anybody could build their own telescope and confirm these observations, this effectively resolved the first great debate in favour of the Copernican heliocentric model, although some hold-outs in positions of authority resisted its dethroning of the Earth as the centre of the universe.

This dethroning came to be called the “Copernican principle”, that Earth occupies no special place in the universe: it is one of a number of planets orbiting an ordinary star in a universe filled with a multitude of other stars. Indeed, when Galileo observed the star cluster we call the Pleiades, he saw myriad stars too dim to be visible to the unaided eye. Further, the bright stars were surrounded by a diffuse bluish glow. Applying the Copernican principle again, he argued that the glow was due to innumerably more stars too remote and dim for his telescope to resolve, and then generalised that the glow of the Milky Way was also composed of uncountably many stars. Not only had the Earth been demoted from the centre of the solar system, so had the Sun been dethroned to being just one of a host of stars possibly stretching to infinity.

But Galileo's inference from observing the Pleiades was wrong. The glow that surrounds the bright stars is due to interstellar dust and gas which reflect light from the stars toward Earth. No matter how large or powerful the telescope you point toward such a reflection nebula, all you'll ever see is a smooth glow. Driven by the desire to confirm his Copernican convictions, Galileo had been fooled by dust. He would not be the last.

William Herschel was an eminent musician and composer, but his passion was astronomy. He pioneered the large reflecting telescope, building more than sixty telescopes. In 1789, funded by a grant from King George III, Herschel completed a reflector with a mirror 1.26 metres in diameter, which remained the largest aperture telescope in existence for the next fifty years. In Herschel's day, the great debate was about the Sun's position among the surrounding stars. At the time, there was no way to determine the distance or absolute brightness of stars, but Herschel decided that he could compile a map of the galaxy (then considered to be the entire universe) by surveying the number of stars in different directions. Only if the Sun was at the centre of the galaxy would the counts be equal in all directions.

Aided by his sister Caroline, a talented astronomer herself, he eventually compiled a map which indicated the galaxy was in the shape of a disc, with the Sun at the centre. This seemed to refute the Copernican view that there was nothing special about the Sun's position. Such was Herschel's reputation that this finding, however puzzling, remained unchallenged until 1847 when Wilhelm Struve discovered that Herschel's results had been rendered invalid by his failing to take into account the absorption and scattering of starlight by interstellar dust. Just as you can only see the same distance in all directions while within a patch of fog, regardless of the shape of the patch, Herschel's survey could only see so far before extinction of light by dust cut off his view of stars. Later it was discovered that the Sun is far from the centre of the galaxy. Herschel had been fooled by dust.

In the 1920s, another great debate consumed astronomy. Was the Milky Way the entire universe, or were the “spiral nebulæ” other “island universes”, galaxies in their own right, peers of the Milky Way? With no way to measure distance or telescopes able to resolve them into stars, many astronomers believed spiral neublæ were nearby objects, perhaps other solar systems in the process of formation. The discovery of a Cepheid variable star in the nearby Andromeda “nebula” by Edwin Hubble in 1923 allowed settling this debate. Andromeda was much farther away than the most distant stars found in the Milky Way. It must, then be a separate galaxy. Once again, demotion: the Milky Way was not the entire universe, but just one galaxy among a multitude.

But how far away were the galaxies? Hubble continued his search and measurements and found that the more distant the galaxy, the more rapidly it was receding from us. This meant the universe was expanding. Hubble was then able to calculate the age of the universe—the time when all of the galaxies must have been squeezed together into a single point. From his observations, he computed this age at two billion years. This was a major embarrassment: astrophysicists and geologists were confident in dating the Sun and Earth at around five billion years. It didn't make any sense for them to be more than twice as old as the universe of which they were a part. Some years later, it was discovered that Hubble's distance estimates were far understated because he failed to account for extinction of light from the stars he measured due to dust. The universe is now known to be seven times the age Hubble estimated. Hubble had been fooled by dust.

By the 1950s, the expanding universe was generally accepted and the great debate was whether it had come into being in some cataclysmic event in the past (the “Big Bang”) or was eternal, with new matter spontaneously appearing to form new galaxies and stars as the existing ones receded from one another (the “Steady State” theory). Once again, there were no observational data to falsify either theory. The Steady State theory was attractive to many astronomers because it was the more “Copernican”—the universe would appear overall the same at any time in an infinite past and future, so our position in time is not privileged in any way, while in the Big Bang the distant past and future are very different than the conditions we observe today. (The rate of matter creation required by the Steady State theory was so low that no plausible laboratory experiment could detect it.)

The discovery of the cosmic background radiation in 1965 definitively settled the debate in favour of the Big Bang. It was precisely what was expected if the early universe were much denser and hotter than conditions today, as predicted by the Big Bang. The Steady State theory made no such prediction and was, despite rear-guard actions by some of its defenders (invoking dust to explain the detected radiation!), was considered falsified by most researchers.

But the Big Bang was not without its own problems. In particular, in order to end up with anything like the universe we observe today, the initial conditions at the time of the Big Bang seemed to have been fantastically fine-tuned (for example, an infinitesimal change in the balance between the density and rate of expansion in the early universe would have caused the universe to quickly collapse into a black hole or disperse into the void without forming stars and galaxies). There was no physical reason to explain these fine-tuned values; you had to assume that's just the way things happened to be, or that a Creator had set the dial with a precision of dozens of decimal places.

In 1979, the theory of inflation was proposed. Inflation held that in an instant after the Big Bang the size of the universe blew up exponentially so that all the observable universe today was, before inflation, the size of an elementary particle today. Thus, it's no surprise that the universe we now observe appears so uniform. Inflation so neatly resolved the tensions between the Big Bang theory and observation that it (and refinements over the years) became widely accepted. But could inflation be observed? That is the ultimate test of a scientific theory.

There have been numerous cases in science where many years elapsed between a theory being proposed and definitive experimental evidence for it being found. After Galileo's observations, the Copernican theory that the Earth orbits the Sun became widely accepted, but there was no direct evidence for the Earth's motion with respect to the distant stars until the discovery of the aberration of light in 1727. Einstein's theory of general relativity predicted gravitational radiation in 1915, but the phenomenon was not directly detected by experiment until a century later. Would inflation have to wait as long or longer?

Things didn't look promising. Almost everything we know about the universe comes from observations of electromagnetic radiation: light, radio waves, X-rays, etc., with a little bit more from particles (cosmic rays and neutrinos). But the cosmic background radiation forms an impenetrable curtain behind which we cannot observe anything via the electromagnetic spectrum, and it dates from around 380,000 years after the Big Bang. The era of inflation was believed to have ended 10−32 seconds after the Bang; considerably earlier. The only “messenger” which could possibly have reached us from that era is gravitational radiation. We've just recently become able to detect gravitational radiation from the most violent events in the universe, but no conceivable experiment would be able to detect this signal from the baby universe.

So is it hopeless? Well, not necessarily…. The cosmic background radiation is a snapshot of the universe as it existed 380,000 years after the Big Bang, and only a few years after it was first detected, it was realised that gravitational waves from the very early universe might have left subtle imprints upon the radiation we observe today. In particular, gravitational radiation creates a form of polarisation called B-modes which most other sources cannot create.

If it were possible to detect B-mode polarisation in the cosmic background radiation, it would be a direct detection of inflation. While the experiment would be demanding and eventually result in literally going to the end of the Earth, it would be strong evidence for the process which shaped the universe we inhabit and, in all likelihood, a ticket to Stockholm for those who made the discovery.

This was the quest on which the author embarked in the year 2000, resulting in the deployment of an instrument called BICEP1 (Background Imaging of Cosmic Extragalactic Polarization) in the Dark Sector Laboratory at the South Pole. Here is my picture of that laboratory in January 2013. The BICEP telescope is located in the foreground inside a conical shield which protects it against thermal radiation from the surrounding ice. In the background is the South Pole Telescope, a millimetre wave antenna which was not involved in this research.

BICEP2 and South Pole Telescope, 2013-01-09

BICEP1 was a prototype, intended to test the technologies to be used in the experiment. These included cooling the entire telescope (which was a modest aperture [26 cm] refractor, not unlike Galileo's, but operating at millimetre wavelengths instead of visible light) to the temperature of interstellar space, with its detector cooled to just ¼ degree above absolute zero. In 2010 its successor, BICEP2, began observation at the South Pole, and continued its run into 2012. When I took the photo above, BICEP2 had recently concluded its observations.

On March 17th, 2014, the BICEP2 collaboration announced, at a press conference, the detection of B-mode polarisation in the region of the southern sky they had monitored. Note the swirling pattern of polarisation which is the signature of B-modes, as opposed to the starburst pattern of other kinds of polarisation.

B-mode polarisation in BICEP2 observations, 2014-03-17

But, not so fast, other researchers cautioned. The risk in doing “science by press release” is that the research is not subjected to peer review—criticism by other researchers in the field—before publication and further criticism in subsequent publications. The BICEP2 results went immediately to the front pages of major newspapers. Here was direct evidence of the birth cry of the universe and confirmation of a theory which some argued implied the existence of a multiverse—the latest Copernican demotion—the idea that our universe was just one of an ensemble, possibly infinite, of parallel universes in which every possibility was instantiated somewhere. Amid the frenzy, a few specialists in the field, including researchers on competing projects, raised the question, “What about the dust?” Dust again! As it happens, while gravitational radiation can induce B-mode polarisation, it isn't the only thing which can do so. Our galaxy is filled with dust and magnetic fields which can cause those dust particles to align with them. Aligned dust particles cause polarised reflections which can mimic the B-mode signature of the gravitational radiation sought by BICEP2.

The BICEP2 team was well aware of this potential contamination problem. Unfortunately, their telescope was sensitive only to one wavelength, chosen to be the most sensitive to B-modes due to primordial gravitational radiation. It could not, however, distinguish a signal from that cause from one due to foreground dust. At the same time, however, the European Space Agency Planck spacecraft was collecting precision data on the cosmic background radiation in a variety of wavelengths, including one sensitive primarily to dust. Those data would have allowed the BICEP2 investigators to quantify the degree their signal was due to dust. But there was a problem: BICEP2 and Planck were direct competitors.

Planck had the data, but had not released them to other researchers. However, the BICEP2 team discovered that a member of the Planck collaboration had shown a slide at a conference of unpublished Planck observations of dust. A member of the BICEP2 team digitised an image of the slide, created a model from it, and concluded that dust contamination of the BICEP2 data would not be significant. This was a highly dubious, if not explicitly unethical move. It confirmed measurements from earlier experiments and provided confidence in the results.

In September 2014, a preprint from the Planck collaboration (eventually published in 2016) showed that B-modes from foreground dust could account for all of the signal detected by BICEP2. In January 2015, the European Space Agency published an analysis of the Planck and BICEP2 observations which showed the entire BICEP2 detection was consistent with dust in the Milky Way. The epochal detection of inflation had been deflated. The BICEP2 researchers had been deceived by dust.

The author, a founder of the original BICEP project, was so close to a Nobel prize he was already trying to read the minds of the Nobel committee to divine who among the many members of the collaboration they would reward with the gold medal. Then it all went away, seemingly overnight, turned to dust. Some said that the entire episode had injured the public's perception of science, but to me it seems an excellent example of science working precisely as intended. A result is placed before the public; others, with access to the same raw data are given an opportunity to critique them, setting forth their own raw data; and eventually researchers in the field decide whether the original results are correct. Yes, it would probably be better if all of this happened in musty library stacks of journals almost nobody reads before bursting out of the chest of mass media, but in an age where scientific research is funded by agencies spending money taken from hairdressers and cab drivers by coercive governments under implicit threat of violence, it is inevitable they will force researchers into the public arena to trumpet their “achievements”.

In parallel with the saga of BICEP2, the author discusses the Nobel Prizes and what he considers to be their dysfunction in today's scientific research environment. I was surprised to learn that many of the curious restrictions on awards of the Nobel Prize were not, as I had heard and many believe, conditions of Alfred Nobel's will. In fact, the conditions that the prize be shared no more than three ways, not be awarded posthumously, and not awarded to a group (with the exception of the Peace prize) appear nowhere in Nobel's will, but were imposed later by the Nobel Foundation. Further, Nobel's will explicitly states that the prizes shall be awarded to “those who, during the preceding year, shall have conferred the greatest benefit to mankind”. This constraint (emphasis mine) has been ignored since the inception of the prizes.

He decries the lack of “diversity” in Nobel laureates (by which he means, almost entirely, how few women have won prizes). While there have certainly been women who deserved prizes and didn't win (Lise Meitner, Jocelyn Bell Burnell, and Vera Rubin are prime examples), there are many more men who didn't make the three laureates cut-off (Freeman Dyson an obvious example for the 1965 Physics Nobel for quantum electrodynamics). The whole Nobel prize concept is capricious, and rewards only those who happen to be in the right place at the right time in the right field that the committee has decided deserves an award this year and are lucky enough not to die before the prize is awarded. To imagine it to be “fair” or representative of scientific merit is, in the estimation of this scribbler, in flying unicorn territory.

In all, this is a candid view of how science is done at the top of the field today, with all of the budget squabbles, maneuvering for recognition, rivalry among competing groups of researchers, balancing the desire to get things right with the compulsion to get there first, and the eye on that prize, given only to a few in a generation, which can change one's life forever.

Personally, I can't imagine being so fixated on winning a prize one has so little chance of gaining. It's like being obsessed with winning the lottery—and about as likely.

In parallel with all of this is an autobiographical account of the career of a scientist with its ups and downs, which is both a cautionary tale and an inspiration to those who choose to pursue that difficult and intensely meritocratic career path.

I recommend this book on all three tracks: a story of scientific discovery, mis-interpretation, and self-correction, the dysfunction of the Nobel Prizes and how they might be remedied, and the candid story of a working scientist in today's deeply corrupt coercively-funded research environment.

Posted at 10:51 Permalink