« Reading List: Back to the Moon | Main | Reading List: Questioning Einstein »
Tuesday, January 25, 2011
Reading List: Chrysler's Turbine Car
- Lehto, Steve. Chrysler's Turbine Car. Chicago: Chicago Review Press, 2010. ISBN 978-1-56976-549-4.
- There were few things so emblematic of the early 1960s as the jet airliner. Indeed, the period was often referred to contemporarily as the “jet age”, and products from breakfast cereal to floor wax were positioned as modern wonders of that age. Anybody who had experienced travel in a piston powered airliner and then took their first flight in a jet felt that they had stepped into the future: gone was the noise, rattling, and shaking from the cantankerous and unreliable engines that would knock the fillings loose in your teeth, replaced by a smooth whoosh which (although, in the early jets, deafening to onlookers outside), allowed carrying on a normal conversation inside the cabin. Further, notwithstanding some tragic accidents in the early days as pilots became accustomed to the characteristics of the new engines and airframes, it soon became apparent that these new airliners were a great deal safer and more reliable than their predecessors: they crashed a lot less frequently, and flights delayed and cancelled due to mechanical problems became the rare exception rather than something air travellers put up with only because the alternative was so much worse. So, if the jet age had arrived, and jet power had proven itself to be so superior to the venerable and hideously overcomplicated piston engine, where were the jet cars? This book tells the long and tangled story of just how close we came to having turbine powered automobiles in the 1960s, how a small group of engineers plugging away at problem after problem over twenty years managed to produce an automotive powerplant so clearly superior to contemporary piston engines that almost everybody who drove a vehicle powered by it immediately fell in love and wished they could have one of their own, and ultimately how financial problems and ill-considered government meddling destroyed the opportunity to replace automotive powerplants dependent upon petroleum-based fuels (which, at the time, contained tetraethyl lead) with one which would run on any combustible liquid, emit far less pollution from the tailpipe, run for hundreds of thousands of miles without an oil change or need for a tune-up, start instantly and reliably regardless of the ambient temperature, and run so smoothly and quietly that for the first time passengers were aware of the noise of the tires rolling over the road. In 1945, George Huebner, who had worked on turboprop aircraft for Chrysler during World War II, returned to the civilian automotive side of the company as war work wound down. A brilliant engineer as well as a natural-born promoter of all things he believed in, himself most definitely included, by 1946 he was named Chrysler's chief engineer and used his position to champion turbine propulsion, which he had already seen was the future in aviation, for automotive applications. The challenges were daunting: turboshaft engines (turbines which delivered power by turning a shaft coupled to the turbine rotor, as used in turboprop airplanes and helicopters) gulped fuel at a prodigious rate, including when at “idle”, took a long time to “spool up” to maximum power, required expensive exotic materials in the high-temperature section of the engine, and had tight tolerances which required parts to be made by costly and low production rate investment casting, which could not produce parts in the quantity, nor at a cost acceptable for a mass market automotive powerplant. Like all of the great engineers, Huebner was simultaneously stubborn and optimistic: stubborn in his belief that a technology so much simpler and inherently more thermodynamically efficient must eventually prevail, and optimistic that with patient engineering, tackling one problem after another and pursuing multiple solutions in parallel, any challenge could be overcome. By 1963, coming up on the twentieth year of the effort, progress had been made on all fronts to the extent that Huebner persuaded Chrysler management that the time had come to find out whether the driving public was ready to embrace the jet age in their daily driving. In one of the greatest public relations stunts of all time, Chrysler ordered 55 radically styled (for the epoch) bodies from the Ghia shop in Italy, and mated them with turbine drivetrains and chassis in a Michigan factory previously used to assemble taxicabs. Fifty of these cars (the other five being retained for testing and promotional purposes) were loaned, at no charge, for periods of three months each, to a total of 203 drivers and their families. Delivery of one of these loaners became a media event, and the lucky families instant celebrities in their communities: a brief trip to the grocery store would turn into several hours fielding questions about the car and offering rides around the block to gearheads who pleaded for them. The turbine engines, as turbine engines are wont to, once the bugs have been wrung out, performed superbly. Drivers of the loaner cars put more than a million miles on them with only minor mechanical problems. One car was rear-ended at a stop light, but you can't blame the engine for that. (Well, perhaps the guilty party was transfixed by the striking design of the rear of the car!) Drivers did notice slower acceleration from a stop due to “turbine lag”—the need for the turbine to spool up in RPM from idle, and poorer fuel economy in city driving. Fuel economy on the highway was comparable to contemporary piston engine cars. What few drivers noticed in the era of four gallons a buck gasoline, was that the turbine could run on just about any fuel you can imagine: unleaded gasoline, kerosene, heating oil, ethanol, methanol, aviation jet fuel, diesel, or any mix thereof. As a stunt, while visiting a peanut festival in Georgia, a Chrysler Turbine filled up with peanut oil, with tequila during a tour through Mexico, and with perfume at a French auto show; in each case the engine ran perfectly on the eccentric fuel (albeit with a distinctive aroma imparted to the exhaust). So, here we are all these many years later in the twenty-first century. Where are our jet cars? That's an interesting story which illustrates the unintended consequences of well-intended public policy. Just as the turbine engine was being refined and perfected as an automotive power plant, the U.S. government started to obsess about air quality, and decided, in the spirit of the times, to impose detailed mandates upon manufacturers which constrained the design of their products. (As opposed, say, to imposing an excise tax upon vehicles based upon their total emissions and allowing manufacturers to weigh the trade-offs across their entire product line, or leaving it to states and municipalities most affected by pollution to enforce their own standards on vehicles licensed in their jurisdiction.) Since almost every vehicle on the road was piston engine powered, it was inevitable that regulators would draft their standards around the characteristics of that powerplant. In doing so, they neglected to note that the turbine engine already met all of the most stringent emissions standards they then envisioned for piston engines (and in addition, ran on unleaded fuels, completely eliminating the most hazardous emission of piston engines) with a single exception: oxides of nitrogen (NOx). The latter was a challenge for turbine engineers, because the continuous combustion in a turbine provides a longer time for nitrogen to react with oxygen. Engineers were sure they'd be able to find a way to work around this single remaining challenge, having already solved all of the emission problems the piston engine still had to overcome. But they never got the chance. The government regulations were imposed with such short times for compliance that automakers were compelled to divert all of their research, development, and engineering resources to modifying their existing engines to meet the new standards, which proved to be ever-escalating: once a standard was met, it was made more stringent with another near-future deadline. At Chrysler, the smallest of the Big Three, this hit particularly hard, and the turbine project found its budget and engineering staff cannibalised to work on making ancient engines run rougher, burn more fuel, perform more anæmicly, and increase their cost and frequency of maintenance to satisfy a tailpipe emission standard written into law by commissars in Washington who probably took the streetcar to work. Then the second part of the double whammy hit: the oil embargo and the OPEC cartel hike in the price of oil, which led to federal fuel economy standards, which pulled in the opposite direction from the emissions standards and consumed all resources which might have been devoted to breakthroughs in automotive propulsion which would have transcended the increasingly baroque tweaks to the piston engine. A different time had arrived, and increasingly people who once eagerly awaited the unveiling of the new models from Detroit each fall began to listen to their neighbours who'd bought one of those oddly-named Japanese models and said, “Well, it's tiny and it looks odd, but it costs a whole lot less, goes almost forever on a gallon of gas, and it never, ever breaks”. From the standpoint of the mid-1970s, this began to sound pretty good to a lot of folks, and Detroit, the city and the industry which built it, began its descent from apogee to the ruin it is today. If we could go back and change a few things in history, would we all be driving turbine cars today? I'm not so sure. At the point the turbine was undone by ill-advised public policy, one enormous engineering hurdle remained, and in retrospect it isn't clear that it could have been overcome. All turbine engines, to the present day, require materials and manufacturing processes which have never been scaled up to the volumes of passenger car manufacturing. The pioneers of the automotive turbine were confident that could be done, but they conceded that it would require at least the investment of building an entire auto plant from scratch, and that is something that Chrysler could not remotely fund at the time. It's much like building a new semiconductor fabrication facility with a new scaling factor, but without the confidence that if it succeeds a market will be there for its products. At the time the Chrysler Turbine cars were tested, Huebner estimated their cost of manufacturing at around US$50,000: roughly half of that the custom-crafted body and the rest the powertrain—the turbine engines were essentially hand-built. Such has been the depreciation of the U.S. dollar that this is equivalent to about a third of a million present-day greenbacks. Then or now, getting this cost down to something the average car buyer could afford was a formidable challenge, and it isn't obvious that the problem could have been solved, even without the resources needed to do so having been expended to comply with emissions and fuel economy diktats. Further, turbine engines become less efficient as you scale them down—in the turbine world, the bigger the better, and they work best when run at a constant load over a long period of time. Consequently, turbine power would seem optimal for long-haul trucks, which require more power than a passenger car, run at near-constant speed over highways for hours on end, and already run on the diesel fuel which is ideal for turbines. And yet, despite research and test turbine vehicles having been built by manufacturers in the U.S., Britain, and Sweden, the diesel powerplant remains supreme. Truckers and trucking companies understand long-term investment and return, and yet the apparent advantages of the turbine haven't allowed it to gain a foothold in that market. Perhaps the turbine passenger car was one of those great ideas for which, in the final analysis, the numbers just didn't work. I actually saw one of these cars on the road in 1964, doubtlessly driven by one the lucky drivers chosen to test it. There was something sweet about seeing the Jet Car of the Future waiting to enter a congested tunnel while we blew past it in our family Rambler station wagon, but that's just cruel. In the final chapter, we get to vicariously accompany the author on a drive in the Chrysler Turbine owned by Jay Leno, who contributes the foreword to this book. Mark Olson's turbinecar.com has a wealth of information, photographs, and original documents relating to the Chrysler Turbine Car. The History Channel's documentary, The Chrysler Turbine, is available on DVD.
Posted at January 25, 2011 23:54