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About This Manual

Purpose
This manual is for users of ASCII FORTRAN level 11R2. ASCII FORTRAN level 11R2
contains all the features of the FORTRAN standard, X3.9-1978 (also known as
FORTRAN 77).

Organization
This manual is organized as follows:

Section 1.

Introduces you to the FORTRAN programming language.

Section 2.

Introduces you to the language characteristics of FORTRAN.

Section 3.

Discusses assignment statements.

Section 4.

Discusses control statements.

Section 5.

Discusses input and output statements.

Section 6.

Discusses specification and data assignment statements.

Section 7.

Discusses function and subroutine procedures.
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Section 8.

Discusses program control statements.

Section 9.

Guides you in writing an ASCII FORTRAN program.

Section 10.

Discusses the debug features of ASCII FORTRAN.

Appendix A.

Discusses the differences between FORTRAN processors.

Appendix B.

Provides tables of ASCII symbols and codes.

Appendix C.

Points out the most commonly encountered programming errors to the novice
programmer.

Appendix D.

Lists the diagnostic messages that may be issued during the compilation of ASCII
FORTRAN programs.

Appendix E.

Shows if a specific data type can be converted to another data type.

When conversion is possible, a brief description of the conversion method is given.

Appendix F.

Lists, in table form, nonexecutable and executable ASCII FORTRAN statements.

Appendix G.

Discusses ASCII FORTRAN run-time input/output using the processor common I/O
modules.

Appendix H.

Discusses large programs and the multibanking features of ASCII FORTRAN.

Appendix I.

Lists, in table form, the diagnostic messages associated with the checkout mode of the
ASCII FORTRAN compiler.

Appendix J.

Compares ASCII FORTRAN level 8R1 to level 9R1 and higher.
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Appendix K.

Discusses interlanguage communication.

Appendix L.

Discusses the ASCII FORTRAN interface with the sort/merge package.

Appendix M.

Discusses the use of virtual space with your ASCII FORTRAN program.

Related Product Information
The following related documents apply to this guide when you use the OS 1100 software.
Use the version that corresponds to the level of software in use at your site.  Consult the
1100 and 2200 Series Systems Customer Product Information Catalog and Price List

(3938 8641) for specific levels and document numbers.

OS 2200 Exec System Software Executive Requests Programming Reference

Manual (7830 7899)

OS 1100 System Service Routines Library (SYSLIB) Programming Reference

Manual (7833 1733)

OS 2200 Sort/Merge Programming Guide, Level 17R1 (7831 0687)

OS 1100 Collector Programming Reference Manual, Level 33R1 (7830 9887)

OS 1100 Exec System Software Common Banks Programming Guide (7830

7386)

OS 1100 Conversational Time Sharing (CTS) Programming Reference Manual

(UP-7940)

OS 1100 Assembly Instruction Mnemonics (AIM) Programming Reference

Manual (UP-9047)

OS 2200 Processor Common Input/Output System (PCIOS) Administration and

Programming Reference Manual, Level 6R2 (7831 0588)

OS 1100 UDS Shared File System (UDS SFS 1100) Administration and

Support Reference Manual, Level 2R2A (7831 0786)

OS 1100 Procedure Definition Processor (PDP) Operations Reference Manual

(UP-10070)

Notation Conventions
Throughout this manual examples illustrate syntax or other material covered in each
section.  The comments associated with these examples are shown as FORTRAN
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comment statements, with C or * in the first position of each line.  Therefore, the
examples in this manual are self-documenting.

Example:

COMMON A,B,C(5,5) /COM1/D,M,V,S 
C   Variables A, B and array C are placed in blank common.
C   Variables D, M, V, and S are placed in
C   the common block named COM1.

The notation conventions used in the format of statements or clauses and in other
portions of this manual are as follows:

Convention Use

A Capital letters represent entries you must code exactly as shown.

a Lowercase italic letters represent data you must supply.

[ ] Items within brackets represent optional entries that you can use or
omit.

{ } Items within braces represent choices from which you select one.

. . . Ellipses in statement formats indicate entries you can repeat as
necessary.

.

.

.

Ellipses in program examples indicate missing FORTRAN statements
deleted because they are not relevant to the example.

� A delta indicates a blank character.

bolding Bolding denotes features of ASCII FORTRAN that are extensions to
the FORTRAN 77 standard, ANSI X3.9-1978.

 

Most of the features that are bolded in this manual also cause a message indicating
nonstandard usage to be printed at compilation time if the T option is used (see 9.5.1 and
9.8):

   CHARACTER*4 A,B*8
   B = A&’END’
*NON-STD USAGE 3151 at line 2 ’&’ used as concatenation operator
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Section 1
Introduction

1.1. Reason for FORTRAN
FORTRAN (from FORmula TRANslation) is a programming language designed for
extensive use in mathematical, scientific, and technological areas.  The advantages of
FORTRAN are minimum programming time and cost, and maximum interchangeability
of FORTRAN programs on different FORTRAN processors.

FORTRAN statements resemble English statements and the equations of elementary
algebra.  Therefore, FORTRAN statements are self-documenting since the intended
operation is apparent from the statement itself.  For example, to find the average of two
numbers, you write a statement such as:

AVRGE = (A+B) / 2.0

Since the FORTRAN programming language resembles the language ordinarily used for
the solution of problems, relatively little time is required to learn the language.  As a
result, programming effort can be devoted to the logic of the problem without being
troubled by the intricacies of computer operation.  The self-documenting feature of
FORTRAN reduces debugging time and enables other programmers to readily grasp the
logic of a program so that it can be modified or adapted to other purposes with minimal
effort.

OS 1100 ASCII FORTRAN handles the full American Standard Code for Information
Interchange (ASCII) character set.  Throughout this manual, the language is referred to
as ASCII FORTRAN.

ASCII FORTRAN is written in accordance with the specifications of the American
National Standards Institute, Inc. (ANSI), in ANSI X3.9-1978 (also known as FORTRAN
77).  ASCII FORTRAN is a superset of the FORTRAN 77 standard, containing additions
and enhancements (extensions) to the standard.  Extensions to the standard are
represented by bold text in this manual.

The ASCII FORTRAN compiler is highly compatible with OS 1100 FORTRAN V.  (See
Appendix A for a comparison of these two compilers.)
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1.2. Evolution of FORTRAN
The fundamental unit of information handled by a data processing system is the bit
(binary digit).  Basic machine language words are composed of a sequence of bits.  A
word is interpreted by the computer as an instruction or as data.  The meanings of the
bits in instruction words (machine language) are highly specific to each computer. Each
bit has two mutually exclusive states, represented by 0 and 1.

The next logical step from machine language is commonly known as assembly language.
Assembly language requires a language translation program (an assembler).  Using
assembly language, you can use symbolic references to storage and specific mnemonic
codes instead of numeric codes to designate the operation to be performed.

FORTRAN is one of many high-level languages that has evolved from assembly language.
It is considered a high-level language because the translation of a single FORTRAN
statement can result in many machine language instructions.  This conversion is
performed by a program called the FORTRAN processor.  The design of a FORTRAN
processor is machine-oriented and is not part of the FORTRAN language.  Offsetting this
processor complexity is the decreased programming time required for reading, writing,
debugging, and maintaining FORTRAN programs.

1.3. FORTRAN System
The FORTRAN system is composed of three main entities:

1. the program,

2. the language processor, and

3. the execution-time system.

The word “program” means the source program and the object program .  The source
program is what you write to solve a particular problem.  For the computer to
understand the source program, it is translated by the FORTRAN processor into
machine language.  This output of the FORTRAN processor is called an object program.

1.3.1. FORTRAN Processor

The main function of the ASCII FORTRAN processor is to prepare a machine language
object program from the source program code.  Generally, the processor is referred to as
a compiler.

The source program is composed of the FORTRAN statements, which represent logical
steps for solving a particular problem.  The organization of a source program is
discussed in detail in Section 9.

The compiler makes use of the overall logic structure of the program and generates
machine instructions for each FORTRAN statement contained in the source program.
To produce a machine-acceptable object program, it also assigns storage locations for



Introduction

UP-8244.4-B 1-3

variables and constants, and creates references to external programs and variables,
when required.

The ASCII FORTRAN compiler is a multiphase, modular compiler.  The phases are
separated, on the basis of general operations, into a set of reentrant instruction banks
and a single, nonreentrant data bank.  The separation into banks means that only those
portions of the compiler necessary to process your program are loaded.  Because the
instruction banks are reentrant, multiple users can simultaneously execute instructions
from a single bank of the compiler.  Thus, the compiler makes efficient use of resources,
especially in an active multiprogramming environment.

The compiler reads the source program from a series of statement lines present in a
runstream or saved in a program file.  Comment lines can be used freely within a source
program without affecting the compilation.

The main output of a compilation consists of a relocatable binary program.  This object
program contains the following in binary coded form:

� the names of all common blocks, external functions, and external subroutines
referenced in the source program, and

� the machine code for the source program.

ASCII FORTRAN generates reentrant I-bank code (that is, the code doesn’t modify
itself).

Optionally, the compiler can be directed to generate code in main storage and
immediately execute it.  This mode of operation is the FORTRAN checkout mode, during
which additional diagnostic facilities are provided.  Throughput is increased during this
mode when the programs processed are executed only once without modification or
when the execution time is relatively short.  No relocatable binary program is produced
in this case (see 9.5 and 10.3).

A separate restart processor, FTNR, is available in conjunction with FORTRAN checkout
mode.  FTNR lets you reenter execution of a previously saved program (see the
checkout debug mode SAVE command, 10.3.3.12), without recompiling the source
program.  For more information, see 10.3.6.

Much of the compiler’s effort is devoted to the detection of source language errors.
When any errors are detected or remarks are to be made, the compiler prints diagnostic
messages adjacent to the FORTRAN statements containing these errors.  The compiler
listing produced is controlled by several options that determine the amount of
information printed.  The compiler listing is described in 9.4.2.

By using processor options, you can direct the compiler to devote additional time to
optimizing the FORTRAN statements before generating the relocatable binary output .
This is done at the expense of compilation speed, but the resulting output usually
executes significantly faster than without this additional optimization.  The various types
of optimization are explained in 9.6.

The compilation process (when not in checkout mode) is illustrated in Figure 1-1.
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Figure 1-1.  Compilation Process

1.3.2. FORTRAN Execution Time System

The FORTRAN execution-time system consists of the following system software:

� the compiler and library elements

� the program

� the computer itself

� any peripheral devices attached to the computer

The system software is known as the operating system.  It may contain programs that
control the following:

� scheduling

� file management

� input/output

� compilation

� debugging

� storage assignment

� linking
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� loading

� assembly

� other necessary functions

1.4. Sample Program
A simple executable program is shown in Figure 1-2.  The concepts and terminology
used in the description of the program are described in detail in other sections of the
manual.  Organization of a FORTRAN program is discussed in 9.2.  This sample program
consists of two program units:

1. the main program, and

2. the external function AMEAN.

This program calculates the average of a series of numbers.  The subprogram is
generalized in order to calculate the average of a variable number of values.  The
subprogram results are printed in the main program together with explanatory text.

This is not the only program that could have been written for the problem, nor is it the
shortest in terms of lines required.  It does introduce the general framework of the
FORTRAN system and some of the nomenclature.  The number in parentheses preceding
each statement is for reference purposes; it is not part of the program.  The delta (�)
symbol indicates a significant blank.

1.4.1. Explanation of Main Program Coding

Line 4 is a comment line indicated by the character C in column 1.  This comment
consists of all blank characters producing a blank line (except that the C is printed).
Comment lines are not required, but they aid the reader in understanding the program.

Line 5 of the program is also a comment line.  This line (including the C) is printed when
the program is compiled, but doesn’t affect execution of the program.  Comment lines
document the program.

Line 8 indicates that the symbolic name AMEAN is the name of an external function.

Line 9 causes the ASCII FORTRAN compiler to set aside five locations for array A.  A is a
single-precision real number array.

Line 10 sets initial values for A. A is a symbolic name for the data values used to
compute the mean.  To reduce execution time, the DATA statement assigns these initial
values at compilation time.

Line 11 contains a FORMAT statement that is used to print the character constant
’AVERAGE IS:’  followed by five print positions for the value returned from the function
AMEAN.  This value is printed with two digits to the right of the decimal point.
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Line 12 assigns the average of array A to variable AVE.  The average is obtained from
function AMEAN.

Line 14 is a PRINT statement specifying that the value stored in AVE is printed according
to the FORMAT statement prefixed by the identifying number 1.  The sample output is:

AVERAGE � IS: �3.00

Line 16 indicates the end of the main program.

(1) @RUN SAMPL,999999,SMW
(2) @ASG,CP MY*FILE1
(3) @FTN,SI MY*FILE1.MAIN,TPF$.MAIN
(4) C
(5) C COMPUTE AVG OF NUMBERS TO BE INPUT FROM DATA
(6) C
(7) C INITIALIZE
(8)          EXTERNAL AMEAN
(9)          REAL A(5)
(10)         DATA A/1.,2.,3.,4.,5./
(11) 1       FORMAT(’�AVERAGE�IS:’,F5.2)
(12)         AVE = AMEAN (A,5)
(13) C PRINT AVERAGE AND TEXT
(14)         PRINT 1,AVE
(15) C INDICATE END OF MAIN PROGRAM
(16)         END
(17) C FOLLOWING FUNCTION IS CALLED BY MAIN PROGRAM
(18)         FUNCTION AMEAN(DATA,N)
(19)         DIMENSION DATA (N)
(20)         SUM = 0
(21)         DO 1 I = 1,N
(22) 1            SUM = SUM+DATA(I)
(23)         AMEAN = SUM/N
(24) C INDICATE END OF FUNCTION
(25)         RETURN
(26)         END
(27) @XQT
(28) @FIN

Figure 1-2.  Sample Program

1.4.2. Explanation of Subprogram Coding

Line 18 identifies an external function subprogram named AMEAN with inputs of DATA
and N.  This procedure computes the average of N numbers and then returns the result
to the referencing program.

Line 19 is a specification statement.  It declares the input variable DATA to be an array.
The dimension N indicates that the array length is variable and that the actual length is
determined by the main program.

Line 20 is an arithmetic assignment statement that initializes the variable SUM to 0.

Line 21 contains a DO statement that controls the repeated execution of the statement
on line 22.  In this program, the statement labeled 1 (line 22) executes five times since N
is given the value 5 by the main program.  The variable I initially has the value of 1.  This
increments by 1 each time lines 21 and 22 are executed.



Introduction

UP-8244.4-B 1-7

Line 22 is an arithmetic assignment statement that updates the running total.  It obtains
the current value of SUM, adds to it the Ith element in array DATA, and assigns this sum
as the new value for SUM.  Line 22 is repeated five times in this sample.  Each time the
statement executes, a new value is obtained from the input array DATA, starting at
DATA(1) and ending with DATA(5).

Line 23 computes the average as the sum divided by the number of elements, and assigns
the result as the value of function AMEAN.

Line 25 returns control from function AMEAN to the statement in the main program that
referenced or called this function.  In this sample, the return is to line 12.

Line 26 indicates the end of the function subprogram.

Every statement (columns 7 through 72) except an assignment statement starts with a
keyword.  (Comment lines aren’t considered statements.)  The keyword is an English
word that describes the purpose of the statement.  Every statement in ASCII FORTRAN,
except statement functions and certain assignment statements, begins with a keyword.
Keywords aren’t reserved words in ASCII FORTRAN.  They can be used anywhere in the
program as symbolic names.

1.4.3. Explanation of System Command Coding

Line 1 of Figure 1-2 is a RUN statement.  It must be the first Executive control command
in a run.  It identifies the run to the system and supplies accounting information.

Line 2 is an Executive control statement.  It is used to assign an external file to the run
under the name MY*FILE1.

Line 3 is the ASCII FORTRAN compiler call.  The compiler call specifies the location of
source input, the type of listing desired, and the placement of relocatable binary code
after compilation.  (See 9.5.)

Line 27 is an execute command.  It causes the program to be collected (when not
previously specified in a @MAP control statement) with the ASCII FORTRAN relocatable
library elements in SYS$LIB$*FTN.  If these elements are not in SYS$LIB$*FTN, a
specific collection (@MAP statement) must be done before the program can execute
(@XQT statement).

Line 28 signals the termination of the run.
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Section 2
Language Characteristics

2.1. General
The ASCII FORTRAN programming language is made up of a group of statements.  In
forming these statements, one complies with a set of syntax rules.

This section is a summary of various aspects of the ASCII FORTRAN language used to
form source program statements.

2.2. Character Set
The ASCII FORTRAN character set consists of 26 letters (uppercase and lowercase), 10
digits, and 16 special characters from the ASCII character set.  (You won’t receive a
nonstandard usage message if you use lowercase letters and other nonstandard
characters.)

The compiler reads all input in the 9-bit character form of the American Standard Code
for Information Interchange (ASCII).  All character literal data is retained in this form by
the compiler.  The 9-bit representation of ASCII consists of one zero bit followed by the
8-bit ASCII code.

The compiler doesn’t always distinguish between uppercase and lowercase alphabetic
characters.  In literal strings (items enclosed in apostrophes), a distinction is made
between lowercase and uppercase characters.  Thus the literal string ‘abcd’ is distinct
from ‘ABCD’ in internal representation.  In other instances, the compiler considers
lowercase alphabetic characters identical to uppercase alphabetic characters.  Thus, the
symbolic name xxx is identical to the symbolic name XXX.

The full ASCII character set appears in Appendix B.  The ASCII FORTRAN character set
appears in Table 2-1.
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Table 2-1.  ASCII FORTRAN Character Set  

Character Group Members

Uppercase Alphabetics: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Lowercase Alphabetics: a b c d e f g h i j k l m n o p q r s t u v w x y z

Digits: 0 1 2 3 4 5 6 7 8 9

Special Characters: blank  (represented by � in this manual)

=  (equals)

+  (plus)

-  (minus)

*  (asterisk)

/  (slash)

(  (left parenthesis)

)  (right parenthesis)

,  (comma)

.  (decimal point)

:  (colon)

’  (apostrophe)

<  (less than)

>  (greater than)

$  (currency symbol)

&  (ampersand)
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2.3. Constants
A constant is a quantity that does not change value during the execution of a program.
The value of a constant is determined from its name and initial value.

A constant can be contrasted with a variable (see 2.4.3), which is given a name, but the
value is allowed to vary during the program’s execution.

Sometimes constants and single variables are referred to as scalars because of their
single nature.  Arrays are not scalar.

The manner in which a constant is written (i.e., its form) specifies its value and its data
type.

The following constants are used in ASCII FORTRAN:

� Integer constant

� Real constant (single and double precision)

� Complex constant (single and double precision)

� Logical constant

� Character constant

� Hollerith constant

� Octal and Fieldata constants

2.3.1. Integer Constants

An integer constant is a string of 1 to 11 digits, possibly prefixed by a plus or minus sign,
that represents a whole decimal number (a number without a fractional part).

The absolute value of an integer constant must be less than or equal to:

235 - 1 = 34,359,738,367

The following are valid integer constants:

0
+753
-999999
2501

An integer is represented internally as a fixed-point number, occupying one word of
storage.  It must not contain a decimal or comma.  It can assume a positive, negative, or
zero value.
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2.3.2. Real Constants

FORTRAN distinguishes between integer and real constants by the presence or absence
of a decimal point and/or exponent.  If a constant contains a decimal point or an
exponent, or both, it is called a real constant.

Real constants can be one of two types:

� single-precision real (see 2.3.2.1)

� double-precision real (see 2.3.2.2)

A real constant is approximate if it contains a fractional part because the value is stored
in binary floating-point form.  Use of double-precision real constants improves the
accuracy of approximation.

2.3.2.1. Single-Precision Real

A single-precision real constant can be expressed in one of two forms:

1. As a string of one to eight significant decimal digits having a maximum absolute
value of (227-1) with one decimal point preceding, imbedded in, or following the
digits.  The constant can be signed or unsigned.

2. As the constant form described in 1 above followed by a decimal exponent.  The
power of ten is expressed by appending the letter E followed by a signed or
unsigned integer to the real constant.  A decimal point doesn’t need to be included in
the real part of this form.

A real constant is approximate if it contains a fractional part, since the value is stored in
binary floating-point form.  The following are valid real constants:

0.0
.0
1.
-15.07
2.0E2 (means 200.0)
2E2 (means 200.0)
0.00095
4.0E2 (means 400.0)
4.0E+2 (means 400.0)
4.0E-2 (means 0.04)
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The approximate magnitude of a real constant must be between 10-38 and 1038.  A real
constant occupies one word (four bytes) of storage:

S Exponent Fraction

1 2 9 10 36

2.3.2.2. Double-Precision Real

A double-precision real constant can have up to 18 significant digits with a maximum
absolute value of (260-1)and can have an approximate magnitude in the range of 10-308 to
10308.

Double-precision real constants are specified with a decimal point and 1 to 18 significant
digits.  A double-precision constant must contain an exponent that consists of the letter
D followed by a signed or unsigned integer.  The D has the same meaning for double
precision as the E has for single precision.

The following are acceptable double-precision constants:

0.0D0 (means 0)
1.0D0 (means 1.0)
1D0 (means 1.0)
16.9D+1 (means 169.0)
+8.897D+10
-1750.D+19
123.4567891D0
.1234567891D3  (The values of these last two constants are equal.)

A double-precision real constant occupies two words (eight bytes) of storage:

S Exponent Fraction

1 2 12 13 36

Fraction (continued)

1 36

2.3.3. Complex Constants (Single and Double Precision)

A complex constant is an ordered pair of real or integer constants, the first
representingthe real part of the complex number and the second the imaginary part.

The form of a complex constant is:
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(r,i)

where r is the real part and i is the imaginary part.  Both parts can be either single
precision (integer or real) or double precision.  Both parts of a complex constant must
have the same precision.

A single-precision complex constant requires two consecutive words (eight bytes) of
storage, with the real part occurring first.  When specified with two integer constants, a
single-precision complex constant is represented internally (in storage) as two
single-precision real numbers.

Double-precision complex constants are formed by a pair of double-precision

real constants and require four words (16 bytes) of storage.

The following are valid complex constants:

(0.0,1.0)
(2,3)
(3426.78,293.6)
(4.12E2,6.5)
(4.12E-2,6.5E+3)
(4.12E-10,6.5E-3)
(4.12D-10,6.5D-3)  (double precision)

2.3.4. Logical Constants

A logical constant specifies a logical value that is either true or false.  The only valid
logical constants are:

.TRUE.

.FALSE.

A logical constant occupies one word (four bytes) of storage.

2.3.5. Character Constants

A character constant is a string of characters that can include any of the ASCII
characters.  The string is enclosed in apostrophes (single quotes).  Two apostrophes in
succession represent a single apostrophe in the text.

Valid character constants are:

‘ABCD’
‘123ABC$! !’
‘THAT’’S’  (represented internally as: THAT’S)
‘xyz’

Each character in a character constant requires one 9-bit byte (one-fourth of a word) of
storage.  All character data is represented in the full ASCII form.  The 9-bit
representation of ASCII consists of one 0-bit followed by the 8-bit ASCII code.
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The maximum size of a character constant is 511 characters.

When you split a character constant between two or more lines in the source program,
the constant extends up to and including column 72 of the first line and begins again in
column 7 of the following continuation line.

2.3.6. Hollerith Constants

A Hollerith constant is a string of ASCII characters that is preceded with nH,

where n is the number of characters in the string.

Valid Hollerith constants are:

3HWOW

5HTHAT’S

4HA1+$

27HUPPER and lowercase letters

Storage requirements for Hollerith constants are the same as for character

constants.  (See 2.3.5.)

2.3.7. Octal and Fieldata Constants

Octal numbers (radix 8) and Fieldata characters may be used as constants only

in the initialization lists of specification statements and as input to namelists.

An octal constant is expressed by the letter O followed by 1 to 12 octal digits

for constants used in initialization lists of specification statements, and 1 to 24

octal digits for namelist input.

A Fieldata constant is written as a character or Hollerith constant immediately

followed by the letter F.

2.4. Symbolic Names
A symbolic name is a series of characters assigned by the programmer to refer to a
programmer-defined entity such as a variable, array, program unit, or labeled common
block.

A symbolic name consists of one to six of the following characters:

� uppercase and lowercase letters

� numerics (0, 1, 2, . . . , 9)

� currency symbol ($)

The first character of each symbolic name must be alphabetic.
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Symbolic names that contain lowercase alphabetics are identical to symbolic names that
contain uppercase alphabetics.  Thus, the name xxx is identical to the name XXX.

You are entirely free in the choice of words for symbolic names.  Keywords such as GO
TO, READ, FORMAT, etc., aren’t reserved words and can be used as symbolic names or
as parts of symbolic names.  However, when GO TO, READ, FORMAT, etc., are used as
statement keywords, they aren’t considered symbolic names.  The same applies to
sequences of characters that are format edit descriptors such as I3 (see 5.3.1).  The use
of keywords as variables, function names, or subroutine names is not recommended,
since such usage makes programs difficult to read.

You shouldn’t use the currency symbol ($) in function and subroutine names,

because this may conflict with entry names in the ASCII FORTRAN library and

the OS 1100 Operating System relocatable library.

2.4.1. Uniqueness of Symbolic Names

A symbolic name, perhaps qualified by a subscript, identifies a member of one (and only
one) of the following entities within a program unit (unless otherwise noted in the
additional rules that follow):

1. An array and its elements

2. A scalar variable

3. A statement function

4. An intrinsic function

5. An external function

6. An internal function

7. An external subroutine

8. An internal subroutine

9. An external procedure that can’t be classified as either a subroutine or a function in
the program unit in question.

10. A common block

11. A constant defined in a PARAMETER statement

12. A NAMELIST name

13. A program bank name

14. A main program name

15. A BLOCK DATA subprogram
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Some additional rules for using symbolic names are:

� A common block or bank name in a program unit can also be the name of any local
entity other than a symbolic name of a constant, intrinsic function, or local variable
that is also an external function in a function subprogram.

� A main program name is global to the executable program and must not be the same
as the name of an external subprogram in the same executable program.

� A FUNCTION subprogram name should also be a variable name in the FUNCTION
subprogram.

� Once a symbolic name is used as a program bank name, a FUNCTION,
SUBROUTINE, or BLOCK DATA subprogram name, a common block name, or a
main program name in any unit of an executable program, no other program unit of
that executable program can use that name to identify another member of any of
these classes.

� The source input to the compiler can contain more than one program unit (see 9.2).
Each compilation produces one relocatable element regardless of the number of
program units.  There are internal and external program units.  The only entities
shared between external program units are arguments passed between them and
entities defined in common blocks.  Local names in one external program unit have
no relationship to the local names in another external unit.  Internal subprograms

can have their own local entities and, in addition, can directly access the

global entities of their external program unit (see 7.9.)

For example, suppose the source input consists of a main program and an external
subroutine.  The symbolic name A can be used as a local scalar variable in the main
program and also as a local array in the subroutine.  The two As have no relationship
to each other; each A has its own storage sequence.

2.4.2. Data Types of Symbolic Names

A symbolic name representing a variable, an array, or a function (except intrinsic
functions) must have only a single data type in a program unit.  This data type is
associated with the symbolic name throughout the program unit.

The allowed data types for symbolic names are:

1. Integer

2. Real (single precision or double precision)

3. Complex (single precision or double precision)

4. Logical

5. Character

The data type of a function determines the type of the data it supplies to the expression
in which it appears.

The data type of an array element name is the same as that of its array name.
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The data type of a symbolic name can be explicitly declared or implied by its first letter.
There are three ways to indicate the type of a symbolic name:

1. Implied declaration using the name rule

2. Implied declaration using the IMPLICIT statement

3. Explicit declaration

2.4.2.1. Implied Declaration Using the Name Rule

The name rule is a traditional FORTRAN convention whereby the data type of a variable,
array, or function (except an intrinsic function) is implied by the first character of the
symbolic name:

� The data type is integer when the first character of the symbolic name is I, J, K, L, M,
or N.

� The data type is single-precision real when the first character of the symbolic name
is any other alphabetic character.

The following variables are integer types:

I15
J24K
IKE
LOOP
KIM
MASS
L3
J123T

The following variables are single-precision real types:

TEMP
XX
F55
P3ZK
COUNT
RESULT
ALPHA
XX

Double-precision real, complex (single precision and double precision, logical, and
character types can’t be declared by the name rule.

2.4.2.2. Implied Declaration Using the IMPLICIT Statement

You can override the data type established by the name rule by using the IMPLICIT
statement to designate the data type and length that is associated with the specified
initial letters of a symbolic name.
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For example, the declaration:

IMPLICIT INTEGER (P-R), REAL (M)

changes the implied declaration of the name rule so that symbolic names that begin with
P, Q, or R are now also integer type, while symbolic names that begin with M are now
real type.

You can use the IMPLICIT statement to specify all types of symbolic names (integer, real,
character, complex, and logical) and to indicate length specifications for character data
type.

See 6.3.1 for details on the IMPLICIT statement.

2.4.2.3. Explicit Declaration

You can explicitly declare the data type of a specific symbolic name by using a type
statement.  Declaration by a type statement overrides the name rule and type
specifications of IMPLICIT statements.

Explicit declaration differs from the first two ways of specifying data type.  An explicit
specification statement declares the type of a particular symbolic name by its unique
name rather than by the particular letter that begins a name.  A symbolic name can thus
be assigned a specific data type (see 6.3.2).  Character data types can be assigned a
specific length.

2.4.3. Variables

The symbolic name used to identify a single storage sequence is called a variable.  The
name remains fixed throughout the execution of a program, while its contents (its value)
may vary.

The size of the storage sequence and the type of value placed in that sequence are
determined by the data type declared implicitly or explicitly for the variable.

The allowed data types for variables are:

� Integer

� Real (single or double precision)

� Complex (single or double precision)

� Logical

� Character

The storage sequence represented by the variable is undefined prior to assignment of its
first value.  A variable may be defined through one of the following means:

� a DATA statement,
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� an input/output statement,

� an assignment statement,

� its use as an argument in a subprogram reference,

� its use in a DO statement, or

� its association in a COMMON or EQUIVALENCE statement.

A variable is commonly described by the type of data it represents.  Thus, an integer
variable represents integer data, a real variable represents real data, etc.

A variable occupies the same number of storage units as a constant of the same type.

Once the type of a variable is defined, you can assign it different values of this type in
the program.  This changeability distinguishes it from a constant.

In the following example, the symbol = indicates that the value of the evaluated
right-hand expression is to be assigned to the variable on the left:

SUM = TOTAL1 + TOTAL2

SUM, TOTAL1, and TOTAL2 are variables.  The sum of the values represented by
TOTAL1 and TOTAL2 is stored in the storage sequence represented by SUM at execution
time.  As with all expressions, TOTAL1 and TOTAL2 must have previously been defined
to obtain a predictable value for SUM.

A choice of appropriate variable names aids documentation of a program and makes the
program more readable.

2.4.4. Arrays and Subscripts

An array is an ordered set of homogeneous objects identified by a symbolic name (the
array name).  The members of the set represented by the array are referred to as array
elements.

The array name together with its position in the array uniquely identifies an array
element.  An element’s position in the array is indicated by a parenthesized expression,
known as a subscript, following the array name.  The presence of the subscript ensures
proper identification of the array element.  For example:

A(1)

identifies the first element in array A (if the lower dimension bound for A is 1; see
2.4.4.1).  Each appearance of an array name must include its qualifying subscripts except
in the following cases:

� In a DIMENSION statement (the dimension declarator resembles an array’s
subscripts, but they aren’t the same)

� In a COMMON statement

� In a type statement
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� In an EQUIVALENCE statement

� In a DATA statement

� In a list of arguments for a reference to a subprogram

� In a list of dummy arguments

� In a list of an input/output statement, when the array isn’t an assumed-size array

� As a unit identifier for an internal file in an input/output statement, when the array
isn’t an assumed-size array

� As the format identifier in an input/output statement, when the array isn’t an
assumed-size array

� In a SAVE statement

For the preceding cases, the array name without the qualifying subscripts identifies the
entire sequence of elements of the array except for the EQUIVALENCE statement (see
6.4).

As with variables, an array and its elements have no defined value until you assign them
a value in some way.

2.4.4.1. Array Declaration

As with a variable, an array can have the following data types:

� Integer

� Real (single or double precision)

� Complex (single or double precision)

� Logical

� Character

The type of an array is also that of its data elements.  The data type of an array is
declared implicitly or explicitly (see 2.4.2).

Arrays are introduced in DIMENSION, COMMON, or type statements.  They are
introduced via array declarators of the form:

a(d[,d] . . . )

where:

a

is a symbolic name for the array.

d

is a dimension declarator, which has the following form:
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[l:]u

where:

l

is the lower-dimension bound and is assumed to be 1 if omitted.

u

is the upper-dimension bound.

The number of dimensions of an array is the number of dimension declarators in the
array declaration.  The minimum number of dimensions is one, and the maximum is
seven.

The lower- and upper-dimension bounds are arithmetic expressions in which all
constants, symbolic names of constants, and variables must be type integer.  A
variable or symbolic name of a constant appearing in a dimension-bound expression
that is not of default integer type must be specified as integer by an IMPLICIT
statement or a type statement prior to its use in the dimension-bound expression.
The upper-dimension bound of the last dimension can be an asterisk (*) in an
assumed-size array (see 2.4.4.2).  A dimension-bound expression must not contain a
function or array element reference.  Integer variables may appear in
dimension-bound expressions only for adjustable arrays.

The value of either dimension bound is positive, negative, or zero.  The value of the
upper-dimension bound must be greater than or equal to the value of the
lower-dimension bound.  When only the upper-dimension bound is specified, the
value of the lower-dimension bound is 1.  An upper-dimension bound of an asterisk
is always greater than or equal to the lower-dimension bound.

The following are valid array declarations:

DIMENSION ARRAY1(2,3), VARIED(-10:L)
DOUBLE PRECISION ARRAY2(15), LIST2(K:2*K, 100)
COMPLEX RTAB(0:10, 0:20, *), USIZ(*)
COMMON WANTED(3,4,5)

2.4.4.2. Constant, Adjustable, and Assumed-Size Arrays

Arrays dimensioned with only integer constant expressions are known as constant
dimensioned arrays.  An adjustable array has one or more integer variables specified in
its dimension declarator.  The integer variables must be either dummy arguments or
common block variables that must be defined when the reference to the subprogram
containing the adjustable array is executed.  An assumed-size array is a constant or
adjustable array except that the upper-dimension bound of the last dimension is an
asterisk.

An adjustable array or assumed-size array can appear only in functions or subroutines,
and the array name must appear in the dummy argument list.  An array name in a dummy
argument list is called a dummy array.  The actual argument corresponding to the
dummy array name may be an array name, array element, or array element substring.
The number and values of the dimensions need not be the same in both the calling and
called routines.  Storage for the dummy array isn’t allocated in the subprogram and the
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dummy array can’t assume more storage than what its corresponding actual argument is
allocated.

The following are examples of the three types of arrays:

SUBROUTINE SUB1(X,Y,Z,I) 
DIMENSION X(1900:1978)                   @ constant dimensioned array
REAL Y(I:2*I)                            @ adjustable dimensioned array
CHARACTER*8 Z(*)                         @ assumed-size array

2.4.4.3. Actual and Dummy Arrays

An actual array is an array whose array name does not appear in a dummy argument list.
An actual array has a determinable size and is allocated storage.  An actual array is
introduced in a DIMENSION, COMMON, or type statement and may have constant array
declarators only.

A dummy array is an array whose array name appears in a dummy argument list.  The
values of a dummy array are the values of the corresponding actual argument.  A dummy
array is a constant, adjustable, or assumed-size array.  Dummy arrays are dimensioned
only in DIMENSION and type statements appearing in functions and subroutines.

2.4.4.4. Array Element Reference

An array element is identified by the array name followed by a subscript representing its
position within the array.  The subscript consists of one to seven subscript expressions
separated by commas, forming a list which is enclosed in parentheses.  The number of
subscript expressions must correspond to the number of dimensions specified when the
array dimensions were declared.

Each subscript expression must be an arithmetic expression that yields an integer, real,

or double-precision real value.  When the subscript expression is evaluated and

converted to integer if necessary, the value is negative, positive, or zero.  The value
should be within the range of its corresponding array dimension.  The integer result of

a real subscript expression may not be what you expect because of the

approximate nature of real numbers (see 2.3.2.1).  When the upper-dimension
bound is an asterisk, the value of the corresponding subscript expression must be such
that the subscript value doesn’t exceed the size of the actual array.  Subscript
expressions are unrestricted in form and can include array element or function
references.

For example, the expression B(3,2) refers to the element in the third row, second column
of array B.  The expression C(3/3,SQRT(4.),4) refers to the element in the second row,
fourth column, of the first plane of array C.

2.4.4.5. Location of Elements Within an Array

The elements of each array are stored in column-major order.  This means the array
element with lowest subscripts is stored in the lowest storage position and those with
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higher subscripts (leftmost subscripts increasing most rapidly) are stored in subsequent
storage positions.  For example, if array B is declared:

DIMENSION B(3,3)

the array elements of B are stored in ascending storage positions in the following order:

 B(1,1)
 B(2,1)
 B(3,1)
 B(1,2)
 B(2,2)
 B(3,2)
 B(1,3)
 B(2,3)
 B(3,3)

2.4.5. Character Substrings

A character substring is a contiguous portion of a character variable or array element
and is of type character.  A character substring is identified by a substring name and can
be assigned values and referenced.

The forms of a substring name are:

v( [e1] : [e2] )

a(s[,s] . . . )( [e1] : [e2] )

where:

v

is a scalar character variable name.

a(s[,s] . . . )

is a character array element name.

 e1 and e2

are integer expressions called substring expressions.

The value e1 specifies the leftmost character position of the substring, and the value e2
specifies the rightmost character position.

For example, A(2:4) specifies characters in positions two through four of the scalar
character variable A.  B(4,3)(1:6) specifies characters in positions one through six of
character array element B(4,3).

The values of e1 and e2 must satisfy the following relational expression:

1 ≤ e1 ≤ e2 ≤ len
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where len is the length of the scalar character variable or array element.  When e1 is
omitted, a value of one is implied.  When e2 is omitted, a value of len is implied.  Both e1
and e2 can be omitted.  For example, the form v(:) is equivalent to v, and the form a(s[,s]
. . . )(:) is equivalent to a(s[,s] . . . ).

The length of a character substring is e2 - e1 + 1.  Therefore, the expression v(e1:e2)

is equivalent to the expression SUBSTR( v,e1, e2 - e1+1 ).  See 7.7.2.3 for a

description of the SUBSTR pseudo-function.  The SUBSTR pseudo-function isn’t

allowed in certain places where a substring is allowed (for example, DATA and

EQUIVALENCE statements).

Example:

     CHARACTER*4 C1, C2(2,2)
C
C    The following statements are equivalent.
C
     C2(1,1)(I:J) = C1(3:4)
     SUBSTR(C2(1,1),I,J-I+1) = SUBSTR(C1,3,2)

2.5. Expressions
An expression is formed from operands, operators, and parentheses in which each
primary is a scalar value.

Five kinds of FORTRAN expressions result from combinations of operands and
operators:

1. Arithmetic

2. Character

3. Logical

4. Relational

5. Typeless

The value of an arithmetic expression is always integer, real (single or double precision),
or complex (single or double precision).  A character expression yields an ASCII
character string of length one or greater.  The value of a logical or relational expression
is .TRUE. or .FALSE., while that of a typeless expression is a 36-bit string.

A constant expression is an arithmetic constant expression (see 2.5.1.3), a character
constant expression (see 2.5.2.3), a logical constant expression (see 2.5.4.3), or a
typeless constant expression (see 2.5.5.2).

2.5.1. Arithmetic Expressions

An arithmetic expression is used to express a numeric computation.  Evaluation of an
arithmetic expression produces a numeric value.

A simple arithmetic expression is one of the following:
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� An unsigned arithmetic constant

� A symbolic name of an arithmetic constant

� An arithmetic variable reference

� An arithmetic array element reference

� An arithmetic function reference

More complicated arithmetic expressions may be formed by using one or more
arithmetic operands together with arithmetic operators and parentheses.  Arithmetic
operands must identify values of type integer, real (single or double precision), complex
(single or double precision), and typeless.

2.5.1.1. Arithmetic Operators

Table 2-2 lists the arithmetic operations permitted in ASCII FORTRAN.

Table 2-2.  Arithmetic Operators and Operations  

Operator Operation Example

+ Binary addition or unary plus A + B, + A

- Binary subtraction or unary minus A - B, - A

* Multiplication A * B

/ Division A / B

** Exponentiation A ** B

 

2.5.1.2. Arithmetic Operands and Forming Arithmetic Expressions

The arithmetic operands are:

1. Primary

2. Factor

3. Term

4. Arithmetic expression

Table 2-3 defines the permissible forms of the arithmetic operands.
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Table 2-3.  Forms of Arithmetic Operands  

Arithmetic
Operand Permissible Forms Examples

Primary Unsigned constant

Symbolic name of a constant

Variable reference

Array element reference

Function reference

Arithmetic expression in parentheses

5

PI

RESULT

V(1)

SQRT(X)

(A + B)

Factor Primary

Primary ** factor

A

A**B

Term Factor

Term / Factor

Term * Factor

A

A**B/A

A**B*A**B

Arithmetic
expression

Term

+ Term

- Term

Arithmetic expression + term

Arithmetic expression - term

A*B

+A**B

-A*B

A*B+V(1)

+A/B-SQRT(X)

 

Thus, an arithmetic expression is formed from a sequence of one or more terms
separated by either the addition operator or the subtraction operator.  The first term in
an arithmetic expression may be preceded by a unary plus or unary minus.  The last two
forms of an arithmetic expression indicate that in interpreting an arithmetic expression
containing two or more addition or subtraction operators, the terms are combined from
left to right.

Note these forms do not permit expressions containing two consecutive arithmetic
operators, such as A**-B or A+-B.  However, by using parentheses such as A**(-B) or
A+(-B), the desired operations can be formed.

2.5.1.3. Arithmetic Constant Expressions

An arithmetic constant expression is an arithmetic expression in which each primary is
an arithmetic constant, the symbolic name of an arithmetic constant, or an arithmetic
constant expression enclosed in parentheses.  The exponentiation operator is not
permitted unless the exponent is of type integer.  Variable, array element, and function
references are not allowed.  ASCII FORTRAN allows the following nonstandard

primaries:
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� exponentiation of constant operands where the exponent is of any legal

arithmetic type

� intrinsic function references that have all constant arguments

2.5.1.4. Integer Constant Expressions

An integer constant expression is an arithmetic constant expression in which each
constant or symbolic name of a constant is of type integer.  Variable, array element, and
function references are not allowed.

2.5.1.5. Data Types Permitted for Arithmetic Expressions

You may use different data types for the operands of an arithmetic expression.  The type
of expression a op b is determined as shown in Table 2-4.  It shows the permitted
combinations of data types and gives the data type and length of the result.

Table 2-4.  Type and Length of Result for Arithmetic Expressions  

Type of Left
Operand (a) Type of Right Operand (b)

INTEGER REAL DOUBLE
PRECISION

COMPLEX COMPLEX*16

INTEGER INTEGER REAL DOUBLE
PRECISION

COMPLEX COMPLEX*16

REAL REAL REAL DOUBLE
PRECISION

COMPLEX COMPLEX*16

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

COMPLEX*16 COMPLEX*16

COMPLEX COMPLEX COMPLEX COMPLEX*16 COMPLEX COMPLEX*16

COMPLEX*16 COMPLEX*16 COMPLEX*16 COMPLEX*16 COMPLEX*16 COMPLEX*16

 

The length of the operands and results are:

� REAL and INTEGER - one word

� DOUBLE PRECISION and COMPLEX - two words

� COMPLEX*16 - four words

The data type of a unary operation is the same as that of its operand.
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2.5.1.6. Arithmetic Expression Evaluation

When an arithmetic expression includes more than one arithmetic operator, evaluation
of that expression is performed based on the following hierarchy:

Precedence Operation Example

1 Expressions in parentheses (e)

2 Function evaluation SQRT e

3 Exponentiation 2**3

4 Multiplication

and division

2*3

2/3

5 Addition and

subtraction or their unary operations

2+3

-2

 

Expressions are evaluated, with one exception, in a left-to-right fashion.  When a
subexpression contains the form:

a op1 b op2 c

the part a op1 b is evaluated first as long as op1 has a greater or equal precedence with
respect to op2 as described by the table above.

The exception to the left-to-right evaluation rule is the form:

a ** b ** c

The part b ** c is evaluated first.

Examples of equivalent expressions:

a - b * c ** d

is equivalent to

a - (b*(c**d) )

a - b * c * d

is equivalent to

a - ( (b*c)*d)

a ** (b - c) * d
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is equivalent to

(a**(b - c) )*d

2.5.2. Character Expressions

A character expression is used to express a character string.  Evaluation of a character
expression produces a result of type character.

A simple character expression is one of the following:

� A character constant

� A symbolic name of a character constant

� A character variable reference

� A character array element reference

� A character substring reference (see 2.4.5)

� A character function reference

More complicated character expressions may be formed by using one or more character
operands together with the character concatenation operator and parentheses.

2.5.2.1. Character Operators

The binary concatenation operator // is the only character operator in ASCII FORTRAN.
It is used in the following manner, where e1 and e2 are character expressions:

e1 // e2

Assume e1 is a character expression of length m and e2 is a character expression of
length n.  The result of the expression is a character expression of length m + n.  The
first m characters of the resulting expression are those of e1.  The remaining n
characters are those of e2.

For example, the expression:

’TWIST� ’ // ’AND� TURN’

results in the value ’TWIST AND TURN’.

The expression:

’TYPE’ // ’123’

results in the value ’TYPE123’.

For syntactic compatibility with other FORTRAN processors, & is also allowed

as a concatenation operator.
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2.5.2.2. Character Operands and Forming Character Expressions

The character operands are:

1. Character primaries

2. Character expressions

Table 2-5 defines the permissible forms of the character operands.

Table 2-5.  Forms of Character Operands  

Character
Operands Permissible Forms Examples

Character
primary

Character constant

Symbolic name of a character constant

Character variable reference

Character array element reference

Character substring reference

Character function reference

Character expression in parentheses

’AB’

TITLE

DATE

CARR(I)

C(I:I+1)

LOWERC(C)

(C//’A’)

Character
expression

Character primary

Character expression //character primary

’AB’

’AB’//’CD’

 

Thus, a character expression is a sequence of one or more character primaries separated
by the concatenation operator.  The last form of a character expression indicates that in
a character expression containing two or more concatenation operators, the primaries
are combined from left to right.  Note that parentheses have no effect on the value of a
character expression.

The FORTRAN 77 standard doesn’t allow a character item with a length of * to appear as
a concatenation operand in an expression in a subprogram argument or an I/O list.
However, ASCII FORTRAN doesn’t have this restriction.

2.5.2.3. Character Constant Expressions

A character constant expression is a character expression in which each primary is a
character constant, the symbolic name of a character constant, or a character constant
expression enclosed in parentheses.  Variable, array element, substring, and function
references are not allowed.  ASCII FORTRAN allows the following nonstandard

primary:

� character intrinsic function references that have all constant arguments
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2.5.3. Relational Expressions

A relational expression is used to compare the values of two arithmetic expressions or
two character expressions.  A relational expression may not be used to compare the
value of an arithmetic expression with the value of a character expression.

Relational expressions may appear only within logical expressions.  Evaluation of a
relational expression produces a result of type logical, with a value of true or false.

2.5.3.1. Relational Operators

Table 2-6 shows the relational operators which allow you to quantitatively test the
relationship between two expressions.

Table 2-6.  Relational Operators  

Operator Usage Explanation

.GT. e1 .GT. e2 True if e1 is greater than e2.

.GE. e1 .GE. e2 True if e1 is greater than or equal to e2.

.LT. e1 .LT. e2 True if e1 is less than e2.

.LE. e1 .LE. e2 True if e1 is less than or equal to e2.

.EQ. e1 .EQ. e2 True if e1 is equal to e2.

 

e1 and e2 represent either both arithmetic expressions or both character expressions.

2.5.3.2. Arithmetic Relational Expressions

The form of an arithmetic relational expression is:

e1 relop e2

where relop is a relational operator and e1 and e2 are each an integer, real,
double-precision, complex, double-precision complex, or typeless expression.

A complex operand is permitted only when the relational operator is .EQ. or .NE.
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If the two arithmetic expressions are of different types, the value of the relational
expression

e1 relop e2

is the value of the expression

((e1) - (e2)) relop 0

where 0 (zero) is of the same type as the expression ((e1) - (e2)) and relop is the same
relational operator in both expressions.  Note that the comparison of a

double-precision value and a complex value is permitted with the .EQ. and .NE.

operators.

Example:

        LOGICAL L1, L2, L3   
        INTEGER I     
        REAL A    
        COMPLEX C 

C       This program results in variables L1 and L3 
C       being output as true values and L2 as a false value.      

        I = 3     
        A = 20.5     
        C = (20.5, 0.0)

        L1 = I .EQ. 3
        L2 = 10 .GT. A
        L3 = C .EQ. A

C       Variable A is converted to type 
C       complex before the comparison is done.

        PRINT *, L1, L2, L3
        END

2.5.3.3. Character Relational Expressions

The form of a character relational expression is:

e1 relop e2

where relop is a relational operator and e1 and e2 are character or typeless expressions.

In relational expressions with character operands, character relations are performed left
to right using the ASCII collating sequence.  When one of the two expressions must be
extended to make it equal in length to the other, it is extended on the right using blanks.
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Example:

        LOGICAL L1, L2
        CHARACTER A*2, B*2, C*3 

C       This program results in variable L1 being output 
C       as a true value and L2 as a false value.     

        A = ’ab’     
        B = ’ac’     
        C = ’abc’   

        L1 = A .LT. B
        L2 = A .GT. C

C       Variable A is extended on the right with 
C       one blank character to make it equal length 
C       to C before the comparison is done.      

        PRINT *, L1, L2
        END 

2.5.4. Logical Expressions

A logical expression is used to express a logical computation.  Evaluation of a logical
expression produces a result of type logical, with a value of true or false.

A simple logical expression is one of the following:

� A logical constant

� A symbolic name of a logical constant

� A logical variable reference

� A logical array element reference

� A logical function reference

� A relational expression

More complicated logical expressions may be formed by using one or more logical
operands together with logical operators and parentheses.
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2.5.4.1. Logical Operators

Table 2-7 shows the logical operators permitted by ASCII FORTRAN.  The operands ( ei)
for logical expressions can be of logical or typeless (see 2.5.5) type.

Table 2-7.  Logical Operators  

Operator Usage Explanation

.NOT. .NOT. e1 The expression has the logically opposite value of the
expression e1.

.AND. e1 .AND. e2 If both e1 and e2 have the value of .TRUE., the expression
has the value .TRUE. ; otherwise it has the value .FALSE.

.OR. e1 .OR. e2 If either, or both, e1  or e2 has the value .TRUE., then the
expression has the value .TRUE. ; otherwise the expression
has the value .FALSE.

.EQV. e1 .EQV. e2 (Logical equivalence.)  If both e1 and e2 have the value of
.TRUE. or both have the value of .FALSE., then the
expression has the  value of .TRUE.; otherwise it has the
value of .FALSE.

.NEQV. e1 .NEQV. e2 (Logical nonequivalence.)  If e1 has the value of .TRUE. and
e2 has the  value of .FALSE., or if e1 has the value of
.FALSE. and e2 has the value of .TRUE., then the expression
has the value of .TRUE.; otherwise the expression has the
value of .FALSE.

 

2.5.4.2. Logical Operands and Forming Logical Expressions

The logical operands are:

1. Logical primary

2. Logical factor

3. Logical term

4. Logical disjunct

5. Logical expression

Table 2-8 defines the permissible forms of the logical operands.
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Table 2-8.  Forms of Logical Operands  

Logical
Operands Permissible Forms Examples

Logical primary Logical constant

Symbolic name of a logical constant

Logical variable reference

Logical array element reference

Logical function reference

Relational expression

Logical expression in parentheses

.TRUE.

FLAG

COND

L(I)

FCTN(A,B)

A .GT. B

(L1 .OR. L2)

Logical factor Logical primary

.NOT. logical primary

.TRUE.

.NOT. (A. GT. B)

Logical term Logical factor

Logical term .AND. logical factor

.NOT. L2

.NOT. L1 .AND. L2

Logical disjunct Logical term

Logical disjunct .OR. logical term

A .GT. B

A .GT. B .OR. L2

Logical expression Logical disjunct

Logical expression .EQV. logical disjunct

Logical expression .NEQV. logical disjunct

A .GT. B

(A .GT. B) .EQV. L1

L1 .NEQV. L2

 

Thus, a logical expression is a sequence of one or more logical disjuncts separated by
either the .EQV. operator or the .NEQV. operator.  The last two forms of a logical
expression indicate that in interpreting a logical expression containing two or more
.EQV. or .NEQV. operators, the logical disjuncts are combined from left to right.

2.5.4.3. Logical Constant Expressions

A logical constant expression is a logical expression in which each primary is a logical
constant, the symbolic name of a logical constant, a relational expression in which each
primary is a constant expression, or a logical constant expression enclosed in
parentheses.  Variable, array element, and function references are not allowed.  ASCII

FORTRAN allows the following nonstandard primary:

� logical intrinsic function references that have constant arguments.
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2.5.4.4. Logical Expression Evaluation

If a logical expression contains more than one logical operator, evaluation of that
expression is performed using the following hierarchy:

Precedence Operator

1 Relationals

2 .NOT.

3 .AND.

4 .OR.

5 EQV., .NEQV.

 

When more than one relational operator exists, they are performed in left-to-right order.
The same applies to multiple appearances of the same operator.

Examples:

Assume A has the value .TRUE. and B the value .FALSE.  Some logical expressions and
their values are:

Expression                   Evaluation

 A .AND. B                  .FALSE.

 A .AND. .NOT. B             A .AND. .TRUE.
                            .TRUE.

 3 .LT. 4 .OR. B            .TRUE. .OR. B
                            .TRUE.

.NOT. A .AND. B             .FALSE. .AND. B
                            .FALSE.

.NOT. 3 .LE. 4 .OR. B       .NOT. .TRUE. .OR. B
                            .FALSE. .OR. B
                            .FALSE.

A .NEQV. B                  .TRUE.
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2.5.5. Typeless Expressions

A typeless expression is a one-word (36-bit) string that results from using a

typeless function with an argument of type integer, real, character (length of 4

or less), logical, or typeless.

2.5.5.1. Typeless Functions

The following primitive typeless functions are permitted in ASCII FORTRAN,

where ei is any single-word expression:

Expression Explanation

AND (e1,e2) Bit-by-bit logical product

OR (e1,e2) Bit-by-bit logical sum

XOR (e1,e2) Bit-by-bit exclusive OR

BOOL (e1) Treat e1 as typeless

COMPL (e1) Bit-by-bit complement

 

If (ei) is type character with length less than 4, the argument is space-filled on

the right to make it length 4.  If (ei) is type character of unknown length, the

argument is either truncated or space-filled to make it length 4.

2.5.5.2. Typeless Constant Expressions

A typeless constant expression is a one-word (36-bit) string that results from

using a typeless function with an argument that is one of the following:

� an arithmetic constant expression of type integer or real

� a character constant expression (length 4 or less)

� a logical constant expression

� a typeless constant expression

2.5.5.3. Typeless Expression Evaluation

When an expression consists only of typeless expressions and arithmetic

operators, or of typeless expressions and relational operators, the typeless

expressions (bit strings) are treated as though they are integer values.

When an expression consists only of typeless expressions and logical operators,

the typeless expressions are treated as though they are logical values.  These
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typeless expressions must have pure logical values for the logical operators to

function correctly.  Logical values use the rightmost bit for the value

(1=.TRUE., 0=.FALSE.); the rest of the word must be zero.

When an expression (or part of an expression) is of the form e1 op e2, where

one of the ei is a typeless quantity and the other expression is of type integer,

real, character, or logical, then assuming op is a suitable operator for comparing

the two entities, the typeless quantity is taken to be integer, real, character, or

logical, respectively, without being converted to that type.  Don’t combine a

typeless expression with a complex or double-precision expression.

The order of expression evaluation is significant when typeless expressions are

involved.  For example, the following expressions are not the same:

(integer+typeless)+real

(typeless is taken as integer)

integer+(typeless+real)

(typeless is taken as real)

2.5.6. Hierarchy of Operators

The following hierarchy determines the evaluation order of subexpressions involving the
operators mentioned in subsections of 2.5.

Precedence Kind Operation

1 Parenthesized All

2 Functions All

3 Arithmetic Exponentiation (**)

4 Arithmetic Multiplication and division (* and /)

5 Arithmetic Addition and subtraction (+ and -) and unary operation

6 Character Concatenation (// and &)

7 Logical Relational comparisons
(.GT., .GE., .LT., .LE., .EQ., .NE.)

8 Logical .NOT.

9 Logical .AND.

continued
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Precedence OperationKind

10 Logical .OR.

11 Logical .EQV., .NEQV.

 

Notes:

� Expressions are evaluated left to right, except where the hierarchy dictates

sotherwise, or in the case of successive exponentiation operators (see 2.5.1.6).

� Logical expressions may not require that all parts be evaluated.  For example, if A

is a logical variable whose value is .TRUE. and LEG is a logically valued function,

the expression A .OR. LEG(x) may not result in a call to the function LEG.  Since

A has a true value, the value of the expression is already determinable.



UP-8244.4-B 3-1

Section 3
Assignment Statements

3.1. General
Assignment statements are the basic mechanism by which the result of an expression is
stored (and therefore, saved) in a variable, array element, or substring for future
reference.

There are four types of assignment statements:

1. Arithmetic assignment, for storing the result of an arithmetic expression, character

constant, or Hollerith constant in a numeric (integer, real, or complex) variable,
array element, or pseudo-function.

2. Character assignment, for storing the result of a character expression in a character
variable, character array element, character substring, or pseudo-function.

3. Logical assignment, for storing the .TRUE. or .FALSE. result of a logical expression
in a logical variable or logical array element.

4. Statement label assignment (ASSIGN statement), for storing the location of a
statement label in an integer variable.  The unique form of this type of assignment
statement unambiguously differentiates statement labels from numeric constants.

The equal sign (=) is the usual assignment operator.

Many types of conversions can occur during evaluation of the expression before the final
result is stored.  Special rules for conversion, size determination, and so on, apply in
many cases.  These are cited in the discussion of each type of assignment statement.

3.2. Arithmetic Assignment Statement 
Purpose:

The arithmetic assignment statement is used to define an item of type INTEGER, REAL,
DOUBLE PRECISION, COMPLEX, or COMPLEX*16.
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Form:

v [,v] . . . = e

where: 

v

is the name of a variable, array element, or pseudo-function reference (see

7.7.2). 

e

is an arithmetic expression, character constant, or Hollerith constant.

Description:

The result of the expression is stored in the target variables which appear to the left of
the assignment (=) operator.  When the result of the expression differs in type from the
target variables, conversions are performed in most cases as indicated in Table 3-1.

Exercise caution when using user-defined functions as array subscripts or

pseudo-function arguments. Their order of evaluation cannot be relied upon.

The sequence of execution is as follows:

1. e is completely evaluated.

2. For each target variable, the result of the expression is converted, when
necessary, as indicated in Table 3-1.  A character constant or Hollerith constant

is stored to an arithmetic data item with no conversion performed

regardless of the length of the literal item or the data item in which it is

stored.

3. The subscript expressions or pseudo-function arguments in v (if any) are
evaluated.  Their order of evaluation should not be relied upon.

4. The result is then stored in v.

The number of target variables in an arithmetic assignment statement is limited to 32.
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Table 3-1.  Conversion for Arithmetic Assignment  

Target
Type

Desired Present Type of Expression

INTEGER REAL DOUBLE
PRECISION

COMPLEX COMPLEX
*16

Character Logical

INTEGER Store. Fix. Store. Fix. Ignore
imaginary
part. Fix.
Store.

Ignore
imaginary
part. Fix.
Store.

Not
possible
unless it’s
a char. or
Hollerith
constant,
in which
case,
store.

Not
Possible

REAL Float.
Store.

Store. Truncate
to single.
Store.

Ignore
imaginary
part.
Store.

Ignore
imaginary
part.
Truncate
to single.
Store.

Not
possible
unless its
a char. or
Hollerith
constant,
in which
case,
store.

Not
Possible

DOUBLE
PRECISION

Double.
Store.

Expand to
double.
Store.

Store. Ignore
imaginary
part.
Expand to
double.
Store.

Ignore
imaginary
part.
Store.

Not
possible
unless its
a char. or
Hollerith
constant,
in which
case,
store.

Not
Possible

continued

Key
Fix Is the same as applying the INT intrinsic function.
Float Is the same as applying the REAL intrinsic function .
Double Is the same as applying the DBLE intrinsic function.
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Table 3-1.  Conversion for Arithmetic Assignment (cont.)

Target
Type

Desired Present Type of Expression

COMPLEX Float.
Store to
real part.
Store 0 to
imaginary
part.

Store to
real part.
Store 0 to
imaginary
part.

Truncate
single.
Store to
real part.
Store 0 to
imaginary
part.

Store. Truncate
both parts
to single.
Store.

Not
possible
unless its
a char. or
Hollerith
constant,
in which
case,
store.

Not
Possible

COMPLEX
*16

Double.
Store to
real part.
Store 0 to
imaginary
part.

Expand to
double.
Store to
real part.
Store 0 to
imaginary
part.

Store to
real part.
Store 0
imaginary
part.

Expand
parts to
double.
Store.

Store. Not
possible
unless its
a char. or
Hollerith
constant,
in which
case,
store.

Not
Possible

 

Key
Fix Is the same as applying the INT intrinsic function.
Float Is the same as applying the REAL intrinsic function .
Double Is the same as applying the DBLE intrinsic function.

Examples:

         A = B + C
C            The value of the expression B + C is stored in A.

         INDX = INDX + 1
C            The value of the expression INDX + 1 is stored in INDX.

         X = CSIN(W * PI + THETA) - ORIGIN
C            The value of the expression is stored in the variable X.

         N = 1
C            The constant 1 is stored in N.
         END

C            The following program sequence may depend upon side effects
C            because of the order of evaluation and optimization.
C            Since side effect dependence is forbidden, the sequence
C            may not produce the results intended.
         DIMENSION A(10,10,10)
         COMMON/WATCH/MIGHT,CHANGE
         SUBJCT = 1
         MIGHT = 2
         CHANGE = 4
         A(MIGHT,FC(SUBJCT),CHANGE) = D
           .
           .
           .
         END
C
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         FUNCTION FC(A)
         COMMON/WATCH/MIGHT,CHANGE
         MIGHT = MIGHT + 1
         CHANGE = CHANGE + 1
         FC = MIGHT + CHANGE - A
           .
           .
           .
         END
C            The example above shows the introduction of side effects during
C            evaluation of the function FC due to the COMMON properties of
C            MIGHT and CHANGE.  ASCII FORTRAN presently evaluates
C            A(MIGHT,FC(SUBJECT),CHANGE) to A(3,7,4).  However, you are
C            warned not to rely on side effects because a change in
C            compiler evaluation of the code could change the result.

3.3. Character Assignment Statement 
Purpose:

The character assignment statement is used to define an item of type character with the
result of a character expression.

Form:  

c [,c] . . . = ce

where: 

c

is the name of a character variable, character array element, character substring, or

pseudo-function reference (see 7.7.2). 

ce

is a character expression.

Description:

The result of the character expression is stored in the target variables that appear on the
left of the assignment ( = ) operator.

When the expression involves character variables, character array elements, character
substrings, or pseudo-functions, the target c must be type character; no type
conversions are performed.  When the expression is a character constant or

Hollerith constant, the target variables can be of any type; no conversions are

performed.

When the length of the character string result of the expression differs from the size of
the target variables, the string is truncated or padded with blanks as indicated in
Table 3-2.

None of the character positions being defined in c may be referenced in ce.
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Table 3-2.  Conversions for Character Assignment  

Condition Action

L1<L2 The leftmost L1 characters of the expression result are stored
in the target; the remaining characters of the expression result
are ignored.

L1=L2 The expression result is stored in the target.

L1>L2 The expression result is stored in the leftmost L2 characters
of the target; the remaining rightmost L1 minus L2 characters
are filled with blanks.

 

Legend
L1 is the length of the target in characters.
L2 is the length of the result of the character expression in characters.

The sequence of execution is the same as for arithmetic assignment statements.

The number of target variables in a character assignment statement is limited to 32.

Examples:

         CHARACTER*12 CSFMSG, COMMND
         CSFMSG = ’@’ // COMMND
C            The character string result of the concatenation expression
C            ’@’ // COMMND is stored in the character variable CSFMSG.

         CHARACTER BLANK*1
           .
           .
           .
         BLANK = ’ ’
C            The single blank is stored in character variable BLANK.
         END

         CHARACTER*4 S2(10,10)
           .
           .
           .
         S2(I,J) = ’abcd’
C            The string ’abcd’ is stored in the character array
C            element S2(I,J)
         S2(I,J)(2:3) = ’ef’
C            The string ’ef’ is stored in the substring in character
C            positions 2 through 3 of array element S2(I,J) which
C            makes S2(I,J) the string ’aefd’.

3.4. Logical Assignment Statement
Purpose:

The logical assignment statement transfers a logical value, either .TRUE. or .FALSE., to
an item of type logical.
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Form:

l [ ,l] . . . = le

where:

l

is the name of a logical variable, logical array element, or pseudo-function

reference (see 7.7.2).

le

is a logical expression, character constant, or Hollerith constant.

Description:

The result of the logical expression is stored in the target variables appearing to the left
of the assignment ( = ) operator.

No conversions are performed.  The expression must be a logical expression, and the
target l must be type logical.  When le is a character constant or Hollerith constant

(a special case), the first word of the constant is stored directly in the target,

with no conversion.

The sequence of execution is the same as for arithmetic assignment statements.

The number of target variables in a logical assignment statement is limited to 32.

Examples:

         LOGICAL INDIC, FLAG
         INDIC = LEFT .LT. RIGHT
C                The logical result of the logical expression
C                LEFT .LT. RIGHT is stored in the logical variable INDIC.

         FLAG = .TRUE.
C                The value .TRUE. is stored in the logical variable FLAG.

3.5. Statement Label Assignment (ASSIGN
Statement)
Purpose:

The ASSIGN statement transfers the location of a statement label constant to a variable
for subsequent reference in a GO TO statement or an I/O statement.

Form:

ASSIGN n TO iv

where: 
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n

is an unsigned positive integer indicating an executable or FORMAT statement label.

iv

is an unsubscripted integer variable.

Description:

The location of the statement is stored in the target variable that follows TO.

This statement is not the same as an arithmetic assignment.  The value of the statement
label is not stored and is not subsequently available, such as for output, in that form.
Only its location is stored.

The target variable must be of type integer.  No conversion is allowed.

The location of the indicated statement label is stored in the target variable in a single
operation.

The target variable can be redefined with the same or different statement label value or
an integer value.

Example:

        ASSIGN 1O TO ISTMT
C               The location of statement 10 is stored in variable ISTMT.
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Section 4
Control Statements

4.1. General
Execution of a program unit is normally sequential, starting with the first executable
statement and continuing with each successive statement through the last executable
statement of the program unit.

Control statements change this normal sequence of execution.  Some of these
statements specify unconditional modifications of program flow, while others change
the sequence of execution, depending on the results of a test contained within the
statement.

FORTRAN control statements are:

� GO TO statements (unconditional GO TO, computed GO TO, assigned GO TO)

� IF statements (logical IF, arithmetic IF)

� Blocking statements (block IF, ELSE IF, ELSE, END IF)

� DO

� CONTINUE

� PAUSE

� STOP

� END

� CALL

� RETURN

CALL and RETURN are discussed with procedures in Section 7.

Both the control statement and the statement label referred to must be in the same
program unit.  A unique statement label can appear on any statement. However, there
are rules as to which labels can be referenced (see 9.3.1).
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4.2. GO TO Statements
GO TO statements transfer control to an executable statement specified by a statement
label cited in the GO TO statement.  Control is transferred either unconditionally or
conditionally.  Under certain circumstances this transfer can be within the boundaries of
a DO statement.  This is discussed further in NO TAG.

The three types of GO TO statements are:

1. Unconditional GO TO

2. Computed GO TO

3. Assigned GO TO

4.2.1. Unconditional GO TO

Purpose:

The unconditional GO TO statement transfers program control to a specified statement.

Form:

GO TO x

where x is the number (statement label) of an executable statement within the same
program unit.

Description:

Each execution of an unconditional GO TO statement causes control to transfer to the
statement specified by the statement label.

Any executable statement immediately following the GO TO statement should have a
statement label.  Otherwise, control can never reach such a statement.

Example 1:

C              Causes control to be transferred to the statement
C              labeled 180.
       GO TO 180
110    . . .
180    X = X + 1

Example 2:

C              If RENT is not greater than the current HIGH,
C              new occupants are added.  The total rent which is
C              collectable is the product of the number of occupants
C              times the cost of renting.
       IF (RENT .GT. HIGH) GO TO 100
       OCCUPY = OCCUPY + NEW
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100    TOTAL = OCCUPY * RENT

Example 3:

C              This sample program uses the unconditional GO TO
C              statement to either add or subtract from a summation
C              of 10 numbers.
       SUM = 0.
       DO 1 l = 1, 10
C             This is a list-directed READ.
           READ *, K,J
           IF (K .EQ. 1) GO TO 14
           IF (K .EQ. 0) GO TO 15
           GO TO 1
    14     SUM = SUM + J
           GO TO 1
    15     SUM = SUM - J
     1  CONTINUE
        PRINT *, SUM
        STOP
        END

4.2.2. Computed GO TO

Purpose:

A computed GO TO statement transfers control to an indexed member of a statement
label list.

Form:

GO TO (x [ ,x] . . . ) [ , ]e

or:

GO TO ( [x] [ , [x] ] . . . ) [ , ]e

where:

each x

is the statement label of an executable statement in the same program unit
containing the GO TO statement, or a variable containing such a number (see

3.5), or is omitted.  This list can have a maximum of 128 entries.

e

is an integer expression used to index a member of the statement label list.  The
value of e should not exceed the number of x’s appearing in the statement.

Description:

This statement causes control to transfer to the statement numbered x indexed by e.
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x is chosen from the statement label list according to the value of e. When e = 1, the first
statement label is used; when e = 2, the second is used; etc.  When e is less than 1 or
greater than the number of elements (including empty positions) in the list, or if the

selected x is omitted, the execution sequence continues as though a CONTINUE
statement were executed.

Example 1:

C              Control transfers to statement 10, 15, 20, or 25
C              depending on the value of CHOICE.  For example, if the
C              value of CHOICE is 2, control transfers to statement 15.
       INTEGER CHOICE
       GO TO (10,15,20,25), CHOICE

Example 2:

C               SALARY is:
C
C               1 if income is 8,000 or less
C               2 if greater than 8,000 but less than or equal to 12,000
C               3 if greater than 12,000 but less than or equal to 20,000
C               4 if greater than 20,000 but less than or equal to 80,000
C               5 if greater than 80,000
C
C               Control transfers to the proper addition depending
C               on the value of SALARY.
       INTEGER SALARY, UPCLAS, WEALTH, RICH
       GO TO (100,200,300,400,500) , SALARY
100    LOW = LOW + 1
        .
        .
        .
200    MIDDLE = MIDDLE + 1
        .
        .
        .
300    UPCLAS = UPCLAS + 1
        .
        .
        .
400    WEALTH = WEALTH + 1
        .
        .
        .
500    RICH = RICH + 1
        .
        .
        .  

Example 3:

C                  This program uses the computed GO TO statement to
C                 select one of four summation types
C                 (sum of the actual values, sum of base e logarithms,
C                 sum of base 10 logarithms, and sum of reciprocals).
       SUM = 0.0
       READ *, N, KNODE
       DO 1 I = 1, N
           READ *, X
           GO TO (6, 7, 8, 9), KNODE
6          SUM = SUM + X
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           GO TO 1
7          SUM = SUM + ALOG(X)
           GO TO 1
8        SUM = SUM + ALOG10(X)
         GO TO 1
9        SUM = SUM + 1. / X
1   CONTINUE
    PRINT *, N, KNODE, SUM
    STOP
    END

4.2.3. Assigned GO TO

Purpose:

An assigned GO TO statement transfers control to the statement whose label is equal to
the current value of a specified variable.

Form:

GO TO m [[ ,] (x[ ,x] . . . )]

where:

m

is a scalar integer variable (not an array element).  Its value must equal one of the
values of x, unless you omit the statement label list.

x

is the statement label of an executable statement in the program unit containing the
GO TO statement.  This list can have a maximum of 128 entries.

Description:

At the time of execution of an assigned GO TO statement, the current value of m must
be defined as one of the statements x by the previous execution of an ASSIGN statement
or by initialization in a DATA or type specification statement.  The ASSIGN
statement is explained in 3.5.  The DATA statement is discussed in 6.12.  The value of m
must identify a statement in the same main program, subroutine, or function as the GO
TO statement.  No diagnostic is issued for failure to do so.

Any executable statement immediately following this statement must have a statement
label.  Otherwise, control can never reach it.

Logically, the assigned GO TO statement can be used whenever a computed GO TO is
used (see 4.2.2).  The formats differ and the assigned GO TO requires at least one
previous ASSIGN statement.

When you omit the statement label list, the assumed list contains every statement label
that is associated with the variable m in an ASSIGN, DATA initialization, or type

specification statement.  The result of executing the GO TO statement when m does
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not identify a statement in the list depends on the degree of program optimization being
performed, and is not generally predictable.

Example 1:

C                       Control transfers to statement in list whose
C                       value matches that of CHOICE.  For example, when the
C                       last value assigned to CHOICE was 25, control
C                       passes to statement 25.
          INTEGER CHOICE
          GO TO CHOICE, (10,15,20,25)

Example 2:

C                      This sample program uses the assigned GO TO statement
C                      to arrange a selection from one of four types of
C                      summation (sum of the actual values, sum of base e

C                      logarithms, sum of base 10 logarithms, and sum
C                      of reciprocals).
        SUM = 0.0
        READ *, N, KNODE
        IF (KNODE .EQ. 6) ASSIGN 6 to KSWTCH
        IF (KNODE .EQ. 7) ASSIGN 7 to KSWTCH
        IF (KNODE .EQ. 8) ASSIGN 8 to KSWTCH
        IF (KNODE .EQ. 9) ASSIGN 9 to KSWTCH
        DO 1 I = 1, N
            READ *, X
            GO TO KSWTCH, (6, 7, 8, 9)
6           SUM = SUM + X
            GO TO 1
7           SUM = SUM + ALOG(X)
            GO TO 1
8           SUM = SUM + ALOG10(X)
            GO TO 1
9           SUM = SUM + 1. / X
1    CONTINUE
     PRINT *, N, KNODE, SUM
     STOP
     END

Example 3:

C                    This example demonstrates an incorrect usage of J.
C                    The GO TO is illegal because the statement
C                    number assigned to J is not associated with J in
C                    an ASSIGN or by initialization in a DATA or type
C                    specification statement.  The example would be correct
C                    if the GO TO statement were: GO TO J, (10,20,30).
      INTEGER GOTO(3), GOTO1, GOTO2, GOTO3
      EQUIVALENCE (GOTO(1), GOTO1), (GOTO(2), GOTO2), (GOTO(3), GOTO3)
      ASSIGN 10 TO GOTO1
      ASSIGN 20 TO GOTO2
      ASSIGN 30 TO GOTO3
      READ *, I
      J = GOTO(I)
      GO TO J
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4.3. IF Statements
IF statements are the decision-making elements in FORTRAN.  They test relationships
within the statement and can modify the normal sequence of execution based on the
result of this test.

There are three types of IF statements:

1. Logical IF

2. Arithmetic IF

3. Block IF

The block IF statement is described with the rest of the blocking statements in 4.4.

4.3.1. Logical IF

Purpose:

The logical IF statement evaluates a logical expression and executes or skips a specified
statement, depending on whether the value of the expression is true or false,
respectively.

Form:

IF (l) s

where:

l

is any logical expression.

s

is any executable statement except a DO, block IF, ELSE IF, ELSE, END IF, END, or
another logical IF statement.

Description:

Statement s is executed if expression l is true.  When l is false, the execution sequence
continues as though a CONTINUE statement were executed.  Although s itself is
syntactically a complete statement, it must appear in the same line or set of continuation
lines as the clause IF (l).
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Example 1:

C                     When RENT is less than or equal to the desired
C                     HIGH, the number of new occupants is increased
C                     by 1 before the new rent total is computed.
         IF (RENT .LE. HIGH) OCCUPY = OCCUPY + 1
         TOTAL = OCCUPY * RENT

Example 2:

C                     The following program sums positive values of B
C                     using a logical IF statement.
      SUM = 0
      DO 2 I = 1,50
         READ *, B
         IF (B .LE. 0.) GO TO 2
         SUM = SUM + B
2     CONTINUE
      PRINT *, SUM
      STOP
      END

Example 3:

C                     This accomplishes the same thing using the greater
C                     than (.GT.) operator.
      SUM = 0
      DO 2 I = 1,50
         READ *, B
2        IF (B .GT. 0.) SUM = SUM + B
      PRINT *, SUM
      STOP
      END

4.3.2. Arithmetic IF

Purpose:

The arithmetic IF statement acts as a multi-destination branch depending on the
condition which is satisfied.

Form:

IF (a) x1, x2, x3

or:

IF (a) [x1] [ , [x2] [ , [x3] ] ]

where:

a

is an arithmetic expression of any type except complex (that is, a is type integer,
real, double precision, or typeless).
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each x

is the statement label of an executable statement in the program unit containing the
IF statement, or an integer scalar variable that is assigned a statement label

using the ASSIGN statement (see 3.5), type statement, or DATA statement.

It can also be omitted.

Description:

The arithmetic IF statement transfers control to the statement numbered x1, x2, or x3
when the value of the arithmetic expression (a) is less than, equal to, or greater than
zero, respectively.

Any two, or all three, statement labels can be the same.  When all three are the same, the
statement has the same effect as an unconditional GO TO.

An executable statement immediately following this statement should have a statement
label.  Otherwise, control can never reach it.  However, an omitted position in the

list x1, x2, x3, such as:

IF (A) 5,,6

implies a reference to the succeeding statement.

When any x is specified as an integer scalar variable, all three positions must be

present (that is, two commas must appear in the list.

Example:

C                          The basic use of the arithmetic IF statement is to
C                          discriminate between negative, zero, and positive
C                          values for variables or expressions.
        SUM = 0
        DO 2 I = 1,50
           READ *, B
           IF (B) 2,2,1
1          SUM = SUM + B
2       CONTINUE
        PRINT *, SUM
        STOP
        END

4.4. Blocking Statements
The IF-THEN-ELSE blocking structure of FORTRAN permits blocks of statements to be
executed on a conditional basis.  There are four blocking statements:

� Block IF

� ELSE IF

� ELSE

� END IF
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With the proper use of this feature, the GO TO statement is seldom necessary.  This
allows more structure in FORTRAN programs, making them more reliable and
understandable.

An IF-THEN-ELSE block has the following structure:

IF (e) THEN 
    [block of executable statements]   (This is an IF-block)
[ELSE IF (e) THEN]
    [block of executable statements]   (This is an ELSE IF-block)
       .
       .
       .
    [additional ELSE IF-blocks]
       .
       .
       .
[ELSE]
    [block of executable statements] (This is an ELSE-block)
END IF

where e is a logical scalar expression and the following rules apply:

1. A block begins with a block IF statement and ends with an END IF statement.

2. Between the two statements, ELSE IF statements and one ELSE statement can
appear.

3. The ELSE statement (when it appears) must follow all ELSE IF statements (if any)
in the block.

4. Executable statements can appear in the blocks between the blocking statements.

5. Blocks can be nested.

Subsection 4.4.5 contains examples that show the FORTRAN IF-THEN-ELSE blocking
statements.  The examples use all of the blocking statements (block IF, ELSE IF, ELSE,
and END IF), and also show the different types of blocks (IF-block, ELSE IF-block,
ELSE-block) and IF-level nesting.  Indention of lines in the source code makes programs
with blocking statements more readable.

4.4.1. Block IF Statement

Purpose:

The block IF statement is used with the END IF statement and, optionally, the ELSE IF
and ELSE statements, to control the execution sequence.

Form:

IF (e) THEN

where e is a logical expression.
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4.4.1.1. IF-Level

The IF-level of a statement s is: 

n1 - n2

where n1 is the number of block IF statements from the beginning of the program unit
up to and including s, and n2 is the number of END IF statements in the program unit up
to but not including s.

The IF-level of every statement must be 0 or positive.  The IF-level of each block IF,
ELSE IF, ELSE, and END IF statement must be positive.  The IF-level of the END
statement of each program unit (or the last statement in the program unit, unless the last
statement is END IF) must be 0.

The maximum IF-level allowed at any point in a program unit is 25.

4.4.1.2. IF-Block

An IF-block consists of all the executable statements after the block IF statement up to,
but not including, the next ELSE IF, ELSE, or END IF statement that has the same
IF-level as the block IF statement.  An IF-block can be empty.

4.4.1.3. Block IF Statement Execution

Execution of a block IF statement causes evaluation of the expression e. When the value
of e is true, normal execution continues with the first statement of the IF-block.  When
the value of e is true, and the IF-block is empty, control transfers to the next END IF
statement that has the same IF-level as the block IF statement.  When the value of e is
false, control transfers to the next ELSE IF, ELSE, or END IF statement that has the
same IF-level as the block IF statement.

Transfer of control into an IF-block from outside the IF-block is allowed but is

not recommended.

When execution of the last statement in the IF-block doesn’t result in a transfer of
control, control transfers to the next END IF statement that has the same IF-level as the
block IF statement that immediately precedes the IF-block.

4.4.2. ELSE IF Statement

Form:

ELSE IF (e) THEN

where e is a logical expression.
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4.4.2.1. ELSE IF-Block

An ELSE IF-block consists of all the executable statements after the ELSE IF statement
up to, but not including, the next ELSE IF, ELSE, or END IF statement that has the same
IF-level as the ELSE IF statement.  An ELSE IF-block can be empty.

4.4.2.2. ELSE IF Statement Execution

Execution of an ELSE IF statement causes evaluation of the expression e.  When the
value of e is true, normal execution sequence continues with the first statement of the
ELSE IF-block.  When the value of e is true and the ELSE IF-block is empty, control
transfers to the next END IF statement that has the same IF-level as the ELSE IF
statement.  When the value of e is false, control transfers to the next ELSE IF, ELSE, or
END IF statement that has the same IF-level as the ELSE IF statement.

Transfer of control into an ELSE IF-block from outside the ELSE IF-block is

allowed but is not recommended.  The statement label, if any, of the ELSE IF
statement must not be referred to by any statement except DELETE.

When execution of the last statement in the ELSE IF-block doesn’t result in a transfer of
control, control transfers to the next END IF statement that has the same IF-level as the
ELSE IF statement that immediately precedes the ELSE IF-block.

4.4.3. ELSE Statement

Form:

ELSE

4.4.3.1. ELSE-Block

An ELSE-block consists of all the executable statements after the ELSE statement up to,
but not including, the next END IF statement that has the same IF-level as the ELSE
statement.  An ELSE-block can be empty.

4.4.3.2. ELSE Statement Execution

Execution of an ELSE statement has no effect.  Normal execution sequence continues.

Transfer of control into an ELSE-block from outside the ELSE-block is allowed

but is not recommended.  The statement label, if any, of an ELSE statement must not
be referred to by any statement, except DELETE.
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4.4.4. END IF Statement

Form:

END IF

Description:

Execution of an END IF statement has no effect.  Normal execution sequence continues.

For each block IF statement, there must be a corresponding END IF statement in the
same program unit.  A corresponding END IF statement is the next END IF statement
that has the same IF-level as the block IF statement.

4.4.5. Examples Using Blocking Statements

Example 1:

C                 In this example, when A and B are equal,
C                 the three statements in the IF-block (that is, the
C                 statements between the block IF and END IF statements)
C                 are executed, and then the statement after the END IF is
C                 executed.  If A and B are not equal, then the
C                 statement after the END IF is executed.
C
           IF (A .EQ. B) THEN
                  I = I + 1
                  A = B + C
                  CALL SUB1 (I,A)
           END IF
              .
              .
              .

The following three sequences of statements (examples 2 through 4) are equivalent.  L1
and L2 are logical scalar variables in the following examples. The examples cause I and J
to be set depending on the values of L1 and L2.  If L1 is .TRUE., then I and J are set to 1
and 2, respectively.  If L1 is .FALSE. and L2 is .TRUE., then I and J are set to 2 and 3,
respectively.  If L1 and L2 are both .FALSE., then I and J are set to 3 and 4, respectively.

Example 2:

C                 This example uses all of the blocking statements:
C                 BLOCK IF, ELSE IF, ELSE, and END IF.  The
C                 maximum IF-level is one.
C
           IF (L1) THEN
             I = 1
             J = 2
           ELSE IF (L2) THEN
                 I = 2
                 J = 3
           ELSE
             I = 3
             J = 4
           END IF
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Example 3:

C                   This example uses all of the blocking statements
C                   except ELSE IF.  The maximum IF-level is two.
C
           IF (L1) THEN
                I = 1
                J = 2
           ELSE
           IF (L2) THEN
                I = 2
                J = 3
           ELSE
                I = 3
                J = 4
           END IF
       END IF

Example 4:

C                    This example uses none of the blocking statements.
       IF (.NOT. L1) GO TO 10
       I = 1
       J = 2
       GO TO 30
10     IF (.NOT. L2) GO TO 20
       I = 2
       J = 3
       GO TO 30
20     I = 3
       J = 4
30     CONTINUE

4.5. DO Statement
Purpose:

Use a DO statement to specify a loop, called a DO-loop.  This loop controls repeated
execution of a set of executable statements.

Form:

DO s [,] i = e1, e2 [,e3]

where: 

s

is the statement label of an executable or FORMAT statement.  The statement
identified by s, called the terminal statement of the DO-loop, follows the DO
statement in the sequence of statements within the same program unit as the DO
statement.  The terminal statement of a DO-loop must not be an unconditional GO
TO, assigned GO TO, arithmetic IF, block IF, ELSE IF, ELSE, END IF, RETURN,
STOP, END, or DO statement. 
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i

is the symbolic name of an integer, real, or double-precision variable, called the
DO-variable. 

e1

is an integer, real, or double-precision expression indicating the initial value for the
DO-variable i.

e2

is an integer, real, or double-precision expression indicating the terminal test value
for the DO-variable i. 

e3

is an integer, real, or double-precision expression indicating the increment value for
the DO-variable i. e3 must not be 0.  When e3 is omitted, it is assumed to have a value
of 1.

4.5.1. DO-Loop Range

The range of a DO-loop consists of all of the executable statements that follow the DO
statement, up to and including the terminal statement of the DO-loop.  When the

terminal statement is nonexecutable (that is, FORMAT), the range of the

DO-loop isn’t extended to include the next executable statement.

When a DO statement appears within an IF-block, ELSE IF-block, or ELSE-block, the
range of that DO-loop is contained entirely within that IF-block, ELSE IF-block, or
ELSE-block, respectively.

When a block IF statement appears within the range of a DO-loop, the corresponding
END IF statement must also appear within the range of that DO-loop.

4.5.2. Nested DO-Loops

DO statements can appear within the range of DO-loops.  When a DO statement is placed
within the range of a DO-loop, observe the following rules:

� The range of the second DO-loop must be entirely within the range of the first.  The
encompassing DO-loop is called the outer DO-loop.  The nested DO-loop is called
the inner DO-loop.

� The range of an inner DO-loop can, however, contain the last statement in the range
of the next outer DO-loop.  When DO-loops are nested in this manner, only iterations
of the inner DO-loop can be terminated by a transfer of control to the last statement
of the loop.

Such a set of DO-loops is called a DO-nest.  DO-loops and implied DO-loops can be
nested to a maximum depth of 25 loops.



Control Statements

UP-8244.4-B4-16

A nest of DO-loops is considered completely nested when no loop in the nest terminates
before the last loop begins.  For example, the following two nests are completely nested:

        DO 50 I = 1, 4
           A(I) = B(I)**2
           DO 50 J = 1, 5
50            C(1,J) = A(I)
        DO 10 I = L, M
           N = I + K
           DO 15 J = 1, 100, 2
15            TABLE(J,I) = SUM(J,N)-1
10         B(N) = A(N)

The following DO-loops are not completely nested:

        DO 100, I = 1, 10
           DO 200, J = 2, 12
             .
             .
             .
200        CONTINUE
           DO 300, K = 1, 10
             .
             .
             .
300        CONTINUE
100     CONTINUE

The following is not properly nested and is in error:

        DO 100, 1 = 1, 10
        M = I + N
        DO 200, J = 10, 1, -1
100     INDEX(I,J) = TABLE (M,J)
200     A(J) = Z(N-J)

4.5.3. Active and Inactive DO-Loops

A DO-loop is either active or inactive.  Initially inactive, a DO-loop becomes active only
when its DO statement is executed.

Once active, the DO-loop becomes inactive only when:

� its iteration count is tested (4.5.4.2) and determined to be zero;

� a RETURN statement is executed within its range;

� control transfers to a statement that is in the same program unit and is outside the
range of the DO-loop;

� any STOP statement in the executable program is executed; or

� execution is terminated for any other reason (for example, error or end-of-file
conditions on I/O statements).

An active DO-loop does not become inactive when a function reference or CALL
statement appearing in the range of a DO-loop is executed, except when control returns
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by means of an alternate return specifier (that is, RETURN i) to a statement that is not in
the range of the DO-loop.

When a DO-loop becomes inactive, the DO-variable of the DO-loop retains its last
defined value.

4.5.4. DO-Loop Execution

Execution of a DO-loop involves the following steps:

� Executing the DO statement

� Loop control processing

� Execution of the range

� Terminal statement execution

� Incrementation processing

These steps are described in the paragraphs that follow.

4.5.4.1. DO Statement Execution

The following steps are performed in sequence when a DO statement is executed:

1. The initial parameter m1, the terminal parameter m2, and the incrementation
parameter m3 are established by evaluating e1, e2, and e3, respectively. When
necessary, this includes conversion to the type of the DO-variable according to the
rules for arithmetic conversion. When e3 is not specified, m3 is assumed to be 1.

2. The DO-variable is defined by the value of the initial parameter m1.

3. The iteration count is established and is the value of the expression:

MAX( INT( (m2 - m1 + m3) / m3), 0)

The iteration count is 0 (that is, the DO-loop range is executed zero times) when:

m1 > m2 and m3 > 0

or:

m1 < m2 and m3 < 0.

Since the iteration count is calculated only once (before entry into the loop),
variables appearing in the expressions e1, e2, and e3 can be changed during
execution of the loop with no effect on the iteration count.

When noninteger expressions for e1, e2, and e3 are used, the iteration count may be
different than expected due to the approximate nature of real values and the integer
conversion operation.
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On completion of execution of the DO statement, loop control processing begins.

4.5.4.2. Loop Control Processing

Loop control processing determines if further execution of the range of the DO-loop is
required.  The iteration count is tested.  If it isn’t zero, execution of the first statement in
the range of the DO-loop begins.

When the iteration count is zero, the DO-loop becomes inactive.  When all of the
DO-loops sharing the terminal statement of this DO-loop are inactive, normal execution
continues with execution of the next executable statement following the terminal
statement.  However, when some of the DO-loops sharing the terminal statement are
active, execution continues with incrementation processing (see 4.5.4.5).

4.5.4.3. DO-Loop Range Execution

Statements in the range of a DO-loop are executed until the terminal statement is
reached.  Except by incrementation (see 4.5.4.5), the DO-variable of the DO-loop can
neither be redefined nor become undefined during execution of the range of the
DO-loop.  It is your responsibility to ensure that such redefinitions don’t occur.

4.5.4.4. Terminal Statement Execution

Execution of the terminal statement occurs as a result of the normal execution sequence
or as a result of transfer of control. Unless execution of the terminal statement results in
a transfer of control, execution then continues with incrementation processing.

4.5.4.5. Incrementation Processing

The following steps are performed in sequence when incrementation processing occurs:

1. The DO-variable, the iteration count, and the incrementation parameter of the active
DO-loop whose DO statement was most recently executed are selected for
processing.

2. The value of the DO-variable is increased by the value of the incrementation
parameter m3.

3. The iteration count is decreased by one.

4. Execution continues with loop control processing (see 4.5.4.2) of the same DO-loop
whose iteration count was decreased.

Extended Range of a DO-Loop

The extended range of a DO-loop is defined as those statements that are

executed between the transfer out of the innermost DO-loop of a set of

completely nested DO-loops and the transfer back into the range of this

innermost DO-loop.  In a set of completely nested DO-loops, the first DO-loop is
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not in the range of any other DO-loop, and each succeeding DO-loop is in the

range of every DO-loop that precedes it.  The following restrictions apply:

� Transfer into the range of a DO-loop is permitted only when the transfer is

from the extended range of the DO-loop.

� The extended range of a DO-loop must not contain another DO statement

that has an extended range if the second DO statement is in the same

program unit as the first.

� The DO-variable can’t be changed in the extended range of the DO-loop.

� Transfer into extended range must be from the innermost loop.  See the

following illustration:

� A statement that is the end of the range of more than one DO-loop is within

the innermost DO-loop.  The statement label of such a terminal statement

can’t be used in any GO TO or arithmetic IF statements that occur anywhere

but in the range of the most deeply contained DO-loop with that terminal

statement.

� The use of, and return from, a subprogram (see 7.1) from within any

DO-loop in a nest of DOs, or from within an extended range, is permitted.

However, when the DO-variable of the loop is passed to the subprogram, the

subprogram should not alter its value.

Note: The extended range of a DO-loop is not considered good programming

practice.  Try not to use it in new programs.
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4.5.5. Availability of the DO-Variable Value

When optimization is not selected, the memory location associated with the DO-variable
of a DO-loop always contains the current value of the DO-variable.

When optimization is selected, the DO-variable of a DO-loop (as well as other variables)
can be maintained in a machine register.  Consequently, the storage location associated
with the variable may not always contain the current value of the variable.  This is not
noticeable to you unless the storage location associated with the variable is dumped.
The variable is in storage when a reference that requires use of the variable is
performed.

The following types of references require that the variable be used from storage:

� The variable appears in an input/output list within the loop other than as part of a
subscript.

� The variable is used as an argument of a subprogram referenced within the loop.

� The variable is used outside the loop before being redefined and there is a branch to
a statement outside the range of the DO-loop.

4.5.6. DO-Loop Examples

Example 1:

C        In this example, execution of the DO statement causes the 
C        initialization of (1) the DO-variable I to 1, and (2) the
C        iteration count to 50.  After statement 100 is
C        executed each time through the loop, incrementation
C        processing causes (1) I to be incremented by 1, and
C        (2) the iteration count to be reduced by 1.  After
C        50 executions of the DO-loop, incrementation processing
C        causes (1) I to be set to 51, and (2) the iteration
C        count to be set to 0.  Loop control processing then
C        causes the DO-loop to become inactive, thus causing
C        execution of the third statement.  It contains the value 51.
     DO 100 I = 1,50
100     CURRENT(I) = CURRENT(I) - OUT(I)
     X = Y * Z

Example 2:

C        In this example, execution of the DO statement causes the
C        initialization of (1) the DO-variable J to 10, and (2) the
C        iteration count to 5.  Incrementation processing
C        (after statement 200) causes (1) J to be incremented by
C        -2, and (2) the iteration count to be reduced by 1.
C        After five executions of the DO-loop, incrementation
C        processing causes (1) J to be set to 0, and (2) the
C        iteration count to be set to 0.  Loop control processing
C        then causes the DO-loop to be inactive, thus causing
C        execution of the fourth statement.  J contains the value 0.
     DO 200, J = 10,1,-2
         I = J + K
200      ROW (I) = COL(I)
     X = Y * Z
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Example 3:

C        After execution of these statements and at the execution
C        of the CONTINUE statement, I=11, J=10, K=6, L=5, and N=50.
     N = 0
     DO 100 I = 1,10
        J = I
        DO 100 K = 1,5
            L = K
100         N = N + 1
101  CONTINUE

Example 4:

C        After execution of these statements and at the execution of
C        the CONTINUE statement, I=11, J=10, K=5, and N=0.  The
C        value of L is not changed by these statements, since the
C        iteration count for the innermost loop is 0
C        (that is, the innermost loop is traversed zero times,
C        since the increment value is not specified and
C        is assumed to be one.  See 4.5.4.1).
     N = 0
     DO 200 I = 1,10
        J = I
        DO 200 K = 5,1
            L = K
200         N = N + 1
201  CONTINUE

Example 5:

C        The following example demonstrates some of the effects of
C        real-valued DO loops and subscripts.  Note the effects
C        of using a rounding factor.
    DIMENSION I(12)
    DATA I/1,2,3,4,5,6,7,8,9,10,11,12/
    A = 2.4
    B = 4.0
    C = 3.0
    DO 100 R = A/2.0, B * C, 1.2
100        PRINT *, I(R), I(R + .0001), R
    DO 200 R = A/2.0, B * C + .0001, 1.2            @ rounding factor
200        PRINT *, I(R), I(R + .0001), R
     END
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   B*C       B*C+.0001
 Without        With
Rounding      Rounding
 Factor        Factor            R

   1             1           1.2000000
   2             2           2.4000000
   3             3           3.6000000
   4             4           4.8000000
   5             6           5.9999999
   7             7           7.1999999
   8             8           8.3999999
   9             9           9.5999998
  10            10           10.800000
   1             1           1.2000000
   2             2           2.4000000
   3             3           3.6000000
   4             4           4.8000000
   5             6           5.9999999
   7             7           7.1999999
   8             8           8.3999999
   9             9           9.5999998
  10            10           10.800000
  11            12           12.000000

4.6. CONTINUE Statement
Purpose:

The CONTINUE statement serves as a point of reference in a FORTRAN program and
the effect of its execution is that no operational function is performed.

Form:

CONTINUE

Description:

The CONTINUE statement doesn’t perform any executable function, but acts as a
dummy executable statement.

You can place this statement anywhere in the source program where an executable
statement can appear.  It doesn’t affect the program execution sequence.

A statement label is usually used with the CONTINUE statement.  In this way, it provides
a point to which control is transferred without implying any executable action.

CONTINUE is primarily used as the terminal statement of a DO-loop range.  A transfer of
control from any point within the loop to the CONTINUE statement allows the
completion of an iteration of the loop without specifying an additional action.  Use of the
CONTINUE statement in this way facilitates program updating.



Control Statements

UP-8244.4-B 4-23

Example:

C                      This example illustrates the use of CONTINUE as the
C                      terminal statement for a DO-loop.
          DO 29 I = 1,10
                 .
                 .
                 .
             IF (A) 29,38,34
29
          CONTINUE

4.7. PAUSE Statement
Purpose:

The PAUSE statement temporarily suspends execution of a demand (interactive)
program.

Form:

where: 

PAUSE [ {n|message} ]

where:

n

is a string of one to six decimal digits.  (The FORTRAN 77 standard allows a string
of one to five decimal digits.) 

message

is a character constant.  The maximum length of message is 124 characters.

Description:

A PAUSE of either form temporarily halts execution of the program.

The program waits until you transmit a carriage return; the program then resumes
execution, starting with the next statement after the PAUSE statement.

PAUSE n, PAUSE message, or PAUSE 00000 are displayed on the demand terminal,
depending upon whether n, message, or neither was specified, respectively.  Program
execution is suspended until input is received from the terminal.

When the program is not in demand mode, the PAUSE n, the PAUSE message, or PAUSE
00000 is displayed on the system print file, and program execution continues.
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Example:

C               This example causes execution to pause at statement 90
C               if A=0.  When the user causes the program to resume
C               execution, the next statement executed is ’GO TO 180’.
60       IF (A) 80,90,110
70       CONTINUE
80       STOP ’A IS NEGATIVE’
90       PAUSE ’A IS 0’
100      GO TO 180
110      A = B**2 + C**3
120      GO TO 60

4.8. STOP Statement
Purpose:

STOP terminates the execution of the program.

Form:

STOP [ {n|message} ]

where:

n

is a string of one to six decimal digits.  (The FORTRAN 77 standard allows a string
of one to five decimal digits.) 

message

is a character constant.  The maximum length of message is 124 characters.

Description:

Execution of the STOP statement terminates the execution of the program.

When n or message are specified, STOP n or STOP message are displayed on the system
print file.  Otherwise, nothing is displayed.

All open files are closed as part of program termination.

Example:

C                   Execution of this program ceases at statement label 80
C                   when A is negative.
60         IF (A) 80,90,110
70         CONTINUE
80         STOP ’A IS NEGATIVE’
90         PAUSE ’A IS 0’
100        GO TO 180
110        A = B**2 - C**3
120        GO TO 60
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4.9. END Statement
Purpose:

The END statement indicates the end of a program unit. In ASCII FORTRAN, the

END statement indicates the end of compilation for a particular group of

program units.

Form:

END

Description:

The END statement terminates a group of program units, consisting of an

external program unit and zero or more internal subprograms.  An END
statement must appear at the end of one of the following:

� an external program unit (main program, or external function or subroutine) that

has no associated internal subprograms,

� the last internal subprogram associated with a given external program unit,

or

� a BLOCK DATA program.

When present, the END statement must physically be the last statement in a program
unit.  It directs the compiler to compile the preceding statements as one group

of program units.  It also indicates that the following program unit (if any) is

an external program unit.

The execution of an END statement implies a RETURN in a subprogram or a STOP in a
main program.

When the source input to the compiler contains more than one program unit,

each external program unit must be terminated by an END statement, a

FUNCTION statement, or a SUBROUTINE statement.  The FUNCTION and

SUBROUTINE statements in this case signal the start of an internal

subprogram as well as the end of the previous program unit (see 7.3.2 and

7.3.3).

When the END statement is missing, the next control image signals the physical

end of the source input to the compiler.
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Section 5
Input/Output Statements

5.1. General
Input statements obtain data for program use from input files. Output statements store
results produced in the program in output files.  These files can be information storage
files in the computer system (internal storage) or they can be devices such as keyboards,
printers, display terminals, or other peripheral devices.  Therefore, you can use
input/output statements to transfer data:

� from internal storage to an output device,

� from an input device to internal storage, or

� from internal storage to internal storage.

Input/output statements can be organized according to the access method or location of
the file being manipulated:

1. Sequential

2. Direct

3. Internal

The sequential input/output statements are READ, WRITE, PRINT, PUNCH,
BACKSPACE, ENDFILE, REWIND, OPEN, CLOSE, INQUIRE, and DEFINE FILE.  Use
them to access files sequentially.  When you use sequential input/output statements, it is
not possible to read, for example, the seventh record of a file directly; it is necessary to
indicate that the preceding six records have been passed over.  Once the seventh record
is read, it may be impossible (as in the case of a card reader) to go back and reread the
fourth record.  However, this can be done where the BACKSPACE or REWIND statement
is effective (as on magnetic tape).

Direct input/output statements are READ, WRITE, FIND, OPEN, CLOSE, INQUIRE, and

DEFINE FILE.  They refer to random access files in any order based on the record
number.

The internal input/output statements are READ, WRITE, ENCODE, and DECODE. 

Use them for internal storage to internal storage transfers.
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Two types of records (formatted and unformatted) can be read or written depending on
the I/O statement used.  The formatted type of record can be further divided into
format-directed, list-directed, and name-directed forms.  The format-directed form is
called formatted, while the name-directed form is called namelist.

Record Forms I/O Statements Allowed

Formatted Sequential, direct, internal

Namelist Sequential

List-directed Sequential, internal (ENCODE and DECODE only)

Unformatted Sequential, direct

 

The form of record that is read or written is determined from the form of the READ or
WRITE statement.

Formatted records are read or written under the control of a FORMAT statement which
describes the characteristics of the data transferred.  See 5.3 for a description of the
FORMAT statement.

Namelist records are read or written under the control of the NAMELIST

statement with an implied format control.  See 5.4 for details of the NAMELIST

statement.

List-directed records are read or written with an implied format control.  No FORMAT
statement is required.  See 5.5 for a description of list-directed input/output.

Unformatted records are read or written without format control.

Each execution of an input/output statement processes a new record.

All character data is assumed to be in the ASCII character code.

The default record sizes are shown in Table 5-1.  To exceed the default record sizes, use
an OPEN or DEFINE FILE statement.

Table 5-1.  Default Record Sizes  

Type of Record Record Size

APRINT-APRNTA-AREADA symbionts 132 characters

AREAD symbionts 80 characters

APUNCH-APNCHA symbionts 80 characters

continued
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Table 5-1.  Default Record Sizes (cont.)

Type of Record Record Size

System Data Format (SDF) files 33 words (132 characters)

ANSI files 132 characters

 

In addition to the information in this section, more detailed information on input/output
appears in Appendix G.

5.2. Elements of Input/Output Statements
Input/output statements are composed of FORTRAN keywords (READ, WRITE, etc.)
and a list that contains control information about an input or output operation.  The
components of this control information list are called control specifiers.

The control specifiers allowed on an input/output statement depend on the type of
input/output statement used, the type of file access, and the type of record desired.  The
various control specifiers are:

� Unit specifier (UNIT=)

� Record specifier (REC=)

� Input/output list

� Format specifier (FMT=)

� Namelist name specifier

� Error specifier (ERR=)

� End-of-file specifier (END=)

� Input/output status specifier (IOSTAT=)

The complete input/output statements are described in 5.6, 5.7, 5.9, and 5.10.

5.2.1. Unit Specifier (UNIT=)

Refer to a file by its unit specifier, sometimes called the file reference number.  The unit
specifier in the input/output statement indicates the file the statement references.  The
form of a unit specifier is:

[ UNIT = ] u

where:
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UNIT=

is optional.  When this clause is missing, the unit identifier u must be the first item in
a list of specifiers.

u

is the unit identifier.  The unit identifier for an external file can be specified as an
unsigned integer constant or an integer expression whose value is greater than or
equal to zero.  You can use an asterisk to designate the symbiont units 5 and 6 (the
symbionts AREAD$ and APRINT$; see G.6) when using formatted sequential READ
and WRITE statements.  The asterisk can’t be used for the unit identifier in auxiliary
input/output statements.

The unit identifier for an internal file may be a:

� character variable,

� character array,

� character array element, or

� character substring.

Once a unit specifier is associated with a file and that file is opened, the unit specifier
can’t be associated with another file until the first file is closed by either the CLOSE
statement or the CLOSE service subprogram.

There is no standard convention for numbering system files.  Your site can establish its
own convention for assigning file numbers to input/output media (for example, card
readers or printers).  However, unless changed by the site, a default unit specifier
assignment is made; see Table 5-2.

Table 5-2.  Default Unit Specifier Assignment  

Unit Number Unit

5 Standard Input (AREAD$)

6 Standard Print (APRINT$)

1 Standard Punch (APUNCH$)

0 Reread

 

Information on other units and the assignment of unit numbers appears in Appendix G.

The external file can’t be word-addressable mass storage.
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5.2.2. Record Specifier (REC=)

The direct access input/output statements READ, WRITE, and FIND require you to
specify the relative position (index) of the record in the file.

The forms of the record specifier are:

REC = rn

or:  

’rn

where rn is an integer expression that specifies the relative position (index) of the
record that is to be read or written in a direct access file.

When you use the second form of the record specifier, the optional UNIT= clause must
not appear before the unit identifier.

5.2.3. Input/Output List

An output list determines which variables (storage sequences) are written to the output
record when a WRITE statement is executed.  An input list determines which variables
(storage sequences) are filled from the input record when a READ statement is
executed.  The positioning of the names in the input/output list specifies the order in
which the data is transferred between the record and the variables (storage sequences).

An input/output list is composed of list items separated by commas.  The following can
be list items:

� Variable name

� Array name

� Array element

� Character substring name

� Expression (output list only)

� Implied-DO list

Note the following input/output list rules:

1. The name of an assumed-size dummy array must not appear as an input/output list
item.

2. When a function reference is used in an output list, the function and any subprogram
that it activates must not perform input/output.  An attempt to perform recursive I/O
results in a fatal error message.

3. A character expression involving concatenation of an operand whose length
specification is an asterisk in parentheses isn’t allowed in an output list according to
the FORTRAN 77 standard, although ASCII FORTRAN allows it.
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When a variable name or array element appears in the list, one item is transmitted
between the storage sequence and a record.  When an array name appears in the list, the
entire array is transmitted in the order in which it is stored (column-major order).  When
the array has more than one dimension, it is stored in ascending storage sequences with
the value of the first subscript increasing most rapidly and the value of the last subscript
increasing least rapidly.  This ordering is described in 2.4.4.4.

On output, when numeric values fail to fit in the specified output field, the field is filled
with asterisks and no error or warning message results.

Parts of arrays can be read or written using an implied-DO clause in the input/output list.

The implied-DO clause enables selected array elements to be referenced for input/output
operations without putting each value on a separate record (for example, when the
statement is in a DO-loop) or listing each element individually.

An input/output list containing the implied-DO clause has the form:

(input/output list , i = e1 , e2 [ ,e3] )

Note that the implied-DO clause must be enclosed in parentheses.

The elements i, e1, e2, and e3 are as specified for the DO statement (see 4.5).  The range
of an implied-DO clause is the input/output list of the implied-DO.  For input lists, i can’t
appear as input list items within the range of the implied-DO.  Note that i can’t be a
DO-variable in any containing implied-DO clauses or DO statements.

If the implied DO-loop is terminated early, the DO variable i becomes undefined.  This
occurs when an end-of-file condition or an error condition occurs during execution of a
READ statement.  If an error condition occurs during execution of an output statement,
the DO-variable i becomes undefined.

An example of an input/output list without an implied-DO clause is:

VAR1, ARRAY1, ARRAY2(5)

This list refers to input/output of the contents of variable VAR1, array ARRAY1, and
element five of array ARRAY2.

The list:

(ARRAY2(J), J = 1,3)

refers to the first, second, and third elements of ARRAY2 without having to specify each
element separately.

Note that an input/output list of an implied-DO clause can be another implied-DO clause.
This produces a nesting of implied-DO clauses similar to nesting DO-loops (see 4.5.2).
Since each implied-DO clause must be surrounded by parentheses, the implied-DO
clause at the deepest parenthesized level is the innermost loop.  For example, the nested
implied-DO clauses:
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( (ARRAY4(J,K), J = 1,9,4), K = 2,3)

refers to elements ARRAY4(1,2), ARRAY4(5,2), ARRAY4(9,2), ARRAY4(1,3),
ARRAY4(5,3), and ARRAY4(9,3) in that order.  The loop controlled by DO-variable J is
the innermost loop.

Implied-DO clauses may be nested to a maximum depth of 25 loops.

The list:

VAR1, VAR2, (VAR3, ARRAY5(J), J = 3,6)

refers sequentially to VAR1, VAR2, VAR3, ARRAY5(3), VAR3, ARRAY5(4), VAR3,
ARRAY5(5), VAR3, and ARRAY5(6).

5.2.4. Format Specifier (FMT=)

To read or write formatted records, you must include a format specifier in the READ or
WRITE statement.

The form of the format specifier is:

[ FMT = ] f

where:

FMT =

is optional.  When the FMT= clause is omitted, the format identifier f must be the
second item in the list of specifiers, and the unit identifier must be the first item
without the optional UNIT= clause.  When the UNIT= and FMT= clauses are present,
the specifiers in the control information list may be in any order. 

f

is a format identifier and can be any of the following:

� Statement label of a FORMAT statement.

� Name of an integer variable containing the statement label (assigned with the
ASSIGN statement) of a FORMAT statement.

� Name of a character array (except assumed-size array) or scalar character
variable containing a format specification.

� Name of a noncharacter array (except assumed-size array) containing a

format specification.

� Character expression containing the format.

� Asterisk specifying list-directed formatting.

The format specifications are described in 5.3.  When the format identifier identifies a
FORMAT statement, it must be in the same program unit as the input/output statement.
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5.2.5. Namelist Name Specifier

To read or write namelist records, you must specify a NAMELIST statement

name in the READ or WRITE statement.

A namelist name specifier is a symbolic name (see 2.4).  By referring to this

name, you can write a simple input/output statement that has the same effect as

an input/output statement with a long list and a reference to a complicated

FORMAT statement.  The NAMELIST statement is described in 5.4.

5.2.6. Error Specifier (ERR=)

An error specifier (ERR clause) is allowed in certain input/output statements.  The error
specifier specifies that when an error or warning occurs while executing an input/output
statement, execution of the statement terminates as soon as the error or warning is
detected, the file position is indeterminate, the IOSTAT variable (if present) is given a
value, and execution is transferred to the specified statement label.

When an error occurs while executing an input/output statement and neither an error
specifier nor an input/output status specifier (see 5.2.8) is specified, the program
terminates.

When a warning occurs and no error specifier is present, execution of the input/output
statement continues after the IOSTAT variable (if present) is given a value.

The error specifier has the form:

ERR = s

where s is the statement label (in the same program unit as the input/output statement)
to which control is transferred when an error or warning condition is detected.

5.2.7. End-of-File Specifier (END=)

An end-of-file specifier (END clause) is allowed in certain input/output statements.  The
end-of-file specifier is a statement label (in the same program unit as the input/output

statement) to which transfer is made when an end-of-file condition is encountered
during execution of the input/output statement.  When an end-of-file condition is
encountered while executing an input/output statement and neither an end-of-file
specifier nor an input/output status specifier (see 5.2.8) is specified, the program
terminates.

The end-of-file specifier has the form:

END = sn

where sn is the statement label to which control is transferred.
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5.2.8. Input/Output Status Specifier (IOSTAT=)

An input/output status specifier (IOSTAT clause) is an integer variable or integer array
element that, when specified in an input/output statement, receives a value determined
by the success of the execution of the statement.  The value returned is one of the
following:

� A zero is returned when neither an error condition nor an end-of-file condition is
encountered.

� The value of the I/O status word, PTIOE, from the storage control table is returned
when an error or warning condition is encountered.  The value returned has the
format:

substatus unit number error clause number

See G.9 for a further discussion of PTIOE.

� The value -1 is returned when no error condition is encountered but an end-of-file
condition is encountered.

The input/output status specifier has the form:

IOSTAT = ios

where ios is an integer variable or integer array element.

When the IOSTAT clause is present, control returns to the FORTRAN program after an
error or warning condition is encountered regardless of the presence or absence of an
ERR or END clause.  When an ERR or END clause is specified, control resumes at the
statement associated with the label named in the clause, but when only an IOSTAT
clause is specified, execution resumes with the statement following the I/O statement
containing the IOSTAT clause.

5.3. FORMAT Statement
Purpose:

The FORMAT statement specifies the external form of the values of the input/output list
elements and the arrangement of the data within the transmitted records.

Form:  

f FORMAT format-specification

where:  

f

is a statement label.  
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format-specification

is a format specification having the following form:

( [ format-list ] )

where:

( )

parentheses are required but may be empty [that is, FORMAT( )].  When

empty, and an input/output list is present, the input or output is

list-directed (see 5.5).  When empty and there is no input/output list, one
record is skipped on input or one blank record is written on output.  

format-list

describes the fields to be input or output.  The format-list can include the
following:

� Edit descriptors (see 5.3.1) and repetition factors

� Sign options

� Grouping delimiters

� Scale factors

� Carriage controls

� Line delimiters

Description:

The FORMAT statement is a nonexecutable statement and can be placed anywhere in
the source program.  Since statement labels are local to the routine in which they
appear, FORMAT statements are local to the routine by implication.

A format list describes fields to be input or output.  A field is a string of adjacent
character positions.  The width of a field is the number of character positions in the
string.  A formatted record is a character string.  On output, a record is constructed by
concatenating the output fields. On input, the record is divided into fields according to
the format list.

For any field, the format list must define its width and the type of conversion between
the internal and the external forms, or the literal characters desired, or it must indicate
that the field is to be skipped.

FORMAT statements are examined by the compiler for correctness and converted to a
more efficient internal form that is used during the execution of the FORTRAN program.

As stated in 5.2.4, a character array, scalar character variable name, character
expression, or noncharacter array can be used in place of a statement label of a
FORMAT statement in a formatted input/output statement.  The contents are format list
items that can be modified during the execution of the object program.  Such formats
are not converted to an internal form by the compiler and are not examined by the
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compiler for correctness.  The rules governing the contents of such formats appear in
5.3.9.

5.3.1. Edit Descriptors for Format Specification

Use an edit descriptor to specify the characteristics (format list) of a field.  An edit
descriptor can specify the type of conversion and field width, the explanatory literal
characters, or the number of characters to be skipped.  When two or more edit
descriptors appear in a format specification, separate them from each other by a comma,
a colon, or a slash.

The size of the integer constants w, d, and e must be less than 512.  The size of p must be
less than 256.

Edit descriptors:

Iw

Integer.  The field is to occupy w positions, the type of list item is integer, and the
value of the list item is to appear as an integer constant right-justified in the field.
When the field width specified for output is not large enough to contain the entire
integer including a sign if it is required, the field is asterisk-filled to indicate
overflow.  When the field width specified is larger than that required for the
constant, it is blank-filled on the left.

In an input field, leading blanks are ignored while embedded blanks are interpreted
as zeros unless the BN edit descriptor has been encountered or BLANK=NULL
occurred on the OPEN statement (see 5.10.1).

Iw.d

Integer.  This code is used for output only; it is ignored on input.  The w is the same
as for Iw. The d indicates that at least d digits are written.  This includes any zeros
needed to equal d digits.  The difference between w and d is space-filled on the left
of the field.  When a sign is required, w must be greater than d. 

Jw 

Integer zero-filled.  This code is the same as Iw for input.  For output, the

integer is right-adjusted as in an Iw field; however, the rest of the field is

zero-filled.  When there is a sign, it appears in the leftmost position in the

field.

Fw.d 

External fixed point.  The field is to occupy w positions on output.  The list item is
real, one part of a complex value, or double precision.  The integer portion of the
corresponding value appears as a right-adjusted real constant in the leftmost w-d-1
positions in the field.  This integer part can’t have an exponent.  A decimal point
character occupies position d + 1 from the right-hand end of the field (d ≥ 0).  The
fractional part of the number is to occupy d digits written to the right of the decimal
point.  When the number is negative, the field width must permit a minus sign to be
written immediately to the left of the most significant digit of the number.  When the
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field width specified is larger than that necessary to contain the number, it is
space-filled on the left.  When the width specified is not large enough to contain the
number including any necessary sign, the field is asterisk-filled.  When a sign is
required, the minimum field width necessary for an F edit descriptor is w = 2 + d + s,

where s = MAX(p + i, 0), p is the scale factor (see 5.3.6), and i is defined by 10i-1 ≤
|M|  <  10i, where M is the quantity to be written.

On input, Fw.d designates a field of w characters, of which d characters follow the
assumed decimal point.  The assumed decimal point is ignored if a decimal point
appears in the input.  An exponent can follow the number.  It must be a signed
integer constant or begin with an E or D followed by an optionally signed integer
constant.  Blanks embedded in the input field are treated as zeros unless the BN edit
descriptor has occurred or the OPEN statement for the file contained a
BLANK=NULL.  Embedded and trailing blanks are then ignored.  Leading blanks are
ignored.

Ew.d

Floating point.  The field is to occupy w positions.  The list item is real, one part of a
complex value, or double precision.  The value of the list item is to appear as a
decimal number, right-justified in the field in the form: 

- . xxxxxxseee

in which xxxxxx are the d most significant digits of the mantissa, s is a plus or
minus sign, and eee is the corresponding 3-digit exponent.  When the exponent is
positive, a plus precedes eee.  When it is negative, a minus is written.  When the
value of the list item is positive, the minus sign in front of the decimal point is
omitted or replaced by a plus sign if the SP edit descriptor has occurred.  The
minimum field width necessary to contain a number of this type, including the sign
of the fraction, is w = 6 + d + sf; with sf = max(p,0), where p is the scale factor (see
5.3.6).  When the field width specified is larger than necessary to contain the
number, it is blank-filled on the left.  When the field width is too small to express the
value to be written, the field is filled with asterisks.

On input, Ew.d is equivalent to Fw.d.

Ew.dEe
Ew.dDe

Specific floating point.  This is a special Ew.d format used for output only.  The
output format is:

- . xxxxxxEseee        or        - . xxxxxxDseee

where e specifies the number of exponent digits.  When the exponent exceeds the
number of exponent digits specified, the field is filled with asterisks.

Dw.d 

Double precision floating point.  This is the same as Ew.d except that the list item is
regarded as double precision.  The exponent is generally a 3-digit number.  Thus, w ≥
6 + d + sf. 
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pP

Scale factor (see 5.3.6).

BN
BZ

Blank.  This descriptor controls the interpretation of embedded or trailing blanks in
numeric input fields.  The BN edit descriptor indicates that embedded blanks are
ignored in numeric input fields.  The BZ edit descriptor indicates embedded blanks
are treated as zeros in numeric input fields.  Embedded blanks in numeric input
fields are normally treated as zeros during format control unless an OPEN statement
is present for the file reference number of this formatted I/O statement.  (See the
BLANK= clause of the OPEN statement [5.10.1].)  When a BN edit descriptor is
encountered in the format list, embedded blanks are ignored in numeric input fields
until the end of that format or until a BZ edit descriptor is encountered.

S
SP
SS

Sign.  This edit descriptor controls the writing of optional plus signs in numeric
output fields.  If SP or +S is used, all optional plus signs are written.  The field width
must be large enough to handle the sign or the field is filled with asterisks.  An SS, S,
or -S turns the option off, and then only the minus signs are written.

Lw

Logical.  This edit descriptor is used only with input and output of logical variables.
When Lw is specified for output and the value of the logical list item is .TRUE., the
rightmost position of the field with length w contains the letter T with w-1 blanks on
the left.  When the value is .FALSE., the letter F is written.

On input, the field width is scanned from left to right for optional blanks, optionally
followed by a decimal point, followed by a T or F, and the value of the corresponding
logical list item is set to .TRUE. or .FALSE., respectively.  All other characters
following the T or F in the external input field are ignored.  In the absence of T or F
in the input field, no value is stored and a warning message is issued. 

Ow

Octal.  The field occupies w positions, the value of the list item is

interpreted as a 12-digit (or 24-digit) octal number, and the quantity is

written as an octal number that is right-justified in the field.  When the field

width, w, is less than or equal to 12, the w least-significant digits appear.

When w is larger than 12, it is filled out to the left with blanks on output

and binary zeros on input.  When the list item is double precision, 24 digits

can be read or written.  When w is less than or equal to 12, a

double-precision list item is treated as a single-precision item; only the

most significant word of the list item is used.  When the output list item is

character, the leftmost w characters of the list item are placed in the field

and blank-filled on the left if w is greater than the character item length.

When the input list item is character, the leftmost portion of w characters is

stored to the list item and blank-filled on the right if w is less than the

length of the list item.
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A[w]

Alphanumeric.  The field occupies w positions.  Let s be the length of the character
list item.  This is the length of the variable for type character, four for integer, real,

or logical; eight for double precision.  On output, when w is less than or equal to
s, the leftmost w characters of the list item are placed in the field.  When w is greater
than s, then the s characters of the list item are placed right-justified in the field and
the field is blank-filled on the left.

On input, when w is less than s, the w characters of the field are placed in the
leftmost w characters of the list item and the rightmost s-w characters are
blank-filled.  When w is greater than or equal to s, the rightmost s characters are
placed in the list item.  When w equals zero, no characters are transferred.  When w
is missing, the number of characters transferred is the character length of a list item
of type character only.  The w is optional only for list items of type character. 

Rw

Right-justified alphanumeric.  This code is similar to Aw.  However, when w

is less than s on input, the next w characters are placed right-justified in

the list item with zero fill (000, ASCII NUL).  When w is less than s on

output, the rightmost w characters in the list are transmitted.

wHh1...hw

H edit descriptor (Hollerith).  The field is to occupy w positions.  The field consists
of literal characters and is filled with the w characters (including blanks) that follow
H.  The field designation is independent of the list items.  The length w is limited
only by the external medium and by the maximum of 511 significant characters for
w. 

On input, the Hollerith specification is read into the format specification

itself and is available on the next write using the same nonvariable format.

Variable formats can’t save the Hollerith data in the format itself.

’h1h2...hw’

Apostrophe.  This is the same as the H edit descriptor; the only difference involves
apostrophes within the literal string.  When an apostrophe is to be included in the
literal string, use two apostrophes to indicate its position. 

wX

Skip.  A field whose length is w is skipped.  The field designation is independent of
the list items.  Skipping forward over a character position that has not yet been set
in the record causes the character position to be set to blank.  When w is negative,

the skipping is in a backward direction.  However, a negative w can’t go back

further than the beginning of the record; the skipping stops at the beginning

of the record.  No blanking is done when w is negative.

Gw.d

General.  When the output item (M) is real, an E, D, or F edit descriptor is used,
depending on the absolute value of M.  If 10i-1 ≤ |M|  <  10i and d ≥ i ≥ 0 (where d is
the number of significant decimal digits) the output field is formatted by
F(w-4).(d-i),4X.  When |M| <  0.1 or |M| ≥ 10**d, the output field is formatted by Ew.d
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or Dw.d.  When the scale factor p (see 5.3.6) is applied, the edit descriptor pPEw.d is
used.  The G edit descriptor doesn’t change the value of the item.  Values are strictly
numeric or logical.  No conversion is done for character type for output.  A scale
factor of zero is assumed when the F edit descriptor is used.

On input, the G edit descriptor is the same as an F edit descriptor without a scale
factor.  Thus, Fw.d is used on input when pPGw.d is specified.  The G edit descriptor
also provides for integer and logical conversion as though it were Iw and Lw,

respectively.

Gw.dEe

General.  This is a special Gw.d format used for output only.  The output format is:  

±.xxxxxxEseee

where e specifies the number of exponent digits.  This format is used when the
absolute value of the output item requires an E edit descriptor.  If the F edit
descriptor is used, the output field is formatted by F(w-(e+2)).(d-i),(e+2)X.

Tw

Character position.  This edit descriptor causes the input or output operation to
begin at the wth position of the record.  Therefore:

FORMAT(10X,F10.3)

is equivalent to:

FORMAT(T11,F10.3)

On output, if w is greater than any character position written up to that time, the T
edit descriptor will blank the character positions between w and the highest
character position written.  The order of the associated list does not need to be the
same as that of the record input.  For example:

FORMAT(T50,F10.3,T5,F10.2)

is valid for writing the first list item in positions 50-59 and the second in positions
5-14.  The first character position of a record is number one.

TLw

Character position left.  This edit descriptor causes the character position in the
record to be moved w positions to the left or backward from the current position.  If
the current position is less than or equal to w, the new character position is the first
character position in the record.

TRw

Character position right.  This edit descriptor causes the character position in the
record to move w positions to the right or forward from the current position.  The
TRw can’t write beyond the end of the record.
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/

Slash.  (See 5.3.7.1.)

:

Colon.  (See 5.3.7.2.)

When numeric output values fail to fit in the specified field length, the field is filled with
asterisks and no error results.

Examples of the uses of these edit descriptors follow:

 C         Integer codes:
     K=76
     M=3333
     WRITE (6,10) K
 10  FORMAT(1X,I10)
     WRITE(6,20) K
 20  FORMAT(1X,I10.7)
     WRITE(6,30) K
 30  FORMAT(1X,J10)
     WRITE (6,40) M
 40  FORMAT (1X,I3)
 C         Format 10 writes integer K as ��������76
 C         Format 20 writes K as ���0000076
 C         Format 30 writes K as 0000000076
 C         Format 40 writes M as *** since M doesn’t
 C         fit in the 3-digit field.

 C         Real value codes:
     R=76.8
     WRITE(6,40) R
 40  FORMAT(1X,F7.2)
     WRITE(6,44) R
 44  FORMAT(1X,E10.2)
     WRITE(6,46) R
 46  FORMAT(1X,D11.2)
     WRITE(6,48) R
 48  FORMAT(1X,SP,G10.4)
 C         Format 40 writes R as ��76.80.
 C         Format 44 writes R as ���.77+002.
 C         Format 46 writes R as ����.77+002.
 C         Format 48 writes R as +76.80����

 C         Alphanumeric edit descriptor:
     CHARACTER*4 X,Y
     CHARACTER*8 A,B
 50  FORMAT(A3,A5,R2,R6)
     READ(5,50)A,X,Y,B
 55  FORMAT(1X,A6,A3,R5,R3)
     WRITE(6,55)X,X,Y,Y
     END
 C          Using the string ’ABCDEFGHIJKLMNOP’ as
 C          input, the READ statement produces
 C          the following values:
 C          A=’ABC�����’
 C          B=’� �KLMNOP’
 C          X=’EFGH’
 C          Y=’� �IJ’
 C          The WRITE statement produces the record:
 C          ��EFGHEFG� � �IJ�IJ
 C          Note that in these examples, � represents the
 C          nonprinting graphic for code 040 (the ASCII space
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 C          code) and � represents the nonprinting graphic
 C          for code 000 (the ASCII NUL).

5.3.2. Repeating Edit Descriptors

When two or more successive edit descriptors (except wH, wX, Tw, TLw, TRw, /, S, SP,
SS, BN, BZ, pP, :, and apostrophe) are identical in every respect, a shorthand notation
can be used.  Write the edit descriptor only once and prefix it with an unsigned integer
constant less than 512 that indicates the number of repetitions of the field.  For example,
you can write:

FORMAT(I5,I5,I5)

as:

FORMAT(3I5).

5.3.3. Repeating Groups of Edit Descriptors

When two or more successive groups of edit descriptors occur and each element of one
group is identical to the corresponding element of the other groups, then a further
shorthand notation can be used.  Specify the group only once; enclose it in parentheses,
and prefix the resulting parenthesized group with an unsigned integer constant less than
512 that indicates the desired number of repetitions of the group.  When none is
specified, a repeat count of one is assumed.  For example, you can write:

FORMAT(I5,F9.4,E8.2,I5,F9.4,E8.2)

as:

FORMAT(2(I5,F9.4,E8.2) ).

Only four-deep nesting of parentheses is permitted (see 5.3.8).  For example, the
following statement is legal:

FORMAT(’0’,5(F9.3,5(E12.6,2(I8,2(I10,I5) ) ) ) )

However, if it has another nested group, that group is executed as if it has a group count
of one.

When the input/output list is longer than the number of edit descriptors in the format
specification, the format scan returns to the first level of parentheses (unless the format
contains an indefinite repetition group).  In the example, the scan returns to F9.3 and
continues until the input/output list is exhausted.  Reversion of format control has no
effect on scale factor, sign control, or blank control (see 5.3.8).
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5.3.4. Carriage Control

When an output record is printed, the first character of the record controls line spacing
and is not printed.  Printing begins in the first character position of a line with what is
normally the second character of the record.  You normally provide an appropriate first
character with one of the following:

� H edit descriptor

� apostrophe edit descriptor

� wX edit descriptor (providing a blank)

The effect of these carriage control characters is as follows:

Character Effect

blank Single space before printing

0 (zero) Double space before printing

1 Skip to top of next page

+ Suppress spacing

 

When an H, apostrophe, or wX edit descriptor are not provided, the first character of
whatever field comes first is used for carriage control.  If it is an illegal character, the
default blank character is used.

When an empty format is used without an input/output list, one record is skipped on
input or one blank record is written on output.

Carriage control characters are only effective for print files (output symbiont units).  See
5.10.1 for information on using the OPEN statement TYPE clause to change the file
format type to symbiont.

The effect of the carriage control characters depends on the output device that you use.

5.3.5. Complex Variables

One complex variable requires two D, E, F, or G edit descriptors.  They need not be the
same.

When read or written under control of a FORMAT statement, a complex value appears as
a pair of real values.  They are not enclosed in parentheses or separated by a comma
unless the format specification provides them explicitly.
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5.3.6. Scale Factor

Input and output using the F, E, G, and D edit descriptors can be modified by a power of
10 by using a scale factor of the form pP, where p is a signed integer.

The separating comma can be omitted between a scale factor and an F, E, D, or G edit
descriptor that immediately follows.

When format control is initiated, a scale factor of zero (that is, 0P) is established.  Once
established, a scale factor applies to all subsequent F, E, G, and D edit descriptors in its
FORMAT statement or until another scale factor is encountered in the statement.  The
scale factor doesn’t affect any of the other edit descriptors.

For input, a scale factor, P, has the following effect:

� The scale factor has no effect on input with F, E, G, and D editing that contains an
exponent in the external field.

� For F, E, G, and D editing with no exponent in the external field, the internal value is
the external value divided by 10p.

For output, a scale factor, P, has the following effect:

� For F editing, the external value is the internal value multiplied by 10p.

� For values using E or D editing, the fraction is multiplied by 10p and the exponent is
decreased by p.  In other words, the field changes in form but not in value on printed
output.

If p  <= 0 and p  > -d, the output field to the right of the decimal point contains d
digits, of which |p| are leading zeros and d- |p| are significant digits.

If p  > 0 and p  <  d+2, the output field contains exactly p  significant digits to the left
of the decimal point and d-p+1 significant digits to the right of the decimal point.

For other values of p, the output field is asterisk-filled.

� For G editing, the effect of the scale factor depends on the magnitude of the value.
When its size requires E editing, the scale factor effect is that of E editing.  When F
editing is necessary, the scale factor has no effect.

For instance, assume that variable A has the value -12764.316.  If A is printed according
to the specification E13.6, then the field printed is -.127643+005.  If A is printed
according to the specification 2PE14.6, then the field printed is -12.76432+003.  If A is
printed according to the specification -3PF7.2, then the field printed is -12.76.

5.3.7. Control of Record Handling and List Fulfillment

The colon and slash delimiters let you halt unnecessary output and begin processing a
new record, respectively.
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5.3.7.1. Using a Slash (/) to Control Multiple-Line Formats

A slash following an edit descriptor terminates the record being input or output.
Interpretation of a new record’s format continues with the edit descriptor following the
slash for the next list item.  When n slashes are written in sequence before the first edit
descriptor in the format, n blank records are written or n records are skipped before
reading a record.  When n slashes are written after the last edit descriptor in the format,
n blank records are written or n records are skipped on input.  When edit descriptors are
used before and after n sequential slashes, n-1 blank records are written or n-1 records
are skipped on input.

Separating commas can be omitted immediately before or after a slash.

The following examples produce three blank lines when the output goes to the printer:

(///I2)
(I2///)
(1X///I2)
(I2///1X)
(I2////F8.2)

The third and fourth examples place one blank in a record or line, which is then printed
to produce three blank lines.

When the file is a direct-access file, the record number is increased by the number of
records skipped on input or by the number of blank records written on output.

Slashes can also be used in list-directed input/output (see 5.5).

When a single slash is used as the format specification; that is, (/), without an
input/output list, two records are skipped on input or two blank records are written on
output.  An empty format specification; that is, ( ), without an input/output list, skips one
record on input or writes one blank record on output.

5.3.7.2. Using a Colon to Control List Fulfillment

A colon in the format list indicates that when a record is being read or written and the
colon is encountered, the operation is ended if the last item in the list has already been
processed.  A single colon can appear at the beginning or end of the FORMAT statement
or between pairs of format list items.

You can omit separating commas immediately before or after a colon.

An example of the use of the colon for output is:

1  FORMAT (’�A�=’,F10.3:, �B�=’,F10.3:’�C�=’,F10.3) 
   IF (I.EQ.1) PRINT 1,A   
   IF (I.EQ.2) PRINT 1,A,B   
   IF (I.GT.2) PRINT 1,A,B,C

Using the values I=2, A=17., and B=3.1416, the output is:
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�A�=����17.000�B�=�����3.142

Using commas in place of the colons, the output prints C= before discovering the list is
empty, resulting in:

�A�=����17.000�B�=�����3.142�C�=

An example of the use of the colon on input is:

2  FORMAT (F10.3 / )
1  FORMAT (F10.3, : / )
   READ (5,2) E
   READ (5,1) E1

If the input is:  

�������1.2
�����104.2
���������2
�������111

the first READ statement sets E to 1.2 and the second READ statement sets E1 to .002.
If the first READ statement uses a colon before the slash, E1 is set to 104.2.

5.3.8. Relationships of a Format Specification to an I/O List

During the execution of an input/output statement, the format specification is scanned
from left to right.  Edit descriptors of the form wH, wX, pP, BN, BZ, S, SP, SS, TLw, TRw,

Tw, slash, and apostrophe are interpreted, and the appropriate action is taken without
reference to the input/output list.

When another edit descriptor occurs, either there is at least one list item remaining to be
transmitted or there is not.  If one remains, the next list item is converted according to
the format specification and transmitted.  The format scan then continues.  If no values
remain, the transmission is terminated. (See 5.3.7.2 for the effect of a colon in the
input/output list.)

There can be up to five levels of parentheses in a FORMAT statement.  That is, there may
be up to five left parentheses followed by matching right parentheses.  The outermost
pair is called the zero-level parentheses.

If format control encounters the rightmost parenthesis of a complete format
specification and another list item is not specified, format control terminates.  However,
if another list item is specified, the file is positioned at the beginning of the next record
and format control then reverts to the beginning of the format specification terminated
by the last preceding right parenthesis.  If there is no such preceding right parentheses,
format control reverts to the first left parenthesis of the format specification.  If such
reversion occurs, the reused portion of the format specification must contain at least
one repeatable edit descriptor.  If format control reverts to a parenthesis that is
preceded by a repeat specification, the repeat specification is reused.  Reversion of
format control, of itself, has no effect on the scale factor (see 5.3.6), the S, SP, or SS edit
descriptor sign control, or the BN or BZ edit descriptor blank control (see 5.3.1).
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In the following example:

FORMAT(’0’,5(F9.3,5(E12.6,2(I8,2(I10,I5)))))

the second (and every following) record is started with an F9.3 edit descriptor.  If there
are no nested parentheses, scan control reverts to the beginning of the format
specifications.

You cannot specify more than 80 characters for one record of symbiont input or more
than 132 characters for a symbiont output record unless an OPEN statement specified a
different record size for the symbiont.  If the scale factor is modified by a pP edit
descriptor, it is not reset to zero when control reverts to the appropriate left parenthesis.
Each pP edit descriptor remains in effect until the end of the FORMAT input/output list
or until another pP edit descriptor is encountered (see 5.3.6).

If the format specification is empty and an I/O list is present, list-directed I/O is

used.  If the I/O list is not present and the format specification is empty, one record is
skipped on input or one blank record is written on output.

The IOFLG$ subprogram prevents checking for a type mismatch between an I/O list item
and a format edit descriptor during the execution of a formatted I/O statement.  For
more information, see 7.7.3.23.

5.3.9. Variable Formats

Any of the input/output statements that specify formats can contain an array or scalar
character variable name or a character expression in place of the reference to a format.

Assume the symbolic name V is an array.  The contents of the array can be initialized and
modified like any array.  Array V must contain legal format specifications in ASCII form
at the time it is used as a format.  The format specifications in V must have the form:

(format-list)

The form of this specification is as described in 5.3 except the word FORMAT is omitted.
Blanks can appear before the first left parenthesis (zero-level), indicating the beginning
of the format.  Characters following the right parenthesis, which indicates the end of the
format (zero-level right parenthesis), are ignored.  For example:

     CHARACTER*4 V 
     DIMENSION V(5),K(8)
     DATA (V(I),I=1,5)/4H(1H1,2H,8,1HI,2H10,1H) /
     READ(5,60)K
     WRITE(6,V)K 
60   FORMAT(8I10)
     END

generates (1H1,8��I���10��)���.  The blanks (�) are ignored when the array is used
as a format.

The use of V as a format is equivalent to using:
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FORMAT(1H1,8I10)

H edit descriptors (Hollerith specifications) inside variable formats must be of the form
nH.  The variable format is converted by the library to a coded format and stored in a
library storage area.  The variable format is not changed by the library.  The variable
format can be changed by the program.  When the H edit descriptor is used in a

variable format on a READ statement, the H edit descriptor in the variable

format doesn’t contain the Hollerith data read in; that is, the variable format

isn’t changed.

A character expression in the control information list as the format could be:

WRITE (6,’(1X,8I10)’) K

When you specify an array element for the variable format, only the contents of that
element are used for the format.

5.3.10. Representation of Input/Output Data

The format of data in an input field can be the same as that generated by the same
format edit descriptor for output.

� Unless positioning is achieved by the X, T, or TR edit descriptors, column 1 is the
first column read.  There is no carriage control.

� Plus signs can be omitted or can be indicated by +.  Minus signs are indicated by -.

� Embedded or trailing blanks in a numeric input field are equivalent to zeros unless
the BN edit descriptor is used or BLANK=NULL on the OPEN statement is used (see
5.10.1).

� Only the high-order 8 digits are retained for input into real variables; the high-order
18 digits are retained for D input into double-precision variables.

� For E and D editing, the exponent can be indicated by an E or a D (interchangeable),
or, if E or D is omitted, by + or - (not a blank).  Thus, E2, E+2, E+02, +2, and D2 are
all permissible, equivalent exponents.  Lowercase e and d are recognized as E and D.

� For E and D, if the exponent is omitted, it is taken to be either zero or the value of
the P specification (see 5.3.6).

� On input with E, D, F, and G editing, a decimal point appearing in the input field
overrides the assumed decimal point position specified by the edit descriptor.

− The exponent is right-justified in the subfield defined by the E or D, or +, or -, at
the right-hand limit of the field.  The subfield can be empty.  The fraction is
right-justified in the remaining field, to the left of the E, D, +, or -.

− When the decimal point is omitted, it is assumed to be located between the d
and d+1 positions (from the edit descriptor) to the left of the exponent.  When
no exponent is present, the decimal point is assumed to be located between the
d and d+1 rightmost positions in the field.
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5.4. Namelist Input/Output
The nonexecutable NAMELIST statement and the associated forms of the

input/output statements provide a simplified means of transmitting an

annotated list of data to and from files with implied format control.

The NAMELIST statement specifies the items to be transferred. In the

associated input/output statement, the list of items to be transferred is void.

See 5.6.1.3 and 5.6.2.3 for details on input/output statements that use the

namelist specification.  Therefore, by referring to a single name n, it is possible

to form a simple input/output statement that has the same effect as a similar

statement with a long list and a reference to a complicated FORMAT statement.

On input, the list of items in the namelist specifies those items that can have

their values defined in the records to be read.  Not all items of the namelist

need be used in the input records nor must the input fields be in the same order

as the list items.  If a list item is an array name, data can be assigned to the

entire array, a group of contiguous elements, or any individual elements of the

array as specified by the input records.  Within input records, the data to be

read is identified within the input record itself.  Thus, to read the number 1.5

into variable A, the external input field contains:

A=1.5

where the field is delineated by commas.  The acceptable forms of the data and

the format in which the data is to be stored are dictated by the type of the list

item (see 5.4.2).

On output, each list item of the designated namelist is formatted in a standard

fashion for output in the order specified by the list (see 5.4.3).  Namelist output

can be used as a convenient source language diagnostic tool, especially when it

is coupled with a parameterized DELETE statement.

When a whole array is read or written, its size must be less than 262,143 words

and it must contain fewer than 262,143 elements.

5.4.1. NAMELIST Statement

Purpose:

The NAMELIST statement provides a simplified means of identifying a list of

data for transferral to or from files.

Form:

NAMELIST /n/x[ ,x] ... [/n/x[ ,x] ... ] ...

where:
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each n

is a namelist name which must satisfy the rules for a symbolic name.  Each

must be unique within its program unit.

each x

is a simple variable, a subscripted variable, or an array name.

Description:

Within a NAMELIST statement, a namelist name is enclosed in slashes.  The list

of variables associated with a namelist name ends when a new namelist name

enclosed in slashes is encountered or with the end of the NAMELIST statement.

A namelist name can be defined only once in a program unit by its appearance

in a NAMELIST statement.  Within the unit in which it is defined, a namelist

name can appear only in input/output statements and in the defining

NAMELIST statement.

A variable name, array element name, or array can be associated with one or

more namelist names.  Array names must be previously declared.  The

subscripts of an array element must consist of constants or parameter

constants.  Dummy arguments are not permitted in a namelist list.  Don’t use a

$ in the variable name, array element name, or array name.

For a description of local-global rules for names used in NAMELIST statements

in internal subprograms, see 7.9.

See 5.4.2 for details on input associated with a NAMELIST statement and 5.4.3

for information on the form of output resulting from the use of a namelist

WRITE statement.

Example:

     DIMENSION A(10),I(5,5),L(10)
     NAMELIST/NAM1/A,B,I,J,L(3)/NAM2/A,C,J,K,I(2,3)
 C           Arrays A and I, variables B and J, and subscripted
 C           variable L(3) are associated with namelist name NAM1,
 C           and array A and variables C, J, K, and I(2,3) are
 C           associated with namelist name NAM2.

5.4.2. Namelist Input

The READ (u,n) statement (see 5.6.1.3) causes the records that contain the

input data for the variables and arrays that belong to the namelist name n to be

read from input unit u.

For READ (u,n), the first character of the first record of a group of data

records that is read is ignored, and the second character must be the currency

symbol ($) or ampersand (&), immediately followed by the namelist name and a

blank.  When the name is not n, the input medium is searched for $n. The

remainder of the first record and following records can contain any
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combination of the legal data items which are separated by commas (a comma

after the last data group is ignored).  The last input record is terminated by the

characters $END or &END.

The forms the input data items can take are:

� variable-name = constant (Variable-name is a simple variable name.)

� subscripted-variable = constant (The array element appears in the

NAMELIST statement.  The subscripts in the input record must be

constants.)

� subscripted-variable = set-of-constants (The set is represented by

constants separated by commas, where k*constant represents k constants.

The name of the array of which the subscripted variable is an element must

be in the namelist list.  The number of constants must not exceed the space

available in the array, which is from the element specified to the end of the

array, inclusive.)

� array-name = set-of-constants (The set is represented by constants

separated by commas, where k*constant represents k constants.  The

number of constants must be less than or equal to the number of elements

in the array.)

Constants used in the data items can take any of the following forms:

� Integer constants (see 2.3.1).

� Real constants (see 2.3.2).

� Double-precision constants (see 2.3.2.2).  The D is optional in the exponent.

� Complex constants (see 2.3.3).

� Logical constants (see 2.3.4).  These can be written as .TRUE., .FALSE., T,

or F.  The value stored is 0 for false and 1 for true.

� Character and Hollerith constants (see 2.3.5).  Character input must not

span records.  All of the nH edit descriptor must appear on one line as well

as the full apostrophe edit descriptor.  An individual Hollerith input value

cannot be transferred to a data area that spans from one virtual bank to

another (for example, the value 8Habcdefgh cannot be read into two

consecutive elements of an integer array if the two elements happen to be

allocated in two different virtual banks).

� Octal constants (see 2.3.7).  If the type of the namelist variable is double

precision, 24 digits can be used.

Logical and complex constants can associate only with logical and complex

variables, respectively.  Hollerith constants can associate only with integer or

real variables.  Character constants can associate with character variables only.

The other types of constants can associate with integer, real, or

double-precision variables, and they are converted in accordance with the type

of the variable.
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The data items that appear in the input records need not appear in the same

order as the corresponding variable or array names in the NAMELIST

statement list.  All variable or array names of the namelist need not have a

corresponding data item in the input records.  When none appears, the contents

of the variable or array are unchanged.  Names that are equivalenced to these

names can’t be used in the input records unless they also are part of the

namelist.

You must not embed blanks in a constant or a repeat constant field, but you can

use them freely elsewhere in a data record. The last item in each record that

contains data items must be a constant, optionally followed by a comma.  The

comma is optional in the record that contains or precedes the $END sentinel.

For example, the NAMELIST statement:

DIMENSION A(10), K(5,5), L(10)
NAMELIST/NAM1/L(3),A, K, J

could have the following input records:

Record                  Position and Contents

First data record       �$NAM1� K (2,3)=5,7,9,
Second data record           0,10,L(3)=4.3,A=4,3,
Third data record          8*4.3,J=4.2,  
   . 
   .
   .
Last data record        $END

When the preceding data is used with a READ statement, the following action

takes place:

1. The first data image is read and examined to verify that its name is the

same as the namelist name in the READ statement.  (Note that the name

must begin in column two of the first record.)  The integer constant 5 is

placed in K(2,3), 7 in K(3,3), and 9 in K(4,3).

2. When the second data image is read, integer 0 is placed in K(5,3), and 10 in

K(1,4); the real constant 4.3 is truncated to integer 4 and placed in L(3);

integers 4 and 3 are converted to real and placed in A(1) and A(2),

respectively.

3. When the third data image is read, the real constant 4.3 is stored in A(3),

A(4), . . . ,A(10) and the real constant 4.2 is truncated to integer 4 and

placed in J.

5.4.3. Namelist Output

The WRITE (u,n) statement (see 5.6.2.3) causes all names of variables and

arrays (as well as their values) that belong to the namelist name n to be

written to the output unit u.
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In the WRITE (u,n) statement, all variables and arrays (as well as their values)

belonging to the namelist name are written out according to their types.  The

output data is written such that:

� The name of a variable and its value are written on one line or record.

� The name of an array is written, with the values of the elements of the array

written in a convenient number of columns, in the order of the array in main

storage, that is, in column-major order.

� Whole arrays start at the beginning of the output buffer (that is, column 1).

� The data fields are large enough to contain all the significant digits.

� The output can be read by an input statement referring to the namelist

name.

For example, if the values of the variables A through H and arrays L and M have

the values 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0; L(1) = 5 and M = 1,2,3,4, the

statements:

DIMENSION L(4), M(2,2)
NAMELIST /OUT1/ A,B,C,D,E,F,G,H,L(1),M
WRITE(8,OUT1)

cause the following five records to be written (where a record represents one

printed line):

  $OUT1
A  =  .10000000+001,B =  .20000000+001,C =  .30000000+001,D =  .40000000+001,E =  .50000000+001,
F  =  .60000000+001,G =  .70000000+001,H =  .80000000+001,L(1)  =             5,
M  =              1,              2,             3,               4
$END

5.5. List-Directed Input/Output
Use list-directed input/output statements to read and write free-field records with
implied format control.  A list-directed write outputs records consisting of sequences of
values composed of characters that can be represented internally.

A list-directed read inputs as many records as necessary to provide a value for each item
in the input list, unless a slash appears in the input.  When a slash appears in the input,
the slash serves as an end-of-record-transmission signal.  Any list items remaining after
the slash is encountered undergo no change in value (see 5.5.1).

The output from a list-directed write (except for a write to a print or punch unit) can be
used as input to a list-directed read unless the input variable is character.

5.5.1. List-Directed Input

The list-directed input consists of a sequence of values separated by commas, blanks,
slashes, or end of the line.  Numeric, logical, and character data can be read.  Hollerith
and octal data can’t be used.
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When a value is repeated for several list items, it can be written as: 

r*c

where r is an integer constant between 1 and 511, inclusive, and c is a value that can be
blank.  Blanks can’t be embedded in either r or c, except in character constants and
complex constants.  Examples of this form are:

5*4.0

5*�

Each constant must be of the same type as its corresponding list item.  An error occurs if
the types don’t match.  Blanks are never used as zeros and embedded blanks aren’t
permitted except in character constants and complex constants.  For example, 5.�0,2.0
represents three values (5.0, 0.0, and 2.0) and 5.0,�2.0 represents two values.  The end of
a line can be considered a blank except when it appears in a character constant.

Specify a null value by:

� No characters between two commas (,,)

� No characters before the first comma in the first record of the list-directed input

� Only blanks between two commas (,��,)

� Only blanks before the first comma in the list-directed input record

� A blank following the asterisk in the r*c form (r*�)

� A comma following the asterisk in the r*c form (r*,)

A null value has no effect on the corresponding list item.  If the list item has no value, it
still has no value.  A null value can’t be used as the real or imaginary part of a complex
constant, but it can represent an entire complex constant.  The end of a line before or
after a comma does not generate a null item.

A slash causes the end of the list-directed read after the assignment of the previous
value.  When there are more items in the list, the effect is as though null values are
supplied for them.

The parts of a complex constant must be separated by a comma and enclosed in
parentheses.  The comma can be preceded or followed by spaces or the end of a line.
For example:

(25.2,
 2.0)

and:

(25.2, ���2.0)

are legal forms of a complex constant.
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Hollerith constants are not allowed in free-field input records, but character constants
are legal if the type of the list item is character.  Each apostrophe within a character
constant must be represented by two apostrophes with no intervening spaces or an
end-of-line.  Character constants can continue from one line to the next without a blank
inserted for the end of the line.  Character constants can contain blanks, commas, or
slashes.

5.5.2. List-Directed Output

A list-directed output record consists of a sequence of values that have the same form as
constants, except as noted.  The values are separated by one or more blanks.  New lines
are started as necessary.  The constants are formatted with set lengths.  The end of a line
and blanks don’t occur within a constant except for complex and character constants.

Logical constants are written as T or F.

Real and double-precision values are written using an E or F editing format, depending
on the value of the constant.

Complex constants are enclosed in parentheses with a comma separating the real and
imaginary parts.

Hollerith constants aren’t written for list-directed output records.  Character constants
written for list-directed output records aren’t delimited by apostrophes or blanks nor are
double apostrophes written for internal apostrophes.

Null values, commas, slashes, and the repeat form of r*c aren’t produced in list-directed
output records.

An example using list-directed input/output is:

 DIMENSION L(3)
 COMPLEX C
 DOUBLE PRECISION D
 READ (3,*)D,R,C,(L(J),J=1,3)
 WRITE (8,*)D,R,C,(L(J),J=1,3)

These statements can read the following data image:

3.0D1,4.0,(3.0,2.0),5,6,7

Setting D=3.0D1, R=4.0, C=(3.0,2.0), L(1)=5, L(2)=6, and L(3)=7.  The output record is:

�30.0000000000000000������4.0000000�����(�3.0000000����,�2.00000000����)������������5������������6�����

������7

5.6. Sequential Access Input/Output Statements
There are five sequential access input/output statements:

1. READ (reads records from a sequential file)



Input/Output Statements

UP-8244.4-B 5-31

2. WRITE (writes records to a sequential file)

3. BACKSPACE (positions file for input/output by backspacing one record)

4. ENDFILE (defines the end of a sequential file)

5. REWIND (positions a unit at its beginning)

The OPEN statement and the DEFINE FILE statement are used in conjunction with
these statements.  They let you describe the format of a file.

Using these statements, you can process a file in sequential order.  Each record is
manipulated or passed over, as desired, one after another.  Unlike direct access
input/output statements that refer to random access files, sequential access input/output
statements can’t directly address a specific record.

5.6.1. Input Statements

READ statements obtain values for data elements from files.  The form of each READ
statement depends on the type of record (formatted, unformatted, namelist, or
list-directed) read.

5.6.1.1. Formatted READ

Purpose:

A formatted READ statement reads values into items specified in an input list according
to a specified format.

Form:

READ ([UNIT=] u, [FMT=] f [,ERR=s] [,END=sn] [,IOSTAT=ios]) [iolist]

or:

READ f [,iolist]

where:

UNIT= u

is a unit specifier (see 5.2.1); u is a unit identifier that must be present in the first
form.  The UNIT= clause is optional.

FMT= f

is a format specifier (see 5.2.4); f is a format identifier that must be present.  The
FMT= clause is optional.

ERR= s

is an error specifier (see 5.2.6); s is a statement label.
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END= sn

is an end-of-file specifier (see 5.2.7); sn is a statement label.

IOSTAT= ios

is an input/output status specifier (see 5.2.8); ios is an integer variable or integer
array element. 

iolist

is an input list (see 5.2.3).

Description:

When the formatted READ statement is executed, one or more formatted records are
read from the file specified by u.  The information in the records is scanned and
converted as specified by the format identifier f.  The resulting values are assigned to the
variables specified in the iolist.  If you use the UNIT= and FMT= clauses, the specifiers
can appear in any order.  If you use the UNIT= clause, you must use the FMT= clause.

The second form, which doesn’t have a unit specifier, implies that the symbiont file
AREAD$ is used.  This is equivalent to specifying unit number 5 (the AREAD$ symbiont;
see G.6) in the first form.

Examples:

     READ 10, IVAR1, ARRAY2
10   FORMAT(I8,10E9.2)
C          This formatted READ statement reads (from the
C          program input unit) an integer value into variable
C          IVAR1 and 10 real values into array ARRAY2.

     READ (3, 20,ERR = 140) IVAR1, ARRAY2
20   FORMAT(I8, 10E9.2)
C          This formatted READ statement obtains values from input
C          unit number 3 and assigns them to members of the input
C          list according to the format specified in statement 20.
C          When an error occurs during processing of this statement,
C          program control transfers to statement 140.

     READ (FMT = 30, UNIT = 3, IOSTAT = IVAL) VAR1, ARRAY3
30   FORMAT(F8.2,8E9.2)
C          This formatted READ statement obtains values
C          from input unit 3 and assigns them to members of the input
C          list according to the format specified in statement 30.
C          The order of the clauses is optional when the UNIT =
C          and FMT= clauses are used.  When an error or end-of-file
C          condition occurs during the processing of this statement,
C          a nonzero value (see 5.2.8) is stored in IVAL and
C          control resumes with the first executable statement
C          following the READ statement.  When the statement is
C          successful, a 0 is stored in IVAL.
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5.6.1.2. Unformatted READ

Purpose:

The unformatted READ statement reads values into items specified in an input list, with
no conversion or reformatting of the input values.

Form:

READ ([ UNIT=] u [,ERR=s] [,END=sn] [,IOSTAT=ios]) [iolist]

where:

UNIT= u

is a unit specifier (see 5.2.1); u is a unit identifier that must be present.  The UNIT=
clause is optional.

ERR= s

is an error specifier (see 5.2.6); s is a statement label.

END= sn

is an end-of-file specifier (see 5.2.7); sn is a statement label.

IOSTAT= ios

is an input/output status specifier (see 5.2.8); ios is an integer variable or integer
array element. 

iolist

is an input list (see 5.2.3).

Description:

When the unformatted READ statement is executed, the next record is read from the file
specified by u.  The record values are assigned to the variables specified by the input list
with no conversion.  The number of values required by the input list must be less than or
equal to the number of values in the unformatted record.  If you use the UNIT= clause,
the specifiers in the control information list can appear in any order.

Examples:

     READ (3) VAR2, VAR3, ARRAY3
C           This statement obtains values from input unit 3 and,
C           without changing their forms, assigns values to variables
C           VAR2 and VAR3 and to the elements of array ARRAY3.

     READ (3, ERR = 150, END = 280) VAR2, VAR3, ARRAY3
C           This statement is executed in the same way as the first
C           example.  However, when an error is detected during
C           statement execution, control transfers to the
C           statement labeled 150 rather than stopping execution.
C           When the end-of-file is reached, program control
C           passes to the statement labeled 280.
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     READ (END = 280, ERR = 150, UNIT = 3) VAR2, VAR3, ARRAY3
C           This statement is equivalent to the previous statement.
C           The optional UNIT= clause is used so that the parameters
C           within the control information list can appear in any
C           order.

5.6.1.3. Namelist READ

Purpose:

The namelist READ statement provides a simplified means of obtaining an

annotated list of data from an input device.

Form:

READ (u, n [,ERR=s] [,END=sn] [,IOSTAT=ios ])

or:

READ n

where: 

u

is a unit identifier that must be present in the first form (see 5.2.1). 

n

is a namelist name specifier that must be present (see 5.2.5).

ERR= s

is an error specifier (see 5.2.6); s is a statement label.

END= sn

is an end-of-file specifier (see 5.2.7); sn is a statement label.

IOSTAT= ios

is an input/output status specifier (see 5.2.8); ios is an integer variable or

integer array element.

Description:

The namelist READ statement allows reading of specially formatted records

without specifying an iolist on the READ statement.  See 5.4 for further details.

The second form doesn’t have a unit specifier.  It implies that the symbiont file

AREAD$ is to be used.  This is equivalent to specifying unit identifier 5 in the

first form (see G.6).
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Example:

     DIMENSION ARR4(10), ARR5(4,5)
     NAMELIST/SPECN1/VAR3, VAR4, ARR4, ARR5, VAR5, VAR6
     READ (5, SPECN1, ERR = 140)
C           Data for the variables specified in the namelist called
C           SPECN1 are read in.

5.6.1.4. List-Directed READ

Purpose:

The list-directed READ statement reads in specially formatted records without
specification of an associated FORMAT statement.

Form:

READ ([UNIT=] u, [FMT=] * [,ERR=s] [,END=sn] [,IOSTAT=ios])[iolist]

or:

READ * [, iolist]

where:

UNIT= u

is a unit specifier (see 5.2.1); u is a unit identifier that must be present in the first
form. The UNIT= clause is optional.

FMT= *

is a format specifier (see 5.2.4); * indicates a list-directed statement and must be
present.  The FMT= clause is optional.

ERR= s

is an error specifier (see 5.2.6); s is a statement label.

END= sn

is an end-of-file specifier (see 5.2.7); sn is a statement label.

IOSTAT= ios

is an input/output status specifier (see 5.2.8); ios is an integer variable or integer
array element. 

iolist

is an input list (see 5.2.3).
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Description:

When the list-directed READ statement is executed, data is read from the file specified
by u.  These data values are assigned to the variables specified by iolist.

The second form implies the symbiont file AREAD$ is used.

A record containing list-directed input data consists of constants, null values, and value
separators.

When the UNIT= and FMT= clauses are present, the specifiers can appear in any order in
the control information list.  When you use the UNIT= clause, you must use the FMT=
clause.

The ERR, END, and IOSTAT clauses can appear in any order.

See 5.5 for additional details.

Examples:

     READ *, VAR3, VAR4, ARR5, ARR6
C           Reads in formatted values for the specified variables
C           and arrays.

     READ (7, *, END = 260, ERR = 140) VAR1, VAR2
C           Reads formatted values from records of unit 7.  When an
C           error is detected during execution of this READ
C           statement, control passes to statement 140.  When
C           fewer records exist in the input file than required
C           to fill the elements in the list, control transfers
C           to the statement labeled 260.

     READ (ERR = 140, FMT = *, END = 260, UNIT = 7) VAR1, VAR2
C           This statement is the same as the previous READ except
C           the UNIT= and FMT= clauses allow the control information
C           list items to appear in any order.

5.6.1.5. Reread

A unit specifier can be assigned to reread the last formatted symbiont or SDF

sequential record read.  Thus, it is possible to read the last record any number

of times.  Input items read with edit descriptors according to their types can,

for instance, be reread with an A edit descriptor as alphanumeric information.

Subsequent formatted READ statements change the record to be reread.  The

last record read is unavailable when OPEN or DEFINE FILE statements are

executed that define a record size larger than previously defined or defaulted

record sizes.

The unit number zero (0) is a default reread unit.  Other units can be declared

as reread units by generating a new file reference table (see G.6) or through

the OPEN statement (see 5.10.1).  However, only a unit that is closed or never

opened can be opened for rereading with an OPEN statement.  The format of

the reread statement is:
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READ ([UNIT= ] u, [FMT= ] f [,ERR= s] [, IOSTAT= ios]) [iolist]

When rereading a record, the BLANK=NULL clause provided by the OPEN

statement is ignored.  All blanks other than leading blanks are treated as zeros

unless the BN edit descriptor is used.

Through the use of the reread capability, more than one attempt to read a

record can be made.  If an error results from a READ with one format, an ERR

clause can direct control to another READ that can reread the record with a

different format.

If, for example, 0 is the reread unit number and X and Y are formats, the

following sequence can make three attempts to read a record:

     READ (5,X,ERR=10) A, B, C 
      .
      .
      .
10   READ (0,Y,ERR=20) D, E, F
      .
      .
      .
20   READ (0,*,IOSTAT=IVAL) G, H, I
     IF (IVAL.NE.0) GO TO 50
      .
      .
      .
50   STOP 777

If the record cannot be read with format X, format Y is tried.  If that attempt

results in an error, the list-directed read is used.

An end-of-file specifier is ignored on a reread statement.  The reread statement

must not request more than one record.

5.6.2. Output Statements

For each type of READ statement, there is a corresponding WRITE statement.  The
various WRITE statement forms depend on the type of record (formatted, unformatted,
namelist, or list-directed) written.  WRITE statements transfer data from variables into
files.  PRINT is a form of WRITE statement.

5.6.2.1. Formatted WRITE

Purpose:

The formatted WRITE statement writes specified data into a specific file according to a
given format.

Form:

WRITE([UNIT=]u,[FMT=]f[,ERR=s][,END=sn][,IOSTAT=ios])[iolist]
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or:

PRINT f [, iolist]

or:  

PUNCH f [, iolist]

where:

UNIT= u

is a unit specifier (see 5.2.1); u is a unit identifier that must be present in the first
form.  The UNIT= clause is optional.

FMT= f

is a format specifier (see 5.2.4); f is a format identifier that must be present.  The
FMT= clause is optional.

ERR= s

is an error specifier (see 5.2.6); s is a statement label. 

END= sn  

is an end-of-file specifier (see 5.2.7); sn is a statement label.

IOSTAT= ios

is an input/output status specifier (see 5.2.8); ios is an integer variable or integer
array element. 

iolist

is an output list (see 5.2.3).

Description:

The formatted WRITE statement writes one or more formatted records to the file
specified by u.  The variables specified by the iolist are edited according to the format
specifier f and written to file u.  If the UNIT= and FMT= clauses are present, the
specifiers in the control information list can be in any order.  When you use the UNIT=
clause, the FMT= clause must appear.

The PRINT form implies that the symbiont file APRINT$ is used as the output file.  This
is equivalent to the WRITE form with a file specifier of 6 (the APRINT$ symbiont; see
G.6).

The PUNCH form implies that symbiont file APUNCH$ is used as the output

file.  This is equivalent to the WRITE form with a file specifier of 1 (the

APUNCH$ symbiont, see G.6).



Input/Output Statements

UP-8244.4-B 5-39

Examples:

     WRITE(8, 40, ERR = 160) VAR1, VAR2, ARR1
C          The contents of variables VAR1 and VAR2 and of array
C          ARR1 are written into file unit 8 using the
C          format specified in the statement labeled 40.  When an
C          error occurs during processing of this statement,
C          control transfers to the statement labeled 160.

     WRITE (FMT = 40, UNIT = 8, ERR = 160) VAR1, VAR2, ARR1
C           This is the same as the first WRITE except that with the
C           presence of the UNIT= and FMT= clauses, the clauses in the
C           control information list can be in any order.

     PRINT 40, VAR1, VAR2, ARR1
C           Prints the same values on system printer.

    PUNCH 40, VAR1, VAR2, ARR1
C           Punches the same values on cards.

5.6.2.2. Unformatted WRITE

Purpose:

The unformatted WRITE statement writes a record consisting of the specified data to a
given file.

Form:

WRITE ([UNIT=] u [,ERR=s] [,END=sn] [,IOSTAT=ios]) [iolist]

where:

UNIT= u

is a unit specifier (see 5.2.1); u is a unit identifier that must be present.  The UNIT=
clause is optional.

ERR= s

is an error specifier (see 5.2.6); s is a statement label. 

END= sn

is an end-of-file specifier (see 5.2.7); sn is a statement label.

IOSTAT= ios

is an input/output status specifier (see 5.2.8); ios is an integer variable or integer
array element. 

iolist

is an output list (see 5.2.3).
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Description:

The unformatted WRITE statement writes one record to the file specified by u.  The
record contains the sequence of values specified by the iolist.

Examples:

     WRITE (8) ARR3, VAR1, VAR2
C           Writes a record to file 8 without reformatting of
C           data in the output list.

     WRITE (ERR = 180,UNIT = 8) ARR3, VAR1, VAR2
C           Same as the previous example except that control passes
C           to the statement labeled 180 when an error is
C           encountered while executing this statement.  With the
C           presence of the UNIT= clause, the clauses in the
C           control information list can be in any order.

5.6.2.3. Namelist WRITE

Purpose:

The namelist WRITE statement lets you write a particular list of variables and

arrays without including the output list in the WRITE statement.

Form:

WRITE (u, n [, ERR= s] [,IOSTAT= ios ])

or:

PRINT n

or:

PUNCH n

where: 

u

is a unit specifier that must be present in the first form (see 5.2.1). 

n

is a namelist name specifier that must be present (see 5.2.5).

ERR= s

is an error specifier (see 5.2.6); s is a statement label.

IOSTAT= ios

is an input/output status specifier (see 5.2.8); ios is an integer variable or

integer array element.
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Description:

One or more records are written to the file specified by u. The records consist

of data values specified in the NAMELIST set named n.

The PRINT statement implies that the symbiont file APRINT$ is used.  This is

equivalent to specifying unit 6 (the APRINT$ symbiont; see G.6) in the first

form.

Refer to 5.4 for additional details on NAMELIST.

Examples:

     NAMELIST /SPECN2/ VAR1, ARR2, VAR3, ARR4, VAR5
     WRITE (8, SPECN2)
C           Writes each name specified in namelist SPECN2
C           on a record with its associated values.

     WRITE (8, SPECN2, ERR = 180)
C           Same as the previous example except that program
C           control transfers to the statement labeled 180
C           when an error occurs during statement execution.

5.6.2.4. List-Directed WRITE

Purpose:

The list-directed WRITE statements write out specially formatted records without
specifying an associated FORMAT statement.

Form:

WRITE ([UNIT=]u,[FMT=] * [,ERR=s] [,END=sn] [,IOSTAT=ios])[iolist]

or:

PRINT *[, iolist]

or:  

PUNCH *[, iolist]

where:

UNIT= u

is a unit specifier (see 5.2.1); u is a unit identifier that must be present in the first
form.  The UNIT= clause is optional.

FMT= *

is a format specifier (see 5.2.4); * indicates the statement is list-directed and must be
present.  The FMT= clause is optional.



Input/Output Statements

UP-8244.4-B5-42

ERR= s

is an error specifier (see 5.2.6); s is a statement label. 

END= sn

is an end-of-file specifier (see 5.2.7); sn is a statement label.

IOSTAT= ios

is an input/output status specifier (see 5.2.8); ios is an integer variable or integer
array element. 

iolist

is an output list (see 5.2.3).

Description:

When a list-directed WRITE statement is executed, data is written to the file specified by
u (or to the assumed print or punch file).

The PRINT form implies that the symbiont file APRINT$ is used.  This is equivalent to
specifying unit number 6 (the APRINT$ symbiont; see G.6) in the WRITE form.

The PUNCH form implies that the symbiont file APUNCH$ is the output file,

which is equivalent to specifying unit number 1 (the APUNCH$ symbiont, see

G.6) in the WRITE form.

If the UNIT= and the FMT= clauses are present, the specifiers in the control information
list can be in any order.

When you use the UNIT= clause, the FMT= clause must be present.

See 5.5 for more information on list-directed input/output statements.

Examples:

     WRITE (8, *, ERR = 180) VAR3, VAR4, ARR5, ARR6
C          Writes out formatted data values to output file 8.
C          When an error occurs during processing, program control
C          transfers to the statement labeled 180.

     WRITE (ERR = 180, UNIT = 8, FMT = *) VAR3, VAR4, ARR5, ARR6
C          This is the same as the previous WRITE except that
C          the UNIT= and FMT= clauses are present and the clauses
C          in the control information list can be in any order.

     PRINT *, VAR3, VAR4, ARR5, ARR6
C           Writes formatted data values from the output list to
C           the output print file APRINT$.

     PUNCH *, VAR3, VAR4, ARR5, ARR6
C           Punches these same values on cards using the output
C           punch file APUNCH$.
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5.6.3. BACKSPACE Statement

Purpose:

The BACKSPACE statement repositions the file pointer for a file stored on a magnetic
tape, disk, or drum unit by backspacing one record.  System files (for example, AREAD$,
APRINT$, and APUNCH$) and files not created by PCIOS can’t be backspaced (see
G.2.3).  Backspacing over a list-directed record is also prohibited.

Form:

BACKSPACE ( [ UNIT= ] u [ ,ERR= s] [ ,IOSTAT= ios ] )

or:

BACKSPACE u

where:

UNIT= u

is a unit specifier (see 5.2.1); u is a unit identifier that must be present.  The UNIT=
clause is optional.

ERR= s

is an error specifier (see 5.2.6); s is a statement label.

IOSTAT= ios

is an input/output status specifier (see 5.2.8); ios is an integer variable or integer
array element.

Description:

The file specified by u is backspaced one record. If the file identified by u is already at
its initial point, the BACKSPACE statement has no effect.

An end-of-file record counts as one record.

When the UNIT= clause is present, the specifiers in the control information list can be in
any order.

Example:

45     FORMAT ( ... )
          . 
          .
          .
       READ (IOSTAT=IVAL,FMT=45,UNIT=MTAPE) VAR1, VAR2
          .
          . 
          .
       READ (MTAPE, 45) VAR1, VAR2
          . 
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          .
          .
       BACKSPACE MTAPE
          .
          . 
          .
       READ (FMT=45,UNIT=MTAPE) VAR1, VAR2
C           The first READ refers to the first record on MTAPE,
C           the second READ refers to the second record, and the
C           third READ also refers to the second record on MTAPE
C           because the file pointer is backspaced one record.

5.6.4. ENDFILE Statement

Purpose:

The ENDFILE statement marks the end of a file.

Form:

ENDFILE ([ UNIT=] u [,ERR=s] [,IOSTAT= ios])

or:

ENDFILE u

where:

UNIT= u

is a unit specifier indicating the file to be demarcated (see 5.2.1); u is a unit identifier
that must be present.  The UNIT= clause is optional.

ERR= s

is an error specifier (see 5.2.6); s is a statement label.

IOSTAT= ios

is an input/output status specifier (see 5.2.8); ios is an integer variable or integer
array element.

Description:

An end-of-file record is written to the file specified by u.

System files (for example, AREAD$ and APRINT$) can’t have an end-of-file record
written on them using this statement.

When the UNIT= clause is present, the specifiers in the control information list can
appear in any order.
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Example:

    ENDFILE MTAPE
C           This statement writes an end-of-file record
C           on MTAPE to mark the end of a file.

5.6.5. REWIND Statement

Purpose:

The REWIND statement repositions the file pointer for a file to its initial point.

Form:

REWIND ( [ UNIT= ] u [ ,ERR= s ] [ ,IOSTAT= ios ] )

or:

REWIND u

where:

UNIT= u

is a unit specifier (see 5.2.1); u is a unit identifier that must be present.  The UNIT=
clause is optional.

ERR= s

is an error specifier (see 5.2.5); s is a statement label.

IOSTAT= ios

is an input/output status specifier (see 5.2.8); ios is an integer variable or integer
array element.

Description:

This statement positions the file pointer for u at the file’s initial point (load point).  Tapes
are rewound to the load point and mass storage files are positioned at logical address 0.

System files (for example, AREAD$, APRINT$, and APUNCH$) cannot be rewound.

When the UNIT= clause is present, the specifiers in the control information list can
appear in any order.

Example:

55     FORMAT ( ... )
        .
        .
        .
       DO 65 I = 1, 20
         READ (MTAPE,55)
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        .
        .
        .
 65    CONTINUE
       REWIND MTAPE
 C          During execution of the DO loop, 20 records are read
 C          from MTAPE.  MTAPE is therefore positioned at the
 C          start of its twenty-first record when the REWIND
 C          statement is encountered.  MTAPE is then repositioned
 C          to its load point.

5.6.6. Sequential-Access DEFINE FILE Statement

Purpose:

The sequential-access DEFINE FILE statement describes the characteristics of

a file that is used during a sequential-access input/output operation.  The three

basic types that can be defined are: symbiont, SDF, or ANSI. (See 5.7.1 for use

of the DEFINE FILE statement with direct access input/output operations.)

The DEFINE FILE statement must precede all executable statements in the

program unit that refer to the file being described.  When a DEFINE FILE or

OPEN statement is not used to describe a unit specifier, the unit defaults to

SDF type unless designated as a symbiont file type in the file reference table

(see G.6).  The first DEFINE FILE statement encountered for a unit is the one

used during execution.  Subsequent descriptions for SDF and ANSI have a

validity check done on the requested type, and then are ignored.  Subsequent

descriptions for symbiont units have a similar validity check, and the record

size can be changed.  All of the capabilities provided by a DEFINE FILE

statement are included in the capabilities provided by the OPEN statement.

You must use a DEFINE FILE statement or an OPEN statement when:

� ANSI interchange tape files are to be processed.

� You want sizes other than default block size, record size, or segment size for

SDF files.

� You want sizes other than the normal default record sizes for symbiont files.

� A define-file-block is to contain the file description (see G.10).

Form:

For symbiont files:

DEFINE FILE u (st, ,rs)

where: 

u

is a unit identifier (see 5.2.1); u must be an unsigned integer constant or

symbolic name of an integer constant. 
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st

specifies the symbiont type and can be one of the following:

APRINT for ASCII print symbiont

APUNCH for ASCII punch symbiont

AREAD for ASCII read symbiont

APRNTA for ASCII print alternate symbiont

APNCHA for ASCII punch alternate symbiont

AREADA for ASCII read alternate symbiont  

rs

is an integer constant or symbolic name of an integer constant specifying

the record size in characters.  The ranges allowed for rs are:

Symbiont Range

APRINT, APRNTA 0 < rs≤252

AREADA 0 < rs≤160

AREAD 0 < rs≤131,071

APUNCH, APNCHA 0 < rs≤80

 

For SDF files:

DEFINE FILE u (SDF, , [rs] , [bs] , [ss] )

where: 

u

is a unit identifier (see 5.2.1); u must be an unsigned integer constant or

symbolic name of an integer constant. 

rs

is an integer constant or symbolic name of an integer constant specifying

the record size in words (see G.7 for the default record size).  Record size

(rs) must be specified when records (other than unformatted records)

larger than the default size (33 words) are written to an SDF file.  Record

size (rs) specification need not reflect unformatted records as they are read

and written in segments. 

bs

is an integer constant or symbolic name of an integer constant specifying

the block size in words.  The default block size is 224 words (see G.2.1.3). 
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ss

is an integer constant or symbolic name of an integer constant in the range

0 < ss≤2047 specifying the record segment size in words (see G.8 for the

default segment size).  Record segment size (ss) is the size at which all

records are segmented when they are written to the SDF file.  It is also the

size at which unformatted records are processed as they are processed in

segments.

When you give the record size and choose a proper segment size and block size,

the amount of input/output overhead can be minimized (see G.2.1.2 and

G.2.1.3).

For ANSI tape files:

DEFINE FILE u (ANSI , [rf] , [rs] , [bs] , [bo] )

where: 

u

is a unit identifier (see 5.2.1); u must be an unsigned integer constant or

symbolic name of an integer constant. 

rf

specifies the record format as shown below.  The default record format is U.

rf Code Records Represented Record Size (rs) Considerations

U Undefined Indicate maximum record size.

F Fixed, unblocked Indicate exact record size.

FB Fixed, blocked Indicate exact record size.

V Variable, unblocked Indicate maximum record size,
excluding four characters of record
control.

VB Variable, blocked Indicate maximum record size,
excluding four characters of record
control.

VS Variable, unblocked, segmented Indicate maximum record size
excluding the five-character record
control segment.

VBS Variable, blocked, segmented Indicate maximum record size
excluding the five-character record
control segment.
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The VBS and VS forms specify the ANSI S format.  The V and VB forms

specify the ANSI D format.  The F and FB specify the ANSI F format.  The U

specifies the ANSI U format. 

rs

is an integer constant or symbolic name of an integer constant specifying

the record size in characters.  The default record size is 132 characters. 

bs

is an integer constant or symbolic name of an integer constant specifying

the block size in characters.  The default block size is 132 characters.  The

block size (bs) for ANSI files depends on the record size (rs), the buffer

offset (bo), and the record format (rf) as follows:

� For U or F record format:

bs = rs + bo

� For V record format:

bs = rs + 4 + bo

� For FB record format:

bs = n(rs) + bo

where n is the number of records per block.  

� For a VB record format:

bs = rs + 4 + bo

� For VS or VBS record format:

The block size can be less than, equal to, or greater than the record size,

but it must be large enough to contain any buffer offset and the five

characters of control information appended to each record segment. 

bo

is an integer constant or symbolic name of an integer constant in the range

0≤bo≤99, which is the number of characters specifying the buffer offset.

The default for buffer offset is 0.  It must be specified if an ANSI input file

contains buffer offset information in the front of the data blocks.  This

parameter isn’t required for ASCII FORTRAN-produced ANSI tapes since no

buffer offset information is appended to the data blocks.

Description:

As illustrated in the form section, this statement can have one of three general

forms, depending on the type of file format.
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When you omit an optional parameter, you can omit its preceding comma only

when it is a trailing comma (no other parameters follow it).  When an optional

parameter is omitted, default parameters are used.

Use the DEFINE FILE statement for symbiont files to define a unit that is not

already defined as a symbiont file in the file reference table.  It can also specify

a record size other than the default record size of 132 characters for print

symbiont files and 80 characters for a punch or read file.  When the unit is

already defined as a symbiont file in the file reference table, then the symbiont

type on the DEFINE FILE statement must match its definition.  In this case,

you are only specifying the maximum record size for the symbiont file. When

the symbiont file is a print file and the record size is larger than 132 characters,

an Executive Request is done to the print symbiont to expand the image size

for the file.  Therefore, to specify a 160-character print record, the DEFINE

FILE statement is used as follows:

DEFINE FILE u (APRINT , , 160)

or:

DEFINE FILE u (APRNTA , , 160)

On program termination, the primary print symbiont is reset to the system

default record size.

For the punch symbionts, a record size of over 80 characters isn’t allowed.

When a record size of over 80 characters is specified, the record size for the

punch file defaults to 80 characters.

A table of default and maximum values for symbiont files appears in G.10.

Examples:

     DEFINE FILE 3 (ANSI,FB,50,205,5)
C           This statement defines file 3 in ANSI format
C           with fixed, blocked records of 50 character length.
C           The block size is 205 characters with a buffer offset
C           of 5 characters.

     DEFINE FILE 9 (SDF,,45,336)
C           The SDF file 9 has records 45 words long
C           and a block size of 336 words.

5.7. Direct-Access Input/Output Statements
The direct-access statements let you read and write records randomly from any defined
location within a direct file.

There are three direct-access input/output statements:

1. READ (reads records from a direct file)

2. WRITE (writes records to a direct file)
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3. FIND (allows prepositioning of a direct file during program execution; this

allows overlapping of record searching with other activities).

Use the OPEN and DEFINE FILE statements in conjunction with these statements.

Using these statements, you can go directly to any point in a direct file, process a record,
and go directly to any other point without having to process all the records in between.
This is done using the relative record number.  The relative record number is unique and
is the record’s relative position within the file.

Direct files can contain formatted records, unformatted records, or both.  When
formatted records are used, a FORMAT statement must specify the form in which data is
transmitted.

5.7.1. Direct-Access DEFINE FILE Statement

Purpose:

The direct-access DEFINE FILE statement describes the characteristics of a

direct file that is used during a direct-access input/output operation.  This

statement must logically precede any READ, WRITE, or FIND statements

pertaining to the file it describes.All of the capabilities provided by a DEFINE

FILE statement are included in the capabilities provided by the OPEN

statement.

Form:

DEFINE FILE u (m, s, b, v ) [ ,u(m, s, b, v) [ , ...u (m, s, b, v) ] ]

where: 

u

is a unit identifier (see 5.2.1); u must be an unsigned integer constant or

symbolic name of an integer constant. 

m

represents an integer constant or symbolic name of an integer constant that

specifies the maximum number of records the file will contain. 

s

represents an integer constant or symbolic name of an integer constant that

specifies the maximum record size for a file.  The record size is interpreted

as characters or words depending on b. 

b

is a letter that indicates whether the file is to contain formatted or

unformatted records, or both.  b can be one of the following:
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L

File contains formatted or unformatted records or both.  The maximum

record size is measured in characters.

M

Same as L, except the file is skeletonized when it is created or

extended.

E

File contains formatted records.  The maximum record size is measured

in characters.

F

Same as E, except the file is skeletonized when it is created or

extended.

U

File contains unformatted records.  The maximum record size is

measured in number of words.

V

Same as U, except the file is skeletonized when it is created or

extended.  

v

represents an unsubscripted integer variable called an associated

variable.  It receives a value after execution of its associated DEFINE

FILE, READ, WRITE, or FIND statement as described in the following

paragraphs.  The associated variable can’t be used as an argument in a

function or subroutine reference.

Description:

When you have already assigned file u and it doesn’t have enough space to

contain m records, use the OPEN statement to extend the file.  When the file is

not assigned, then a dynamic assignment via @ASG,T (using m and s to

calculate the file length) is performed.  The maximum number of records

specification is only relevant when a direct-access file is being defined for the

first time.

When the record size, s, is in characters, the record is actually stored in mass

storage using word-sized locations.  The number of words necessary to contain

the record plus a constant and the record number are used to calculate the

location in mass storage.

At the conclusion of each READ and WRITE, v is set to a value that points to

the record that immediately follows the last record transmitted.  At the

conclusion of a DEFINE FILE, v is set to 1.  At the conclusion of a FIND, v is

set to a value that points to the record found.  When the associated variable is

used in a READ or WRITE statement to specify the record number, sequential

processing is automatically secured.  The associated variable can’t appear in the
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input/output list of a READ or WRITE statement for a file associated with the

DEFINE FILE statement.

When more than one DEFINE FILE statement exists for a given file u, the first

one encountered for the file is the one used during program execution.

Subsequent descriptions of the file are ignored other than performing a validity

check on the type (SDF, ANSI, symbiont).

Examples:

     DEFINE FILE 3(50,120,L,I), 4(120,50,L,J)
C          This DEFINE FILE statement describes two files as numbers
C          3 and 4.  The data in the first file consists of 50
C          records, each with a maximum length of 120 characters.
C          The L specifies that the file can contain formatted
C          and/or unformatted records.  I is the associated
C          variable that points to the next record.

C          The data in the second file consists of 120 records,
C          each with maximum length of 50 characters.  The L
C          specifies that the file contains formatted or
C          unformatted records or both; J is the associated
C          variable that points to the next record.

     DEFINE FILE 3(50,30,U,I),4(120,13,U,J)
C          Same as the previous statement, except that the data is
C          transmitted without format control.

     DEFINE FILE 3(50,120,E,I),4(120,50,E,J)
C           Same as the first statement, except that a FORMAT
C           statement is required and the data is transmitted
C           under format control.

5.7.2. Direct-Access READ Statement

Purpose:

The direct-access READ statement transfers records from a file to internal storage.  The
file read must be previously defined with an OPEN or DEFINE FILE as a direct-access
file.

Form:

READ ([UNIT=] u [,[FMT=]f] ,REC=r [,ERR=s] [,IOSTAT=ios]) [iolist]

or:  

READ (u’r [ , f] [ ,ERR = s] [ ,IOSTAT = ios] ) [iolist]

where:

UNIT= u

is the same unit specifier (see 5.2.1) as for an associated OPEN or DEFINE FILE

statement; u is a unit identifier that must be present.  The unit identifier must be
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followed by an apostrophe for the second form.  The UNIT= clause is optional for
the first form and must not be present for the second form.

FMT= f

is a format specifier (see 5.2.4); f is a format identifier.  The FMT= clause is optional
for the first form and must not be present for the second form.

REC= r

is a record specifier (see 5.2.2); r is an integer expression that represents the relative
position of a record within the file.  The REC= clause must be present for the first
form and must not be present for the second form.

ERR= s

is an error specifier that transfers control to statement label s when an error is
detected in the execution of the READ statement (see 5.2.6).

IOSTAT= ios

is an input/output status specifier (see 5.2.8); ios is an integer variable or integer
array element. 

iolist

is an ordered input list of variables that receive the record read (see 5.2.3).

Description:

A record is read from position r of file u (which is described previously by an OPEN or

DEFINE FILE statement).

When the UNIT= clause is present for unformatted I/O statements, the specifiers can
appear in any order.  When the UNIT= clause is present for formatted I/O statements, the
FMT= clause must be used.

The relative record number of the first record in a direct-access file is 1.

Example:

      OPEN (UNIT=3, RECL=120, RCDS=50, RFORM=’E’, ASSOC=I)
        .
        .
        .
      READ(FMT=222,REC=43,UNIT=3,ERR=140)VAR1,ARR1

or:

      READ (3’43,222,ERR = 140) VAR1, ARR1
C           These direct-access reads transfer the contents of the
C           43rd record on unit 3 to VAR1 and array ARR1 according
C           to the format specified at the statement labeled 222.
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5.7.3. Direct-Access WRITE Statement

Purpose:

The direct-access WRITE statement transfers records to mass storage from internal
storage.  The file written must be previously defined with an OPEN or DEFINE FILE

statement as a direct-access file.

Form:

WRITE ([UNIT=] u [,[FMT=]f] ,REC=r [,ERR=s][,IOSTAT=ios]) [iolist]

or:  

WRITE (u’r [ ,f] [ ,ERR = s] [,IOSTAT = ios] ) [iolist]

where:

UNIT= u

is the same unit specifier (see 5.2.1) as for an associated OPEN or DEFINE FILE

statement; u is a unit identifier that must be present. The unit identifier must be
followed by an apostrophe for the second form.  The UNIT= clause is optional for
the first form and must not be present for the second form.

FMT= f

is a format specifier (see 5.2.4); f is a format identifier.  The FMT= clause is optional
for the first form and must not be present for the second form.

REC= r

is a record specifier (see 5.2.2); is an integer expression that represents the relative
position of a record within the file.  The REC= clause must be present for the first
form and must not be present for the second form.

ERR= s

is an error specifier that transfers control to statement label s when an error is
detected in the execution of the WRITE statement (see 5.2.6).

IOSTAT= ios

is an input/output status specifier (see 5.2.8); ios is an integer variable or integer
array element. 

iolist

is an ordered list of variables to be written (see 5.2.3).

Description:

A record is written to position r of file u. File u must be previously described by an
OPEN or DEFINE FILE statement.  When the iolist of an unformatted direct-access
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WRITE doesn’t fill the record, the remainder of the record is undefined.  When the iolist

and the format of a formatted direct-access WRITE don’t fill a record, blank characters
are added to fill the record.

When the UNIT= clause is present for unformatted I/O statements, the specifiers can
appear in any order.  When the UNIT= clause is present for formatted I/O statements,
you must use the FMT= clause.

Example:

      OPEN (UNIT=9, RECL=20, RCDS=75, RFORM=’U’, ASSOC=I)
        .
        . 
        .
      WRITE(REC=53,ERR=140,UNIT=9)VAR1,ARR2

or:

      WRITE (9’53,ERR = 140) VAR1, ARR2
C           These WRITE statements direct the contents of variable
C           VAR1 and array ARR2 into record 53
C           of unit 9 without format control.

5.7.4. FIND Statement

Purpose:

The FIND statement prepositions a direct-access file to a given relative

position.

Form:

FIND ( [ UNIT=] u, REC= r [ ,ERR= s ] [ ,IOSTAT= ios ] )

or: 

FIND (u’r [ ,ERR = s ] [ ,IOSTAT = ios] )

where:

UNIT= u

is a unit specifier (see 5.2.1); u is a unit identifier that must be present.

The unit identifier must be followed by an apostrophe for the second form.

The UNIT= clause is optional for the first form and must not be present for

the second form.

REC= r

is a record specifier that must be present (see 5.2.2); r is an integer

expression specifying the position of a record in the file.  The REC= clause

must be present for the first form and must not be present for the second

form.
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ERR= s

is an error specifier (see 5.2.6); s is a statement label.

IOSTAT= ios

is an input/output status specifier (see 5.2.8); ios is an integer variable or

integer array element.

Description:

The FIND statement positions the direct-access file to the record requested but

returns control without completing any input/output operation. This can locate

the next input record while the present record is being processed, thereby

increasing the execution speed of the object program.

Normally, records are written immediately following the previous record.  They

are written anywhere in a sector without regard to sector boundaries.  As a

result, it is advantageous to use the FIND statement before doing any output if

a particular alignment or positioning is required.

When the UNIT= clause appears, the specifiers can appear in any order for the

first form.

Example:

     FIND (9’54)
C          Finds 54th record of output file 9.

     FIND (REC=44,UNIT=8)
C          Locates 44th record of input file 8.

5.8. Input/Output Contingencies
When an error occurs during ASCII FORTRAN I/O processing, the standard action is to
print an error message, possibly call the ASCII FORTRAN interactive postmortem dump
(see 10.4), and terminate the program.  To prevent program termination and to allow the
use of files that contain multiple logical subfiles (for example, multiple file reels), the
ERR, END, and IOSTAT contingency clauses can be used in certain input/output
statements.

When the ERR or END clause is used, the error message is not printed and control
passes to the statement specified by the particular contingency clause.  In addition, the
error status is encoded in an input/output status word that can be referenced using the
functions IOC, IOS, and IOU.

When the IOSTAT clause is present, control returns to the executable statement
following the I/O statement containing the IOSTAT clause (without printing the error
message) unless an END or ERR clause is present.  The IOSTAT clause also returns the
input/output status.
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5.8.1. Input/Output Contingency Clauses

The contingency clauses are written as optional parts of a particular input/output
statement.  The order of the clauses (if any are used) is immaterial.  Use them to transfer
control to the statement indicated when the specified contingency condition is
encountered while executing the input/output statement.  The forms of the contingency
clauses are:

ERR = s (described in 5.2.6)

END = sn (described in 5.2.7)

IOSTAT = ios (described in 5.2.8)

When transfer is made to the statement specified by the ERR clause, the input/output
status word is set to indicate the cause of the error or warning, the unit specifier for the
file in error, and, in certain cases, a substatus.  See Appendix G for a detailed description
of the input/output status word.

The three fields (cause, unit, substatus) of the I/O status word are all coded integers and
can be tested or retrieved using the functions:

Function Field Reference

IOC( ) cause

IOU( ) unit

IOS( ) substatus

 

The particular field referred to is set to 0 following the reference.  The I/O status word is
set when an I/O error occurs.  It remains set until the next I/O error occurs or until it is
referred to through the functions IOC, IOU, and IOS, in which case only the field referred
to is set to 0.

5.8.2. Input/Output Error Messages

There are two types of input/output errors:

1. Those causing a OS 1100 Executive contingency interrupt

2. Those detected by the ASCII FORTRAN input/output modules

When a contingency interrupt occurs, control is given to the ASCII FORTRAN
contingency routine.  This routine prints the contingency error message, may call the
ASCII FORTRAN interactive postmortem dump (see 10.4), closes all open files, and
terminates the program.  The ERR clause is not valid for this type of error.
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When the error is detected by the I/O handler and no ERR or IOSTAT clause is specified,
an error message is printed, all open files are closed, the FORTRAN postmortem dump
routine (FTNPMD) can be called, and the program terminates.  When the IOSTAT clause
is present, the message isn’t printed and the program continues with the executable
statement following the I/O statement containing the IOSTAT clause.  When the ERR
clause is specified, the message isn’t printed but the I/O status word is set and transfer is
made to the statement specified by the ERR clause.

Some error conditions are detected that aren’t considered serious enough to cause
program termination.  This less serious class of error conditions is referred to as
warnings.  When neither an ERR nor an IOSTAT clause is present when one of these
conditions is detected, the I/O status word is set, a warning message is printed, and
execution of the current statement continues.  The presence of only an ERR clause sets
the I/O status word, and transfer is made to the statement specified by the ERR clause
without completing execution of the current statement.

The warning and error messages for I/O are itemized in Appendix G.

5.9. Internal Files
Internal files provide a means of transferring and converting data from internal storage
to internal storage.  The internal file READ and WRITE and the ENCODE and

DECODE statements are similar to sequential-access formatted READ and WRITE
statements for external files.  However, rather than transferring data between a file and
main storage, data is transferred between storage sequences in main storage.  Therefore,
it is possible to move information from a storage block to a data list while manipulating
it with format specifications without a physical peripheral device.

5.9.1. Internal File Formatted READ

Purpose:

The internal file formatted READ statement reads values into items specified in an input
list according to a specified format.

Form:

READ ([UNIT=] u [FMT=]f [,ERR=s] [,END=sn] [,IOSTAT=ios]) [iolist]

where:

UNIT=

is a unit specifier (see 5.2.1); u is a character variable, character array, character
array element, or character substring that must be present.  The UNIT= clause is
optional.

FMT= f

is a format specifier (see 5.2.4); f is a format identifier that must be present.  The
FMT= clause is optional.
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ERR= s

is an error specifier (see 5.2.6); s is a statement label.

END= sn

is an end-of-file specifier (see 5.2.7); sn is a statement label.

IOSTAT= ios

is an input/output status specifier (see 5.2.8.); ios is an integer variable or integer
array element. 

iolist

is an input list (see 5.2.3).

Description:

The internal file formatted READ statement reads one or more formatted records from
the internal file specified.  The file is a character variable, character array, character
array element, or character substring.

When the file is a character variable, character array element, or a character substring, it
consists of a single record whose length is the length of the character variable, array
element, or substring.

When the file is a character array, each array element is a record of the file.  The order of
the records in the file is the order of the array elements in the array.  The length of the
record is the length of the array element.

The information in the record is scanned and converted as specified by the format
identifier f.  The resulting values are assigned to variables specified in iolist.  An empty
FORMAT [FORMAT( )] and an asterisk for f aren’t allowed for an internal file READ
statement that contains an iolist.

When the optional UNIT= and FMT= clauses appear, the control information list
specifiers can appear in any order.  When the UNIT= clause is present, the FMT= clause
must appear.

An internal file is always positioned at the beginning of the first record before the READ
statement.

The end-of-file condition is raised when an attempt is made to read beyond the end of
the internal file.

5.9.2. DECODE Statement

Purpose:

The DECODE statement converts characters in internal records starting at b to

data items according to the format f and stores them in the I/O list items in

iolist.
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Form:

DECODE ( [c, ] f,b [ ,t] [ ,ERR = s] ) iolist

where: 

c

is an unsigned integer constant, symbolic name of an integer constant,

integer variable, or integer array element whose value specifies the number

of characters per internal record to be scanned. 

f

is the statement label of a FORMAT statement or the name of an integer

variable containing the statement label of a FORMAT statement or the

name of an array that contains format specifications. 

b

is the name of an array (except assumed-size array), array element, or

variable from which data is transferred. 

t

is the name of an integer variable or array element which, upon completion

of the operation, contains the number of characters actually scanned during

execution of the DECODE statement.

ERR= s

is an error specifier that transfers control to statement label s when an

error is detected in the execution of the DECODE statement (see 5.2.6).

iolist

is as specified for a READ statement and contains the items whose values

are set by decoding the information in b.

Description:

You can unconditionally omit t and ERR=s. c, with its following comma, can be

omitted if t is also omitted.  When c is omitted, the internal record size is

assumed to be 132 characters.

When the DECODE statement is executed, the characters in the internal

records in b are converted to data items, according to the FORMAT specified by

f, and stored into the elements specified in iolist.

If the format is empty, the characters in the internal records are converted

according to the type of items in the list.  The characters of the internal records

to be processed are contained in consecutive character positions of b with the

first character of the first record in the first character position (leftmost

quarter) of b.  When a new record is to be processed, the first character of the

record is contained in the first character position following the previous record.
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Thus, the first character of the first record is contained in the first character

position of b, the first character of the second record is contained in the (c +

first) character position, etc. If c is omitted, the second record begins in

character position 133.

If the interaction of iolist with f requires more characters to be read from a

record than the count specified by c, or 132 if c is omitted, a warning message is

given. A list-directed DECODE can read more than one record.

After execution of the DECODE statement, t, if specified, contains the total

number of characters scanned for the records processed.  The count doesn’t

include a count of the trailing characters that are skipped over when

terminating the processing of a record.

Example:

     CHARACTER*7 P(6)
     P(1)=’00001.2’
     P(2)=’00023.0’
     P(3)=’00075.6’
 2   FORMAT (3G7.2)
     DECODE (23,2,P,L) U,V,W
 C          The DECODE statement generates the following
 C          internal values:
 C                U = 1.2
 C                V = 23.0
 C                W = 75.6
 C                L = 21

5.9.3. Internal File Formatted WRITE

Purpose:

The internal file formatted WRITE statement writes specified data into a specific
internal file according to a given format.

Form:

WRITE ([UNIT=] u, [FMT=] f [,ERR= s] [,IOSTAT= ios]) [iolist]

where:

UNIT= u

is a unit specifier (see 5.2.1); u is a character variable, character array, character
array element, or character substring.  The UNIT= clause is optional.

FMT= f

is a format specifier (see 5.2.4); f is a format identifier that must be present.  The
FMT= clause is optional.

ERR= s

is an error specifier (see 5.2.6); s is a statement label.
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IOSTAT= ios

is an input/output status specifier (see 5.2.8); ios is an integer variable or integer
array element. 

iolist

is an output list (see 5.2.3).

Description:

The internal file formatted WRITE statement writes one or more formatted records to
the internal file specified.  The file can be a character variable, character array, character
array element, or character substring.

When the file is a character variable, array element, or substring, it consists of a single
record whose length is the length of the character variable, array element, or substring.

When the file is a character array, each array element is a record of the file.  The order of
the records in the file is the order of the array elements in the array.  The length of the
record in a character array is the length of the character array element.

The information in the list items is converted and stored to the internal file as specified
by the format specifier.  An empty format [FORMAT( )] isn’t allowed.  Don’t use the
asterisk for f.

When the optional UNIT= and FMT= clauses appear in the control information list, the
specifiers can appear in any order.  When you use the UNIT= clause, the FMT= clause
must also appear.

An internal file is always positioned at the beginning of the first record before the
WRITE.

5.9.4. ENCODE Statement

Purpose:

The ENCODE statement converts data items in iolist to character form

according to the format f and places them in records in main storage starting at

b.

Form:

ENCODE ([c,] f, b [,t] [,ERR=s]) iolist

where: 

c

is an unsigned integer constant, symbolic name of an integer constant,

integer variable, or integer array element whose value specifies the number

of characters per internal record. 
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f

is the statement label of a FORMAT statement or the name of an integer

variable containing the statement label of a FORMAT statement or the

name of an array that contains format specifiers. 

b

is the name of an array (except assumed-size array), array element, or a

variable to which data is transferred. 

t

is the name of an integer variable or array element that, upon completion of

the operation, contains the number of characters (excluding trailing

blanks) actually generated by execution of the ENCODE statement.

ERR=s

is an error specifier that transfers control to statement label s when an

error is detected in the execution of the ENCODE statement.  (See 5.2.6.) 

iolist

is as specified for a WRITE statement and contains the items whose values

are to be encoded and stored in b.

Description:

You can unconditionally omit t and ERR=s. c, with the following comma, can be

omitted if t is also omitted.

When you omit c, the internal record size in the block area is determined

according to f and iolist with a maximum of 132 characters.  However, the next

internal record in the block area starts with the first character of the next word

and the remainder of the last word is blank-filled.  When you use an empty

FORMAT statement, the internal record size is 132 characters when c is

omitted.

When the ENCODE statement is executed, the data items specified by iolist are

converted to character strings according to the FORMAT specified by f. When

an empty FORMAT is given, the data items in the list are converted according to

their type.  The characters generated are placed in consecutive character

positions of b with the first generated character going into the first character

position (leftmost quarter) of b.  When a new record begins and c is specified,

the first character generated is placed in the first character position following

the previous record.  Thus, the first character of the first record is placed in the

first character position of b; the first character of the second record is placed in

the (c + first character) position, and so on.

When the interaction of iolist with f causes more characters to be generated

than specified by c or 132 when c is not specified, the extra characters are lost

and a warning message is given.  They are not placed into the character

positions following the current record.  When the number of characters
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generated is less than that required to fill the record, the remainder of the

record is filled with blanks.  A list-directed ENCODE may write more than one

record.

On completion of execution of the ENCODE statement, t, if specified, contains

a count of the total number of characters generated for the records.  The count

doesn’t include any trailing blanks generated to fill out the records.  

Note: It is your responsibility to ensure that the area to which data is

transferred (b) is large enough.  If it isn’t, data transfer may not be

complete or other areas can be overwritten unintentionally.  The size c

relates to the internal record size; the array b can receive multiple

records.

Example:

     DIMENSION P(6)
     R = 1.2
     S = 23.0
     T = 75.6
 1   FORMAT (3G7.2)
     ENCODE (23,1,P,J) R,S,T
     END
 C          This produces an array P which appears in storage
 C          as follows:
 C
 C              1.2����23.����76.������

 C
 C          Effectively, the numbers are rounded.  The last
 C          two positions are blank-filled because the values
 C          stored are less than the record size.  J is
 C          equal to 21.

5.10. Auxiliary Input/Output Statements
There are three auxiliary input/output statements:

1. OPEN (defines the characteristics of a particular external file).

2. CLOSE (terminates the association of a particular external file to a particular unit
and closes the file or changes the status of a unit from reread to closed).

3. INQUIRE (returns information about the properties of a particular external file or
the association to a particular unit).

You can use the auxiliary input/output statements with either sequential or direct-access
files.  However, auxiliary input/output statements must not specify an internal file.

5.10.1. OPEN

Purpose:

An OPEN statement defines the characteristics of a particular file that can be used
during a sequential- or direct-access input/output operation or that can be referenced by
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an auxiliary input/output statement.  The basic file types which can be defined with an
OPEN statement are symbiont, ANSI, and sequential or direct SDF.  In addition, the
execution of the OPEN statement can:

� associate an existing file with a unit identifier;

� create a file and associate it with a unit identifier;

� change certain characteristics of an association between a file and a unit identifier;

� create a file that is initially associated with a symbiont unit or alternate symbiont
unit;

� open the unit if the unit has not previously opened with its associated file;

� assign a unit number for rereading the last formatted record read;

� override and modify the symbiont code for a unit in the FRT; or

� declare that the direct-access file is a shared file, using the RFORM clause.

An OPEN statement can open a unit in any program unit of an executable program.
Once opened, it can be referenced in any program unit of the executable program.

A file is considered to exist when it meets one of the following conditions:

� The file is associated with an opened unit.

� The file is assigned to the run.  A file that is opened with a status of NEW and is
preassigned to a particular size is considered to exist prior to execution of the OPEN
statement.

� The file is already cataloged and can be assigned to the run by an @ASG,A control
image (@ASG,AY for INQUIRE).  When the @ASG assigns the file, the file is freed
with a @FREE,R control image.

Creation of a file causes a file to exist that did not previously exist.  Deleting a file
terminates the existence of the file.

In the form that follows, the unit identifier u is required.  The remaining clauses are
optional, except the record length (RECL=rl), which you must provide when the file is
opened for direct access.  The optional clauses are unordered.  The unit specified must
exist.  Restrictions involving the combinations of clauses allowed are specified under the
discussions of the individual clauses.

Form:

OPEN([UNIT=]u [,IOSTAT=ios] [,ERR=s] [,FILE=fname] [,STATUS=sta]

     [,ACCESS=acc] [,FORM=fm] [,BLANK=blnk] [,RECL=rl]

          [,RFORM=rfm] [,MRECL=mrcl] [,TYPE=type] [,BLOCK=bsize]

          [,OFF=boff] [,SEG=ssize] [,RCDS=mnum] [,ASSOC=var] [,REREAD=rrd]

          [,PREP=psize] [,BUFR=bufsize])

where the clauses are:
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UNIT=u  

u is an integer expression specifying a unit identifier (see 5.2.1).  When UNIT= is
present, this clause need not be the first.  When UNIT= is absent, u must precede all
other optional clauses.  Don’t use an asterisk for u.

IOSTAT=ios

is an input/output status specifier (see 5.2.8); ios is an integer variable or integer
array element.

ERR=s

is an error specifier (see 5.2.6); s is a statement label.

FILE=fname  

fname is a character expression whose value is the name of the external file to be
associated with the specified unit.  Trailing blanks are ignored.  Leading blanks are
not allowed.  The file name must be of the form:

[[qualifier]*]file-name[.].

Keys and F-cycles aren’t allowed.

When this clause is present, a @USE unit-num,qualifier*file name. control
statement is executed if the unit number doesn’t match the file name.  This clause
can’t be present if a status (sta) of SCRATCH is specified.  When this clause is
omitted and the unit isn’t opened, the unit identifier is used as the file name.

STATUS=sta  

sta is a character expression whose value is OLD, NEW, SCRATCH, EXTEND, or
UNKNOWN.  Trailing blanks are ignored. When UNKNOWN, OLD, NEW, or
EXTEND are specified, a FILE= clause is optional.  When you omit this clause, the
default value is UNKNOWN.

When you specify OLD, the file must exist.

When you specify NEW and the file isn’t preassigned to desired size, a file is created
(using an @ASG,CP statement) according to rules 3 and 4 given under the following
discussion on UNKNOWN.  New ASCII alternate symbiont files aren’t assigned

by ASCII FORTRAN.  These are assigned by the Executive system in batch

mode only.  NEW can’t be specified for a shared direct-access file.

When you specify SCRATCH, a file is created (using an @ASG,T statement) with a
file name equal to the unit identifier.  This file is deleted at the execution of a CLOSE
statement referring to the same unit or at the termination of the executable program.
SCRATCH can’t be specified for a shared direct-access file.

When you specify EXTEND, the file must exist.

For direct-access files, EXTEND allows writing records up to a new

maximum relative record count specified by the RCDS clause.

For sequential-access files, EXTEND positions the file after the current last

record of the file.
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The following rules apply:

� When necessary, reassign the file with a larger track size prior to

execution.

� A file created on tape can be extended only while residing on tape.

� A file created on mass storage can be extended while residing on mass

storage or tape; once the file is extended on tape it can’t be extended

later when residing on mass storage.

� A tape file must be extended with the same block size used to create the

file.

� A mass storage file that is created with a block size other than a

multiple of 28 words must be extended with the same block size used to

create the file.

� A mass storage file created with a block size equal to a multiple of 28

words can be extended with any block size which is a multiple of 28

words.

� For direct-access files, the record format used when creating the file

must also be used when extending the file.  Thus, if a file is skeletonized

when initially created, skeletonization must also be specified when the

file is extended.  

� When the file is extended in the same executing program that created it,

the file must be closed prior to executing the OPEN statement that

extends it.

� EXTEND has no effect on symbiont files.

When UNKNOWN is specified:

1. A check is made to see if the file is assigned to the run.  When it is assigned,
processing continues.

2. When the file is not assigned, an assignment using an @ASG,A statement is
performed.  When the file is cataloged and not rolled out, processing continues.

3. When the file is not cataloged and the access mode is direct, an assignment
using an @ASG,T file name, /// fsize statement (ASG,CP if its status is NEW) is
performed before processing continues.  The fsize parameter is determined by: 

mnum*(rl+nbr-control-words)+label-size+eof-word
———————————————————————————————————————————————
                   track-size

where: 

mnum see RCDS=mnum clause.

rl record length in words, see RECL=rl clause.

nbr-control-words (rl+2046)/2047.

label-size 112 words.
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eof-word 1 word.

track-size 1792 words/track.

When mnum is not provided, fsize is given a value of 128 tracks.

4. When the file isn’t cataloged and the access mode is sequential, an assignment
using an @ASG,T file-name statement (@ASG,CP if the status is NEW) is
performed before processing continues.  

Shared direct-access files are not assigned by the @ASG command.  See
Appendix G.

This discussion of UNKNOWN doesn’t apply to ASCII symbiont files.  See Appendix
G for a discussion on the handling of ASCII symbiont files. 

Execution of a DEFINE FILE statement is equivalent to executing an OPEN

statement with a status of UNKNOWN with corresponding optional clauses

specified.

ACCESS=acc

This clause specifies the access method used for the file.  acc is a character
expression whose value is one of the following:

SEQUENTIAL     or     SEQ

DIRECT         or     DIR

Trailing blanks are ignored.

When you omit this clause, the default value is SEQUENTIAL.

FORM=fm  

fm is a character expression whose value is FORMATTED or UNFORMATTED.
Trailing blanks are ignored.  It specifies that the file is opened for formatted or
unformatted input/output, respectively. 

For SDF direct files, a value of FORMATTED implies a record format of E

while a value of UNFORMATTED implies a record format of U (for files

containing formatted and unformatted records, see the following discussion

on rfm).

When you omit this clause and the RFORM clause is also absent, a value of
UNFORMATTED is assumed if the file is opened for direct access (a value of U is

assumed for a record format; see the following discussion on rfm).  A value
of FORMATTED is the default value if the file is opened for sequential access with a
file type other than ANSI.  For ANSI files, the default value is UNKNOWN. 

This clause can’t appear when the RFORM clause is present and an SDF

direct file is opened.

BLANK=blnk  

blnk is a character expression whose value is NULL or ZERO.  Trailing blanks are
ignored.
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When you specify NULL, all blank characters in numeric formatted input fields on
the specified unit are ignored except that a field of all blanks has a value of zero.

When you specify ZERO, all blanks other than leading blanks are treated as zeros.

This clause is permitted only for a file connected for formatted input/output.

When you omit this clause, the default value is NULL. When the OPEN statement is
not present for a particular unit specifier, the default value is ZERO.  (See BN and BZ
edit descriptors in 5.3.1.)

RECL=rl  

rl is an integer expression in the range 0 to 262,143 that specifies the length of each
record in the file opened for direct access.  When the file is opened for formatted
input/output, the length is the number of characters.  When the file is opened for
unformatted input/output, the length is measured in words.

This clause must appear only when a file is opened for direct access; it cannot
appear when a file is opened for sequential access.

RFORM=rfm  

rfm is a character expression whose value specifies the record format for

sequential ANSI files or SDF direct files.  Trailing blanks are ignored.

Allowable values for sequential ANSI files are:

U

Undefined.  The record is written with no control information appended

to it.  The records can be variable in length.  Each data block contains

only one record.  When a record size is provided, it indicates the

maximum record size.  This is the default value for ANSI files.

F 

Fixed, unblocked.  The record is written with no control information

appended to it.  All records are of the same length.  Each data block

contains only one record.  When a record size is provided, it must

indicate the exact record size.

FB

Fixed, blocked.  Basically the same as fixed, unblocked; however, each

block contains one or more records.  Each data block has the same

number of records, except possibly the last block.  The last block is

truncated if it does not contain the full number of records.  When a

record size is provided, it indicates the exact record size.

V

Variable, unblocked.  Appended to each record are four ASCII

characters of control information containing the total number of

characters in the record (including the four control characters). The

records can be variable in length.  The data block contains only one

record.  If a maximum record size is specified with the MRECL clause,

the size need not include the four characters for control information.
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VB

Variable, blocked.  The same as variable, unblocked except that the

block contains as many complete records as possible.

VS

Variable, unblocked, segmented.  The record is segmented at the block

boundary.  Appended to each record segment are five characters of

control information.  The first character is the record segment indicator

and the remaining four are the segment length.  The data block contains

only one segment of the record. If a maximum record size is specified

with the MRECL clause, the size need not include the five characters for

control information.

VBS

Variable, blocked, segmented.  Similar to variable, unblocked,

segmented; however, each block can contain more than one record

segment but never more than one segment of the same record.

The VBS and VS forms specify the ANSI S format.  The V and VB forms

specify the ANSI D format.  The F and FB specify the ANSI F format.  The U

specifies the ANSI U format.

To read a prelevel 9R1 ANSI file (unpacked character data), append ‘66’ to

the appropriate record format.  For instance, to read a prelevel 9R1 ANSI

file that is fixed and blocked, the resulting clause is RFORM = ’FB66’.

Allowable values for SDF direct files are:

L

The file contains formatted or unformatted records or both.  The

maximum record size is measured in characters.

LS

Same as L, except the file is a shared file.

M

Same as L, except the file is skeletonized when it is created or

extended.  Skeletonization consists of writing a dummy record for every

record in a direct-access file at the time the file is created.  A dummy

record consists of a record control word with the record type field set to

deleted.

MS

Same as M, except the file is a shared file.

E

The file contains formatted records.  The maximum record size is

measured in characters.

ES

Same as E, except the file is a shared file.
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F

Same as E, except the file is skeletonized when it is created or

extended.

FS 

Same as F, except the file is a shared file.

U 

The file contains unformatted records.  The maximum record size is

measured in number of words.  This is the default value when both the

FORM and RFORM clauses are absent.

US 

Same as U, except the file is a shared file.

V

Same as U, except the file is skeletonized when it is created or

extended.

VS 

Same as V, except the file is a shared file.

See Appendix G for a discussion on skeletonization.

This clause is not allowed when the FORM clause is present and an SDF

direct file is opened.

MRECL=mrcl 

mrcl is an integer expression in the range of 0 to 262,143 that specifies the

maximum record size for the file connected for sequential access.  The

TYPE clause determines the unit of specification.  The defaults are:

APRINT, APRNTA, AREADA 132 characters

APUNCH, APNCHA, AREAD 80 characters

SDF sequential 33 words

ANSI 132 characters

The range for symbionts is:

AREADA 0 < mrcl ≤ 160

APRINT, APRNTA 0 < mrcl ≤ 252

AREAD 0 < mrcl ≤ 131,071

APUNCH, APNCHA 0 < mrcl ≤ 80
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For SDF, maximum record size must be specified when records (other than

unformatted records) larger than the default size are to be written.

Maximum record size need not reflect unformatted records, as they are read

and written in segments.

For ANSI, the maximum record size must be specified when records larger

than the default size are read or written, regardless of whether they are

formatted or unformatted.  The maximum size allowed for an ANSI file is

9,995 characters if the record format is V or VB; otherwise, the maximum

size is 99,999 characters.

TYPE=type  

type is a character expression that specifies the file format for files opened

for sequential access.  The possible values are:

SDF

ANSI

APRINT

APRNTA

APUNCH

APNCHA

AREAD

AREADA

The default value for this clause is SDF.

For more information about SDF processing, see Appendix G.

ANSI files involve the use of labeled and unlabeled tapes.  See Appendix G

for more information about ANSI file processing.

This clause can override and modify the symbiont code field specified when

the file reference table was built, provided the unit was never opened

before or had a closed file status prior to the open.  See G.4 for processing

of alternate symbiont files.

BLOCK=bsize  

bsize is an integer expression in the range of 0 to 262,143 that specifies the

block size for ANSI and SDF sequential files. Refer to Appendix G for more

information about block size.

This clause is optional for SDF sequential files.  When omitted, the default

value is 224 words.

This clause is optional for ANSI files.  When omitted, the default value is

132 characters.

The block size (bsize) for ANSI files depends on the maximum record size

(mrcl), the buffer offset (boff), and the record format (rfm) as follows:

� For U or F record format:

bsize = mrcl + boff  

� For V record format:
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bsize = mrcl + 4 + boff

� For FB record format:

bsize = n (mrcl) + boff

� For VB record format:

bsize ≥ n (mrcl + 4) + boff

� For VS or VBS record format:

The block size can be less than, equal to, or greater than the record

size, but it must be large enough to contain any buffer offset and the

five characters of control information appended to each record

segment.

OFF=boff  

boff is an integer expression in the range 0 to 99 characters that specifies

the ANSI buffer offset.  The default value for this field is zero.

The variable boff must be specified if an ANSI input file contains buffer

offset information in the front of the data blocks. This clause isn’t needed

for ASCII FORTRAN-produced ANSI tapes since no buffer offset

information is appended to the data blocks. Refer to Appendix G for more

information about ANSI files.

SEG=ssize  

ssize is an integer expression that specifies the record segment size in

words for sequential SDF files.  The range is 1 ≤ ssize ≤ 2047.  Record

segment size is the size that all records are segmented at when they are

written to the SDF file.  It is also the size at which unformatted records are

processed as they are processed in segments.  The default value for this

clause is 111 words.  Refer to Appendix G for more information about

record segment size.

RCDS=mnum  

mnum is an integer expression that specifies the maximum number of

records that a direct-access file contains.  This clause is only applicable

when a direct-access file is opened for the first time or when a direct-access

file is opened with STATUS of EXTEND.  When absent, the default value for

mnum is:

(size * track-size) - (label-size + eof-word)
————————————————————————————————————————————
             rl + nbr-control-words

where: 

size

is the preassigned size of the file or 128 tracks (default). 
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track-size, label-size, eof-word, nbr-control-words

see the description under the STATUS=sta clause. 

rl

is the record length in words; see the RECL=rl clause.

ASSOC=var  

var is an unsubscripted integer variable that is used as an associated

variable.  The associated variable receives the next relative record number

for SDF direct files after the execution of a READ or WRITE statement

involving the file, and the specified record number after the execution of a

FIND statement.  The associated variable is initialized to a value of 1 by the

OPEN statement.  The associated variable can’t be used as an argument in a

function or subroutine reference.

This clause can only appear when the file is opened for direct access.

REREAD=rrd  

rrd is a character expression whose value is ON.  Trailing blanks are

ignored.

The only other clauses that can be present when the REREAD clause is

present are: ERR, UNIT, and IOSTAT.  The OPEN statement may not try to

open a unit for REREAD while that unit is open as a normal I/O file.  An

implicit CLOSE is not performed.

The reread unit rereads the last formatted SDF sequential or symbiont

record read (see 5.6.1.5).

PREP=psize  

psize is an integer expression in the range of 0 to 262,143 that specifies the

physical prep factor in words of the device on which an SDF direct-access

file is stored.

This clause is optional for SDF direct files.  When omitted, the default value

is 112 words.

The PREP clause is ignored for shared direct-access files.

BUFR=bufsize  

bufsize is an integer expression in the range 0 to 262,143 that specifies the

buffer size in words used for SDF direct files.

This clause is optional for SDF direct files.  When omitted, the default

buffer size is the minimum allowable buffer size given by the following

formula:

minimum bufsize = rl + nbr-control-words + 2*psize + 1

where:  
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rl

is the record length in words; see the RECL = rl clause 

nbr-control-words

(rl + 2046)/2047 

psize

is the physical prepping factor; see the PREP=psize clause.  The 2*psize

portion of this formula is ignored for shared direct-access files.

Description:

Once an SDF or ANSI file is initially created, use of the ACCESS, FORM, RECL, RFORM,

MRECL, TYPE, and OFF clauses on subsequent opens doesn’t update the file header.

Specifiers that can be character expressions can be uppercase, lowercase, or a

mixture of both.

Multiple OPEN statements without an intervening clause involving the same file and unit
number are permitted.  Only the BLANK and MRECL (symbionts only) clauses can
specify a value different from the one in effect.

If the file to be associated with the unit is not the same as the file that is currently
associated with the unit, an implicit CLOSE statement is executed for the unit. The
default value for the STATUS= clause of the CLOSE statement is used when doing the
implicit CLOSE.  The unit is then associated with the new file and the new file is opened.

If a file is open, execution of an OPEN statement involving that file and a unit other than
the unit currently associated with that file is not permitted.  An implicit CLOSE is not

executed if the unit is currently a reread unit.  An explicit CLOSE must be

executed before the unit can be associated with a file.

Example 1:

INTEGER OUTKOM
OPEN (10, IOSTAT=OUTKOM, ERR=50, STATUS=’OLD’)

This OPEN statement opens a file for sequential access.

If a file is not associated with 10 via a @USE control statement, 10 is used as the file
name.

The status of OLD requires that the file must already exist; otherwise, an error condition
results.

When an error condition is encountered during execution of the OPEN statement, the
variable OUTKOM receives the contents of the I/O status word, PTIOE, contained in the
storage control table, and control transfers to the statement with label 50.

The remaining applicable clauses and their default values are:
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 FORM = ’FORMATTED’

 BLANK = ’NULL’

 MRECL = 33

 TYPE = ’SDF’

 BLOCK = 224

 SEG = 111

Example 2:

CHARACTER*20 FSTAT
FSTAT = ’UNKNOWN’
OPEN (12, FILE=’DATA1’, STATUS=FSTAT, ACCESS=’DIRECT’, RECL=25,
RCDS=1000,
1     ASSOC = NREC)

This OPEN statement opens a file for direct access.

A @USE 12,DATA1 control statement is executed.  Since the status is UNKNOWN, an
attempt is made to assign the file when it is not yet assigned.  When the file doesn’t exist,
a temporary file is assigned.

Since neither the FORM nor the RFORM clause is present, the default record format
applied specifies that the file contains unformatted records.  The file can contain up to
1000 records of 25 words each.

The NEXTREC clause of the INQUIRE statement can be used to determine the next
relative record number.

When an error condition is encountered while executing the OPEN statement, an error
message is printed and the program terminates.  Control doesn’t return to you, as both
the ERR and IOSTAT clauses are absent.

5.10.2. CLOSE

Purpose:

A CLOSE statement terminates the association of a particular external file with the
specified unit and closes the file or changes the status of a unit from reread to

closed.

A CLOSE statement for a particular unit can occur in any program unit of an executable
program and need not occur in the same program unit as the OPEN statement referring
to the unit.

An OPEN of a new file followed by a CLOSE doesn’t create an empty file with a file
header.  The file header is not written to the file until the first WRITE.

In the form that follows, the unit identifier u must appear.  The remaining clauses are
optional and (if present) are unordered.
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Form:

CLOSE ([UNIT=]u [,IOSTAT=ios] [,ERR=s] [,STATUS=sta] [,REREAD=rrd])

where:

UNIT=u  

u is an integer expression specifying a unit identifier (see 5.2.1).  When UNIT= is
present, this clause need not be the first.  When the UNIT= clause is absent, u must
precede all other optional clauses.  Don’t use an asterisk for u.

IOSTAT=ios

is an input/output status specifier (see 5.2.8); ios is an integer variable or integer
array element.

ERR=s

is an error specifier (see 5.2.6); s is a statement label.

STATUS=sta  

sta is a character expression whose value is one of the following:

KEEP
DELETE 
REWIND 

FREE 

COMMIT

Trailing blanks are ignored.  These values determine the disposition of the file being
closed.

When KEEP is specified, the file continues to exist after execution of the CLOSE
statement.  KEEP must not be specified for a file whose OPEN status is specified as
SCRATCH.  If the file is a tape file, the tape remains positioned after the EOF mark.

When DELETE is specified, the file ceases to exist after execution of the CLOSE
statement.  When the file is assigned with the C or U options, a @FREE,I control
statement is executed; otherwise, a @FREE,D control statement is executed.
DELETE should not be specified for a shared direct-access file.

When you specify REWIND, the file is rewound and then treated as if a

KEEP is specified.

When you specify FREE, a @FREE control statement is executed.  FREE

should not be specified for a shared direct-access file.

When you specify COMMIT, the shared direct-access file is updated at the

time of the CLOSE rather than at program termination. This allows you to

re-open a shared file as a sequential file.

The default value is KEEP, unless the file’s OPEN status is specified as SCRATCH, in
which case the default value is DELETE. 
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[REREAD rrd] 

rrd is a character expression whose value is OFF.  Trailing blanks are

ignored. 

The STATUS clause can’t be present when the REREAD clause is present.

The REREAD clause must not be present when the unit is open as a normal

I/O file.  This clause removes the assignment of the unit as a reread unit.

After the CLOSE with REREAD, the unit can be associated with a normal

I/O file in the same program unit (see 5.6.1.5).

Description:

Specifiers that can be character expressions can be uppercase, lowercase, or a

combination of both.

A CLOSE statement that specifies a unit that doesn’t exist or isn’t open has no effect.
Execution continues with the next statement.

After a unit is no longer associated with a file due to the execution of a CLOSE
statement, it can be reassociated in the same executable program to the same file or a
different file, or it can be used as a reread unit.

After a file is closed, it can be associated, in the same executable program, to the same
unit or a different unit and opened again.

A CLOSE statement frees the file control buffers for the file closed.  Thus, no position
information on the file is available.

Example:

CLOSE (12,IOSTAT=MSTAT,ERR=100,STATUS=’DELETE’)

This CLOSE statement closes the file associated with unit 12.

Since DELETE is specified, the file no longer exists after execution of the CLOSE
statement.

When an error condition is encountered while executing the CLOSE statement, the
variable MSTAT receives the contents of the I/O status word, PTIOE, contained in the
storage control table, and control transfers to the statement with label 100.

After successful completion of this CLOSE, unit 12 isn’t associated with any file.

5.10.3. INQUIRE

Purpose:

An INQUIRE statement returns information about the properties of a particular file or
the association to a particular unit.  There are two forms of the INQUIRE statement:
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1. INQUIRE by file - The list of optional clauses must contain exactly one FILE clause
and can’t contain a UNIT clause or a REREAD clause.

2. INQUIRE by unit - The list of optional clauses must contain exactly one external
UNIT clause and can’t contain a FILE clause.  The unit specified need not exist or be
associated with a file.

The INQUIRE statement can be executed before, while, or after a file is opened.  All
values that the INQUIRE statement assigns are those that are current at the time the
statement is executed.

The optional clauses of the INQUIRE statement that follow may be used in any order
and can be combined with other clauses as specified in the following discussion.

Form:

INQUIRE  ([UNIT=]u [,FILE=fin] [,IOSTAT=ios] [,ERR=s] [,EXIST=ex]
         [,OPENED=od] [,NUMBER=num] [,NAMED=nmd] [,NAME=fn]
         [,ACCESS=acc] [,SEQUENTIAL=seq] [,DIRECT=dir] [,FORM=fm]
         [,FORMATTED=fmt] [,UNFORMATTED=unf] [,RECL=rcl]
         [,NEXTREC=nr] [,BLANK=blnk] [,RFORM=rfm] [,MRECL=mrcl]
         [,TYPE=typ] [,BLOCK=bsize] [,OFF=boff] [,SEG=ssize] [,REREAD=rrd]
         [,PREP=psize] [,BUFR=bufsize])

Note: You may inquire by file or unit but not both. Therefore, either a UNIT or FILE

clause must be present.

where:

UNIT=u  

u is an integer expression specifying a unit identifier (see 5.2.1).  When UNIT= is
present, this clause need not be the first.  When UNIT= is absent, u must precede all
other optional clauses.  Don’t use an asterisk for u. 

Note: This clause must not be present when an INQUIRE by file is performed.

The unit specified need not exist or be associated with a file.

FILE=fin  

fin is a character expression whose value when any trailing blanks are removed is
the name of the external file inquired about.  Leading blanks are not allowed. The
file name must be of the form:

[[qualifier]*]file-name[.]

Keys and F-cycles can’t be part of fin and aren’t returned by the INQUIRE statement
on fin. 

Note: This clause must not appear when an INQUIRE by unit is performed.

The named file need not exist or be opened.
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IOSTAT=ios

is an input/output status specifier (see 5.2.8); ios is an integer variable or integer
array element.

ERR=s

is an error specifier (see 5.2.6); s is a statement label.

EXIST=ex  

ex is a logical variable or logical array element.  If a file with the specified name
exists, the INQUIRE by file statement assigns the value .TRUE. to ex; otherwise, ex

is assigned the value .FALSE.

See 5.10.1 for a discussion of file existence.

If the specified unit exists, the INQUIRE by unit statement assigns the value .TRUE.
to ex; otherwise, ex is assigned the value .FALSE.

A unit is said to exist if:

0 ≤ unit number ≤ FRT length

where FRT is the file reference table (see G.5).

OPENED=od  

od is a logical variable or logical array element.  If the file or unit specified is open,
the INQUIRE by file statement or INQUIRE by unit statement assigns the value
.TRUE. to od; otherwise, od is assigned the value .FALSE.

NUMBER=num  

num is an integer variable or integer array element that is to receive the value of the
external unit identifier if the unit is open.  For an INQUIRE by file, the unit in
question is the unit associated with the file.  If no unit is associated with the file,
num is undefined.

NAMED=nmd  

nmd is a logical variable or logical array element that is assigned a .TRUE. or
.FALSE. value, which indicates the existence of an external file name based on the
following conditions:

� For an INQUIRE by file, nmd is assigned a value of .TRUE. if the file exists; it
need not be opened.

� For an INQUIRE by unit, nmd is assigned a value of .TRUE. if the unit is open
and not associated with a symbiont.  A value of .FALSE. is returned if the unit is
open and associated with a symbiont.

NAME=fn  

fn is a character variable or character array element that is assigned the value of the
external name of the file when the file has an external name; otherwise, it is
undefined.

The value returned by this optional clause has the form: 
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qualifier*file-name.

ACCESS=acc  

acc is a character variable or character array element that is assigned the value
SEQUENTIAL if the file is open for sequential access, and DIRECT if the file is open
for direct access.  If the file is not open, acc is undefined.

SEQUENTIAL=seq  

seq is a character variable or character array element that is assigned the value YES
if the file is open for sequential access and a value of NO if the file is not open for
sequential access.  A value of UNKNOWN is returned when the access method for
the file can’t be determined.

When the file is not open (INQUIRE by unit) or the file doesn’t exist (INQUIRE by
file), seq is undefined.

DIRECT=dir  

dir is a character variable or character array element that is assigned the value YES
if the file is open for direct access and a value of NO if the file is not open for direct
access.  A value of UNKNOWN is returned when the access method for the file can’t
be determined.

When the file is not open (INQUIRE by unit) or the file doesn’t exist (INQUIRE by
file), dir is undefined.

FORM=fm  

fm is a character variable or character array element that is assigned the value
FORMATTED if the file is open for formatted I/O, UNFORMATTED if the file is open
for unformatted I/O, and BOTH if the I/O type is mixed.  When the file is not
open, fm is undefined.  List-directed and namelist I/O are considered formatted.

FORMATTED=fmt  

fmt is a character variable or character array element that is assigned the value YES
when the I/O type for the file is formatted, and NO when the I/O type for the file is
not formatted.  A value of UNKNOWN is returned when the I/O type of the file can’t
be determined.

When the file is not open (INQUIRE by unit) or the file doesn’t exist (INQUIRE by
file), fmt is undefined.

UNFORMATTED=unf  

unf is a character variable or character array element that is assigned the value YES
when the I/O type for the file is unformatted, and NO when the I/O type for the file is
not unformatted.  A value of UNKNOWN is returned when the I/O type of the file
can’t be determined.

When the file is not open (INQUIRE by unit) or the file doesn’t exist (INQUIRE by
file), unf is undefined.
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RECL=rcl  

rcl is an integer variable or integer array element that is assigned the value of the
record length of the file if it is open for SDF direct access.

If the file is open for formatted input/output or can contain both formatted and
unformatted records, the length is in characters.  The length is measured in words
when the file is open for unformatted input/output.

When the file is not open or the file is not open for direct access, rcl is undefined.

NEXTREC=nr  

nr is an integer variable or integer array element that receives the next relative
record number for the file if it is open for SDF direct access.  If the file is open but
no records are read or written after the opening, nr is assigned the value 1.

When the file is not open for direct access or the position of the file is indeterminate
due to a previous error condition, nr is undefined.

BLANK=blnk  

blnk is a character variable or character array element.  A value of NULL is returned
if the file is open for formatted input/output and null blank control is in effect.  A
value of ZERO is returned if the file is open for formatted input/output and if zero
blank control is in effect.

If the file is not open or if it is not open for formatted input/output, blnk is
undefined. 

RFORM=rfm

rfm is a character variable or character array element that receives a literal

value representing the record format for ANSI files and SDF direct files.

If the file is open as an ANSI file, one of the following values is returned: 

Value
Returned Record Format

U Undefined

F Fixed, unblocked

FB Fixed, blocked

V Variable, unblocked

VB Variable, blocked

VS Variable, unblocked, segmented

VBS Variable, blocked, segmented

 

If the file is open as an SDF direct file, one of the following values is

returned:
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Value
Returned Record Format

L Formatted or unformatted records or both. The maximum record size
is measured in characters.

LS Same as L, except the file is a shared file.

M Same as L, except the file is skeletonized.

MS Same as M, except the file is a shared file.

E Formatted records.  The maximum record size is measured in
characters.

ES Same as E, except the file is a shared file.

F Same as E, except the file is skeletonized.

FS Same as F, except the file is a shared file.

U Unformatted records.  The maximum record size is measured in words.

US Same as U, except the file is a shared file.

V Same as U, except the file is skeletonized.

VS Same as V, except the file is a shared file.

 

The rfm variable is undefined for all other cases.

MRECL=mrcl  

mrcl is an integer variable or integer array element that is assigned the

value of the maximum record length of the file if it is open for sequential

access.

When the file is not open or the file is not open for sequential access, mrcl

is undefined.

The applicable units of measure are characters or words, as follows:

symbionts

characters

SDF sequential

words

ANSI

characters

TYPE=typ  

typ is a character variable or character array element that is assigned one

of the following file format values if the file is open for sequential access:
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SDF

ANSI

AREAD

AREADA

APUNCH

APNCHA

APRINT

APRNTA

If the file is open for SDF direct or not open, typ is undefined.

BLOCK=  

bsize is an integer variable or integer array element that receives the block

size if the file is open with a file format of ANSI or sequential SDF.

For SDF sequential files, the unit of measure is words.

For ANSI files, the unit of measure is characters.

For any other file format or if the file is not open, bsize is undefined.

OFF=boff  

boff is an integer variable or integer array element that receives the ANSI

buffer offset in characters if the file is open with a file format of ANSI.

For any other file format or if the file is not open, boff is undefined.

SEG=ssize  

ssize is an integer variable or integerarray element that is assigned the

value of the SDF record segment size in words.  This value is defined only

for files open for SDF sequential access.

REREAD=rrd  

rrd is a character variable or character array element that is assigned the

value ON if the unit exists and is assigned as a reread unit, and a value OFF

if the unit exists and is not assigned as a reread unit.  When the unit doesn’t

exist, rrd is undefined.

All other clauses except the UNIT, IOSTAT, ERR, and EXIST clauses are

ignored when the unit is a reread unit (see 5.6.1.5).

PREP=psize  

psize is an integer variable or integer array element that receives the

physical prep factor specified for the device on which an SDF direct-access

file is stored.

When the file is not open for direct access, psize is undefined.

The PREP clause is ignored for shared direct-access files.

BUFR=bufsize  

bufsize is an integer variable or integer array element that receives the

buffer size used for an SDF direct-ccess file.
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When the file is not open for direct access, bufsize is undefined.

Description:

A variable or array element that receives a value in an INQUIRE statement can’t be
referred to by more than one of the clauses in the same INQUIRE statement.

When an INQUIRE by file statement is executed:

� The variables nmd, fn, seq, dir, fmt, and unf are assigned values only when the
value of fin is acceptable and when a file by that name exists; otherwise, they are
undefined.

� The variable num becomes defined if and only if od is defined with a value of
.TRUE.

� The variables acc, fm, rcl, nr, blnk, rfm, mrcl, typ, bsize, boff, psize, bufsize,

and ssize can be defined only if od is defined with a value of .TRUE.

When an INQUIRE by unit statement is executed, num, nmd, fn, acc, seq, dir, fm, fmt,

unf, rcl, nr, blnk, rfm, mrcl, typ, bsize, boff, psize, bufsize, and ssize are assigned
values only if the specified unit exists and is open; otherwise, they are undefined.

When an error condition occurs during execution of an INQUIRE statement, all of the
optional clause variables and array elements except ios are undefined.

Variables ex and od always become defined unless an error condition occurs.

When the receiving area for a returned literal value is too small, a warning is issued and
the literal is truncated on the right.  Character literal values returned by INQUIRE are
uppercase.

Example:

 CHARACTER*20   FN1,ACC1,SEQ1,DIR1, FORM1,FMT1,UNF1,RFORM1,
1BLANK1,TYPE1
 INTEGER   OUTKOM,UNIT1,RECL1,ASSOC,BLOCK1,BOFF1,SEG1
 LOGICAL   EXIST1,OPEN1,NAMED1
 INQUIRE  (10,IOSTAT=OUTKOM,ERR=50,EXIST=EXIST1,OPENED=OPEN1,NUMBER=UNIT1,
1NAMED=NAMED1,NAME=FN1,ACCESS=ACC1,SEQUENTIAL=SEQ1,DIRECT=DIR1,FORM=FORM1,
2FORMATTED=FMT1,UNFORMATTED=UNF1,RECL=RECL1,NEXTREC=ASSOC,BLANK=BLANK1,
3RFORM=RFORM1,MRECL=MRECL1,TYPE=TYPE1,BLOCK=BLOCK1,OFF=BOFF1,SEG=SEG1)

If an error condition is encountered while the INQUIRE statement is being executed, the
variable OUTKOM receives the contents of the I/O status word, PTIOE, contained in the
storage control table, and control transfers to the statement with label 50.

Assuming this INQUIRE statement is executed prior to the OPEN statement in the first
example in 5.10.1 and that unit 10 is not already open, the following values are returned:

OUTKOM = 0
EXIST1 = .TRUE.
OPEN1 = .FALSE.

Since that unit is not open, all other variables are undefined.
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Assuming the INQUIRE statement is executed immediately after the OPEN statement
referred to previously, the following values are returned:

OUTKOM = 0 
EXIST1 = .TRUE.
OPEN1 = .TRUE.
UNIT1 = 10 
NAMED1 = .TRUE.  
FN1 = ’TESTING*10.’ 
ACC1 = ’SEQUENTIAL’ 
SEQ1 = ’YES’ 
DIR1 = ’NO’ 
FORM1 = ’FORMATTED’ 
FMT1 = ’YES’ 
UNF1 = ’NO’ 
RECL1 = undefined       not applicable for SDF sequential 
ASSOC = undefined       not applicable for SDF sequential 
BLANK1 = ’NULL’
RFORM1 = undefined      not applicable for SDF sequential 
MRECL1 = 33 
TYPE1 = ’SDF’ 
BLOCK1 = 224 
BOFF1 = undefined        not applicable for SDF sequential
SEG1 = 111
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Section 6
Specification and Data Assignment
Statements

6.1. Overview of Specification Statements
Specification statements provide information to the processor on how storage should be
managed and how symbolic names should be interpreted and used. The specification
statement description can specify the following information:

� Data type (which in turn specifies the storage required for the data and its internal
representation)

� Initial value

� Array declaration

� Data that shares storage within a program unit

� Data that shares storage among several program units

The specification statements are:  DIMENSION, IMPLICIT, explicit typing,
EQUIVALENCE, COMMON, BANK, VIRTUAL, PARAMETER, EXTERNAL, INTRINSIC,
and SAVE.

In an internal subprogram, names used in explicit typing, DIMENSION,

COMMON, NAMELIST, PARAMETER, EXTERNAL, INTRINSIC, SAVE,

statement function definition, and DEFINE statements are local to the internal

subprogram, even if the names are also used in its external program unit.  See

7.9 for a description of global and local names.

Specification statements are nonexecutable.  They can appear at the beginning of the
program unit prior to the first executable statement, or they can appear following an

ENTRY statement with no intervening executable statements.  When

specification statements follow an ENTRY statement, the variables described

must not appear in a prior executable statement.

How entities are assigned initial values is also discussed in this section.  The DATA
statement, a means of providing initial values for variables, arrays, array elements, and
character substrings at compilation time, is discussed in 6.12.1.

Storage assignment is discussed in 6.13.
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6.2. DIMENSION Statement
Purpose:

The DIMENSION statement declares arrays and specifies dimension information.

Form:

DIMENSION a(d[,d]...) [/x/] [ ,a(d[,d]...) [/x/] ]

where: 

a

is a symbolic name. 

d

is a dimension declarator and specifies the extent of a; d must satisfy the
requirements for dimension declarators (see 2.4.4.1). 

x  

is initialization information for elements of a.  It must satisfy the

requirements of a constant list as specified in 6.12.1.

Description:

A symbolic name can be declared as an array name in a DIMENSION, COMMON, or an
explicit type statement.  However, only one array declaration for a symbolic name is
permitted in a program unit.

The maximum number of elements a nonvirtual array can have is 262,143.  Appendix M
contains a description of virtual arrays.  An array element whose relative address under
its location counter in the relocatable element is over 65,536 can’t be initialized using a
constant list or DATA statement.

When an array a has adjustable or assumed-size dimensions, it can be declared only in a
subprogram and must be a dummy argument.

For a description of local-global rules for names in DIMENSION statements in

internal subprograms, see 7.9.

Examples:

      DIMENSION ARR1(5,5,2)
C           Symbolic name ARR1 is declared as a three- dimensional
C           array name.  The maximum values that the three
C           subscripts can assume are 5, 5, and 2
C           respectively.  The lower bounds for the three
C           subscripts are assumed to be 1.

      DIMENSION FACTOR (0:4) /1.,2.,3.,4.,5./

C           Symbolic name FACTOR is declared as a one-dimensional
C           array with five elements.  A lower dimension bound



Specification and Data Assignment Statements

UP-8244.4-B 6-3

C           of zero and an upper dimension bound of four are
C           specified.  The five elements are assigned initial
C           values 1 through 5 respectively.

      SUBROUTINE ADJUST(ONE,THIRD,YES,ARR4)
      INTEGER ONE,THIRD 
      DIMENSION ARR4(ONE,2,THIRD)
C           Symbolic name ARR4 is an adjustable dummy array.
C           The addresses of its contents will be calculated
C           using the variable values.  No storage is actually
C           assigned to the array since it is a dummy array.

      SUBROUTINE DETER(ARR5,ARR6,IDIM)
      DIMENSION ARR5(-IDIM:2+IDIM, -IDIM:*), ARR6(*)
C           ARR5 and ARR6 are assumed-size dummy arrays.
C           ARR5 is a two-dimensional array and ARR6 is
C           a one-dimensional array.  The value of a
C           subscript expression in a dummy element reference
C           must be in the range determined by the lower bound and
C           upper bound expressions specified for that dimension.

6.3. Type Statements
The type statements are used to specifically declare the characteristics of items.
Otherwise, the normal convention specifies REAL type for any data item whose
symbolic name begins with any of the letters A through H or O through Z, and INTEGER
type for any data item whose symbolic name begins with any of the letters I through N.

You can use any data type from Table 6-1 in a type statement.

Table 6-1.  Valid Data Type and Length  

Permitted Length Specification

Type Default Alternate

INTEGER 4 None

REAL 4 8

COMPLEX 8 16

LOGICAL 4 None

CHARACTER 1 2,3,4, ...,511 or *

DOUBLE PRECISION 8 None

 

Type statements are either implicit or explicit.

Typical type and length specifications that you can use in type statements are INTEGER,
LOGICAL, REAL (or REAL*4) for type single-precision real, DOUBLE PRECISION (or

REAL*8) for type double-precision real, COMPLEX (or COMPLEX*8) for type
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single-precision complex, COMPLEX*16 for type double-precision complex, and
CHARACTER*n (where n is a positive unsigned integer constant) for type character.

6.3.1. IMPLICIT Statement

Purpose:

The IMPLICIT statement assigns a specific data type to a symbolic name based on the
initial alphabetic character of its name.

Form:

IMPLICIT t[*i] (a [ ,a] ... ) [ ,t[*i] (a[ , a ] ... ) ] ...

where: 

t

is a data type chosen from Table 6-1. 

i

is an unsigned integer constant (or positive integer constant expression enclosed in
parentheses if the type is character) and is a permitted length specification for the
given type.  When the length is omitted, the standard length for the given type is
assumed (see Table 6-1).  ASCII FORTRAN allows *i for all data types.  The
FORTRAN 77 standard allows *i for type character only. 

a

is a single alphabetic letter or a range of alphabetic letters.  A range is specified by
the first and last letters of the range separated by a hyphen.  For example, the
notation B-F specifies letters B, C, D, E, and F and has the same effect as when all
letters are listed separately.

Description:

The IMPLICIT statement affects the letter association used to assign data types by the
name rule (see 2.4.2.1).

All letters, a, included in a parenthesized list are associated with the data type t and
length i (if present) preceding that list.  In the program unit, all variables, arrays,
symbolic names of constants, function subprograms, and statement functions whose
symbolic names begin with the letters a are given the associated data type if the names
are not explicitly typed.  IMPLICIT statements don’t change the type of any intrinsic
functions.

In a subprogram, IMPLICIT statements must appear after the SUBROUTINE,
FUNCTION, or BLOCK DATA statement.

A program unit can contain any number of IMPLICIT statements, but IMPLICIT
statements should precede all other specification statements, except PARAMETER
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statements.  ASCII FORTRAN lets you specify IMPLICIT statements out of the

correct order.  When an IMPLICIT statement occurs after other specification

statements or after an executable statement, a warning is issued and only

variables that have not yet appeared in any statement are affected by the typing

implied by the IMPLICIT statement.

A letter can neither appear in, nor be included in, a range specification of more than one
IMPLICIT statement.  Furthermore, a letter can appear only once in any IMPLICIT
statement.

An internal subprogram gets the same IMPLICIT type associations as its

external program unit.  However, it can also have its own IMPLICIT statement

that only affects its local names.  Any following internal subprograms have

their IMPLICIT types revert to that of their external program unit (see 7.3.2

and 7.3.3).

Examples:

       IMPLICIT LOGICAL (B)
C            Variables whose names begin with the letter B are given
C            the LOGICAL type unless explicitly typed otherwise.

       IMPLICIT CHARACTER*4(C-E,Z), COMPLEX*16(M-O)
C            Variables whose names begin with the letters C, D, E,
C            or Z are given the CHARACTER type and a length of 4.
C            Data whose names begin with letters M, N, or O are
C            given the COMPLEX type and their real and imaginary
C            parts are double precision.

6.3.2. Explicit Type Statements

Purpose:

Explicit type statements assign a particular data type to a data item based on its name
rather than its initial letter.  In addition to data type, the following can be specified:
dimension information, data length, and initial values.

When an initial value list is present, it applies to the immediately preceding

array or variable only.  The syntax for initial values is different than in the

DATA statement.  Here, each data item has its own initial value list; in the

DATA statement the values for many variables can be in one list.

A function name, symbolic name of a constant, statement function name, or dummy
argument name can appear in an explicit type statement but can’t be assigned an initial
value.

When no data length is specified, the standard data length for that type is

assumed.  See Table 6-1.

When any intrinsic function name appears in an explicit type statement and the
statement type is not the same as the predefined intrinsic type, the name becomes a
user-defined name.  When the types are the same, the definition doesn’t change.
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The FORTRAN 77 standard states that the name of an intrinsic function must appear in
an EXTERNAL statement to define a user-defined function name.  ASCII FORTRAN

doesn’t require the occurrence of the intrinsic function name in an EXTERNAL

statement to define a user-defined function name.

6.3.2.1. INTEGER, REAL, DOUBLE PRECISION, COMPLEX, and LOGICAL Type
Statements

Form:  

typ [*len] name [/x/] [,name [/x/] ]...

where: 

typ

is INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or LOGICAL. 

len

is an unsigned integer constant and is one of the permitted specifications

for the given type typ (see Table 6-1).  The length specified with type  typ

applies to all symbolic names in the statement except those names that are

followed by a length specification.  

name

is one of the forms:

v [*len]

ary [*len][(d)]

where: 

v

is a variable name, symbolic name of a constant, function name, statement
function name, or dummy argument. 

ary

is an array name. 

d

is dimension information that must satisfy the requirements of 2.4.4. 

x

is initialization information that must satisfy the requirements of a

constant list as specified in 6.12.1.

Examples:

     INTEGER     SUM, ITEM(10) 
C            SUM is specified as type integer and length 4.
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C            ITEM is a one-dimensional array with 10 elements.
C            Each element of the array is type integer with length 4.  

      COMPLEX     C1, C2*16, C3 
C            C1, C2 and C3 are specified as type complex.
C            C1 and C3 have a length of 8, C2 has length 16.

      DOUBLE PRECISION     ARR(2) / 2*1.0D+0 / 
C            ARR is specified as a type real, one-dimensional
C            array with two elements.  Each
C            element is type real with length 8 or double
C            precision.  Both elements of the array are
C            initialized with the double precision constant 1.0D+0.

6.3.2.2. CHARACTER Type Statement

Form:

CHARACTER [*len[,]] name [/x/] [,name [/x/]]...

where: 

len

is an unsigned integer constant or integer constant expression enclosed in
parentheses with a positive value in the range 1 to 511.  It can also be an asterisk in
parentheses (*).  The length specified with CHARACTER applies to all symbolic
names that are not followed by a length specification.  

name

is one of the forms:  

v[*len]
ary[(d)][*len]
ary[*len][(d)]

where:

v

is a variable name, symbolic name of a constant, function name, statement
function name, or dummy argument. 

ary

is an array name. 

d

is dimension information that must satisfy the requirements of 2.4.4.  

x

is initialization information that must satisfy the requirements of a

constant list as specified in 6.12.1.
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Description:

An entity declared in a CHARACTER statement can have an asterisk as its length
specification if the entity is a function subprogram, a dummy argument, a symbolic name
of a constant, or a statement function name.

� When a dummy argument has an asterisk for len, the dummy argument assumes the
length of the associated actual argument.  When the associated actual argument is
an array name, the length assumed by the dummy argument is the length of an array
element in the associated actual array argument.

� When a function subprogram has an asterisk for len, the function name must appear
in a FUNCTION or ENTRY statement in the same subprogram.  When a reference to
such a function is executed, the function assumes the length specified in the
referencing program unit.  The length specified for a character function in a program
unit that refers to the function must be an integer constant expression and must
agree with the length specified in the subprogram that specifies the function.  There
is always agreement of length when an asterisk for len is specified in the
subprogram that specifies the function.

� When a symbolic name of a constant has an asterisk for len, the constant assumes
the length of its corresponding constant expression in a PARAMETER statement.

� When a statement function name has an asterisk for len, the expression

generated by a statement function reference is left as is, with no length

conversion (see 7.3.1.2).

Examples:

      CHARACTER*4    CHARA, CHARB(10)*1, CHARC 
C            Variables CHARA and CHARC are specified with
C            type character and length 4.  CHARB is a one-
C            dimensional array with 10 elements.  Each element
C            of the array has type character and a length of 1. 

      CHARACTER    TITLE(2)*12 /’PROGRAMMER’, ’ANALYST’/ 
C            TITLE is specified as a type character, one-
C            dimensional array with two elements.  Each
C            element of the array has length 12.
C            The first element is initialized with the character
C            constant ’PROGRAMMER’ and the second is
C            initialized with the character constant ’ANALYST’.

6.4. EQUIVALENCE Statement
Purpose:

The EQUIVALENCE statement specifies sharing of storage by two or more data entities
of a program unit.

Form:

EQUIVALENCE (n,n[ ,n] ... ) [ ,(n,n[ ,n] ... ) ] ...
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where n is a variable name, an array element name, an array name, or a character
substring name; n can’t be a dummy argument name or function name.  At least two
names must appear in each parenthesized list.

Description:

All entities in a given parenthesized list share some or all of the same storage locations.
The order of items in the list isn’t important.

Although variables of different types can be equivalenced, neither mathematical equality
nor type conversion of these entities is implied.  Equivalencing entities of different
classes (an array and a scalar, for example) doesn’t cause the entities to assume the
same class.  The EQUIVALENCE statement lets you reduce the storage requirements of a
program unit by causing two or more data entities to share the same storage locations.
However, it is your responsibility to ensure that the logic of a program unit permits such
storage sharing and that sharing doesn’t destroy needed information.

A substring expression in an EQUIVALENCE list must be an integer constant expression.

Character entities can be equivalenced to one another.  The length of the equivalenced
entities is not required to be the same.

Character entities can be equivalenced to noncharacter type entities if the

equivalence does not force the noncharacter entities to begin on nonword

boundaries.  See the example at the end of this section.

When an array name appears in an EQUIVALENCE statement, it can be followed by a
parenthesized list of subscripts.  Each subscript must be an integer constant expression
and when evaluated can be positive, negative, or zero.  Such a list specifies a particular
array element.

Using an array name without a subscript list in an EQUIVALENCE list has the same
meaning as using a subscript list that specifies the first array element.  A subscript list
can contain either one subscript or d subscripts, where d is the number of dimensions
in the array declaration for that particular array.  If the list has d subscripts, it refers to
the array element in the usual way.

If the list has one subscript, it refers to the linear position in the array starting

at one (that is, the first element of the array is referenced by a subscript value

of 1).  For example, if array ARR1 has the dimensions (3,3), the equivalence

reference ARR1(8) refers to element ARR1(2,3).

A subscript list with one subscript creates an ambiguity for one-dimensional

arrays with a lower-dimension bound other than 1.  For this case, the subscript

refers to the array element in the usual manner rather than the linear position.

For example, if ARR2 has the dimensions (-3:3), the equivalence reference

ARR2(1) refers to the fifth element and not the first.

Equivalencing elements in two different arrays can implicitly equivalence other elements
of these arrays.

When an entity appears in more than one list, these lists are combined into a single list.
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Sharing is accomplished on the basis of storage words.  The number of words needed for
internal representation of the various data types is listed in Table 6-2.

Table 6-2.  Storage Units
Required for Data Storage 

Data Type Words

INTEGER 1

REAL 1

DOUBLE PRECISION 2

COMPLEX 2

COMPLEX*16 4

LOGICAL 1

CHARACTER*n (see 6.13.1)

 

Examples:

      REAL AX(10,10), BX, T, Z
      INTEGER L
      EQUIVALENCE (AX(1,1),Z), (BX,L,T)
C            Array element AX(1,1) and variable Z share the
C            same storage sequence and entities BX, L and T
C            share the same storage sequence.

      REAL AA(10,10), BB, Z, CC(10)
      INTEGER M(20)
      EQUIVALENCE (AA(3,3),BB,CC(1)), (BB,Z,M(1))
C            Array element AA(3,3), variable BB, and array element
C            CC(1) share the same storage sequence.  BB, Z, and M(1)
C            share the same sequence.  Because entity BB appears in
C            both lists, the lists are combined so that AA(3,3), BB,
C            CC(1), Z, and M(1) all share the same storage sequence.

      DIMENSION ARR1(8), KARR(3,2)
      COMPLEX COMPA(1,2,2),CA
      DOUBLE PRECISION DOUBA(2,2)
      LOGICAL L(10)
      EQUIVALENCE(COMPA(1), ARR1(1)), (DOUBA(2), KARR(1,2), L(4),CA)
C            Based on storage word requirements, the EQUIVALENCE
C            statement causes the following locations to be shared:
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      CHARACTER A*4, B*4, C(2)*3
      EQUIVALENCE (A,C(1)), (B,C(2))
C            Character variables whose names appear in equivalence
C            have the same first character storage unit.  The
C            EQUIVALENCE statement in this example causes the following
C            sequences to be shared:

C           The fourth character position of A, the first
C            character of B, and the first character position
C            of C(2) all occupy the same storage sequence.
C            The cross-hatched area is unallocated.

       INTEGER I, J
       CHARACTER*3 CX
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       EQUIVALENCE (I, CX(3:3)), (J,CX)
C            Once the equivalence of I is made to the third storage
C            byte of CX, the equivalence of J to the first storage
C            position of CX would require J to begin on a nonword
C            boundary which is in error.

6.5. COMMON Statement
Purpose:

The COMMON statement provides a means of sharing storage among various program
units.

Form:

COMMON [ / [c] / ] n [ ,n] ... [ [,] / [c] / n [,n] ... ] ...

where: 

c

is a common block name.  When the first c is omitted, the first two slashes are
optional.  The variable c must satisfy the definition of a symbolic name (see 2.4).  A
common block name is global to the executable program.  ASCII FORTRAN

allows a common block name to be the same as an external subprogram

name.

A common block name in a program unit may also be the name of any local entity
other than a constant, intrinsic function, or a local variable that is also an external
function in a function subprogram.  If a name is used for both a common block and a
local entity, the appearance of that name in any context other than as a common
block name in a COMMON or SAVE statement identifies only the local entity.  Note
that an intrinsic function name may be a common block name in a program unit that
does not reference the intrinsic function. 

n

is a common block member name.  It is a variable name, an array name, or an array
declaration.

Description:

The COMMON statement lets you name a storage sequence (a common block) to be
shared by program units and to specify the names of variables and arrays that are to
occupy this sequence.  This permits:

� Different program units to refer to the same data without using arguments.

� Unrelated data from different program units to share the same storage.

� A single allocation of storage for variables and arrays, used by several program
units.
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The variables and arrays that appear in the list following a common block specification
are declared to be in that common block.

When a common block name, c, is omitted, blank common is assumed.  Otherwise, the
common block is a labeled common block identified by the name c.  There can be only
one blank common block in an executable program; however, there can be many labeled
common blocks.

A labeled or blank common specification can appear more than once in a COMMON
statement or can appear in more than one COMMON statement within a program unit.
The list of variables and arrays following such successive appearances of a common
block name in a program unit is treated as a continuation of the list for that block name.

In a program unit, variables and arrays in a common block are allocated consecutive
storage sequences in the same order as they appear in the list.  Therefore, the order in
which you enter them is significant when items in the common block are referenced in
other program units.

Equivalencing of two quantities that appear in COMMON statements isn’t possible since,
by their appearance in a COMMON statement, storage is allocated for each.

Equivalencing an entity that was not named in any common block declaration in the
program unit to an entity that was named in a common block declaration in the program
unit draws the entity not named in any common block declaration into the common
block.

An EQUIVALENCE list may cause storage to be appended to the end of a common block
but may not cause storage to be allocated before the first member of the common block.
See the examples below.

Character type entities can appear in the same common block as noncharacter

type entities.

You can declare the dimensions of an array in a common block:

� in a type statement,

� in a DIMENSION statement, or

� by appending the dimension information to the array name in the COMMON
statement.

However, the array must not be dimensioned more than once.

For a description of storage allocation on common variables, see 6.13.1.

A COMMON statement in an internal subprogram redefines (that is, is not a

continuation of) the same common block declared in the external program unit.

For a description of local-global rules for names used in COMMON statements

in internal subprograms, see 7.9.
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Execution of a RETURN or END statement does not cause entities in either blank or

labeled common blocks to become undefined.

Blank common blocks and labeled common blocks need not be the same size in all
program units of an executable program.

Entities in labeled common blocks or blank common blocks may be initially defined by
a DATA statement or data initialization associated with a type specification

statement in a BLOCK DATA subprogram or in any other program unit.

Examples:

      COMMON A,B,C(5,5) /COM1/D,M,V,S
C            Variables A, B and array C are placed in the blank
C            common block. Variables D, M, V, and S are placed in
C            the common block named COM1.

       COMMON L/C1/X,Y,Z //M,N
C            Variables L, M, and N are placed in the blank common
C            block.  Variables X, Y, and Z are placed in the
C            common block named C1.

       COMMON I
       EQUIVALENCE (I,J)
C            Variable J was not named in any common block declaration,
C            but since it is equivalenced to variable I (which is a
C            member of blank common), it is also a member of blank
C            common.

       DIMENSION B(3), E(3)
       COMMON I,J
       EQUIVALENCE ( I, B(2))
       EQUIVALENCE ( J, E(1))
C            The first member (first word) of the common block is a
C            variable I.  The first EQUIVALENCE statement is
C            illegal because it attempts to allocate B(1) in
C            front of I.  The second EQUIVALENCE statement is
C            legal because it appends storage to the end of the
C            common block.

6.6. BANK Statement
Purpose:

The BANK statement informs the compiler of the name of the bank containing

data, functions, or subroutines referenced in the program unit.  Use it to

construct a multibank program.

Form:

BANK /b/ [&]n [,[&]n]...[/b/[&]n[,[&]n]...]...

where:
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each b 

is a bank name.  It must satisfy the definition of a symbolic name, and is the

name specified on a collector IBANK or DBANK directive.

each n

is the name of a subprogram or the name of a labeled common block that is

included in the associated bank, b.  A subprogram name must follow an

ampersand (&).  A labeled common block name must not follow an

ampersand.

Description:

The compiler uses this information to generate linkage between multibank

subprograms and data.  The compiler doesn’t actually construct the banks; it

merely generates linkage between banks.

The COMPILER (BANKED=ALL) statement is much easier to use and more

flexible than the BANK statement (see 8.5).  However, using the BANK

statement results in more efficient code for programs using multiple D-banks

and can be used to make your program more efficient once it has been

debugged.

A labeled common block name and a subprogram name cannot occur in the same

bank.  All labeled common blocks are assumed by the compiler to be in data

banks and, therefore, are activated by LDJ or LBJ instructions.  Subprograms

are assumed to be in instruction banks and are accessed by LIJ instructions.

A subprogram name need not appear in a BANK statement when you use the

COMPILER (LINK = IBJ$) statement (see 8.5).  (The COMPILER (LINK=IBJ$)

statement supersedes the use of the BANK statement on subprogram names.)

However, they can be used together, and the BANK name supplied is used to

link to the subprogram.

A bank name can appear more than once in a BANK statement or in more than

one BANK statement.  In either case, the effect is as though all the associated

subprogram names or common block names are combined in one list.

The following cannot appear in a BANK statement:

� A FORTRAN V subprogram name (see 6.9).

� An internal subprogram name.

� A dummy subprogram name.  (Use COMPILER statement option

BANKED=DUMARG, LINK=IBJ$, or BANKED=ALL to inform the compiler

of a banked dummy subprogram.)
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A subprogram name used by an external program unit should not appear in a

BANK statement in one of its internal program units.

An intrinsic function name should not appear in a BANK statement unless it

was in an EXTERNAL statement first.

If a common block is banked, it must be in BANK statements in all of the

program units the COMMON statements are in, or they must all have the

BANKED=ALL COMPILER statement option.

In addition to the information present in the BANK statement, the compiler

requires information concerning:

� the type of return from a subprogram (if a SUBROUTINE or FUNCTION is

being compiled),

� the presence of bank information in dummy arguments to subprograms, and

� the presence of bank information in calling sequences of subprograms.

This information is specified by means of a COMPILER statement (see 8.5).

A comprehensive description of multibanking features appears in the Series

1100 Executive System, EXEC, Reference, UP-4144, and the Guide to

Installation and Use of Series 1100 Common Banks, UP-10063.

Examples:

      BANK /BK/A,B,C
C            This statement indicates that common blocks A, B, and
C            C are in the data bank named BK.

      BANK /BANKA/&SUB1,&FUNC1/MRL/CBA,X, ADR
C            This statement indicates that subprograms SUB1 and FUNC1 are
C            in the instruction bank named BANKA.  Common blocks
C            CBA, X and ADR are in the data bank named MRL.

6.7. VIRTUAL Statement
Purpose:

The VIRTUAL statement informs the ASCII FORTRAN compiler that virtual

objects are to be processed, and indicates which objects are to be placed in

virtual space.

Form:

VIRTUAL [ (options[,options ])][object[,object] ... ]

where:  

options

is one of three options:  UNPACKED, ALL, or ALLBUT cblist.
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The option UNPACKED indicates that each common block specified in this

VIRTUAL statement that was not previously referenced by another program

unit is allocated at the beginning of a new virtual page.  (The default is to

allocate a virtual object immediately after the previously allocated virtual

object.)  Use this option to separate seldom-used virtual objects from

heavily used ones.  

Note: The program unit must reference the common blocks for this option

to have any effect.

The option ALL means that all named common blocks referenced by the

program unit are in virtual space.

The option ALLBUT cblist indicates that all named common blocks

referenced by the program unit (except those specified in cblist or in BANK

statements) are in virtual space.  cblist has the format:  

/ cb / [ , / cb / ] ...

where cb is a common block name.  The list of common blocks is local to the

program unit.  

object

is a common block name when it appears in slashes (for example, /name/) or

is a local variable name when it appears without the slashes (for example,

name).

Description:

The appearance of the VIRTUAL statement automatically designates that

arguments passed to a subprogram can be either in virtual or nonvirtual space.

A called subprogram processes both virtual and nonvirtual arguments correctly.

The VIRTUAL statement can also specify named common blocks and local

variables that are to be placed in virtual space.

The VIRTUAL statement puts the objects you select in virtual space. Objects

that are in virtual space are exempt from the 262,143-word address space

limitation of the OS 1100 architecture.

When object is a common block name in slashes, all program units declaring

that common block must place it in virtual space or fatal run-time diagnostics

can result.  See Appendix M for a full description of how and when to use

virtual space.
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6.7.1. Placement of the VIRTUAL Statement

Place the VIRTUAL statement at the beginning of a FORTRAN program unit.

IMPLICIT and COMPILER statements can precede or follow the VIRTUAL

statement.  When used in a subprogram, the VIRTUAL statement should be

placed directly after the FUNCTION, SUBROUTINE, or BLOCK DATA

statement.  When the VIRTUAL statement is used in an internal subprogram,

only local variable names can be specified, not common block names. For the

first program unit of an element, the VIRTUAL statement can appear before the

SUBROUTINE, FUNCTION, BLOCK DATA, or PROGRAM statement.

The VIRTUAL statement must appear in the first program unit when it is to

appear in a FORTRAN element.  It isn’t necessary to place a VIRTUAL

statement in the other program units in the element when they do not reference

virtual common blocks or you don’t want local arrays in virtual space.  When

the ALL option in a VIRTUAL statement is used in the first program unit, it is

assumed by the other program units in the element.  However, an explicit

common-block-name list in a VIRTUAL statement is local to the program unit in

which the VIRTUAL statement resides.  Internal programs inherit the VIRTUAL

statement of their parent external unit.

When the option ALLBUT cblist appears in a VIRTUAL statement in the first

program unit, the ALL option is assumed by all other program units in the

element (unless other ALLBUT options appear in those program units).  cblist

is always local to the program unit where it appears.

When neither the ALL or ALLBUT option appears in the first program unit,

neither can appear in any other program unit in the element.

6.7.2. Local Variables in Virtual Space

Local variables (arrays or scalars) placed in virtual space default to being in

the automatic storage class.  This means that virtual storage is allocated for

them on subprogram entry and released on subprogram exit.  When you want

local virtual space in the static storage class, place a simple SAVE statement in

the specification statement area of the subprogram.  A SAVE statement with no

variable list means that all local variables are in the static storage class.  A

SAVE statement with a variable list puts only those variables in the static

storage class.

6.7.3. Common Block Name in a BANK Statement

A common block name in a BANK statement overrides the ALL option of the

VIRTUAL statement, and it is assumed that the common block is in banked

space.  For more information on the BANK statement, see Appendix H.

Blank common can’t appear in banked space or in virtual space. It is always

assumed to be in the control bank.
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6.7.4. Arguments Passed to a Subprogram

When actual arguments passed to a subprogram are in virtual space, a VIRTUAL

statement must be in the element containing the subprogram.

6.7.5. Use of Virtual and Banking Together

You can use virtual space in a program that also uses the already existing

banking setup.  Don’t place a common block in both virtual and banked space.

Construct a multibanked program when the I-bank code becomes too large.

Constructing a multiple I-banked program is simpler than constructing a

multiple D-banked program.

6.7.6. Examples of Using the VIRTUAL Statement

The following examples show the use of the VIRTUAL statement in a

subroutine, main program, and function.

Example 1:

    SUBROUTINE SUB(ARG,N)
       VIRTUAL A,/C1/,C 
       COMMON /C1/AR1(99000,10),AR2(10000) 
       COMMON /C2/AR3(10,100),X,B(10)
       REAL A(99000),ARG(N),C(10000)
C           The local arrays A and C are in dynamic local
C           virtual space.  They are allocated on entry to subroutine
C           SUB and freed on exit.  Common block C1 is in virtual
C           space and common block C2 is not.  Processing of
C           arguments passed to subroutines SUB is correct no matter
C           where they reside. 
               . 
               .  
               . 
       END

Example 2:

    VIRTUAL(ALL)
       COMMON /C1/CX(10000) 
       COMMON /C2/C2X(20000) 
               .  
               .  
               . 
       END 
       SUBROUTINE S(A2)  
       REAL A2(*)  
       COMMON /C1/AR1(99000,10)AR2(10000)
       COMMON /AXR/BIGX(2000,2000)
C            All named common blocks used in this program are in
C            virtual space.  Processing of arguments passed to
C            subroutine S is correct no matter where they reside. 
                . 
                . 
                . 
       END
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Example 3:

    REAL FUNCTION FFT(A,B,N)
       VIRTUAL ALT1,ALT2 
       REAL A(N,N),B(N,N)
       REAL ALT1(400,400),ALT2(400,400)
       SAVE ALT1,ALT2
C           The local arrays ALT1 and ALT2 are in static local virtual
C           space.  They are allocated on first entry to the function
C           FFT and never released.  Processing of arguments
C           passed to function FFT is correct no matter where they
C           reside.   
                 .   
                 . 
                 .
       END

6.8. PARAMETER Statement
Purpose:

The PARAMETER statement lets you refer to constants by symbolic names.  This
facilitates the updating of programs in which the only changes between compilations are
in the values of certain constants.  You can revise the PARAMETER statement instead of
changing the constants throughout the program.

Form:

PARAMETER (n = e [,n = e] ...)

or

PARAMETER n = e [ ,n = e] ...

where: 

n

is any symbolic name (identifier).  It is called a symbolic name of a constant, or
parameter constant. 

e

is a constant expression.
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Description:

The PARAMETER statement is nonexecutable.  In ASCII FORTRAN, the

PARAMETER statement may appear anywhere in a program.  (The FORTRAN 77
standard requires a PARAMETER statement to appear before any DATA statements,
statement function statements, and executable statements.)  However, a PARAMETER
statement defining a symbolic name of a constant must physically appear before that
constant is referenced.

When the symbolic name n is of type integer, single- or double- precision real,
single-precision complex, or double-precision complex, the corresponding expression
e must be an arithmetic constant expression.  When the symbolic name n is of type
character or logical, the corresponding expression e must be a character constant
expression or a logical constant expression, respectively.

When a symbolic name of a constant is not of default-implied type, its type must be
specified by a type statement or IMPLICIT statement prior to its first appearance in a
PARAMETER statement.  When the length specified for n is not the standard length as
specified in Table 6-1, its length must be specified in a type statement or IMPLICIT
statement prior to the first appearance of the symbolic name of the constant.  Its length
must not be changed by subsequent statements, including IMPLICIT statements.

The expression e can be any expression that yields a constant result at compile

time.  If the expression e is not the same type as n, e is evaluated and then converted to
the type of n. The operands used in e can be any constants, symbolic names of constants
previously defined by other PARAMETER statements, or any FORTRAN-supplied

inline or library functions.  A symbolic name of a constant must not be redefined in
the same program unit.  The definition of symbolic names of constants occurs from left
to right in a PARAMETER statement.

(The FORTRAN 77 standard restricts e to a constant expression.  Intrinsic function calls
aren’t allowed.  Exponentiation is allowed only when the exponent is type integer.)

The compiler can use the common-banked Common Mathematical Library (CML) to do
compile-time arithmetic.  Therefore, a PARAMETER statement requiring a CML call is
not allowed at a site if the compiler is generated with the clause USING NO MATH
BANKS on the compiler System Generation Statement (SGS) supplied to the ASCII
FORTRAN compiler build.

PARAMETER statements requiring compile-time calls to the common mathematical
routines are:

PARAMETER (IB=2**18)
PARAMETER (A=SIN(1.8))

On reference to a symbolic name of a constant in a FORTRAN source program, the
constant value of that symbolic name of a constant is used by the compiler.  No storage
is assigned to symbolic names of constants whose values can be represented in 18 bits
or less.

For a description of local-global rules for names used in PARAMETER

statements in internal subprograms, see 7.9.
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Examples:

      INTEGER A,B
      PARAMETER (A=3)
      PARAMETER (B=4*A)
      C=A+I*B
C            A and B have values 3 and 12 respectively at compile
C            time.  The third statement is interpreted as though
C            the statement C=3+I*12 was written there.

      PARAMETER D=(SIN(5.)+4)
C            SIN(5.) is evaluated at compile time, and D is assigned
C            this value plus 4, yielding 3.0410757.

You can’t use a symbolic name of a constant as a constant in a FORMAT statement, or as
a length specification in a typing statement (except for the CHARACTER type statement,
where a constant expression is allowed in parentheses).

6.9. EXTERNAL Statement
Purpose:

The EXTERNAL statement informs the compiler that your subprogram exists external to
the program unit.

Form:

EXTERNAL a[,a]...

or:  

EXTERNAL [opt] a [(l)] [, [opt] a [(l)]] ...

where:

a

is a symbolic name. 

opt

is & or *; & has no meaning and is provided for syntactic compatibility with

other FORTRAN processors.  The * indicates that a is a FORTRAN V

external subprogram, and is also retained for compatibility.

l

is FOR, ACOB, or PL1.

Description:

The EXTERNAL statement establishes that each a is a subprogram (that is, function or
subroutine) name, and is not a FORTRAN-supplied function or a variable.
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ASCII FORTRAN does not require a subprogram name (internal or external),

which is used as an actual argument in a program unit, to appear in an

EXTERNAL statement in that program unit if that name has previously been

referenced with an actual argument list.

The FORTRAN 77 standard specifies that any function or subroutine name that you
supply and that is passed as an argument must appear in an EXTERNAL statement.

If a name a in an EXTERNAL statement is the same as a FORTRAN-supplied intrinsic
function name, the name a is treated as a programmer-supplied subprogram name.  The
name a loses all properties that are associated with the FORTRAN-supplied function:
type, automatic typing, required type, and number of arguments.  If a is referenced as a
function, its type is determined from the first letter of the name, unless a appears in an
explicit type statement, or unless the first character of a appears in an IMPLICIT
statement.

The optional keyword l following each name a can be FOR, ACOB, or PL1.  It

indicates that a is a FORTRAN V, ASCII COBOL, or PL/I external subprogram,

and lets ASCII FORTRAN generate the correct linkage for each language.

The EXTERNAL statement is a specification statement and must precede any executable
statements.  In addition, any reference to a name a in a statement function definition,
other than as a dummy argument of the statement function, must follow the EXTERNAL
statement.

For a description of local-global rules for names you use in EXTERNAL

statements in internal subprograms, see 7.9.

Example:

     EXTERNAL COMP1, COMP2
         .
         .
         .
      CALL PROG(COMP1, VAR1)
         .
         .
         .
      CALL PROG(COMP2, VAR2)
         .
         .
         .
      END
 C           The first call passes the name of subprogram COMP1
 C           as an argument of subroutine PROG.  The second call
 C           passes the name of subprogram COMP2.

6.10. INTRINSIC Statement
Purpose:

An INTRINSIC statement identifies a symbolic name as representing an intrinsic
function (see 7.7.1).  It also permits use of a name that represents a specific intrinsic
function as an actual argument.
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Form:

INTRINSIC f [,f] ...

where f is an intrinsic function name.

Description:

Appearance of a name in an INTRINSIC statement declares that name to be an intrinsic
function name.

If a specific name of an intrinsic function is used as an actual argument in a program
unit, it must appear in an INTRINSIC statement in that program unit.  The following
names of intrinsic functions must NOT be used as actual arguments:

� Type conversions (INT, IFIX, HFIX, IDINT, IDFIX, FLOAT, REAL, DBLE, DFLOAT,

DREAL, CMPLX, DCMPLX, ICHAR, CHAR, UPPERC, LOWERC)

� Lexical relationships (LGE, LGT, LLE, LLT)

� Typeless functions (AND, OR, XOR, BOOL, COMPL)

� Pseudo-functions (BITS, SUBSTR)

� Intrinsic function SBITS

� Largest or smallest value (MAX, MAX0, AMAX1, DMAX1, AMAX0, MAX1, MIN,
MIN0, AMIN1, DMIN1, AMIN0, MIN1)

Only one appearance of a symbolic name in all of the INTRINSIC statements of a
program unit is permitted.  A symbolic name must not appear in both an EXTERNAL and
an INTRINSIC statement in a program unit.

Example:

       INTRINSIC SIN
       CALL SUB(SIN,COS)
C            The intrinsic function name, SIN, is passed as the first
C            argument to subroutine SUB.  The real scalar variable,
C            COS, is passed as the second argument.

6.11. SAVE Statement
Purpose:

A SAVE statement is used to retain the values of entities as they are defined after the
execution of a RETURN or END statement in a subprogram.  On reentry of the
subprogram, an entity specified by a SAVE statement contains the value as last defined
by the execution of the subprogram.

Form:

SAVE [ n [,n] ... ]



Specification and Data Assignment Statements

UP-8244.4-B 6-25

where n is a named common block preceded and followed by a slash, a variable name,
or an array name.

Description:

A SAVE statement is nonexecutable.  Within a function or subroutine, an entity specified
in a SAVE statement does not become undefined as a result of the execution of a
RETURN or END statement in the subprogram.  However, an entity in a common block
or a global entity in an internal subprogram can become redefined in another
program unit.

Dummy argument names and names of entities in a common block must not appear in a
SAVE statement.

A SAVE statement without a list is treated as though it contained the names of all
allowable items in that program unit.  A SAVE statement is optional in a main program
and has no effect.

The appearance of a common block name preceded and followed by a slash in a SAVE
statement has the effect of specifying all of the entities in that common block.

The SAVE statement operates by ensuring static storage for the named or implied
entities.  ASCII FORTRAN normally has static storage for common blocks.  However, if

the COMPILER statement with DATA=AUTO is present, local variables are not

saved on execution of a RETURN or END statement, since storage is

dynamically acquired.  The SAVE statement causes local variables to be placed under
location counter 8, which is static storage in a program that contains the

DATA=AUTO option.  If the collector segmentation facilities are used to collect a
program, the SAVE statement does not ensure that these entities are preserved, since
ASCII FORTRAN has no control over the collection.  Overlays of storage by any means,
including collector segmentation, can cause the loss of values of the entities named in
SAVE statements in the overlaid programs.

6.12. Assigning Initial Values
Initial value s can be assigned to variables, arrays, or array elements in the main program
or any subprogram.  Initial values are loaded with the executable program.  Only
variables to which initial values are assigned are defined at the start of execution; all
other variables are undefined until values are assigned to them.  Initial values can’t be
specified for the dummy arguments of a subprogram.

Initial value assignment is accomplished through the use of DATA statements and of

initial value lists in DIMENSION and type statements.  For variables and arrays in
common blocks, initial values can be assigned in a BLOCK DATA subprogram (see 7.6).

A data item whose relative address under its location counter in the relocatable element
is over 65,535 can’t be initialized using a DATA, DIMENSION, or typing statement
initialization unless the array is in virtual space.  All local variables go under location
counter 0 or 8, and each common block gets its own location counter.  Attempting to
initialize an entity whose relative address is over 65,535 (0177777 in octal) results in an
ERROR 10 (see Appendix D).



Specification and Data Assignment Statements

UP-8244.4-B6-26

6.12.1. DATA Statement

Purpose:

The DATA statement initializes variables, arrays, array elements, and character
substrings at compile time.

Form:

DATA variable-list/const-list/ [[,]variable-list/const-list/ ] ...

where:  

variable-list

a list of variables, arrays, array elements, substring names, and implied-DO groups,
separated by commas.  The format of an implied-DO group is:

(do-list , index = start , stop [ ,inc] )

where:  

do-list

is a list of array element names and implied-DO groups. 

index

is a scalar integer variable, called the implied-DO-variable.  Start, stop, and inc

are integer constant expressions.  When implied-DO groups are nested, the
start, stop, and inc expressions of an inner group can include references to the
index of an outer group.

An iteration count and the values of the implied-DO-variable are established
from start, stop, and inc exactly as for a DO-loop, except that the iteration
count must be positive (see 4.5.4.2).  The list items in do-list are specified once
for each iteration of the implied-DO list with the appropriate substitution of
values for any occurrence of the implied-DO-variable index.

Subscript expressions in a do-list must be integer expressions involving only
constants, symbolic names of constants, and implied-DO index variables.
However, subscript expressions in a variable-list but not in a do-list are limited
to integer expressions involving only constants and symbolic names of
constants.  Substring expressions must be integer constant expressions. 

const-list

is a list of constants separated by commas.  You can optionally precede each
constant in the list with “n*”, where n is an unsigned positive integer constant or a
positive integer-valued symbolic name of a constant.  This notation denotes
repetition of the immediately following constant n times.

The constants in const-list can be of any type, including three constant types

that are supported for initial values only: 

1. statement labels (see 6.12.2), 
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2. octal (see 6.12.3), and 

3. Fieldata (see 6.12.4).

Description:

The elements in the variable-list are matched to the elements in the const-list according
to position.  An array name matches n consecutive const-list items, where n is the
number of elements in the array.  The elements of the array are initialized in
column-major order.  The FORTRAN 77 standard requires a one-to-one correspondence
between the number of elements in variable-list and const-list.  ASCII FORTRAN

allows the lists to be of unequal length.  When const-list is short, the last

elements of the variable list aren’t initialized.  When const-list is too long, the

last constants are ignored.  See 6.12.5 for allowed type matching between
variable-list and const-list.

DATA statements are nonexecutable.

The FORTRAN 77 standard requires DATA statements to follow all specification
statements.  ASCII FORTRAN, on the other hand, allows DATA statements to

appear anywhere in the program unit after any SUBROUTINE, FUNCTION, or

IMPLICIT statement and before the last statement in the program unit.

ASCII FORTRAN places a few restrictions on the placement of DATA

statements: 

1. DATA statements must follow all specification statements that declare

variables referred to in the DATA statement. 

2. When an array has its bounds declared in one statement and its type in a

following statement, a DATA statement can’t appear between the two

specification statements.

Because of these restrictions, the ASCII FORTRAN compiler issues a warning

message whenever a DATA statement is followed by a specification statement.

The FORTRAN 77 standard doesn’t permit blank common entities to be initialized and
further restricts the initialization of entities in labeled common blocks to appear only in
a BLOCK DATA subprogram.  ASCII FORTRAN, on the other hand, permits data

initialization of entities in labeled and blank common blocks to appear in any

program unit.

Note the following cautions when initializing data:

� A variable, array element, or substring must not be initially defined more than once
in an executable program.

� Storage association from the use of EQUIVALENCE can also result in incorrect
multiple initialization.
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� Be careful when initializing character type entities in the same common block from
more than one program unit.  When the program units are compiled as separate
relocatable elements and both initialize different character type items, the
initialization of some items can be destroyed during the collection process if the
initialized items share the same word of storage. Character items in common are
packed in storage and it is possible to have more than one item occupying the same
word of storage.  For this reason, limit initialization of character type items in
common blocks to one program unit in the FORTRAN program.

� In a program unit, be careful when initializing character type entities.  Multiple
initializations of the same item or parts of the same item can cause some of the
initialization information to be lost.  Substring initializations only initialize the
character positions specified.  Other character positions in the same word and part
of the same variable or array element have a value of binary zero unless initialized
by other substring initializations.

See 6.12.6 for DATA statement examples.

6.12.2. Specifying Statement Labels in an Initialization Statement

You write a statement label in an initialization statement as an asterisk, a

currency symbol, or ampersand, followed by one to five decimal digits.

The value of the digit string, interpreted as an integer, must be the same as that

of one of the statement labels in the program.  The corresponding integer scalar

variable is initialized to the same value that it would receive if it were assigned

that statement label in an ASSIGN statement.

6.12.3. Specifying Octal Constants in an Initialization Statement

You write an octal constant, allowed only in an initialization statement, as the

letter O followed by a string of octal digits.  If the string consists of more than

12 digits, only the last 12 digits are used.  It is possible to have a symbolic name

of a constant whose name is the same as an octal constant.  Such a name is

interpreted as a symbolic name of a constant when used as an initial value.

An octal constant can be used to initialize a character variable or a one-word

noncharacter variable (that is, logical, integer, or single-precision real).  When

used with a character variable, an octal constant is extended with zeros on the

left to a multiple of three digits (9, 18, 27, or 36 bits), then padded with blanks

or truncated on the right to match the length of the character variable.  When

used with a logical, integer, or real variable, an octal constant of less than 12

digits is extended to 12 digits with zeros on the left.

6.12.4. Specifying Fieldata Constants in an Initialization
Statement

You write a Fieldata constant, allowed only in an initialization statement, as a

character or Hollerith constant immediately followed by the letter F.  The
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characters of the constant convert to the 6-bit Fieldata code and are stored six

to a word.  Fieldata constants are padded with Fieldata blanks on the right, or

are truncated on the right, to achieve the required length.  You can’t use

Fieldata constants to initialize character variables.

6.12.5. Type Matching Between Variable- and Constant-List Items

Table 6-3 indicates the requirements for type matching between a variable-list item and
the matching constant-list item.  Except for character, statement label, octal, and

Fieldata constants, the types must match.  If the types don’t match but can be
converted, a warning is issued and the constant is converted to the type of the variable.
When no conversion is possible, the initialization isn’t done.

Table 6-3.  Data Initialization Type Matching Requirement  

Constant
Type

Variable
Type Size

Error or
Warning

Initialization
Done

Conversion
Done

INTEGER INTEGER same size yes no

INTEGER REAL same size warning yes yes

INTEGER COMPLEX same size warning yes yes

INTEGER LOGICAL same size error no

INTEGER CHARACTER same size error no

REAL INTEGER same size warning yes yes

REAL REAL same size yes no

REAL REAL diff size warning yes yes

REAL COMPLEX same size warning yes yes

REAL LOGICAL same size error no

REAL CHARACTER same size error no

COMPLEX INTEGER same size warning yes yes

COMPLEX REAL same size warning yes yes

COMPLEX COMPLEX same size yes no

COMPLEX COMPLEX diff size warning yes yes

COMPLEX LOGICAL same size error no

continued

* ASCII FORTRAN permits any variable type to be initialized with a character constant.  The
FORTRAN 77 standard permits only character variables to be initialized by character constants.
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Table 6-3.  Data Initialization Type Matching Requirement (cont.)

Constant
Type

Conversion
Done

Initialization
Done

Error or
WarningSize

Variable
Type

COMPLEX CHARACTER same size error no

LOGICAL LOGICAL same size yes no

LOGICAL nonlogical same size error no

CHARACTER any type* same size yes truncation
or blank fill

statement
number

INTEGER same size yes no

statement
number

noninteger same size error no

Fieldata CHARACTER same size error no

Fieldata noncharacter same size yes truncation
or blank fill

octal INTEGER same size yes no

octal REAL*4 same size yes no

octal REAL*8 same size error no

octal COMPLEX same size error no

octal LOGICAL same size yes no

octal CHARACTER same size yes truncation
or blank fill

 

* ASCII FORTRAN permits any variable type to be initialized with a character constant.  The
FORTRAN 77 standard permits only character variables to be initialized by character constants.

6.12.6. DATA Statement Examples

       DIMENSION C(10)
       DATA A, B/1.2,0.5/, C/10*1.0/
C            The constants 1.2 and 0.5 are assigned to A and B,
C            respectively, at compile time.  Each element in array C
C            is assigned a value of 1.0.

       DIMENSION IARY(10), LARY(10)
       DATA (IARY(I),I=1,10) /1,2,3,7*4/, (LARY(I),I=1,9,2) /5*0.0/
C            The array IARY is initialized by an implied-DO.
C            The first three elements in the array have values
C            1, 2, and 3 respectively.  The remaining seven elements in
C            that array have 4 as their value.  The elements LARY(1),
C            LARY(3), LARY(5), LARY(7), and LARY(9) are initialized
C            to 0.0.  The other elements of LARY aren’t initialized.
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       PARAMETER (O2 = 5)
       DATA I/O2/
C            O2 is a symbolic name of a constant which has 5 as its
C            value.  O2 in the DATA statement is interpreted as the
C            symbolic name of a constant and the integer constant 5 is
C            assigned to the variable I, rather than the octal constant
C            02 (see 2.3.7).

       DIMENSION A(10)
       DATA A/’AB’,’CDE’,’FGHIJ’/
C            The first three elements in array A have values
C            AB��, CDE�, and FGHI, respectively.

       REAL C2(10)/10*98.6/
C            This example shows initialization in a type statement.
C            All elements of array C2 are assigned the value 98.6.

       DATA J /’ABCDEF’F/, K /O060710111213/ 
C            The integer variables J and K receive
C            the same initial value, J as a Fieldata constant
C            and K as an octal constant. 

       CHARACTER*1 S1
       DATA S1(1:1) /’*’/
       CHARACTER*2 S2
       DATA S2(1:1), S2(2:2) /’ ’,’*’/
       CHARACTER*3 S3
       DATA S3(1:2), S3(3:3) /’ ’,’*’/
       CHARACTER*4 S4
       DATA S4(1:3), S4(4:4) /’ ’,’*’/
C           This example shows character variables of length n being
C           initialized to n-1 blanks followed by an asterisk.

       CHARACTER*1 S1 /’ ’/
       DATA S1(1:1) /’*’/
       CHARACTER*2 S2 /’ ’/
       DATA S2(2:2) /’*’/
       CHARACTER*3 S3 /’ ’/
       DATA S3(3:3) /’*’/
       CHARACTER*4 S4 /’ ’/
       DATA S4(4:4) /’*’/
C            This example appears to show character variables
C            of length n being initialized to n-1 blanks
C            followed by an asterisk.  However, since there
C            are multiple initializations involving parts of
C            the same variable (which isn’t allowed by the
C            standard), some initialization information is
C            lost.  The results are unpredictable and
C            can result in some character positions
C            being initialized to null characters (ASCII
C            octal code 000).  On some output devices nulls
C            are dropped, giving the appearance of characters
C            having been placed in the wrong position.

6.13. Storage Assignment
The ASCII FORTRAN compiler automatically allocates storage for program data and
compiler-generated instructions.

The ordinary operation of the compiler assumes that data and program addresses in the
generated object program are less than 65,536.  This implies that the size of data storage
for any FORTRAN program should be less than 65,536 words. However, with the O
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option on the processor call statement, the compiler assumes that all data addresses in
the program can extend to 262,143 words for nonvirtual items.  This permits the creation
of much larger FORTRAN programs (see 9.5).

You can use this facility without restrictions on the type (scalar or array, common, or
noncommon) of data involved.  Consider several points when using this facility:

� It is necessary only when the last address of the program is greater than 65,535
(0177777 octal) words after collection.  If automatic storage is used and an ER
MCORE$ is done by storage management creating addresses greater than 65,535, the
O option isn’t needed.

� When the total collected program size exceeds 65,535 words, compile all FORTRAN
program units present in the program with the O option.

� Use this facility only when it’s required, since more instructions may be necessary to
access arguments and arrays when you use the O option.

� When truncation messages naming the FORTRAN run-time routines are emitted
during collection of the user absolute, use IN statements in the collector symbolic to
name your elements and common block names.  This results in the run-time routines
being collected at addresses under 65,536.

When you require large programs (including those using a total of more than 262,143
words), they can be structured into smaller components using the BANK statement (see
6.6), and a multibanked collector symbolic (see Appendix H).

6.13.1. Data Storage Assignment

For data storage, the ASCII FORTRAN system assigns storage to your noncharacter type
variables in word increments.  Table 6-4 details the amount of storage allocated by
variable type in bytes and the alignment of the variable in that storage.

The first item in a common block list is allocated storage on a word boundary.
Subsequent character items in common are allocated storage in a packed form on byte
boundaries that may or may not begin on word boundaries.  In packed form, no
unallocated character storage locations or bytes exist between two character entities in
common.  The common block structure determines the alignment of its members.

Equivalencing character items in common to noncharacter items is permitted

only when the item in common is on a word boundary.  When a noncharacter

item follows a character item in common, there can be one or more unallocated

bytes between the two items, since noncharacter data items must begin on a

word boundary.
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Table 6-4.  Storage Alignment and Requirement  

Type Length Storage Alignment

INTEGER 4 1 word word boundary

REAL single (4) 1 word word boundary

double (8) 2 words word boundary

COMPLEX single (8) 2 words real part in first word; imaginary part in
second word

double (16) 4 words real part in first 2 words; imaginary
part in second 2 words

LOGICAL 4 1 word word boundary (only least significant bit is
used)

 

Character items not equivalenced and not in common are allocated storage on word
boundaries except for the following cases:

� Character items of length 2 are allocated storage on word and half-word boundaries.

� Character items of length 1 are allocated storage on byte boundaries.

Character arrays, in common or not, are allocated storage such that there are no
unallocated bytes between the elements of the array.

Storage order and alignment for items not in common are not determined by their
appearance in the program.  Storage is allocated by traversing a chain of variables whose
order is determined by a hash function.  Don’t try to predict storage order or alignment.

The COMPILER statement option STD=66 causes all character items, including

array elements, to begin on word boundaries.

Examples:

REAL E(5).

Array E occupies five words:

E (1)

E (2)

E (3)
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E (4)

E (5)

DOUBLE PRECISION D.

Variable D occupies two words:

COMPLEX*16 Z

Variable Z occupies four words:

Z real

part

Z imaginary

part

CHARACTER*2 A, B*3, C
COMMON /C1/ A, B, C

Since A, B, and C are scalars in common, they are allocated storage in a packed form:

A A B B

B C C unallocated

CHARACTER*6 F(3)

Assuming array F begins on a word boundary, F is allocated five words of storage in a
packed form.  The area designated by an asterisk (*)can be allocated to character items
of length 1 or 2 or the area can be allocated to items in common or equivalenced to F:

F (1) F (1) F (1) F (1)

F (1) F (1) F (2) F (2)
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F (2) F (2) F (2) F (2)

F (3) F (3) F (3) F (3)

F (3) F (3) * *

6.13.2. Location Counter Usage

The instructions and data generated by the ASCII FORTRAN compiler are allocated by
function to several location counters.  The location counters and their functions are
described in Table 6-5.  For a description of the automatic storage feature, see 8.5.1
(COMPILER statement options DATA=AUTO and DATA=REUSE).

Table 6-5.  Compiler Options for Location Counter Usage  

Location
Counter

No Automatic Storage
or O Option

O Option without
Automatic Storage Automatic Storage

0 local (noncommon and
nonvirtual) variables

local (noncommon and
nonvirtual) variables, I/O
packets and list
instructions, FORMAT and
NAMELIST text,
parameter lists,
constants

not used

1 all program instructions
not resulting from I/O lists

instructions instructions

2 blank common blank common blank common

3 INFO-010 diagnostic
tables (see 10.4.1)

diagnostic tables diagnostic tables

4 I/O packets, I/O list
instructions, FORMAT
statement text, NAMELIST
statement text

not used not used

5 not used not used automatic storage
initialization literals

6 parameter lists not used not used

7 not used not used automatic storage
initialization code

8 not used not used local (noncommon
and nonvirtual)
variables appearing
in SAVE statement

continued
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Table 6-5.  Compiler Options for Location Counter Usage (cont.)

Location
Counter Automatic Storage

O Option without
Automatic Storage

No Automatic Storage
or O Option

9 not used not used not used

10 constants not used not used

12 and
greater

labeled common labeled common labeled common
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Section 7
Function and Subroutine Procedures

7.1. Procedures
The term procedure refers to a code mechanism that performs a particular computation.
FORTRAN supports three general types of procedures:

1. A function procedure that is called by the appearance of the function name followed
by its argument list in an expression.  A function returns a value that replaces the
name in the evaluation of the expression.

2. A subroutine procedure that is called by the appearance of its name in a CALL
statement.  A subroutine doesn’t return a value, although it can modify the values of
variables.

3. A main program procedure that is called by action of the operating system, usually
as a result of the @XQT Executive control statement.

Subroutines and functions are known collectively as subprograms.

A program consists of a main program and zero or more subprograms.

Subprograms can be external or internal.  One or more program unit groups can be
compiled under one processor call (@FTN).  A program unit group is composed of the
external program unit and any internal subprograms contained in the external program
unit.  For example:

@FTN,IS NAME 
       PROGRAM MAIN
           . 
           . 
           . 
       END
       SUBROUTINE IN
           .
           .
           .
       END
       FUNCTION SOLVE
           .
           .
           .
       END
@EOF
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An internal subprogram is considered as nested within the previous external

subprogram, and can access the external subprogram’s data as well as having its

own local data.  An external subprogram can have many internal subprograms.

See 7.3.2 and 7.3.3 for a more detailed description of internal and external

subprograms.

The source input to the ASCII FORTRAN compiler consists of one or more program
units (see 9.2.1).  If a main program is present in the source input, then it must physically
be the first program unit in the input.

The relocatable binary elements produced by the ASCII FORTRAN compiler are
combined into an executable absolute element by the Collector (@MAP).

In addition to subroutines and functions, FORTRAN supports a third type of
subprogram, the BLOCK DATA subprogram.  Such a subprogram contains no executable
code and is used solely for the assignment of initial values to variables in COMMON
blocks.  A BLOCK DATA subprogram can’t be called.  BLOCK DATA subprograms are
described in 7.6.

7.1.1. Procedure References

The code represented by a procedure name is executed when the name of the procedure
is encountered.  This name is followed by an actual argument list.  When a function has
no arguments, it is referred to with a void argument list, that is, ( ).  Subroutine
references must follow the keyword CALL in a CALL statement.  If the subprogram is
used as an argument for another subprogram, it must appear previously with an explicit
actual argument list or be identified in an EXTERNAL statement (see 6.9).  When a
subprogram is used as an argument, it is never followed by an argument list and the code
associated with the procedure is not executed at this point. When an intrinsic function is
used as an argument for another subprogram, it must be identified in an INTRINSIC
statement (see 6.10).

7.2. Main Program
A main program may begin with a PROGRAM statement, does not contain a BLOCK
DATA statement, and is terminated by an END, FUNCTION, or SUBROUTINE statement.

There must be exactly one main program in an executable program.  If a main program
is present in the source input, then it must physically be the first program unit in the
input.

A main program may not be referenced from a subprogram or from itself.

7.2.1. PROGRAM Statement

Purpose:

A PROGRAM statement is optional.  Use it to associate a name with the main program.
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Form:

PROGRAM pgm

where pgm is the symbolic name of the main program in which the PROGRAM
statement appears.

Description:

A PROGRAM statement is not required to appear in an executable program.  However, if
it does appear, it must be the first statement of the main program.

The symbolic name pgm is global to the executable program. It must be unique relative
to external procedure names, BLOCK DATA subprogram names, and common block
names in the same executable program.  In addition, pgm must not duplicate any local
name in the main program.

The name of a main program has no explicit use in the FORTRAN language.  It is
available mainly for documentation.

7.3. Programmer-Defined Procedures
Due to the wide variety of FORTRAN applications, you may want to use procedures that
are not supplied by the FORTRAN language.  Such procedures can be defined by using
one of the following:

� Statement function

� Function subprogram

� Subroutine subprogram

7.3.1. Statement Functions

A statement function is a procedure specified by a single statement that is similar in
form to an arithmetic, logical, or character assignment statement.  All statement function
definition statements must precede any executable statements in the program unit, and

they should appear after all other specification statements.

A statement function definition specifies an expression to be evaluated when that
statement function name appears as a function reference in another statement in the
same program unit.  The expression can involve any appropriate combination of
arithmetic, character, and logical operators.

The statement function generates inline code when it is referenced.  This allows efficient
references to the defining expression without writing the expression each time.

A statement function definition statement is classified as a nonexecutable statement; it
is not part of the normal execution sequence.



Function and Subroutine Procedures

UP-8244.4-B7-4

7.3.1.1. Statement Function Definition Statement

Purpose:

A statement function definition statement associates a statement function name with an
expression.

Form:  

n ( [a [ ,a ] ... ] ) = exp

or:

DEFINE n [ ( [a [ ,a ] ... ] ) ] = exp

where: 

n

is the name of the statement function.

each a

is a dummy argument used in exp.  (The maximum number of dummy arguments
allowed is 150.) 

exp

is any FORTRAN expression that references the statement function dummy
arguments a.

Description:

The names of each n and a take the forms of variable names (see 2.4.3).  An argument, a,

is a dummy name and serves only to indicate order, number, and type of arguments for
the statement function.

The variable names that appear as dummy arguments of a statement function are local
to that statement.  They may be used to identify other dummy arguments of the same
type in different statement function statements, but may not be repeated in the same
statement function dummy argument list.

The name may be used to identify any other entity in a program unit.  The
FORTRAN 77 standard restricts the use to any scalar variable within the program unit,
but includes its appearance as a:

1. dummy argument in a FUNCTION, SUBROUTINE, or ENTRY statement, or

2. common block name.

A type is associated with the name of the statement function and each of its arguments.
The type of each name is determined by the normal typing conventions (IMPLICIT and
type statements, and the I-N integer rule). If the type of a statement function is
character, its length can be specified as a positive integer constant or as * (see 6.3.2).
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Each argument of the statement function must be referred to in exp; exp can also
contain references to other statement functions.  However, statement functions can’t be
referred to before they are defined, and a statement function definition can’t refer to
itself.  In addition, a statement function definition in a function subprogram must not
contain a function reference to the name of the function subprogram or an entry name in
the function subprogram.

For a description of local-global rules for names used in statement function

definition statements in internal subprograms, see 7.9.

Examples:

     BRIEF(VAR1,VAR2) = (VAR1 + VAR2)/4.
C            Defines a REAL statement function named BRIEF which
C            calculates the sum of its two arguments and divides
C            their sum by four.

     INTEGER FLD
     FLD(I,J,A) = BITS(A,I+1,J)
C            Defines an integer statement function named FLD whose
C            arguments I, J, and A are used in its expression.  The
C            expression is a reference to the BITS pseudo-function.

     STAFUN(231) = 2*3-A+482**B-200
C            Defines a REAL statement function with no dummy
C            arguments.

       CHARACTER A*4,B*2
       DEFINE B(I)=A(I)(3:4)
C           Defines a CHARACTER*2 statement function that takes
C           character positions 3 through 4 of character array
C           element A(I).

7.3.1.2. Statement Function References

The reference to a statement function takes the form:  

n ( [e1 [ ,e2] ...] )

or: 

n [ ( [e1 [ ,e2 ] ... ] ) ]

where: 

n

is the name of the statement function.

ei

is an actual argument of the statement function.  It must be an expression or an

array name.

The order, number, and type of the actual arguments in the statement function reference
must be the same as the order, number, and type of the dummy arguments in the
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statement function definition.  If the type of an actual argument does not match

the type of the corresponding dummy argument, no conversion is performed;

instead, the actual argument’s type is used in the expression.  The type of an
actual argument ei must be consistent with the usage of the corresponding dummy
argument ai in the expression exp in the statement function definition statement.  For
example, if .NOT. ai appears in exp, the corresponding actual argument ei must be a
logical expression.

In effect, each reference to a statement function is replaced by a copy of expression exp

in which each occurrence of a dummy argument a is replaced by the corresponding
actual argument e.  The type of the resulting expression is determined from the types of
the actual arguments and the nonargument components of exp according to the rules for
expression evaluation (see 2.5).  When a statement function is referred to, it must
generate a legal FORTRAN expression.

If the expression exp and the statement function n are both arithmetic type (integer,
real, or complex), exp is converted, if necessary, to the type of n, according to the
assignment rules in Table 3-1.  If both exp and n are type character, the length of exp is
changed, if necessary, to the length of n (as described in Table 3-2).  There is no

character length conversion if the statement function is declared as

CHARACTER*(*) (see 6.3.2.2).

When an actual argument is an expression, it is evaluated only once and its value is
substituted for the dummy argument.

Following its declaration, a statement function can be referenced wherever a reference
to a function is permitted.

A statement function reference can sometimes be used as a receiving variable

(for example, as the left-hand part of an assignment statement).  The latter

usage requires that after argument substitution, exp must be:

� a simple variable,

� an array element,

� an array name,

� a character substring, or

� the BITS or SUBSTR pseudo-function.  (See 7.3.2.2 and 7.7.2.3 for further

restrictions on BITS and SUBSTR.)

When a statement function reference appears as a receiving variable, no type

conversion is performed between the type of the expression exp and the type of

statement function n.
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Example 1:

      I(A,J,K,L) = A+J/K**L-A
C           Defines integer statement function I with dummy
C           arguments of type real (A) and integer (J,K,L).
      NEWVAL = I(14.3,-5,2,4)
C           The statement function reference I is evaluated
C           as 14.3+(-5)/2**4-14.3.  This expression has a
C           result which is type real.  This result is then
C           converted to type integer (since I is type
C           integer).  The result of that conversion is stored
C           in NEWVAL (which is type integer).

Example 2:

C           Suppose that a program requires three 1000 x 1000 logical
C           arrays.  Using the FORTRAN LOGICAL data type would
C           require three arrays of 1,000,000 words each.  Since
C           ASCII FORTRAN can’t support a single array of more than
C           262,000 words without the virtual feature, the program
C           could not be compiled.  However, by accepting a
C           slight decrease in readability, the problem can be
C           solved using statement functions.
      INTEGER BIT, L1,L2,L3
      INTEGER LOG1(27778),LOG2(27778),LOG3(27778)
      DEFINE BIT(A,I) = BITS(A((I+35)/36),  
     1                  MOD(I+35,36)+1,1)
      DEFINE L1(I,J) = BIT(LOG1,(I-1)*1000+J)
      DEFINE L2(I,J) = BIT(LOG2,(I-1)*1000+J)
      DEFINE L3(I,J) = BIT(LOG3,(I-1)*1000+J)
C           Now by arbitrarily associating 0 with the value FALSE
C           and 1 with the value TRUE, L can be used in most of the
C           same ways that a 1000 x 1000 logical array can be used.
C           Thus, the following loop assigns the logical matrix
C           product of L2*L3 to L1.
       DO 100 I = 1, 1000, 1
          DO 100 J = 1, 1000, 1
              L1(I,J) = 0
              DO 100 K = 1, 1000, 1
100              L1(I,J) = OR(L1(I,J),AND(L2(I,K),L3(K,J)))
C           While this example is correct, it isn’t
C           necessarily the most efficient way of performing the
C           desired computation.

7.3.2. Function Subprograms

A function subprogram is a separate program unit.  It begins with a FUNCTION
statement and ends with the next END, SUBROUTINE, or FUNCTION statement.

A function subprogram can contain any FORTRAN statement other than a BLOCK DATA,
SUBROUTINE, or PROGRAM statement.

There are external and internal functions.  A function is external if it appears as the
first program unit or follows an END statement.  Otherwise, it is an internal function

and is considered as local to the previous external program unit, whether it is a

main program, a function, or a subroutine.  The FORTRAN 77 standard doesn’t

have the concept of an internal subprogram; it is an ASCII FORTRAN

extension.  When another FUNCTION or SUBROUTINE statement is
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encountered (with no intervening END statement), the following source is

considered to be a separate internal subprogram.

A function subprogram can’t call itself, either directly or indirectly.

For a description of local-global rules for using symbolic names in internal

function subprograms, see 7.9.

Example:

C Main program  
         .   
         .   (block 1)
         .
C Internal function A  
       FUNCTION A   
         .    
         .   (block 2)
         .
C Internal subroutine B  
       SUBROUTINE B  
         .   
         .   (block 3)
         .   
       END
C External function C  
       FUNCTION C  
         .   
         .   (block 4)
         .
C Internal subroutine D  
       SUBROUTINE D  
         .   
         .   (block 5)
         .   
       END
C External subroutine E  
       SUBROUTINE E  
         .   
         .   (block 6)
         .   
       END

This compilation unit contains a main program with two internal subprograms (A

and B), an external function (C) with one internal subprogram (D), and an external
subroutine (E) with no internal subprograms.  Each block in the program is a group of
statements containing no END, SUBROUTINE, FUNCTION, PROGRAM, or BLOCK
DATA statements.  See 7.3.3 for a description of subroutines.

7.3.2.1. FUNCTION Statement

Purpose:

The FUNCTION statement informs the compiler that the definition of a
programmer-supplied function is being specified.
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Form:

[type] FUNCTION n ( [a [ ,a] ... ] )

or:

[type] FUNCTION n [*s] [ ( [a [ ,a] ... ] ) ]

where: 

type

is INTEGER, REAL, DOUBLE PRECISION, COMPLEX, CHARACTER, or LOGICAL.
This optional field specifies the type of value returned by the function.
CHARACTER*s is also allowed, in which case *s is not allowed after n. 

n

is the symbolic name by which the function is known to other program units.  In
general, it is not advisable to use the currency symbol ($) in function names.  This
avoids conflicts with entry names in the ASCII FORTRAN library and the OS 1100
Operating System relocatable library. 

s 

is one of the length specifications allowed for type (see 6.3).  This field can

be specified only when type is specified.  If type is CHARACTER, s can be

one of the following:  (1) An unsigned, nonzero, integer constant, (2) an

integer constant expression that doesn’t include a parameter constant,

enclosed in parentheses and with a positive value, or (3) an asterisk in

parentheses.

each a

is a dummy argument, which can be a variable name, array name, dummy procedure
name, *, or $.  If there are no dummy arguments, the parentheses are not

required. You can enclose any dummy argument in slashes (that is, /a/).  The
number of arguments can’t exceed 250.  The maximum number of character
arguments allowed is 63.

Description:

The FUNCTION statement must be the initial statement of a function subprogram
(except possibly for a COMPILER or EDIT statement).  It identifies the name of a
function, its arguments, and possibly its type and length.

The type of the function (which is the type of the value returned by the function) is
determined by the type field of the function, an explicit type specification statement in
the function subprogram, or using the implicit typing convention described in 2.4.2.1.
The function must be assigned the same type in all program units that refer to it.  If a
reference to the function is made from a program unit in which it has a type other than
that assigned to the function in the function subprogram, the returned value is not
converted to the type expected by the calling routine.  The results of such a call are
unpredictable.
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The name of the function and each of its ENTRY names (see 7.5) are available
throughout the subprogram for use as a variable of the same type as that of the function
(or ENTRY name).  The function and entry names are effectively equivalenced (see 6.4).
If a function is type CHARACTER, then all of its ENTRY names must also be type
character.

The function name or an ENTRY name must be assigned a value by appearing on the
left-hand side of an assignment statement, as an element of a READ statement list, or as
an argument to a subroutine or function that assigns a value to the corresponding formal
parameter.  The value of the function and ENTRY name can be subsequently referenced
or changed.  When execution reaches a RETURN or END statement in the FUNCTION
subprogram, the value returned is that most recently assigned to any of the associated
function or ENTRY names.  If the type of the name to which the value was assigned
differs from the type of the entry point by which the function is called, no conversion is
done.  The returned value is then undefined.

The function subprogram can also use one or more of its dummy arguments to return
values to the calling program unit.  See 7.3.4 for a complete discussion of actual and
dummy arguments.

For a description of alternate return specifiers (that is, dummy arguments as

asterisks), see 7.4.  ASCII FORTRAN allows alternate returns from functions,

but the FORTRAN 77 standard does not.

7.3.2.2. Function References

A programmer-supplied function is referenced by the appearance of its name with an
explicit actual argument list.  The form of a programmer-supplied function reference is: 

f ( [a[ ,a] ... ] )

where f is the name of the programmer-supplied function.  (The name f must not appear
both as the name of a function and as the name of a subroutine in the same program
unit.)  Each a is an actual argument and must match the corresponding dummy
argument of f in type and usage (see 7.3.4).  The arguments can be:

� Expressions

� Array names

� Intrinsic functions

� External procedures

� Internal procedures

� Dummy procedures

� Statement labels

The number of arguments can’t exceed 250.

When a statement label appears as an actual argument, write it as *n, &n, or $n,

where n is the statement label.  The corresponding dummy argument must be an
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asterisk (*) or currency symbol ($).  Any alternate returns result in a loss of

the value normally returned by a function reference.

A reference to a function causes the computation indicated by the function definition to
be performed.  The value returned by the function determines the value of the
expression in which the reference occurs.  The value returned is assumed to be of the
type indicated by the first character of the name f, unless f appears in a type statement
or unless the first character of f appears in an IMPLICIT statement.

When an external procedure name appears in an actual argument list without an explicit
actual argument list of its own, the procedure name is passed to the called function.
When an external procedure name appears without an explicit actual parameter list, it
must previously appear with an explicit actual argument list or in an EXTERNAL
statement (see 6.9).

7.3.3. Subroutines

A subroutine is a separate program unit.  It begins with a SUBROUTINE statement and
ends with the next END, SUBROUTINE, or FUNCTION statement.  There are
internal and external subroutines in exactly the same manner as internal and external
functions (see 7.3.2).  A subroutine is external if it appears as the first program unit in
the source input, or if its SUBROUTINE statement is immediately preceded by an END
statement.  Otherwise, it is internal.

The subroutine can contain any FORTRAN statements except a BLOCK DATA,
FUNCTION, or PROGRAM statement.  Another FUNCTION or SUBROUTINE

statement encountered (with no intervening END statement) terminates the

subroutine and causes the following source to be an internal program unit.

A subroutine can’t call itself, either directly or indirectly.

For a description of local-global rules for symbolic names used in internal

subroutine subprograms, see 7.9.

7.3.3.1. SUBROUTINE Statement

Purpose:

The SUBROUTINE statement notifies the compiler that a subroutine is being defined.

Form:

SUBROUTINE n [ ([a [ ,a] ...]) ]

where: 

n

is the symbolic name by which the subroutine is known to other program units.  It
is not advisable to use the currency symbol ($) in subroutine names.  This
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avoids conflicts with entry names in the ASCII FORTRAN library and the OS 1100
Operating System relocatable library.

each a

is a dummy argument, which can be a variable name, array name, dummy procedure
name, *, or $.  A name a can appear only once in the list of arguments.  The number
of arguments can’t exceed 250.  The maximum number of character arguments
allowed is 63. If there are no dummy arguments, you can omit the parentheses.

Description:

The SUBROUTINE statement must be the first statement in a subroutine subprogram
(except possibly for a COMPILER [see 8.5] or EDIT statement [see 8.4]). It
specifies the name and arguments of the subroutine identified.

A dummy argument of a subroutine can be a symbolic name, an asterisk, or a currency

symbol.  An asterisk or a currency symbol indicates that the actual argument
corresponding to this dummy argument is a statement label.  Such labels can be
referenced by the RETURN i statement (see 7.4).  You can enclose dummy arguments

that are symbolic names in slashes (/a/).

The subroutine name can’t appear in any other statement of the subroutine subprogram.

Example:

     SUBROUTINE SAMP(CONS, ARR, *)
C           Defines subroutine SAMP with three arguments.  The
C           asterisk indicates the actual argument is a statement label.

7.3.3.2. Subroutine References

A subroutine is referenced by a CALL statement (see 7.3.3.3).

7.3.3.3. CALL Statement

Purpose:

A subroutine is referred to by the appearance of its name following the keyword CALL in
a CALL statement.

Form:

CALL s [ ( [a[ ,a] ...] ) ]

where s is the name of the subroutine.  (The name s can’t appear as both the name of a
subroutine and as the name of a function in the same program unit.)  Each a is an actual
argument and must match the corresponding dummy argument of s in type and usage
(see 7.3.4).
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Description:

The arguments can be:

� Expressions

� Array names

� Statement labels

� Intrinsic functions

� External procedures

� Internal procedures

� Dummy procedures

The number of arguments can’t exceed 250.

When a statement label appears as an actual argument, it is written as *n, &n, or $n,

where n is the statement label.  The corresponding dummy argument must be an asterisk
(*) or currency symbol ($).  Use external procedure names in the same manner as
function references (see 7.3.2.2).

A reference to a subroutine results in execution of the body of the subroutine.  When
execution of the subroutine is complete, the calling routine resumes at the statement
following the call or at one of the statement labels appearing in the argument list of the
CALL statement.

7.3.4. Function and Subroutine Arguments

On each call to a subprogram, the actual arguments are matched to the formal
arguments based on their order in the respective list.

The actual arguments must match the formal arguments in number, type, and usage.
ASCII FORTRAN automatically checks the types and number of actual arguments
against those expected on subprogram entry, except for certain exceptions listed in 8.5.7
(ARGCHK options of the COMPILER statement).  If a dummy argument is an array,
the corresponding actual argument must be either an array or an array element.  In the
first case, the size of the dummy array must not exceed the size of the actual array.  In
the second case, the effect is as if the first element of the dummy array is equivalenced
to the indicated element of the actual array.  The size of the dummy argument must not
exceed the size of that portion of the actual array that follows and includes the indicated
element.

A dummy argument is an array if it appears in a DIMENSION statement, or with
dimensions in an explicit type statement in the subprogram.  No dummy arguments can
appear in an EQUIVALENCE, COMMON, DATA, PARAMETER, SAVE, or INTRINSIC
statement.

If a dummy argument is assigned a value in the subprogram, the corresponding actual
argument must be a variable, a character substring, an array element, or an array.  Never
use a constant or an expression as an actual argument if the corresponding dummy



Function and Subroutine Procedures

UP-8244.4-B7-14

argument is assigned a value.  Such an error is not detected by the ASCII FORTRAN
system and the results are unpredictable.

If an actual argument is in COMMON, or appears more than once in the argument list,
undesirable side effects can occur when the corresponding dummy argument is assigned
a value.  Consider the following example:

      SUBROUTINE MULT(A,B,C,LI,LJ,LK)
      DIMENSION A(LI,LJ),B(LJ,LK),C(LI,LK)
      DO 1 I = 1, LI
         DO 1 K = 1, LK
            C(I,K) = 0.0
            DO 1 J = 1, LJ
 1             C(I,K) = A(I,J)*B(J,K)+C(I,K)
      RETURN
      END

When this subroutine is called by:

CALL MULT(X,Y,X,5,5,5)

the result of the call is incorrect since X is modified before the multiplication is
complete.  Another type of problem is illustrated in the following:

      SUBROUTINE FC3(A,B,C)
      A = B + C
      C = SQRT(A**2+B**2+C**2)
      A = A - B
      END

When the call is:

CALL FC3(X,Y,X)

the result depends on whether or not optimization is requested.  If there is no
optimization, the code executed is:

X = Y + X
X = SQRT(X**2 + Y**2 + X**2)
X = X - Y

If optimization is requested, the code executed is:

T1 = Y + X
X = SQRT(T1*T1 + Y*Y + X*X)
X = T1 - Y

Similar results can happen if the dummy argument to which a value is assigned is
associated with a variable in a COMMON block.

The compiler generates code for a subprogram, assuming that its arguments change
their values only through explicit statements in the subprogram.  If an argument is
actually in a common block, and another subprogram is called which changes its value,
the execution of the first subprogram may or may not reflect this change in the argument
value.  The same situation exists on execution of a direct access I/O statement
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when the associated variable is unknown for the statement either because of a

variable being used for a unit number, or because no OPEN or DEFINE FILE

statement on the unit number exists in the subprogram. In this case, the

compiler does not know which variable is the associated variable, so it may

assume that the associated variable’s value is not changed.

7.4. RETURN Statement
Purpose:

The RETURN statement provides a mechanism for returning control to the calling
routine from a point in the subprogram other than the END statement.

Form:

RETURN [i]

where i is an optional integer expression whose value for example, n denotes the nth

statement label in the argument list.

Description:

A RETURN statement in a main program is equivalent to a STOP statement

(see 4.8).

When the RETURN statement is executed in a function subprogram, evaluation of the
referencing expression is resumed with the function name replaced by its returned
value.  However, if i is specified, execution continues at the statement whose

label is selected by i.  This results in a loss of the value normally returned from

a function reference.

Execution of a RETURN statement in a subroutine subprogram ordinarily causes
execution to continue following the CALL statement.  However, if i is specified,
execution continues at the statement whose label is selected by i.  The value of i must
be positive and no greater than the number of statement labels passed as arguments.

If the value of i is outside of the correct range, a warning message is printed at run time:

RETURN ARGUMENT i OUT OF RANGE

A return is then executed as if i is not specified.

Examples:

      SUBROUTINE SCALAR(I,K,A,B,IMAX,KMAX,N,TEST,*,*)
        .
        .
        .
      RETURN 1
        .
        .
        .
      RETURN
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C           The first return passes control to the statement
C           identified by the first label in the argument list,
C           which is the ninth argument of subroutine SCALAR
C           (see 7.3.3.1).  The second return passes program control
C           to the point where the subroutine was called.

7.5. ENTRY Statement
Purpose:

The ENTRY statement defines an alternate point to begin execution of a subroutine or
function subprogram, and an alternate name by which the subprogram can be
referenced.  The ENTRY statement can also be used to let a function subprogram return
values of different types.

Form:

ENTRY n [ ([a[ ,a] ...]) ]

Description:

The entry name n is a symbolic name that can be referenced subject to the same rules as
the corresponding subroutine or function name.  As with subroutine and function

names, the currency symbol ($) should be avoided in entry names.

Each dummy argument a is a symbolic name, which must be unique in the dummy
argument list.  The dummy arguments need not agree with those of the SUBROUTINE or
FUNCTION statement, or any other ENTRY statement, in order, number, type, or usage.
A dummy argument that appears in more than one dummy argument list need not
occupy the same position in each list.  The use of slashes ( /a/ ) is permitted as it is

for a SUBROUTINE or FUNCTION statement.  A maximum of 250 dummy argument
names can appear in a program unit (SUBROUTINE, FUNCTION, and all ENTRY
statements).  The maximum number of character dummy arguments allowed in a single
ENTRY statement is 63.

Any dummy argument may use an asterisk or a currency symbol to denote that the
corresponding actual argument is a statement label.  (The FORTRAN 77 standard limits
the use of asterisks for dummy arguments to subroutines; ASCII FORTRAN allows

them in functions also.)

All references to a dummy argument or an entry name in executable statements must
follow the first appearance of the name in a dummy argument list or the ENTRY
statement that defines the entry name.

A program unit can contain multiple ENTRY statements.  Each defines an alternate entry
point to the subroutine or function and defines the name by which the entry point can be
referenced.  An entry point in a subroutine must be referenced as a subroutine; an entry
point in a function must be referenced as a function.  No more than 511 entry points can
be specified for all program units in a compilation.

ENTRY statements are not executable. If the normal sequence of statement execution
causes an ENTRY statement to be executed, it is skipped and the next executable
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statement is executed.  When an ENTRY-defined name is referenced (in a CALL
statement or function reference), execution of the subprogram begins with the first
executable statement following the ENTRY statement.  An ENTRY statement must not
appear in the range of a DO-loop or in a block IF structure (that is, between a block IF
statement and its corresponding END IF statement, where the IF-level is greater than
zero).

If the ENTRY statement appears in a function subprogram, the entry name is available
for use as a variable in the same manner as the function name; the entry names and
function name are effectively equivalenced.  The type of each function entry name is
determined from explicit typing, the IMPLICIT statement, or the I-N integer rule,
whichever applies to the name.  At the time of return, if the last function/entry name
variable assigned is of a different type than that required for the entry name referenced,
the function value is undefined.  When a function is type character, all of its entry names
must be type character, but all of its entry names need not be of equal length.  A

reference to a character function name or character entry name always uses the

character length associated with the name most recently entered.

The FORTRAN 77 standard requires that if a function is of type character with a length
of *, all ENTRY names must also be type character and of length *; otherwise, the
character length must be the same integer value for each ENTRY name.

A subprogram can’t reference itself by the subprogram name or any of its entry names,
either directly or indirectly.  Doing so cannot always be detected by the compiler and
results in an infinite loop at execution time.

If information for the object-time dimensioning of an array is passed in a reference to an
ENTRY statement, the array name and all of its dimension parameters (except any that
are in a common block) must appear in the argument list of the ENTRY statement.

When dummy arguments are not in the dummy argument list of the name

through which the subprogram is referred to, they generally refer to the actual

arguments with which they are most recently matched.  The compiler can’t detect
this situation; don’t attempt to use it since it is an unsupported side effect.  Problems
that can occur include:

� If an actual argument is an expression, its value is passed in a temporary area.  Since
this area is reused for following statements, its value can change even though the
expression has the same value if it is reevaluated.

� If the segmentation facility of the collector is in use, the storage occupied by the
actual argument can contain part of a different program unit when the subprogram
is next called.

� If automatic storage is used, the dummy argument can find different contents on the
stack the next time the subprogram is called.

� If the actual argument is a variable, the dummy argument remains associated with
that variable and reflects any changes to the value of that variable.  As a result, the
dummy argument cannot retain the value that it had at the last execution of the
subprogram.

� A dummy argument can’t be used unless an entry point is previously entered where
it exists in the argument list.
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� Optimization generally can’t know that this side effect is taking place, and produces
code as if it has not taken place.

7.6. BLOCK DATA Subprograms
A BLOCK DATA subprogram allows the initialization of variables in blank or labeled
common blocks to be combined in a single program unit.  ASCII FORTRAN allows the

initialization of blank common, but the FORTRAN 77 standard does not.

7.6.1. Structure

A BLOCK DATA subprogram is a separate program unit.  It must begin with a BLOCK
DATA statement (see 7.6.2).  The only other statements that are permitted in a BLOCK
DATA subprogram are IMPLICIT, PARAMETER, DIMENSION, COMMON, SAVE,
EQUIVALENCE, DATA, END, type statements, and the EXTERNAL and INTRINSIC

statements.

Since the association between common variables of different program units is by
position in a common block, rather than by name, all elements of a common block
should be listed in the COMMON statement, though they are not all initialized.

The FORTRAN 77 standard lets named common blocks be initialized only in BLOCK
DATA subprograms.  ASCII FORTRAN allows any program unit (including BLOCK

DATA subprograms) to initialize elements in one or more common blocks, and a

common block can be initialized by more than one program unit.  If an element

of a common block is initialized by more than one program unit, or more than

once in a program unit, one of the initial values is selected when the program is

collected.  Unless the initial values assigned to the element are all identical, the

actual value assigned to the element at the beginning of execution is

unpredictable.

A BLOCK DATA subprogram requires no local storage.  Any variable that appears in
specification statements, but not in a COMMON statement, is noted in a warning
message.  No storage is reserved for variables that do not appear in a COMMON
statement.

Since a BLOCK DATA subprogram defines no entry points, the automatic element
inclusion facilities of the collector never cause inclusion of the relocatable generated for
a BLOCK DATA subprogram.  As a result, the use of a BLOCK DATA subprogram requires
that the collection include an IN directive for the corresponding relocatable element.

7.6.2. BLOCK DATA Statement

Purpose:

The BLOCK DATA statement identifies a program unit as a BLOCK DATA subprogram.
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Form:

BLOCK DATA [sub]

where sub is an optional n ame for the BLOCK DATA subprogram.

Description:

The BLOCK DATA statement is the initial statement in all BLOCK DATA subprograms.

The name sub is a global name and must not be the same as the name of an external
procedure, main program, common block, or other BLOCK DATA subprogram in the
same executable program.  In addition, sub must not be the same as any local name in
the subprogram.

There must not be more than one unnamed BLOCK DATA subprogram in an executable
program.

The name of a BLOCK DATA subprogram has no explicit use in the FORTRAN language.
It is available mainly for documentation.

The same common block must not be specified in more than one BLOCK DATA
subprogram in the same executable program.

Examples:

      BLOCK DATA BLKA
      DIMENSION K(10)
      COMMON /B/K
      DATA K/1,2,3,4,5,6,7,8,9,10/
      END
C           This exemplifies a BLOCK DATA subprogram named BLKA.
C           The COMMON block named B is initialized by the
C           DATA statement.
      BLOCK DATA
      DIMENSION A(10),M(10)
      COMMON /X/ A,B,C /NAME1/M
      DATA M/2*1, 2*3, 2*5, 2*2, 2*4/,B,C/1.0,2.0/
      END
C           The elements of M are initialized to the sequence of
C           values (1,1,3,3,5,5,2,2,4,4).  The variables B and C
C           are set to 1.0 and 2.0, respectively.  No initial value
C           is assigned to any element of A.
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7.7. FORTRAN-Supplied Procedures
The ASCII FORTRAN system provides a set of precoded procedures, called intrinsic
procedures, for your convenience.  These procedures are in three groups:

1. Intrinsic functions

2. Pseudo-Functions and SBITS

3. Service subprograms

These groups are described in detail in the following subsections.

References to certain intrinsic procedures cause generation of code that performs the
requested action at the point of the reference.  Such procedures are called inline
procedures.  References to the other intrinsic procedures result in calls to library
subprograms; these procedures are called library procedures.  The inline or library
nature of each intrinsic procedure is specified in its respective description.

7.7.1. Intrinsic Functions

ASCII FORTRAN provides numerous intrinsic functions (sometimes called built-in
functions).  You do not write or modify them.  However, their actual form and manner of
referencing corresponds to that of a subprogram defined by a FUNCTION statement in a
source module.  These functions always return one value (function value) to the calling
statement and perform computations frequently needed in FORTRAN programs.

The nonmathematical intrinsic functions arecalled typeless functions.  Each

argument of a typeless function is a single-word expression.  If the argument is

a character expression whose length is less than four characters (that is, less

than one word), the argument is left-justified and blank-filled before

performing the function.  The function is performed bit-by-bit, treating a 0 as

false and a 1 as true.  These functions are summarized in Table 7-1.  See 2.5.5.3

for more information on expressions involving typeless functions.
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Table 7-1.  Typeless Intrinsic Functions  

Function
Description

Function
Name

Number
of Args Result Sample Reference

Logical Product AND 2 Typeless AND(word,word2)

Logical Sum OR 2 Typeless OR(word,word2)

Exclusive OR XOR 2 Typeless XOR(word,word2)

Treat Argument as
Typeless

BOOL 1 Typeless BOOL(word)

Complement COMPL 1 Typeless COMPL(word)

 

The mathematical and character intrinsic functions are described in NO TAG.  Some
general rules for mathematical and character intrinsic functions follow:

� An intrinsic function is referred to in an expression as if it is a single value or user
function.

� All trigonometric angles are expressed in radians.

� The type of an intrinsic function can be declared in the program unit that contains a
reference to it.  However, the declared type must match the type specified for the
function in NO TAG.  The intrinsic function name retains its automatic typing
attribute.

� If an intrinsic function name appears in an EXTERNAL statement, the name
becomes an external procedure name.  If an intrinsic function name appears in an
explicit typing statement that differs from the type associated with the name, the
name loses its intrinsic properties.  The name can be a function or a variable name
that you supply, depending on the use of the name.  Other names for the same
function retain their automatic typing attribute.

For example, in the code:

INTEGER SIN,COS
Y = SIN(X) * DSIN(X)+COS

SIN(X) is a call to an external function that must be supplied.  The reference

DSIN(X) is a reference to the single-precision sine function, because of

automatic type association.  The reference to COS is a reference to the scalar

variable COS.
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� When a reference is made to an intrinsic function with an argument of a

type or length different from that specified in NO TAG, the ASCII FORTRAN

compiler provides an automatic function selection facility.  The compiler

automatically selects, from the same group, the function that processes the

type of argument passed. (The FORTRAN 77 standard has this automatic

function selection facility only on the generic names.)

� Generally, if the argument is of a type for which there is no corresponding

function in NO TAG or has a different number of arguments, the function is

assumed to be a programmer-supplied function. If a reference is made to a

function that doesn’t handle an integer argument but does handle a real

argument, the integer argument is converted to type real.  The MAX and

MIN functions constitute a special case.  If the type of the arguments

doesn’t match the type specified for the function name used, the function is

selected from MAX0/AMAX1/DMAX1 or MIN0/AMIN1/DMIN1, respectively.

� If an intrinsic function name first appears in the program unit in an executable
statement with no following parentheses or arguments, the name is assumed to be a
scalar variable name.

� When an intrinsic function is used as an actual argument, only a specific intrinsic
function name can be used.  In addition, the specific intrinsic function name must
appear in an INTRINSIC statement.  See 6.10 for a list of intrinsic function names
that cannot be used as actual arguments.

� For intrinsic functions that require more than one argument, the arguments

must all be of the same type.  If they are not, they are converted to their

highest common type before selection of the appropriate function.

� An IMPLICIT statement doesn’t change the type of an intrinsic function.

� AMOD, MOD, and DMOD are not defined when the value of the second argument is
zero.

The procedure type (Proc Type) column in NO TAG indicates whether the associated
reference causes generation of code that performs the necessary computation (inline) or
results in a call to a library element.  In the function descriptions, the notation pv

expression denotes the principal value of the multiple-valued complex expression.
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Table 7-2.  Caption  

nction
Arguments

nction Proc
GFunction Description

Funct on
Name No. Type

Funct on
Value

Proc.
Type Generic Name

Natural logarithm
  y = ln x (x > 0)

  y = pv ln x

ALOG
DLOG
CLOG
CDLOG

1 Real
Double
Complex
D-complex

Real
Double
Complex
D-complex

Library LOG

Common logarithm
  y = log10 x (x > 0)

ALOG 10
DLOG 10

1 Real
Double

Real
Double

Library LOG 10

Exponential
  y = ex

EXP
DEXP
CEXP
CDEXP

1 Real
Double
Complex
D-complex

Real
Double
Complex
D-complex

Library EXP

Square root
  y = � x (x � 0)

  y = pv � x

SQRT
DSQRT
CSQRT
CDSQRT

1 Real 
Double
Complex
D-complex

Real 
Double
Complex
D-complex

Library SQRT

Arc sine
  y = Arcsin x
     (y in radians)
     -1�x�1

ASIN
ARSIN
DASIN
DARSIN

1 Real
Real
Double
Double

Real
Real
Double
Double

Library ASIN

Arc cosine
  y = Arcos x
     (y in radians)
     -1�x�1

ACOS
ARCOS
DACOS
DARCOS

1 Real
Real
Double
Double

Real
Real
Double
Double

Library ACOS

Arc tangent
  y = Arctan x

ATAN
DATAN

1 Real
Double

Real
Double

Library ATAN

  y = Arctan (x1 / x2)
  (see note 14)

ATAN2
DATAN2

2 Real
Double

Real
Double

Library ATAN2

Sine
  y = sin x
     (x in radians)

SIN
DSIN
CSIN
CDSIN

1 Real
Double
Complex
D-complex

Real
Double
Complex
D-complex

Library SIN

Cosine
  y = cos x
     (x in radians)

COS
DCOS
CCOS
CDCOS

1 Real 
Double
Complex
D-complex

Real
Double
Complex
D-complex

Library COS

Tangent
  y = tan x
     (x in radians)

TAN
DTAN
CTAN
CDTAN

1 Real
Double
Complex
D-complex

Real
Double
Complex
D-complex

Library TAN

continued
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Function Description Generic Name
Proc.
Type

Function
Value

Arguments
Function
NameFunction Description Generic Name

Proc.
Type

Function
ValueTypeNo.

Function
Name

Cotangent
  y = cotan x 
  (x in radians)

COTAN
DCOTAN

1 Real
Double

Real
Double

Library COTAN

Hyperbolic sine
  y = (ex-e-x) / 2

SINH
DSINH
CSINH
CDSINH

1 Real
Double
Complex
D-complex

Real
Double
Complex
D-complex

Library SINH

Cube root
  y = x1/3

  y = pvx1/3

CBRT
DCBRT
CCBRT
CDCBRT

1 Real
Double
Complex
D-complex

Real
Double
Complex
D-complex

Library CBRT

Hyperbolic cosine
  y = (ex+e-x) / 2

COSH
DCOSH
CCOSH
CDCOSH

1 Real
Double
Complex
D-complex

Real
Double
Complex
D-complex

Library COSH

Hyperbolic tangent
  y = (ex-e-x) / (ex+e-x)

TANH
DTANH
CTANH
CDTANH

1 Real
Double
Complex
D-complex

Real
Double
Complex
D-complex

Library TANH

Absolute value (see note 1)

  y = � x �

  y = ( (real x)2 + 
        (imag x)2 )1/2

IABS
ABS
DABS
CABS
CDABS

1 Integer
Real
Double
Complex
D-complex

Integer
Real
Double
Real
Double

Inline
Inline
Inline
Library
Library

ABS

Error function
  y = (2/�Pi)�0

xe-u2du
ERF
DERF

1 Real
Double

Real
Double

Library ERF

Complementary error
 function

  y = (2/�Pi)�x
�e-u2 du

     = 1 - ERF(x)

ERFC
DERFC

1 Real
Double

Real
Double

Library ERFC

Maximum value
  y = largest value from
      {x1, . . . , xn}

y � ��

MAX0
AMAX1
DMAX1

�2 Integer
Real
Double

Integer
Real
Double

Inline MAX

     y � xi, 1�i�n
AMAX0
MAX1

�2 Integer
Real

Real
Integer

Inline -

Minimum value
 y = smallest value from
    {x1, . . . , xn}

y � ��

MIN0
AMIN1
MIN1

�2 Integer
Real
Double

Integer
Real
Double

Inline MIN

   y � xi, 1�i�n
AMIN0
MIN1

�2 Integer
Real

Real
Integer

Inline -

continued



Function and Subroutine Procedures

UP-8244.4-B 7-25

Function Description Generic Name
Proc.
Type

Function
Value

Arguments
Function
NameFunction Description Generic Name

Proc.
Type

Function
ValueTypeNo.

Function
Name

Gamma
  y = �0

� ux-1e-u du
For real: 0 <�x�< 34
For double: 0 <�x�< 170

GAMMA
DGAMMA

1 Real
Double

Real
Double

Library GAMMA

Log gamma
  y = �0

� ux-1e-u du
      (x > 0)

ALGAMA
DLGAMA

1 Real
Double

Real
Double

Library LGAMMA

Remaindering -
 remainder of dividing
 x1 by x2
  y = x1 (modulo x2)
  AMOD: x1 / x2  227

  DMOD: x1 / x2  260

MOD
AMOD
DMOD

2 Integer
Real
Double

Integer
Real
Double

Inline MOD

TYPE CONVERSION
  Conversion to integer
    int(a) (see note 2)

—
INT
IFIX
HFIX
IDINT
IDFIX
—
—

1 Integer
Real
Real
Real
Double
Double
Complex
D-complex

Integer Inline INT

Conversion to real
  (see notes 3 and 13)

REAL
FLOAT
—
SNGL
—
—

1 Integer
Integer
Real
Double
Complex
D-complex

Real Inline REAL

Conversion to double
  (see note 4)

—
DFLOAT
—
—
—
DREAL

1 Integer
Integer
Real
Double
Complex
D-complex

Double Inline DBLE

Conversion to complex
  (see notes 5 and 13)

—
—
—
—
—

1
or
2

Integer
Real
Double
Complex
D-complex

Complex Inline CMPLX

Conversion to
  double complex
    (see note 5)

—
—
—
—
—

1
or
2

Integer
Real
Double
Complex
D-complex

D-complex Inline DCMPLX

Conversion to
  integer (see note 6)

ICHAR 1 Character Integer Inline —

continued
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Function Description Generic Name
Proc.
Type

Function
Value

Arguments
Function
NameFunction Description Generic Name

Proc.
Type

Function
ValueTypeNo.

Function
Name

Conversion to character
  (see note 6)

CHAR 1 Integer Character Inline —

Truncation
  (int(a), see note 2)

AINT
DINT

1 Real
Double

Real
Double

Inline AINT

Nearest whole number
  int(a+.5) if a � 0
   int(a-.5) if a < 0

ANINT
DNINT

1 Real
Double

Real
Double

Library ANINT

Nearest integer
  int(a+.5) if a � 0
  int(a-.5) if a < 0

NINT
IDNINT

1 Real
Double

Integer Inline NINT

Transfer of sign
  y = �x1� if x2 � 0
     = - �x1� if x2 < 0

ISIGN
SIGN
DSIGN

2 Integer
Real
Double

Integer
Real
Double

Inline SIGN

Positive difference
  y = x1 - min(x 1,x2)

IDIM
DIM
DDIM

2 Integer
Real
Double

Integer
Real
Double

Inline DIM

Imaginary part of 
COMPLEX argument 
(see note 1)

AIMAG
DIMAG

1 Complex
D-complex

Real
Double

Inline IMAG

Complex conjugate
  (see note 1)
  y = a-bi for x = a+bi

CONJG
DCONJG

1 Complex
D-complex

Complex
D-complex

Inline CONJG

Double precision
product
  y = x1*x2

DPROD 2 Real Double Inline —

Length
  y = length of character
        entity
    (see note 11)

LEN 1 Character Integer Inline —

Index of a substring
  y = location of 

   substring x2 in string 
    x1 (see note 10)

INDEX 2 Character Integer Library —

Lexically greater than or
  equal (see note 12)

LGE 2 Character Logical Inline —

Lexically greater than
  (see note 12)

LGT 2 Character Logical Inline —

Lexically less than or
  equal (see note 12)

LLE 2 Character Logical Inline —

continued
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Function Description Generic Name
Proc.
Type

Function
Value

Arguments
Function
NameFunction Description Generic Name

Proc.
Type

Function
ValueTypeNo.

Function
Name

Lexically less than
  (see note 12)

LLT 2 Character Logical Inline —

Uppercase - return a
string identical to the
argument, except that
all lowercase ASCII
characters have been
converted to uppercase

UPPERC 1 Character Character Library —

Lowercase - return a
string identical to the
argument, except that
all uppercase ASCII
characters have been
converted to lowercase

LOWERC 1 Character Character Library —

Trim length - return the
length of the argument
string with all trailing
blanks removed

TRMLEN 1 Character Integer Library —

 

Notes:

1. A complex value is expressed as an ordered pair of reals, (xr,xi), where xr is the real
part and xi is the imaginary part.

2. For x of type integer, int(x)=x.  For x of type real or double precision, there are two
cases: if |x| <  1, int(x)=0; if |x| ≥ 1, int(x) is the integer whose magnitude is the
largest integer that does not exceed the magnitude of x and whose sign is the same
as the sign of x.  For example:

int (-3.7) = -3

For x of type complex, int(x) is the value obtained by applying the above rule to the
real part of x.  For x of type real, IFIX(x) is the same as INT(x).

3. For x of type real, REAL(x) is x.  For x of type integer or double precision, REAL(x)
is as much precision of the significant part of x as a real datum can contain.  For x of
type complex, REAL (x) is the real part of x.

For x of type integer, FLOAT(x) is the same as REAL(x).

The result of REAL is always single precision.

4. For x of type double precision, DBLE(x) is x. For x of type integer or real, DBLE(x)
is as much precision of the significant part of x as a double-precision datum can
contain.  For x of type complex, DBLE(x) is as much precision of the significant part
of the real part of x as a double-precision datum can contain.

5. CMPLX can have one or two arguments.
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For x of type integer, real, or double precision, CMPLX(x) is the complex value
whose real part is REAL(x) and whose imaginary part is zero.

For x of type complex, CMPLX(x) is x.

For x of type complex*16, CMPLX(x) is the complex value whose real part is
REAL(x) and whose imaginary part is REAL(DIMAG(x)).

CMPLX(x1,x2) is the complex value whose real part is REAL(x1) and whose
imaginary part is REAL(x2).

DCMPLX can have one or two arguments.

The result of DCMPLX is always double-precision complex.

For x of type integer, real, or double precision, DCMPLX(x) is the complex*16 value
whose real part is DBLE(x) and whose imaginary part is zero.

For x of type complex*16, DCMPLX(x) is x.

For x of type complex, DCMPLX(x) is the complex*16 value whose real part is
DBLE(x) and whose imaginary part is DBLE(AIMAG(x)).

DCMPLX(x1,x2) is the complex*16 value whose real part is DBLE(x1) and whose
imaginary part is DBLE(x2).

6. ICHAR provides a means of converting from a character to an integer, based on the
position of the character in the ASCII collating sequence. The first character in the
collating sequence corresponds to position 0 (the ASCII control character NUL,
which has octal representation 000), and the last one corresponds to position 255
(octal representation 0377).

The value of ICHAR(x) is an integer in the range: 0 ≤ ICHAR(x) ≤ 255, where x is an
argument of type character of length one.  The position of that character in the
ASCII collating sequence is the value of ICHAR.

For any ASCII characters c1 and c2 , (c1 .LE. c2) is true if and only if (ICHAR(c1) .LE.
ICHAR(c2)) is true, and (c1 .EQ. c2) is true if and only if (ICHAR(c1) .EQ. ICHAR(c2))
is true.

CHAR(i) returns the character in the ith position of the ASCII collating sequence.
The value is of type character of length one.  The parameter i must be an integer
expression whose value must be in the range 0 ≤ i ≤ 255.

ICHAR(CHAR(i)) = i for 0 ≤ i ≤ 255.  

CHAR(ICHAR(c)) = c for any ASCII character c.

7. All angles are expressed in radians.

8. The result of a function of type complex is the principal value.

9. All arguments in an intrinsic function reference must be of the same type.

10. INDEX(x1,x2) returns an integer value indicating the starting position within the
character string x1 of a substring identical to string x2.  If x2 occurs more than once
in x1, the starting position of the first occurrence is returned.

If x2 does not occur in x1, the value 0 is returned.  Zero is returned if LEN(x1)  <
LEN (x2).
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11. The value (that is, the contents) of the argument of the LEN function need not be
defined at the time the function reference is executed.

12. Using the intrinsic functions LGE, LGT, LLE, or LLT with arguments op1 and op2
(both character expressions) performs the same comparisons and returns the same
result (.TRUE. or .FALSE.) as the character relational expression op1 relop op2,
where relop is .GE., .GT., .LE., or .LT., respectively.  These intrinsic functions are
inline only if the arguments are CHARACTER*4 or smaller.

13. REAL, FLOAT, SNGL, and CMPLX are not generic names for DREAL and DCMPLX.

Example:

      DOUBLE PRECISION D1,D2,D3
      COMPLEX * 16 CX1,CX2
        .
        .
        .
      D1 = REAL(CX1)
      CX2 = CMPLX(D2,D3)
      CX1 = CMPLX(SNGL(CX2), SNGL(D2))

This example has a hidden, but severe, loss of precision due to the use of REAL and
CMPLX.  Arithmetic conversions are done that result in a loss of precision and
sometimes cause an overflow condition.  Use DREAL and DCMPLX to prevent
conversions.

Change all occurrences of REAL, FLOAT, SNGL, and CMPLX to DREAL and
DCMPLX when you increase arithmetic accuracy in a program by changing:

� all single-precision variables to double-precision variables

� all single-precision complex variables to double-precision complex variables

14. The values for ATAN2 and DATAN2 for various cases are calculated as follows:

y = Arctan(x1/x2)                when x2>0
y = SIGN(x1)*Pi/2                when x2=0
y = Arctan(x1/x2) + Pi*SIGN(x1)  when x2<0

where:

SIGN(x1) = 1  when x1 ≥ 0
SIGN(x1) = -1  when x1 < 0

The ranges of values for ATAN2 and DATAN2 are listed in the following table:

x2<0 x2=0 x2>0

x1>0 Pi>y>Pi/2 y=Pi/2 Pi/2>y>0

x1=0 y=Pi (error) y=0

x1<0 -Pi<y<-Pi/2 y=-Pi/2 -Pi/2<y<0
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7.7.2. BITS, SBITS, and SUBSTR

ASCII FORTRAN supplies two pseudo-functions, BITS and SUBSTR, to

facilitate the manipulation of bit and character strings.

These functions are similar to intrinsic functions, except that pseudo-functions

can also appear as the targets of assignment statements.

SBITS, a bit-manipulation intrinsic function, is also supplied.

7.7.2.1. BITS

Purpose:

The BITS pseudo-function selects a bit string of a specific length from an entity

of any type.

Form:

BITS (e, i, l)

where: 

e

is an expression, unless BITS is used as the target of an assignment

statement, in which case e must be a scalar variable or array element. 

i

is an integer expression specifying the initial bit position of the bit string

to be selected, where 1≤i≤t (t is the total number of bits in item e). 

l

is an integer expression specifying the length (in bits) of the bit string

being selected, where 1≤l≤36.  If BITS is used as the target of an assignment

statement, then 1≤l≤t.

Description:

When BITS appears in an arithmetic expression (that is, not used as the target

in an assignment statement), it returns a 36-bit integer result, which is set up

as follows (note that bits are counted from left to right, starting at 1): the

rightmost l bits are taken from bits i to i+l-1 of e, and the leftmost 36-l bits are

zero-filled.

When you use BITS as a pseudo-function (target of an assignment), e must be a

scalar variable or array element.  The value from the right side of the

assignment is stored in the indicated bits of e, and all other bits of e are

unchanged.  More than 36 bits of e can be set.  Call the right side expression r,

with length l1 (in bits).  If l1 > l, then only the rightmost l bits of r are used.  If
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l1 < l, then all of r is placed in e starting at bit i (that is, left-justified, in bits i

to i+l1-1) and the remaining portion of e to be filled (bits i+l1 to i+l-1) contains

zeros.

The relational expression i+l-1≤t must be satisfied for all uses of BITS.

Examples:

      DATA L / O000022000033/
      L1 = BITS(L,1,18)   @L1 is 18 (octal 022)

      N = 64              @octal 0100
      BITS(N,31,6) = 63      @N is 127 (octal 0177)

      CHARACTER C8*8/’abcdefgh’/, C4*4/’1234’/
      BITS(C8,37,18) = ’Z’
C           The fifth character of C8 gets ’Z’, and the sixth character
C           gets all zero bits.
      BITS(C4,19,18) = ’abc’ @C4 is ’12bc’ 

      COMPLEX*16 C16  
      DOUBLE PRECISION R8
      BITS(C16,73,72) = R8
C           R8 is placed in the imaginary portion of C16 (3rd and
C           4th words)
      BITS(C16,1,144) = R8
C           R8 is placed in the real portion of C16 (first 2 words),
C           with 0 in the imaginary part (3rd and 4th words).

7.7.2.2. SBITS

Purpose:

The SBITS intrinsic function is similar to BITS, except that the result is

sign-extended.

Form:

SBITS (e, i, l)

where: 

e

an expression, is the entity that the bit string is selected from.  

i

an integer expression, is the initial bit position in e of the bit string being

selected (1≤i≤t, where t is the total number of bits in item e).  

l

an integer expression, is the length in bits of the bit string being selected

(1≤l≤36).
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Description:

SBITS is a sign-extended BITS function, with a 36-bit integer result.  You can’t

use it as a pseudo-function.

The 36-bit result is set up as follows (bits are counted from left to right,

starting at 1):  the rightmost l bits are taken from bits i to i+l-1 of e, and the

leftmost 36-l bits are all set to bit i of e (the sign bit of the extracted bit

string).  (The BITS function sets the leftmost 36-l bits of the result to 0.)  The

relational expression i+l-1≤t must be satisfied.

The sign-extension feature of SBITS allows results to be negative numbers.

For example, if several signed integers are packed into a single word, SBITS

can properly extract individual signed (positive or negative) integers.

Examples:

      DATA N /0767574737271/
      I = BITS(N,31,6)
      J = SBITS(N,31,6)
C            I will be 57 (octal 071)
C            J will be -6 (octal 0777777777771)

      CHARACTER*10 /’1234567890’/
      I = BITS(A,76,6)
      J = SBITS(A,76,6)
C            I will be 57 (octal 071)
C            J will be -6

7.7.2.3. SUBSTR

Purpose:

The SUBSTR pseudo-function selects a character substring from a given

character string.

Form:

SUBSTR (e,i,l)

where: 

e

is a character expression, unless SUBSTR is used as the target of an

assignment statement, in which case e must be a scalar character variable

or character array element.

i

is an integer expression specifying the initial character position of the

selected substring, where i ≥ 1 and i is less than or equal to the length of e. 
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l

is an integer expression specifying the length (in characters) of the

selected substring, where l has the same restrictions as i.

Description:

You can use the SUBSTR pseudo-function in any character or relational

expression.

The function selects a character string that is l characters long, starting at

position i of expression e.  Characters are counted from left to right, so if i is 1,

the substring starts with the first character of expression e.  The expression

i+l-1 (representing the character position of the final character of the

substring) must be less than or equal to the length of e.

You can also use this function as the target of an assignment statement.

However, e must be a simple variable, an array element, or a statement function

reference for which assignment is permitted.  The value from the right side of

the assignment is stored in the indicated substring.  All other characters of the

target remain unchanged.

You can also specify substrings by using the colon syntax specified in 2.4.5.

Examples:

C           If STR1 is typed character, then
       STR1 = SUBSTR(’NEWYEARRESOLUTION’,8,10)
C           selects substring ’RESOLUTION’ and assigns it
C           to STR1.

C           If YEAR is character and contains the value ’1983’
      SUBSTR(YEAR,4,1) = ’4’
C           leaves YEAR with a value of ’1984’.

7.7.3. Service Subprograms

OS 1100 ASCII FORTRAN provides a set of service subprograms for your convenience
and information.  Some of these subprograms aid you in pinpointing problem areas
(DUMP and PDUMP).  Others check for specific error conditions or convert information
between ASCII and Fieldata forms, while another stops execution at any point that you
indicate (EXIT).  ERTRAN lets you refer to certain Executive Request (ER) functions.
Another set lets you capture and diagnose arithmetic exceptions at execution time.

Service subprograms are similar in form to a subroutine or function subprogram in a
FORTRAN source module, but you don’t define them.  Service subprograms may or may
not return a value to the calling statement.  Service subprograms are not treated in a
special manner by the compiler, but rather are treated exactly the same as your program.
Therefore, if a service subprogram can be called both as a subroutine and as a function,
you can use only one type of reference from a given program unit. The use of service
subprograms cannot be diagnosed by the compiler as nonstandard, since the compiler
looks upon them as user-supplied subprograms.  Their names are not treated as special
names by the compiler.
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Each service subprogram is explained in the following paragraphs.

7.7.3.1. DUMP

Purpose:

The DUMP subprogram dumps the contents of specified storage to the system output
file and terminates execution.

Form:

CALL DUMP (a,b,f)

where: 

a and b

are variables, array elements, or arrays that indicate the limits of storage to be
dumped. 

f

indicates the dump format.  f can be any of the following:

0 Octal

1 Not used

2 LOGICAL

3 Not used

4 INTEGER

5 REAL

6 DOUBLE PRECISION

7 COMPLEX

8 COMPLEX*16

9 CHARACTER

Description:

A dump of storage contents between a and b, inclusive, is made according to format f
and execution is then terminated.

Either a or b can be the upper or lower limit of storage, but both must be in the same
program unit or the same common block.
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Example:

     CALL DUMP (LOWER, UPPER, 0)
C           This statement requests a storage dump
C           in octal format starting at location LOWER and ending
C           with location UPPER.  Execution then terminates.

7.7.3.2. PDUMP

Purpose:

The PDUMP subprogram dumps the contents of specified storage to the system output
file and continues execution.

Form:

CALL PDUMP (a,b,f)

where: 

a and b

are variables, array elements, or arrays that indicate the limits of the storage dump. 

f

indicates the dump format.  The format possibilities are the same as for the DUMP
subprogram (see 7.7.3.1).

Description:

A dump of storage contents between a and b, inclusive, is made according to format f
and program execution resumes.

Either a or b can be the upper or lower limit of storage.  Both must be in the same
program unit or the same common block.

Example:

      CALL PDUMP (LOWER, UPPER, 5)
C           A dump is made of information between locations
C           UPPER and LOWER.  This data is output in single-
C           precision real format to the system output file and
C           normal program execution then resumes.

7.7.3.3. DVCHK

Purpose:

The DVCHK subprogram tests for a previous divide-check exception.
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Form:

CALL DVCHK (i)

where i is an integer variable or array element that indicates whether the divide-check
indicator is turned on or off.

Description:

DVCHK tests the divide-check indicator to see if either a fixed- or floating-point
divide-check has occurred.

The variable i is then set to 1 if the divide-check indicator is on, or it is set to 2 if the
indicator is off.

After testing, the divide-check indicator is turned off.

See DIVSET (7.7.3.9).

Example:

C           An example of a divide exception is a fixed-point divide
C           exception.  This is recognized when the division of a
C           fixed-point number by zero is attempted.  Such an
C           exception occurs during execution of the following
C           statements:
      INTEGER DIVISR,DIVDND,TROUBL
      DIVISR = 0
      DIVDND = 8
      QUOTNT = DIVDND/DIVISR
 C          This turns the divide-check indicator on, so the
 C          subsequent statement:
      CALL DVCHK(TROUBL)
 C          sets variable TROUBL to 1 and turns the indicator off.

7.7.3.4. OVERFL

Purpose:

The OVERFL subprogram tests for a previous exponent overflow.

Form:

CALL OVERFL (i)

where i is an integer variable or array element.

Description:

OVERFL determines whether or not an exponent overflow has occurred since the last
call to OVERFL/OVUNFL (or the start of the program, if OVERFL/OVUNFL has not been
previously called).  The parameter i is assigned a value that corresponds to the current
overflow status of the program.
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When an overflow condition occurs, the value returned in i is 1.  An exponent overflow
occurs when the absolute value of the result of a floating-point addition, subtraction,
multiplication, or division is greater than or equal to 2127 (approximately 1038) for single
precision or 21023 (approximately 10307) for double precision.

When no overflow occurs, the value returned in i is 2.

After the value of i is set, the overflow indicator is cleared.

See OVFSET (7.7.3.8).

Example:

      A = 1.0E20
          .
          .
          .
      B = A*A
      CALL OVERFL (LAST1)
 C          Assuming that A has not been changed, the value returned
 C          in LAST1 is 1, indicating exponent overflow occurred.

7.7.3.5. UNDRFL

Purpose:

The UNDRFL subprogram tests for a previous exponent underflow.

Form:

CALL UNDRFL (i)

where i is an integer variable or array element.

Description:

UNDRFL determines whether or not an exponent underflow has occurred since the last
call to UNDRFL/OVUNFL (or the start of the program, if UNDRFL/OVUNFL has not been
previously called).  The parameter i is assigned a value that corresponds to the current
underflow status of the program.

When an underflow occurs, the value returned in i is 3.  An underflow occurs whenever
the absolute value of the result of a floating-point addition, subtraction, multiplication,
or division is not equal to 0 and is less than 2-128 (approximately 10-38) for single
precision or 2-1024 (approximately 10-308) for double precision.

When no underflow occurs, the value returned in i is 2.

After the value of i is set, the underflow indicator is cleared.

See UNDSET (7.7.3.7).
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Example:

      A = 1.0E-20
        .
        .
        .
      B = A*A
      CALL UNDRFL (LAST1)
C           Assuming that A has not been changed, the value returned
C           in LAST1 is 3.

7.7.3.6. OVUNFL

Purpose:

The OVUNFL subprogram tests for a previous exponent overflow or underflow.

Form:

CALL OVUNFL (i)

where i is an integer variable or array element.

Description:

OVUNFL determines whether or not an exponent overflow or underflow has occurred
since the last call to OVUNFL/OVERFL/UNDRFL (or the start of the program, if
OVUNFL/OVERFL/UNDRFL have not been previously called).  The parameter i is
assigned a value that corresponds to the current overflow/underflow status of the
program.

When only an overflow condition occurs, the value returned in i is 1.  An exponent
overflow occurs when the absolute value of the result of a floating-point addition,
subtraction, multiplication, or division is greater than or equal to 2127 (approximately
1038) for single precision or 21023 (approximately 10307) for double precision.

When only an underflow condition occurs, the value in i is 3.  An underflow occurs when
the absolute value of the result of a floating-point addition, subtraction, multiplication,
or division is not equal to 0 and is less than 2-128 (approximately 10-38) for single
precision or 2-1024 (approximately 10-308) for double precision.

When both overflow and underflow occur, the value returned in i is 4.

When no overflow or underflow occurs, the value returned in i is 2.

After the value of i is set, the overflow/underflow indicators are cleared.

Example:

      A = 1.0E20
          .
          .
          .



Function and Subroutine Procedures

UP-8244.4-B 7-39

      B = A*A
      CALL OVUNFL (LAST1)
C           Assuming that A has not been changed, the value returned
C           in LAST1 is 1, indicating only overflow has occurred.

7.7.3.7. UNDSET

Purpose:

The UNDSET subprogram flags subsequent floating-point underflow exceptions.

Form:

CALL UNDSET (i)

where i is an integer expression.

Description:

A call to this subprogram lets the next i floating-point underflow exceptions be captured
and diagnosed.  The following message is generated:

WARNING: UNDERFLOW FAULT

When the program is compiled with the F or C option, the line number and program unit
name of the offending statement are printed.  After i messages, no more are printed
unless another call to UNDSET is made.  An i≤0 stops the capture of these faults.

Checkout debug mode (CZ options) receives an initial automatic default call to UNDSET
with a count of 20.

Example:

@FTN,SIC UND
FTN 10R1 04/01/81-12:44(,0)
1.    COMMON A,B
2.    PRINT *,’TEST THE UNDSET ROUTINE’  
3.    A = 1.0E-20  
4.    CALL UNDSET(2)  
5.    B = A*A  
6.    PRINT *,’ONCE’  
7.    B = A*A
8.    PRINT *,’TWICE’
9.    B = A*A 
10.   PRINT *,’THREE TIMES’
11.   END

END FTN 28 IBANK 45 DBANK 2 COMMON 

   ENTERING USER PROGRAM
TEST THE UNDSET ROUTINE 

WARNING: UNDERFLOW FAULT 
AT LN.   5 OF MAIN PROGRAM
ONCE

WARNING: UNDERFLOW FAULT
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AT LN.   7 OF MAIN PROGRAM 
TWICE 
THREE TIMES 
END PROGRAM EXECUTION

7.7.3.8. OVFSET

Purpose:

The OVFSET subprogram flags subsequent floating-point overflow exceptions.

Form:

CALL OVFSET(i)

where i is an integer expression.

Description:

A call to the OVFSET subprogram captures the next i floating-point overflows.  The
message:

WARNING: OVERFLOW FAULT

is printed.  In addition, when the program is compiled with the F or C option, the line
number and program unit name of the offending statement are printed.

After i messages, the next overflow fault causes the program to abort, unless another
call to OVFSET is done first.

A negative i causes an abort on the first occurrence.

An i of zero stops the capture of these faults. Checkout debug runs (CZ options)
automatically get an initial default call to OVFSET with a count of 20.

Example:

@FTN,SIC OVF 
FTN 10R1 04/01/81-13:24(,0)  
1.    COMMON A,B
2.    PRINT *,’TEST THE OVFSET ROUTINE’  
3.    A = 1.0E20  
4.    CALL OVFSET(2)  
5.    B = A*A  
6.    PRINT *,’ONCE’  
7.    B = A*A  
8.    PRINT *,’TWICE’  
9.    B = A*A 
10.   PRINT *,’THREE TIMES’ 
11.   END

END FTN 28 IBANK 45 DBANK 2 COMMON

   ENTERING USER PROGRAM 
TEST THE OVFSET ROUTINE
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WARNING: OVERFLOW FAULT 
AT LN.   5 OF MAIN PROGRAM
ONCE 

WARNING: OVERFLOW FAULT
AT LN.   7 OF MAIN PROGRAM 
TWICE

WARNING: OVERFLOW FAULT
ARITHMETIC EXCEPTION COUNT EXPIRED - PROGRAM ABORTED
AT LN.   9 OF MAIN PROGRAM
ERR MODE ERR-TYPE: 00 ERR-CODE:00
ERROR ADDRESS: 032073  BDI: 300017

7.7.3.9. DIVSET

Purpose:

The DIVSET subprogram flags subsequent divide fault exceptions.

Form:

CALL DIVSET(i)

where i is an integer expression.

Description:

A call to the DIVSET subprogram captures the next i divide checks.  The message:

WARNING: DIVIDE FAULT

is printed.  In addition, when the program is compiled with the F or C option, the line
number and program unit name of the offending statement are printed.

After i messages, the next divide fault causes the program to abort, unless another call
to DIVSET is done first.

A negative i causes an abort on the first occurrence.

An i of zero stops the capture of these faults.

Checkout debug runs (CZ options) automatically get an initial default call to DIVSET
with a count of 20.

Example:

@FTN,SIC DIV 
FTN 10R1 04/01/81-13:58(,0)  
1.    COMMON Q, DD, DR  
2.    PRINT *,’TEST THE DIVSET ROUTINE’
3.    DR = 0.  
4.    DD = 8.  
5.    CALL DIVSET(2)  
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6.    Q = DD/DR  
7.    PRINT *,’ONCE’  
8.    Q = DD/DR  
9.    PRINT *,’TWICE’ 
10.   Q = DD/DR 
11.   PRINT *,’THREE TIMES’ 
12.    END 

END FTN 29 IBANK 45 DBANK 3 COMMON

   ENTERING USER PROGRAM 
TEST THE DIVSET ROUTINE

WARNING: DIVIDE FAULT 
AT LN.   6 OF MAIN PROGRAM
ONCE 

WARNING: DIVIDE FAULT 
AT LN.   8 OF MAIN PROGRAM 
TWICE 

WARNING: DIVIDE FAULT
ARITHMETIC EXCEPTION COUNT EXPIRED - PROGRAM ABORTED
AT LN.   10 OF MAIN PROGRAM
ERR MODE ERR-TYPE: 00  ERR-CODE: 00 
ERROR ADDRESS: 032074 BDI: 300017

7.7.3.10.CMLSET

Purpose:

The CMLSET subprogram flags subsequent errors occurring in the Common
Mathematical Library (CML).  This includes the mathematical intrinsic functions
described in NO TAG, all exponentiation functions, and complex division.

Form:

CALL CMLSET(i)

where i is an integer expression.

Description:

A call to the CMLSET subprogram diagnoses the next i CML errors. Control returns to
the point following the CML function call.  A function result of zero is returned from the
CML function for the error case.

After i messages, the next CML error causes the program to abort, unless another call to
CMLSET is done first.

A negative or zero i causes an abort on the first CML error.

Example:

@FTN,SC CML 
FTN 10R1 10/21/80-12:50(6,)
      1.   C    
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      2.   C   This program allows 2 Common Mathematical Library   
      3.   C   errors to occur without the program being aborted.    
      4.   C   On the 3rd math error, the program is aborted.    
      5.   C   
      6.   C   
      7.       REAL A(5)   
      8.       DATA A/25., -25., -16., -4., 4./   
      9.       CALL CMLSET(2)     @Allow 2 CML errors before abort   
     10.   C   
     11.       DO 10 I = 1,5    
1    12.           R = SQRT (A(I))   
1    13.           WRITE (6,901) A(I), R  
1    14.  10   CONTINUE    
1    15.  C    
     16.  901  FORMAT (’SQRT OF’, F5.1, ’IS’, F12.3)    
     17.       END

END FTN 23 IBANK 37 DBANK
 
   ENTERING USER PROGRAM
SQRT OF 25.0 IS 5.000

ERROR CONDITION IN SQRT ROUTINE CAUSED BY
ARGUMENT UNNORMALIZED OR OUTSIDE ALLOWABLE RANGE
ARG1 = -25.000000
ARG1 OCTAL 572157777777
SQRT REFERENCED AT ABSOLUTE ADDRESS 120304 BDI 300020
AT LN.   12 OF MAIN PROGRAM
SQRT OF -25.0 IS  .000

ERROR CONDITION IN SQRT ROUTINE CAUSED BY
ARGUMENT UNNORMALIZED OR OUTSIDE ALLOWABLE RANGE
ARG1 = -16.000000
ARG1 OCTAL 572377777777
SQRT REFERENCED AT ABSOLUTE ADDRESS 120304 BDI 300020
AT LN.  12 OF MAIN PROGRAM
SQRT OF -16.0 IS  .000

ERROR CONDITION IN SQRT ROUTINE CAUSED BY
ARGUMENT UNNORMALIZED OR OUTSIDE ALLOWABLE RANGE
ARG1 = -4.0000000
ARG1 OCTAL 574377777777
SQRT REFERENCED AT ABSOLUTE ADDRESS 120304 BDI 300020
THIS ADDRESS IS AT LN.   12 OF MAIN PROGRAM
ER EABT$ ABORT ADR: 104754 BDI: 200020
PROGRAM INITIATED INTERRUPT: EABT$

7.7.3.11.SSWTCH

Purpose:

The SSWTCH subprogram tests one of 12 run condition switches to determine whether it
is set or not.

Form:

CALL SSWTCH (i , j)

where: 
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i

is an integer expression indicating which of the 12 switches is to be tested. 

j

is the integer variable or array element, set equal to 1 or 2, when the tested switch is
set or not set, respectively.

Description:

SSWTCH regards the middle 12 bits (13-24) of the run condition word as 12 sense
switches.  Bit 24 corresponds to sense switch 1, bit 23 to sense switch 2, etc.  The sense
switches can be altered by means of the @SETC Executive control statement (see the
OS 2200 Exec System Software Executive Requests Programming Reference Manual,

7830 7899).

If i is 1 through 12, the ith sense switch is tested.  If the ith sense switch is set (1), then j
is set equal to 1.  If it is not set, then j is set equal to 2.

If i < 0 or i > 12, an error message is printed and program execution terminates.

Examples:

       CALL SSWTCH(3,JFLAG)
C           Assuming the control statement @SETC 0004 is issued
C           before execution, the variable JFLAG is set to
C           1 indicating sense switch 3 (bit 22 in the run condition
C           word) is set.

       I = 12
       CALL SSWTCH(I,JFLAG)
C           Assuming the control statement @SETC 0717 is issued
C           before execution, the variable JFLAG is set to 2
C           indicating sense switch 12 (bit 13 in the run condition
C           word) isn’t set.

7.7.3.12.SLITE

Purpose:

The SLITE subprogram sets one, or resets all, of the six sense lights that are the sixths of
the word labeled F2SLT$.

Form:

CALL SLITE(i)

where i is an integer expression indicating which of the six sense lights is set.

Description:

You can use the word F2SLT$ to set flags for conditions of your invention.  These flags
can then be tested with the SLITET function (see 7.7.3.13).
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If i is 0, all sense lights are reset to 0.  If i is 1 through 6, the ith sense light is set to 1.

If i < 0 or i > 6, an error message is printed and program execution terminates.

Examples:

      CALL SLITE(0)
C            All six sense lights are reset to 0.
      CALL SLITE(3)
C            The third sense light (S3 of F2SLT$) is set to 1.

7.7.3.13.SLITET

Purpose:

The SLITET subprogram tests and resets one of the six sense lights that are the sixths of
the word labeled F2SLT$.

Form:

CALL SLITET (i , j)

where: 

i

is an integer expression that indicates which of the six sense lights is to be tested. 

j

is an integer variable or array element set equal to 1 or 2 when the tested light is set
or reset, respectively.

Description:

If the value of i is from 1 through 6, the ith sense light is tested.  If the ith sense light is
set (value of 1), then j is set to 1 and the sense light is reset to 0.  If the ith sense light is
not set (0), then j is set equal to 2.

If i < 0 or i > 6, an error message is printed and program execution terminates.

Example:

      CALL SLITET(3,JFLAG)
C            Assuming sense light 3 is set, JFLAG is set to 1
C            and sense light 3 is reset to 0.  Assuming
C            sense light 3 isn’t set, JFLAG is set to 2.
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7.7.3.14.EXIT

Purpose:

EXIT terminates execution.

Form:

CALL EXIT

Description:

The EXIT service subprogram lets you terminate the execution of your programs.

The EXIT subprogram serves the same purpose as the STOP statement (see 4.8).  It is
provided primarily for compatibility with previous FORTRAN systems.

7.7.3.15.ERTRAN

The ERTRAN subprogram provide access to several Executive Request (ER) functions.
(For details on ER functions, see the OS 2200 Exec System Software Executive

Requests Programming Reference Manual, 7830 7899).

7.7.3.15.1.Input/Output Executive Requests

Purpose:

ERTRAN lets you use some of the input/output Executive Request functions.  These are:

� IO$ (requests an operation on an input/output device and returns immediately),

� IOW$ (requests an operation on an input/output device and returns on completion of
the operation),

� IOI$ (identical to IO$ except that when the operation has completed, an interrupt
activity is initiated),

� IOWI$ (combines the features of IOI$ and IOW$ - control is returned on completion
of input/output and a specified interrupt activity is initiated),

� IOXI$ (identical to IOI$ except that the activity making the request exits),

� WAIT$ (delays execution until the input/output operation controlled by a specified
I/O packet has been completed),

� WANY$ (delays execution until any current input/output operation is completed),

� TSWAP$ (closes the current reel for a tape file and requests loading of the next reel
of the file),

� UNLCK$ (enables an input/output interrupt activity to reduce its switching priority
to the priority of the activity that initiated the input/output request), and
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� SYMB$ (a packet-driven ER providing a means to request certain symbiont ER
functions, character transfer, and some expanded READ$ capability).

Form:

sub
sub1 (pkt)
sub2 (pkt [,label])
sub3 (pkt,label1,label2)

CALL

where: 

sub

is FWANY or FUNLCK. 

sub1

is FIO, FIOI, FIOWI, FIOXI, FTSWAP, or FSYMB. 

sub2

is FIOWor FWST. 

sub3

is FSTAT. 

pkt

is an 8-word or 10-word table filled by you, with input/output packet information. 

label

is an optional error return. 

label1

identifies the return used if the input/output operation is still pending. 

label2

identifies the return used if an input/output operation terminates abnormally.

Description:

Two basic steps are necessary when using these routines:

1. Construct an Executive input/output packet (pkt) exactly as described in the OS

2200 Exec System Software Executive Requests Programming Reference Manual,

7830 7899.  There must be one 8-word table declared for each file to be used
simultaneously.  For FSYMB, the table can be 8 or 10 words.  The FIOP procedure
(see 7.7.3.15.2) can be used to set fields in the packet.

2. Call the required I/O Executive Request function, passing the I/O packet as the first
argument of the call.
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The Executive Request is done with register A0 pointing to the program-constructed
input/output packet.  This provides you with full control over the input/output operation
and complete error analysis capability.

There are no buffers external to these routines.  They are all reentrant at both the
program and the activity level.

This input/output mechanism is entirely independent of standard FORTRAN file control.
Therefore, no file control tables are built by the FORTRAN system for FIO files.

If FIO is called, the parameter pkt that points to the input/output packet is picked up, the
Executive Request function IO$ is referenced, and control returns immediately to the
caller.

If FIOW is called, the parameter pkt that points to the input/output packet is picked up,
the Executive Request function IOW$ is referenced and it waits for completion before
returning to the caller.  If the calling syntax does not include the optional error return,
you should check the status area of the input/output packet by using the ISTAT
statement function as provided in FIOP.  If the calling syntax does include the error
return option, then all abnormal statuses cause transfer to that label.

If FIOI is called, the parameter pkt that points to the input/output packet is picked up,
the Executive Request function IOI$ is referenced, and control is returned immediately
to the caller.  On completion of the input/output operation, the interrupt activity
specified in the packet is initiated.

If FIOWI is called, the parameter pkt that points to the input/output packet is picked up
and the Executive Request function IOWI$ is referenced.  On completion of the
operation, control returns to the caller and a specified interrupt activity is initiated.

If FIOXI is called, the parameter pkt that points to the input/output packet is picked up,
the Executive Request function IOXI$ is referenced, and the calling activity is
terminated.  On completion of the input/output operation, a specified interrupt activity is
initiated.

If FWST is called, the parameter pkt that points to the input/output packet is picked up,
the Executive Request function WAIT$ is referenced, and a wait is done if input/output is
outstanding on the packet.  On completion, a status check is made.  In the case of an
abnormal completion status, a return is done to label, if present.  If the calling syntax
doesn’t include the error return option, control returns to the instruction following the
CALL.

If FWANY is called, the Executive Request function WANY$ is referenced and a wait is
done for completion of any input/output.  On completion, control is returned to the
caller.

If FTSWAP is called, the parameter pkt that points to the input/output packet is picked
up and the Executive Request function TSWAP$ is referenced.

If FUNLCK is called, the Executive Request function UNLCK$ is referenced to enable an
input/output interrupt activity that reduces its switching priority to the priority of the
activity which initiated the input/output request.  Control then returns to the caller.
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If FSYMB is called, the parameter pkt pointing to an 8- or 10-word packet is picked up,
the Executive Request function SYMB$ is referenced and control is returned to the
caller.

An additional routine, which does not refer to an Executive Request, is FSTAT.  If FSTAT
is called, the parameter pkt that points to the input/output packet is picked up and a
check is done on the status of the input/output operation.  If the input/output operation
is still pending, a return is made to label1.  If the input/output operation terminated
abnormally, a return is made to label2.  If the input/output operation terminated
normally, a normal return is taken.

Examples:

      SUBROUTINE FASTIO(BUF,NADDR)
C           This subroutine reads 112 words from track NADDR
C           into the array BUF.
      LOGICAL INIT/.FALSE./
C           Declare 8-word table for packet.
      INTEGER IOT(8)
C           Include the FORTRAN procedure in the program.
C           File name may have to be changed depending on
C           site conventions.
      INCLUDE SYS$LIB$*FTN.FIOP
C           Initialize first two words with file name in Fieldata,
C           words 3 through 8 to 0.
C           A unit specifier could have been used.
      DATA IOT(1), IOT(2), (IOT(I), I = 3, 8) /’MYFILE’F,’  ’F,6*0/
      IF (INIT) GO TO 110
      INIT = .TRUE.
C           Assign the file.
      STAT=FACSF2(’@ASG,A MYFILE . ’)
C           Check that the file assignment is OK.
      IF (STAT.LT.0) CALL FABORT
      NWRDS(IOT) = 112
C            112 words to be read.
      FUNCT(IOT) = FR
110   CONTINUE
      BUFAD(IOT) = LOC(BUF)
C           Set file track address for input.
      TRKAD(IOT) = NADDR
C            Call to do input/output
      CALL FIOW(IOT,*500)
      RETURN
C            Following is error handler
500   CONTINUE
      PRINT *,’DID NOT WORK’
      CALL FEXIT
      RETURN
      END

The following program shows one way to use FSYMB:

      PROGRAM AWRITE
C           This program writes 132 characters from BUFFER through
C           SYMB$ if the printer allows 132 characters
      CHARACTER*204 BUFFER
      INTEGER PACKET(10)
C           Include the statement functions and parameters to use
C           SYMB$
      INCLUDE FIOP
C           Set the file name to the PRINT$ ER code
      PACKET(1)=14
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      PACKET(2)=0
C           Set the function code to PRINT$
      INFUNC(PACKET)=FW
C           Set the mode to ASCII
      IMODE(PACKET)=IASC
C           Set the number-of-characters transferred
      ICHCT(PACKET)=132
C           Set the image address
      IIMGAD(PACKET)=LOC(BUFFER)
C           Clear the remainder of the SYMB$ packet
      DO 10 I-6,10,1
10       PACKET(I)=0
C           Initialize the 132-character BUFFER
      BUFFER=’TEST BUFFER LENGTH OF 132 CHARACTERS’
      BUFFER(111:132)=’END OF 132 CHARACTERS’
      BUFFER(194:204)=’END OF LINE’
C           Call SYMB$
      CALL FSYMB(PACKET)
      STOP
      END

7.7.3.15.2.FIOP Procedure

Purpose:

FIOP is a FORTRAN procedure that facilitates creation and manipulation of the packets
for input/output Executive Requests.  The FIOP procedure is included in the ASCII
FORTRAN library file.  This procedure contains statement function and PARAMETER
declarations as detailed below.

Form:

INCLUDE libfile.FIOP

where libfile is the file name of the FORTRAN run-time library file.  The file name is
site-dependent.  See 9.5.3 for more information on finding the element FIOP.

Description:

The information required in the Executive Request packet is placed in the various fields
by use of statement function and PARAMETER statements in the FORTRAN procedure
FIOP. The statement functions and symbolic names of constants provided by FIOP are
declared as type integer.  This FORTRAN procedure must be included with the
FORTRAN source program (see 8.2).  There are statement function names for all of the
fields in the Executive Request packet except the first two words, which contain the
Fieldata internal file name or unit specifier left-justified and space-filled.  You can
initialize these two words with the DATA statement using the Fieldata representation of
either the internal file name or the unit specifier.  This is most efficient since it is done at
compile time.  However, an alternate method is to use the FASCFD run-time conversion
routine (see 7.7.3.18).

The following list of statement function names represents the various fields of the
Executive Request packet, as described in the OS 2200 Exec System Software Executive

Requests Programming Reference Manual, 7830 7899.  Each is contained in FIOP.  Each
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statement function reference requires one argument that is the input/output packet
name.

Statement Functions of the Executive Request Packet contained in FIOP:

ACTID 

int-act-id (numeric identity that identifies the interrupt activity)

ACTADR 

interrupt-activity-addrs (interrupt activity address)

ISTAT 

status (status of the last function performed)

FUNCT 

function (denotes function to be performed)

AFC

AFC (abnormal frame count for tape I/O)

SUBST 

final-word-count-returned-by-I/O

GINC

G (incrementation flag)

NWRDS 

word-count (number of words transferred)

BUFAD 

buffer-addr (memory address for transfer - use LOC intrinsic function)

TRKAD 

mass-storage-addr (relative track/sector address for start of I/O)

SRCHS 

search-sentinel

SFDA 

search-find-drum-addr (search find address)

The following list of statement function names represents the various fields of the
Executive Request packet for SYMB$.  Each statement function reference requires one
argument, which is the input/output packet name.
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Statement Functions of the Executive Request Packet for SYMB$:

IFUNC 

function (describes the action performed on the specified file)

IMODE 

mode (provides further description of the function)

ISTAT 

status (status of last function performed)

IERCD 

I/O-status (I/O error code if SYMB$ is terminated because of an I/O error)

ICCIN 

control-card-index (CLIST index for an image read)

ISUBST 

sub-status returned (further information status)

ICHCT 

character-count (number of characters to transfer)

IIMGAD 

image-address (address to put/get an image)

ITTNF 

TT-number-field (which translate table to use)

ICHSZ 

character-size-field (6-bit or 9-bit byte)

IFCHCT 

final-character-count-transferred (number of words or characters transferred)

ISPCE 

spacing (number of lines to space before an image is written)

IEOFS 

EOF-sentinel (Fieldata or ASCII character returned in column 6)

IWRCC 

character-count (number of characters to transfer)
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IWRAD 

image-address (address of an image)

IWRFC 

final-character-count-transferred (number of characters or words transferred)

The following is a list of names from PARAMETER statements declared in FIOP that
define the values for the I/O functions for the FUNCT field.  For more information, see
the OS 2200 Exec System Software Executive Requests Programming Reference

Manual, 7830 7899.

Parameter Octal Function

FW 10 Write

FWEF 11 Write end of file

FCW 12 Contingency write

FSW 13 Skip write

FABW 14 TIP recoverable write

FGW 15 Gather write

FACQ 16 Acquire

FABSW 17 Absolute write whole unit/extended acquire

FR 20 Read

FRB 21 Read backward

FRR 22 Read and release

FREL 23 Release

FBRD 24 Block read drum

FRDL 25 Read and lock

FUNL 26 Unlock

FABR 27 Absolute read, TIP recoverable read

FTSA 30 Track search all words

FTSF 31 Track search first word

FPSA 32 Position search all words

FPSF 33 Position search first word

continued
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Parameter FunctionOctal

FSD 34 Search drum

FBSD 35 Block search drum

FSRD 36 Search read drum

FBSRD 37 Block search read drum

FREW 40 Rewind

FREWI 41 Rewind with interlock

FSM 42 Set mode

FSCR 43 Scatter read

FSCRB 44 Scatter read backward

FWR 45 Write, then read

FABSR 47 Absolute read whole unit

FMF 50 Move forward

FMB 51 Move backward

FFSF 52 Forward space file

FBSF 53 Backspace file

FCN 55 Mode set

 

The following is a list of names from PARAMETER statements declared in FIOP defining
the values for the mode field for SYMB$:

Parameter Octal Description

IASC 1 ASCII request

ITRUN 2 Truncate an image

IUNTR 4 Untranslate request

IPUALT 10 Punch alternate file

ISPEC 20 Special translation index

 

The following is a list of the names declared by statement function statements in FIOP of
the fields for the set mode function (FORTRAN PARAMETER - FSM):
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Field Name Bits

FSMF1 34 - 35

FSMF2 32 - 33

FSMF3 30 - 31

FSMF4 28 - 29

FSMF5 26 - 27

FSMF6 22 - 25

FSMF7 20 - 21

FSMF8 18 - 19

FSMF9 0 - 17

 

The fields of the set mode function are set as described in the OS 2200 Exec System

Software Executive Requests Programming Reference Manual, 7830 7899.

7.7.3.15.3.Miscellaneous Executive Requests

Purpose:

These Executive Requests let you refer to each of the Executive Request functions:

� ABORT$ (abort run)

� ACSF$ (generate control statement)

� ERR$ (error exit)

� EXIT$ (program exit)

� SETC$ (set condition word)

� COND$ (retrieve condition word)

� DATE$ (request date and time)

Form:

r1
r2 (arg)
r3 (arg1, arg2)

CALL

where:

r1

is FABORT, FERR, or FEXIT.
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r2

is FACSF, FACSF2, FSETC, or FCOND.

r3

is FDATE or ADATE.

arg

is a character array or a character expression for FACSF and FACSF2, an integer
expression for FSETC, or an integer variable or array element for FCOND.

arg1, arg2

are variables or array elements.

Description:

If FABORT is called, the Executive Request function ABORT$ is referred to.  All current
activities are terminated and the run is terminated in an abort condition immediately;
files are not closed.

If FERR is called, the Executive Request function ERR$ is referred to.  Only the activity
in error is terminated.

If FEXIT is called, the Executive Request function EXIT$ is referred to.  The routine
provides program termination.  No file-closing actions are performed if FEXIT is called.

If FACSF is called, the Executive Request function ACSF$ is referred to.  The routine
submits an Executive control statement image (arg) for interpretation and processing.
The image submitted must be a character array or a character expression containing one
of the control statements in the list that follows.  The control statement must not be
longer than 84 characters and must be terminated by the character sequence:  blank,
period, blank.

Valid control statements for arg are:

Statement Use

@ADD Add to runstream

@ASG Assign a file

@BRKPT Breakpoint symbiont output files

@CAT Catalog a file

@CKPT Produce checkpoint dump of this run

@FREE Deassign a file

continued
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Statement Use

@LOG Message to the master log file

@MODE Set mode and/or noise constant for tape file

@QUAL File qualification

@RSTRT Restart run whose checkpoint dump is saved by @CKPT

@START Schedule an independent run

@SYM Queue files for symbiont processing

@USE Associate internal to external file name

 

The control statement image should not exceed 84 characters. If the control statement
image doesn’t contain the sequence of blank, period, blank before 84 characters, only 84
characters are used as the length of the control statement image.  Extraneous characters
following the actual control statement within the 84 characters used as the control
statement image can cause an Exec error.

When the control statement image is less than 84 characters and does not contain the
sequence of blank, period, blank before the end of the image, a total of 84 characters
becomes the length of the control statement image.  This causes inclusion of unknown
characters in the actual control statement.  This can cause an Exec error on the ER to
ACSF$.  It can also cause a guard mode when the control statement image is at the end
of a bank where 84 characters can’t be used.

If FACSF is called as a function, FACSF must be typed as integer, and, if a few special
statuses are returned from the ACSF$ call, those statuses are returned as the value of the
function.  The FACSF function call does not return all nonzero statuses.  (See the OS

2200 Exec System Software Executive Requests Programming Reference Manual, 7830
7899).  A subprogram name (for example, FACSF) can be used only in one way in a given
program.  Thus, FACSF can’t be used in a CALL statement and as a function name in the
same program.

FACSF2 is the same as FACSF, except that no ERTRAN error message is printed if an
error status is returned from the ACSF$ Executive Request.  You must perform your own
error checking (using the status returned as the FACSF2 function value) and processing.

If FSETC is called, the Executive Request function SETC$ is referred to.  The subroutine
places (sets) the contents of the lower third (bits 25-36) of arg in the corresponding third
of the run condition word.  The lower two-thirds of the run condition word are used as a
flag that can be tested by the control statement @TEST or retrieved by the FORTRAN
call CALL FCOND(a) and then tested.

If FCOND is called, the Executive Request function COND$ is referred to.  The
subroutine retrieves the condition word and makes it available to you in arg.
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If FDATE is called, the Executive Request function DATE$ is referred to.  The subroutine
supplies you with the current date and time in arg1 and arg2, respectively.  The data in
arg1 is the Fieldata character form MMDDYY where MM represents the month (01-12),
DD the day (01-31), and YY the last two digits of the year (00-99).  The time in arg2 is in
the Fieldata character form HHMMSS, where HH represents the hours (00-24), MM the
minutes (00-60), and SS the seconds (00-60).  The first words of arg1 and arg2 (which
are both variables or array elements) are filled with the 6-bit Fieldata characters
described previously.

If ADATE is called, the Executive Request function DATE$ is also referred to as in
FDATE, but the date and time are returned in ASCII character form.  Variables arg1 and
arg2 must be character variables or character array elements of eight characters in
length.  The first six character positions of each variable are filled with the ASCII
character form of the date and time in the format described for FDATE above.  The
remaining two characters are space-filled.

Examples:

      INTEGER FACSF2
      CHARACTER ASG*20, DATE*8, TIME*8
      DATA ASG /’@ASG,A FILENAM . ’/
      CALL FACSF(ASG)
C           This call would attempt to assign the file FILENAM by
C           referring to the Executive request function ACSF$.
      ISTAT = FACSF2(ASG)
C           This function reference attempts the assignment and
C           puts the result status in ISTAT.
      IF(ISTAT .LT. 0) CALL FERR  @ terminate on error
      CALL ADATE(DATE, TIME)
C           This call supplies you with the date (’MMDDYY ’) in DATE
C           and the time (’HHMMSS ’) in TIME.
      PRINT *, DATE, TIME
      END

7.7.3.16.NTRAN$

Purpose:

The NTRAN$ service subprogram provides a tool for reading or writing binary
information on tape or mass storage, and also provides for I/O buffering.  NTRAN$ I/O
processing is completely separated from normal FORTRAN I/O processing.  NTRAN$ I/O
is accessible only by calls to the NTRAN$ service subprogram, and normal FORTRAN
I/O is accessible only by FORTRAN I/O statements such as READ, WRITE, BACKSPACE,
ENDFILE, OPEN, CLOSE, and INQUIRE.  An NTRAN$-created file can’t be referred to
by normal FORTRAN I/O statements.

The ASCII FORTRAN NTRAN$ service subprogram has exactly the same syntax as the
FORTRAN V NTRAN subprogram (see the FORTRAN V Library Reference, UP-7876).
The only difference is that NTRAN in the FORTRAN V call is replaced by NTRAN$ in the
ASCII FORTRAN call.

Form:

CALL NTRAN$(unit,sequence-of-operations)
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where unit is an integer expression designating the logical unit, and the
sequence-of-operations is any list of I/O operations (as specified in 7.7.3.16.1) performed
in order on the specified unit.

The I/O operations provided by NTRAN$ are as follows:

Argument
Group Description

1. Write (tape or mass storage)

2. Read (tape or mass storage)

3. Block read (tape or mass storage)

4. Search read (tape or mass storage)

5. Search mass storage

6. Position mass storage

7. Position tape by block (tape)

8. Position tape by files (tape)

9. Write end of file (tape)

10. Rewind (tape or mass storage)

11. Rewind/interlock (same as rewind for mass storage)

12. Set tape density medium (tape)

13. Set tape density low (tape)

14. Set tape parity odd (tape)

15. Set tape parity even (tape)

16. Initialize multireel file (tape)

17. Swap reels for multireel file (tape)

18. Deassign unit (tape or mass storage)

19. Assign unit to external file name (tape or mass storage)

20. NOP (tape or mass storage)

21. Get device

continued
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Argument
Group Description

22. Wait and unstack then release unit (tape or mass storage)

23. Set tape density high (tape)

 

Description:

If the unit is not busy, NTRAN$ initiates the first operation, stacks the rest in a waiting
list, and then returns to the calling program.  If the unit is already busy, then the entire
sequence is stacked in a waiting list and chained to any previously stacked operations.
The exceptions are operations 16 to 22; when they are encountered, NTRAN$ waits for
the completion of all previous operations for that unit before returning to the calling
program.  When an interrupt occurs, NTRAN$ records the transmission status, initiates
the next operation in the chain, and returns control to the interrupted calling program.
Priority tasks aren’t supported.

To use NTRAN$, a FORTRAN program must have some way to check the status of the
transmission.  For this reason, every block of main storage used for I/O operations has a
block status word (an integer variable) associated with it; the name of the status word is
specified in the argument list of the CALL statement.

When NTRAN$ is called, the list of arguments is searched for status words, and these are
all set to a value (-1) that indicates transmission isn’t complete.  When an interrupt
occurs, the corresponding status word is set by NTRAN$ to a value that indicates the
nature of completion, whether normal (a positive value indicating the number of words
transmitted), abnormal (value = -2), or in error (value = -3 or -4).  The status words for
each operation are defined in 7.7.3.16.1.

When NTRAN$ generates -2 or -3, it releases all operations stacked for the unit that have
not started.  The offending operation is marked to abort and remains stacked.  Any
further calls of NTRAN$, requesting the above-described unit (except operation 22)
aren’t performed or stacked, but generate a particular status code (-4).  Operation 22 can
release the abort condition for a unit.  This lets you regain control after trying to read or
write past an end of file, end of drum, or end of tape.

An attempt to read or write zero words (n=0) results in the function being ignored.

The following errors generate a status word of -3:

� Hardware errors

� Parity and character count errors

� Illegal unit specified

Note: Legal units are all tapes and mass storage files.  An NTRAN$ read beyond the

end of an NTRAN$ mass storage file generates a status word of -3.
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At compile time, the ASCII FORTRAN compiler prints out a warning each time NTRAN$
is called from the same program unit with a different number of arguments than was
specified on the first call in the program unit.  You can ignore these warnings.

7.7.3.16.1.Operations

An operation is defined in the argument list by a group of arguments.  The first argument
for an operation identifies the type of operation.  It is followed by the parameters for the
operation; these are fixed in number and order of occurrence by the type of operation.
Several operations can be grouped in a single call to NTRAN$.

When referring to a mass storage file, the current mass storage address for that file is the
starting address for the file only if the mass storage file was never referred to in the
current run.  If the mass storage file was referred to before, the current mass storage
address is the current address before the last CALL statement using the file plus the
number of words transmitted or positioned in that CALL statement.  To reach the
starting address of the file, you can use operations 10 and 22.

For example, in CALL NTRAN$ (3, 9, 10, 22):

3 = unit number

9 = end of file when operation is completed

10 = rewind unit

22 = all operations on unit must be completed before another function is issued

The example above is a stacked operation.

Note: For sector-formatted mass storage I/O, the specified mass storage address is a

sector count and not a word count as for word-addressable mass storage I/O.

However, with normal termination, the status variable associated with a

main storage transfer indicates the actual number of words transmitted.  It is

up to you to perform the covered divide with the sector size to retrieve the

corresponding sector count.

For search operations on sector-formatted mass storage, if a find is made, the mass
storage address points to the sector containing the matching item; a following read
function does not necessarily start reading the matched item.

1. Write

The argument group is: 1,n,b,l

in which n is an integer expression that specifies the number of words to write. b is
a variable or array element from which data is written.  l is an integer variable or
integer array element; it identifies the status word, which is set by NTRAN$ as
follows:

-1 = transmission not complete

-2 = end of the tape or mass storage file

-3 = device error
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-4 = transmission aborted (previous operation had -2 or -3 status)

If the transmission is completed normally, l receives the number of words
transmitted (n). After a normal write operation to a sector-formatted mass storage
file, NTRAN$ positions the file to the next sector (28 word) address.

2. Read

The argument group is: 2,n,b,l

in which n is an integer expression that specifies the number of words to read.  b is
a variable or array element into which the data is read.  l is an integer variable or
integer array element; it identifies the status word, which is set by NTRAN$ as
follows:

-1 = transmission not complete

-2 = end of file (no words read from mass storage)

-3 = device error or end of NTRAN$ mass storage file

-4 = transmission aborted (previous operation had -2 or -3 status)

If the transmission terminates normally, l receives the number of words transmitted
(n if reading a mass storage file, a maximum of n if tape).  After a normal read
operation from a sector-formatted mass storage file, NTRAN$ positions the file to
the next sector (28 word) address.

For tape files, each write operation writes a block of words to tape.  When the
number of words n, specified on the read operation, is greater than the block length
written to the tape, only the number of words in the block is read.  The tape is then
positioned at the start of the next block.  When the number of words n, specified on
the read operation, is less than the block length written to the tape, n words are
read, and the tape is then positioned at the start of the next block.

For mass storage files, the number of words read is n.  It it not dependent on the
number of words written.

3. Block read

The argument group is: 3,n,b,l

A block read for tape and sector-formatted mass storage is the same as an ordinary
read.  For word-addressable mass storage, transmission is terminated by reading a
word of all 1 bits (called end-of-block word).  n is the maximum number of words
that can be transmitted.  l is an integer variable, the status word, which receives the
actual number of words transmitted if the operation is completed normally;
otherwise l is set as in Read.  b has the same definition as in Read.

4. Search read

The argument group is: 4,s,n,b,l

in which s, a sentinel word, is a constant or a variable used to search tape or mass
storage.

For tape, the first word of each block is compared to the sentinel and, when a match
is found, that block (including the sentinel word) is read.  For mass storage, starting
at the current mass storage address, each word is compared to the sentinel until a
match is found or until all remaining words of the granule (track or position) are
tested.  An unsuccessful search results in status (-2) for l.  If no find is made, you
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can request additional searches by setting the mass storage address of a different
granule (track or position).  For sector-formatted mass storage, a track search is
employed; if no find is made, you can request additional searches.

The search-read operation in NTRAN$ reads a certain number of words after a
match is found.  When a match is found on word-addressable mass storage, the
block of n number of words beginning with the matched word is read into the buffer
b.  When a match is found on sector-formatted mass storage, n number of words
from the beginning of the sector containing the matched sentinel is read into buffer
b.

5. Search mass storage

The argument group is: 5,s

where s is a constant or variable sentinel word.  Starting at the current mass storage
address, each word is compared to the sentinel until a match is found or until all
remaining words of the granule (track or position) are tested.  The mass storage
address of the match becomes the new current mass storage address (the first mass
storage address to be read or written is that of the matched mass storage address).
When a match is found on a sector-formatted mass storage device, the mass storage
address points to the sector containing the matched sentinel.  If a match is not
made, the address doesn’t change.

6. Position mass storage

The argument group is: 6,n

where n is a positive or negative integer constant or variable that is added to the
current mass storage address to form a new current mass storage address.  If n is
negative and the current mass storage address plus n is less than the starting
address of the mass storage file, the current mass storage address is set to the
starting address of the mass storage file.  n is the word count for word-addressable
mass storage and the sector count for sector-formatted mass storage.

7. Position tape by blocks

The argument group is: 7,n

where n is an integer constant or variable that specifies the number of blocks to
space over on tape; positive n indicates forward spacing and negative n indicates
backspacing.

8. Position tape by files

The argument group is: 8,n

where n is an integer constant or variable that specifies the number of file marks to
space over; positive n indicates forward spacing and negative n indicates
backspacing.  The operation is terminated by moving over the nth file mark, by
reaching the load point (backspacing), or by reaching the end of tape (forward
spacing).

9. End file

The argument group is: 9

For tape, an end-of-file mark is written.

10. Rewind
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The argument group is: 10

11. Rewind/interlock

The argument group is: 11

For tape, a rewind/interlock is given.  For word-addressable mass storage and
sector-formatted mass storage, the operation is the same as a rewind.

Note: The following four operations pertain to magnetic tape density and parity

setting (available only on UNISERVO 7-track tape units).  If not specified,

the setting is system standard.

12. Set tape density medium (556 bpi)

The argument group is: 12

13. Set tape density low (200 bpi)

The argument group is: 13

14. Set tape parity odd (binary standard)

The argument group is: 14

15. Set tape parity even (BCD standard)

The argument group is: 15

Note: Density and parity setting routines set density and parity for all tape

units tied to a logical unit during multireel processing.

16. Initialize multireel file

The argument group is: 16

This operation reinitializes the cycle of tape swapping when making more than one
pass over a multireel file.

17. Swap reels

The argument group is: 17

This operation accesses the next physical unit in a multireel file.  The old physical
unit is not rewound.  Use a sequence of operation 17’s to assign any number of
physical units to a given unit.

18. Deassign unit

The argument group is: 18

This operation frees the unit using an @FREE,B init statement.  The internal name
(unit) associated with the file is released.  If this is the only internal name attached,
the external file name is also freed.

19. Assign unit to external file name

The argument group is: 19,x,l

This operation assigns a temporary file to an external file name when the file is not
assigned. It also links an internal name to a file that is already assigned.  The array x
contains a two-word file name, which is left-justified in Fieldata.
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Integer variable l is set as follows:

0 = assignment made

1 = error in call statement, no assignment made

20. NOP for compatibility (old function dropped)

The argument group is: 20,l

21. Retrieve device

The argument group is: 21,x

This operation retrieves the device code for the specified unit.  The code is stored in
the integer variable x.

22. Wait and unstack

The argument group is: 22

This operation causes a wait in NTRAN$ until all previous operations for the
specified logical unit are complete before stacking any further operations or
returning to the user’s program. It also removes any operation that causes an
abnormal or error status that is still stacked against the unit specified.

23. Set tape density high (800 bpi - not compatible)

The argument group is: 23

7.7.3.16.2.Using the Virtual Feature with NTRAN$

Banked and virtual arguments can be passed to NTRAN$.  This can cause problems
when a program is running asynchronously.  When the buffer to be filled is a banked or
virtual argument, a synchronous Executive Request (ER) is performed for the I/O
operation.  This ensures continuous control of the banks containing the buffer until the
buffer is filled.  The buffer length can now be over 65K words and, in fact, the buffer can
be a large area in virtual space that spans several banks.  NTRAN$ handles bank
spanning that occurs in a virtual buffer automatically.  Therefore, you can request an I/O
through NTRAN$ on a buffer that is several million words long.

When the buffer on a write operation to a tape is a virtual argument that spans a bank,
the data written by this operation must be read into the same buffer on the read
operation of a tape, with the length returned by the write operation.  When this is not
possible, the write operation buffer and the read operation buffer must both start at the
beginning of a virtual page (or have the same offset within a virtual page), have the same
page size; the read operation must also use the size returned by the write operation.
When the block length n spans virtual banks or is greater than 65K on a write operation
to tape, several blocks are written to the tape.  This means that read, move, or search
operations don’t know how many blocks to span for one record.

7.7.3.16.3.NTRAN$ Error Messages

NTRAN$ produces an error message under certain error conditions.  The unit number is
identified in the message.  The FORTRAN program and the line number where the call to
NTRAN$ is made are identified under the error message.
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The possible error messages produced by NTRAN$ are:

1. **NTRAN ERROR* UNIT n: NO PACKET SPACE AVAILABLE.

This message indicates that all available NTRAN$ packets are in use and that
another packet is requested.

Suggested Action: Reassemble the ASCII FORTRAN library element F2NTRAN$ and
increase the number-of-packets parameter (NPKTS).

2. **NTRAN ERROR* UNIT n IS NOT AVAILABLE FOR NTRAN.

A reference is made to a unit already in use by normal FORTRAN I/O processing.

Suggested Action: Change unit number.

3. **NTRAN ERROR* UNIT n NOT ASSIGNED.

A reference to an unassigned unit is made with a function other than write function
1 (see 7.7.3.16) or assign function 19.

Suggested Action: If a write function 1 is used as the first reference, a dynamic
assign of a mass storage file (scratch) would be made.  If a scratch file is not
intended, an assignment must be made either by assign function 19 or by an @ASG
control image.

4. **NTRAN ERROR* UNIT n HAS IMPROPER DEVICE.

Requested function is not available for the device assigned to this unit.  The
requested function is ignored.

Suggested Action:  If you want action for the requested function, a unit with another
device assigned must be used.

5. **NTRAN ERROR* UNIT n HAS ILLEGAL FUNCTION CODE.

6. **NTRAN ERROR* UNIT n: NUMBER OF ARGUMENTS IN STACK EXCEEDS
TABLE LENGTH.

This message indicates that the number of arguments in the call is greater than the
maximum calling sequence table length.

Suggested Action:  Reassemble ASCII FORTRAN library element F2NTRAN$ and
increase the NCT length (NCTLT).

7. **NTRAN ERROR* UNIT n: SYNTAX ERROR FOR FILE NAME.

This message indicates an illegal character in the file name for NTRAN$ function 19
(see 7.7.3.16).

Note: You must not change any argument of an argument group before the

function is completed, that is, before the status word (if any) is changed

from -1 to another value.  All NTRAN$ functions are executed in sequence;

the completion of one function implies completion, successful or

unsuccessful, of all preceding functions.
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7.7.3.17.CLOSE

Purpose:

The CLOSE subprogram closes a FORTRAN data file and frees all main storage
associated with the file such as the file control table and buffer areas.

Form:

CALL CLOSE (i,j)

where i and j are integer expressions.

Description:

This subroutine closes the file associated with the unit identifier designated by the first
argument.

The file is rewound when the second argument is nonzero (for tape only).

Examples:

      I = 3
      J = 0
      CALL CLOSE (I,J)
C            The file associated with unit identifier 3 is closed
C            and no rewind of the tape file occurs.

7.7.3.18.FASCFD and FFDASC

Purpose:

The FASCFD and FFDASC subprograms provide a FORTRAN interface to the FDASC
conversion routine.  FDASC allows conversion from ASCII to Fieldata and from Fieldata
to ASCII.

Form:

CALL r (i, a, b)

where:

r

is FASCFD or FFDASC.

i

is a positive integer variable or array element specifying the number of words to be
converted.  On return from the FASCFD/FFDASC call, i contains the length in words
of the converted string. You should not use an integer constant for this argument.
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a

is the source (an expression) that is converted.

b

is the target (variable or array element) for the converted characters.

Description:

ASCII/Fieldata characters are converted as described in the Series 1100 System Service

Routines Library (SYSLIB), Programmer Reference, UP-8728 (applicable version).
These routines are not intended to convert trailing blanks in a string.  Trailing blanks in
the source string may or may not be included in the word count of the converted string.

In the following descriptions, ASCII characters are assumed to be packed four
characters per word and Fieldata characters are assumed to be packed six characters
per word.

If FASCFD is called, the 4i ASCII characters in a are converted to Fieldata characters
and stored in b.  If 4i/6 has a remainder R other than zero, then 6-R Fieldata spaces
follow the last character in b, space-filling the last word.  However, if this causes the last
word of b to be all spaces, the word count returned in i does not include this word.

If FFDASC is called, the 6i Fieldata characters in a are converted to ASCII characters
and stored in b.  If 6i/4 has a remainder of R other than zero, then 4-R ASCII spaces
follow the last character in b, space-filling the last word.  If this causes the last word of b
to be all spaces, the word count returned in i does not include this word.

For either call, if a and b are the same character variable, then the source characters are
destroyed.

For ASCII FORTRAN level 10R1A and lower, when the source is too long, the source is
truncated and no warning message is issued.  The source and target items must be in the
same D-bank.

For ASCII FORTRAN level 11R1 and higher, the source and target items do not have to
be in the same D-bank.  When the source and target items are not in the same bank, the
source is moved to a buffer where the conversion is completed.  The contents of this
buffer are moved to the target item. The source item must not exceed 131 words when a
move of the source item to the buffer is done via subprogram FASCFD.  The source item
length must not exceed 87 words when the source item moves to a buffer in subprogram
FFDASC.  A warning message occurs when the source item length exceeds these
maximum lengths and only the maximum length is moved and converted.

When the source item does not begin on a word boundary, it is moved to a buffer where
it begins on a word boundary.  The source item length is limited to 131 words for
FASCFD and 87 words for FFDASC. A warning message occurs when the source length
exceeds the maximum length.  Only the maximum length is moved.
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Example:

      IWC = 13
      CALL FASCFD (IWC,ASC,FD)
C            The first 52 ASCII characters in ASC are converted to
C            Fieldata and stored in FD.  On return, IWC equals 9.
C            If the last four characters (49-52) of ASC are spaces,
C            then IWC is set to 8 on return.

The following call to FASCFD can result in a serious error:

CALL  FASCFD(3,ASC,FD)

Although a constant is passed, the value of the constant changes on return from
FASCFD.  Since the compiler assumes that the values of constants never change and
reuses them throughout a compilation, logic errors can easily result.  This can happen
any time a constant is passed as an argument to a routine that changes the value of the
corresponding dummy argument.

7.7.3.19.MAXAD$

Purpose:

The MAXAD$ subprogram changes one or more items in the Common Storage
Management System (CSMS) packet and returns a status.  CSMS is used mainly for I/O
buffers.

Form:

CALL MAXAD$ (max, mcore, lcore)

where:

max

4 is the maximum address that the program can reach (that is, CSMS never requests
main storage past this address).  If max is -1 or 0, the default 0777774 (decimal value
262,140) is assumed.

mcore

4 is the request main storage increment size (that is, the minimum amount of main
storage obtained each time an ER MCORE$ is done).  If mcore is -1, the default
010000 (decimal value 4,096) is assumed.  If mcore is 0, no requests for main storage
are made.

lcore

4 is the minimum amount of freed storage that remains in the allocated area after an
ER LCORE$ is performed by the CSMS (to release storage that has been freed).  If
lcore is -1, the default 020000 (decimal value 8,192) is assumed.  If lcore is 0, no
release of main storage is done.  It is recommended that if lcore is specified and is
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nonzero, it should be at least twice as large as the request for main storage
increment size mcore.

Description:

The MAXAD$ service subprogram can’t be called from checkout mode, as checkout
doesn’t use the CSMS feature.

If any of the three parameters is passed as -2, the MAXAD$ subprogram doesn’t change
the corresponding packet location.

This function returns 0 or -1, which indicates good or bad status, respectively.  You can
test this return status when MAXAD$ is referenced as a function (rather than as a
subroutine).  A 0 status indicates no errors. A bad status (-1) indicates that one of the
following has occurred:

� One of the parameters was greater than 0777774 (decimal value 262,140).  The
parameter is ignored.

� The current maximum address in the packet (that is, the current end of the control
bank) was greater than max (first parameter).  In this case, the absolute maximum
address in the packet (that is, the address that the program never exceeds) is set to
the current maximum address.

If the request for main storage increment size in the packet is already zero when this
routine is entered, then no action is performed.  This is because an initial reserve is
probably specified in F2FCA (see G.7), and the CSMS routines use that main storage
with no ER MCORE$ or ER LCORE$.  A good status (0) is returned in this case.

Use caution when specifying mcore = 0, or when specifying max as anything but the
default.  CSMS terminates in error in certain cases.

7.7.3.20.LOC

Purpose:

The LOC integer function returns the absolute address of its argument.

Form:

LOC(name)

where name is the argument whose address is returned as the function value.

Description:

LOC should be typed as integer in the calling routine if an IMPLICIT statement types the
letter L as noninteger, since LOC is in the service subroutine class and doesn’t have an
inherent type.
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See Appendix M for a description of LOCV$, which returns the virtual address of the
argument.

7.7.3.21.MCORF$ and LCORF$

Purpose:

The MCORF$ and LCORF$ service subprograms give a primitive entry into the ASCII
FORTRAN storage allocator, so that dynamic pseudo-arrays can be allocated and
released.

Form:

iadr=MCORF$(isize)         @ Function call

CALL LCORF$(iadr)

where:

iadr

is the address of the buffer to be allocated or freed (iadr is returned as the
corresponding MCORF$ function result).

isize

is the number of words you want in the dynamic pseudo-array (passed to function
MCORF$, which returns an address iadr).

Description:

Since it is difficult to use an address in the FORTRAN language, base-offset type
referencing must be done to use the address returned by MCORF$.

The pseudo-arrays created by this process do not have all of the attributes of a normal
FORTRAN array.  For example, the pseudo-array names (D1 and D2 in the first example
below) with no following subscripts cannot be passed to a subprogram or to I/O (since
they are actually statement functions that require an argument).  However, individual
array elements of the pseudo-arrays can appear anywhere.

Examples:

The following example uses a dummy array, DUMMY, and statement functions to create
two dynamic pseudo-arrays, D1 and D2, which are both single-precision real.

        DIMENSION DUMMY(1)
        DEFINE D1( I ) = DUMMY( I + ID1OFF )
        DEFINE D2( I ) = DUMMY( I + ID2OFF )
        ID1OFF = 2000  @ Make D1 2000 elements
        ID2OFF = 3000  @ Make D2 3000 elements
        CALL GET( DUMMY, ID1OFF )
        CALL GET( DUMMY, ID2OFF )
C
C            Initialize arrays
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C
        DO 10 J = 1, 2000
10        D1( J ) = 0.
        DO 20 J = 1, 3000
20        D2( J ) = 0.
C
C           Now use D1 and D2 arrays.
C
              .
              .
              .
C
C           Now free D1 and D2. Note that ID1OFF and ID2OFF
C           were never changed in the above example.
       CALL FREE ( DUMMY, ID1OFF )
       CALL FREE ( DUMMY, ID2OFF )
         END

       SUBROUTINE GET ( DUM, ISZ )
       ISZ = MCORF$ ( ISZ ) - LOC ( DUM )
       END

       SUBROUTINE FREE ( DUM, ISZ )
       CALL LCORF$ ( ISZ + LOC ( DUM ))
       ISZ = 0    @ Preventive medicine
       END

The following example is similar to the preceding example, except that it creates a
pseudo-array, ADU(1000), with two words per element (in other words, double-precision
real).

      PARAMETER (IMAXX = 1000)           @ Dimension of pseudo-array
      DOUBLE PRECISION AD(1), ADU
      INTEGER ADI
      DEFINE ADU(IX) = AD(IX+ADI)
      ADI = IMAXX                        @ Cleared by free routine
      CALL GET2(AD,ADI)                  @ Get storage for array ADU
         .
         .   USE ARRAY ADU
         .
      CALL FREE2(AD, ADI)                @ Free storage for ADU
      END

      SUBROUTINE GET2(D,IDIM)
C
      DOUBLE PRECISION D
C             For 2 words/element array
C
      COMMON /STRG2$/INUMD,ISVDA(40),ISVDX(40)
      DATA INUMD/0/  
      IA=MCORF$(IDIM*2+3)
      IDIM=(IA-LOC(D))/2 + 1
      IX = IDIM*2+LOC(D)                @ Approx addr
      IF (INUMD.GE.40) STOP ’GET2 MAX’
      INUMD = INUMD+1
      ISVDA(INUMD)=IA                   @ Actual addr obtained
      ISVDX(INUMD)=IX                   @ Approx addr
      END

      SUBROUTINE FREE2(D,IDIM)
      DOUBLE PRECISION D
      COMMON /STRG2$/INUMD, ISVDA(40),ISVDX(40)
C
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C            First calculate the approx. address, then
C            search for the actual address
       IX=IDIM*2+LOC(D)
       DO 10 I=1,INUMD
       IF(ISVDX(I).EQ.IX) THEN
            CALL LCORF$(ISVDA(I))
            IDIM = 0
            INUMD=INUMD-1
            IF(I.EQ.INUMD+1)RETURN
            IF(INUMD.EQ.0)RETURN
            ISVDA(I)=ISVDA(INUMD+1)
            ISVDX(I)=ISVDX(INUMD+1)
            RETURN
       ENDIF
10     CONTINUE
       STOP ’FREE2 NO-FIND’
       END

The following example creates a CHARACTER*3 pseudo-array, A3U (1000).

       PARAMETER (IMAXX = 1000)
       CHARACTER*3 A3(1), A3U
       INTEGER A3I
       DEFINE A3U(IX) = A3(IX+A3I)
       ADI=IMAXX                    @ Cleared by free routine
       CALL GETC3 (A3,A3I)          @ Get storage for array A3U
        .
        .   USE A3U
        .
       CALL FREEC3(A3,A3I)          @ Free storage for A3U
       END

      SUBROUTINE GETC3(D,IDIM)
      CHARACTER*4 D
C           Get storage for a three char/elt array.
      COMMON /STRG$/INUM3,ISV3A(40),ISV3X(40)
      DATA INUM3/0/
      IN=MCORF$(IDIM*3/4+2)
      IDIM=(IA-LOC(D))*4/3 + 1      @ Element separation
      IX = 3*IDIM/4 + LOC(D)        @ Approx addr
      IF (INUM3.GE.40) STOP ’GETC3 MAX’
      INUM3=INUM3+1
      ISV3A(INUM3)=IA
      ISV3X(INUM3)=IX               @ Approx addr
      END

      SUBROUTINE FREEC3(D,IDIM)
      CHARACTER*4 D
      COMMON /STRG$/INUM3,ISV3A(40),ISV3X(40)
      IX=3*IDIM/4+ LOC(D)           @ Approx addr
      DO 10 I=1,40
      IF (ISV3X(I).EQ.IX) THEN
          CALL LCORF$(ISV3A(I))
          IDIM = 0
          INUM3=INUM3-1
          IF (I.EQ.INUM3+1.OR.INUM3.EQ.0)RETURN
          ISV3A(I)=ISV3A(INUM3+1)
          ISV3X(I)=ISV3X(INUM3+1)
          RETURN
      ENDIF
10    CONTINUE
      STOP ’FREEC3 NO-FIND’
      END
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When dynamic pseudo-arrays have a different element size, you must specify a separate
GET and FREE routine for each element size.

7.7.3.22.F2DYN$

Purpose:

This service subprogram lets you have a measure of dynamic storage allocation for
dummy arrays.

Form:

CALL {F2DYN$|FFDYM$} (sub, isize 1,...,isize n-1)

where:

sub

is the subprogram name.

isizei

is an integer expression denoting array size in words (1 ≤ i ≤ n-1).

Description:

In the ASCII FORTRAN I/O complex, the storage management routines can be accessed
via subprogram F2DYN$.  It has n arguments.  The first argument is the name of an
ASCII FORTRAN subprogram to call.  The second through nth arguments are the sizes
(in words) of n-1 arrays that are passed to this subprogram.  The service subprogram
acquires core via the I/O complex, creates n-1 dynamic arrays, and passes them on to the
subprogram.  The subprogram can dimension them dynamically on entry.  The acquired
storage is released on the return.  The F2DYN$ subprogram can be called recursively.

In a program with several subprograms (such as in the following example), the D-bank
savings can be substantial because there is much less dead static storage as a result of a
smaller amount of dynamic storage being allocated at any one time.

An alternate entry point FFDYN$ is provided, so the allocation mechanism can be used
for calling both subroutines and functions from the same program unit.  The compiler
issues warnings (that can be ignored for this case) when either F2DYN$ or FFDYN$ is
called from the same program unit with a differing number of arguments.

Example:

Subprogram REDUCE needs some local temporary arrays to do its computations:

      SUBROUTINE REDUCE(M,MD)
      REAL M(MD) @ MD range is 10 to 1000
      DIMENSION M2(1000),M3(1000),M4(1000)
      REAL M2
      DOUBLE PRECISION M3
      COMPLEX*16 M4
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         .
         .
         .
      END

It can be changed to:

      SUBROUTINE REDUCE(M,MD)
      REAL M(MD) @ MD range is 10 to 1000
      COMMON /SIZES/I
      EXTERNAL REDINT
      I=MD
      CALL F2DYN$(REDINT,MD,MD*2,MD*4)
C
C  The internal subroutine does the processing now.
C
      SUBROUTINE REDINT(M2,M3,M4)
      DIMENSION M2(I),M3(I),M4(I)
      REAL M2
      DOUBLE PRECISION M3
      COMPLEX*16 M4
        .
        .
        .
      END

7.7.3.23. IOFLG$

Purpose:

The IOFLG$ service subprogram prevents the checking for a type mismatch of an I/O list
item and a format edit descriptor during a formatted I/O statement.

Form:

CALL IOFLG$ (a)

where:

a

is an integer expression indicating the action taken during format-directed input and
output statements when a type-match check of an I/O list item and a format edit
descriptor occurs.

Description:

When the value of a is greater than 0, the check is not done to determine if the type of
the I/O list item is legal for the format edit descriptor specified.  A warning is not printed
and the input/output status specifier (IOSTAT = ios) is not set to an error condition. See
5.2.8.

When the value of a is 0, the check on a match of the type of the I/O list item and the
format edit descriptor is made.  A warning appears whenever a mismatch occurs and the
ERR clause or the IOSTAT clause is not present.  When the ERR clause is present,
control transfers to the statement specified by that clause.  When the IOSTAT clause is
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present, the value of the I/O status specifier is set to a specified value and a warning is
not issued.  See 5.2.8.

When only the IOSTAT clause is present, the result of the type check on I/O list items
and edit descriptors is similar.  That is, a warning message is not printed when a
mismatch occurs.  The only difference between the use of these two methods of turning
off warning messages is in setting the I/O status specifier.  The default is to perform the
type check of I/O list items and edit descriptors.

7.8. Non-FORTRAN Procedures
Because FORTRAN is a high-level language oriented to the solution of certain types of
problems, it is sometimes expedient to code some parts of a program in FORTRAN and
other parts in another language.

These non-FORTRAN parts can be included in the FORTRAN program unit when the
program is collected.  Program parts written in assembly language (that is, MASM) must
be prepared to accept the calling sequences generated by the ASCII FORTRAN compiler.
Parts written in FORTRAN V, ASCII COBOL, or PL/I can be called directly (see
EXTERNAL statement [6.9]).

See Appendix K for details on the interfaces with FORTRAN V, ASCII COBOL, PL/I, and
MASM.

7.9. Local and Global Names
Entities that can be referred to from both external and internal program units

are called global.  Entities that can be referred to only within a particular

internal subprogram are called local, that is, local to that subprogram.

Entities used in an external program unit cannot be referred to by another

external program unit unless they are in common blocks or passed as

arguments.  Variables, arrays, statement functions, parameter constants, and so

forth, which are declared or used in an external program unit, can be referred

to by any of their internal subprograms.  Internal subprograms can’t reference

each other’s data except through common blocks and arguments.

External program units can contain any number of internal subprograms. An

internal subprogram can call another internal subprogram if both are in the

same external program unit.  BLOCK DATA subprograms can’t be internal and

can’t contain internal subprograms.

Any data declarations encountered in an internal subprogram create variables

local to that internal subprogram.  The following statements create local names

when in an internal subprogram:

� Explicit typing statements (such as REAL, INTEGER)

� DIMENSION (the array names)
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� COMMON (the variable names)

� BANK (the bank names)

� NAMELIST (the namelist name)

� PARAMETER (the name being defined)

� EXTERNAL

� INTRINSIC

� DEFINE and statement function definitions (the statement function name)

� EQUIVALENCE

� SAVE

� DATA (symbolic names not defined in a common block)

� Dummy arguments in FUNCTION, SUBROUTINE, and ENTRY statements

For rules on IMPLICIT type associations in internal subprograms, see 6.3.1.

A COMMON statement in an internal subprogram redefines (in other words, is

not a continuation of) the same common block declared in the external program

unit.

In addition, all statements create local variables for names encountered that

don’t exist in their external program unit.

Names that are used in an internal subprogram, but are not defined locally in

the aforementioned statements, come from the external program unit

environment if they exist there.  If they are local to the internal subprogram,

their declarations must occur before they are referred to.

Example 1:

         INTEGER P
         DIMENSION X(5)
         PARAMETER (P=10)
         CALL INT(X)
         SUBROUTINE INT(Y)
         DIMENSION Y(P)   @ uses 10
         PARAMETER (P=5)  @ does not help Y
             .
             .
             .

Example 2:

        A=10.               @ global A
        CALL INT
        SUBROUTINE INT
        NAMELIST/LIST/A,B   @ global A, local B
        REAL A              @ local A
        B,A=3.              @ local A
        WRITE(6,LIST)       @ write global A, local B
        END
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Statement labels are local to the program unit in which they appear.

An internal subprogram can’t be referred to by any external program unit

outside its program unit group (a program unit group is composed of the

external program unit and any internal subprograms contained in the external

program unit).

However, if the name of an internal subprogram is passed as an argument to an

external program unit outside its program unit group, the external program

unit can, in general, refer to the internal subprogram by referring to the dummy

argument name.  There are two exceptions to referring to an internal

subprogram through an argument name:

� In a program compiled with the automatic storage stack feature

(COMPILER statement options DATA=AUTO or DATA=REUSE), an external

program unit can refer to internal subprograms only from its program unit

group.  This restriction is required because stack storage is acquired for all

parts of a program unit group at one time upon entry to the external

program unit.

� In multibanked programs, an internal subprogram cannot be called from a

program unit that is not in the same I-bank as the internal subprogram.

This restriction is required because internal subprograms do not use an LIJ

for returns; they always jump back.

When an intrinsic function name such as SIN is used as an internal function, it

must be placed in an EXTERNAL statement in its external program unit.  This

is a special use of the EXTERNAL statement to indicate that the intrinsic

function is not desired.  In this case, all references to the function SIN in the

external program unit or in any of its internal subprograms refer to the

internal subprogram SIN.
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Section 8
Program Control Statements

8.1. General
The program control statements are used to temporarily modify the source program
being compiled, modify the code generated, and control the compiler listing produced.
The statements (all nonstandard) are:

� INCLUDE

� DELETE

� EDIT

� COMPILER

Use the INCLUDE statement to insert additional statements into the compilation and the
DELETE statement to delete source statements from the compilation.  The EDIT
statement dynamically controls the compiler listing.  Use the COMPILER statement to
alter the compilation process.

8.2. INCLUDE Statement
Purpose:

The INCLUDE statement inserts an externally defined set of ASCII FORTRAN
statements into the program being compiled.

Form:

INCLUDE [f. ]n [ , LIST ]

where: 

f

if specified, is a file name specifying the file to be searched for the procedure
(PROC) n. 

n

is the name of a FORTRAN procedure (PROC) created by the Procedure Definition
Processor (PDP).  See the Procedure Definition Processor (PDP), Programmer

Reference, UP-10070, for details on PDP.  The name n contains from 1 to 12
characters from the same character set as a FORTRAN symbolic name.
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LIST

when specified, causes the included statements to be listed whenever the source
program is listed.

Description:

The included statements don’t become part of the updated source program produced.
Therefore, the physical line numbers of the source program don’t change.

INCLUDE statements can’t be nested; that is, an INCLUDE statement must not be among
a group of included statements; any other FORTRAN statement can be included.

One would normally use a single INCLUDE statement to represent a block of FORTRAN
source statements. For example, one such application would be to include a set of
statement functions that are frequently used at a particular installation.

A useful application for INCLUDE procedures is to use one or more INCLUDE elements
containing a set of data declarations that are shared among different portions of a larger
user program system.  These data declarations can be, for example, many of the
COMMON, DIMENSION, EQUIVALENCE, and PARAMETER statements, as well as
statement function definitions.  You should be cautious, however, when using these
FORTRAN procedures.  All of the statements must be processed, slowing down the
compilation.  An example of poor usage is a small subroutine including a procedure
(PROC) that defines several hundred variables, but uses only one of these definitions.

8.2.1. Creating FORTRAN Procedures (PROCs)

Use the Procedure Definition Processor (PDP) to create a FORTRAN procedure (PROC).
A PROC is a set of FORTRAN statements that can be inserted into source language with
an INCLUDE statement.

PDP accepts source language statements defining FORTRAN procedures and builds an
element in the user-defined program file.  Using INCLUDE, these procedures can be
subsequently referenced in a compilation without redefinition.

A FORTRAN procedure has the following format (see Example 8-1):

1. The PROC line is the first line of a FORTRAN procedure. It contains the procedure
name (1 to 12 characters), starting in column 1, and PROC starting in column 7 or
after.

2. The procedure images follow the PROC line.  These images are the FORTRAN
statements that are to be included.

3. The final line must be the word END, appearing in columns 2 through 4.

A PDP source element can contain more than one FORTRAN procedure, as in
Example 8-1.

A FORTRAN procedure is not analogous to an Assembler procedure.  For a FORTRAN
procedure, the F option must be in the @PDP command.
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The sample procedures in Example 8-1 (SPECS1, SPECS2, and SPECS3) can be
included (using the INCLUDE statement) in a FORTRAN program.

@PDP,FIL STUFF   
PDP12R1 R72-16 02/09/77 09:18:37 (,0)      RI 

 PE0001   SPECS1 PROC
  0002         IMPLICIT INTEGER (O-Q)  
  0003         PARAMETER (IN=5, OUT=6) 
  0004         PARAMETER (P1=1,P2=2,P3=3)   
  0005         PARAMETER (M=MAX(MOD(P3,P2),DIM(P3,P1)))
  0006         COMPLEX C(10),D(5)/5*(1,0,-1.0)/
  0007         DIMENSION O(5),P(4) 
  0008         COMMON /CB1/C,K,O  / /A(5),Q
  0009           
  0010   9999  FORMAT( )  
  0011         EXTERNAL FUNEX  
  0012    END
 PE0013   SPECS2 PROC
  0014         COMPLEX X(5)
  0015         COMMON E,F,G
  0016    END
 PE0017   SPECS3 PROC
  0018         COMPLEX C   
  0019         COMMON /CB1/ C(5),K,O   
  0020      END

Example 8-1.  Sample PROC

Example:

   .
   .
   .
  INCLUDE SPECS1
   .
   .
   .
  INCLUDE SPECS3,LIST
   .
   .
   .

For PDP to add the procedure names to the FORTRAN procedure table of the specified
program file, one of three conditions must be satisfied:

1. The I option must be specified and an element name given in the spec1 field of the
PDP control card; or
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2. The U option must be specified and an element name given in the spec1 field of the
PDP control card; or

3. Neither the I nor the U option is specified and element names are given in the spec1

and spec2 fields of the PDP control card.

8.2.2. Specifying the Procedure File Name

When you specify a file name in the INCLUDE statement, the FORTRAN procedure table
of that file is searched for the PROC n.  The file name can be a fully specified name
(qualifier, file, cycle, keys) or a @USE attached name.  The usual Executive file name
dropout rules apply.  If the file has a read key, it must be specified in the INCLUDE
statement or in an @ASG statement prior to the compilation, or the Executive may abort
the compilation.

If a file name is not given in the INCLUDE statement, the PDP element that contains the
procedure (PROC) to be included must be in a file that is assigned to the run in which
the compilation is being performed.

The rules for determining which files are searched and the order in which the search is
performed are as follows:

1. You have the option of specifying the file that is searched first. You do this by
assigning the mass storage file with the @USE attached name FTN$PF to the run
and by specifying the M option on the @FTN statement for the compilations in
which the optional file search is desired.

If the file FTN$PF is assigned to the run and the M option is specified, FTN$PF is the
first file searched for the PROC to be included.  If FTN$PF is not assigned to the run
or the M option isn’t specified or the PROC isn’t found in FTN$PF, the search
continues as specified below.

2. If the source input is coming from a program file on mass storage, that file is
searched.

3. If the source input is coming from a program file on tape, the relocatable binary
output file is searched.

4. If the source input is coming from cards, the source output file is searched, if one
exists.  Otherwise, the relocatable binary output file is searched.

5. If the PROC isn’t found in any of the files previously listed, the system library files
SYS$LIB$*PROC$ and SYS$*RLIB$ are searched.

6. If the PROC isn’t found in any of the files previously listed, an error message is
printed.  Compilation continues as if the INCLUDE statement is not present.

8.3. DELETE Statement
Purpose:

The DELETE statement prevents compilation of a set of source lines contained in the
input source program.
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Form:

DELETE n [ , [d] [ ,l] ]

where: 

n

is a statement label in the same program unit as the DELETE statement.  

d

is the delete parameter.  It must be an integer constant or symbolic name of an
integer constant.  

l

is the list parameter.  It must be an integer constant or symbolic name of an integer
constant.

Description:

When the DELETE statement is used, the compiler ignores all source lines following the
DELETE statement up to, but not including, the statement labeled n. However, if the
value of the delete parameter, d, is 0, the DELETE statement is ignored.

If the value of the list parameter, l, is nonzero, the deleted source lines are listed in the
compilation listing.  If the value of l is 0, the deleted lines are not listed.

The lines deleted are made transparent to the compiler, but they are not actually
removed from the updated source program.

Several simplifications of the form of the DELETE statement are allowed:

� If the delete parameter is 1 (d=1) and the list parameter is 0 (l=0), you can use the
following reduced form:

DELETE n

� If the deleted lines are never to be listed (l=0), you can use the following form:

DELETE n,d

� If the images are always to be deleted (d=1), and the list option is to be specified,
you can use the following form:

DELETE n, ,l

Any statement (including a specification statement) can have a label (see 9.3.1), so
DELETE n can refer to any statement in the program unit.
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8.4. EDIT Statement
Purpose:

The EDIT statement is used to start or stop the compiler listing produced for any portion
of the source program.

Forms:

START EDIT PAGE
START EDIT SOURCE
START EDIT CODE
STOP EDIT SOURCE
STOP EDIT CODE

Description:

The word PAGE causes a page eject in the source listing, the word SOURCE controls the
listing of the source program statements, and the word CODE controls the listing of the
generated object code.

The START forms cause the compiler to initiate the type of listing specified (SOURCE or
CODE) if it has been suppressed by a preceding EDIT statement or by a processor call
option.  A START EDIT CODE statement initiates both source and code listings.

The STOP forms cause the compiler to terminate the type of listing specified if it is
initiated by a preceding EDIT statement or by a processor call option.  A STOP EDIT
SOURCE statement terminates both source and code listings.

The START EDIT PAGE form causes the current page of the compiler listing to eject
before listing the next statement of the source program.  This has the effect of placing
the next statement following this command at the top of a new page. If the source is not
currently being printed, this statement has no effect on the output.

8.5. COMPILER Statement
Purpose:

The COMPILER statement allows you to place certain code-generation or storage-related
compiler directives within a program’s structure.

Form:

COMPILER (op) [ , (op) ] ...

where op is a compilation option.  All options are of the form a=b, where a is the option
name and b is the option type.  The allowable options are:

� DATA = AUTO

� DATA = REUSE
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� PARMINIT = INLINE

� STACK = KEEP

� STACKADR = KEEP

� STACK = LIST

� BANKED = RETURN

� BANKED = DUMARG

� BANKED = ACTARG

� BANKED = ALL

� BANKACT = NOTEST

� BANKACT = CALL

� LINK = IBJ$

� STD = 66

� U1110 = OPT

� ARGCHK = ON

� ARGCHK = OFF

� PROGRAM = BIG

� PAGESIZE = nK

� NBRPAGES = n

� VIRTUAL = NCCB

� VIRTUAL = STATIC

Description:

When you use the COMPILER statement, it affects the code generated for the entire
program unit or compilation, and it should be one of the first statements in the program
unit or compilation.

The BANKED = RETURN option is local to the program unit in which it appears.  All
other options are global to the compilation and should appear near the beginning of the
first program unit in the source.
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8.5.1. DATA, PARMINIT, and STACK Options

DATA=AUTO and DATA=REUSE

These COMPILER statement options cause the ASCII FORTRAN compiler to generate
code that has no local D-bank (other than common blocks), to acquire and release space
for local use by calls to run-time routines, and to dynamically initialize this space on
entry, thus giving ASCII FORTRAN an automatic storage facility.

The DATA=AUTO and DATA=REUSE options also cause the LINK=IBJ$ option to be
turned on. The DATA=REUSE option is identical to the DATA=AUTO option, except that
a run-time prologue entry point is used that does not initially push the stack before
allocating local storage.  This means that the stack storage of the previous routine is
reused.  This conserves stack space, but since the stack of its caller is destroyed, a
RETURN can never be done from a subprogram with a DATA=REUSE option.  You have
to somehow handle program termination yourself.  Since arguments are passed in the
stack, arguments cannot be passed to routines that have the DATA=REUSE option; that
is, they must not have any dummy arguments.

The compiler generates the code and data for initializing the stack frame under location
counters $(5) and $(7) (see 6.13.2).  If I-bank size is a problem in programs that use the
DATA=AUTO option, $(5) and $(7) for some or all elements may be collected into a
separate bank.  (Be sure to keep $(5) and $(7) for a given element in the same bank.)

Because of the highly volatile nature of this automatic storage, some side effects of
static storage allocation are not available when using automatic storage:

� Local variables not initialized by DATA statements don’t have the value of 0 on entry.

� Local variables don’t have their last value on reentry to a subprogram unless they
appear in a SAVE statement.  A SAVE statement forces them to static storage.

� Arguments set by entering at one entry point are not available when the subprogram
is entered at another.

� If one reads into a Hollerith or literal field of a FORMAT statement, it will hold that
value only as long as the subprogram containing it is active.

� Names of internal subprograms can’t be passed to other external subprograms and
have the external call the internal.

Full-debug checkout and FTNPMD (see 10.3 and 10.4) use is severely restricted when
using automatic storage because:

� Walkback terminates when a subprogram using automatic storage is encountered.

� No local variables or arguments can be set or dumped for subprograms that use
automatic storage.
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PARMINIT=INLINE

This COMPILER statement option has effect only when used with the DATA=AUTO or
DATA=REUSE option.  When the DATA=AUTO or DATA=REUSE option is specified, a
considerable amount of initialization code is required for the automatic storage stack.
Items such as I/O packets, format lists, argument lists, and data lists require instructions
to initialize the list information onto the automatic storage stack.  This initialization code
is normally executed for the entire program unit upon entry to the main program or
subprogram.  That is, all of the stack initialization for the entire program unit is executed
at program unit initialization before executing any of the statements of the program unit.
This is inefficient if only a small part of the program unit is executed each time.

The PARMINIT=INLINE option can be used to make certain FORTRAN programs
execute more efficiently.  This option causes the initialization of argument lists to take
place at their reference, rather than at program unit initialization time.  This is more
efficient for program units that execute only a portion of their statements each time
called and do not loop heavily around subprogram calls.  However, if the program unit
has many loops, with subprogram calls in the loops, using this option can take more
execution time instead of less.

STACK=KEEP

This COMPILER statement option is used with a DATA=AUTO or DATA=REUSE
automatic storage option.  It specifies that the acquired D-bank stack frame is not
released.  The stack frame is acquired and initialized on the first entry to the
subprogram.  However, it is not released on subprogram exit.  Subsequent entries to the
subprogram skip the acquisition and initialization of the stack frame, resulting in a
significant performance gain over the standard automatic storage options.  Use of this
option is valuable to a program composed of many modules where only a small number
of the modules are entered on any given execution.  In this situation, the collected size
of the control D-bank is minimal, but there is no performance degradation due to
initialization code.

STACKADR=KEEP

This COMPILER statement option is an alternate for the STACK=KEEP option.  The
D-bank stack frame is acquired and initialized on the first entry to the subprogram, and
is not released on subprogram exit, just as with the STACK=KEEP option.  However, the
method used internally to keep track of which stack frame belongs to which subprogram
is different.  This alternate method may result in better performance than the
STACK=KEEP method, and will work better in segmented programs, but the “cost” of
this alternate method is at least one static local D-bank word per subprogram. (“Static”
in this context means it is not allocated on the DATA=AUTO stack.)

STACK=LIST

This COMPILER statement option specifies that the stack frame sizes for each external
program unit in a compilation appear in a short listing just before the compiler sign-off
line.  This option only affects programs using automatic storage, that is, programs using
the DATA=AUTO or DATA=REUSE options of the COMPILER statement or programs
using the virtual feature.  This option is assumed when you specify an L, Y, or D option
on the ASCII FORTRAN processor call control statement.
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8.5.2. BANKED Options

The ASCII FORTRAN banking mechanism is described in H.2.

BANKED=ALL

This COMPILER statement option is a general banking option used to indicate that
banking of some form appears in your program.

The BANKED=ALL option indicates that all labeled common blocks can be in paged data
banks or in the control bank.  In addition, BANKED=ALL turns on the following
COMPILER statement banking options:

LINK=IBJ$ (subprograms can be banked)

BANKED=DUMARG (input arguments can be banked)

When BANKED=ALL appears, the specific subprogram (I-bank) and common block
(D-bank) bank structure of the user program need not be known at compile time.  This
makes the process of generating a multibank user program more flexible, since changes
in the bank structure can be made entirely at collection time, with no ASCII FORTRAN
recompilations required.

When you have paged data banks and BANKED=ALL is specified, BANK statements (see
6.6) naming common blocks can be completely omitted from ASCII FORTRAN source
programs, although they can appear for reasons of efficiency.  See H.2.3 for a description
of banking efficiency.

BANKED=DUMARG

This COMPILER statement option applies to dummy arguments in subprograms.  (A
dummy argument is an item appearing in argument lists in SUBROUTINE, FUNCTION,
or ENTRY statements.)  When this option appears, dummy arguments that are data items
can be in paged data banks or in the control bank, and dummy arguments that are
subprograms can be in any I-bank or in the control bank.

On every reference to a dummy argument in a subprogram, the compiler must generate
code to base the item’s bank, if it isn’t already based.

The BANKED=DUMARG feature is automatically turned on if BANKED=ALL is
specified.

BANKED=RETURN

When this COMPILER statement option appears in a subprogram, the subprogram
returns to its calling program via one of two instructions: LIJ or a jump.  The decision is
made in generated code with a test sequence: an LIJ is executed if the subprogram is
entered via an LIJ, and a jump is executed if the subprogram was entered via an LMJ.

Use this feature when the subprogram’s I-bank may be different from the I-bank of any
calling program.
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The BANKED=RETURN feature is automatically turned on if LINK=IBJ$ or
BANKED=ALL is specified.

BANKED=ACTARG

BANKED=ACTARG is an obsolete option that is supplied for compatibility with previous
levels of ASCII FORTRAN.  It was previously used to pass banking information for
arguments on subprogram calls, but this information is automatically passed now (when
you specify any form of banking, for example, BANKED=ALL).

8.5.3. BANKACT Options

The following COMPILER statement options change the type of code generated to
activate a D-bank to reference your variable in that D-bank.  These can be D-banks used
for virtual space as well as D-banks used for the existing banking setup.  Code to
activate that D-bank consists of an inline LBJ instruction, or a link to a run-time routine
that does the LBJ.  (The link instruction can be an SLJ or LMJ.)  A test sequence
sometimes takes place to test around the activation instruction.  A test sequence speeds
up execution when the bank is already based.

BANKACT=NOTEST

The compiler generates a test around a D-bank activation instruction unless there is a
good chance that a bank-switch from the last reference can occur. This option tells the
compiler not to generate a test sequence, but rather to generate a direct D-bank
activation sequence.  Only use this option on FORTRAN elements when the compiler
makes the wrong decision on TEST/NOTEST sequences, and performance suffers
enough to warrant intervention.  The default lets the compiler select a TEST/NOTEST
sequence based on previous references, but the selection is not predictable.

Note:  A test sequence generation references an array dummy argument when the

VIRTUAL statement is present.

BANKACT=CALL

The compiler sometimes generates an inline LBJ instruction to activate a D-bank or to
link to a run-time activation routine by an LMJ or SLJ.  This option ensures use of an
out-of-line routine in element F2ACTIV$.  You can insert statistical code in element
F2ACTIV$ (at tag VSTATS$) to determine reference patterns on D-banks and detect the
source of performance problems.  There is no default because the compiler can generate
several code sequences to reference your virtual or banked variables.  Therefore, this
option simply ensures that an out-of-line sequence is picked.

8.5.4. LINK=IBJ$ Option

The LINK=IBJ$ COMPILER statement option makes it easier to construct multi-I-bank
programs without using the BANKED=RETURN COMPILER statement option or BANK
statements.  This option is meaningful for banked subprograms, although it can also be
used on nonbanked programs.  The LINK=IBJ$ option has no effect on paged data
banks.
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See H.2 for a description of the ASCII FORTRAN banking mechanism.  The LINK=IBJ$
feature is automatically turned on if BANKED=ALL is specified.

The LINK=IBJ$ option causes the compiler to generate the following reference to your
subprograms:

LXI,U    X11, BDICALL$+subprg 
IBJ$     X11,subprg

BDICALL$ and IBJ$ are special external reference items that are resolved at collection
time; subprg represents the name of a FORTRAN external subprogram.  The collector
determines if subprg is contained in a different instruction bank than the one from
which the call is made.  If it is, then BDICALL$+subprg is the BDI of the bank in which
subprg is located, and IBJ$ is an LIJ.  If subprg is in the same instruction bank,
BDICALL$+subprg is zero, and IBJ$ is an LMJ.  The LINK=IBJ$ option also causes the
compiler to generate the following instructions to return from subprograms:

LA,H1     A4, X11-save-location 
JZ        A4,0,X11
LXI       X11,A4
LIJ       X11,0,X11

Use of the LINK=IBJ$ option, as opposed to the BANKED=RETURN option and BANK
statement, also allows for modification of bank structure collections without change to
the source program, and thus without recompilation.  An IBJ$ reference does an LMJ or
LIJ to the correct bank, and the subprogram returns correctly regardless of the bank
structure.

8.5.5. U1110=OPT Option

The U1110=OPT COMPILER statement option invokes a code reordering algorithm
during the code generation phase of the compiler.  This option is meaningful on
hardware that incurs register conflicts (most hardware for which ASCII FORTRAN is
supported).  It shuffles generated code, which minimizes the hardware register conflicts
to speed execution.

This code-reordering algorithm can also be called by the use of the E option on the
ASCII FORTRAN processor call statement (@FTN,E).  See 9.6.3.

8.5.6. STD=66 Option

The STD=66 COMPILER statement option is provided to let relocatables created with
level 8R1 coexist with relocatables created with level 9R1 and higher.

ASCII FORTRAN levels 9R1 and higher conform to the FORTRAN 77 standard (ANSI
X3.9-1978).  ASCII FORTRAN levels lower than 9R1 conform to ANSI X3.9-1966.

Compatibility problems arise because conforming to the FORTRAN 77 standard requires
certain features that conflict with the implementation of previous ASCII FORTRAN
levels.
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If the option STD=66 is not specified in a compilation, ASCII FORTRAN conforms to the
FORTRAN 77 standard.  If STD=66 is specified, ASCII FORTRAN implements the
features in Table 8-1 as done in previous levels (that is, in a nonstandard manner).

If any prelevel 9R1 ASCII FORTRAN relocatables appear in a collection, you must do the
ASCII FORTRAN level 9R1 or higher compilations with the COMPILER (STD=66)
compatibility option. Also, all relocatables in a collected program must have matching
compatibility options.  If one program is compiled with STD=66, all FORTRAN programs
to be collected with that program must have STD=66.

Using the STD=66 option also implies using the ARGCHK=OFF option.

Table 8-1.  Use of the STD=66 COMPILER Statement Option  

Feature
Implementation with STD=66

Option
Implementation without STD=66

Option

Character
data

Unpacked character data - all
character items (including array
elements) begin on word boundaries.

Substrings passed as arguments are
passed as expressions (they are not
passed by address).

Packed character data for arrays,
common blocks, etc. - character
items need not begin on word
boundaries (see 6.13.1).

If either a dummy or actual argument
is type character, then the other must
also be type character (see 7.3.4).

DO-loops A DO-loop (with DO statement DO n i
= e1,e2,e3) must be traversed at
least once, even if e1 >e2 and e3>0.

-1 is assumed as the increment
value if e3 is not specified, and e1
and e2 are both constant
expressions, where  e1 > e2.

A DO-loop is not traversed if e1 >e2
and e3>0, or if e1<e2 and e3<0 (see
4.5.4.1).

1 ia assumed as the increment value
if e3 is not specified.

Typing Symbolic names of constants and
statement functions have no
associated types.  Types are
determined by usage in expressions.

Symbolic names of constants (see
6.8) and statement functions (see
7.3.1) have associated types, based
on normal typing conventions, and
previous IMPLICIT and type
statements.

 

8.5.7. ARGCHK Options

ASCII FORTRAN automatically checks the types and number of actual arguments
against those expected on subprogram entry.  However, if the optimization options Z or
V are specified on the @FTN processor call, type checking is not done automatically.  If
you want type checking when optimization is used, you must use the ARGCHK=ON
COMPILER statement option.

If type checking is not desired, you can use the ARGCHK=OFF option.  When either the
calling routine or the routine being called has disabled type checking by using the
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ARGCHK=OFF option or by compiling with optimization (without the ARGCHK=ON
option), type checking is not done.

8.5.8. PROGRAM=BIG Option

If the PROGRAM=BIG COMPILER statement option appears, the O option (see
processor call options, 9.5.1) is turned on.  The compiler generates code that allows
D-bank addresses to exceed octal 0200000 (decimal 65,535).  This option eliminates
problems that result when a program that needs the O option is mistakenly compiled
without it.

8.5.9. Options Affecting Virtual Space

The following COMPILER statement options change the characteristics of virtual space
when they are put in the main program.

PAGESIZE = nK

where: 

n

has the possible values 4, 8, 16, 32, 64 (or 65), 128 (or 131).

K

means 1,024 words.

This option specifies the size of the D-banks used for virtual space.  Each D-bank holds a
page of virtual space.  The values of 65K and 131K are acceptable, allowing you to think
of K as 1,000 words.  The default value is 32K, allowing about 32,000-word banks for
virtual space.  

Note: Virtual sizes are always a power of 2.  The D-banks containing virtual pages

are slightly larger than a virtual page because a small ID area precedes the

portion used for a virtual page.

NBRPAGES=n

where n is a value greater than 1, but less than 2,048.

This option specifies the number of pages used for virtual space.  These pages are
defined in your main program as void D-banks from INFO-11 directives.  The default is
200 pages.  

Note:  The Executive currently limits the number of banks defined in an absolute to

251.

The maximum virtual address space available to a program is defined by the number of
pages times the virtual page size.  Table 8-2 gives the virtual address limits for specific
numbers and sizes of virtual pages.
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Table 8-2.  Virtual Address Limits  

Number
of Pages Page Size

128K 64K 32K 16K 8K 4K

2,000 262M 131M 65M 32M - -

1,000 131M 65M 32M 16M 8M -

500 65M 32M 16M 8M 4M 2M

250 32M 16M 8M 4M 2M 1M

200 26.2M 13.1M 6.5M 3.3M 1.6M 0.8M

 
* M means millions of words.  The blank line defines the current Exec limit.  The default is 200

pages at 32K words each.

VIRTUAL=NCCB

This option specifies that the D-banks used for virtual space have the S option,
indicating that these are shared banks.  Shared banks (often called nonconfigured
common banks or NCCBs) do not disappear when program execution is done; separate
runs can simultaneously access NCCBs.  However, D-banks are writable and this can
lead to problems.

When the Executive initially loads a program that references NCCBs, it scans a list of
currently defined NCCBs to see if it can link the program to existing banks.  For missing
NCCBs, it attempts to load a copy from the program.  When the program has a void copy,
the Exec prints an error diagnostic and treats it as a program-local bank.  Since ASCII
FORTRAN uses INFO-11 directives to define void D-banks for virtual space, this makes
the VIRTUAL=NCCB option currently unusable.  Therefore, this option will be dropped
if void banks cannot be NCCBs.

VIRTUAL=STATIC

This option specifies that the D-banks used for virtual space are static rather than
dynamic.  This means that each time a program executes in main storage, all D-banks
used for virtual space are resident in main storage. This can cure thrashing problems
that you may be having, but it also means that other concurrent users may be locked out.
When the amount of virtual space that you define is greater than available main storage,
your program may never be swapped-in again.  The default is to define dynamic D-banks
for virtual space.

Examples:

1.  VIRTUAL (ALL)
2.  COMPILER (PAGESIZE=16K)
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3.  COMPILER (NBRPAGES=100)
4.  COMPILER (VIRTUAL=STATIC)
5.  COMPILER (BANKACT=NOTEST)

Statement 1 shows that all named common banks referenced in this element are placed
into virtual space.

Statement 2 shows that 16,384-word pages are used for virtual space.

Statement 3 shows that a maximum of 100 pages can be used for virtual space.  This
gives a maximum virtual address range of 1.6 million words for this program.

Statement 4 shows that the D-banks used for virtual space are static (always resident in
main storage during program execution).

Statement 5 shows that D-bank activation code sequences generated by the compiler to
reference virtual (or banked) space do not generate a test around the D-bank activation
instruction.
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Section 9
Writing a FORTRAN Program

9.1. General
This section discusses the organization of FORTRAN programs and the rules for writing
them.

9.2. FORTRAN Program Organization
A FORTRAN program is made up of one main program and as many subprograms and
procedures as you require.  The main program contains the primary steps required to
solve a given problem.  The subprograms (either function, subroutine, or BLOCK DATA)
are subordinate units used by the main program.  All can be referred to as program units.

9.2.1. Program Unit

A program unit consists of a sequence of statements and optional comment lines. A
program unit is either a main program, a function or subroutine subprogram, or a
BLOCK DATA (specification) subprogram.  Both internal and external subprograms are
program units. An executable program contains one main program and zero or more
subprograms.  If the source input to the ASCII FORTRAN compiler consists of a main
program and one or more subprograms or specification subprograms, then the main
program must physically be the first program unit.
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9.2.2. Types of Program Units

The various types of program units, illustrated in Figure 9-1, are:

� A main program is the program unit that receives control when an executable
program is placed in execution by the processor.  A main program consists of a
series of comments and statements that may begin with a PROGRAM statement,
does not contain a BLOCK DATA statement, and is terminated by an END,
FUNCTION, or SUBROUTINE statement.

� A function subprogram is an executable subprogram that consists of a series of
comments and statements (it does not contain a BLOCK DATA or PROGRAM
statement) starting with a FUNCTION statement and terminated by an END,
FUNCTION or SUBROUTINE statement.

� A subroutine subprogram is an executable subprogram that consists of a series of
comments and statements (it does not contain a BLOCK DATA or PROGRAM
statement) starting with a SUBROUTINE statement and terminated by an END,
FUNCTION, or SUBROUTINE statement.

� A specification (BLOCK DATA) subprogram is a nonexecutable subprogram that
consists of a series of comments and specification statements starting with a BLOCK
DATA statement and terminated by an END statement.  A BLOCK DATA subprogram
does not contain executable code and is used solely for the assignment of initial
values to variables in common blocks.  A BLOCK DATA subprogram can’t be called.

� A program unit is an internal subprogram if the previous program unit is

terminated by the internal’s FUNCTION or SUBROUTINE statement instead

of an END statement.  Thus, both function subprograms and subroutine

subprograms can be internal subprograms.

An internal subprogram is considered as nested within the previous

external subprogram, and can access the external subprogram’s data as well

as have its own local data.  An external subprogram can have many internal

subprograms.

� A program unit is external if it is a main program or a BLOCK DATA subprogram if it
is the first program unit in the compilation or if the previous program unit is

terminated by an END statement.  Thus, any of the program units described
above can be external, i.e., free-standing program units.

See 7.3.2 and 7.3.3 for descriptions and examples of functions and subroutines (both
external and internal).
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Figure 9-1.  Program Units Within a FORTRAN Program

Subprograms are useful because they eliminate repetitive coding of procedures used
many times in a program.  In addition, a library of mathematical external procedures,
called intrinsic functions (see 7.7.1), is present and contains debugged procedures for
computation of mathematical functions such as square root, sine, etc.  You can code the
main program of a large FORTRAN program as a logical skeleton consisting primarily of
references to subprograms; you can independently code these subprograms.  The
subprograms may or may not be compiled with the main program.

The OS 1100 Collector links together all compiled program units to form an executable
program starting with the main program unit.  You can write program units in languages
other than FORTRAN but must conform to the rules for FORTRAN subprograms.  (See
Appendix K.)  Such program units and procedure subprograms (function and subroutine
subprograms) are classed as external procedures.

9.2.3. Program Unit Organization

A program unit consists of comments and statements.  A FORTRAN statement falls into
one of two categories: an executable statement or a nonexecutable statement.  An
executable statement specifies an action.  A nonexecutable statement describes the
characteristics and arrangement of data, editing information, statement function
definitions, and classification of program units.  Nonexecutable statements are generally
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intended as instructions to the compiler; in most cases, no executable machine language
instructions are generated.  Executable statements result in executable machine
language instructions (object program).

Statement classification and ordering are described in 9.3.  The actual formats of the
lines of a FORTRAN source program are outlined in 9.4.

Many program units can be put together into one source element and compiled into one
relocatable element.

9.2.4. Execution Sequence

Execution of a FORTRAN program begins with the performance of the first executable
statement of the main program.  The difference between an executable statement and a
nonexecutable statement is outlined in 9.2.3.

A subprogram, when referenced by the name of the subprogram, starts execution with
the first executable statement of that subprogram.  When an entry name is used to
reference a subprogram, execution starts with the first executable statement following
the proper ENTRY statement.  When subprogram activity is complete, execution of the
calling program is resumed at the statement following the call, or at one of the statement
labels appearing in the argument list of the CALL statement.

Nonexecutable statements or comment lines do not affect execution sequence.

Every program unit except a BLOCK DATA subprogram must contain at least one
executable statement.  A program unit should not contain a statement that can’t be
executed (for example, an unlabeled statement following an unconditional GO TO).

If the execution sequence attempts to proceed beyond the last executable statement of a
main program, the effect is the same as the execution of a STOP statement.  If the
execution sequence attempts to proceed beyond the last executable statement of a
procedure subprogram, the effect is the same as the execution of a RETURN statement.

In the execution of a program, a subprogram can’t be referenced twice without an
intervening RETURN statement being executed in that subprogram.  That is, no
recursion is allowed.

In the first example shown in Figure 9-2, the main program proceeds until it encounters
a reference (CALL) to the external procedure.  The external procedure assumes control
until it encounters a RETURN statement, which sends control back to the calling
program unit (in this case, the main program).  The main program then continues
processing until another reference transfers control to the external procedure.  The
external procedure assumes processing until it encounters a RETURN statement (not
necessarily the same one as the first RETURN statement) and transfers control back to
the main program.  The main program then resumes processing until it encounters the
STOP statement, which transfers job control to the operating system.

The second example in Figure 9-2 shows how a procedure subprogram calls on another
procedure subprogram during execution.
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Example 1:

Example 2:

Figure 9-2.  Sample Control Paths During Execution
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9.3. Statement Categories
A given FORTRAN statement performs any one of the following functions:

1. It performs certain operations (addition, multiplication, branching, etc.)

2. It specifies the nature of the data being handled.

3. It defines the characteristics of the source program.

FORTRAN statements usually are composed of certain FORTRAN keywords used with
the basic elements of the language: constants, variables, and expressions.  The
categories of FORTRAN statements are:

1. Assignment statements:  The basic mechanism by which the result of an expression
is stored (and therefore, saved) in a variable, array element, or substring for future
reference.

2. Control statements:  Govern the order of execution of the object program and
terminate its execution.

3. Input/output statements:  Control input/output devices and let you transfer data
between internal storage and an input/output medium.

4. FORMAT statement:  Used with certain input/output statements to specify the form
in which data appears in a FORTRAN record or an input/output device.

5. NAMELIST statement:  Used with certain input/output statements to

specify data appearing in a special kind of record.

6. DATA initialization statement:  Assigns initial values to variables and array elements.

7. Specification statements:  Declare the properties of variables, arrays, and functions
(such as type and amount of storage reserved).

8. Statement function definition statement:  Specifies operations that are performed
when the statement function name appears in an executable statement.

9. Subprogram/Program statements:  Used to name and specify arguments for
functions and subroutines.  Used to identify program units and subprograms.

10. Program control statements:  Temporarily modify the source program being

compiled, modify the code generated, and control the compiler listing

produced.

11. Debug facility statements:  Set the conditions for operation of the debug

facility, identify the beginning of the debug packet, and designate actions to

be taken at specific points in the program unit.

9.3.1. Statement Classification

Each FORTRAN statement is classified as executable or nonexecutable.

Executable statements specify actions and form an execution sequence in an executable
program.  All assignment, control, and input/output statements are executable
statements.
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Nonexecutable statements describe characteristics and arrangement of data, editing
information, statement function definitions, and classification of program units.
Nonexecutable statements are not a part of the execution sequence.

See Appendix F for a breakdown of executable and nonexecutable statements.

Statement labels are allowed on any statement (except continuation lines of a
statement).  However, only labeled executable statements (except ELSE IF, ELSE, and
DEFINE FILE) and FORMAT statements can be referred to by the use of statement
labels. There is one exception to this rule:  the DELETE statement can refer to any
statement label.

You can’t use a label on a FORMAT statement as a transfer label for another statement in
the program unit (that is, it can’t be used to control the execution sequence).

9.3.2. Ordering of Statements in a Program Unit

The order of FORTRAN statements in a program unit (other than a BLOCK DATA
subprogram) is: 

Placement Statements

1 COMPILER statement, if desired.

2 Subprogram (FUNCTION or SUBROUTINE) statement if subprogram, PROGRAM
statement if main program (optional), or BLOCK DATA statement if specification
subprogram.

3 VIRTUAL statement, if desired.

4 IMPLICIT statements, if any.

6 Statement function definitions, if any.

7 Executable statements, at least one of which should be present.

8 Debug packets, if desired.

9 END statement.

 

In a program unit, FORMAT, DEFINE FILE, and EDIT statements and comment lines
can appear anywhere.  ENTRY statements may appear anywhere except in ranges of
DO-loops and block IF structures, or in main programs or BLOCK DATA subprograms.

PARAMETER statements can occur before and among other specification statements.
DATA statements should occur after all specification statements.

Figure 9-3 shows the required order of statements for a program unit.  Vertical lines
delineate varieties of statements that may be interspersed.  For example, FORMAT
statements can be interspersed with specification statements and executable
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statements.  Horizontal lines delineate varieties of statements that can’t be interspersed.
For example, specification statements can’t be interspersed with statement function
definitions, and statement function definitions can’t be interspersed with executable
statements.

Figure 9-3.  Order of Statements in a Program Unit

9.4. Source Program Representation and Control

9.4.1. Source Program Format

An ASCII FORTRAN program unit, such as a main program or subprogram, consists of a
sequence of lines that are ordered by the succession in which they are presented to the
processor. A line in a program unit is a string of 72 characters.  The character positions
in a line are called columns and are consecutively numbered 1, 2, 3, . . ., 72.  The number
indicates the sequential position of a character in the line starting at the left and
proceeding to the right.  Lines are classified as initial lines, continuation lines, or
comment lines.
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9.4.1.1. General Statement Form

The following is an illustration of the two basic forms of a source program line. Use the
first form for all FORTRAN statements.  The appearance of a character in column 6
indicates a continuation line.  Use the second form for comment lines.

A FORTRAN line uses only columns 1 through 72.  The information in columns 73
through 80, shown only in the program listing, is used for documentation.  Any text
(except comments) beyond column 72 is moved over three columns and a
space-period-space is inserted before the source line is printed.  For statements,
columns 1 through 5 are used for labels.  Column 6 is used to indicate the continuation
of a statement.  Columns 7 through 72 contain the statement or its continuation.  If the
line is a comment line, columns 2 through 72 contain the comment information.

9.4.1.2. Initial Line

The first line of a FORTRAN statement is called the initial line.  Columns 1 through 5 of
an initial line must be blank or contain a statement label.  Column 6 must be blank or
contain a zero.  A statement or portion of a statement is placed in columns 7 through 72.
The remaining columns, if any, of an initial line may be blank or used for identification
and a statement sequence number.

9.4.1.3. Continuation Line

A continuation line contains a continuation of a FORTRAN statement.  Column 6 must
contain a nonblank, nonzero character.  Columns 1 through 5 must be blank.

The FORTRAN 77 standard allows up to 19 continuation lines.  ASCII FORTRAN

allows as many lines as necessary as long as the number of significant

characters is under 1,320.  Blanks aren’t significant characters except in character
constants, Hollerith constants, apostrophe edit descriptors, and H edit

descriptors.  An ASCII FORTRAN statement containing only significant characters can
thus continue for a maximum of 19 lines (assuming lines with statement coding in
columns 7 through 72).
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9.4.1.4. Comment Line

Any line with the characters C (which may be lowercase) or * in column 1 is treated as
a comment and not as a FORTRAN statement.  A line that contains only blank characters
in columns 1 through 72 is treated as a comment line.

Any character capable of being represented in the processor can appear in a comment
line, occupying columns 2 through 72.  Comments are included with listings and in the
symbolic elements as a documentation/information device, but they aren’t compiled as
FORTRAN statements.

In ASCII FORTRAN, comment lines can appear anywhere within a program unit.

The FORTRAN 77 standard doesn’t allow comment lines following an END statement.

9.4.1.5. Inline Comment

To retain compatibility with FORTRAN V, you can attach a comment to any line

by placing a master space character (@) before the comment.  An inline

comment can’t start in columns 1 through 6.

Example:

X = 5.0      @ INITIALIZE X

9.4.1.6. Statements

A statement consists of an initial line and, if required, continuation lines that follow in
sequence.  Write each line of the statement in columns 7 through 72.  An initial line must
have either the digit 0 or a blank character in column 6 and must not have the character
C or * in column 1.  Each continuation line must have a character other than the digit 0
or blank character in column 6, and must have blanks in columns 1 through 5.  Precede
each continuation line with an initial line or another continuation line.

Except as part of a logical IF statement, no statement can begin on a line that contains
any part of the previous statement.  For example,

IF (LOG) THEN I=I+1

is illegal, because a block IF statement and an assignment statement appear on the same
line.

Blank characters in a statement don’t change the interpretation of a statement except
when they appear within the data strings of Hollerith constants, character constants,
apostrophe edit descriptors, and H edit descriptors.  Nonsignificant blank characters
don’t count as characters in the limit of 1,320 characters in any one statement.

Blank lines, like blank columns, have no effect on the code generated.  Use blank lines
wherever you want to insert spaces in the listing of the source program.  A line that is
blank in columns 1 through 72 is not regarded as an initial line.
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For example:

40   FORMAT(17H AVERAGE VALUE = , F10.5)

could be written as:

40   FORMAT(
   A17H AVERAGE VALUE =
   B,F10.5)

However, it can’t be written as:

40   FORMAT(17H
   AAVERAGE VALUE =
   B,F10.5)

because the 17H of the FORMAT statement means that the 17 characters immediately
following the H are Hollerith data.  Since blank characters are significant in Hollerith
data, the next 17 blanks are interpreted to be the data value rather than the intended
characters.

9.4.1.7. Statement Labels

A statement label provides a means of referring to individual statements.

A statement label is an unsigned integer (1 through 99999) that identifies a FORTRAN
statement and is written in columns 1 through 5 of the initial line of a statement.  Use
only the digits 0 through 9 and blank characters in a statement label.  You can’t define
the same statement label more than once in a program unit, but the same statement label
can appear in more than one program unit.  The value of a statement label does not
affect the order in which statements are executed; it merely identifies the statement it is
associated with.  This lets other statements of the program unit reference it.  See 9.3.1
for rules stating which statement labels may be referenced.

Use a maximum of five digits in a statement label.  All blanks and leading zeros are
ignored.

For example, in the sequence:

   .
   .
   . 
 157 F = (A + B - C) / D
   .
   .
   .
 GO TO 157
   .
   .
   .

the statement label of the arithmetic assignment statement can also be written as:

1�5�7  F = (A + B - C) / D
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or:

01�57  F = (A + B - C) / D

or:

15��7  F = (A + B - C) / D

but not as:

157�0  F = (A + B - C) / D

because this label is 1570 rather than 157.

9.4.2. Compiler Listing

For every program compiled, a compiler listing is produced.  The composition of the
information listed is a function of the listing options that you specify.

9.4.2.1. Listing Options

The options available to control the composition of the compiler listing are specified in
the @FTN processor call (see 9.5) and in EDIT statements.  The processor call options
specify the initial setting for the type of listing desired.  They can be overridden at any
point in the source program by the EDIT statement (see 8.4).

If you use no listing options, a minimum of default output is produced.  This output
consists of a single compiler identification line with time and date, a single line
indicating the end of compilation with the number of errors and warnings, and the
amount of storage for I-bank, D-bank, and common blocks. Error and warning messages
are printed.  (See 9.8 for information on the format of diagnostic messages.)

All compiler options are listed in 9.5.1.  The options that can be specified on the @FTN
processor call to control the compiler listing are:

D

A listing of the storage map, common blocks, entry points, and external references is
generated.

K

When the source lines are being printed (S or L option), both the update and input
(base) line numbers appear in front of the source images.  In addition, SIR
correction lines are interspersed in the source code listing.

L

In addition to the information listed for the S option, the cross-reference listing,
storage map, common block list, entry point list, external reference list, and octal
and mnemonic representation of the generated object code are also printed.
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N

The N option causes warnings to be suppressed.

R

A cross-reference listing is generated.

S

A listing of the source program statements is produced in addition to the default
output.  Errors or warnings detected during syntax analysis can be interspersed in
the source program listing and are usually printed immediately following the
offending statement.

T

Print diagnostics for nonstandard FORTRAN usage (see 9.5.1).

W

The correction lines used by the source input routine (SIR) are printed at the top of
the listing (before the source code listing, if any).

Y

A listing containing the storage map, common blocks, entry points, external
references, and a shorter mnemonic representation of the object code is generated.

9.4.2.2. Composition of a Compiler Listing

The composition of a listing generated under control of the L option is described in this
subsection.  Refer to 9.4.2.1 to determine which parts of the listing described are not
generated under control of the other listing options.

See 9.4.2.2.2 for an example of an L option listing.

9.4.2.2.1. Identification Line

The identification line printed at the beginning of each compiler listing has the following
form:

FTN ssRii - mm/dd/yy - hh:mm - (i,o)

where:

FTN

is the ASCII FORTRAN compiler used to perform the compilation. 

ssRii

is the level number of the compiler; ss denotes the symbolic update number; ii
denotes the incremental update number.  Following ii, a letter can be used to
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indicate minor modifications, such as emergency fixes, recollections to include
modified RLIB$ elements, etc. (for example, 9R1A).  Release levels begin with 1R1. 

mm/dd/yy

indicates the month, day, and year on which the compilation is performed. 

hh:mm

is the hour and minute at which the compilation begins.

(i,o)

indicates the input cycle number and the output cycle number, respectively.  If i is
blank, the input was from the runstream.  If o is blank, there is no symbolic output
element.

9.4.2.2.2.Source Code Listing

The source code listing contains all source language input lines processed by the
compiler.  The errors detected during the production of this listing are printed on the
first available line following the offending source line.

Below is a sample source code listing with a main program, an internal subroutine in the
main program, an external subroutine subprogram, and an internal subroutine in that
external subroutine.

The first (leftmost) field of the listing contains the level number of the statement (if
greater than zero).  The level number is a counter containing the DO-level plus the
IF-level of the statement.  The DO-level is a counter containing the number of nested
DO-loops; the IF-level is a counter containing the number of nested block IF structures.

The level number column contains blanks, if the level number is zero, and the letter D if
the source line being printed is deleted by the DELETE statement.

Since the example contains no block IF or DO statements or deleted lines, the level
number column is always blank.

The second field of this listing is the source line sequence number.  The line sequence
numbers are consecutive integers, one per line, followed by a period.  There is one
exception:  if the source element was created by CTS (see the Series 1100

Conversational Time Sharing (CTS), Programmer Reference, UP-7940), then the CTS
line number appears in the second field.

When you specify the K option, the update line number is followed by the input (base)
line number.  This option is useful when you use Source Input Routine (SIR) correction
lines.

The final field is the FORTRAN source line.

If the source input to the compiler consists of more than one external program unit, then
spacing is inserted before the source code listing of the next external program unit.
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L Option Listing

@FTN,L A.TEST,B.
FTN 11R1 04/21/84-08:11(1,) 
         1.    I = 1  
         2.    PRINT *,’MAIN: I = ’ , I 
         3.    CALL INTMN 
         4.    CALL SUB1
         5.  C 
         6.  C *** INTERNAL SUBPROGRAM (INTMN) IN MAIN PROGRAM *** 
         7.  C 
         8.    SUBROUTINE INTMN  
         9.    I = 2 
        10.    PRINT *,’INTMN: I = ’ , I 
        11.    RETURN 
        12.    END 

        13.    SUBROUTINE SUB1
        14.    COMMON I
        15.    I = 3 
        16.    PRINT *,’SUB1: I = ’ , I
        17.    CALL INTSUB 
        18.    RETURN  
        19.   C
        20.   C *** INTERNAL SUBPROGRAM (INTSUB) IN EXTERNAL SUBPROGRAM (SUB1) ***  
        21.   C  
        22.    SUBROUTINE INTSUB
        23.    INTEGER I 
        24.    COMMON /C/ I 
        25.    I = 4 
        26.    PRINT *,’INTSUB: I = ’ , I 
        27.    RETURN 
        28.    END

 F O R T R A N   C R O S S   R E F E R E N C E   L I S T I N G

 MAIN PROGRAM

 NAME   USE   LINE NUMBER

 I     SET    1  
       USED   2
 INTMN USED   3
 SUB1  USED   4

 SUBROUTINE INTMN : MAIN PROGRAM

 NAME   USE   LINE NUMBER

 I     SET    9 
       USED  10 
 INTMN SPEC   8

 SUBROUTINE SUB1 

 NAME   USE   LINE NUMBER 

 I     COMMON 14 
       SET    15   
       USED   16
 INTSUB USED   17
 SUB1   SPEC   13

 SUBROUTINE INTSUB : SUB1

 NAME  USE    LINE NUMBER

 C     SPEC   24
 I     COMMON 24 
       SPEC   23  
       SET    25 
       USED   26
 INTSUB SPEC   22

 F O R T R A N   O B J E C T   C O D E   L I S T I N G 

MAIN PROGRAM 



Writing a FORTRAN Program

UP-8244.4-B9-16

RELATIVE   INSTRUCTION SUBFIELDS   U  FLD    LABEL         SYMBOLIC INSTRUCTION                          LINE
ADDRESS   F   J  A  X  HI   U       LC                     F,J       A,U,X                             NUMBER 
                                             $(1)          AXR$   
                                                           ASCII 
                                             1G
000000   74  13  13 00 0  000000X    4       $(1)          LMJ       X11,FINT2$                             0
000001   10  16  04 00 000001                0G            LA,U      A4,1                                   1
000002   01  00  04 00 0  000000R    0                     SA        A4,I                                   1
000000             0777777777776             $(4)          +         0777777777776                          2
000001             0030400000000                           +         0030400000000                          2
000002             0000000000000                           +         0000000000000                          2
000003             0000000000000                           +         0000000000000                          2
000004             0000000000000R   10                     +         0000000000000                          2
000005             0060012000000                           +         0060012000000                          2
000006             0000000000000R    0                     +         0000000000000                          2
000007             0010004000000                           +         0010004000000                          2
000010   74  13  13 00 0  000000X    5                     LMJ       X11,FMTE$$                             2
000003   26  16  14 00 000000   R    4       $(1)          LXM,U     A0,FTEMP$                              2
000004   46  17  13 00 000000   X    6                     LXI,XU    X11,BDICALL$+F2SE$$                    2
000005   00  00  13 00 0  000000X    6                     IBJ$      X11,F2SE$$                             2
000006   10  16  00 00 000000                              LA,U      A0,0                                   3
000007   46  17  13 00 000000                              LXI,XU    X11,0                                  3
000010   74  13  13 00 0 000017R     1                     LMJ       X11,INTMN                              3
000011   10  16  00 00 000000                              LA,U      A0,0                                   4
000012   46  17  13 00 000000                              LXI,XU    X11,0                                  4
000013   74  13  13 00 0 000000X     7                     LMJ       X11,SUB1                               4
000014   74  13  13 00 0 000000X     8                     LMJ       X11,FEXIT$                             8
000000             0115101111116             $(10)         +         0115101111116                          8
000001             0072040111040                           +         0072040111040                          8
000002             0075040040040                           +         0075040040040                          8 

SUBROUTINE INTMN : MAIN PROGRAM 

RELATIVE   INSTRUCTION SUBFIELDS   U  FLD    LABEL         SYMBOLIC INSTRUCTION                          LINE
ADDRESS   F   J  A  X  HI   U       LC                     F,J       A,U,X                             NUMBER 
                                             $(1)          AXR$            
                                                           ASCII
000015   27  00  13 00 0 000011R     4                     LX        X11,FTEMP$+9                           8
000016   74  04  00 13 0 000000                            J         0,X11                                  8
000017   06  00  13 00 0 000011R     4       INTMN         SX        X11,FTEMP$+9                           8
000012             0111116124115             $(4)          +         0111116124115                          8
000013             0116040072040                           +         0116040072040                          8
RELATIVE   INSTRUCTION SUBFIELDS   U  FLD    LABEL         SYMBOLIC INSTRUCTION                           LINE
ADDRESS   F   J  A  X  HI   U       LC                     F,J       A,U,X                              NUMBER
000014             0115101111116                           +         0115101111116                           8
000015             0041040040040                           +         0041040040040                           8
000016             0000000000012R    4                     +         0000000000012                           8
000020   10  00  01 00 0 000016R     4       $(1)          LA        A1,FTEMP$+14                            8
000021   46  16  13 00 000000  X     9                     LXI,U     X11,BDICALL$+ARGC1$                     8
000022   00  00  13 00 0 000000X     9                     IBJ$      X11,ARGC1$                              8
000023   10  16  04 00 000002                2G            LA,U      A4,2                                    9
000024   01  00  04 00 0 000000R     0                     SA        A4,I                                    9
000017             0777777777776             $(4)          +         0777777777776                          10
000020             0030400000000                           +         0030400000000                          10
000021             0000000000000                           +         0000000000000                          10
000022             0000000000000                           +         0000000000000                          10
000023             0000000000003R   10                     +         0000000000003                          10
000024             0060013000000                           +         0060013000000                          10
000025             0000000000000R    0                     +         0000000000000                          10
000026             0010004000000                           +         0010004000000                          10
000027   74  13  13 00 0 000000X     5                     LMJ       X11,FMTE$$                             10
000025   26  16  14 00 000017  R     4                     $(1)      LXM,U A0,FTEMP$+15                     10
000026   46  17  13 00 000000  X     6                     LXI,XU    X11,BDICALL$+F2SE$$                    10
000027   00  00  13 00 0 000000X     6                     IBJ$      X11,F2SE$$                             10
000030   74  04  00 00 0 000015R     1                     J         $-11                                   11
000003             0111116124115             $(10)         +         0111116124115                          12
000004             0116072040111                           +         0116072040111                          12
000005             0040075040040                           +         0040075040040                          12
SUBROUTINE   SUB1 

RELATIVE   INSTRUCTION SUBFIELDS   U  FLD    LABEL         SYMBOLIC INSTRUCTION                           LINE
ADDRESS   F   J  A  X  HI   U       LC                     F,J       A,U,X                              NUMBER
                                             $(1)          AXR$ 
                                                           ASCII
000031   27  00  13 00 0 000030R     4                     LX        X11,FTEMP$+24                          12
000032   74  04  00 13 0 000000                            J         0,X11                                  12
000033   06  00  13 00 0 000030R     4       SUB1          SX        X11,FTEMP$+24                          12
000031            0123125102061              $(4)          +         0123125102061                          13
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000032            0041040040040                            +         0041040040040                          13
000033            0000000000031R     4                     +         0000000000031                          13
000034   10  00  01 00 0 000033R     4       $(1)          LA        A1,FTEMP$+27                           13
000035   46  16  13 00 000000  X     9                     LXI,U     X11,BDICALL$+ARGC1$                    13
000036   00  00  13 00 0 000000X     9                     IBJ$      X11,ARGC1$                             13
000037   10  00  04 00 0 000001R     0       3G            LA        A4,$bentr                              13
000040   74  11  04 00 0 000046R     1                     JB        A4,4G                                  13
                                             $(1),5G
000000            0000000000006R    10       $(6)          +         0000000000006                          13
000001            0000000000007R    10                     +         0000000000007                          13
000002            0000002000000R     6                     +         0000002000000                          13
RELATIVE   INSTRUCTION SUBFIELDS   U  FLD    LABEL         SYMBOLIC INSTRUCTION                           LINE
ADDRESS   F   J  A  X  HI   U       LC                     F,J       A,U,X                              NUMBER
000041   10  00  00 00 0 000002R     6       $(1)          LA        A0,FTEMP$$+2                           13
000042   46  17  13 00 000000                              LXI,XU    X11,0                                  13
000043   74  13  13 00 0 000000X    10                     LMJ       X11,OLDCM$                             13
000044   10  16  04 00 000001                              LA,U      A4,1                                   13
000045   01  00  04 00 0 000001R     0                     SA        A4,$bentr                              13
000046   10  16  04 00 000003                4G            LA,U      A4,3                                   15
000047   01  00  04 00 0 000000R     2                     SA        A4,I                                   15
000034            0777777777776              $(4)          +         0777777777776                          16
000035            0030400000000                            +         0030400000000                          16
000036            0000000000000                            +         0000000000000                          16
000037            0000000000000                            +         0000000000000                          16
000040            0000000000011R    10                     +         0000000000011                          16
000041            0060012000000                            +         0060012000000                          16
000042            0000000000000R     2                     +         0000000000000                          16
000043            0010004000000                            +         0010004000000                          16
000044   74  13  13 00 0 000000X     5                     LMJ       X11,FMTE$$                             16
000050   26  16  14 00 000034  R     4       $(1)          LXM,U     A0,FTEMP$+28                           16
000051   46  17  13 00 000000  X     6                     LXI,XU    X11,BDICALL$+F2SE$$                    16
000052   00  00  13 00 0 000000X     6                     IBJ$      X11,F2SE$$                             16
000053   10  16  00 00 000000                              LA,U      A0,0                                   17
000054   46  17  13 00 000000                              LXI,XU    X11,0                                  17
000055   74  13  13 00 0 000061R     1                     LMJ       X11,INTSUB                             17
000056   74  04  00 00 0 000031R     1                     J         $-21                                   18
000006            0000000000001              $(10)         +         0000000000001                          22
000007            0100505050505                            +         0100505050505                          22
000010            0000000000000                            +         0000000000000                          22
000011            0123125102061                            +         0123125102061                          22
000012            0072040111040                            +         0072040111040                          22
000013            0075040040040                            +         0075040040040                          22

SUBROUTINE   INTSUB : SUB1 

RELATIVE   INSTRUCTION SUBFIELDS   U  FLD    LABEL         SYMBOLIC INSTRUCTION                           LINE
ADDRESS   F   J  A  X  HI   U       LC                     F,J       A,U,X                              NUMBER
                                             $(1)          AXR$      
                                                           ASCII
000057   27  00  13 00 0 000045R     4                     LX        X11,FTEMP$+37                          22
000060   74  04  00 13 0 000000                            J         0,X11                                  22
000061   06  00  13 00 0 000045R     4       INTSUB        SX        X11,FTEMP$+37                          22
000046            0111116124123              $(4)          +         0111116124123                          13
000047            0125102040072                            +         0125102040072                          13
000050            0040123125102                            +         0040123125102                          13
000051            0061041040040                            +         0061041040040                          13
000052            0000000000046R     4                     +         0000000000046                          13
000062   10  00  01 00 0 000052R     4       $(1)          LA        A1,FTEMP$+42                           13
000063   46  16  13 00 000000  X     9                     LXI,U     X11,BDICALL$+ARGC1$                    13
RELATIVE   INSTRUCTION SUBFIELDS   U  FLD    LABEL         SYMBOLIC INSTRUCTION                           LINE
ADDRESS   F   J  A  X  HI   U       LC                     F,J       A,U,X                              NUMBER
000064   00  00  13 00 0 000000X     9                     IBJ$      X11,ARGC1$                             13
000065   10  16  04 00 000004                6G            LA,U      A4,4                                   25
000066   01  00  04 00 0 000000R    12                     SA        A4,I                                   25
000053            0777777777776              $(4)          +         0777777777776                          26
000054            0030400000000                            +         0030400000000                          26
000055            0000000000000                            +         0000000000000                          26
000056            0000000000000                            +         0000000000000                          26
000057            0000000000014R    10                     +         0000000000014                          26
000060            0060014000000                            +         0060014000000                          26
000061            0000000000000R    12                     +         0000000000000                          26
000062            0010004000000                            +         0010004000000                          26
000063   74  13  13 00 0 000000X     5                     LMJ       X11,FMTE$$                             26
000067   26  16  14 00 000053  R     4       $(1)          LXM,U     A0,FTEMP$+43                           26
000070   46  17  13 00 000000  X     6                     LXI,XU    X11,BDICALL$+F2SE$$                    26
000071   00  00  13 00 0 000000X     6                    IBJ$       X11,F2SE$$                             26
000072   74  04  00 00 0 000057R     1                    J          $-11                                   27
000014            0111116124123              $(10)        +          0111116124123                          28



Writing a FORTRAN Program

UP-8244.4-B9-18

000015            0125102072040                           +          0125102072040                          28
000016            0111040075040                           +          0111040075040                          28
                                                          END
F O R T R A N   S T O R A G E   M A P 

NAME    TYPE       MODE      RELATIVE    LOC      ELEMENT  NUMBER OF    COMMON     PROGRAM 
                             ADDRESS     COUNT    LENGTH   ELEMENTS     SIZE       UNIT 

I       INTEGER    SCALAR    000000          0        4                            MAIN PROGRAM 
I       INTEGER    SCALAR    000000          2        4                            SUBROUTINE SUB1
I       INTEGER    SCALAR    000000         12        4                            SUBROUTINE INTSUB : SUB1

Common blocks 
C                  COMMON    000000         12                               1 
        BLANK      COMMON    000000          2                               1

Entry points
FMAIN$             ENTRY     000000          1
SUB1               ENTRY     000033          1

External references 
IBJ$       BDICALL$      BDIREF$      FMAIN$      FINIT$     FMTE$$      F2SE$$      SUB1      FEXIT$
ARGC1$     OLDCM$  

END  FTN  59  IBANK  73  DBANK  2  COMMON
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9.4.2.2.3.Cross-Reference Listing

The cross-reference listing contains all references to statement labels, subprograms, and
variables that appear in the source program.  Statement numbers appear first in the
listing and are in numerical order.  Symbolic names (variables, arrays, and so on) appear
second and are in alphabetical order.

A separate cross-reference listing is generated for each program unit.  A heading appears
before each cross-reference listing, identifying the program unit.  The heading has one of
the following formats:

MAIN PROGRAM [p]

SUBROUTINE n [:e]

FUNCTION n [:e]

BLOCK DATA b

BLOCK DATA (DEFINED AT LINE m)

In these formats, p indicates the optional program name, n indicates the subprogram
name, e (specified only if n is an internal subprogram) indicates the name of the external
program unit (MAIN PROGRAM or external subprogram name), b indicates the BLOCK
DATA program name, and m indicates the source line number where the unnamed
BLOCK DATA program unit begins.

Column headings printed at the top of each page of the listing are:

NAME

Entity named in the program.

USE

Indication as to whether the entity is set, defined, specified, equivalenced, or used in
a COMMON statement.

LINE NUMBER

The line numbers of the source statements where the entity is referenced.  If an item
appears in a specification statement in a FORTRAN procedure (named in an
INCLUDE statement), then the line number is printed as
proc-name.proc-line-number.

9.4.2.2.4.Object Code Listing

The L option listing produces an object program listing containing all instructions, data,
and constants generated by the compiler for the program.

A heading appears before the object code listing of each program unit, identifying the
unit.  This heading is the same as that generated for the cross-reference listing.
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At the top of each page of this listing, column headings are printed that refer to the fields
under them:

RELATIVE ADDRESS

The relative address, in octal, of the memory location.

INSTRUCTION SUBFIELDS

Machine representation for F, J, A, X, H, I, and U instruction subfields. Letters R and
X are also printed for the relocation information and the external reference
information, respectively.  This portion is suppressed, except the R and X, when the
Y option is specified.  For a detailed explanation of each subfield, see the Series

1100 Assembly Instruction Mnemonics (AIM), Supplementary Reference, UP-9047.

U FLD LC

The location counter number applied to the U-field for relocation purposes (if R
appears under INSTRUCTION SUBFIELDS), or the index to the external reference
table applied to the U-field for external reference purposes (if X appears under
INSTRUCTION SUBFIELDS).

LABEL

Shows the label associated with the storage location, if any.  This label is composed
of a decimal number and the letter L or G following the number.  The letter L is used
for a user-defined label, and the letter G is used for a compiler-generated label.

SYMBOLIC INSTRUCTION

Contains the symbolic representation of the object code shown under
INSTRUCTION SUBFIELDS.  It follows assembly language code conventions as
closely as possible, with the F and J fields followed by the A, U, and X fields.

LINE NUMBER

Contains the source code line number that causes the instruction to be generated.
Instructions moved by optimization can be associated with a previous statement
label.

9.4.2.2.5.Storage Assignment Map

A storage map of entities defined in the source program is produced after the object
code listings. Statement labels appear first in the listing and are in numerical order.
Symbolic names (variables, arrays, and so on) are in alphabetical order.

The heading AUTOMATIC STORAGE SIZES is printed when automatic storage is
specified through the COMPILER statement option DATA = AUTO or through the
VIRTUAL statement with local variables.  When local virtual variables are specified, the
subheadings “Nonvirtual” and “Virtual” follow the main heading.  The amount of storage
for local virtual items that don’t appear in a SAVE statement in a program unit group
appears under the subheading Virtual.  Nonvirtual refers to compiler-generated data and
to local variables that don’t appear in a SAVE statement when you specify the option
DATA = AUTO.
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A single storage map is generated for all program units.

At the top of each listing, a heading line identifying the fields of each line in the listing is
printed:

NAME

Name used for the entity defined in the source program.

TYPE

An indication of what the entity identifies.  Data entities are: integer, real, character,
logical, and so on.

MODE

An indication of the way the entity is used (that is, scalar, array).

RELATIVE ADDRESS

Relative octal address (within the location counter) of the identifier.  Its value is
DUMMY when the item is a dummy argument or character function entry point
name.

OFFSET

Byte number in decimal, where a character item begins (in the word defined by the
relative address field).  0Q1, 1Q2, 2Q3, 3Q4.

LOC COUNT

Location counter in decimal, under which the symbol is allocated.  (Not used for
dummy arguments.)

ELEMENT LENGTH

Element length in decimal, of the entity in bytes.

NUMBER OF ELEMENTS

Decimal number of elements that an array entity contains.

COMMON SIZE

Size of the common block in words. (Used only for the common block listing; see
9.4.2.2.6.)

PROGRAM UNIT

Program unit the name is defined in.

ILLEGAL PAGE SIZES  - 4  8  16  32  64  128

An x in the n column indicates that an illegal page span error will occur when the
program is executed with page size nk. For a description of page size, see 8.5.9.
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9.4.2.2.6.Common Block Listing

Following the storage map, the heading (common blocks) is printed.  A list of all
common blocks referenced in the source program is then printed.

The storage map column headings are used for the common block listing.  TYPE is
BLANK for blank common or VIRTUAL for a common block in virtual space.  NAME
identifies the name of a named common block.

Only one common block listing is generated, even if the source program contains more
than one program unit.

9.4.2.2.7.Entry Point Listing

Following the common block listing, a heading (entry points) is printed. The list of entry
points to the source program is then printed in the format NAME, MODE (always
ENTRY), RELATIVE ADDRESS, and LOC COUNT.  These are similar to the entities of the
storage map listing.

Only one entry point listing is generated, even if the source program contains more than
one program unit.

9.4.2.2.8.External References

The external reference listing follows the entry point listing. Under the printed heading
(external references), the names of all external entry points referenced in the source
program are listed.  These include the names of FORTRAN subprograms and all the
library and miscellaneous routines referenced.

Only one external reference listing is generated, even if the source program contains
more than one program unit.

9.4.2.2.9.Static Virtual Storage Sizes

The static virtual storage sizes listing follows the external references listing for
compilation units that specify:

� virtual local variables that don’t appear in a SAVE statement

� virtual common blocks

The line contains “Static virtual storage sizes:”  followed by the amount of virtual
common block storage and the amount of local D-bank storage for virtual local
variables.



Writing a FORTRAN Program

UP-8244.4-B 9-23

9.4.2.2.10.Termination Message

At the conclusion of the compiler listing, a termination line is printed. On this line, the
total number of errors and warnings detected in the program and the amount of storage
for I-bank, D-bank, and common blocks are printed.  All fields are optional.  If any field
is zero, it isn’t printed.  The format is:

END FTN [n ERRORS] [m WARNINGS] [i NON-STD USAGES] [x IBANK]
[y DBANK] [z COMMON]

where: 

n

is the number of errors detected. 

m

is the number of warnings detected. 

i

is the number of nonstandard usage messages printed (T option only). 

x

indicates the number of words of storage used in the instruction bank. 

y

indicates the number of words of storage used in the data bank, except for common
blocks. 

z

indicates the number of words of storage used in common blocks.

9.5. Calling the ASCII FORTRAN Compiler
The ASCII FORTRAN processor call format is:

@FTN [ ,option[option] ...] [si] [ , [ ro] [ , so] ]

where: 

option

is a processor call letter option as described in Table 9-1.  Options identified as SIR
options control the source input routine.  The listing options are discussed in more
detail in 9.4.2.1. 

si

is the name of the program file symbolic source element that contains the program
to compile if the I option is not specified.  If you don’t specify the source element
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name, the FORTRAN source program must directly follow the processor call in the
runstream.  If the I option is specified, the FORTRAN source program must follow
the processor call in the runstream.  If si is present with I, it designates the program
file symbolic element in which the source program is saved. 

ro

is the name of the program file relocatable element that is to receive the compiled
program.  If ro is omitted, the file name and element name of si are used.  If si is also
omitted, the temporary file TPF$.NAME$ is used. 

so

is the name of the program file symbolic element into which the updated source
program will be placed.  so is not used if the I or U option is specified or if si is not
specified.  If neither so nor U is specified and there are corrections, the corrected
source is compiled but not saved.

Use the COMPILER statement to obtain additional control over the compilation process.
(See 8.5.)

9.5.1. Processor Call Options

ASCII FORTRAN processor call options are listed in Table 9-1.  The listing options are
described in detail in 9.4.2.1.

Table 9-1.  Processor Call Letter Options  

Letter Action

A Don’t enter ERR mode on serious errors (that is, always perform  ER EXIT$ to
terminate the compilation).  Without the A option,  certain errors (such as I/O ERRORS)
result in ERR$ termination.

B In checkout mode, this option inhibits clearing of core before loading the user program.

C Invokes FORTRAN checkout mode, generating code in core and executing it. (See
10.3.)

D Print the storage map, common block listing, entry point listing, and external reference
listing.

E 1110 code reordering.  See 9.6.3.

F Generate diagnostic tables under location counter 3 for use by walkback and the
interactive PMD (see 10.4).

I SIR option; source input is from the runstream.

K List update and input (base) line numbers (if source lines are being printed), and print
SIR correction lines.

continued
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Table 9-1.  Processor Call Letter Options (cont.)

Letter Action

L Generate all available listing output.

M Search file FTN$PF first for INCLUDE statements.

N If used with no other listing options, then list   only source program error messages.  If
used with other listing options, then suppress printing of warning messages.

O Generate code that allows D-bank addresses to exceed octal 0200000 (decimal
65,536).

P Allows a character or Hollerith constant to be compared for equality to an integer or
real item.

R Print the cross-reference listing.

S List only the source program and error and warning messages.

T Flag items that are nonstandard (that is, not compatible with the American National
Standard Programming Language FORTRAN, ANSI X3.9-1978) with a diagnostic.  N
option does not turn off  these nonstandard usage messages.

The flagger compiler always generates these messages unless you use the T option to
turn the messages off.

U SIR option;  generate an updated cycle of the source input element.

V Perform local code optimization.  This option is ignored during checkout mode.

W SIR option; list all SIR correction lines at the head of the printer listing.

X Perform an ER EABT$ at the end of the compilation if the  FORTRAN program had any
errors or if any serious errors (such as I/O errors) occurred.

Y List the generated code in pseudo-assembler format, without the octal representation
of each word.  Also print the listings generated by the D option. The L option overrides
the Y option.

Z Perform full optimization (when not in checkout mode).  This includes the operations
controlled by the V option.  In checkout mode, this option turns on interactive
debugging (see 10.3).

 

9.5.2. Execution of the Object Program

9.5.2.1. Execution Using Checkout

If a program or a portion of it is in one source element, it can be executed in checkout
mode by putting the C or CZ options on the compiler call (see Table 9-1).  If only a
subprogram is tested, use the CZ options.  Then, upon entering checkout debug mode,
test the subprogram using the CALL and DUMP commands (see 10.3).
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Extensive debugging facilities are available in interactive checkout debug mode.

9.5.2.2. Collection and Execution

If there are multiple source elements or if the absolute is to be executed more than once,
collect an absolute with the collector (@MAP processor).  First, the FORTRAN programs
must be compiled.

Next, you must collect your program.  If your site has the FORTRAN run-time library in a
file that is automatically searched by the collector, you can do the following:

@MAP,SI MAPSOURCE,TALLY
IN TALLEY
@XQT TALLY

This assumes that all of your programs are in the standard temporary file TPF$.

If your site doesn’t have the FORTRAN run-time elements in a file that is automatically
searched by the collector (see 9.5.3), you must specify the appropriate file in the
collector symbolic using a LIB statement:

@MAP,FSI MAPSOURCE,TALLEY
LIB FTN*LIB.
IN TALLEY
@XQT TALLEY

If the collector generates truncation error messages during the collection, the program is
too large to fit into the standard 65K addressing space.  In this case, use the O option on
all ASCII FORTRAN compilations.  See Appendix H for a description of large programs
and multibanking, or Appendix M for a description of the ASCII FORTRAN virtual
feature.

For collected absolutes, the debugging features of the debug facility statements (see
10.2) and the run-time interactive PMD and walkback are available (see 10.4).

9.5.3. Using the Run-Time Library

Your site can have a type1 or type2 library for ASCII FORTRAN.  A type1 library contains
I/O routines that are accessed by an LMJ linkage from the ASCII FORTRAN-generated
code.  A type2 library does not contain any I/O routines; the I/O routines are in system
common banks that are accessed by an LIJ linkage from compiler-generated code.  The
ASCII FORTRAN compiler generates an IBJ$ instruction linkage to all I/O routines; when
this IBJ$ instruction mechanism is used, the collector decides whether to resolve the
IBJ$ to an LMJ or LIJ linkage, depending on the type of library that is specified in the LIB
statement in the collection.

The ASCII FORTRAN library is normally installed by COMUS in SYS$LIB$*FTN or
manually installed in the file SYS$*RLIB$.  The collector automatically searches these
files for the relocatable elements needed by the compiler-generated code in your
program.  If the library was not installed in one of these files, you must specify the file
name in a collector LIB statement, as in the example in 9.5.2.2.
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The library also contains three symbolic elements that contain procedures that some
programmers may wish to use.  These elements are FTNPROC (MASM procedures to
change the I/O and virtual environments; see Appendixes G and M), FIOP (FORTRAN
procedure for the ERTRAN I/O packets; see 7.7.3.15), and INFO-PROC (MASM
procedures for a FORTRAN-to-MASM interface; see 10.4.3.6 and Appendix K).

If the library has not been installed in SYS$*RLIB$, or the procedure elements not
installed in SYS$LIB$*PROC$, the FTN and MASM processors are not able to find the
procedures when they need them.  In this situation, you need to use PDP to put a copy of
the proper element in a file that is searched by the FTN or MASM processor (usually
your source-input file).  For example, if FORTRAN was installed in SYS$LIB$*FTN, and
you want to use a procedure from the element FTNPROC, and you use TPF$ as your
source file, use the following:

@PDP,M SYS$LIB$*FTN.FTNPROC,TPF$.FTNPROC 
@EOF

9.6. Compiler Optimization
The compiler always performs the following computational optimizations in addition to
its other functions (see 1.3.1):

� The reduction of expressions involving constants to a single constant (for example,
3.14159**2 is replaced by the single constant 9.8695877).

� The reordering of logical expressions to reduce the amount of time spent evaluating
the expression (for example, IF(A.OR.B) GO TO 10 is replaced by IF(A) GO TO 10,
and IF(B) GO TO 10).

� All available registers are used to hold intermediate results of calculations and
reduce the number of references to slower storage.

Using processor options, you can direct the compiler to devote additional time to
optimizing the FORTRAN statements before generating the relocatable binary object
program from the object code.  This is done at the expense of compilation speed, but the
resulting output is usually executed significantly faster than without this additional
optimization.

9.6.1. Local Optimization

At your option, the compiler partitions the FORTRAN program into basic blocks; that is,
a sequence of statements with no entry or exit points interior to the sequence.  In each
of these blocks it performs the following additional optimizations:

� The evaluation of most expressions that are constant at compilation time.  For
example, the calculations of the following statement sequence are done at compile
time rather than at execution time:

PARAMETER (J=1)        may be compiled as            I = 3
I = J + 2
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� The elimination of a computation that, at execution time, is already computed in a
previous statement, and replacement of the second computation by a reference to
the temporary storage location or arithmetic register saving the result of the first
computation.  For example,

A = X + Y        may be compiled as            TEMP = X + Y
B = X + Y                                      A = TEMP
                                               B = TEMP

� The propagation of constants when a variable is assigned a constant value, to the
places that the variable is used.  For example,

J = 1            may be compiled as            J = 1
I = I + J + K                                  I = I + 1 + K

� The elimination of unneeded references to storage, in a basic block.  For example,

A = X + Y        may be compiled as            B = C + D
B = C + D                                      A = X + Y + Z
A = X + Y + Z

� The replacement of an operation with a faster, equivalent one. For example, J*2 is
replaced by a shift operation.

� Simplification of more complex expressions.  For example, the expression A**2 is
replaced by A*A.

Specify local optimization by using the V option on the ASCII FORTRAN processor call
(@FTN).

9.6.2. Global Optimization

At your option, the compiler performs an analysis of the interconnection patterns
between basic blocks and performs the following additional optimizations:

� The elimination of redundant computations between basic blocks and the
replacement of the second computation by a reference to the temporary storage
location or arithmetic register which, at execution time, holds the result of the first
computation.

� The elimination of unneeded stores to variables across the whole program unit.  If
the variable on the left side of an assignment statement is never used, the entire
assignment statement is eliminated.  Because evaluation of the right side of the
assignment statement doesn’t occur, any possible side effects of the eliminated
statement will not occur.

� Movement of computations that are constant relative to a loop to a point outside the
loop, and the replacement of the computation in the loop by references to the
temporary storage location or arithmetic register that holds the result of the
computation.  (ASCII FORTRAN does not move out of loops portions of a
computation that involve intrinsic functions.)

� Replacement of loop control variables, and expressions involving loop control
variables by temporaries that are incremented on each pass through the loop.
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� The maintenance of the result of computations and frequently used values in
registers when execution crosses between blocks.

Global optimization is effected by specifying the Z option on the ASCII FORTRAN
processor call (@FTN).  For more information about optimization of register conflicts,
see code reordering in 8.5.5.

9.6.3. Code Reordering

The E option on the ASCII FORTRAN processor call (@FTN,E) invokes a code
reordering algorithm during the code generation phase of the compiler.  This option is
meaningful on hardware that incurs register conflicts (most hardware supporting ASCII
FORTRAN).  This option shuffles generated code, which minimizes the hardware
register conflicts in order to obtain faster execution speeds.

Example of code reordering:

Source:

J = I 
N = K + M
P = O

Generated code:

1)   L    A4,I
2)   S    A4,J
3)   L    A6,K
4)   A    A6,M
5)   S    A6,N
6)   SZ   P

There is a major register conflict between lines 1 and 2 and between lines 4 and 5.  A
large delay occurs at each of the two points.  After code reordering, the sequence is:

1)   L    A4,I
2)   L    A6,K
3)   A    A6,M
4)   SZ   P
5)   S    A4,J
6)   S    A6,N

This sequence is faster than the unordered code.

The algorithm used is a simple look-ahead that stops when labels, calls, etc., are
encountered.  In general, a decrease of 3% to 8% in central processing unit (CPU) time
can be expected for execution of the generated code.  However, I/O-bound programs see
no change and a heavily looping program can execute up to 30% faster.  The effect is
most pronounced on programs that also are compiled with global optimization (the Z
option).

This code-reordering algorithm can also be called by using the U1110=OPT COMPILER
statement option.  See 8.5.5.
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9.6.4. Optimization Pitfalls

The optimizer cannot fully optimize expressions involving local variables shared
between an internal subprogram and its external program unit.  Therefore, to complete
optimization of an element, be careful of which and how much data is shared by internal
and external program units.  The same situation exists with common blocks and
arguments to subprograms.  The optimizer operates on only one program unit at a time
and can optimize operations on data local to the program unit most efficiently.

Example:

X=22.
CALL Y(Z)
X=X+1.

In this situation, if X is a local variable, the optimizer can keep the value in a register
across the CALL to Y, since no other program unit can access purely local variables not
passed as arguments.

If X were in common or shared between the external program unit and any internal
subprograms, this optimization could not be done since the procedure Y could
conceivably change the value of X.

ASCII FORTRAN issues the following warning message when global optimization of an
assigned GO TO statement is not possible.

2008  Presence of assigned GO TO inhibits global optimization

The presence of some assigned GO TO statements inhibit global optimization and result
in only local optimization being performed.  This situation is limited to only those
assigned GO TO statements that transfer control to the head of a loop that is not a
DO-loop.

The backward movement and strength reduction optimizations performed on a loop
require an area (commonly referred to as an initialization block) to which operations
that are invariant in the loop can be moved.

When transfers of control are made to the head of a non-DO-loop from outside the loop,
optimization must create an initialization block inserted immediately before the head of
the non-DO-loop.  The transfers of control from outside the non-DO-loop are then
modified to transfer control to the newly created initialization block.

Since the point to which an assigned GO TO statement is transferred depends on the
contents of a variable that contains the address of any one of a list of labels, the
modification cannot be made.

Conversion of the assigned GO TO statement to a computed GO TO statement allows
global optimization.
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9.6.5. Numerical Differences Caused by Optimization

A program compiled with optimization may produce different answers than one
compiled without optimization.  These differences can come from several sources,
including:

� conversion of a division by a constant to a multiplication of the reciprocal of that
constant (if the compiler was built without the INHIBIT DIVIDE OPTIMIZATION
SGS).  This can cause slight differences because the hardware floating point
representation of the reciprocal is not exact.

� conversion of an exponentiation by certain integers to a series of multiplications.
This can cause slight differences because the run-time algorithm computes
exponentiation using a generalized method, not the series of multiplications.

� evaluation of some additional expressions at compile time rather than at run time.
This can cause slight differences because all compile-time arithmetic is done in
double precision (even when the corresponding run-time arithmetic would be single
precision), and because compile-time double precision to single precision
conversions are rounded and run-time conversions are truncated.

� some operations that replaced slower, mathematically equivalent ones give different
results in the case of underflows, overflows, and other exceptions.

You should ignore small differences in the final results due to optimization.  Large
differences in final results may indicate that the program contains an algorithm that is
too sensitive to the data (for example, the algorithm is operating at or near a
mathematical “singularity”), or that an undetected exception is occurring (for example,
division by zero), and that the normally insignificant differences due to optimization
have become a significant portion of the final results.

9.7. Hints for Efficient Programming
Follow this list of suggestions to obtain the most efficient object programs from the
ASCII FORTRAN compiler:

1. Simplify program structure as much as possible.

Efforts in debugging and maintaining a FORTRAN program are greatly reduced, and
more optimal code is produced by the compiler if unnecessary complexity is
avoided.  Individual statements should be simple enough to be easily understood.
Loop nesting should be simple and straightforward with little inside branching.
Program flow should be simple enough to minimize the number of paths through the
program and make the purpose and method of the program easily understandable.
Adhere to structured programming practices.  Use the blocking statements (see 4.4)
instead of GO TO statements whenever possible.  Avoid unstructured methods such
as extended range of DO-loops.

2. Optimization operates most efficiently on modularized, small program units.
Limitations on table sizes in optimization affect the optimizations performed on a
large program unit.
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3. Although the compiler is designed to handle variables in COMMON or
EQUIVALENCE statements in the most optimal way, the compiler must assume the
worst possible cases when references are made to your subroutines or functions.
Avoid any unnecessary use of COMMON or EQUIVALENCE statements to aid
optimization.

4. Because of the additional complexity involved in addressing variables with over 65K
addresses (the O option), this alternative should be used only for programs that
actually exceed 65K. This particularly applies to arrays in very tight loops.

5. Since references to dummy arguments (which are not arrays) require indirect
references to storage, it is best to assign such variables to local variables for use in
the subprogram, especially within loops.

6. Excessive nesting of loops may require the loading and unloading of registers,
adding to the execution time of the program, and should be avoided.

7. Because of the way logical expressions are optimized, you should try to order the
logical expressions so that the most frequently satisfied comparison is performed
first in a left-to-right sequence.

8. The initialization portion of a loop is assumed to be executed less frequently than
the loop.  When this assumption is violated, a FORTRAN program can take longer to
execute with optimization than without.

9. The use of lists with ASSIGNED GO TO statements helps optimization by reducing
the worst case assumptions that must be made without the lists.  However, the list
must include all labels that can be branched to at execution time or the compiler
may produce incorrect code, and therefore, the execution of the program may
produce incorrect results.  Even with a complete list of labels, global optimization is
inhibited when an assigned GO TO statement branches to the head of a loop that is
not a DO-loop.

10. One portion of global optimization involves attempting to take advantage of the
linear allocation of storage for multidimensional arrays.  This involves the attempt to
convert a data transfer operation in a simple loop into a single, linear operation
referred to as a block transfer.  A simple loop is defined as involving only the
transfer of one array to another, or a constant into an array.  To take advantage of
this form of optimization, each array should be initialized or redefined within its
own loop.  Character arrays that start on word boundaries and whose element
lengths are a multiple of 4 can also be optimized in this way.

9.8. Diagnostic System
The compiler contains a large number of self-explanatory diagnostic messages, some of
which contain symbolic names from the source code.  Diagnostic messages are printed
adjacent to the source program statements that contain the errors or they are printed
following the source statement listing if they pertain to the entire program unit.

Some messages are merely reminders to you and do not affect the generated code.  This
type of message is prefaced with the word WARNING when it is printed.

Other messages indicate more serious errors.  A message prefaced by the word ERROR
indicates that the code generated is possibly incorrect due to ambiguous or invalid usage
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of the source language.  When an error is detected during a compilation, the relocatable
binary element produced is marked as being in error.  If the program is being run in
batch mode, this allows some execution where execution is normally stopped, as in the
case of detection of an I/O error.

Nonstandard usage messages occur only when you specify the T option.  See 9.5.1
(Processor Call Options).  (The flagger compiler always generates these messages unless
you specify the T option.)

The format of an error/warning/nonstandard usage message is:

   ERROR
*  WARNING          x [at line y] description
   NON-STD USAGE

where x is a code number indicating the type of error or warning.  See Appendix D for
details on these codes.  y indicates a source line number or a line number within an
included procedure.  If it is the latter, the line is given in the form: 

proc.proc-line-number

where proc is the name of a procedure.  (See 8.2.)

All diagnostic message descriptions appear in Appendix D.

Regardless of the type of errors detected in the program, all statement are scanned to
detect syntactical errors.  At the end of the compiler listing (in the END FTN message),
the numbers of warnings, errors, and nonstandard usages detected (if any) are printed.
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Section 10
Debugging a Program

10.1. Debugging Methods for ASCII FORTRAN
ASCII FORTRAN provides three facilities for debugging programs.  Different problems
and programs lend themselves to different debugging methods.

It is important to understand that the three debugging facilities are completely separate;
in particular, commands for one debugging method do not apply to the others (except
where commands are duplicated).

The three debugging facilities are:

1. The (noninteractive) debug facility (see 10.2.)

2. Checkout mode and the interactive checkout debugger (see 10.3.)

3. Walkback and the interactive Post Mortem Dump (PMD) (see 10.4)

The debug facility is most useful during program development.  The interactive checkout
debugger is probably the most powerful of the three, but can only be used on programs
that can be run in checkout mode.  Walkback and interactive PMD can be compiled into
a production program and will be available when unexpected problems occur in a
program.

10.2. Debug Facility Statements
The debug facility is used for debugging a program while you are creating it. Ordinarily,
the debug facility is not a part of the final program unit.

The debug facility provides these debugging aids:

1. subscript checking

2. label tracing

3. tracing of changes in values

4. tracing of entry and exit for subprograms

5. simple output
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The DEBUG statement sets the conditions for operation of the debug facility and
designates debugging operations that apply to the entire program unit (such as subscript
checking).  The debug packet identification statement (AT) identifies the beginning of
the debug packet and the point in the program unit at which the statements in the debug
packet are to be executed.  The three executable statements (TRACE ON, TRACE OFF,
and DISPLAY) designate actions to be taken at specific points in the program unit.

Only one DEBUG statement can appear in a program unit; if a DEBUG statement
appears, then any number (including zero) of debug packets can appear in the program
unit.  The AT, TRACE ON, TRACE OFF, and DISPLAY statements can’t appear before the
DEBUG statement.  In the program unit, debug packets must be located after all regular
code of the FORTRAN main program or subprogram, but preceding the END statement
(or following the last statement in the program unit, if the program unit has no END
statement).  Any normal FORTRAN executable, data, or format statement can also occur
in a debug packet.  The debug packet is terminated by: (1) another AT statement, (2) the
END statement for that FORTRAN program unit, or (3) the FUNCTION or SUBROUTINE
statement that signifies the start of an internal subprogram.

The debug facility and compiler optimization (V or Z option on the ASCII FORTRAN
compiler call statement) are incompatible.  When used together, bad code could be
generated, so instead, the compiler emits an error and turns off optimization.

The individual debug statements, which are all nonstandard, are explained in

detail in the following subsections.

10.2.1. DEBUG

Purpose:

The DEBUG statement indicates the existence of a debug facility for the given
FORTRAN program unit and specifies the debugging environment.

Form:

DEBUG [option [,option] ... ]

where option is any of the debugging environment specifications:

� UNIT (See 10.2.1.1.)

� SUBCHK (See 10.2.1.2.)

� TRACE (See 10.2.1.3.)

� INIT  (See 10.2.1.4.)

� SUBTRACE (See 10.2.1.5.)

Description:

Any combination of the debugging environment options can appear in the option list
following the DEBUG keyword.  They can be in any order.
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There must be a single DEBUG statement for each program unit to be debugged and it
must immediately precede the first debug packet, if one exists.

If you don’t specify the UNIT option, any debugging output is put in the standard
program output file.

If you omit the TRACE option from the DEBUG option list, there is no display of
program flow by statement labels in the program unit.

Examples:

     DEBUG
C           Indicates debugging is enabled.  Debug action is specified
C           in an associated AT statement.  Output is put in
C           the standard system output file.

      DEBUG SUBTRACE,UNIT(4),SUBCHK(ARRAY1,BUNCH2,GROUP3),INIT
C           Subscripts are checked for arrays ARRAY1, BUNCH2,
C           and GROUP3.  Changes in values of all variables are
C           noted.  Debug output is put on unit number 4.

      DEBUG TRACE,INIT(C,LIST1,E),SUBCHK
C
C           Debugging will include subscript checking on all arrays,
C           list of program flow by statement label passage (assuming
C           a TRACE ON statement appears in an AT packet following the
C           DEBUG statement), and notation of changes in value of C,
C           LIST1, and E.

10.2.1.1.UNIT

Purpose:

The DEBUG statement UNIT option designates a particular output file for debug
information.

Form:

UNIT(c)

where c is an integer constant representing a unit specifier.

Description:

All debugging output goes to the designated file.

The unit specifier can’t change in an executable program; for example, if the FORTRAN
main program specifies UNIT(8), a subprogram called by this main program must
specify UNIT(8) if it has a DEBUG statement.



Debugging a Program

UP-8244.4-B10-4

When this option is absent, all debugging output is put in the standard output file.  No
DEBUG UNIT message is printed in this case.

Example:

      DEBUG UNIT (25)
C           Sends all debug output to the file associated with unit
C           25.

10.2.1.2.SUBCHK

Purpose:

The DEBUG statement SUBCHK option checks the validity of subscripts of array
elements referenced in the program unit.

Form:

SUBCHK [(n [,n]...)]

where each n is an array name.

Description:

If the list of array names is not given following the SUBCHK option, subscript checking
is done for all arrays in the program unit.

The check is made by comparing the size of the array with the product of the subscripts.
A message (listing the source code line number and array name) is placed in the debug
output file if an out-of-range subscript expression is encountered.  The incorrect
subscript is still used in the continued program execution.

When this option is omitted, no subscript checking is performed.

Subscript checking can’t be done for assumed-size arrays (see 2.4.4.1).

Examples:

DEBUG SUBCHK

DEBUG SUBCHK(ARRAY1, LIST2)

10.2.1.3.TRACE

Purpose:

The DEBUG statement TRACE option indicates that you want statement label tracing in
the FORTRAN program unit in which the DEBUG statement appears.



Debugging a Program

UP-8244.4-B 10-5

Form:

TRACE

Description:

This option only enables label tracing.  Tracing is not actually performed until a TRACE
ON statement is encountered in the program flow.  It is terminated on encountering a
TRACE OFF statement (see 10.2.3 and 10.2.4).

TRACE ON and TRACE OFF statements have no effect on a program unit in which the
TRACE option is not specified.

Example:

     DEBUG TRACE
C            The trace debug facility is enabled.
C            It can be activated with a TRACE ON statement.

10.2.1.4. INIT

Purpose:

The DEBUG statement INIT option traces the changes in values of variables and arrays
during execution.

Form:

INIT [(m [,m]...)]

where m is the name of a variable or array in the program unit for which a value trace is
performed.

Description:

When no list is given after the INIT option, a value trace is done on every variable or
array in the program unit.  This includes changes in value of any particular element of an
array.

The value trace consists of placing, in the debug output file, a display of the variable
name or array element name along with its new value each time it is assigned a value in
an assignment statement, a READ statement (except a namelist READ), a DECODE
statement, or an ASSIGN statement.  The source code line number where the variable is
set is also listed.

Example:

     DEBUG INIT (A,VAR1)
C            Starts debug facility and initiates trace of array
C            A and variable VAR1.
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10.2.1.5.SUBTRACE

Purpose:

The DEBUG statement SUBTRACE option indicates entrance and exit of a subprogram
during program execution.

Form:

SUBTRACE

Description:

When you include the SUBTRACE option in the DEBUG statement within a function or
subroutine, a trace on entrance to and exit from that subprogram is enabled.

The message ENTER SUBPROGRAM s (where s is the subprogram entry point name) is
placed in the debug output file each time s is entered, and RETURN FROM
SUBPROGRAM s is inserted in the file each time s completes execution.

Example:

DEBUG SUBTRACE

10.2.2. AT

Purpose:

The AT statement identifies the beginning of a debug packet and indicates the point in
the program unit at which the packet is to be activated (that is, the point at which the
statements in the debug packet are to be executed).

Form:

AT s

where s is a statement label of an executable statement in the program unit to be
debugged.

Description:

There must be one AT statement for each debug packet.  Each AT statement indicates
the beginning of a new debug packet.  The end of the debug packet is indicated by: (1)
an END statement, (2) the FUNCTION or SUBROUTINE statement that signifies the
start of an internal subprogram, or (3) another AT statement.

The statements in the debug packet are executed whenever the statement associated
with statement label s is executed in the program flow.  They are executed immediately
prior to the execution of s.
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Example:

          .
          .
          .
        DEBUG
        AT 100
        DISPLAY X, Y, A
        END
C               The DISPLAY statement is executed each time the statement
C               with label 100 is executed.

10.2.3. TRACE ON

Purpose:

The TRACE ON statement initiates display of the flow of execution by statement label.

Form:

TRACE ON

Description:

After TRACE ON is encountered and until the next TRACE OFF is encountered, a record
of the associated statement label is placed in the debug output file each time a labeled
statement is executed in the program.

TRACE ON remains in effect through any level of subprogram call or return.  If the
TRACE option isn’t used on a DEBUG statement in a particular program unit, label trace
doesn’t occur during execution of that program unit.

TRACE ON can occur anywhere in a debug packet.

There can be no display of program flow by statement label in this program unit if the
TRACE option is omitted from the DEBUG option list.

Example:

      DEBUG TRACE, INIT(A,B)
       .
       .
       .
      AT 104
      TRACE ON
 C           The flow of execution is displayed starting at
 C           statement 104.
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10.2.4. TRACE OFF

Purpose:

The TRACE OFF statement terminates statement label tracing.

Form:

TRACE OFF

Description:

TRACE OFF can occur anywhere in a debug packet.  This statement terminates tracing
of program flow by statement label in the program.

Example:

      .
      .
      .
     DEBUG TRACE, INIT(A,B)
      .
      .
      .
    AT 104
    TRACE ON
      .
      .
      .
    AT 950
    TRACE OFF
 C           The flow of execution is displayed from the point
 C           where statement 104 is executed to the point where
 C           statement 950 is executed.

10.2.5. DISPLAY

Purpose:

The DISPLAY statement provides a simple debug output mechanism.

Form:

DISPLAY list

where list is a series of variables, array element names with constant subscripts, or array
names separated by commas.  A dummy argument name of a function or subroutine isn’t
permitted in list.
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Description:

The DISPLAY statement is equivalent to the following FORTRAN statements:

NAMELIST /name/ list
WRITE (n,name)

where list is as defined above, name is a unique name generated for DISPLAY, and n is
the debug unit specifier (from the UNIT option).  DISPLAY provides a simple means of
putting results of debugging operations for the program unit in the debug output file
without needing FORMAT, NAMELIST, or WRITE statements.  The output to the debug
output file is in NAMELIST format.  The DISPLAY statement can appear anywhere in a
debug packet.

Example:

    AT 100
    DISPLAY A,B,C,D(1,2),E
C          The values of variables A, B, C, and E and array 
C          element D(1,2) are listed each time before
C          statement 100 is executed.

10.2.6. Debug Facility Example

The following example uses all of the debug facility statements (including all of the
DEBUG statement options).  It includes a main program without a DEBUG statement
and an external subroutine (A) with a DEBUG statement and three AT packets.

FORTRAN source:

1.     CALL A
2.      END

3.      SUBROUTINE A
4.      DIMENSION B(4)
5.      DATA I, K /2, 5/
6.  5   B(I) = 2.
7.  10  J = B(2)
8.  15  L = B(K)
9.  20  RETURN
10.     DEBUG UNIT(6), SUBCHK, TRACE, INIT, SUBTRACE
11.     AT 5
12.     TRACE ON
13.     DISPLAY I, K
14.     AT 15
15.     TRACE OFF
16.     AT 20
17.     DISPLAY J, B
18.     END
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Program execution:

(a) DEBUG UNIT      6 
(b) ENTER SUBPROGRAM A
(c) TRACE ON 
(d)   $0001
(e) I =    2,K =      5
(f) $END
(g) TRACE     5
(h) AT LINE      6:  ELEMENT          2 OF B           =        2.0000000
(i) TRACE     10
(j) AT LINE      7:J      =               2
(k) TRACE OFF
(l) AT LINE      8:  SUBSCRIPT IS OUT OF RANGE FOR ARRAY B
(m) AT LINE      8:  L     =               0
(n)   $0002
(o) J =      2,
(p) B = .00000000     ,     .20000000+001,   .00000000  ,     .00000000
(q) $END 
(r) RETURN FROM SUBPROGRAM A

The lines printed out during the preceding execution are a result of the following options
and statements:

UNIT option - line a.

SUBCHK option - line l.

TRACE option and TRACE ON, TRACE OFF, and AT statements - lines c, g, i, k.

INIT option - lines h, j, m.

SUBTRACE option - lines b, r.

DISPLAY and AT statements - lines d - f, n - q.

10.3. FORTRAN Checkout Mode
You can use the ASCII FORTRAN compiler as a compile-and-go processor by calling the
checkout mode of operation.Add the C option to the processor call command (see 9.5).
This directs the compiler to generate code into main storage and immediately execute it
when compilation is complete.  This mode results in increased throughput in cases
where the object program is to be executed only once and when execution is relatively
short.  No relocatable element is produced.
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FORTRAN checkout mode also provides a powerful interactive debugging system.  Add
the Z option in addition to the C option to the processor call command (see 9.5) to
enable this feature.  By combining the C and Z options, you can trace the execution, halt
the execution, dump variable values, and perform other debugging activities.

Since optimization is not practical for programs that are executed only once and since it
interferes with interactive debugging, the optimization features of ASCII FORTRAN are
disabled in checkout mode.

Although no relocatable element is produced, a write-enabled RO file (or SI file if no RO
is specified) must be available, since an omnibus element is produced under certain
circumstances when in checkout mode.

10.3.1. Calling Checkout Mode

A checkout run is entered in much the same manner as a normal compilation.  However,
you must follow special procedures to enter data for the executing program or to call the
debugging features provided.  Enter a simple execution as follows:

@FTN,CI file.element
program
@EOF
data images

The program consists of your main program (which must physically be first) and any
necessary subprograms (internal and external subroutines, internal and external
functions, or BLOCK DATA subprograms).  An END statement (see 4.9) must terminate
each program unit group. As in noncheckout mode, the only variables shared among
external program units are arguments passed between program units and variables
defined in common blocks.

On encountering the @EOF control statement, all program units are processed as one
program, and execution is initiated following compilation.  The data images following
the @EOF control statement are read and used, as necessary.  The program can be read
in from a file by omitting the I option.  The @EOF control statement is still required,
however, preceding the data images in order to indicate that no corrections are to be
applied to the file.

If the Z option is used to enable debugging, enter the following commands:

@FTN,CIZ file.element
program
@EOF
GO
data images

The GO command is required since the debugging routine allows entry of debugging
commands immediately preceding the execution of the program.  These commands can
be entered before the GO command.
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10.3.2. Interactive Debug Mode in the Checkout Compiler

10.3.2.1.Entering Interactive Debug Mode

You can only enter the interactive debug mode in the checkout compiler when the Z
option is specified on the checkout processor call (@FTN,CZ).  It is entered:

� Before the first executable statement in the FORTRAN program.  Debug mode is
automatically entered at this point.

� When a contingency interrupt occurs during execution of the FORTRAN program
(see 10.3.4).

� When the FORTRAN program executes the statement CALL PAUSE.  PAUSE has no
parameters.

� When execution of the FORTRAN program reaches the END statement of the main
program (that is, just before termination of the program).

Entry into debug mode at this point lets you execute debug commands to do the
following:  dump the final values of variables (see DUMP command, 10.3.3.4),
restore execution to a previous state (see RESTORE command, 10.3.3.11), or dump
the final contents of the program (see SNAP command, 10.3.3.15).  The following
message is printed before debug mode is entered:

END PROGRAM EXECUTION

� When the special RESTART processor (FTNR, see 10.3.6) is called to reenter a
previous debugging session.  For example:

@FTNR ROFILE.MYPROG

� When a breakpoint interrupt occurred in the previous FORTRAN statement.  The
SETBP command (see 10.3.3.14) is used to set the breakpoint register, which causes
hardware breakpoint interrupts.  The following message is printed on entry to debug
mode, where n is the current source line number:

SETBP BREAK AT LINE n

� When a step break is set at the current statement using the STEP command (see
10.3.3.16).  The following message is printed on entry to debug mode, where n is the
current source line number:

STEP BREAK AT LINE n

� When a line number break is set at the current statement using the BREAK
command (see 10.3.3.1).  The following message is printed on entry to debug mode,
where n is the current source line number:

BREAK AT LINE n
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� When a statement label break is set at the current statement using the BREAK
command (see 10.3.3.1).  The following message is printed on entry to debug mode,
where n is the statement label associated with the current statement:

LABEL BREAK AT nL

Another line follows the above message, stating which program unit in the
FORTRAN program contains the label.

� When the subprogram called by the CALL command (see 10.3.3.2) returns.  The
following message is printed on entry to debug mode:

ENTER DEBUG MODE (RETURN FROM CALL COMMAND)

For the first five cases, the following message is printed on entry to debug mode, where
n is the source line number of the statement at which execution in the FORTRAN
program is interrupted:

ENTER DEBUG MODE AT LINE n

10.3.2.2.Soliciting Input

When the checkout compiler is in interactive debug mode, commands are solicited with
ER ATREAD$.  The solicitation message is:

C:

If the command is read from an @ADD stream, if the @FTN program began execution in
@BRKPT mode, or if the program is executing in batch mode, then the command image
is printed.

To leave debug mode, use the GO, EXIT, and CALL commands.  The debug commands
are discussed individually in 10.3.3.

10.3.3. Debug Commands

You can abbreviate all debug command names with one letter (the initial one), except
for the following (with their abbreviations in parentheses):  CALL (CA), LINE (LIN),
SAVE (SA), SETBP (SETB), SNAP (SN), and STEP (ST).

The following syntax rules apply for the debug commands:

� No blank characters are allowed inside a field of a debug command.

The only exception to this rule occurs when a character variable is specified in the v
subfield of the first field of the SET command.  In this case, blanks can appear inside
apostrophes in the character constant in the c field.

This rule applies when a command contains a p subfield. This subfield, if specified in
a command, is part of the first field of the command.  Therefore, no blanks can
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appear before or after the slash ( / ) that separates the p subfield from the previous
subfield, or before or after the colon (:) separator in the p subfield.

� Any number of blank characters (or none) can appear between fields.

� The v (variable name) subfield in the DUMP, SET, and SETBP commands must be
one of the following:

− scalar variable name (including a function subprogram entry point name)

− array element name (with constant subscripts)

− array name (DUMP command only)

A scalar or array subprogram argument is specified by using one of these forms.

The variable v must appear in an executable statement in the designated program
unit p, unless p is the main program or a block data program.  If the COMPILER
statement option DATA=AUTO or DATA=REUSE appeared in the program, then v
must be a variable appearing in a common block or a SAVE statement.

� The p (program unit) field in the PROG command and the p subfield in the DUMP,
SET, SETBP, BREAK, CLEAR, and GO commands has the following format: 

progname[:extname]

where: 

progname

represents the desired program unit in the ASCII FORTRAN program.  It can be
specified as (1) * (to represent the main program), (2) a FORTRAN program unit
(main program, subroutine, function, or BLOCK DATA subprogram) name, or (3) an
unsigned positive integer n (to represent the nth unnamed BLOCK DATA
subprogram in the FORTRAN source program). 

extname

represents the program unit name of the external program unit corresponding to the
internal subprogram progname. Therefore, extname can be specified only if
progname is specified as a subprogram name that represents a FORTRAN internal
subprogram. The variable extname can be specified as: (1) asterisk (*) (if the
external program unit is the main program), or (2) a FORTRAN program unit (main
program, subroutine, or function) name.

If progname is specified as a program unit name and extname is not specified, then the
external program unit with name progname is taken.  If no such external program unit
exists, then the first internal subprogram with name progname is taken.
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Examples of the p  format:

*

main program

3

third unnamed BLOCK DATA subprogram in the source

SUB1

external program unit SUB1 (or, if no external program unit SUB1 exists in the
program, the first internal subprogram in the source with name SUB1)

INT1:SUB2

internal subprogram INT1, whose external program unit is SUB2

INT2:*

internal subprogram INT2, whose external program unit is the main program

The checkout debug commands are described individually in the following subsections.

10.3.3.1.BREAK

Purpose:

The BREAK checkout debug command (abbreviated B) sets break points at statement
labels or source line numbers.

Form:

BREAK n [L [/ p ] ] [ , n [ L [ / p ] ] ] ...

where: 

n

is an unsigned positive integer. 

p

represents a program unit in the FORTRAN source program. The p  subfield is
described under syntax rules (see 10.3.3).

Description:

The BREAK command specifies labels or a line number as points at which execution of
the FORTRAN program is interrupted and interactive debug mode entered.  These points
are known as breakpoints.
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If the n L [ /p] format is used, then the breakpoint is the beginning of the FORTRAN
statement with statement label n, where p  designates the program unit in which n
resides. If p  is not specified, then the breakpoint is label n in the default program unit .
(See PROG command, 10.3.3.10.)

If the n format is used, then the breakpoint is the beginning of the FORTRAN statement
at source line number n.

Set a maximum of eight label breaks and eight line number breaks at any one time.

Two other debug commands are used in connection with the BREAK command.  The
CLEAR command clears one or more breakpoints.  The LIST command lists all
breakpoints.

Example:

BREAK 10L/SUB1, 9

Set breakpoints at (1) statement label 10 in program unit SUB1, and (2) source line
9.  Debug mode is reentered at these points.  The command GO should follow so that
the program resumes execution.

10.3.3.2.CALL

Purpose:

The CALL checkout debug command (abbreviated CA) calls a FORTRAN subprogram.

Form:

CALL s[ (a[,a] . . . ) ]

where: 

s

is a subprogram entry point name.  s has the following format:  

ent[:extname]

where:  

ent

is the entry point called; ent may be any entry point in any subprogram in the
FORTRAN program, except for an alternate entry point (that is, an entry point
specified in an ENTRY statement) in an internal subprogram. 

extname

represents the program unit name of the external program unit corresponding to the
internal subprogram ent.  Therefore, extname can be specified only if ent is
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specified as an internal subprogram name.  The variable extname can be specified
as: (1) asterisk (*) (if the external program unit is the main program), or (2) a
FORTRAN program unit (main program, subroutine, or function) name.  

a

is an actual argument that is passed to the subprogram. a must be specified in one of
the following forms:

� A FORTRAN constant.

� A variable in program unit p, where p is the default program unit (set by the
PROG command).  It must be specified as a scalar variable name, an array name,
or an array element name (with constant subscripts).

� A subprogram entry point name, immediately preceded by an asterisk (*).  The
name a can be any entry point in any subprogram in the FORTRAN program,
except for an alternate entry point (that is, an entry point specified in an ENTRY
statement) in an internal subprogram.  If the entry point specified exists as an
external subprogram entry point, then that one is taken.  If no such external
entry point exists, then the first internal subprogram with the specified name is
taken.

Description:

The CALL command calls a FORTRAN subprogram with the given arguments.  This lets
you test only a given subprogram without having to execute the entire FORTRAN
program.  For example, a subprogram can be repeatedly called with different sets of
arguments.

If extname is not specified, then the external subprogram entry point with name ent is
taken.  If no such external subprogram entry point exists, then the first internal
subprogram with name ent is taken.

Each a is an actual argument and must match the corresponding dummy argument of s
in type and usage.  (In this way, the CALL command closely resembles a subprogram
reference in a FORTRAN program.)

A statement label can’t be passed as an actual argument via the CALL command.
Therefore, a subprogram with any RETURN i statements (that is, a subprogram with * as
any dummy argument) can’t be called with this command.

Use a maximum of 20 arguments.

When the subprogram returns (by the RETURN statement), control transfers back to
interactive debug mode.  The following message is printed:

ENTER DEBUG MODE (RETURN FROM CALL COMMAND)

In addition, if the subprogram called is a function, the following message is printed,
followed by the actual value:

FUNCTION VALUE RETURNED:
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Examples:

CALL FUNC1(A(1,1), 1.6E4, V)

Refer to function FUNC1, passing as arguments array element A(1,1) (from the
default program unit), the real constant 1.6E4, and variable V (also from the default
program unit).  After FUNC1 returns control, the function value is printed, and
debug mode is reentered.

CALL SUB1(5, *SUB2)

Call subroutine SUB1, passing as arguments the integer constant 5 and subprogram
entry point SUB2.  After SUB1 returns control, debug mode is reentered.

When debug mode is reentered on return from the CALL command, you can’t resume
normal execution of the program (at the line where the CALL command was executed)
using the GO command.  Instead, use the SAVE and RESTORE commands for this
purpose, since the CALL command interrupts normal execution.

For example, when you wish to execute a portion of the program, interrupt execution to
test subprogram SUB (using the CALL command), and then resume normal execution of
the program, enter the following commands:

SAVE
CALL SUB
RESTORE

10.3.3.3.CLEAR

Purpose:

The CLEAR checkout debug command (abbreviated C) clears breakpoints set by the
BREAK and SETBP commands.

Form:

where: 

n

is an unsigned positive integer. 

p

represents a program unit in the FORTRAN source program. The p subfield is
described under syntax rules (see 10.3.3). 

k

is one of the following keywords: LABEL, LINE, BRKPT, or ALL.
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Description:

The CLEAR command clears one or more breakpoints established by the BREAK or
SETBP commands.

The n [ L [/p ] ] format is the same as in the BREAK command.  The format n L [/p ]
clears the breakpoint set at statement label n in program unit p.  The format n clears the
breakpoint at line n.

The rest of the formats clear one or both break lists or the SETBP break.  CLEAR LABEL
clears all label breakpoints. CLEAR LINE clears all line number breakpoints.  CLEAR
BRKPT clears the breakpoint register set by the SETBP command.  CLEAR and CLEAR
ALL clear all label and line number breaks and the SETBP break.

You can abbreviate LABEL, LINE, BRKPT, and ALL to LA, LI, B, and A, respectively.

Example:

CLEAR 10L/SUB1, 9

Clear the breakpoints (previously set by the BREAK command) at (1) statement
label 10 in program unit SUB1, and (2) source line 9.

10.3.3.4.DUMP

Purpose:

The DUMP checkout debug command (abbreviated D) prints the values of FORTRAN
variables.

Form:

v [/p] [,v[/p]] . . .
/p
!

DUMP [, opt]

where:  

opt

is an option letter; A (ASCII) or O (Octal) are allowed. 

v

is a variable in program unit p.  The v subfield is described under syntax rules (see
10.3.3). 

p

represents a program unit in the FORTRAN source program.  The p  subfield is
described under syntax rules (see 10.3.3).
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Description:

The DUMP command prints the current values of one or more FORTRAN variables.

When you use the O option on the DUMP command, the values are printed in octal
format.  If the A option is specified, they are printed in ASCII character format.  If
neither O nor A is specified, they are printed in a format corresponding to the variable’s
data type (INTEGER, REAL, COMPLEX, and so on).

When the value of a variable is printed, it follows a heading line in the format: 

v  /p

where v is the variable name and p is the program unit name.  (See the description of the
p  subfield in 10.3.3.)

If an entire array is dumped, the values of all elements in the array are printed in
column-major order.

The formats are described as follows:

� DUMP [ ,opt] v[/p] [, v [ /p ] ] . . .

The v[/p] format prints the value of variable v in program unit p.

If v is a scalar, array element, or function entry point, then one value is printed.  If v
is an array name, then the values of all elements in the array are printed.

If p is not specified, then variable v is taken from the default program unit (set by
the PROG command).

� DUMP [ ,opt] /p

This format prints the values of all variables in program unit p.

� DUMP [ ,opt] !

This format prints the values of all variables in all program units in the FORTRAN
program.

When the second or third formats are used, the order that the variables appear in the
output is as follows:

� In a program unit, the variables appear in alphabetical order.

� In the FORTRAN program (format 3), the program units appear in the order that
they appear in the source input.

DUMP !

Print the values of all variables in all program units.

DUMP /SUB2

Print the values of all variables in program unit SUB2.
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DUMP,0 A/*, B(1,1), C/SUB3

Print the values of variables A (from the main program), B(1,1) (from the default
program unit), and C (from program unit SUB3), all in octal format.

10.3.3.5.EXIT

Purpose:

The EXIT checkout debug command (abbreviated E) terminates the ASCII FORTRAN
processor.

Form:

EXIT

Description:

The EXIT command terminates the processor with a call to the FEXIT$ system routine.
This routine terminates all input/output and does an ER EXIT$.

An @ image (control statement) read in checkout debug mode is treated like an EXIT
command (that is, the processor is terminated).

10.3.3.6.GO

Purpose:

The GO checkout debug command (abbreviated G) resumes execution of an ASCII
FORTRAN program.

Form:

GO [nL [/p]]

where: 

n

is an unsigned positive integer. 

p

represents a program unit in the FORTRAN source program.  The p  subfield is
described under syntax rules (see 10.3.3).

Description:

The GO command causes an exit from interactive debug mode; execution of the
FORTRAN program is then resumed.
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When GO is specified (that is, no command fields), execution of the program continues
at the point at which it was interrupted to go into debug mode.

If the nL [/p] format is used, execution of the program continues at statement label n in
program unit p.  If p  isn’t specified, the default program unit (set by the PROG
command) is assumed.

Be cautious when specifying the nL [/p] format, since registers may not be set up
correctly when jumping to a statement label.  For instance, jumping to a label inside a
DO-loop or jumping to a label in another program unit (that is, not the one currently
being executed) can cause execution problems.

Examples:

GO

Resume execution of the FORTRAN program at the point at which it was interrupted
to go into debug mode.

GO 15L/S1

Resume execution of the program at statement label 15 in program unit S1.

10.3.3.7.HELP

Purpose:

The HELP checkout debug command (abbreviated H) prints information about debug
commands.

Form:

ALL
cmdHELP [,opt]

where: 

opt

is an option letter; F (formats) or D (descriptions) are allowed. 

cmd

is one of the checkout debug command names.  Don’t use abbreviations.
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Description:

The HELP command prints information about debug commands.  This lets you continue
debugging without having to consult a manual about command descriptions or formats.

The format HELP lists all of the debug command names.

The format HELP cmd prints all available information about the designated debug
command cmd, including a list of all formats, a description of the individual items
specified in the formats, and a general description of the command.

The format HELP ALL lists all available information for all debug commands.  A large
amount of output is generated.

When you specify the F option, only command formats are printed.

When you specify the D option, only command descriptions are printed.

Examples:

HELP

List all of the debug command names.

HELP ALL

List all information for all debug commands.

HELP,F DUMP

List all formats for the DUMP command.

10.3.3.8.LINE

Purpose:

The LINE checkout debug command (abbreviated LIN) prints the current source line
number.

Form:

LINE

Description:

The LINE command prints the source line number of the statement in the FORTRAN
program where execution is interrupted to go into debug mode.
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10.3.3.9.LIST

Purpose:

The LIST checkout debug command (abbreviated L) lists all breakpoints set by the
BREAK command and the default program unit.

Form:

LIST

Description:

The LIST command lists all breakpoints set by the BREAK command.  This includes all
line number breaks and all statement label breaks.

The default program unit (set by the PROG command) is also listed.

10.3.3.10. PROG

Purpose:

The PROG checkout debug command (abbreviated P) sets the default program unit for
variables and statement labels.

Form:

PROG p

where p  represents a program unit in the FORTRAN source program.  The p  field is
described under syntax rules (see 10.3.3).

Description:

The PROG command sets the default program unit in the FORTRAN symbolic element
that is implied for variables (in the DUMP, SET, SETBP, and CALL commands) and
statement labels (in the BREAK, CLEAR, and GO commands) to p.

If no PROG command is entered in debug mode during execution of the FORTRAN
program, then the first program unit in the FORTRAN symbolic element is set as the
default.

The default program unit set by this command may be overridden in an individual
command (DUMP, SET, SETBP, GO, BREAK, or CLEAR) by specifying a program unit
subfield p in that command.

The LIST command prints the default program unit.
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Examples:

Assume the following commands are entered sequentially:

PROG SUB1

Set program unit SUB1 as the default program unit.

DUMP X

Print the value of variable X in the program unit SUB1.

DUMP X/2

Print the value of variable X in the element’s second unnamed BLOCK DATA
subprogram.

BREAK 10L

Set a break at statement label 10 in program unit SUB1.

BREAK 10L/*

Set a break at statement label 10 in the main program.

10.3.3.11. RESTORE

Purpose:

The RESTORE checkout debug command (abbreviated R) restores your program to a
previous point of execution.

Form:

RESTORE [n]

where n is an integer consisting of 1 to 12 digits.

Description:

The RESTORE command restores the state of your program that a previous
corresponding SAVE command preserved (see 10.3.3.12).  It essentially restarts your
program at the state it was in at the SAVE point.  The optional version number n can be
used to preserve several stages of execution while debugging.

When reentering your program, the following message is printed:

ENTERING USER PROGRAM: prog-name [ VERSION: version-no ]  
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Note:  You are responsible for the assignment of files and their positioning. File

contents, assignments, and positioning (tapes) are not saved or restored.

Only your variables and point of execution are saved and restored, along with

several debug mode parameters:  breakpoints set by the BREAK and STEP

commands, the default program unit set by the PROG command, and the trace

mode value set by the TRACE command.  Also, the same level of ASCII

FORTRAN must be used to do the corresponding SAVE command.

You can reenter a checkout debugging run at a later date by use of the special restart
processor (FTNR) released with ASCII FORTRAN.  All that is necessary is that the
relocatable output file from the previous session still be available.  (This is where the
SAVE information is saved; see 10.3.3.6.)

Examples:

@FTN,SCZ IN.ELT
@EOF

State is automatically saved in omnibus element IN.ELT before entry to debug
mode.

BREAK 7
GO

ASCII FORTRAN responds with BREAK AT LINE 7.

SAVE 2

State saved in omnibus element IN.ELT/2.

RESTORE

State restored from omnibus element IN.ELT.

ASCII FORTRAN responds with ENTERING USER PROGRAM: ELT.

BREAK 3
GO

Your program now restarts execution from the original save point. ASCII FORTRAN
responds with BREAK AT LINE 3.

RESTORE 2

State restored from omnibus element IN.ELT/2.

ASCII FORTRAN responds with ENTERING USER PROGRAM: ELT VERSION: 2.

GO

Your program resumes execution at line number 7, where the save was done.

@FTN,CZ IN.GAMES,SAVE.GAMES
    .
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    .
    .
@EOF

The state is automatically saved in SAVE.GAMES before entry to debug mode.

GO
    .
    .
    .

Your program executes.

    .
    .
    .
@FIN
    .
    .
    .

Next day you want to do more testing on GAMES.

@RUN SMITH,123456,TRNG
@FTNR SAVE.GAMES

FTNR responds with a sign-on line and the state of GAMES is restored from
yesterday’s SAVE.

GO
    .
    .
    .

Your GAMES program now executes again.

10.3.3.12. SAVE

Purpose:

The SAVE checkout debug command (abbreviated SA) saves the present state of your
program for later resumption.

Form:

SAVE [n]

where n is an integer consisting of 1 to 12 digits.

Description:

The SAVE command saves the present state of your program by writing it out to an
omnibus element in a Relocatable Output (RO) file.  The element name used is the RO
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element name.  The version name used is either your RO version, if any, or the up to
12-digit field on the SAVE command.

Use only an all-digit field on the SAVE command.  Since the element created is typed as
omnibus, this command doesn’t destroy your symbolic, relocatable, or absolute
elements of the same name in your RO file.

The RESTORE (see 10.3.3.11) command can restore the FORTRAN program to the state
of execution of a corresponding SAVE command.

An automatic SAVE command is done for you just before initially entering debug mode
(after the END FTN message).

Examples:

@FTN,SCZ IN.ELT
@EOF
SAVE

This saves the present state of your program in omnibus element IN.ELT. The
RESTORE command can restore the current state.

@FTN,CZ IN.ELT,OUT.ELT/TEST
@EOF
SAVE

This saves the present state of your program in omnibus element OUT.ELT/TEST.
The RESTORE command can restore the current state.

@FTN,CZ IN.ELT,OUT.ELT/TEST
@EOF
SAVE 99

This saves the present state of your program in omnibus element OUT.ELT/99. The
RESTORE command 99 can restore the current state.

10.3.3.13. SET

Purpose:

The SET checkout debug command (abbreviated S) changes the value of a FORTRAN
variable.

Form:

SET v [/p] = c

where: 

v

is a variable in program unit p.  The v subfield is described under syntax rules (see
10.3.3). 
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p

represents a program unit in the FORTRAN source program.  The p  subfield is
described under syntax rules (see 10.3.3). 

c

is a FORTRAN constant.

Description:

The SET command sets the value of variable v in program unit p to the constant c. If p
isn’t specified, then v is from the default program unit (set by the PROG command).

The variable c must be the same data type as v.  There are no conversions between data
types for the SET command.  For example, if v is declared as type COMPLEX*16 in
program p, then c must be a double-precision complex constant.

When v is a character variable, c must be a character constant.  Hollerith constants are
not allowed.

Examples:

SET I=5

Set the value of variable I (in the default program unit) to 5.  I must be type integer.

SET CD(2,3)/S2 = (1.4D2, 2.3D3)

Set the value of array element CD(2,3) in program unit S2 to the COMPLEX*16
constant (1.4D2,2.3D3).  Array CD must be type COMPLEX*16.

10.3.3.14. SETBP

Purpose:

The SETBP checkout debug command (abbreviated SETB) sets a breakpoint so that
debug mode is reentered when a specific variable is set or referred to.

Form:

SETBP[,opt] v[/p]

where: 

opt

is an option letter; R or W are allowed. 

v

is a variable in program unit p.  The v subfield is described under syntax rules (see
10.3.3). 
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p

represents a program unit in the FORTRAN source program. The p subfield is
described under syntax rules (see 10.3.3).

Description:

The SETBP command sets a breakpoint so that debug mode is reentered whenever the
designated FORTRAN variable, v, in program unit p, is set or referenced during
execution of a FORTRAN program.  If p  is not specified, v is taken from the default
program unit (set by the PROG command).

Only use the SETBP command when execution is on a machine where the ER SETBP$
mechanism is available.  This Executive Request sets the programmable breakpoint
register, which causes a breakpoint interrupt whenever the specified condition is met.
Checkout debug mode is reentered at the beginning of the next executable FORTRAN
statement after the specified variable is set or referenced.

If the R option is specified on the SETBP command, then debug mode is reentered
whenever the designated variable v is referenced from storage.  This occurs when the
variable is referenced in an assignment statement (on the right side of the assignment [=]
operator) or an I/O write statement.

If the W option is specified, then debug mode is reentered whenever the variable v is
stored into.  This occurs when the variable is set in an assignment statement (on the left
side of the assignment [=] operator) or an I/O read statement.

If neither the R nor the W option is specified, then both are assumed; that is, debug
mode is reentered whenever the variable is set or referenced.

A breakpoint interrupt occurs when the storage that the variable occupies is involved in
a load (R option) or store (W option) instruction.  Therefore, the FORTRAN statement
where the breakpoint interrupt occurs (that is, the executable statement immediately
preceding the statement where debug mode is reentered) may not actually reference the
variable name specified in the SETBP command; the interrupt may be caused by the
setting or referencing of a variable that occupies the same storage as the variable
designated in the command.  Variables that may overlap in storage in a FORTRAN
program include those used in EQUIVALENCE or COMMON statements or those passed
as subprogram arguments.

The breakpoint set by the SETBP command remains in effect during execution until it is
cleared by the CLEAR command (either CLEAR or CLEAR BRKPT format), or until you
set another breakpoint with the SETBP command.  You can only set one SETBP
breakpoint at a time.

Examples:

SETBP,W C(6)/*

Set a breakpoint so that debug mode is reentered whenever array element C(6) in
the main program is set.  The command GO should follow so that the program
resumes execution.
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SETBP,R V

Set a breakpoint so that debug mode is reentered when variable V (in the default
program unit) is referred to.

SETBP A/S2

Set a breakpoint so that debug mode is reentered when variable A in program unit
S2 is set or referred to.

10.3.3.15. SNAP

Purpose:

The SNAP checkout debug command (abbreviated SN) produces a dump of the
FORTRAN program or registers.

Form:

SNAP [l]

where l is one of the following letters:  I, D, or R.

Description:

The SNAP command dumps all or part of the FORTRAN program.  The Executive
Request ER SNAP$ dumps the contents of one location counter at a time.  Your
program’s registers can also be dumped.

The SNAP format dumps the entire FORTRAN program and all registers.

The SNAP I format dumps the contents of location counter 1 of the program.  $(1)
contains all program instructions not resulting from input/output lists.

The SNAP D format dumps the contents of all location counters except 1.

The SNAP R format dumps all registers.

Since ER SNAP$ lists absolute addresses only, an L option checkout compiler listing of
the FORTRAN program is helpful when you wish to decode the location counter
information that is dumped.  This listing includes the location counters and relative
addresses for variables and code in the program.

10.3.3.16. STEP

Purpose:

The STEP checkout debug command (abbreviated ST) sets a breakpoint at a certain
point ahead in the program.



Debugging a Program

UP-8244.4-B10-32

Form:

STEP [n]

where n is an unsigned positive integer.

Description:

The STEP command specifies a breakpoint at which execution of the FORTRAN
program is interrupted and interactive debug mode is reentered.

After the GO command is entered, n FORTRAN statements are executed and then debug
mode is reentered.

If n is omitted, 1 is assumed.

Example:

STEP 3

Set a breakpoint so that debug mode is reentered after three FORTRAN statements
are executed.  The command GO should follow so that the program resumes
execution.

10.3.3.17. TRACE

Purpose:

The TRACE checkout debug command (abbreviated T) turns trace mode on or off.

Form:

TRACE [m]

where m is one of the following keywords: ON or OFF.

Description:

Either TRACE or TRACE ON turns trace mode on.  TRACE OFF turns trace mode off.

If trace mode is on, then a message in the form:

LINE n

is printed at the start of execution of each FORTRAN statement, where n is the source
line number of the statement.  Trace mode is initially off.
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10.3.3.18. WALKBACK

Purpose:

The WALKBACK checkout debug command (abbreviated W) traces the general flow of
program execution through FORTRAN subprograms.

Form:

WALKBACK

Description:

The WALKBACK command gives a step-by-step trace of FORTRAN subprogram
references that have occurred during program execution.  The trace begins at the
current statement in the subprogram that is executing (that is, the point in your program
at which execution was interrupted to go into debug mode) and ends at the main
program.

During execution of the walkback trace, one line is printed at each step indicating which
FORTRAN subprogram (subroutine or function) was referenced at a certain line number
of another subprogram (or the main program).  Walkback can occur over any number of
subprograms.

Any FORTRAN subprogram named in a walkback message is a main entry point,
regardless of which entry point in that subprogram is actually referenced.

One or more of the following messages is printed during the checkout walkback process:

WALKBACK INITIATED AT ADDRESS absadr IN USER PROGRAM

THIS ADDRESS IS AT LN. line OF prog2

prog1 REFERENCED AT LN. line OF prog2

THIS ADDRESS IS AT elt $(lc) reladr

prog1 REFERENCED AT elt $(lc) reladr

prog1 REFERENCED AT ADDRESS absadr BDI bdi

THIS ADDRESS IS IN THE I/O COMPLEX

X11 LINK ADDRESS DESTROYED - WALKBACK TERMINATED

WALKBACK TERMINATED BECAUSE OF AUTO. STORAGE

prog1 REFERENCED BY CALL COMMAND

Example:

1.     I = 5
2.     CALL S(I)
3.     END

4.     SUBROUTINE S(I1)
5.     J = F(I1)
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6.     PRINT *,J
7.     RETURN
8.     END

9.     FUNCTION F(I2)
10.    F = I2**3
11.    RETURN
12.    END

Execution of the following three checkout debug commands:

BREAK 11
GO
WALKBACK

causes the following lines to be printed:

WALKBACK INITIATED AT ADDRESS 031470 IN USER PROGRAM
THIS ADDRESS IS AT LN.    11 OF F
F     REFERENCED AT LN.     5 OF S
S     REFERENCED AT LN.     2 OF MAIN PROGRAM

See 10.4.3 for more walkback examples and a more complete description of the
walkback mechanism.  That subsection describes FTNWB, the run-time walkback
routine, which is very similar to the checkout walkback process.

10.3.4. Contingencies in Checkout Mode

When an illegal operation (IOPR), guard mode (IGDM), or error mode (EMODE,
including a math or I/O library error) contingency interrupt occurs during checkout
execution of your program, the following action is taken (after a contingency message is
printed), depending on the options specified on the @FTN control statement:

� C option (but no F or Z option)

A walkback trace is performed (from the point of the error back to the main
program).  See 10.3.3.18 for a description of the walkback mechanism.

� CF options (but no Z option)

(1) A walkback trace is performed, and (2) the current values of all variables in your
program are printed (that is, the automatic ‘DUMP !’ command).

� CZ options

(1) A walkback trace is performed, and (2) interactive debug mode is entered (so
that you can find the problem).  Execution of the program may not be resumed after
a contingency of this type.

When a break keyin (@@X C) occurs during checkout execution of your program, the
following action is taken (depending on the @FTN options):

� C option (but no Z option)

No action is taken.

� CZ options
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(1) The message BREAK KEYIN is printed; (2) the current FORTRAN statement
completes execution (so that debug mode is not entered in the middle of a
statement); and (3) debug mode is entered.  Execution of your program resumes
with the GO checkout command.

When a divide fault (IDOF), floating-point overflow (IFOF), or floating-point underflow
(IFUF) contingency interrupt occurs during checkout execution of the program, the
following is performed (if the appropriate run-time counter is positive):  (1) a
contingency message is printed, (2) the line number and program unit where the
contingency occurred is listed, and (3) execution of the program is resumed.  See
subsections on service subprograms DIVSET (7.7.3.9), OVFSET (7.7.3.8), and UNDSET
(7.7.3.7) for a description of how the run-time counters are set.  All three counters are
initialized to 20 on CZ options, and to 0 otherwise.

10.3.5. Checkout Mode Restrictions

Due to the generation of code in main storage, only simple program structure is provided
in checkout mode.  Links cannot be generated to subprograms that are not physically in
the source program.  In addition, multibanking and segmentation are not provided (that
is, the BANK statement and the COMPILER statement with options BANKED=DUMARG,
BANKED=ACTARG, BANKED=RETURN, or BANKED=ALL present cannot be used).
The maximum size for your program in checkout mode is somewhat smaller than the
maximum size for a program in noncheckout mode, due to the addressing space used by
checkout execution-time requirements.  A warning message is printed if this maximum
size is exceeded.

The error diagnostics associated with the checkout mode appear in Appendix I.

10.3.6. Restart Processor (FTNR)

FTNR is a small, separate processor, released with ASCII FORTRAN, which restarts
previous checkout debugging sessions.  It is called with the SI field holding a
file-element name that is an omnibus-type element holding one of your runs saved from
a previous session.  (See SAVE command, 10.3.3.12.)  The processor signs on in a
standard manner and goes to interactive mode after reloading the program.

Example:

�@FTNR   SAVEFILE.MYPROG
�FTNR IIRI 01/12/84  17:20:41
ENTERING USER PROGRAM: MYPROG

If you give a version name on the FTNR call statement, this element/version is the base
level that is restored by a parameterless RESTORE command.

Example:

�@FTNR F.GAME/A
�FTNR IIRI 01/12/84 17:20:41
ENTERING USER PROGRAM: GAME VERSION: A
�RESTORE
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The RESTORE command in this example restores GAME/A again.

All checkout debugging commands are available in the FTNR (restart) processor.  You
must use the same level of FTN and FTNR, or the restart doesn’t work.  This is true of
the RESTORE command also (see 10.3.3.11); the same level of FTN and FTNR must do
the corresponding SAVE.

10.4. Walkback and the Interactive FTNPMD
When a contingency interrupt occurs during execution of an ASCII FORTRAN program,
the following debugging aids are automatically executed:

� the ASCII FORTRAN walkback process (FTNWB)

� the ASCII FORTRAN interactive postmortem dump (FTNPMD)

The walkback mechanism gives a step-by-step trace of FORTRAN subprogram
references that occur during program execution, from the point of the error condition
back to the main program.  Only subprograms in relocatable elements generated by
ASCII FORTRAN compilations or in MASM elements using the walkback procedures
(see 10.4.3.6) are traced by the walkback process.

FTNPMD lets you interactively dump the current values of FORTRAN variables in the
executing program.  FTNPMD won’t dump variables that are in virtual space.  The
variables that you can dump are those that exist in elements generated with F-option
ASCII FORTRAN compilations.  If optimization is used, the values provided for the
variables may not be the same as the value you expect.  This difference is the result of
the elimination of unneeded stores.  If the program is running in batch mode (see
10.4.4.1), FTNPMD is executed only if you specify the F option on the @XQT control
statement.

In addition to being called by the contingency routine, both FTNWB and FTNPMD can
be initiated by calls from your program.

If the walkback and interactive PMD debugging aids are to execute correctly, neither the
Z nor R option should be specified on the @MAP control statement used for collection of
the program.  The @MAP,Z statement suppresses generation of diagnostic tables in the
absolute element.  The @MAP,R statement generates a collector relocatable element; no
@MAP,R relocatables should appear in your program.

In addition, the collector directive TYPE EXTDIAG should be used if any FORTRAN
subprogram main entry points are unreferenced in the program.  This statement causes
all entry points (referenced or not) to be inserted in the collector’s diagnostic tables.

If the program is multibanked, it must follow the specifications listed in Appendix H,
since both FTNWB and FTNPMD make assumptions about the program’s banking
structure.

FTNPMD and FTNWB do not execute correctly if you change the name of a relocatable
element produced by ASCII FORTRAN with the @CHG or @COPY control statement.
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10.4.1. Diagnostic Tables Generated by ASCII FORTRAN

When you specify the F option on the ASCII FORTRAN processor control statement
(@FTN,F), the compiler produces a large set of diagnostic tables (also known as
INFO-010 text) under location counter 3 of the generated relocatable element.

When you don’t specify the F option on the @FTN control statement, a smaller set of
diagnostic tables (containing only the program unit information) is generated.  These
tables only allow walkback through the program units in the element, with no line
numbers appearing in the walkback messages.

When the relocatable element is mapped into an absolute element, the collector handles
the INFO-010 location counter (3) in a special manner.  The contents of $(3) are inserted
in the absolute element, but are never part of the executing program.  Therefore, the size
of the diagnostic tables does not affect the size of the loaded program.  FTNWB and
FTNPMD read necessary INFO-010 tables from the absolute element to local buffers.

For the FTNPMD and FTNWB routines to get mapped in an absolute element, at least
one @FTN,F relocatable must be mapped in.

10.4.2. Initiating FTNWB and FTNPMD

Both walkback and the interactive PMD are automatically executed (in that order) if any
of the following contingency interrupts occur:

� Error detected by the math library

� Error detected by the I/O library (see G.9)

� Illegal operation (IOPR)

� Guard mode (IGDM)

� Error mode (EMODE)

No registers are destroyed in FTNWB or FTNPMD.  Therefore, when the registers are
dumped by the ER EABT$ (which is performed by the contingency routine after
walkback and the interactive PMD have completed), the contents of all registers are the
same as when the error occurred.

The interactive PMD (but not walkback) is executed:

� When a break keyin (@@X C) contingency occurs during execution of the program

� When the program executes the FORTRAN statement CALL FTNPMD (the routine
has no parameters)

Walkback (but not the interactive PMD) occurs when the program executes the
FORTRAN statement CALL FTNWB (the routine has no parameters).  In this case, the
walkback process begins at the point of the call and traces back to the main program.
Program execution continues at the statement after the call.
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If the program is executing in checkout mode (see 10.3), then neither FTNWB nor
FTNPMD can be executed by any of the methods mentioned previously.

For FTNPMD to execute in batch mode in the above cases, specify an F option on the
@XQT control statement.  Walkback doesn’t require a special @XQT option for batch
mode operation.

When you specify the F option on ASCII FORTRAN compilations (@FTN,F), normal line
numbers appear in the walkback messages; otherwise, all line numbers are printed as 0
(the subprograms’ names are correct, however).

10.4.3. Walkback (FTNWB)

During execution of the walkback process, one line is printed at each step indicating
that FORTRAN subprogram (subroutine or function) is referenced at a certain line
number of another subprogram or the main program.  Walkback can occur over any
number of subprograms.

The walkback process terminates when the trace reaches (1) the main program or (2) a
routine that is in an element that was not generated by an ASCII FORTRAN compilation.
The latter case includes ASCII FORTRAN service subprograms (see 7.7.3) and routines
in MASM elements.

When you specify the F option on ASCII FORTRAN compilations (@FTN,F), normal line
numbers appear in the walkback messages; otherwise, all line numbers are printed as 0
(the subprograms’ names are correct, however).

In the examples listed in the following subsections, it is assumed that all ASCII
FORTRAN compilations are performed with the F option and that a type2 (banked I/O)
library file is used as a LIB file during collection.

Walkback may not work correctly in segmented programs.

10.4.3.1.Errors Detected by the Mathematical Library (CML)

The mathematical library (common bank or relocatable) detects the following errors:

� Unnormalized argument

� Argument value out of range

� Function value out of range

If any of these errors are detected during execution, messages are printed, listing the
following:

� The mathematical routine that detected the error

� The nature of the error

� The decimal and octal representations of the argument that caused the error
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� A walkback trace of your subprogram references, from the call that referenced the
mathematical library, back to the main program (if possible).  If the CMLSET service
subprogram (see 7.7.3.10) is called (and the CMLSET run-time counter is positive), a
one-step walkback is performed (listing the line number and program unit where the
mathematical library was called), and program execution is resumed.

Example:

ASCII FORTRAN source input:

1.      CALL S1 
2.      END

3.      SUBROUTINE S1
4.      CALL S2(-4.)
5.      RETURN
6.      END
 
7.      SUBROUTINE S2(X)
8.      Y=SQRT(X)
9.      RETURN
10.     END

Program execution:

ERROR TERMINATION IN SQRT         ROUTINE CAUSED BY
ARGUMENT UNORMALIZED OR OUTSIDE ALLOWABLE RANGE
ARG1=        -4.0000000 
ARG1 OCTAL  574377777777
SQRT      REFERENCED AT ABSOLUTE ADDRESS 007740 BDI 000004
THIS ADDRESS IS AT LN.     8 OF S2
S2   REFERENCED AT LN.     4 OF S1
S1   REFERENCED AT LN.     1 OF MAIN PROGRAM 

***** ENTER FTN PMD *****

-> (enter FTNPMD commands)

10.4.3.2.Errors Detected by the I/O Library

When a fatal error is detected during execution of any I/O library (common bank or
relocatable) routine, messages are printed, listing the following:

� The nature and address of the error

� The I/O common bank or I/O relocatable element where the address resides

� A walkback trace of your subprogram references, from the call that referenced the
I/O library, back to the main program (if possible).
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Example:

ASCII FORTRAN source input:

1.        CALL S1 
2.        END

3.        SUBROUTINE S1
4.        CALL S2 
5.        RETURN
6.        END

7.        SUBROUTINE S2
8.        DIMENSION A(2)
9.        PRINT *,A(100000)
10.       RETURN
11.       END

Program execution:

GUARD MODE       ERR-CODE: 02
ERROR ADDRESS:  007603        BDI: 500025
THIS ADDRESS IS IN COMMON I/O BANK C2F$
I/O      REFERENCED AT LN.     9 OF S2
S2       REFERENCED AT LN.     4 OF S1
S1       REFERENCED AT LN.     1 OF MAIN PROGRAM

***** ENTER FTN PMD *****

- (enter FTNPMD commands)

When a nonfatal I/O error is detected, messages are printed, listing the following:

� The nature of the error

� The line number and program unit where the error occurred

Program execution then continues.

Example:

ASCII FORTRAN source input:

1.       CALL S1
2.       END
3.       SUBROUTINE S1
4.       READ (5,10) I
5. 10    FORMAT (I12)
6.       RETURN
7.       END

Program execution (assuming the character string ‘A’ is read by I/O):

FTN ERR ON UNIT-5   INPUT DATA DOES NOT CORRESPOND TO TYPE
I/O    REFERENCED AT LN.     4 OF S1
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10.4.3.3.Errors Detected in Your Program

If an error (illegal operation, guard mode, or error mode) is detected during execution of
your routine, then messages are printed, listing the following:

� The nature and address of the error

� A walkback trace of your subprogram references, from the subprogram where the
error occurred, back to the main program (if possible)

Example:

ASCII FORTRAN source input:

1.         CALL S1
2.         END

3.         SUBROUTINE S1
4.         CALL S2
5.         RETURN
6.         END

7.         SUBROUTINE S2
8.         DIMENSION A(2)
9.         A(100000) = 2. 
10.        RETURN
11.        END

Program execution:

GUARD MODE      ERR-CODE: 02
ERROR ADDRESS:  003120        BDI: 000004
THIS ADDRESS IS AT LN.          9 OF S2
S2   REFERENCED AT LN.          4 OF S1
S1   REFERENCED AT LN.          1 OF MAIN PROGRAM
***** ENTER FTN PMD *****

- > (enter FTNPMD commands)

If a divide fault, floating-point overflow, or floating-point underflow contingency
interrupt occurs during execution and the appropriate run-time counter is positive,
messages are printed, listing the following:

� The nature of the error

� The line number and program unit where the error occurred

Program execution then resumes.

See subsections on service routines DIVSET (7.7.3.9), OVFSET (7.7.3.8), and UNDSET
(7.7.3.7) for a description of how the run-time counters are set.
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Example:

ASCII FORTRAN source input:

1.        CALL S1
2.        END

3.        SUBROUTINE S1
4.        CALL DIVSET( 5 )
5.        A = 0. 
6.        B = 1. / A
7.        RETURN
8.        END

Program execution:

WARNING: DIVIDE FAULT
AT LN.     6 OF S1

10.4.3.4.FTNWB Routine Call

If routine FTNWB is called during the execution of your program, messages are printed,
listing the following:

� The address from which FTNWB is called

� A walkback trace of your subprogram references, from the subprogram that called
FTNWB, back to the main program (if possible)

Example:

ASCII FORTRAN source input:

1.         CALL S1
2.         END

3.         SUBROUTINE S1
4.         CALL S2
5.         RETURN
6.         END

7.         SUBROUTINE S2
8.         CALL FTNWB
9.         RETURN
10.        END
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Program execution:

FTNWB CALLED AT ADDRESS 003116 BDI 000004
THIS ADDRESS IS AT LN.              8 OF S2
S2      REFERENCED AT LN.           4 OF S1
S1      REFERENCED AT LN.           1 OF MAIN PROGRAM

10.4.3.5.Walkback Messages

One or more of the following messages is printed during the walkback process:

FTNWB CALLED AT ADDRESS absadr BDI bdi

THIS ADDRESS IS AT LN. line OF prog2

prog1 REFERENCED AT LN. line OF prog2

THIS ADDRESS IS IN THE I/O COMPLEX

THIS ADDRESS IS AT elt $(lc) reladr

prog1 REFERENCED AT elt $(lc) reladr

prog1 REFERENCED AT ADDRESS absadr BDI bdi

X11 LINK ADDRESS DESTROYED - WALKBACK TERMINATED

AUTO. STORAGE ELEMENT ENCOUNTERED - WALKBACK TERMINATED

The values inserted in these messages are described as follows:  

absadr

absolute address (octal) 

bdi

index of the bank in which absadr resides (octal) 

line

source line number of a designated FORTRAN statement (decimal) 

prog2

one of the following:

� MAIN PROGRAM (if the walkback process reaches the last step of a successful
trace)

� an external subprogram name

� i:e, where i is an internal subprogram name and e represents i’s external
program unit. The variable e is either MAIN PROGRAM or an external
subprogram name. 

prog1

one of the following:



Debugging a Program

UP-8244.4-B10-44

� I/O (to represent the I/O library complex)

� an external subprogram name

� i:e (see prog2) 

elt

an element name 

lc

a location counter in element elt (decimal) 

reladr

a relative address under location counter lc (octal)

Any FORTRAN subprogram named in a walkback message is a main entry point,
regardless of which entry point in that subprogram is actually referenced.

The last five walkback messages listed above are printed only when the trace reaches a
termination point that isn’t in the main program.

10.4.3.6.Walkback Procedures for MASM Subprograms

There are two MASM procedures in the ASCII FORTRAN library, F$EP and F$INFO (in
element INFO-PROC, see 9.5.3).  These procedures can be referenced in your MASM
element that is generating a subprogram used in an ASCII FORTRAN system.  If these
procedures are used correctly, ASCII FORTRAN’s run-time walkback mechanism
properly handles the MASM subprogram.

10.4.3.6.1.F$EP

The form of the F$EP call line is:

F$EP  sub

where sub is a field of six Fieldata characters (left-justified, blank-filled) denoting the
subprogram name that is externalized by the procedure.

F$EP generates some epilogue and prologue code in the MASM subprogram, namely:

� Epilogue: restore registers and return to the caller of the subprogram.  The return is
done via the IBJ$ return mechanism (see 8.5.4); that is, a jump or LIJ is performed,
depending on the contents of H1 of X11.

� The subprogram entry point sub (F$EP externalizes the entry point, so sub must not
appear as a label in your MASM code).

� Prologue: save registers (including X11).
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The prologue-epilogue code is the same as that generated by an @FTN,O compilation
(that is, over-65K D-bank code).  Volatile registers A2 (prologue) and A4 (epilogue) are
destroyed in the generated code.

10.4.3.6.2.F$INFO

The form of the F$INFO call line is:

F$INFO  elt

where elt is a field of 12 Fieldata characters (left-justified, blank-filled) denoting the
relocatable element name from the MASM control statement.

F$INFO generates the following:

� The jump back up to the epilogue code (generated by F$EP)

� The INFO-010 diagnostic text (readable by the walkback routines in the ASCII
FORTRAN library)

The INFO-010 tables are never loaded at run time along with your program’s I-bank and
D-bank.  Instead they are in the absolute element’s diagnostic tables, which are read in
by ASCII FORTRAN’s run-time walkback routines.  The tables contain information that
allows these routines to determine the program unit and line number for walkback
messages.

10.4.3.6.3.Description

If procedures F$EP and F$INFO are used, only one subprogram can appear in an
element (that is, each of the two procedures should be referenced only once per MASM
assembly).

The MASM element which references the two procedures and which contains the
externalized subprogram SUB1 appears as follows:

@MASM,IS ELT1,ELT2
   AXR$  
     .
     .
     .
   F$EP  ’SUB1 ’
 $(1)
     . 
     .   $(1) subprogram code except for epilog
     .   (restore registers and return to caller), 
     .   prolog (save registers), and jump to epilog. 
     .   Note that subprogram label (SUB1 in this
     .   case) is externalized by procedure F$EP. 
     .   It should not appear as a label in the
     .   user’s $(1) code.
     .
     .
     .
     .
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   F$INFO ’ELT2  ’
   END

The epilogue and prologue code generated by these two procedures does not handle
arguments (passed to the subprogram) or functions (that is, the MASM subprogram as a
function).  You can process these items in the $(1) subprogram code, if applicable.
Arguments should be handled after the F$EP reference.  If the subprogram is a function,
then A0 (and possibly A1, A2, and A3, depending on the function type) should be loaded
with the function result before the F$INFO call.

You should not use $(3) or $(4) in a MASM element referencing procedures F$EP and
F$INFO, since these location counters are used by the two procedures.

A MASM error (E-flag) results when you have an incorrect reference to one of the two
procedures.  Possible errors include:

� One of the procedures referred to more than once

� F$INFO referred to without a previous reference to F$EP

� $(3) or $(4) used in your code

� More than one field with one subfield passed to either procedure

� Parameter passed to either procedure is not a Fieldata string

� The length of the Fieldata string passed to one of the procedures is incorrect (six for
F$EP, 12 for F$INFO)

If the element containing the two procedures (ASCII FORTRAN library element
INFO-PROC, marked as type ASMP) has a PDP performed on it by you, an M option
must appear on the PDP call statement. (See 9.5.3 to find INFO-PROC.)

Example:

@MASM,IS TEST
     AXR$
     F$EP   ’SUB1 ’
 $(1)
     LX,U    A0,0
     LXI,U   X11,0 
     LMJ     X11,SUB2
     F$INFO  ’TEST  ’
     END

@FTN,ISF MAIN

 1.   CALL SUB1
 2.   END

 3.   SUBROUTINE SUB2
 4.   CALL FTNWB
 5.   END
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If these two relocatable elements are collected into an absolute element, the resulting
program is executed as follows:

FTNWB CALLED AT ADDRESS 066431 BDI 000004
THIS ADDRESS IS AT LN.      4 OF SUB2
SUB2   REFERENCED AT LN.    0 OF SUB1
SUB1   REFERENCED AT LN.    1 OF MAIN PROGRAM

The line number in a MASM subprogram is always 0 in a walkback message.

10.4.4. Interactive Postmortem Dump (FTNPMD)

10.4.4.1.Soliciting Input

When execution is in interactive PMD mode, commands are solicited with ER TREAD$.
The solicitation message is -.

If the command is read from an add stream (@ADD) or if the program began execution
in breakpoint mode (@BRKPT), the command image is printed.

The following message is printed on entry to interactive PMD mode:

***** ENTER FTN PMD *****

To leave interactive PMD mode, use the EXIT command (see 10.4.4.2.2).

If the program is executing in batch mode, then PMD mode does not go interactive.
Instead, if the F option is specified on the @XQT control statement, the two commands
DUMP ! and EXIT are automatically executed.  FTNPMD is not executed in batch mode
if the F option was not specified.

10.4.4.2.PMD Mode Commands

You can abbreviate both of the interactive PMD commands described below to one letter
(the initial one).

10.4.4.2.1.DUMP

Purpose:

The DUMP command (abbreviated D) prints the values of FORTRAN variables.

Forms:
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DUMP [,opt] [v]/[p]/e

or

DUMP [,opt] !

where: 

opt

is an option letter; A (ASCII) or O (octal) is allowed. 

v

is the name of a FORTRAN variable in program unit p in element e. It must be one of
the following:

� scalar variable name (including a function subprogram entry point name)

� array name

� array element name (with constant subscripts)

You can specify a scalar or array subprogram argument by using one of the these
forms.

The variable v must appear in an executable statement in p, unless p is the main
program or a BLOCK DATA subprogram.  If the ASCII FORTRAN compilation for e
had a COMPILER statement option DATA=AUTO or DATA=REUSE, then v must be
a variable in a COMMON block or a SAVE statement. 

p

represents a program unit in element e.  It has the format: 

progname [ : extname]

where: 

progname

represents the desired program unit in the ASCII FORTRAN program. Specify as:
(1) * (to represent the main program); (2) a FORTRAN program unit (main
program, subroutine, function, or BLOCK DATA subprogram) name; or (3) an
unsigned positive integer n (to represent the nth unnamed BLOCK DATA
subprogram in the FORTRAN source program). 

extname

represents the program unit name of the external program unit corresponding to
the internal subprogram progname.  Therefore, extname can be specified only if
progname is specified as a subprogram name that represents a FORTRAN
internal subprogram.  The variable extname can be specified as: (1) * (if the
external program unit is the main program); or (2) a FORTRAN program unit
(main program, subroutine, or function) name.

If progname is specified as a program unit name and extname is not specified, then
the external program unit with name progname is taken.  If no such external
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program unit exists, then the first internal subprogram with name progname is
taken. 

e

is the name of a relocatable element that is mapped into the executing program and
that was produced by an F-option ASCII FORTRAN compilation.

Description:

The DUMP command prints the current values of one or more FORTRAN variables.

If the O option is specified on the DUMP command, the values are printed in octal
format.  If the A option is specified, they are printed in ASCII character format.  If
neither O nor A is specified, they are printed in a format corresponding to the variable’s
data type (INTEGER, REAL, COMPLEX, etc.).

Whenever the value of a variable is printed, it follows a heading line in the format:  

v    /p    /e

where v is the variable name, p is the program unit name (see the description of the p
subfield above), and e is the relocatable element name.

If the v subfield is specified and is a scalar, array element, or function entry point, one
value is printed.  If v is specified and is an array, all elements of the array are printed in
column-major order.

The following syntax rules apply for the DUMP command:

� One or more blanks must appear between the command name (or command name
with option) and the command’s only field.

� No blank characters are allowed inside the command’s only field.  A blank character
in the field terminates the syntax scan.

Form Descriptions:

1. DUMP [ ,opt] v/p/e

This format prints the value of variable v in program unit p in element e.

2. DUMP [ ,opt] v//e

This format prints the value of variable v in the first program unit in element e.

3. DUMP [ ,opt] /p/e

This format prints the values of all variables in program unit p in element e.

4. DUMP [ ,opt] //e

This format prints the values of all variables in all program units in element e.
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5. DUMP [ ,opt] !

This format prints the values of all variables in all program units in all relocatable
elements produced by F-option ASCII FORTRAN compilations that were mapped
into the executing program.  Before the variables in a given element e are dumped, a
heading line is printed:

 > > > ELEMENT e         < < <

When you use formats 3 through 5, the variables appear in the dump as follows:

� In a program unit, the variables appear in alphabetical order.

� In an element, the program units appear in the order that they appear in in the
FORTRAN element.

� If format 5 is used, the elements appear in the order that their diagnostic text
appears in in the absolute element’s diagnostic tables.

Formats 1 through 4 can be appended with two subfields after the e subfield.  The format
is:

DUMP [ ,opt] [v] / [p] /e[ / [s]/i]

where s and i represent the segment name and bank name, respectively, under which
$(3) of the relocatable element e is mapped.  If i is specified and s is not, then the
segment in bank i with segment index 0 is assumed.

You can specify the two extra subfields when the executing program is multibanked,
although they are never required.  If specified, they cause the interactive PMD to search
more efficiently through the absolute element’s diagnostic tables for the diagnostic text
corresponding to relocatable element e.  The search is more efficient because the
absolute element’s pointer tables for the diagnostic text are organized by segment and
bank, not by element.

If the fourth and fifth subfields are not specified, FTNPMD searchs sequentially through
the absolute element’s diagnostic tables when looking for the diagnostic text of
relocatable element e.  The diagnostic pointer tables in the absolute element are not
used in this case.

Examples:

DUMP !

Print the values of all variables in all program units in all elements.

DUMP //ELT1

Print the values of all variables in all program units in element ELT1.

DUMP,0 /SUB1/E2

Print the values of all variables in subprogram SUB1 in element E2 (in octal format).
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DUMP,A A//E3

Print the value of variable A in the first program unit of element E3 (in ASCII
character format).

DUMP B(6,3,1)/*/E4

Print the value of array element B(6,3,1) in the main program (in element E4).

10.4.4.2.2.EXIT

Purpose:

The EXIT command (abbreviated E) terminates the interactive PMD mode.

Form:

EXIT

Description:

The EXIT command causes program execution to leave the interactive PMD mode.

� If walkback and the PMD mode are initiated by a call from the contingency routine
because of one of the five possible error conditions (mathematical library error, I/O
library error, illegal operation, guard mode, or error mode), control returns to the
contingency routine, where an ER EABT$ is performed.

� If the PMD mode is initiated by a break keyin (@@X C) contingency, control returns
to the point of interrupt in the executing program.

� If the PMD mode is initiated by execution of the FORTRAN statement CALL
FTNPMD, normal program execution resumes.

The following message is printed when the interactive PMD mode terminates:

***** EXIT FTN PMD *****

Program execution is immediately terminated if an @ image (control statement) is read
in PMD mode.  The FEXIT$ termination routine is called.
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10.4.4.3.FTNPMD Diagnostics

The diagnostics printed by the interactive PMD are explained in the following list.

BANK NOT FOUND

The bank specified in the i subfield of the DUMP command does not exist in the
executing program, or no entry exists in the absolute element’s diagnostic pointer
tables corresponding to segment s (specified in the s subfield) in bank i.

ELEMENT MUST BE SPECIFIED

The e subfield in the DUMP command is required (unless you use the format DUMP
[,opt] !).

ELEMENT NOT FOUND

The element specified in the e subfield of the DUMP command was not mapped into
the executing program, or no diagnostic text was generated for the element.

ENTIRE ASSUMED-SIZE ARRAY CANNOT BE DUMPED

The range of an assumed-size array is not known.  Only individual elements of an
assumed-size array can be dumped.

FTEMP$ STORAGE DESTROYED

A subprogram’s temporary storage area (for saving registers and the argument list)
was destroyed because of an error in your program.  The specified variable can’t be
dumped.

FUNCTION HAS NOT BEEN CALLED

An attempt was made to dump a character function value (that is, the v subfield of
the DUMP command was specified as a character function subprogram entry point),
but the function has not yet been called during execution.

I MUST BE SPECIFIED

The s subfield (segment name) is specified in the DUMP command, but the i
subfield (bank name) is not.

ILLEGAL COMMAND

An illegal PMD command name is specified when interactive PMD mode solicits
input.
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ILLEGAL SYNTAX

A general syntax error is found in the command image.  This includes specifying a
field for a command when none is allowed, or not specifying a field when one is
required.

INCORRECT NUMBER OF SUBSCRIPTS

The number of subscripts specified for the array element in the v subfield of the
DUMP command doesn’t equal the number of dimensions declared for the array in
the specified program unit (p subfield) and element (e subfield).

NO DIAGNOSTIC TABLES - WALKBACK & FTN PMD TERMINATED

USE F OPTION ON @FTN CARDS TO ENABLE THESE FEATURES

In the collection process for the executing program, there were no elements with
INFO-010 text mapped in (that is, no relocatable elements produced by ASCII
FORTRAN compilations).  Therefore, neither walkback nor the interactive PMD can
execute, since they both require the use of the INFO-010 diagnostic tables.

PARAMETER’S SUBPROGRAM HAS NOT BEEN CALLED

An attempt is made to dump a subroutine or function parameter (that is, the v
subfield of the DUMP command is specified as a subprogram parameter), but the
subprogram has not yet been called during program execution.

PROGRAM UNIT NOT FOUND

The program unit specified in the p subfield of the DUMP command doesn’t exist in
the specified element (e subfield).

SEGMENT NOT FOUND

The segment specified in the s subfield of the DUMP command doesn’t exist in any
bank of the executing program.

SUBSCRIPT OUT OF RANGE FOR ARRAY

The constant subscripts specified for the array in subfield v of the DUMP command
is too large or too small.

VARIABLE IS NOT AN ARRAY

The variable in subfield v of the DUMP command is appended with a subscript list,
but the variable is not declared as an array in the specified program unit (p subfield)
and element (e subfield).
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VARIABLE NOT FOUND

The variable in subfield v of the DUMP command does not exist in the specified
program unit (p subfield) and element (e subfield), or e was not compiled with
@FTN,F (thereby producing no diagnostic information about your variables).

WARNING: BAD DIAGNOSTIC TEXT FOUND; SEARCH TERMINATED

It is not possible to continue reading diagnostic (INFO-010) text from the absolute
element’s diagnostic tables, because bad text was encountered.  The bad text could
be from (1) a processor other than ASCII FORTRAN or FORTRAN V (which has
generated a relocatable element with INFO-010 text), or (2) an old level of ASCII
FORTRAN (which has generated a format of INFO-010 text that cannot be
interpreted by the current FTNPMD and walkback run-time routines).
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Appendix A
Differences Between FORTRAN
Processors

A.1. General
The differences in language capabilities and equivalent syntax for ASCII FORTRAN and
its predecessor, FORTRAN V, are discussed in this appendix.

A.2. ASCII FORTRAN Extensions Not in FORTRAN V
1. An expanded character set (which handles exclusively ASCII data sets) is available.

2. Double-precision complex data type (COMPLEX*16) is permitted.

3. A character data type is allowed.

4. The $ is allowed in symbolic names, except for the first character of a name.

5. General expressions for subscripts are allowed.

6. Concatenation of character strings is allowed.

7. Multiple assignments are implemented.

8. Character assignments and comparisons are permitted.

9. An integer expression for the index of a COMPUTED GO TO is permitted.

10. An optional comma in a DO statement is permitted.

11. Integer expressions for DO parameters are allowed.

12. The last statement of a DO range can be any statement that permits execution of the
following statement.

13. The PAUSE statement is extended to allow longer messages. FORTRAN V STOP and
PAUSE arguments should be enclosed in apostrophes to conform with ASCII
FORTRAN.
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14. The STOP statement is extended.

15. Expressions are permitted in an output I/O list.

16. Expressions are permitted in an implied-DO.

17. List-directed I/O statements are permitted.

18. ASCII FORTRAN enhances the use of storage greater than 65K words. ASCII
FORTRAN programs that are larger than 65,535 words are made possible by the O
option on the @FTN control command (see 6.10 and 9.5).  Programs larger than
262,143 words are possible by also using the BANK statement (see 6.6 and 6.10).
Accessing of arrays greater than 65K words was possible in FORTRAN V using the
XM = 1 compiler option.

19. Initialization of ASSIGN variables in a DATA statement is permitted.

20. The BANK statement permitting utilization of banks is implemented.

21. An extension to the EXTERNAL statement (&, *) is implemented.

22. An expanded set of mathematical library functions is allowed.

23. New service subroutines are provided.

24. The SUBSTR and BITS pseudo-functions are implemented.

25. A new DEBUG facility is implemented.

26. An extended form of the FORTRAN V PARAMETER statement is implemented.

27. A statement label variable can be used for the format number in an input/output
statement.

28. Exponentiation between variables of all arithmetic types and lengths is permitted.

29. In data initialization statements, ASCII FORTRAN requires that the variables or
array elements match the type of the corresponding constants if the type is real,
complex, double precision, integer, or logical.  When such a mismatch occurs, the
compiler prints a diagnostic and converts the constant to match the type of the
variable.  FORTRAN V does not require element type to match the value type but
does not convert the constant regardless of its type, possibly causing problems later
in the FORTRAN program.

30.  Checkout mode is available.

31. INCLUDE statements can specify a file name as well as an element name.

32. ASCII FORTRAN levels higher than 8R1 conform to FORTRAN 77 (ANSI X3.9-1978),
and FORTRAN V conforms to FORTRAN 66 (ANSI X3.9-1966). Therefore, all features
in FORTRAN 77 that were not in FORTRAN 66 are implemented in ASCII FORTRAN.

33. The virtual feature is provided.
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A.3. Incompatibilities between ASCII FORTRAN and
FORTRAN V
1. Character data is represented in the ASCII code set rather than the Fieldata code set.

Although most Fieldata characters have corresponding representations in ASCII,
characters are four to a word rather than six and have different internal
representations.

The three Fieldata graphic characters �, �, and ≠ have no equivalents in the ASCII
graphic set.  They are converted to caret (^), quotation mark (”), and underscore (_),
respectively, on an ASCII printer.

2. ASCII FORTRAN doesn’t allow transfer of control to labels on nonexecutable
statements.  However, FORMAT statements are allowed as targets of DO-loops.

3. The interpretation of RETURN k is a branch to the kth statement label, and not to the
kth argument.  To obtain the effect of the FORTRAN V statement RETURN k, you
should:

� Create an explicit typing statement for an integer array ARR with as many
elements as there are arguments in the subroutine argument list.

� Initialize the array such that when the kth argument of the list is a statement
label, the kth element of the array is the sequential position of that statement
label among all the statement labels in the list.  If there are ENTRY points in the
subprogram, the array may need to be set separately in the flow of control after
each ENTRY.

� Set all other array elements to 0.

� Change RETURN k to RETURN ARR (k).

For example, the subroutine:

SUBROUTINE SAM (Y,*,*,X) 
       .
       .
       .        
               I=2
RETURN I
       .
       .
       .
RETURN 3
END

should be changed to:

SUBROUTINE SAM (Y,*,*,X) 
INTEGER IA (4)/0,1,2,0/ 
      .
      . 
      .
              I=2
RETURN IA(I)
      .
      .
      .
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RETURN IA(3)
       END

4. The ABNORMAL statement is not implemented.  (The compiler assumes that all
FORTRAN mathematical functions are normal and all external procedures are
abnormal.  It generates an error message and ignores all ABNORMAL statements.)

5. No FORTRAN V hardware IF statements are allowed (subroutine calls are available).

6. FORTRAN V permits a dummy argument to appear in an EQUIVALENCE statement
with another dummy argument.  ASCII FORTRAN does not allow any dummy
arguments in an EQUIVALENCE statement.

7. The FORTRAN V function INSTAT is not available in ASCII FORTRAN. It has been
replaced by the functions IOC, IOS, and IOU (see 5.8.1).

8. Exponents have been standardized.  ASCII FORTRAN exponents contain three digits
rather than two digits used by FORTRAN V.

9. ASCII FORTRAN does not support any of the FORTRAN V options for the
COMPILER statement.  The ramifications of this and your possible actions are listed
by option and variation in the following discussion.

� FLD Option

Although there is no counterpart for the FORTRAN V FLD option in ASCII
FORTRAN, the FLD function is equivalent to the BITS pseudo- function.  It can
also be simulated using a statement function.

The effect of the FLD option is to alter the compiler interpretation of the FLD
function.  These alterations can be carried over to the BITS function as follows:

− FLD = L

You should:

1.  change FLD to BITS

2.  reorder the arguments

3.  change I to I + 1
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For example:

FLD(5,6,A)

should be translated to:

BITS(A,6,6)

Or, you can insert the statements:

INTEGER FLD
FLD(I,J,A)=BITS(A,I+1,J)

at the beginning of the program unit.

− FLD = R

This results in the same action as the L option except for the third step:

1.  change FLD to BITS

2.  reorder the arguments

3.  change I to 36-I

For example:

FLD(5,6,Z)

should be translated to:

BITS(Z,31,6)

or:

INTEGER FLD
FLD(I,J,A)=BITS(A,36-I,J)

can be inserted at the beginning of the program unit.

− FLD = T

Used only for optimization and should be deleted.

− FLD = Q

Used only for optimization and should be deleted.

− FLD = ABS

Causes all nonconstants in the bit location and length fields to be passed as
absolutes.  These nonconstants should be made absolute.

For example:

FLD(I,5,C)
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should be translated to:

BITS(C,ABS(I) + 1,5)

� DATA option:

− DATA=SHORT

− DATA=IBM

These options are used in FORTRAN V to permit partial initialization of arrays.
To accomplish the same effect in ASCII FORTRAN, an implied DO-loop is
required or else a warning message is issued.

For example:

COMPILER (DATA=SHORT)
DIMENSION A(10)
DATA A/1.,2.,3./

should be translated to:

DIMENSION A(10)
DATA (A(I),I=1,3)/1.,2.,3./

� 1110=OPT option:

This activates a code reordering algorithm.  The corresponding ASCII FORTRAN
option is U1110=OPT.

� Other options:

− ADR=IND

− LIST=DEF

− DIAG=N

− EQUIV=CMN

− MATH=A

− PROP=DPON

− PROP=DPOF

− PROP=RLON

− PROP=RLOF

− PROP=NONE

− XM=1

− CONT=RFOR

These options can be deleted, but you should check the ramifications for the
processing of each program.  Special coding may be required.
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10. Execution of FORTRAN V-formatted WRITE statements may indicate the presence
of the control character by printing a blank character, so that printing starts with
position 2 of a print line.  ASCII FORTRAN makes no such indication, and printing
starts in position 1 of a print line.

11. FORTRAN V lets you initialize a whole array with one Hollerith literal in a DATA
statement, whereas ASCII FORTRAN requires each element of the array to have a
Hollerith literal.

12. FORTRAN V lets you ENCODE/DECODE beyond the area you have given to the
ENCODE/DECODE statement.  ASCII FORTRAN may give a warning diagnostic and
may not ENCODE/DECODE beyond the actual area given or assumed.

13. FORTRAN V allows the unit-number field, the maximum-number-of-records field,
and the maximum-record-size field in the DEFINE FILE statement to be an integer
constant, an unsubscripted integer variable, or an integer symbolic name of a
constant.  ASCII FORTRAN does not allow it to be an unsubscripted integer variable.

14. FORTRAN V does not rewind an SDF tape file at termination time unless a CALL
CLOSE has been done on that file. ASCII FORTRAN does a rewind of the SDF or
ANSI tape file, even if CALL CLOSE or CLOSE has not been done for the file.

15. FORTRAN V checks via an ER FACIT$ to determine if a unit is assigned prior to the
program execution.  If not assigned to the run, FORTRAN V does an @ASG,T on the
unit.   ASCII FORTRAN does the ER FACIT$ but does an @ASG,A on the unit to
determine if a cataloged file already exists for the unit. If it doesn’t exist, an @ASG,T
is done on the unit.

16. A FORTRAN V direct-access DEFINE FILE statement can be used to extend a
direct-access file.  However, an ASCII FORTRAN direct-access DEFINE FILE
statement cannot be used to extend a direct-access file.  In ASCII FORTRAN level
10R1 or higher, you can use the OPEN statement to extend a direct-access file.

A.4. Differences in Syntax
1. The FLD function is replaced by the BITS pseudo-function. To change a FORTRAN V

reference to the FLD function to an ASCII FORTRAN reference, you should:

� change FLD to BITS;

� reorder the arguments; and

� change I to I+1 or insert statements such as:

INTEGER FLD
FLD(I,J,A)=BITS(A,I+1,J)
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To illustrate the first method, the reference:

FLD(5,6,A)

can be changed to:

BITS(A,6,6)

2. Four input/output statements in FORTRAN V are expressed differently in ASCII
FORTRAN.  They are:

READ INPUT TAPE unit,f,list 
WRITE OUTPUT TAPE unit,f,list
READ TAPE unit,list
WRITE TAPE unit,list

To change them to their ASCII FORTRAN equivalents, you should:

� eliminate the words INPUT, OUTPUT, and TAPE; and

� enclose unit and f (if present) in parentheses and remove the comma before
list.

For example:

READ INPUT TAPE 5,6, A

should be changed to:

READ (5,6) A

and:

WRITE TAPE 6, D

should be translated to:

WRITE (6) D

3. A Hollerith constant can be specified in FORTRAN V in the following ways:

7HEXAMPLE
7REXAMPLE
7LEXAMPLE
’EXAMPLE’

Of these, only the first and last are permitted in ASCII FORTRAN.
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Change the R and L forms to the H form.  Left and right space-fill and shifts may not
be significant. ASCII FORTRAN uses four characters per word rather than the six
used by FORTRAN V.

4. FORTRAN V permits the concatenation of two arithmetic operators if one of them is
unary and it follows **, /, or *.  However, this syntax isn’t allowed in ASCII
FORTRAN.

For example, the following are permitted in FORTRAN V but not in ASCII
FORTRAN:

A=4.0/+B
A=4.0*-B
A=4.0*+B
A=4.0**-I
A=4.0**+I

To make them acceptable, separate the two consecutive operators by enclosing the
unary operator and its operand in parentheses.

For example:

A=4.0/-B

should be translated to:

A=4.0/(-B)

5. Complex variables in list-directed input/output statements are not enclosed by
parentheses in FORTRAN V.

6. In ASCII FORTRAN, the first parameter in a direct-access DEFINE FILE statement
must be an integer constant.

7. Expressions of the form A**B**C are somewhat ambiguous in interpretation in
FORTRAN V.  ASCII FORTRAN evaluates the expression as A**(B**C).
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Appendix B
ASCII Symbols and Codes

The ASCII symbols and codes are given in Table B-1 and Table B-2.

Table B-1.  ASCII Control Characters  

Octal Code Symbol Meaning

00 NUL Null - can be used as time-fill

01 SOH Start of heading

02 STX Start of text

03 ETX End of text

04 EOT End of transmission

05 ENQ Inquiry.  Who are you?

06 ACK Acknowledgment.  Yes.

07 BEL Bell.  Your attention is required.

10 BS Backspace.

11 HT Horizontal tabulation.

12 LF Line feed.

13 VT Vertical tabulation.

14 FF Form feed.

15 CR Carriage return.

16 SO Shift out.  Nonstandard code follows.

17 SI Shift in.  Return to standard code.

20 DLE Data link escape.

21 DC1 Device control for turning on auxiliary device.

22 DC2 Device control for turning on auxiliary device.

23 DC3 Device control for turning on auxiliary  device.

continued
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Table B-1.  ASCII Control Characters (cont.)

Octal Code MeaningSymbol

24 DC4 Device control for turning on auxiliary device.

25 NAK Negative acknowledgment.  No.

26 SYN Synchronous idle.

27 ETB End of transmission block.

30 CAN Cancel previous data.

31 EM End of medium.

32 SUB Substitute character for one in error.

33 ESC Escape.  For code extension.

34 FS File separator.

35 GS Group separator.

36 RS Record separator.

37 US Unit separator.

 

Table B-2.  ASCII Graphic Characters  

Octal Code Symbol Octal Code Symbol

40 Space 120 P

41 ! 121 Q

42 ” 122 R

43 # 123 S

44 $ 124 T

45 % 125 U

46 & 126 V

47 Apostrophe 127 W

50 ( 130 X

continued
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Table B-2.  ASCII Graphic Characters (cont.)

Octal Code SymbolOctal CodeSymbol

51 ) 131 Y

52 * 132 Z

53 + 133 [

54 Comma 134 \

55 Hyphen 135 ]

56 Period 136 Circumflex

57 / 137 Underscore

60 0 140 Grave Accent

61 1 141 a

62 2 142 b

63 3 143 c

64 4 144 d

65 5 145 e

66 6 146 f

67 7 147 g

70 8 150 h

71 9 151 i

72 : 152 j

73 ; 153 k

74 < 154 l

75 = 155 m

76 > 156 n

77 ? 157 o

100 @ 160 p

101 A 161 q

102 B 162 r

continued



ASCII Symbols and Codes

UP-8244.4-BB-4

Table B-2.  ASCII Graphic Characters (cont.)

Octal Code SymbolOctal CodeSymbol

103 C 163 s

104 D 164 t

105 E 165 u

106 F 166 v

107 G 167 w

110 H 170 x

111 I 171 y

112 J 172 z

113 K 173 {

114 L 174 |

115 M 175 }

116 N 176 Tilde

117 O 177 Delete
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Appendix C
Programmer Check List

C.1. General
This list points out the most commonly encountered programming errors for the novice
programmer and therefore helps avoid unnecessary errors.

First, common language errors are listed.  Then some coding techniques are given to
help you avoid execution errors.

C.2. Language Errors
The simplest errors are straightforward language-use errors.  These are discovered by
the compiler during compilation and are flagged in the listing.  You can let the compiler
do the checking for this type of error and continually change the program until no more
errors are flagged.  Alternatively, machine time and money can be saved by manually
doing a quick check of the program for the following common errors:

1. Do the main program and subprograms contain statements in the following order?

� COMPILER statement

� Program declaration statements

− In a main program, a PROGRAM pgm statement is optional.

− In a subprogram, one of the three program declaration statements must be
the first statement of the program unit:

a. type FUNCTION f(a1,a2,...,an)

b. SUBROUTINE s(a1,a2,...,an)

c. BLOCK DATA [sub]

� IMPLICIT statements
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� Explicit type statements

� PARAMETER statements

� DIMENSION statements

� COMMON statements

� BANK statements

� EQUIVALENCE statements

� EXTERNAL statements

� INTRINSIC statements

� SAVE statements

� DATA statements

� NAMELIST statements

� FORMAT statements

� Statement functions

� Executable statements

� The END statement

Observance of this ordering prevents the omission or misplacement of necessary
program statements.

Some deviation from this order is acceptable.  Before changing the order, you should
refer to the section of this manual that specifically discusses the statement in
question.

2. Are bodies of source statements contained in positions 7 through 72?

� Do comment lines contain a C or * in column 1?

� Do continuation lines contain a continuation character in position 6 and blanks
in columns 1 through 5?

� Are statement labels contained in positions 1 through 5?

3. Are all arrays dimensioned?

If not, the program may attempt to treat references to the array as function calls.
Such errors may show up as undefined references when the program is collected.  If
an array is not dimensioned and considered as a function by the compiler, its name
appears in the EXTERNAL REFERENCES listing produced by the compiler (see
9.4.2.2.8).



Programmer Check List

UP-8244.4-B C-3

4. Do any array references contain subscripts that are out of bounds?

5. Do all statement labels referenced in GO TO statements exist in the same program
unit as the reference?

6. Do function subprograms contain a statement assigning a value to the function?

Since a function reference is used as a value, a value must be assigned to it
somewhere in the subprogram.

7. Are DO-loop termination statements placed properly so that only the desired
statements are encompassed?

8. Does the number of right parentheses match the number of left parentheses in
FORMAT statements, etc?

C.3. Coding Techniques
Avoid execution errors, as well as language errors, by using certain coding techniques.
Some guidelines follow.

1. Are there any repeated sets of code that could be converted to subroutine
references?

2. Can the program be broken down into a series of smaller subprograms? If so, does
the number warrant the use of common storage?

3. What corrective or diagnostic actions are taken if:

� incorrect data is read in?

� numeric overflow, underflow, or divide fault occurs?

A good echo check (to verify that the data read in is what is wanted) is to insert a
list-directed output statement immediately following the READ statement (to write
the input values with some explanatory text).  What you think you are reading in
may not have any resemblance to what you are actually reading.

For example:

PRINT *,’READ X,Y,I AS: ’, X,Y,I

4. Insert abundant comments into the code.  They help you remember what is actually
done in a particular coding section and what else is needed by this code.  Comments
may be particularly helpful at the beginning of a program unit that is used often.
Such comments might contain the following information:

� What is the program designed to do?

� What input data does it need, if any? In what format and from what device?

� What subprograms, if any, does the subprogram use?  What do these
subprograms do?
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� What tapes, files, disks, etc., are used by the program?  What are their unit
numbers?

� What forms of data failure can occur during execution of this program?  What
action is taken in each such case?

5. Use the blocking statements (block IF, ELSE IF, ELSE, and END IF) instead of GO
TO statements whenever possible, to make the code more understandable.
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Appendix D
Diagnostic Messages

This appendix lists the diagnostic messages (errors, warnings, and nonstandard usages)
that may be issued during compilations of ASCII FORTRAN programs.  The notation xx

indicates that situation-dependent data is filled into the message when the error occurs.
Appendix I contains messages that may be issued during checkout (C option on the
ASCII FORTRAN processor call) runs, and Appendix G has messages at the end that may
be issued at run time by the I/O handler.

1 Compiler cannot assign spill file

The compiler assigns the temporary file PSF$ to be used to hold various
pieces of information needed during the compilation that don’t all fit into
main storage.  For some reason, the compiler cannot assign this file.

2 I/O error on compiler spill file xx

Some kind of I/O error has occurred on the compiler spill file.

3 Compiler spill file limit exceeded

Your program is so large that the compiler has run out of spill file space.
The program either has too many variables and equivalences (which fill up
its dictionary area), or it has too many executable statements (which fill up
its text area).

4 Compiler limit or error xx encountered

An unrecoverable internal error has occurred within the compiler.  Either
some internal limit such as the number of data names is exceeded, or there
is an internal error.  This event should be reported to your local Systems
Analyst who may fill out a User Communication Form (UCF) to send to
Unisys for analysis.
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5 Too many external references

The external reference table is full.  All references to additional external
names are deleted.

6 Data size exceeded xx location limit

With or without the presence of the compiler O option (except as noted
below), no collected program can exceed 262,143 decimal words of address
space at any one time.  Local noncommon data and compiler-generated data
must not exceed 65,535 decimal words in a given compilation.

If the O option is not used, the total D-bank size allowed in your collected
program is 65,535 decimal words.  This includes local declarations and
compiler-generated data.  Each common block is also limited to 65,535
decimal words in size.

If the O option is used, the total D-bank size allowed in your collected
program is 262,143 decimal words.  This includes local declarations and
compiler-generated data.  The size of each common block is also limited to
262,143 decimal words.

Programs can exceed these sizes if you use the VIRTUAL data or the
multibanking features of ASCII FORTRAN.  See the VIRTUAL, BANK and
COMPILER statements and Appendixes M and H.

Even if the O option is used, the size of location counter 0 in a compilation
cannot exceed 65,535 decimal words.  $(0) consists of all noncommon data
(including local variables, packets, temporaries, and so forth).  If your
location counter 0 exceeds 65,535 words, you must make the compilation
smaller by splitting your program into separate elements.

7 Too many program blocks for optimization

The complexity of the program exceeds the ability of the optimization phase
to completely analyze it.  As much of the program as possible receives
global optimization.  The rest of the program receives only limited local
optimization.  You should simplify the program by reducing the number of
branches (IF, GO TO, DO statements) or by breaking the program into
several subprograms.

8 Too many program variables for optimization

There are more variables in the program than can be handled by the
optimization phase of ASCII FORTRAN.  It is assumed that the most
frequently used variables are in the most deeply nested loops, and usage of
these is optimized on a global basis.  Expressions involving other variables
are only optimized on a local basis.

9 Too many user entry points

The entry point table is full.  This entry point and all of your subsequent
entry points are not inserted.  You should drop some entry points by
eliminating some subroutines or ENTRY statements in your source element.
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10 Initialization of xx is not possible

Initialization is not possible for variables or array elements that have
addresses over 65K decimal.  This occurs on local variables once their
accumulated size adds up to this much, or on individual COMMON groups
adding up to this much.  For example:

DIMENSION A(2,33000), B(2,33000)
DATA A(1,1), B(1,1) /1.,2./

One of the above initializations is bad. However, the following works:

DIMENSION A(2,33000), B(2,33000)
COMMON A
DATA A(1,1), B(1,1) /1.,2./

The solution to this problem is to make smaller COMMON groups.

11 USED_NUM_INTS GT MAX_NUM_INTS

There are more intervals in the program than can be handled by the
information gathering portion of the optimization phase.

12 USED_NUM_LEVELS GE MAX_NUM_LEVELS

The number of levels resulting from the interval analysis algorithm exceeds
the maximum number of levels that can be handled by the optimization
phase.

15 LASTIBLK GT MAX_NUM_INTS

During the information-gathering portion of the optimization phase, the
newest initialization block created is assigned an interval number greater
than the maximum number of intervals.  Global optimization is unable to
continue.  Local optimization is attempted.

16 Missing END statement, next program unit assumed external

1. A BLOCK DATA subprogram is missing an END statement.  (BLOCK
DATA subprograms cannot have internal subprograms.)

2. An END is missing from an external program unit and a BLOCK DATA
subprogram followed.  (BLOCK DATA subprograms can’t be internal
subprograms.)

17 Compiler error - text chain ends prematurely

A text entry with a zero forward link is encountered before an END text
entry is found.  This most likely occurs during code generation.
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18 MCORE failure - compiler terminated

Optimization (V or Z option) requires extra table space.  An ER to MCORE$
is attempted but fails, since your system does not have enough available
storage.  The compilation is terminated. This message may also appear if
table space for storage map (D, L, or Y options) or INFO-010 table
generation (F or C options) is not available.

19 Program unit has no executable statements

The program unit (main program, external subprogram, or internal
subprogram) that just terminated has no executable statements.  If the
program unit is a subprogram, then the code generated causes it to return
control to the caller.  If the program unit is a main program, then the code
generated consists of calls to FINIT$ (initialization routine) and FEXIT$
(termination routine).

20 MCORE failure - local optimization attempted

If an MCORE failure occurs while attempting to obtain the initial storage for
global optimization tables, local optimization is attempted.

21 Source line contains more than 80 columns

If columns 81-132 appear in the source line, the line is truncated to 80
columns, and is then accepted by the compiler. If more than 132 columns
appear in the source line, the line is rejected.  In either case, you must edit
the source line so that it is 80 columns or less.

22 ROR$ call error, bad ROR packet encountered

ROR detected bad contents in a ROR packet.  The compilation terminates.

23 I/O error during ROR$ call, I/O status = xx

An I/O error occurred during a ROR call.  The I/O status is printed out as a
decimal integer.  The compilation terminates.

24 ROR error, xx status = xx

1. ROR error, ER-PFWL$ status = xx

A start ROR call received a bad status from an ER PFWL$ request. The
status xx is printed out as a decimal integer.  The compilation
terminates.

2. ROR error, I/O status = xx

An end ROR call received an I/O error.  The status xx is printed out as a
decimal integer.  The compilation terminates.
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25 ROR Table Write error, xx status = xx

1. ROR Table Write error, I/O status = xx

An ROR Table Write request resulted in an I/O error.  The status xx is
printed out as a decimal integer.  The compilation terminates.

2. ROR Table Write error, ER-PFI$ status = xx

An ROR Table Write request resulted in a bad status from an ER PFI$
request.  The status xx is printed out as a decimal integer.  The
compilation terminates.

26 Automatic storage exceeds 65K for a program unit group

When you specify the COMPILER statement option DATA=AUTO, the
combined size of automatic data storage (i.e., all data not declared in
COMMON or SAVE statements) cannot exceed 65,535 words for a program
unit group (an external program unit and all of its internal subprograms).
You must change some of the local arrays in automatic storage to be static
(using either COMMON or SAVE), or divide the program unit group to make
it smaller.

27 Duplicate user entry point xx

The specified user entry point appears in more than one SUBROUTINE,
FUNCTION, or ENTRY statement in the compilation unit.

101 Delimiter is missing before xx

A required delimiter is missing at the indicated point in the statement.  In
some cases, the delimiter is inserted (for example, a missing comma after a
DATA value list).  In other cases, the statement is deleted.

102 Delimiter xx is used incorrectly

The indicated character appears in a position where it is not permitted.  The
character may be ignored (for example, an excess comma in a FORMAT
statement), or it may cause deletion of the statement.

103 xx is incorrect outside literal constant

The character printed occurs outside a character or Hollerith constant, but
is not a letter, digit, currency symbol, or FORTRAN delimiter.  The character
is deleted from the statement; the effect is as if the character is a blank.

104 Numeric constant xx is out of range

This message indicates that a constant is outside the limits for its type.  This
can indicate an octal constant that exceeds 12 digits; the last 12 digits are
used.  For an integer, this message indicates that the value cannot be
represented in 35 bits; the last 35 bits of the value are used.  For a real
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constant, this message indicates that the exponent is too large (positive or
negative); the value is replaced by 0 in the statement.

105 Long name truncated to xx

The indicated name is more than six characters long.  The first six
characters of the name are used.

106 Constant xx is incorrect

The indicated constant is incorrectly formatted.  For example, 3.0E-I
receives this message because the exponent is not an integer constant.  In
this example, 3.0E-I is interpreted as ((3.0E0) - I).  This message also applies
to character constants that exceed 511 characters in length; for such
constants, the last 510 characters are used.

107 Constant xx is used incorrectly

The indicated symbol is used where a particular type of constant is required.
The error may cause the statement to be deleted, or it may cause just the
affected part of the statement to be ignored.

108 Statement ends prematurely

The end of the statement is encountered while the syntax of the statement is
incomplete.  The statement may be completed in an arbitrary manner, or the
statement may be deleted.

109 Statement contains excess right parentheses

The statement contains at least one right parenthesis for which there is no
matching left parenthesis.  The statement is deleted.

110 Statement contains excess left parentheses

The statement contains at least one left parenthesis for which there is no
matching right parenthesis.  The statement is deleted.

111 Statement is too long

There are more than 1,320 significant characters in the statement, excluding
the statement label, if any, and the continuation markers in column 6.  This
error only occurs for statements having more than 19 continuation lines.
The statement is ignored.

112 Unrecognizable statement

The statement cannot be identified as any FORTRAN statement.  The
statement is ignored.
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113 Statement contains unclosed literal constant

A character or Hollerith constant is not closed at the end of the last
continuation line of this statement.  This can be caused by unbalanced
apostrophes, missing delimiters (which can result in apostrophes not being
treated as quote characters), a Hollerith field with an incorrect character
count, or a missing continuation card.  The statement is ignored.

114 END statement is missing

The end of the source input is encountered without finding an END
statement.  This can be caused by failure to place an END statement in the
program, or by an error in the terminal statement label of a DELETE
statement.  The second case also causes error message 404.  In either case,
an END statement is assumed by the compiler.

115 Characters xx follow logical end of statement

When the syntax scan detects the end of the statement, the source line is not
completely scanned.  The statement is compiled as if it ends where the
syntax scan indicates that the statement is complete.

116 Target statement of logical IF is of wrong type

The statement to be conditionally executed as part of a logical IF statement
is not executable, or is a DO, block IF, ELSE IF, ELSE, END IF, END, or
another logical IF statement.  The logical IF and its target statement are
ignored.

117 Statement illegal in DEBUG packet

A second DEBUG statement appears in the program unit.  Since only one
DEBUG statement is allowed per program unit, the second is deleted.

118 Name xx is used incorrectly

The name is previously defined or used incorrectly.  If this is a warning
message, the statement is processed as if no error occurred.  If it is an error
message, the statement is deleted.

119 Statement illegal outside DEBUG packet

TRACE ON, TRACE OFF, AT, or DISPLAY statement appears without a
preceding DEBUG statement.  This statement is deleted.

120 Specification follows DEFINE or DATA statement

This specification statement (type, DIMENSION, etc.) follows a statement
function definition or a DATA statement.  The specification statement is
processed as if no error occurred.
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121 Specification follows executable statement

This specification statement follows an executable statement.  Specification
statements following an ENTRY statement are flagged with a warning
message indicating nonstandard usage.  In all other cases, an error is issued
and the erroneous specification statement is deleted.

122 Program truncated at END statement

The only lines that can follow an END statement are comments, START and
STOP EDIT statements, and FUNCTION, SUBROUTINE, and BLOCK DATA
statements, which also signal the start of the source of another program
unit.  If these rules are not followed, an error 122 is issued and all remaining
source is ignored.

123 AT statement missing in DEBUG packet

An AT statement is required if executable statements follow the DEBUG
statement.  The executable statements after a DEBUG statement and before
any AT statement are processed but can’t be executed.

124 xx field is repeated

125 Statement illegal in BLOCK DATA subprogram

An executable statement or other statement not permitted in a BLOCK
DATA subprogram is encountered.  The statement is deleted.

126 Statement illegal in function subprogram

127 Continued statement has no initial line

The indicated statement begins with a continuation line.  The initial line is
assumed to be blank.  If a label appears in columns 1 through 5 of the
continuation line that begins the statement, it is taken as the statement
label.  This is the only situation where the label field of a continuation line is
interpreted by the compiler.

128 COMPILER statement option xx conflicts with previous options

Certain options of the COMPILER statement are incompatible; for example,
ARGCHK=ON is not compatible with ARGCHK=OFF.  This error may also
be received if the DATA=AUTO, DATA=REUSE, or PROGRAM=BIG options
are misplaced in the source.  Each of the three options should appear at the
beginning of the source for the compilation.

129 Empty string interpreted as string of one blank

Null strings are not permitted.  They are changed internally to a string of one
blank.
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130 Syntax error in CALL statement

There is a syntax error in the argument list to the subprogram being called
in a CALL statement, or, there are nonblank characters following the
argument list.

131 Syntax error in CALL statement at xx

Something other than a left parenthesis followed the subprogram name in a
CALL statement.

132 Variable name xx used incorrectly in TYPE statement

The variable declared in the TYPE statement and being initialized has
appeared also in an INTRINSIC statement.  An attempt to initialize the
variable conflicts with the definition of the INTRINSIC statement.

201 IMPLICIT statement is out of correct order

The IMPLICIT statement must precede any specification or executable
statements.  The IMPLICIT statement is accepted, but affects only variables
that have not yet appeared in any statement.

202 Length specification xx is incorrect

The length specification is not a positive integer constant or is not permitted
for the requested type.  The optional length for the requested type is used.
The length used for type CHARACTER is 1.

203 Type specification xx is incorrect

The type keyword in the IMPLICIT statement is not a recognized FORTRAN
data type.  The incorrect type specification is ignored.

204 Letter specification xx is incorrect

The indicated character is not a valid IMPLICIT range limit.  The character is
ignored.  Thus REAL(I-*) is the same as REAL(I).

205 Letter specification xx occurs previously in IMPLICIT

An IMPLICIT type is specified previously for the indicated letter.  The new
type specification for the indicated letter is ignored.

206 Statement order problem for xx

A DATA statement intervenes between the type specification for the variable
and its preceding dimension specification.  The DATA statement doesn’t
necessarily refer to the constant.  The type specification for this variable is
ignored.  See 9.3.2 for a statement ordering description.
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207 VIRTUAL statement must precede specification statements

The VIRTUAL statement must precede all specification statements (except
possibly IMPLICIT or COMPILER) and executable statements in the
program unit.  If the VIRTUAL statement is out of order, then it is ignored.

PROGRAM, SUBROUTINE, FUNCTION, or BLOCK DATA statements can
also precede the VIRTUAL statement.

208 VIRTUAL statement must appear in first program unit

If a VIRTUAL statement does not appear in the first program unit, then it
cannot appear in any other program unit in the source.  The VIRTUAL
statement is ignored in this case.

209 VIRTUAL statement option is misplaced

If neither the ALL nor the ALLBUT option of the VIRTUAL statement
appeared in the first program unit, then neither can appear in any other
program unit in the source.  The ALL or ALLBUT option is ignored in this
error case.

210 Common block xx not allowed in VIRTUAL stmt. in internal

A VIRTUAL statement in an internal subprogram can only have local
variable names in its list.  Common block names are not allowed and are
ignored.

211 BANKED=ALL ignored when VIRTUAL(ALL) is specified

If the ALL (or ALLBUT) option appears in a VIRTUAL statement in the first
program unit, then the BANKED=ALL option of the COMPILER statement is
not allowed (and is ignored). VIRTUAL(ALL) or VIRTUAL(ALLBUT cblist)
takes precedence over COMPILER(BANKED=ALL).

.

.

.
END
SUBROUTINE SUB
VIRTUAL
COMMON/CBX/x,dp(29 999 999)
.
.
.
END

212 Common block xx appears in both VIRTUAL and BANK statements

A common block name cannot be in both virtual space (e.g., VIRTUAL /a/)
and in a specified bank (e.g., BANK /b/ a).  The BANK statement is ignored.
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213 Variable xx appears in both VIRTUAL and COMMON statements

A variable name cannot be in both virtual space (for example, VIRTUAL a)
and in common (e.g., COMMON /c/ a).  The variable is treated as a common
variable.

214 Incorrect COMPILER statement option parameter xx

The legal values for n in COMPILER(PAGESIZE=nk) are 4, 8, 16, 32, 64, 65,
128 and 131.  The legal values for n in COMPILER(NBRPAGES=n) are 2 LE
n LE 2048.

215 Common Block xx cannot exist in both Virtual and non-Virtual space

A common block was placed into virtual space in one program unit, but
placed into non-virtual space in another.  It cannot be in both.

Example:

VIRTUAL /CBX/
COMMON/CBX/x,dp(29 999 999)
.
.
.
END
SUBROUTINE SUB
VIRTUAL
COMMON/CBX/x,dp(29 999 999)
.
.
.
END

216 All possible page sizes are bad for Virtual xx xx

You declared a virtual array or scalar in a manner that no page size exists
that would not cause a spanning problem on some array element(s).  You
must adjust the array offset in its common block so that spanning doesn’t
occur.  If the item is a large character array with an element size that is not a
power of two, you may need to increase the character size to the next power
of two.

Example:

COMMON/CBX/ r,dp(999 999)

DOUBLE PRECISION dp

217 Span error for selected page size on Virtual xx xx

You declared a virtual array or scalar in such a manner that the selected (or
default) page size causes a spanning problem on some array element(s).
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218 Large virtual array xx appears incorrectly in I/O statement

A virtual array or virtual array argument whose size is known to be greater
than 262K elements (or 262K words, if STD=66) at compile time cannot
appear unsubscripted in an I/O statement, except as an I/O list item.

For example, such an array cannot appear unsubscripted in a FMT= clause
in a WRITE statement.

219 A member of common block xx incorrectly appears in a VIRTUAL
statement

Only local variables and common block names (in slashes) can be specified
in a VIRTUAL statement.  You specified a member of a common block in a
VIRTUAL statement:

VIRTUAL a
COMMON /c1/b,x,y,z
EQUIVALENCE(a,b)

301 PARAMETER name xx is previously defined

The statement redefines the indicated symbolic name of a constant.  The
attempted redefinition is ignored.

302 PARAMETER name xx is incorrect

The symbol following the PARAMETER keyword is not a simple variable
name.  The PARAMETER definition is ignored.  This message is also
produced when a dummy argument name in a FUNCTION, ENTRY, or
SUBROUTINE statement is incorrect (for example, a constant).  The
incorrect dummy argument is deleted.

303 PARAMETER expression is not constant valued

A PARAMETER expression can only contain constants, previously defined
symbolic names of constants, and references to certain intrinsic functions.
The PARAMETER definition doesn’t satisfy this constraint and is ignored.

304 PARAMETER expression may give questionable results

Since symbolic names of constants have a type associated with them
(FORTRAN 77), assigning a symbolic name of a constant as a typeless
constant can produce unpredictable results when the symbolic name of a
constant is used in an expression.  This comes about because the internal
representation of the typeless constant (a one-word string) may not conform
to the internal representation expected by the operator.

401 INCLUDE procedure cannot be found

The procedure name specified in the INCLUDE statement can’t be found.
The INCLUDE statement is ignored. This message also occurs if an I/O error
is encountered while searching for an INCLUDE procedure.



Diagnostic Messages

UP-8244.4-B D-13

402 Nested INCLUDE is illegal

An INCLUDE statement is encountered in the text copied by an INCLUDE
statement.  This is not allowed.  The nested INCLUDE is ignored.

403 Input error xx on INCLUDE file

The indicated I/O status is received on an ER IOW$ while reading or opening
an INCLUDE procedure. If the error occurs while opening the procedure,
the INCLUDE is ignored and error 401 is also generated.  If the error occurs
while reading the body of the procedure, the INCLUDE procedure is
immediately terminated, as if the end-of-file sentinel is encountered.  If,
instead of an I/O status, the error read NOT-PF, then the file isn’t a program
file.

404 Terminal label for DELETE cannot be found

The end of the source input is reached without finding the statement label
that terminates the active DELETE statement.  The DELETE terminates
automatically at the end of the source input.

405 Correction image sequence error

A source correction line is out of sequence or is incorrect.  The correction
line is printed in a previous message, for example, OUT OF SEQ -15.

406 Procedure name xx is incorrect

The indicated INCLUDE procedure name is invalid.  The INCLUDE
statement is ignored.

407 INCLUDE option xx is incorrect

The indicated characters were encountered where the LIST option was
expected.  The LIST option is assumed.

408 EDIT option xx is incorrect

The indicated option for a START EDIT or STOP EDIT statement must be
either SOURCE, CODE, or PAGE.  If the statement is START EDIT, the
SOURCE option is assumed.  If the statement is STOP EDIT, CODE is
assumed.

409 Error type xx on input

The indicated I/O status is received from an ER IOW$ on input from the
source input stream.  The compilation terminates without producing an
updated source element.
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410 Input error in open

An I/O error occurs in opening the source input stream.  The compilation
stops immediately.

411 PFI$ error xx closing file

412 INCLUDE file cannot be assigned

The explicitly named INCLUDE file can’t be assigned.  The INCLUDE
statement is deleted.

501 Variable xx has been previously defined

The indicated variable already has a type specified in a type statement.  The
new specification for this variable is ignored.  This message also occurs in
other cases where a name is defined twice.

502 Length spec. xx is inconsistent or incorrect

The specified type doesn’t permit a length specification or doesn’t permit
the length that is specified.  The length specification is ignored.

503 Character *(*) not allowed for xx

Dynamic character string arguments are not allowed for programs with old
mode on (COMPILER(STD=66)), or on names that are not function names,
argument names, or symbolic names of constants.

504 Character *(*) not allowed with STD=66

See the explanation for 503.

601 Dimension or substring xx is not type integer

The constant specified for the array’s dimensions or the character item’s
substring start or end position is not type integer.

602 Array xx has more than seven dimensions

604 Dimension xx is not a scalar, argument, or in common

605 Array xx is previously defined

606 Variable dimension is not permitted for xx

The indicated variable is specified with variable dimensions, but isn’t an
argument of the subroutine.



Diagnostic Messages

UP-8244.4-B D-15

607 Asterisk not permitted as dimension bound for xx

An asterisk is specified as a dimension in which the array isn’t a dummy
array or the asterisk isn’t the upper dimension of the last dimension.

608 Array xx is too large

The number of array elements or the total word size of the array exceeds
262,143.  You must reduce the array bounds.

609 Dimension bound expression is not type integer for xx

After calling the expression routine to evaluate a dimension the result type
is not integer.

610 Lower dimension bound greater than upper dimension bound for xx

612 Subscript or substring not integer constant expression for xx

The array name specified in the DIMENSION or EQUIVALENCE statement
contains subscript references that must be integer constant expressions or
the character item contains substring references that must be integer
constant expressions.

613 Dimension value indeterminable at compile time for xx

A program contains an array with a dimension expression that cannot be
calculated at compile time because the ASCII FORTRAN compiler has been
configured without the mathematical common banks (for example, 3**3
cannot be computed) or else the expression is out of range (for example,
200000,000000,000 ** 200000,000000,000).

614 Dimension bound xx is not dummy argument or in common

The indicated name appears in a dimension bound or in a dimension bound
expression for an adjustable array declaration.  The name cannot be a local
variable.  It must be a dummy argument, a variable appearing in a common
block, or a symbolic name of a constant.

701 Variable xx appears in previous COMMON or SAVE statement

702 Argument xx appears in COMMON, EQUIVALENCE, or VIRTUAL statement

The indicated name is not permitted in a common block or in an
EQUIVALENCE or VIRTUAL statement.  The name is ignored.

703 xx makes COMMON too large

Inclusion of the indicated variable causes a common block to exceed
262,143 words.  The assignment of addresses to this variable and those
following it in the common block are incorrect.
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704 Maximum number of common blocks exceeded

A maximum of 247 common blocks are specified in all program units of a
FORTRAN compilation.

801 EQUIVALENCE member xx links common blocks

The indicated item is in a common block and is equivalenced to an item in
another common block.  The equivalence for the item is ignored.

802 EQUIVALENCE member xx is the only member of a set

803 EQUIVALENCE member xx is inconsistent

This item is equivalenced in a way incompatible with prior equivalences.
The inconsistent equivalence is ignored.

804 EQUIVALENCE member xx reorders a common block

The indicated item is equivalenced in a way that conflicts with prior
EQUIVALENCE and COMMON statements.  The incorrect equivalence
relationship is ignored.

805 EQUIVALENCE member xx extends common incorrectly

The indicated item causes a common block to be extended backward.  The
equivalence is ignored.

806 xx subscript out of range in EQUIVALENCE

A subscript for the indicated array is out of range.  The variable is treated as
a scalar.

807 xx wrong number of subscripts in EQUIVALENCE

The indicated array appears with more or fewer subscripts than it should
have.  Missing subscripts are assumed to be 1; excess subscripts are ignored.

808 EQUIVALENCE member xx must begin on word boundary

The item indicated is equivalenced to a character item that begins on a
nonword boundary.  The item is assigned storage on the previous word
border.

809 xx makes equivalence group too large

The item makes an equivalence group exceed 262,143 words.  Storage
assignments for variables in the group are incorrect.
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810 Undimensioned name xx used in EQUIVALENCE

The indicated name appears with subscripts in an EQUIVALENCE
statement, but is not dimensioned.  The subscripts are ignored.

901 External name xx is not a subprogram name

1001 BANK member xx is previously defined

1002 BANK member xx is not COMMON or EXTERNAL name

The indicated name appears in a BANK statement, but is neither a common
block name nor an external subprogram name.  The BANK specification is
ignored for this item.

1003 Generic function xx deintrinsified via BANK statement

You named a generic function in a BANK statement. It is treated as if you
also named it in an EXTERNAL statement.  All automatic argument and
result typing is lost because it isn’t considered an intrinsic function.

1004 The BANK statement on xx is misplaced

You named a function/subroutine in a BANK statement in an internal
subroutine, but the function/subroutine was first used in the outer external
procedure.  If you want to bank the function, put the statement in the outer
external procedure.

1005 Internal subprograms cannot be banked

You tried to name an internal subroutine in a BANK statement.  This is
illegal.

1101 NAMELIST name xx is previously defined

The NAMELIST name already occurred as a variable, array, or NAMELIST
name.  The NAMELIST statement is deleted.

1102 NAMELIST list reference xx is incorrect

An item in the NAMELIST list is not a variable, array, or array element with
constant subscripts, nor is a dummy argument of the subprogram.  The
NAMELIST statement is deleted.

1201 xx may not be initialized

The indicated identifier is an argument of the subprogram. Since initial
value assignment is not permitted for dummy arguments, the DATA
statement or initial value specification is ignored.



Diagnostic Messages

UP-8244.4-BD-18

1202 Constant does not match type of variable xx

The initial value is of a type not permitted for the indicated variable.  If the
message is an error, the assignment is not done.  If the message is a warning,
the constant is converted to the type of the variable and the assignment is
done.

1203 Number of constants exceeds number of variables

The initial value list contains more elements than the list of variables to be
initialized.  The excess constants are ignored.

1204 Number of variables exceeds number of constants

The list of variables is longer than the initial value list.  The excess variables
don’t receive any initialization.

1205 Implied DO is too complex - simplify

The implied DO in a DATA statement is too complex, causing the interpreter
stack to overflow.  The rest of the current variable list is deleted.

1206 Repeat count error at xx

There is some kind of syntax error on a repeat count in the DATA statement.

1207 Operand xx incorrect for DATA statement

This message means one of two things has occurred:

1. The indicated operand appears in an implied DO in a DATA statement
and is not permitted there.  Only constants, symbolic names of
constants, and DO-loop index variables are permitted in expressions in
an implied DO in a DATA statement.

2. The operand is an argument to the subprogram and can’t be initialized
in a DATA statement.

1208 Character string(s) truncated in DATA constant list

The length of one or more character strings in a DATA statement constant
list exceeds the storage limits for the variable in the corresponding data list.
The character constant is truncated on the right.

1209 Substring expression must be an integer constant expression

Substring expressions must be integer constant expressions.

1210 Object of substring must be a variable or array element

When you use the object of a substring reference in a DATA statement, it
must be a scalar character variable or character array element.
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1211 Substring reference xx not permitted here

1212 More than one initialization for xx

A variable, array element or substring must not be initially defined more
than once in an executable program.  If two entities are associated, only one
can be initially defined in a DATA statement in the same executable
program.  The initial value received by the entity is unpredictable.

1213 xx in data list may result in initialization after use

The data item listed in the warning message is part of a data list that
initializes both nonvirtual common and virtual common or virtual static
local data items.  Due to the presence of virtual data items, the entire data
list must be initialized with generated code.  Initialization done by the
Collector resulting from ROR packets is insensitive to program execution
flow, whereas initialization done by generated code exactly follows the
program execution flow and could result in an item being initialized after it
has been used.  To avoid this possible problem, segregate the nonvirtual
common data items in a separate data list.

1214 xx in data list prevents initialization

Data items in the dynamic (automatic) storage class are initialized by
generated code each time a subprogram is entered.  Data items in the static
storage class are initialized only once.  If one or more data items in the data
list are in virtual storage, the initialization is performed by generated code.
The storage class (dynamic or static) of the first data item in a data list
determines whether the entire data list is to be initialized once or each time
a subprogram is entered.  The appearance of the data item listed in the error
message causes one of the mismatches listed below.  The data list storage
class mismatches which prevent initialization are:

� Virtual dynamic local with any of the following:

− virtual common

− virtual static local

− nonvirtual common

− nonvirtual static local

� Nonvirtual dynamic local with any of the following:

− virtual common

− virtual static local

1301 BLOCK DATA statement is out of correct order

1302 xx is local to BLOCK DATA - ignored

The indicated variable appears in a type, DIMENSION, or DATA statement in
the BLOCK DATA subprogram, but is not in a common block.  No storage is
allocated for the variable, and any initial value assigned to it is ignored.
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1303 Virtual BLOCKDATA programs must appear with executable program units

BLOCK DATA subprograms initializing virtual common must be located in a
FORTRAN source element that holds at least one executable program unit
(main program, subroutine, or function).  At least one of the executable
program units in the element must be entered before any of the virtual
common blocks (being initialized by the BLOCK DATA program) are
referenced in the program.  The easiest way to ensure this is to place all
BLOCK DATA programs into the element holding the virtual main program.

1401 Argument xx is repeated in argument list

A dummy argument name appears more than once in the argument list.
Only the first appearance is processed.

1402 Internal subprogram xx should not be used as argument

This diagnostic appears when an internal subprogram is passed as an
argument to an external subprogram and the DATA=AUTO or DATA=REUSE
COMPILER statement options are present.  Because of automatic storage
stack conventions, an internal subprogram can only be called from the
external program unit it is contained in or from another internal contained
in the same external as itself.

1403 Statement is used in main program

An ENTRY statement is not permitted in a main program.  The ENTRY
statement is deleted.

1404 ENTRY stmt. is within range of DO-loop or block IF structure

An ENTRY statement is not allowed in the range of a DO loop or in the
range of a block IF structure (that is, from an IF (e) THEN statement to the
corresponding END IF statement).  The ENTRY statement is deleted.

1405 Character and non-character entry names not allowed

A function subprogram contains a combination of character and
noncharacter entry or function names.  If the function name is type
character all entry names must be type character.  If an entry name is type
character, the function name must be type character.

1406 Subprogram or subprogram ref. has too many arguments

There is a compiler limit of 250 subprogram arguments allowed in either a
subprogram reference (that is, calling a subroutine or referencing a function
in an expression) or a subprogram itself (total number or arguments in all
SUBROUTINE, FUNCTION, or ENTRY statements in the subprogram).
There is also a limit of 63 character subprogram arguments allowed.
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1407 ENTRY, FUNCTION, PROGRAM, or SUBROUTINE requires a name

The statement requires a name and none was found.  The statement is
analyzed for further errors, then deleted.  The routine is typed as a
subroutine or function if the error is in a SUBROUTINE or FUNCTION
statement.

1408 FUNCTION name xx may not be assigned a value

1409 Functions with label arguments cannot be used in I/O statements

According to FORTRAN 77, functions cannot have label arguments. ASCII
FORTRAN does allow label arguments to have functions. However, there are
implementation problems if functions with label arguments are coded in I/O
statements. Therefore, they are disallowed in I/O statements.

1410 A previous recursive call is in error

1411 Functions and arguments are inconsistent with COMPILER option
DATA=REUSE

The COMPILER statement option DATA=REUSE means that when the
routine is entered, it reuses the automatic storage space of the calling
program.  This means that the program can’t be returned to, since all
register save areas are destroyed, so a function makes no sense.  Also,
arguments are passed in the automatic storage stack, and so passing
arguments is not possible.

1412 Substring expression must be type integer

The expressions e1 and e2 in a substring reference (e1:e2) must both be type
integer.

1413 Incorrect substring reference

A substring reference must have the format (e1:e2) immediately following a
character scalar variable name or a character array element name, where e1
and e2 are integer expressions.

1414 Constant used as substring expression out of range

The values e1 and e2 in a substring reference (e1:e2) must satisfy the
following relational expression: 1 ≤ e1 ≤ e2 ≤ len, where e1 and e2 are integer
expressions, and len is the number of characters in the character scalar
variable or character array element immediately preceding the format
(e1:e2). When either e1 or e2 is a constant expression, checks are made at
compilation time to see that the preceding relational expression is true.
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1415 Substring value out of range for EQUIVALENCE item xx

The substring start and substring end values must satisfy the following
relational expression: 1 ≤ start ≤ end ≤ len, where len is the declared
character length of the item.

1416 Character substring reference invalid for EQUIVALENCE item xx

The substring reference for the item in equivalence must be on a character
scalar or character array element.

1417 Text page size is too small for xx arguments

The compiler internal text page size is too small to hold all the information
necessary for this many dummy arguments for this entry point to the
subprogram.  Either cut back the number of dummy arguments, or have
your Systems Analyst rebuild the FTN compiler with a larger text page size.

1418 Text request of xx words cannot be filled

A request for internal text space in the compiler cannot be satisfied because
the text space in the compiler cannot be satisfied because the text page size
is too small.  This is probably due to passing too many arguments to a
function or subroutine.  Either cut back on the number of arguments passed,
or have your Systems Analyst rebuild the FTN compiler with a larger text
page size.

1502 Statement function def. has too many arguments

The statement function definition has more than the compiler limit of 150
arguments.  The statement is deleted.

1503 Stmt. function def. argument xx is incorrect

The indicated item appears where a dummy argument is expected, and
either isn’t a name or is the statement function name.  The statement is
deleted.

1504 Stmt. function name xx is previously defined

The statement function name was previously used in a way that precludes
its use as a statement function name.  The statement is deleted.

1505 Stmt. function param. xx is not used in def.

1601 Statement label is incorrect

Columns 1-5 of the following source line contain at least one character other
than a space or a digit, and the line is not a comment line.  The contents of
columns 1-5 are ignored.
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1602 Statement label xx is previously defined

Statement label already identifies a previous statement.  This label is
deleted.

1603 Labelled blank line treated as CONTINUE statement

1604 Columns 1-5 of continuation line should be blank

Nonblank characters appear in columns 1-5 of a continuation line.  They are
ignored.

1605 Statement should have a label

FORMAT statements and statements following a GO TO statement must be
labeled.  The statement is processed, but cannot be referenced or executed.
This error may be caused by error 1602.

1606 Label xx referenced outside DEBUG packet

1608 FORMAT label xx is used incorrectly as a branch point

The label on the FORMAT statement was previously used incorrectly as the
target of an IF or GO TO.  Bad code may be generated for the statement.

1609 Label on this non-executable stmt. was previously referenced

Previous references to this label are in error.  Any statement can be labeled,
but only labeled executable statements (except for DEFINE FILE, ELSE,
and ELSE IF) and FORMAT statements can be referenced by using
statement labels.  There is one exception: the DELETE statement can refer
to any statement label.

1610 Stmt. references non-executable stmt. label xx

This statement is in error, since it refers to a label that can’t be referenced.
Any statement can be labeled, but only labeled executable statements
(except for DEFINE FILE, ELSE, and ELSE IF) and FORMAT statements
can be referenced by the use of statement labels.  There is one exception:
the DELETE statement can refer to any statement label.

1701 Wrong number of subscripts for array reference xx

A reference to the indicated array has the wrong number of subscripts.  The
statement is deleted.

1702 Subscripts required for array reference xx

The indicated array name appears in a context that requires a scalar
reference.  The statement is deleted.
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1703 Subscript expression is not constant

Subscripted references in DISPLAY and NAMELIST statements must have
constant subscripts.  The statement is deleted.

1704 Array xx is not dimensioned

1705 Subscript is out of range for array xx

The constant subscript is out of range.  The subscript is accepted as written
except for subscript errors occurring in data initialization.  In this case, the
data initialization isn’t done.

1706 Subscripted reference xx not permitted here

1707 Subscript xx is of the wrong type

A logical, complex, or character expression is used as a subscript.  The
statement is deleted.

1708 Ref. to variable dimensioned array xx before ENTRY stmt.

A reference is made to an array that is declared with variable dimensions
but has not been described in a SUBROUTINE or ENTRY statement.  This
can result from omitting declarations for symbolic names of constants, then
using these omitted constants as dimension specifications in a DIMENSION
statement.  Arrays so dimensioned appear to be variable-dimensioned.

1709 Dimension bounds for xx cause compiler limit overflow

When calculating the virtual origin value (location_counter_offset -
sum_of_multipliers + byte_offset) for an array, the value exceeds the limit
allowed by the compiler.  You must change the dimensions for the array.

1710 Relative address for xx exceeds limit

This message is usually the result of an array reference such as ARR(70000)
where the constant subscript value exceeds 65,535 words, the array is
dimensioned less than 65,536 words, and the O option is not present on the
@FTN control image.  This message appears when an instruction is built by
code generation and the address portion is truncated when filled into the 16-
or 18-bit u-field of an instruction requiring relocation.

1801 Expression is too complex - simplify

The current expression is too complex for the expression scanner.  It should
be broken into two or more statements.  This error can be caused by nesting
array, function, and statement function references too deeply.



Diagnostic Messages

UP-8244.4-B D-25

1802 Complex constant parts are not the same length

One of the components of a COMPLEX constant is REAL and the other is
double precision.  The shorter component is converted to double precision
and the resulting constant is COMPLEX*16.

1803 Complex constant parts are not both real

1804 Constant exp. evaluation produces xx error

The combination of two constants has resulted in an arithmetic fault.  The
type of fault is indicated in the message.  If the fault is UNDERFLOW, the
result is set to zero.  Otherwise, the constant valued expression is not
evaluated.

1806 Subprogram ref. xx has wrong number of arguments

The indicated function or subroutine was first referenced with a different
number of arguments.  This statement is processed normally, unless the
function is a MAX or MIN function, in which case the call is ignored.  If the
function is a FORTRAN-supplied function and referenced with no
arguments, it is subsequently treated as a scalar.  (See 7.3.2.2.)

1807 Stmt. function ref. xx has wrong number of arguments

The number of arguments in the statement function reference doesn’t match
the number in the definition.  The statement is deleted.

1808 Subroutine name xx is used incorrectly

A subroutine is referenced as a function.  The statement is deleted.

1809 Argument xx is of the wrong type

1810 Logical operand xx is of the wrong type

The expression contains a logical operator (.AND., .OR., .NOT.) with a
nonlogical operand.  The statement is deleted.

1811 Arithmetic operand xx is of the wrong type

The expression contains an arithmetic operator (+, -, *, /, **) with a
nonarithmetic operand.  The statement is deleted.

1812 Relational operand xx is of the wrong type

The expression contains a relational operator (.LT., .LE., .NE., .EQ., .GE.,
.GT.) with a logical or complex operand.  The statement is deleted.
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1813 Typeless operand xx is of the wrong type

You used a typeless operand in an expression with a complex or
double-precision operand.  The statement is deleted.

1814 Character operand xx is of the wrong type

The expression contains a concatenation operator with a noncharacter
operand.  The statement is deleted.

1815 Unary operator xx is used incorrectly

The indicated unary operator appears in a context that requires a binary
operator, or it follows another unary operator.  The statement is deleted.

1816 Binary operator xx is used as a unary operator

The indicated operator appears where an operand is required.  The
statement is deleted.

1817 xx is not a subroutine name

The name following the keyword CALL was previously used in a way that
precludes it being a subroutine name.  The CALL statement is deleted.

1818 Type conversion is incorrect

This message occurs if the target and expression in an assignment statement
are of incompatible types (for example, character and integer).  The
assignment statement is deleted.  This message also appears when the
expression in a RETURN statement is not type integer.  It is converted to an
integer, if possible.

1819 Function ref. xx is inconsistent with compiler def.

1. A FORTRAN-supplied function name is referred to with the wrong
number of arguments or with arguments of the wrong type.  The
function is assumed to be a user-supplied external function if this is its
first occurrence.  Error 1826 is also printed, informing you of this
change.

2. This message can also appear when you use a generic function name
without a local specification statement on the name.

1820 Character expression exceeds allowable length

A character string expression exceeds the compiler limit of 511 characters.
The statement is deleted.

1821 xx argument is outside permitted range

An argument to the indicated FORTRAN-supplied function is incorrect.
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1822 xx argument is not normalized or outside allowable range

An argument to the indicated FORTRAN-supplied function is incorrect.

1823 Ref. to generic name xx may be inconsistent

This message sometimes appears when you use a generic function name as
a local variable with no specification statement on the name.  The name is
treated as a local scalar with default typing.

1825 Division by zero detected in this statement

Division by constant zero or a symbolic name of a constant whose value is
zero is detected in an expression.

1826 Function xx is now a user-supplied function

The first occurrence of a compiler-defined function has the wrong number
or type of arguments.  The function is assumed to be user-supplied and loses
any intrinsic properties.

1827 Unary operator ’(’ follows constant in expression

A left parenthesis cannot follow a constant in any expression syntax.  This
message can come out in a statement-function expansion.  For example:

character*(*) sf
sf(arg) = arg(1:2)
print *, sf(’1234’)

This results in the expanded expression: ’1234’(1:2) which isn’t allowed
(since only scalars and array elements can precede the (e1:e2) substring
syntax).

1828 Intrinsic name xx cannot be used as argument

Certain intrinsic functions cannot pass as an argument to another routine
because:

1. They are generated as inline functions and have no external entry point
to pass and thus can’t be called.

2. They have a calling sequence that is unique to their name, such as
LOWERC and UPPERC, and thus cannot be called by a dummy
subprogram name.

1829 ACOB or PL/1 name xx cannot be a dummy argument

You specified a dummy argument name as an external ACOB or PL/1 name.
This is illegal.  The dummy subprogram name is treated as an ASCII
FORTRAN dummy subprogram name.
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1830 Intrinsic function name xx cannot appear in a CHARACTER type stmt

The name UPPERC or LOWERC can’t appear in a CHARACTER type
statement when you use the name as an intrinsic function in the program
unit.  For example:

CHARACTER UPPERC          @defaults to CHARACTER*1

or

CHARACTER*8 UPPERC

followed by

xx = UPPERC(string)

causes UPPERC to be treated as a user-supplied function.

1831 Main program name xx may not be the same as a subprogram name

The name specified in the PROGRAM statement (that is, the program name)
may not be the same as the name of an external user subprogram.  The main
program name cannot be called as a subprogram.

1832 Possible precision loss - use xx function instead of xx

The intrinsic functions REAL, SNGL, and FLOAT always return
single-precision real (that is, REAL*4) results, no matter what type the
argument is.  You should specify the intrinsic function DBLE (in place of
REAL, SNGL, or FLOAT) if you want a double-precision result.

For example, if D1 is type REAL*8 and CD1 is type COMPLEX*16, then the
statement

D1 = REAL(CD1)

causes the real portion of CD1 to be converted to single-precision (because
of the REAL function), and the assignment causes that single-precision
result to be converted back to double-precision.  In other words, there is a
possible loss of precision because of converting from double- to single- to
double-precision.  The statement

D1 = DBLE (CD1)

causes no precision conversions and therefore no loss of precision.

Similarly, the intrinsic function CMPLX always returns a single-precision
complex (that is, COMPLEX*8) result, no matter what type the argument(s)
are.  You should specify the intrinsic function DCMPLX (in place of CMPLX)
if you want a double-precision complex result.  For example, if D1 and D2
are type REAL*8 and CD1 is type COMPLEX*16, then the statement

CD1 = CMPLX (D1,D2)
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causes D1 and D2 to convert to single-precision real to form the
COMPLEX*8 result CMPLX (D1,D2), and the assignment causes that
single-precision complex result to convert back to double-precision
complex. The statement

CD1 = DCMPLX (D1,D2)

causes no precision conversions and therefore no loss of precision.

1901 Assignment result xx is incorrect

The item on the left-hand side of the assignment isn’t permitted as the target
of an assignment.  The statement is deleted.

1902 Assignment result xx is an active DO variable

The indicated item is the index variable of an active DO loop.  The statement
is deleted.

1903 Assignment result xx does not match expression

1904 Assignment result xx exceeds compiler table limit

More than the compiler limit of 32 items appear in the left-hand side of a
multiple assignment statement.  The statement is deleted.

1906 BITS pseudo function - illegal first argument

The first argument of the BITS pseudo-function is a temporary.  The result
isn’t inserted into the correct variable.  This occurs when you attempt to
take a BITS of a SUBSTR result.

2001 Label reference xx is incorrect

The statement label in an AT statement is missing, or it does not refer to a
previous executable statement.  The AT statement is deleted.  This message
can also occur if an *, $, or & in the actual argument list of a subroutine call
isn’t followed by a statement label, or if a statement label is passed as an
actual argument in a function reference.  In this case, the statement is
deleted.  This message is also generated if the statement label following
END= or ERR= clause of an input/output statement appeared previously on
a nonexecutable statement, in which case the statement is deleted.

2002 Label reference expression is incorrect

This message occurs for two reasons:

1. A statement of the form RETURN i is encountered in a subprogram that
has no asterisks in its argument list.

2. The i specified in a RETURN i statement is either negative or too large
for the asterisk list.



Diagnostic Messages

UP-8244.4-BD-30

2003 Assign variable xx is incorrect

2004 Label reference xx exceeds compiler table limit

2005 Statement label xx is not defined

The indicated statement label is referenced, but never appears as the label
of a statement.  The reference may be deleted or it may be generated as a
jump to an undefined address.

2006 Keyword xx used as label reference in arithmetic IF stmt.

The IF statement is recognized by the compiler as an arithmetic IF
consisting of only the negative branch, which is a FORTRAN keyword.  The
warning is issued because you probably want a logical IF.  For example:

IMPLICIT INTEGER (A-Z)
IF (LOGFCT) RETURN

2007 Absence of list in Assigned GO TO inhibits global optimization

The absence of the optional statement label list in an assigned GO TO
inhibits global optimization and results in only local optimization being
performed.  An assumed list that contains every statement label that has
been associated with the scalar integer variable in an ASSIGN or
initialization statement could be constructed.  However, it is impossible for
the compiler to guarantee the completeness of such an assumed list because
of the possible appearance of the scalar integer variable in EQUIVALENCE
and/or assignment statements.

For example:

ASSIGN 10 TO LAB1
ASSIGN 20 TO LAB2
LAB1 = LAB2
GO TO LAB1

The assumed list for LAB1 would be 10.  However, the complete list is 10,20.

Without a complete statement label list it is impossible to guarantee the
correct analysis of program structure and control flow without which global
optimization cannot produce valid results.  A complete statement label list
must be present on the assigned GO TO statement if global optimization is
desired.

2008 Presence of an Assigned GO TO inhibits global optimization

The presence of an Assigned GO TO statement that transfers control to the
head of a loop that is not a DO loop inhibits global optimization and results
in only local optimization being performed.  The backward movement and
strength reduction optimizations performed on a loop require an area
(commonly referred to as an initialization block) into which operations that
are invariant in the loop can be moved.  If transfers of control are made to
the head of a non-DO loop from outside the loop, optimization must create
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an initialization block to be inserted immediately prior to the head of the
non-DO loop.  The transfers of control from outside the non-DO loop must
then be modified to transfer control to the newly created initialization
block.  Since the point transferred to by an assigned GO TO is dependent on
the contents of a variable that contains the address of any one of a list of
labels, the needed modification cannot be made. Conversion of the assigned
GO TO to a computed GO TO enables global optimization to be performed.

2104 DEBUG facility and optimization are incompatible

The combination of a DEBUG statement and an optimization option (V or Z)
is not allowed, since bad code could be generated.  Optimization is not
equipped to handle debug code.

2105 DEBUG SUBCHK not permitted for assumed-size array xx

An assumed-size array (such as DIMENSION A(*)) can’t be specified for
subscript checking since the size of the array cannot be calculated.

2201 DO variable is used in an outer DO

The index variable of this DO statement is also the index variable of an
earlier unclosed DO loop.  The statement is accepted.  The result of
executing the DO loops is unpredictable.

2202 Range of DO contains no executable statements

There are no executable statements in the indicated DO loop.  The DO
statement is ignored.

2203 DO loops are incorrectly nested

The terminal statement of a DO statement was encountered, and the
terminating statement for a later DO statement is not yet encountered.  All
unclosed DO loops encountered since the closing DO also close at this
statement.

2204 DO terminal statement number is incorrect

The statement label that follows the keyword DO is incorrect.  The DO
statement is ignored.

2205 DO terminal stmt. number is previously defined

The DO terminal statement label must appear physically after the DO
statement in the same compilation unit.  The DO statement is ignored.

2207 DO increment value is incorrect or inconsistent

The increment value is not an integer, real, or double-precision expression
or has constant value zero.  This message can also occur if the initial,
increment, and terminal values are all constants and the sign of the
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increment value is not consistent with the sign of the difference of the
terminal and initial values.  The DO statement is ignored.

2208 DO terminal value is incorrect

The DO terminal value is not an integer, real, or double-precision
expression.  The DO statement is ignored.

2209 DO variable is subscripted

The DO index variable can’t be an array element.  It must be a simple integer
or real variable.  The DO statement is ignored.

2210 DO variable is of the wrong type

The DO index is not an integer or real variable.  The DO statement is
ignored.

2211 DO variable is incorrect

There is an error in the DO index variable.  The DO statement is ignored.

2212 DO initial value is of the wrong type

The initial value is not integer, real, or double precision.  The DO statement
is ignored.

2213 DO increment value is of the wrong type

The increment value is not integer, real, or double precision.  The DO
statement is ignored.

2214 DO terminal value is of the wrong type

The terminal value is not integer, real, or double precision.  The DO
statement is ignored.

2215 DO terminal stmt. type prevents loop completion

The terminal statement of the DO loop does not permit execution of the
following statement.  As a result, the increment and test parts of the DO
loop are never executed.

2216 I/O list contains redundant parentheses

An element or sublist in an implied DO is enclosed in parentheses.  The
redundant parentheses are ignored.

2217 Implied DO list contains no members

The implied DO list is empty.  The implied DO is ignored.
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2218 Implied DO list contains expression or constant

The elements of an implied DO list should be variables, arrays, and array
elements.  For an input list, the implied DO is ignored.  For an output list,
the error is ignored.

2219 Implied DO element must be subscripted array

An element of an implied DO list used in data initialization is not an array
element.  The implied DO is ignored.

2220 Syntax error in implied DO

2221 DO nesting exceeds compiler limit

The level of DO and implied DO nesting exceeds the compiler limit of 25.
The DO or implied DO is ignored.

2222 DATA list contains expression or constant

An element of a DATA statement variable list is not a variable, array
element, or array.  The list element is ignored.

2223 Block IF nesting exceeds compiler limit

The level of block IF statements exceeds the compiler limit of 25.  The block
IF statement is ignored. An END IF statement is required to terminate a
block IF nesting level (which is started with a block IF statement, that is, IF
(e) THEN).

2224 END IF, ELSE, or ELSE IF stmt. is not in block IF structure

The END IF, ELSE, or ELSE IF statement must have a matching block IF
statement (that is, an IF (e) THEN statement at the same IF level) preceding
it in the program unit.  The END IF, ELSE, or ELSE IF statement is ignored.
Each block IF statement must have exactly one corresponding END IF
statement following it in the program unit (that is, one at the same IF level).
Each block IF statement can also have zero or one corresponding ELSE
statement and any number of corresponding ELSE IF statements following
it in the program unit (at the same IF level).

2225 Expression in ELSE IF stmt. is not type logical

The expression e in the ELSE IF (e) THEN statement must be a logical
expression.  The ELSE IF statement is ignored.

2226 A DO-loop and an IF-block are incorrectly nested

When a DO statement appears in an IF block, ELSE IF block, or ELSE block,
the range of the DO loop must be entirely within that block.  Similarly, if a
block IF statement (that is, IF (e) THEN) appears in the range of a DO loop,
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the corresponding END IF statement must also appear within the range of
that DO loop.

2227 ELSE or ELSE IF statement may not follow ELSE statement

Once an ELSE statement appears at a given IF level, an END IF statement
must appear before the next ELSE or ELSE IF statement at the same IF
level.  The ELSE or ELSE IF statement is ignored.

2228 Block IF statement requires matching END IF statement

Each block IF statement (that is, IF (e) THEN) must have exactly one
corresponding END IF statement following it in the program unit.  An
implied END IF statement is inserted at the end of the program unit to
match the block IF.

2229 Statement cannot terminate a DO-loop

The terminal statement of a DO-loop must not be a nonexecutable statement
(except FORMAT) or one of the following executable statements: an
unconditional GO TO, assigned GO TO, arithmetic IF, block IF, ELSE IF,
ELSE, END IF, RETURN, STOP, END, or DO statement.

2230 Implied DO list contains redundant parentheses

2301 FORMAT code xx is incorrect

The indicated letter is not a valid edit descriptor for the FORMAT statement.
The letter and all following characters are deleted up to the following
non-period delimiter.

2302 FORMAT code is not followed by an integer

The indicated edit descriptor letter is not followed by a field-width
designator.  The edit descriptor letter is deleted.

2303 FORMAT code integer component is too large

The indicated integer is greater than 255.  The value 255 is used instead of
the large number.

2304 FORMAT code xx fractional part is missing

Either an edit descriptor that requires a d subfield (such as Ew.d or Fw.d)
doesn’t have the d subfield, or an edit descriptor for which the d subfield is
optional (such as Iw[.d]) has the period delimiter, but no value is specified
for d.  The value 0 is used for the missing subfield.

2305 FORMAT code xx has zero field width

The field width for the indicated edit descriptor has been specified as zero.
The edit descriptor is deleted.
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2306 FORMAT has empty literal field

The format statement contains a literal field containing zero characters.  The
empty literal field is deleted.

2307 Repeat count is zero for xx

The repeat count for the indicated edit descriptor or parenthesis is zero.
The format is processed as though the zero repeat count is not specified.

2308 Scale factor is not preceded by an integer

A P field is not preceded by an integer.  The value 0 is used.

2309 FORMAT parenthesis nesting is too deep

Parentheses are nested more than five deep, including the outermost pair
that begin and end the statement.  The format is translated as though no
error has occurred, but group repetition is not done properly by the
execution-time format scanner for groups that are too deep in the
parenthesis nest.

2310 Hollerith field ambiguity - list-directed FORMAT used

The correct size of a Hollerith literal cannot be determined, because of a
syntax error in specifying the field width.  The FORMAT statement is
replaced by an empty FORMAT statement, which forces list-directed input
and output.

2311 Hollerith field extends beyond end of FORMAT

The length of a Hollerith literal is too long.  It causes the remainder of the
FORMAT statement to be absorbed into the literal.

For example:

FORMAT(1X,7HTitle)

The length (7) is too long.  It should be 5. The FORMAT statement is
replaced by an empty FORMAT statement, which forces list-directed input
and output.

2401 Arithmetic IF expression is of wrong type

The parenthesized expression in the IF statement is not logical, so the IF is
assumed to be arithmetic.  However, the expression is not INTEGER, REAL,
or DOUBLE PRECISION, the only types for which the required relations to
zero are defined.  The statement is ignored.
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2402 All three label positions of an arithmetic IF are void

Since all three label positions of an arithmetic IF are void, control passes to
the next statement.  The arithmetic IF statement is no longer needed or a
label position isn’t filled in.

2501 File reference number xx is incorrect

In a DEFINE FILE statement, the unit specifier is not an integer, or has
appeared as the unit specifier of a previous DEFINE FILE statement.  The
second DEFINE FILE statement is deleted.  This message is also generated
if the unit specifier of a BACKSPACE, REWIND, ENDFILE, FIND, READ, or
WRITE statement isn’t an integer expression or a character variable,
character array name, or character array element where these are permitted.
The statement is deleted.

2502 Relative record number xx is incorrect

The record number specification of a direct access I/O statement isn’t an
integer expression.  The statement is deleted.

2503 Input list member xx is an active DO variable

The indicated variable appears in an input list.  It is the index variable of an
active DO or implied DO.  The input list is ignored.

2504 NAMELIST reference xx is incorrect

The item encountered where the NAMELIST name is expected is not a valid
name.  The NAMELIST statement is deleted.

2505 Associated variable xx is incorrect

The associated variable of this DEFINE FILE or OPEN statement either is
not an integer scalar or is used as the associated variable of a prior DEFINE
FILE or OPEN statement.  This DEFINE FILE or OPEN statement is deleted.

2506 File format specification xx is incorrect

The DEFINE FILE format specification is not one of the letters L, E, U, M, F,
or V.  The statement is deleted.

2507 Number of records field xx is incorrect

The number-of-records field of the DEFINE FILE statement is not an integer
constant.  The statement is deleted.

2508 Size of record field xx is incorrect

The size-of-records field of the DEFINE FILE statement requires a positive
integer constant less than 262,144, which can’t be found.  The statement is
deleted.
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2509 Character number xx is incorrect

The record size specification of the ENCODE or DECODE statement isn’t an
integer constant, variable, or array element, or is negative.  The statement is
deleted.

2510 Starting location xx is incorrect

The location to which the ENCODE or DECODE data transfer is made is
incorrectly specified. It must be an array, array element, or variable.  The
statement is deleted.

2511 Characters processed name xx is incorrect

The entity specified to receive the number of characters processed by the
ENCODE or DECODE is not an integer variable or array element.  The
statement is deleted.

2512 FORMAT reference xx is incorrect

The FORMAT specification must be a FORMAT statement number, an
integer variable containing a FORMAT statement label, or an array or
character expression containing a run-time FORMAT.  This message is
generated if the FORMAT specification is a statement label but not a
FORMAT statement label or is a variable but not of type integer or character.
This message may be generated during the optimization process if it is
determined that specified integer variable will not be assigned a FORMAT
statement label in an ASSIGN statement when the referencing statement is
executed. In any case, the statement is deleted.

2513 Direct access or internal file I/O is list or NAMELIST directed

The FORMAT specification in this direct access or internal file I/O statement
is a NAMELIST name or an asterisk.  Only formatted and unformatted I/O
are permitted for direct access files, and only formatted sequential I/O is
permitted for internal files.

2514 Redundant ’ERR=’ or ’END=’

A second ERR= or END= clause is encountered in the same statement.  The
repeated clause is ignored.

2515 ’END=’ return is used incorrectly

An END= clause is specified in a direct access READ or WRITE statement.
The END= clause is ignored.

2516 Input list member xx is an expression or constant

The members of an input list must be variables, elements, or arrays.  The
input list is ignored.
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2517 I/O list present with NAMELIST directed I/O

An I/O list is specified on a READ, WRITE, PRINT, or PUNCH statement that
has a NAMELIST name instead of a FORMAT specification.  The list is
ignored.

2520 I/O list member xx is incorrect

The indicated item is not permitted to appear in an I/O list.  The I/O list is
ignored.

2521 DEFINE FILE option xx is incorrect

The indicated option is not valid for a sequential DEFINE FILE.  The
statement is deleted.

2522 File reference number is out of range

The unit specifier is negative or 0 or greater than 262,143.  The statement is
deleted.

2523 Internal file request is incorrect

Internal file I/O can be formatted and sequential only.

2524 IOSTAT field is incorrect

An input/output status specifier can only be an integer variable or an integer
array element.

2525 Keyword xx is used incorrectly

A keyword used in an OPEN, CLOSE, or INQUIRE statement conflicts with
another keyword, or is not permitted in this statement.

2526 Specification for xx is incorrect

The specification for this keyword is of the wrong type or is an expression
in which this is not permitted.
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2527 Only UNIT, IOSTAT, and ERR may be present with reread

2528 Keyword xx not permitted in CLOSE statement

2529 Keyword xx permitted only in INQUIRE statement

2531 Keyword xx not permitted in this statement

2532 UNIT or FILE specification must be present

2533 UNIT specification must be present

2602 Variable xx may be used before set to a value

The analysis of program flow determines that possible paths exist in the
routine in which the value of the indicated variable can be referenced before
any value has been assigned.  It is your responsibility to ensure that the
variable is initialized on all possible paths, or that the paths where the
incorrect reference occurs can’t be executed.

This warning message also appears when a character variable is only
partially defined by an assignment statement before a use of the entire
character variable.  That is, only a substring of the character variable is
defined by an assignment statement before the character variable is used.  It
is your responsibility to ensure that all byte positions of the character
variable are defined before the use of the entire character variable.

2603 Arithmetic error in DO loop calculation

This error is issued in either of two cases:

1. When the evaluation of a constant-valued expression while calculating
the iteration count causes an arithmetic fault; or

2. When the evaluation of a constant-valued expression, while performing
the strength-reduction phase of global optimization, causes an
arithmetic fault.

2604 Transfer of control into DO loop inhibits optimization

The branching structure of a DO-loop is too complex to be analyzed by the
optimization phase.  The code is correct, but not optimal.  The complexity
results from branches out of and into the DO-loop; most probably the
branches are from the extended range of the DO-loop.  You should consider
simplifying the branching structure of the DO-loop to obtain optimal code
from this compiler.

2605 Maximum number of reducible expressions in DO loop

The maximum number of reducible expressions for a DO-loop is
encountered.  Any further expressions in the loop are not considered for
optimization.
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2606 Variable xx is referenced but is never assigned a value

A variable name is referred to in the program but nowhere in the program is
the variable assigned any value.  A variable is assigned a value in a number
of ways including an assignment statement, a DATA statement, and use of
the variable as a subprogram argument.  Ordinarily, reference to such a
variable with no assigned value returns a zero value.  However, the value
referred to may be unknown, depending on the options used on the
compilation and collection of the program.

2607 Variable xx appears in a declaration but is never referenced

The variable is specified in a type or DIMENSION statement but neither it
nor any overlays is ever used in an executable statement. Check the
program for misspellings, and consider eliminating the unnecessary
variable.

2608 Dummy argument xx is never referenced

The dummy argument appears in the argument list of a FUNCTION,
SUBROUTINE, or ENTRY statement, but is never used in an executable
statement.  Check the program for misspellings, and consider eliminating
the unnecessary argument.

3100 Stmt. function xx typed as CHARACTER*(*)

The FORTRAN 77 standard requires a character statement function to have
a length specification that is a constant integer expression.
CHARACTER*(*) isn’t allowed.

3101 Stmt. function xx used as target of assign. stmt

The FORTRAN 77 standard requires a statement function reference to
appear in an expression.  It does not allow a statement function reference to
appear on the left-hand side of an assignment statement (at the outer level).
ASCII FORTRAN allows this, and does not perform any type conversion (to
convert the expanded statement function expression to the type of the
statement function).

3102 xx used as statement function actual arg

The FORTRAN 77 standard requires a statement function actual argument to
be an expression.  It can’t be a statement label, an array name, or a function
name.

3103 Char. function entry points have diff. lengths

The FORTRAN 77 standard states that in a character function, all entry
points must be typed with the same length specification; that is, all entry
point names must have the same constant length (for example,
CHARACTER*2), or all entry point names must be typed CHARACTER*(*).
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3104 Multiple assignment statement

The FORTRAN 77 standard allows only one target variable in an assignment
statement.  ASCII FORTRAN allows the source item (on the right-hand side
of the equal sign) to be stored to more than one target item (on the left-hand
side of the equal sign, separated by commas).

3105 Non-character item set to char. constant

The FORTRAN 77 standard does not allow a noncharacter item to be the
target (left-hand side of the equal sign) of an assignment statement, where
the source item (right-hand side of the equal sign) is a character constant,
since character-to-noncharacter conversion is not allowed.  The standard
has arithmetic assignment statements and character assignment statements,
with no mixing allowed.  ASCII FORTRAN allows this, with no conversion
performed on the character constant (that is, it is simply stored to the target
variable).

3106 Dimension follows length for array xx

The FORTRAN 77 standard states that the local length specification (if any)
for a character type statement must follow the dimension information (if
any).  For example, the standard requires CHARACTER A(2)*3, while ASCII
FORTRAN allows that syntax or CHARACTER A*3(2).

3107 Data init. in spec. statement for xx

The FORTRAN 77 standard allows data initialization only in the DATA
statement.  ASCII FORTRAN also allows it in explicit type and DIMENSION
statements.

3108 Length spec. *n appears for non-char. item

The FORTRAN 77 standard allows a length specification of *n (where n is
an integer constant) or *(e) (where e is an integer constant expression) only
for type character, in the explicit type, FUNCTION, and IMPLICIT
statements.  For example, the forms REAL*4, REAL*8, and COMPLEX*8
aren’t allowed in the standard, but CHARACTER*2, CHARACTER*(2+3),
and CHARACTER*(*) are allowed.

3109 COMPLEX*16 data type is undefined

The FORTRAN 77 standard defines the complex data type to be single
precision (that is, composed of real and imaginary parts that are both
single-precision real).  ASCII FORTRAN allows single- precision complex
(COMPLEX*8) and double-precision complex (COMPLEX*16).

3110 COMPLEX*16 constant encountered

The FORTRAN 77 standard has no double-precision complex data type (only
single-precision complex).  Therefore, a COMPLEX*16 constant is not
allowed.
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3111 Format edit descriptor xx is undefined

The repeatable edit descriptors Jw, Ow, Rw, and Ew.dDe are not defined in
the FORTRAN 77 standard.  The nonrepeatable edit descriptors +S, -S, and
-wX are not defined in the standard.  These edit descriptors are allowed in
ASCII FORTRAN formats.

3112 xx clause on I/O statement is undefined

The listed clause is not allowed on the current input/output statement
(OPEN, CLOSE, or INQUIRE) in the FORTRAN 77 standard.

3113 END clause in WRITE statement

The FORTRAN 77 standard does not allow an END=s clause on a WRITE
statement.

3114 u’r syntax used for direct access READ or WRITE

The FORTRAN 77 standard does not allow an apostrophe ( ’ ) to designate
direct access I/O, as does ASCII FORTRAN.  The standard has separate
UNIT=u and REC=r clauses for the direct access READ and WRITE
statements.

3115 Non-char. array xx used as format specifier

The FORTRAN 77 standard allows the following for a format specifier in I/O
statements: statement label, integer variable, character expression, asterisk,
or character array name.  ASCII FORTRAN allows noncharacter array
names, in addition to the standard list.

3116 Namelist name xx used in I/O statement

The FORTRAN 77 standard does not allow namelist I/O.  The current
statement is an I/O statement with one of the following formats:

READ(u,n,...)
READ n
WRITE(u,n,...)
PRINT n
PUNCH n

where n is a namelist name (declared in a NAMELIST statement).

3117 Non-integer subscript used for array xx

The FORTRAN 77 standard requires a subscript in an array reference to be
an integer expression.  ASCII FORTRAN allows real or double-precision
expressions, as well as integer expressions.
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3118 CHARACTER*(*) item xx appears in concatenation

The FORTRAN 77 standard allows a CHARACTER*(*) item (dummy scalar,
dummy array element, or character function entry point) to appear as a
concatenation operand only in a character assignment statement, and even
then the concatenation may not appear in an argument (to either a function
or statement function).  ASCII FORTRAN allows a CHARACTER*(*) item to
appear anywhere a character expression is allowed.

3119 Non-character item compared to character constant

The FORTRAN 77 standard allows a relational expression to compare the
values of two arithmetic expressions or two character expressions.  ASCII
FORTRAN also allows a character constant to be compared for equality to
an integer or real item if a P option is specified on the @FTN processor call.

3121 Character length spec follows function name

The FORTRAN 77 standard allows the syntax in the following example for a
character function specification:

CHARACTER*5 FUNCTION C(arg)

ASCII FORTRAN also allows:

CHARACTER FUNCTION C*5(arg)

3122 PARAMETER statement occurs among executable stmts.

In the FORTRAN 77 standard, PARAMETER statements are only allowed to
be mixed with IMPLICIT statements and specification statements.  They
can’t occur after any DATA statements, statement function definitions, or
executable statements.

3123 Spec. stmt. occurs after DATA or stmt. function

The FORTRAN 77 standard forces all specification statements to occur
before any DATA statements or statement function definitions are
encountered.

3124 Internal subprograms are non-standard

The FORTRAN 77 standard does not have the ASCII FORTRAN concept of
internal subprograms, where a SUBROUTINE or FUNCTION statement
occurring inside of another program unit with no intervening END
statement causes the subprogram to be local to the containing external
subprogram and to share its declarations.

3125 Statement not allowed in BLOCKDATA subprogram

The FORTRAN 77 standard does not allow the INTRINSIC or EXTERNAL
statements to occur within a BLOCK DATA subprogram.
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3126 Statement is non-standard

ASCII FORTRAN has the following statements that aren’t in the FORTRAN
77 standard:  FIND, PUNCH, ENCODE, DECODE, BANK, DEFINE,
NAMELIST, DEBUG, AT, DEFINE FILE, START EDIT, STOP EDIT, DELETE,
INCLUDE, DISPLAY, TRACE, COMPILER.

3127 Over 19 continuation lines encountered

The FORTRAN 77 standard allows up to 19 continuation lines.  ASCII
FORTRAN allows as many as necessary as long as the number of significant
characters is under approximately 1,320.

3128 xx equivalenced to a xx item

The FORTRAN 77 standard does not allow character type items to be
equivalenced to noncharacter type items.

3129 xx common block contains character and noncharacter items

The FORTRAN 77 standard doesn’t allow character type items to be in the
same common block as noncharacter type items.

3130 Array xx equivalenced with wrong number of subscripts

The FORTRAN 77 standard does not allow an array to appear in
EQUIVALENCE with a number of subscripts that differs from the number of
dimensions specified for the array.  ASCII FORTRAN allows one subscript to
appear on arrays in EQUIVALENCE even if the array was dimensioned with
more than one dimension.

3131 Parentheses missing on FUNCTION statement

ASCII FORTRAN allows a FUNCTION statement without parentheses if the
function has no arguments.  The FORTRAN 77 standard requires them.

3132 Slashes bracket dummy argument xx

For compatibility reasons, ASCII FORTRAN lets you bracket a dummy
argument with slashes:

SUBROUTINE SUBX(a,/b/)

The FORTRAN 77 standard doesn’t allow this.

3133 xx used instead of asterisk to indicate a label

ASCII FORTRAN allows a currency symbol ($) to indicate a label in a
dummy argument list, and a currency symbol or ampersand (&) to precede a
label when passing a label to a subprogram.  The FORTRAN 77 standard
uses an asterisk (*) only.
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3134 Function subprograms should not have label arguments

The FORTRAN 77 standard only allows label arguments to be passed to and
accepted by subroutines.  ASCII FORTRAN also allows them with function
subprograms.

3135 xx used in EXTERNAL statement

The FORTRAN 77 standard only allows a list of routine names on an
EXTERNAL statement.  ASCII FORTRAN allows the names to be preceded
by & or * (& is ignored; * means it is a FORTRAN V subprogram).  Also,
ASCII FORTRAN allows the routine name to be followed by (opt), where opt

is ACOB, PL1, or FOR to indicate the language of the routine (FOR is
FORTRAN V).

3136 Function subprogram has an alternate return

The FORTRAN 77 standard doesn’t allow labels to be passed to functions
and therefore does not allow alternate returns.  ASCII FORTRAN allows
both.

3137 Main program has a RETURN statement

ASCII FORTRAN treats a RETURN statement in a main program as a STOP
statement.  The FORTRAN 77 standard doesn’t allow a RETURN statement
in a main program.

3138 PARAMETER statement has missing parentheses

According to the FORTRAN 77 standard, a PARAMETER statement needs
opening and closing parentheses:

PARAMETER (I=2,j=3,char2=’2’)

ASCII FORTRAN also allows the form:

PARAMETER I=2,j=3,char2=’2’

3139 Intrinsic function xx used in constant expression

The FORTRAN 77 standard states that only constant-valued expressions can
be used in certain places such as the length specification in a PARAMETER
statement.  The standard defines constant-valued expressions as only having
constants, other symbolic names of constants, and simple operators.  No
intrinsic functions such as SIN, REAL, and CHAR can be used, and only
simple integer exponentiation can be used.  ASCII FORTRAN allows the
intrinsic functions and general exponentiation to be used wherever constant
expressions are required (except for DIMENSION declarators). However,
these are not available for use in constant-valued expressions if the
compiler was generated such that the intrinsic functions are not available at
compile time.  This is rarely done, since the compiler as released is not
generated in this manner.  ASCII FORTRAN allows:
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PARAMETER (sinpi1=1.0+sin(3.1416))

3140 Label xx encountered in initialization list

The FORTRAN 77 standard doesn’t allow items to be initialized to label
values in DATA statements, but ASCII FORTRAN does:

DATA i/&10/

3141 DATA or FORMAT statement used to terminate DO-loop

ASCII FORTRAN allows a DATA or FORMAT statement to be the terminator
of a DO-loop; the FORTRAN 77 standard does not.

3142 Octal constant encountered in initialization list

ASCII FORTRAN allows octal values to be put into variables in DATA
statements, and the FORTRAN 77 standard doesn’t recognize the letter o for
octal.  For example:

DATA i/o040040/

3143 Fieldata constant encountered in initialization list

ASCII FORTRAN allows Fieldata values to be put into variables in DATA
statements; the FORTRAN 77 standard has no Fieldata data type.  For
example:

DATA i/’abcdef’F/

3144 Blank COMMON variable xx initialized

The FORTRAN 77 standard prohibits blank common blocks from being
initialized with DATA statements.  ASCII FORTRAN allows it.

3145 COMMON variable xx initialized in non-BLOCKDATA subprogram

The FORTRAN 77 standard allows common blocks to be initialized only
inside a BLOCK DATA subprogram.  ASCII FORTRAN allows DATA
statements for variables in common blocks in any kind of program unit.

3146 Non-character item initialized to a character value

The FORTRAN 77 standard doesn’t allow noncharacter items to be
initialized to character values in DATA statements.  ASCII FORTRAN does
allow this.

3147 Digit string xx over 5 digits long

The FORTRAN 77 standard only allows up to a 5-digit string on a PAUSE or
STOP statement.  ASCII FORTRAN allows more.
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3148 Hollerith literals are only allowed in FORMAT statements

The FORTRAN 77 standard doesn’t recognize Hollerith anywhere but in a
FORMAT statement.  ASCII FORTRAN allows Hollerith wherever a
character constant can occur.  When passed as arguments to a subprogram,
Hollerith constants should not be passed if the dummy argument in the
receiving program is type CHARACTER.  If Hollerith is passed as an
argument, the dummy argument must not be type character.  (This
seemingly strange situation is spelled out in the FORTRAN 77 standard,
Appendix C, paragraph C7. It is done this way to allow existing programs
that don’t use character data type to continue to operate correctly under the
new standard.)

3149 PARAMETER constant xx used as part of complex constant

The FORTRAN 77 standard does not allow the use of symbolic names of
constants as the REAL or IMAGINARY portions of a complex constant.
ASCII FORTRAN allows this.  For example:

COMPLEX c
PARAMETER (p1=2.,p2=3.)
c = (p1,p2)

3150 ’$’ used as a character in the name xx

Use only the letters A-Z and the digits in a name under the FORTRAN 77
standard.  ASCII FORTRAN also allows $ to be used, though it is
discouraged since accidental conflicts with the run-time library entry points
can occur if subprograms have $ in their names.

3151 ’&’ used as concatenation operator

The concatenation operator is the double slash (//).  ASCII FORTRAN also
allows the use of the ampersand (&).

CHARACTER*80 c80,c22*22,c2*2
c80 = c22//c2
c80 = c22&c2

3152 Computed GOTO has empty label position(s)

FORTRAN 77 does not allow missing positions in a computed GO TO. ASCII
FORTRAN does allow void positions.  If a void position is selected, the next
statement in sequence is executed.

GO TO (10,20,,40) I+2

3153 Integer variable xx used for a label

FORTRAN 77 requires labels in the lists of arithmetic IF and computed GO
TO statements.  ASCII FORTRAN also allows integer variables, which must
have received the value of some label via an ASSIGN or DATA statement.
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     ASSIGN 10 TO ILAB
     GOTO (20,30,ILAB,40) I+3
20   IF(J+2) 30,ILAB,40

3154 Arithmetic IF has empty or missing label positions

FORTRAN 77 does not allow empty or missing positions in an arithmetic IF.
ASCII FORTRAN allows this, and if that position is selected, the next
statement is executed.  In the following example, the next statement is
executed.

I=2
IF(I) 10,20

3155 xx should be in an xx statement

The FORTRAN 77 standard says that any subprogram name that is passed as
an argument must be either in an EXTERNAL statement (if it is a
user-supplied subprogram), or in an INTRINSIC statement (if it is a
FORTRAN intrinsic function).  ASCII FORTRAN also allows the names to be
passed if they are used previously in the source program as a valid
subprogram reference.

X = SIN(A)
Y = MYPROG(B)
CALL SUB2(SIN,MYPROG)

The previous example is nonstandard, but ASCII FORTRAN lets it go
through with no error.

3156 xx inline comments encountered in xx

Inline comments are nonstandard in FORTRAN 77.  For example:

x = 1.5        @ comments here

3157 Function xx is not a standard intrinsic

The function referred to is an intrinsic function in ASCII FORTRAN, but isn’t
included in FORTRAN 77.

3158 Argument type incorrect for xx - generic function used

ASCII FORTRAN allows any intrinsic function to be used as a generic name
of a function; for example, DSIN(real) calls SIN automatically.  This
capability is limited to a small number of generic functions in FORTRAN 77.

3159 Standard intrinsic function xx contains mixed argument types

The FORTRAN 77 standard requires all arguments to be the same type for
those intrinsic functions that have more than one argument. ASCII
FORTRAN allows mixed argument types.
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3160 END statements cannot be continued

The FORTRAN 77 standard says in section 11.14 that:

� An END statement can only be written in columns 1-72 of an initial line.

� An END statement cannot be continued via continuation lines.

� No other statement may have an initial line that appears to be an END
statement.

This means that the following are illegal:

      END
    1 X = 22.

(I.E. ENDX = 22. )

      E
     xN
     xD

The first example is treated as an assignment statement, but gets this
non-std-usage message.  The second example is treated as an END
statement, but gets this non-std-usage message.

3161 Argument to xx converted to type xx

The FORTRAN standard does not allow certain types of arguments for some
intrinsic functions, but when ASCII FORTRAN can automatically convert
them to the proper type, this non-standard usage message is issued.

3162 Function xx has non-standard xx argument

The FORTRAN standard does not allow certain types of arguments for some
intrinsic functions, but when ASCII FORTRAN can automatically substitute
another function for the generic one, this non-standard usage message is
issued.

3163 Argument number xx in stmt. function reference xx is of the wrong
type

The FORTRAN 77 standard requires a statement function’s arguments to
agree with the types of the corresponding dummy arguments.  FTN accepts
an argument of a different type, without conversion.  This message is issued
at the statement function reference if the statement function is not nested
more than 10 deep.

3200 Branch from line xx into an IF-block or DO-loop

The FORTRAN 77 standard does not allow the transfer of control into an
IF-block or DO-loop made from outside the block.  This type of transfer is
allowed by ASCII FORTRAN.  In the case of DO-loops, the “Extended Range
of a DO-loop” feature defines how the transfer of control should be done.
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6301 BANK and VIRTUAL statements ignored in checkout mode

Your module, when compiled and executed with the checkout option
(@FTN,C), must be self-contained.  Since it is not collected into an absolute,
the BANK statement has no meaning and is ignored.

The VIRTUAL statement is ignored in checkout mode since the virtual
feature requires a different bank structure than an unbanked user checkout
program.

6302 COMPILER statement ignored in checkout mode

The BANKED= options of the COMPILER statement aren’t allowed in
checkout mode since your program cannot be banked.  The LINK=IBJ$ and
the DATA= options are allowed.
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Appendix E
Conversion Table

Table E-1 shows if a specific data type can be converted to another desired data type.  If
conversion is possible, a brief description of the method of conversion is given.
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Table E-1.  Conversion Methods for Arithmetic Data  

Target
Type

Desired
� Present Type of Expression

INTEGER REAL
DOUBLE
PRECISION COMPLEX

COMPLEX
*16 Character Logical Octal

Statement
Number

INTEGER Store. Fix. Store. Fix. Store. Ignore
imaginary
part. Fix.
Store.

Ignore
imaginary
part. Fix.
Store.

Not
possible
unless it’s
a char.
literal or
Hollerith
constant,
in which
case,
store.

Not
possible.

Only in
DATA
stmt.
(See
6.12 for
details.)

Store.

REAL Float.
Store.

Store. Truncate
to single.
Store.

Ignore
imaginary
part.
Store.

Ignore
imaginary
part.
Truncate
to single.
Store.

Not
possible
unless it’s
a char.
literal or
Hollerith
constant,
in which
case,
store.

Not
possible.

Only in
DATA
stmt.
(See
6.12 for
details.)

Not
possible.

DOUBLE
PRECISION

Double.
Store.

Expand to
double.
Store.

Store. Ignore
imaginary
part.
Expand to
double.
Store.

Ignore
imaginary
part.
Store.

Not
possible
unless it’s
a char.
literal or
Hollerith
constant,
in which
case,
store.

Not
possible.

Not
possible
.

Not
possible.

COMPLEX Float. Store
to real part.
Store 0 to
imaginary
part.

Store to
real part.
Store 0 to
imaginary
part.

Truncate
to single.
Store to
real part.
Store 0 to
imaginary
part.

Store. Truncate
both parts
to single.
Store.

Not
possible
unless it’s
a
character
literal or
Hollerith
constant,
in which
case,
store.

Not
possible.

Not
possible
.

Not
possible.

COMPLEX
*16

Double.
Store to
real part.
Store 0 to
imaginary
part.

Expand to
double.
Store to
real part.
Store 0 to
imaginary
part.

Store to
real part.
Store 0 to
imaginary
part.

Expand
both
parts to
double.
Store.

Store. Not
possible
unless it’s
a char.
literal or
Hollerith
constant,
in which
case,
store.

Not
possible.

Not
possible
.

Not
possible.

continued
Key
Fix is the same as applying the INT intrinsic function.

Float is the same as applying the REAL intrinsic function.

Double is the same as applying the DBLE intrinsic function .
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Table E-1.  Conversion Methods for Arithmetic Data (cont.)

Target
Type

Desired
� Present Type of Expression

Statement
NumberOctalLogicalCharacter

COMPLEX
*16COMPLEX

DOUBLE
PRECISIONREALINTEGER

Character Not
possible.

Not
possible.

Not
possible.

Not
possible.

Not
possible.

Truncate or
blank fill, if
necessary,
Store.

Not
possible.

Only in
DATA
stmt.
(See
6.12 for
details.)

Not
possible.

Logical Not
possible.

Not
possible.

Not
possible.

Not
possible.

Not
possible.

Not
possible.

Store. Only in
DATA
stmt.
(See
6.12 for
details.)

Not
possible.

 
Key
Fix is the same as applying the INT intrinsic function.

Float is the same as applying the REAL intrinsic function.

Double is the same as applying the DBLE intrinsic function .





UP-8244.4-B F-1

Appendix F
Tables of FORTRAN Statements

Table F-1 and Table F-2 specify whether a FORTRAN statement is nonexecutable or
executable, respectively.

Table F-1.  Nonexecutable Statements  

General Category Statement

Specification statements DIMENSION

COMMON

EQUIVALENCE

BANK

EXTERNAL

NAMELIST

PARAMETER

INTRINSIC

IMPLICIT

Explicit type statements:  INTEGER, REAL, DOUBLE
PRECISION, COMPLEX, LOGICAL, CHARACTER

SAVE

VIRTUAL

Data initialization statement DATA

Format statement FORMAT

Function defining statement Statement function definition  (DEFINE)

Program unit headings PROGRAM

FUNCTION

SUBROUTINE

ENTRY

BLOCK DATA

continued
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Table F-1.  Nonexecutable Statements (cont.)

General Category Statement

Program control statements INCLUDE

DELETE

EDIT (START EDIT, STOP EDIT)

COMPILER

Debug facility DEBUG

AT

 

Table F-2.  Executable Statements  

General Category Statement

Assignment statements Arithmetic assignment statement

Logical assignment statement

Character assignment statement

ASSIGN

Control statements Unconditional, assigned, and computed GO TO statements

Arithmetic and logical IF statements

Blocking statements (block IF, ELSE IF, ELSE, and END IF)

CALL

CONTINUE

RETURN

STOP

PAUSE

DO

END

continued
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Table F-2.  Executable Statements (cont.)

General Category Statement

I/O statements READ

WRITE

PRINT

PUNCH

REWIND

BACKSPACE

ENDFILE

DEFINE FILE

FIND

ENCODE

DECODE

OPEN

CLOSE

INQUIRE

Debug facility TRACE ON

TRACE OFF

DISPLAY
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Appendix G
ASCII FORTRAN Input/Output Guide

G.1. General
ASCII FORTRAN performs run-time input/output using the processor common I/O
modules or the Shared File System (SFS).  Processor common I/O consists of a number
of common bank modules that access the various file types and a number of processor
interface common bank modules for the various ASCII processors such as COBOL,
FORTRAN, and PL/I.

Code compiled by ASCII FORTRAN references the ASCII FORTRAN I/O processor
interface module, which references the required processor I/O common bank modules.
The Processor Common I/O System (PCIOS) is used by the ASCII FORTRAN run-time
system for I/O compatibility between the various language processors.  See the OS 2200

Processor Common Input/Output System (PCIOS) Administration and Programming

Reference Manual, Level 6R2 (7831 0588).

All ASCII FORTRAN SDF and ANSI files are accessed through PCIOS.  The specialized
ASCII FORTRAN interface module handles all formatting and conversions, and all
symbiont I/O (PRINT, PUNCH, READ).  The actual I/O is done in PCIOS modules.
However, because of a PCIOS restriction, I/O processing can’t be done to
word-addressable mass storage.  I/O processing must be done to sector-formatted mass
storage only.

You can access the following file formats:

� System Data Format (SDF)

� American National Standards Institute (ANSI) magnetic tape interchange format

� ASCII symbiont

G.2. System Data Format File
An SDF file produced by ASCII FORTRAN is explained in this subsection.

G.2.1. SDF File Description

An SDF file produced by ASCII FORTRAN contains a label record, data records or
record segments, an end-of-file record, and possibly bypass records.

Each record or record segment has a control word in front of it.  This control word has
the form:
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l p f s

where:

l

is the length of the data record or record segment if bit 35 is set to 0.  A data record
or record segment length must be in the range 0 to 2,047 words.  If bit 35 is not 0, the
value of l can be:

05400 End of reel

05033 Label image

05100 Continuation

07700 End-of-file image

040x Bypass images where x is the length of the bypass image with a
range 0 ≤ x ≤ 63

p

is the l field from the previous record or record segment.  This field is used in
backspacing.

f

is:

n

For unformatted records this field contains a count n of the number of bits used
in the last word of the record.

077

Dummy record.  Dummy records are produced when a direct-access file is
skeletonized.

s

is the record segment indicator:

00 Record not segmented

01 First segment of record

02 Last segment of record

03 Not first or last segment of the record



0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

..

27
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SDF records are segmented to conserve main storage space when processing large
unformatted records.

A direct-access SDF file has the same format as a sequential SDF file, except all records
in a direct-access file are the same length.  When a direct-access file is skeletonized,
dummy records are written in the file.

G.2.1.1. SDF Labels

The SDF label contains the file’s maximum record size, the block size the file is written
with, the record segment size, the file type, and other information pertinent to
processing this file.  The label record is the first record of the file.

The format of a PCIOS SDF label record is:

050 033 035 ASCII flag

file

name

type orig level recovery offset

block size record size

date

address of next file

largest record key allowed

largest record key written

rcd\1\offset segment size

ffc skel flag 0 record size in characters

address of previous file

0

0

...

(Words 14 through 27 are written as they appear in the label area at open time.)
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Word 0

Is the label control word in which a Fieldata X (035) identifies this SDF file as produced
by the Processor Common Input/Output System (PCIOS) or the Shared File System
(SFS).  The ASCII flag has a value of 1 for ASCII files.

Words 1 and 2

Contain the internal file name used when creating the file.

Word 3

type

indicates the type of SDF file:

01 sequential

02 direct

orig

indicates the originator:

01 ASCII FORTRAN levels prior to 9R1

02 ASCII PL/I

03 ASCII FORTRAN

04 ASCII COBOL

05 Mixture of 1 with 2, 3, or 4

level

indicates that the C2DSDF/C2SSDF file is created or extended by PCIOS level 4R1
or higher.

recovery offset

is valid only if level is set; it is set by C2DSDF/C2SSDF and holds the word offset of
record n+1 in the last file block.  C2SSDF uses this for output extend recovery in the
event of system failure during an extend operation.

Word 4

block size

specifies the block size (in words) of the file.
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record size

specifies the record size (in words) of the file.

Word 5

Contains the file creation date.

Word 6

Contains the mass storage address of the next file for sequential stacked files on mass
storage.  This field is 0 for SDF direct files.

Word 7

Indicates the maximum relative record number that is allowed for an SDF direct file.
This word is 0 for sequential files.

Word 8

Specifies the highest record number actually written in this SDF direct file.  This word is
0 for sequential files.

Word 9

rcd\1\offset

indicates the word offset for relative record number 1.

segment size

indicates the segment size (in words) used when creating this file.

Word 10

ffc

is the FORTRAN record format control code.

skel flag

is a skeletonization flag for SDF direct files.

record size in characters

is the record size in characters of the file.

Word 11

Contains the address of the previous file if files are stacked on mass storage.  For the
first file, this word is -0 since there is no previous file.

Words 12 and 13

Aren’t currently used.
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Words 14 through 27

Are written as they appear in the label area (PTLFMA) when the open output is called.

G.2.1.2. SDF Data Records/Record Segments

SDF data records can be character data or word-oriented.  The length of an SDF data
record is maintained in the file as words.  An SDF record can be any length, but it is
automatically segmented when the record is written if it exceeds the segment size for
that particular file.

The segment size for a particular file is specified in the File Control Table (FCT) for that
file.  Specify the segment size for an SDF sequential output file in the SEG clause of the
OPEN statement or in the ss field of the DEFINE FILE statement.  The default segment
size specified in the Storage Control Table (SCT) is used for output files when no OPEN
or DEFINE FILE statement specifies the segment size (see G.8).  When the file is an
input file, the segment size field of the SDF label is used.

To minimize I/O overhead when processing sequential files, specify the segment size to
be the smaller of: the size in words of the largest records written, or 2047 (the largest
segment possible).

The maximum record size for the SDF file pertains to formatted records, since these
records are not processed by segments like unformatted records are (although they are
segmented when they are written in the file).  Formatted records are processed by the
FORTRAN editing routines as complete records.  To ensure there is space for the
complete record in the intermediate record area, the maximum size that may be
encountered must be known.

The maximum record size for a particular file is maintained in the FCT for that file.  You
specify the maximum record size for an SDF sequential output file with the MRECL
clause of the OPEN statement or the rs field of the DEFINE FILE statement.  The default
maximum record size specified in the SCT is used for output files when no OPEN or
DEFINE FILE statement specifies the maximum record size (see G.8).  When the file is
an input file, the maximum record size field of the SDF label is used.

G.2.1.3. SDF Block Size

The block size for an SDF sequential data file is specified by the BLOCK clause of the
OPEN statement or by the bs field of the sequential DEFINE FILE statement.  If not
specified, the default size is 224 words.  The block size is independent of record size
since records span the block when necessary.  Record size can be larger than block size.
When choosing a block size, be aware of the following:

� The block size field bs (or bsize) specifies the number of words in the block.  To
minimize I/O overhead, block size should be larger than segment size.

� Tape files must be processed with a block size at least as large as the block size they
are created with.
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� Mass storage files must be processed with the exact size they are created with if
they are created with a block size that isn’t an increment of 28 words.

� For disk mass storage files, block size should be a multiple of the prep factor (28, 56,
or 112) to eliminate the Executive read-before-write.

� A number of systems processors (such as ED and DATA) and symbionts require a
block size of 224 words.

� Mass storage files created with a block size that is an increment of 28 words can be
read with a different block size.  However, this block size must be an increment of 28
words.

� I/O overhead is reduced by choosing a block size which is greater than or equal to
the record size (or a multiple of it) and which is a multiple of the prep factor.

G.2.1.4. SDF End-of-File Record

The SDF end-of-file record is written in the last word of the last block.  It has the form:

07700 p 0 0

where p is T1 from the previous image control word.

G.2.1.5. SDF File Layout

The SDF file layout has one of two forms:

* For SDF sequential tape files, the file can be blocked as shown with eight sectors per

block.
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G.2.2. SDF File Processing

When the FORTRAN compiler encounters an I/O statement, it generates an I/O packet
and a call to the FORTRAN I/O processor interface module (in C2F$ or in a relocatable
library).  The interface module does a lookup in the File Reference Table (FRT) using the
unit specifier as an index.

The FRT entry has a pointer to the FCT if that unit is already open.  This pointer is zero
if the file is not open.  When the pointer is zero, the interface module gets space from the
free core area for the FCT and the buffers.

The interface module generates the FCT using the information given on the OPEN or
DEFINE FILE statement, the input label, or default information.  The interface module
calls on PCIOS or SFS to open the file for input or output when required.  The processor
interface module also calls on PCIOS or SFS to read, write, backspace, and close
(ENDFILE) when specified.  Record editing takes place in the ASCII FORTRAN library.

G.2.2.1. Sequential Access

Records are input/output using a double buffering process.  Records are generated in an
intermediate record area on output and then buffered to the file device.  On input,
records are processed in the input buffer if they are in the buffer or moved to the
intermediate record area if they are not.  When records are buffered out to the file they
are automatically segmented at the segment size specified in the FCT.

The intermediate record area must be large enough to handle the largest formatted (this
includes list-directed and namelist) record it may encounter or the largest segment it
may encounter for unformatted records. Initially this area is set to the default maximum
record size or default segment size specified in the SCT (see G.8), whichever is larger.
When an OPEN or DEFINE FILE statement is encountered with a larger maximum
record size specification or a larger segment size specification, this area is freed and
another area is obtained from the free main storage area.

Unformatted records are processed by segments.  Therefore, the maximum record size
field of the OPEN or DEFINE FILE statement doesn’t apply. The segment size specified
in the FCT determines the size of the segments.

You must specify the maximum record field on the OPEN or DEFINE FILE statement to
be able to write formatted records larger than the default record size specified in the
SCT.

The ENDFILE statement writes the SDF end-of-file record in the file and writes the last
block on the file device.  Each block in an SDF file is the uniform block size specified for
that particular file.  This uniformity is accomplished by filling the last block with bypass
records and writing the end-of-file record as the last word in the last block.  After an
ENDFILE statement, the file is positioned so that a WRITE statement begins another
SDF file on the device.  WRITE, REWIND, BACKSPACE, and ENDFILE (creates an
empty file) are allowed after an ENDFILE.

The BACKSPACE statement backspaces over all segments of a record if the record is
segmented.
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G.2.2.2. Direct Access

Direct-access processing uses the record number to compute the location of the record
in the file.  The record is then read into a buffer unless the record already resides in the
buffer due to a previous read.

The buffer size specified by the BUFR clause of the OPEN statement is used to
determine the number of records read/written on an Exec I/O request.  A larger buffer
size reduces the number of I/O requests needed in cases where record access tends to be
localized.

If skeletonization is specified when a direct-access file is initially created, dummy
records are written to the file resulting in all necessary storage being acquired if not
already acquired.  The dummy records, if not written over by subsequent WRITE
statements, are recognized as nonexistent records on subsequent READ statements.
Detection of a dummy record on a direct-access read is indicated by error code 1053
(see G.9.3).

If skeletonization is not specified when a direct-access file is initially created, no dummy
records are written to the file.  Nonexistent records are not recognized on a
direct-access read of a nonskeletonized file.  In fact, if only a maximum file size is
provided when assigning the file, storage for areas of the file not yet written to is not
acquired until a write to that area takes place.

If nonexistent records must be recognized on a read of a direct- access file, the file must
be skeletonized when initially created and when extended.

Reading areas of a nonskeletonized direct-access file before they are written to may
result in an I/O error with a status of 5 if the area meant to hold the requested record is
not yet acquired.

Direct-access records are segmented only when the records are longer than 2,047 words.

Direct-access SDF files can be read by using sequential I/O statements. Records are read
in ascending record number order.  Only records previously written are returned (that is,
bypass and dummy records are ignored).

G.2.3. SDF Files Not Written by Processor Common I/O

SDF files not produced by the processor common I/O system, such as FORTRAN V SDF
files, can be read sequentially with ASCII FORTRAN if the data in the record is
compatible with ASCII FORTRAN.  These files can only be read.  Backspacing isn’t
allowed. You can’t use OPEN options that imply changes to the file (EXTEND) with files
that are not created by PCIOS.

No attempt is made to determine what type of record is used. If an unformatted read is
specified, the record is treated as an unformatted record.  If a formatted read is
specified, the record is treated as a formatted record.

Formatted records are read into the intermediate record area and if the SDF label
specifies Fieldata (bit 0 of the label control word = 0), the complete record is translated
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to ASCII before the record is edited.  If the file has formatted records larger than the
default maximum record size, an OPEN or DEFINE FILE statement must be used.

If the file has segmented records, it is assumed that they are segmented using the SDF
continuation control image (051).  For formatted reads, all segments of the record are
read into the record area before the record is edited.  For unformatted reads, the record
is processed by segments.  If unformatted records are read that are larger than the
default segment size specified in the SCT, you must use the OPEN or DEFINE FILE
statement to indicate this.

The files can reside on tape or mass storage.  If mass storage contains stacked files
(WRITE, ENDFILE, WRITE), only the first file is read.  You can copy these files to tape
with the B option.  They are then processed as tape files.

When a PCIOS file is updated by a processor that does not use PCIOS, the PCIOS file
becomes a file that was not created by PCIOS.  FORTRAN programs should only read
such a file.

G.3. ANSI Magnetic Tape Interchange Format
The ANSI file formats produced by ASCII FORTRAN comply with the American National
Standards Institute (ANSI) magnetic tape interchange format as described in the
American National Standards proposal X3L5/365T, dated September 27, 1973, and titled
“Magnetic Tape Labels and File Structure for Information Interchange.”

G.3.1. ANSI File Description

An ANSI file can be labeled or unlabeled.  If the J option is present on the assign of the
tape, an unlabeled ANSI file is read or written.  If the J option isn’t present, a labeled
ANSI file is read or written.

A labeled ANSI file produced by ASCII FORTRAN contains a header label group, data
blocks, and a trailer label group.  Data blocks are separated from the header and trailer
labels by a tape mark.  Files on a tape are separated by a tape mark.

The header label group consists of the VOL1 label, the HDR1 label, and the HDR2 label.
The trailer label group consists of the EOF1 label and the EOF2 label.  If a file spans tape
reels, the EOV1 and EOV2 labels terminate all file sections except the last file, which is
terminated by the EOF1 and EOF2 labels.

Labels are written using the Executive Tape Labeling System (TLS).  The volume labels
are present only in the first header label group of each tape and are automatically
processed by TLS.

Labeled ANSI magnetic tapes have the following structures.  Asterisks (*) indicate tape
marks.

� For a single file, single volume:

VOL 1 HDR1 HDR2* Data Block 1 Data Block 2 Data Block 3 * EOF1 EOF2**
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� For a single file, multivolume:

VOL1 HDR1 HDR2* Data Block 1 Data Block 2 Data Block 3 * EOV1 EOV2**

VOL1 HDR1 HDR2* Data Block 4 * EOF1 EOF2**

� For a multifile, single volume:

VOL1 HDR1 HDR2* Data Block 11 Data Block 12 * EOF1 EOF2*

HDR1 HDR2* Data Block 21 Data Block 22 * EOF1 EOF2**

� For a multifile, multivolume:

VOL1 HDR1 HDR2* Data Block 11 Data Block 12

Data Block 13 * EOF1 EOF2** HDR1 HDR2* Data Block 21 * EOV1 EOV2**

VOL1 HDR1 HDR2* Data Block 22 Data Block 23 * EOV1 EOV2**

VOL1 HDR1 HDR2* Data Block 24 * EOF1 EOF2* HDR1 HDR2* Data Block 31* EOF1
EOF2**

An unlabeled ANSI file produced by ASCII FORTRAN allows the use of the ANSI record
formats by sites that do not have TLS.

All of the ANSI record formats are available on output when creating an unlabeled ANSI
tape with ASCII FORTRAN.  Creation of a null or empty unlabeled ANSI tape file isn’t
permitted.

On input, all ANSI record formats can be read provided the unlabeled ANSI tape is
created by ASCII FORTRAN or the data on the unlabeled ANSI tape meets the
requirements of the ANSI standards.  Reading data blocks from unlabeled foreign tapes
is possible only when using the U, F, or FB record formats.

Since there are no labels, PCIOS/SFS is unable to compare record size, block size, buffer
offset, and record format. You must ensure that the values passed to PCIOS/SFS (using
the OPEN and DEFINE FILE statements) are correct for the file to be read.

The structure of an unlabeled ANSI magnetic tape is:

� For a single file, single volume:

Data Block 1 Data Block 2 Data Block 3**

� For a single file, multivolume:

Data Block 1 Data Block 2 Data Block 3* Swap Block** Data Block 4**

� For a multifile, single volume:

Data Block 11 Data Block 12* Data Block 21 Data Block 22**
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� For a multifile, multivolume:

Data Block 11 Data Block 12 Data Block 13* Data Block 21*Swap Block**

Data Block 22 Data Block 23* Swap Block** Data Block 24*Data Block 31**

You can specify the following record formats using the OPEN statement described in
5.10.1 or the sequential DEFINE FILE statement described in 5.6.6.  The data block
format is dependent on the record format and blocking factor chosen.

Undefined

The record is written without control information appended to it.  The records may
be variable in length.  Each data block contains only one record.

Fixed-unblocked

The record is written without control information appended to it.  All records are of
the same length.  Each data block contains only one record.

Fixed-blocked

Basically the same as fixed-unblocked; however, each block contains one or more
records.  Each data block has the same number of records except possibly the last
block.  The last block is truncated if it doesn’t contain the full number of records.

Variable-unblocked

Appended to each record are four ASCII characters of control information
containing the total number of characters in the record (including the four control
characters).  The records can vary in length.  The data block contains only one
record.

Variable-blocked

The same as variable-unblocked except that the block contains as many complete
records as possible.

Variable-unblocked-segmented

The record is segmented at the block boundary.  Appended to each record segment
are five characters of control information.  The first character is the record segment
indicator and the remaining four are the segment length.  The data block contains
only one segment of the record.

Variable-blocked-segmented

Similar to variable-unblocked-segmented; however, each block can contain more
than one record segment but never more than one segment of the same record.

The segment indicator character has the following meaning:
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0 Record begins and ends in this segment.

1 Record begins but doesn’t end in this segment.

2 Record neither begins nor ends in this segment.

3 Record ends but doesn’t begin in this segment.

ASCII FORTRAN I/O doesn’t produce any control information on the front of the data
block; hence the buffer offset field of the HDR2 label is set to zero.  Files with such
information can be read with ASCII FORTRAN, but the OFF clause of the OPEN
statement or the buffer offset field of the DEFINE FILE statement must indicate the size
in characters of this control information.  No attempt is made to interpret this control
information.  It is skipped over when reading the file.

ANSI files are treated as character data files and are processed internally in quarter-word
mode.  The actual format of the data written on the tape depends on whether or not the
tape is written through a data transfer format.

To produce an ANSI file that is to be interchanged, a data transfer format must be
available and the quarter-word byte channel data word format A must be specified in the
format field of the ASG control command.  You can specify the 6-bit packed format B or
the 8-bit packed format C, but the tapes are not interchangeable because of the way the
data is written to the tape.  Specify the format you want in the format field of the ASG
control command.  The format specified when the tape is written must also be specified
when the tape is read.  If a data transfer format is not available, the default formats are
8-bit packed for 9-track tapes and 6-bit packed for 7-track tapes.

Block padding can be done on output, depending on the format with which the tape is
written.  The pad character is the ASCII circumflex.

Format Result

Quarter-word No padding is done, since the block is truncated at the last data
character of the data block.

8-bit packed The block can contain 0, 1, 2, or 3 pad characters, since an increment
of words must be written.

6-bit packed Blocks can contain 0, 1, 2, or 3 pad characters, since an increment of
words must be written.

 

The block size for an ANSI file is specified by the BLOCK clause of the OPEN statement
when using PCIOS.  If not specified, the default size is 132 characters.

G.3.2. ANSI File Processing

ANSI files are processed much the same as SDF files with the following exceptions:
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� ANSI records are always moved to the intermediate record area on input and
generated in the intermediate record area on output.  This means that unformatted
records aren’t processed by segments so the maximum record field of the OPEN or
DEFINE FILE statement must reflect the largest record being read or written,
whether it is formatted or unformatted.

� ANSI records are moved character by character to and from the buffers rather than
by words.

� The BACKSPACE request must not be specified if the records are blocked.

� Unformatted records must not be written to a file using quarter-word data transfer
format A unless all the variables are character type, since this format strips the ninth
bit of each quarter word.  Therefore, if this bit is not zero, the block is truncated.

G.3.3. ANSI Interchange Tapes from Other Systems

ANSI Interchange tapes written on other systems must be read through data transfer
format in quarter-word mode.  If read with the other formats (8-bit or 6-bit) the data
would not be aligned correctly in the read buffer.

These ANSI files can have control information in the front of the data block.  If so, this
must be specified in the OFF clause of the OPEN statement or the buffer offset field of
the DEFINE FILE statement.  This control information is ignored and can be from 1 to
99 characters long.

These files can contain pad characters (ASCII circumflex) after the data in the data
block, but the last character of a data record must not be an ASCII circumflex pad
character.

Labels other than HDR1, HDR2, EOF1, EOF2, EOV1, or EOV2 are ignored.

G.4. ASCII Symbiont Files
To read symbiont input files or write symbiont output files, dedicate certain unit
reference numbers to these files.  Do this by generating the File Reference Table (FRT)
(see G.6) or by using an OPEN or DEFINE FILE statement.  The unit reference number
dedicated to the particular type of symbiont file desired is referenced in input/output
statements.

OPEN, READ, INQUIRE, and CLOSE are the only I/O statements allowed for an input
symbiont file.

OPEN, WRITE, ENDFILE, INQUIRE, and CLOSE are the only I/O statements allowed for
output symbiont files. ENDFILE is allowed only for the APUNCH$ and APNCHA$ files
and causes an @EOF card to be punched.

Queue alternate print (APRNTA$) and punch (APNCHA$) files for symbiont processing
as follows:
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� If the alternate file is assigned to the run as a new file prior to execution of the
FORTRAN program with an @ASG,C statement, the FORTRAN I/O does a @BRKPT
when the file is closed.  You do the @FREE and @SYM to have it printed or punched.

� If the alternate file is assigned to the run with the @ASG,A statement prior to the
execution of the FORTRAN program, the FORTRAN I/O does a @BRKPT when the
file is closed.  You do the @SYM to have it printed or punched.

� If the alternate file is not assigned to the run when a batch FORTRAN program is
executed, the FORTRAN I/O doesn’t do an assignment but allows the Executive to
assign the file when the first ER APRNTA$ or ER APNCHA$ is done.  (See the OS

2200 Exec System Software Executive Requests Programming Reference Manual,

7830 7899).  The FORTRAN I/O directs output to an alternate print file using
@BRKPT when the file is closed.  The Executive automatically queues the file for
printing or punching when the breakpoint is done.  In demand, you must assign the
alternate file.

The default symbiont record sizes are as follows:

� APRINT-APRNTA-AREADA - 132 characters

� APUNCH-APNCHA - 80 characters

� AREAD - 80 characters

You can change these defaults with the OPEN or DEFINE FILE statement.

The run-time I/O library allows the use of SYMB$ in place of AREAD$ for a symbiont
READ statement when the following two conditions are met:

1. Exec level 37R2D or higher is used.

2. An OPEN statement is present for the AREAD$ file.  It indicates that the length of
the record is greater than 80 characters.

Since SYMB$ is used with the truncation option, an attempt to read a record length that
is longer than the specified record length for that AREAD$ file results in a warning
message.  The execution of the READ statement continues unless there is an ERR clause
present.  The record content is the truncated record.

The warning that appears is a change from the fatal error issued when AREAD$ reads a
record that is larger than the specified record length for that AREAD$ file.  This fatal
error is necessary since AREAD$ doesn’t truncate the record and overwrites whatever
follows the record buffer.

The use of SYMB$ for a symbiont READ provides the capability of reading from a
terminal with a line image length greater than 80 characters.

G.5. Unit Specifier and File Assignment
The FORTRAN language refers to files through a unit specifier.  The OS 1100 Operating
System maintains files under an external file name of the form:
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[ [qualifier] *]file-name[ (F-cycle) ] [ / [read-key] [ / [write-key] ]

See the OS 2200 Exec System Software Executive Requests Programming Reference

Manual, 7830 7899, for a description of the external file name.

The unit specifier must be linked to the external file name before the file can be
referenced.  The external file can’t be word-addressable mass storage (equipment types
020-027) because of a PCIOS restriction.  The unit specifier is linked to the external file
name in one of three ways:

1. If the FILE clause is present in the OPEN statement, an @USE unit specifier,

file-name is performed at execution time.  The file name in the FILE clause is
restricted to the form:

[[qualifier]*]file-name[.]

2. Use the unit specifier as the file-name when the file is assigned:

@ASG,T 4,U,BLANK

3. Use the unit specifier as an alternate or internal file name by linking it with the
external file name using the USE command:

@ASG,A FILEX
@USE 4,FILEX

When a FORTRAN program that refers to a file is executed, that file may already be
assigned to the run, cataloged, or nonexistent.

If the file is already assigned, the unit specifier must be linked as described previously.

If the file is cataloged and not assigned to the run, it is automatically assigned by the
FORTRAN I/O module.  The file must be cataloged with the unit specifier as the
file-name or, if the FILE clause of the OPEN statement is not used, a USE command
must be performed prior to execution linking the unit specifier with the cataloged file
name.

If the file is a shared direct-access file, it is not assigned by the FORTRAN I/O module.
You can use the FILE clause in the OPEN statement described in method 1 or use
method 3 to attach the unit number to the file name.  A qualifier is required for ITF files.

For sequential access files, if the file is neither assigned nor cataloged, a temporary mass
storage file is assigned by the FORTRAN I/O module, with the default size determined by
the Exec.  For direct access files, the track size is determined from the OPEN statement
clauses, the DEFINE FILE statement parameters, or the FORTRAN I/O module default
(not Exec default) of 128 tracks.  If the location in the file reference table designates this
as a symbiont APRINT$, APUNCH$, or AREAD$ file, then no file assign is attempted
since file space for these symbionts is handled by the Executive.

Once a unit specifier is associated with a file and that file is opened, the unit specifier
can’t be associated with another file until the first file is closed using either the CLOSE
statement or the CLOSE service subprogram.
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G.6. File Reference Table Element - F2FRT
The element F2FRT is the File Reference Table (FRT).  The FRT is a variable length
table of one-word entries that is used to link the unit specifier with the file control table
for the physical file being processed.  The unit specifier is used as an index into the FRT.

The entries in the FRT contain a pointer to the file control table if the file is open or 0 if
the file is not open.  In the latter case, an automatic open occurs when that particular
unit is referenced with an I/O statement.  The FRT entry can also contain a code in S2
designating the unit as a symbiont file as follows:

Code File Indicated

051 APRINT$ symbiont

052 APUNCH$ symbiont

053 AREAD$ symbiont

054 APRNTA$ alternate symbiont

055 APNCHA$ alternate symbiont

056 AREADA$ alternate symbiont

 

The format of the file reference table is:

0 053 a f

0 052 a f

0 051 a f

0 s a f

0 s a f

0 s a f

0 s a f

0 s a f



..

n
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...

0 s a f

where:

f

is set to 0 until a reference is made to the unit.  Then it contains the address of the
file control table.

a

indicates the file status:

0 Never referenced

1 Open

2 Closed

3 Reread unit

s

is a symbiont code or 0.

S1 of each word in the file reference table is zero for units used with normal FORTRAN
I/O; it is nonzero for units used by NTRAN$.

F2FRT -1, -2, -3 are used for those I/O statements that don’t have a unit designated,
implying one of the symbionts APRINT$, APUNCH$, or AREAD$.

An installation can generate a new file reference table by remaking the F2FRT element
as follows:

@PDP,M FTNPROC,FTNPROC
@MASM,SI F2FRT,F2FRT
   F$FRT       f       . Procedure call
   PR          l       .   
   PU          l       .   
   CR          l       .   
   APR         l       .   
   APU         l       .   
   ACR         l       .   
   RR          l       .   
   END
@EOF

where:
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f

is the largest unit specifier to be accessed; PR, PU, CR, APR, APU, and ACR specify
the symbionts APRINT$, APUNCH$, AREAD$, APRNTA$, APNCHA$, and
AREADA$, respectively.  RR specifies that the unit is a reread unit.

l

is a unit specifier list of the form u1, u2, . . . ,un.  Each u must be in the following
range: 0≤u≤f.  The units specified are designated as symbiont files of the type
specified in the operation field (PR, PU, etc) or as a REREAD unit.  If a unit is
specified in more than one operation, it gets the designation of the last operation
field.

The operation fields PR, PU, and so on can appear in any order, but F$FRT must be
the first operation.

FTNPROC can be found in the FORTRAN library (see 9.5.3).

When an entry in the file reference table is designated as one of the symbiont types
above, it must be used for that type of symbiont file unless an OPEN statement is used to
specify another file type.

F2FRT is released with the following designation:

@PDP,M FTNPROC, FTNPROC
@MASM,SI F2FRT,F2FRT
   F$FRT      30
   PR         6  
   PU         1  
   CR         5  
   RR         0
   END
@EOF

Use the OPEN statement to override and modify the symbiont code field specified when
the file reference table is built, provided the unit was never opened before or has a file
status of closed before the OPEN statement.  The new code (or 0 for SDF and ANSI)
remains in effect for the duration of the run or until reset by another OPEN statement.

G.7. Free Core Area Element - F2FCA
Storage for record areas, buffers, file control tables, and floating-point conversion is
obtained from the free core area when required. A scratch area must be added when
using the sort/merge interface (see L.3 and the CORE= clause in L.4).  The free core area
is generated as follows:

@PDP,M FTNPROC,FTNPROC
@MASM,SI F2FCA,F2FCA
   F$FCA     s      . procedure call
   END
@EOF

where FTNPROC is an element found in the FORTRAN library (see 9.5.3) and s is a
number indicating the amount of storage required. It can be 0 or void.  The amount of
space required is calculated by using the following formula:
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s = a + b1 + b2 . . . +bn +c

where:

a

1+2*m1 + (m2+m3)*(default- segment-size)

where:

m1 = default-segment-size or largest record size, whichever is larger.

m2 = 2, if any DEBUG statements are present in the FORTRAN program;
otherwise, m2 = 0.

m3 = 2, if any calls to PDUMP or FTNPMD or any F-option FTN compilations are
present in the FORTRAN program; otherwise, m3 = 0.

b

There is a b for every file active and the size of b depends on the type of file (SDF,
ANSI, or symbiont).

For symbiont files:

b = 64 + 1

For SDF direct files:

b = 64 + 2*(record-size +1) + 2*prep-factor

For SDF shared direct files:

b = 64 + 2* (record-size +1) + 448

For SDF sequential files:

b = 64 + (2*(block-size-in-words) +1) + 1

For ANSI files:

b = 64 + ( (2*(block-size-in-chars + 3) ) /4) + 1

c

Miscellaneous core requirements:

c = 25 plus the following, as applicable

1. the amount of any scratch area needed for the sort/merge interface (see
Appendix L).

2. 1024 words if the MOVWD$ and/or MOVCH$ routines are used with banked
arguments.

3. 200 words if FORMATs need to be interpreted at run time.

4. 24 words if OPEN, CLOSE, and/or INQUIRE statements are used.

5. enough room for local variables and subroutine linkage if DATA=AUTO or
DATA=REUSE are used.
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If s is void or 0, no space is reserved.  Instead, ER MCORE$ is performed to add space to
the end of the control D-bank, as required.

The default record size, block size, and segment size are given by parameter to the
F2SCT element (see G.8).

The standard F2FCA is released with no space reserved, so the MCORE$ method is used.
The library element FTNPROC is on the ASCII FORTRAN release tape in file 3.

When s is other than 0, or is void, the space reserved must be sufficient to fill a memory
request or the program terminates in error.

If any subroutines not written in ASCII FORTRAN are called by an ASCII FORTRAN
program, these subroutines should not allocate and deallocate storage.  If any MCORE$
or LCORE$ is executed by these subroutines, generate element F2FCA with the size of
storage needed by the ASCII FORTRAN program.

G.8. Storage Control Table Element - F2SCT
The element F2SCT is the storage control table that contains register save areas,
working storage, and pointers to the file reference table and the free core area header.
In addition, F2SCT contains a location that contains the default record size, the default
segment size, and the default block size for SDF sequential files.  Change these default
fields at your installation by remaking the F2SCT element as follows:

@PDP,M FTNPROC,FTNPROC
@MASM,SI F2SCT,F2SCT
   F$SCT x,y,z . procedure call
   END
@EOF

where:

x

is the default SDF record size desired in words.  The range is 1≤x≤262,000 but a core
area of size 2*x is reserved for the processing of records.

y

is the default SDF sequential segment size desired in words.  The range is 1 ≤ y ≤
2,047.

z

is the default SDF sequential block size desired in words.

F2SCT is shipped with the following default sizes:

x = 33
y = 111
z = 224

FTNPROC is found in the FORTRAN library (see 9.5.3).
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G.9. Input/Output Errors
When an input/output error is detected by the ASCII FORTRAN I/O handler, the action
taken depends on whether or not an ERR clause (see 5.2.6) contingency is specified and
whether or not an input/output status specifier (see 5.2.8) is present.

G.9.1. ERR Clause Specified

If an error specifier (ERR clause) is specified and an error or warning condition is
encountered, the I/O status word PTIOE in the storage control table is set and transfer is
made to the statement specified by the ERR clause.  In addition, if the I/O status clause
is present, the IOSTAT variable receives the contents of PTIOE prior to the transfer.  An
error message isn’t printed.

The I/O status word is set as follows:

s u c

where:

c

indicates the cause of the error.  Its value is the integer clause number specified on
the error clauses listed in G.9.3.

s

indicates the substatus of the error if any.

If c is 1 then s is the I/O status coded from the I/O packet.

For ANSI files, if the error involves an ER to TLBL$, the ER TLBL$ error code is
returned in the substatus field.

For those errors that have no substatus, s is 0.

u

is the integer unit specifier of the file in error:

0 ≤ u ≤ f The unit number, where f is the largest unit specifier allowed
(see G.5)

-1 The APRINT$ symbiont

-2 The APUNCH$ symbiont

-3 The AREAD$ symbiont

-0 The unit is undetermined
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Test the particular fields of the I/O status word by using the functions:

IOC( )  cause
IOS( )  substatus
IOU( )  unit

In addition, if the input/output status specifier is present, the particular fields are
available by using the IOSTAT variable.

G.9.2. ERR Clause Not Specified

When an error specifier isn’t specified, but an I/O status clause is specified:

� the I/O status word PTIOE is set;

� the IOSTAT variable receives the contents of PTIOE; and

� control immediately transfers back to the program if an error is detected.  If a
warning condition is detected, execution of the current statement is continued.

If neither an ERR clause nor an I/O status clause is specified:

� an error or warning message is printed;

� for errors, all open files are closed and the program terminates; and

� for warnings, execution of the current statement continues.

The error message has the form:

FTN ERR ON UNIT u c

where:

u

may be a positive unit number, PRINT, PUNCH, READ, or ILLEGAL.

c

is one of the error clauses listed in G.9.3.  For some error clauses, a second line is
printed to provide additional information regarding the error.

G.9.3. Error Clause Listing

When the common storage management system detects error conditions, it prints one of
the following error messages:

STORAGE FULL
BAD FREE ADR
BAD FREE LEN
BAD CHAIN
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These error messages have no effect on PTIOE or the IOSTAT variable.

The following two lists are of the warning and error clauses applicable to the ASCII
FORTRAN I/O error messages.  The number listed is the number set in the clause field of
the I/O status word PTIOE.  The first list gives the errors detected by PCIOS; the second
list gives the errors and warnings detected by FORTRAN library routines.  The errors
detected by the Shared File System for shared direct-access files are described in the OS

1100 UDS Shared File System (UDS SFS 1100) Administration and Support Reference

Manual, Level 2R2A, 7831 0786.

1 I/O STATUS CODE xx

An ER in PCIOS received the nonzero I/O status code on completing an I/O
request (see the ER Programming Reference Manual, 7830 7899).

6 MAX REC SIZE NOT CONSISTENT WITH FILE

The C2DSDF module returns a bad status while trying to open a file for
direct input.

9 EMPTY OR INVALID FILE STRUCTURE

The C2SSDF module returns a bad status while trying to backspace a file
opened for sequential access, open a file for output with extend option, or
read a file with an I/O error.  The file originator isn’t PCIOS.

10 INVALID DATA BLOCK STRUCTURE

The C2SSDF module returns a bad status while trying to backspace a file
opened for sequential access.

12 FILE NOT SDF DIRECT

The C2DSDF module returns a bad status while trying to open a file for
direct input.

13 FILE NOT CONSISTENT WITH DEFINE FILE

The C2ANSI module returns the error while trying to open the file for input.

16 FILE NOT SDF

The C2SSDF module returns the error while trying to open the file.

37 BLOCKSIZE NOT MULTIPLE OF FIXED RECSIZE

The C2ANSI module returns the error while trying to read (write) from (to)
the file.
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39 INCORRECT DATA BLOCK COUNT

The C2ANSI module returns this error while executing a tape swap or a
close on the file.

50 ERROR ON TBL$ REQUEST

The C2ANSI module returns this error while attempting an open, close, or
tape swap on this file.

65 MASS STORAGE FILE OVERFLOWED

The C2SSDF module returns this error while attempting a write to the file.

66 BLOCKSIZE INCONSISTENT WITH FILE

The C2SSDF module returns this error while attempting to open the file for
sequential access.

67 INCORRECT VARIABLE FORMAT CONTENTS

68 FILE LABEL LACKS EXTENDED PARAMETERS

69 FILE STRUCTURE LACKS AN END-OF-FILE

70 MAXIMUM INTERCHANGE RECORD SIZE EXCEEDED

71 TAPE LABELING SYSTEM NOT AVAILABLE

72 LOSS OF POSITION ON THE TAPE UNIT

73 SKELETONIZATION INCONSISTENT WITH FILE

74 EXTENDED FILE SMALLER THAN ORIGINAL FILE

C2DSDF returns the error when the size of the file to be extended is smaller
than the size of the original file.

75 FTN ERR ON UNIT u

The following errors and warnings are detected by FORTRAN library routines.  Asterisks
(*) indicate warnings.  The double asterisk (**) preceding clause 1015 indicates the
mistake is fatal for nonformatted records and list-directed DECODE records, and is a
warning for other formatted records.

1001 INVALID RECORD NUMBER

The record number specified in a direct access READ, WRITE, or FIND
statement is not in the range 1 ≤ record number ≤ max/rcd/num, where
max/rcd/num is specified in a direct access OPEN or DEFINE FILE
statement.
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1002 INAPPROPRIATE UNIT

The unit number specified in the I/O statement is bad for one of the
following reasons:

� The unit number specified is not in the range 0 ≤ unit number ≤ largest
unit number referenced.  Refer to G.6 for a discussion on the largest unit
number referenced.

� An attempt is made to read from a printer, write or punch to a card
reader, and so on.

� The file reference table is overwritten.

1003 FILE ASSIGNMENT FAILED

One of the following file assignments failed:

� ASG,A of a file whose status is specified as OLD in an OPEN statement.

� ASG,T of a file whose status is specified as NEW, SCRATCH, or
UNKNOWN in an OPEN statement or the file was being opened by a
statement other than the OPEN statement.

� The order of entries in the PCT prevents access to the desired file.
Putting an @USE name of the unit number on the file may resolve this
problem.

1004 ATTEMPTED OPEN RANDOM ON TAPE FILE

An attempt is made to open a tape file as a direct access file.

*1005 ILLEGAL FORMAT CHARS - TREATED AS BLANKS

The warning message is given only once per statement.  It is given for one of
the following reasons:

� The format given to the run-time library routines in an array or
character expression contains an unknown format type or an illegal
combination of values.  The illegal combination could be Aw.d since .d
can’t be used with an Aw format.  The unknown format type is any
alphabetic character not used as a format type now or it can mean a
missing alphabetic character when one should occur, such as w.d. The
scanning of the format array or expression continues following the
warning unless too many errors are found.

� The values in a FORMAT statement may be encoded badly by the
compiler.  The encoded FORMAT contains an illegal code.  The scanning
of the FORMAT continues after the warning is given.

1006 UNIT NOT OPEN FOR RANDOM INPUT/OUTPUT

A direct access READ, WRITE, or FIND statement specifies a unit (other
than one attached to a symbiont) that is open for sequential access.
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1007 UNIT NOT AVAILABLE FOR BUFFERED I/O

One of the following statements attempts to access a symbiont:

� Unformatted READ or WRITE

� REWIND

� BACKSPACE

� Direct access READ, WRITE, or FIND

1008 FILE ASG’D CAN’T HOLD ALL DIRECT RECORDS

A user-assigned file isn’t large enough to hold all of the records requested in
the direct access OPEN or DEFINE FILE statement.

1009 UNIT NOT AVAILABLE FOR SEQUENTIAL I/O

One of the following statements attempts to manipulate a file open for
direct access.

A sequential DEFINE FILE, READ, or WRITE

� ENDFILE

� REWIND

� BACKSPACE

1010 READ TYPE AND RECORD TYPE DO NOT CONFORM

The type (formatted, unformatted, list-directed, namelist) of a sequential or
direct access read differs from that of the record to be read.

1011 ATTEMPTED READ AFTER WRITE

An attempt is made to read a record from a sequential file that is currently
open for output.

1012 ENDFILE ONLY LEGAL FOR PUNCH SYMBIONTS

The only symbionts for which an ENDFILE can be executed are PUNCH$
and APUNCH$.

1013 READ/WRITE TYPE INHIBITED FOR THIS FILE

An attempt is made to execute a formatted (unformatted) read or write on a
direct access file that contains only unformatted (formatted) records.
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1014 ATTEMPTED TO READ PAST AN END-OF-FILE

**1015 RECORDS EXCEEDING MAX LENGTH ARE FAULTY

During a formatted read or write, the format can’t read or write more than
the record length.  This warning message is given if the format requires a
length greater than the given record length.

During an unformatted read or write of direct access files, the read or write
attempts to require more length than the record contains. The message
appears for this fatal error.

During an unformatted write of ANSI files, the write attempts to require
more length than the record contains.  The message is given for this fatal
error.

During list-directed DECODE statements, the size of the DECODE block or
internal storage area is exceeded.

*1016 FORMAT TYPE NOT SAME AS INTERNAL TYPE

The type of the input/output list item is the internal type.  The format type
given requires a conversion to store the value to the list item on input or to
write the list item value on output.  A conversion is not done when the types
don’t match, that is, Ew.d format with an integer list item.  The run-time
routine gives a warning message and assumes that it can try and use the
given value with that particular format code.

1017 ABSOLUTE VALUE OF I/O ITEM TOO LARGE

The absolute value of the exponent of a floating-point number is too large.
The number of input digits for an integer exceeds the amount that can be
used to hold the number internally.  The fatal error message is given to
prevent an overflow during conversion of the number during input or output
routines.

*1018 INPUT DATA DOES NOT CORRESPOND TO TYPE

The warning message appears when the data read isn’t consistent with the
type of the input list item.  Up to 132 characters of the record in error are
printed.

Floating-point

any characters other than numerals, plus, minus, and blank, or an
incorrect form of a value.

Octal

any characters other than numerals or blanks.

Integer

any characters other than numerals or blanks.

Character
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for list-directed input, a character string not enclosed in apostrophes.

1019 NAMELIST NAME HAS MORE THAN SIX CHARS

� The namelist name in the input data is longer than the legal six
characters.

� The variable name in the input data in the present namelist is longer
than six characters.

1020 INCORRECT CHARACTER IN NAMELIST INPUT

The error message appears when:

� the first nonblank character following the namelist name in the input
isn’t an alphabetic character for a variable name;

� the subscript of the variable name isn’t followed by an equal sign;

� the length for a Hollerith input field is negative;

� the input data is Hollerith but the namelist variable isn’t real or integer;

� the input data is literal but the namelist variable isn’t of type character;

� the variable name is missing before the equal sign in the input data;

� the input data is octal but the list item is logical; or

� the input subscript contains something other than numerals, plus, minus
(if lower bounds are present), left and right parentheses, commas, and
blanks.

1021 NAMELIST INPUT HAS TOO MANY SUBSCRIPTS

The subscript of the input variable name contains more than seven
dimensions.

*1022 NAMELISTS DO NOT CONTAIN VARIABLE NAME

The variable name in the input data is not part of the present namelist.  This
is a warning message.  The namelist read skips this name and continues
reading at the next variable name.

1023 UNIT NOT CONSISTENT WITH FILE FORMAT

The inconsistent file format arises in one of the following situations:

� A sequential ANSI OPEN or DEFINE FILE is attempted and the
associated file is not a tape file.

� A sequential DEFINE FILE is attempted and either the DEFINE FILE
statement or the Define File Block, if present, attempts to override a
predefined (within the FRT) symbiont file format.
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1024 LIST NOT SATISFIED BY LAST FORMAT GROUP

The FORMAT is not an empty format but does not contain any repeatable
editing codes to handle the items in the input/output list.  This is a fatal
error message.

1025 UNABLE TO FILL SPACE REQ FROM FREE CORE

Insufficient free storage area exists to satisfy the dynamic storage
requirements of a run-time routine.  Refer to G.7.

1026 INCORRECT VARIABLE FORMAT CONTENTS

During ENCODE/DECODE before ASCII FORTRAN level 8R1, the message
was produced for list-directed ENCODE/DECODE statements, which were
not allowed.

If a format in an array or character expression gets more than 10 errors, the
fatal diagnostic appears.  If the size of w, d, e, or p is too large for the field
width, this fatal diagnostic occurs.

1027 FILE ALREADY OPEN WITH ANOTHER UNIT #

An attempt has been made to open a file that is already associated with an
open unit different from the one specified in the OPEN statement.  A file
can’t be associated with two open units at the same time.  A second line to
the error message indicates the file involved.

FILE INVOLVED IS -- filename

The filename is the file that your program tried to OPEN on two different
units.

1028 INVALID LITERAL IN OPEN/CLOSE CLAUSE

A literal argument appearing in one of the clauses of an OPEN or CLOSE
statement is either misspelled or invalid.

1029 VALUE IN OPEN IS NEGATIVE OR TOO LARGE

The value specified for one of the clauses in the OPEN statement is out of
range.  A second line to the error message indicates which clause is in error.

1030 OPEN/CLOSE/INQ OPTION MISSING OR ILLEGAL

One of the errors listed below was encountered in an OPEN, CLOSE, or
INQUIRE statement.  A second line to the error message indicates which
error condition occurred.

� In an OPEN statement, if a file is being opened for unformatted I/O, the
BLANK clause may not be present.  For this case, the second line to the
error is:
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CLAUSE(S) IN ERROR -- BLANK

� The RECL clause is missing on an open of a direct access file.  For this
case, the second line to the error message is:

CLAUSE(S) IN ERROR -- RECL

� Clauses that pertain only to a direct (sequential) open are present on a
sequential (direct) open.  See 5.10.1.  For this case, the second line to
the error message is:

CLAUSE(S) IN ERROR -- DIRECT

If sequential clauses were present on a direct open, the following
message appears:

CLAUSE(S) IN ERROR -- SEQUENTIAL

� The FORM and RFORM are both present in an OPEN statement. For this
case, the second line to the error message is:

CLAUSE(S) IN ERROR -- FORM & RFORM

� An open status of SCRATCH may not be present if the file clause is
present.   For this case, the second line to the error message is:

CLAUSE(S) IN ERROR -- STATUS

� A zero length literal is used as an argument in an OPEN, CLOSE, or
INQUIRE statement.

1031 OPEN STATUS OLD, FILE DOES NOT EXIST

An open status of OLD or EXTEND is specified in an OPEN statement;
however, the file can’t be assigned to the run.

1032 ASG,CP ASSIGNMENT FAILED ON OPEN

An open status of NEW is specified in an OPEN statement; however, you
didn’t preassign the file and one could not be assigned.

1033 FILE INCONSISTENT WITH DEFINE FILE/OPEN

The file format specified in an OPEN or DEFINE FILE of a file already open
doesn’t match the file format of the opened file.

1034 SPECIFIED INPUT BEYOND END OF RECORD

The unformatted read requires more length from the record than is actually
present.  The record may or may not be segmented.  All segments would be
read if the record is segmented.
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1035 SCRATCH FILE NAME CONFLICT

An open status of SCRATCH is specified in an OPEN statement. In
attempting to assign a scratch file, it is determined that a file with a file
name equal to the unit number already exists.

1036 INFO$ REQUEST FAILED

1037 STMT OPTION INVALID FOR HVTS ENVIRONMENT

One of the following occurs while processing an OPEN statement:

� The OFF clause is present.

� TYPE=ANSI, AREADA, APRNTA, APUNCH, or APNCHA

� The record size specified in a define file block is greater than the default
size.

1038 NOT ENOUGH TDFA SPACE OR FCT TOC FULL

In an HVTS environment, there is no room for another file in the TDFA or
the maximum number of files are currently in use (the file control table of
contents is full).

*1039 INQUIRE LITERAL TRUNCATED ON THE RIGHT

The literal returned by the INQUIRE statement is longer than the receiving
area and is truncated on the right.

1040 INCORRECT NAMELIST SUBSCRIPT

1041 SIZE OF INTERNAL FILE EXCEEDED

The formatted read of an internal file that is a character variable, character
array element, or character substring tries to read beyond the end of that file
(see 5.9.1).

1042 INVALID STMT TYPE FIELD IN IO PACKET

The I/O packet passed to the run-time system for an I/O statement is
incorrect.

1043 REREAD ILLEGAL FOR STMT TYPE OR SUBTYPE

A reread unit can only be referenced by a formatted or list-directed READ
statement.

1044 ATTEMPTED TO REREAD BEYOND END OF BUFFER

� The format used to reread the record tried to read beyond the reread
record.  The REREAD format can’t contain slashes and can’t be shorter
than the input/output list.
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� The list-directed reread tried to read more than one record.

1045 OPENED UNIT MAY NOT BECOME A REREAD UNIT

If a unit is open, it must be closed before attempting to open it as a reread
unit.

1046 INPUT BUFFER OVERWRITTEN

The size of the record just read in exceeds the input buffer size.  To create a
larger input buffer use an OPEN or DEFINE FILE statement specifying the
largest record size to be read.

1047 ERROR ON CLOSE, UNIT NOT OPEN FOR REREAD

Execution of a CLOSE statement with the REREAD clause present is
attempted for a file open for regular input/output.

1048 ERROR ON CLOSE, UNIT OPEN FOR REREAD

Execution of a CLOSE statement without the REREAD clause present is
attempted for a unit open for reread.

1049 TARGET ADDR USED IN MORE THAN ONE CLAUSE

A variable or array element that receives a value in an INQUIRE statement
can’t be referenced by more than one of the clauses in the same INQUIRE
statement.

1050 INVALID FILENAME FOR OPEN/INQUIRE

Either an F-cycle, read/write keys, or an invalid character is encountered in
a FILE clause of an OPEN or INQUIRE statement.

1051 A SCRATCH FILE MAY NOT BE KEPT

*1052 RCD LARGER THAN MAX RCD SIZE TRUNCATED

The size of the record just read via a symbiont read exceeds the maximum
record size (default size if no OPEN or DEFINE FILE statement) for the file.
The record is truncated to the maximum record size.

1053 ATTEMPT TO READ A DUMMY RECORD

A direct access read attempts to read a dummy record.  The direct access
record is not written to yet and does not contain useful information.
Dummy records are only detected in skeletonized files.

1057 ERROR ON TLBL$ REQUEST

An error is encountered while doing an ER TLBL$.  The substatus field of
the I/O status word PTIOE is set to the ER TLBL$ error code.  In addition,
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the ER TLBL$ error code will be provided by a second line to the error
message.  The second line has the format:

’ER TLBL$ ERROR CODE IS xxx’

1058 EQUIPMENT TYPE NOT ALLOWED

Because of a PCIOS restriction, I/O operations are prohibited for
word-addressable mass storage with equipment codes 020-027.

1059 INTERNAL FILE I/O IS INCORRECT

An attempt is made to read an internal file using an empty FORMAT
statement (FORMAT( )) when the input/output list is not empty.

*1060 RECORD FORMAT ON OPEN IS INCONSISTENT

At the opening of an existing direct-access file, the record format specified
in the OPEN or DEFINE FILE doesn’t agree with the record format with
which the direct-access file was created.

1061 ERROR MSG NOT DEFINED

This error message number doesn’t contain a valid error message at the
current time.

1062 RECURSIVE I/O CALLS NOT ALLOWED

A function reference used in an input/output list attempts to perform I/O
operations or refers to a subprogram that attempts to perform I/O
operations.  This is a fatal error and control does not return to the program.

1063 DIRECT ACCESS BUFR TOO SMALL

You must specify a larger buffer size for a direct access file in the OPEN
statement.  Refer to 5.10.1 for a discussion on the minimum buffer size.

1065 ENCODE/DECODE RECORD CANNOT SPAN BANK

The record being encoded or decoded is a Virtual item contained partially in
one Virtual bank and partially in another.  This is not allowed.  See Appendix
M for information on how Virtual items are stored in banks.

1066 OPEN STATUS NOT ALLOWED WITH SHARED FILES

An OPEN statement with STATUS=’NEW’ or STATUS=’SCRATCH’ attempted
to create a shared direct access file.  ASCII FORTRAN cannot create shared
files.
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1067 SEQUENTIAL FILE MAY NOT BE SHARED

The file is declared as SEQUENTIAL; only files declared as DIRECT
ACCESS may be shared files.

1068 NTRAN UNIT MAY NOT BE USED FOR FTN I/O

Normal FORTRAN I/O statements (such as READ, WRITE, BACKSPACE,
ENDFILE, OPEN, CLOSE, and INQUIRE) may not refer to a unit that is
being used with the NTRAN$ subroutine (see 7.7.3.16).

1069 FILE IS READ OR WRITE INHIBITED

Read or write access to the file is not allowed.  You may have omitted a read
or write key, or access may be denied for some other reason.

1070 I/O PROCESSING NEEDS LARGER SCT

The library common bank uses a data storage area that is collected into the
program.  Your program was collected with an older library that contained a
storage area that is too small for the current common bank.  You must
re-collect the program with a library that is at least as new as the level
specified in the secondary message:

RE-MAP PROGRAM WITH AT LEAST FTN LEVEL level

1072 NAMELIST HOLLERITH INPUT SPANS BANK

An individual Hollerith value input during a NAMELIST READ cannot be
transferred to a data area that spans from one Virtual bank to another (for
example, the value 8Habcdefgh cannot be read into two consecutive
elements of an integer array if the two elements happen to be allocated in
two different Virtual banks).

G.10.FORTRAN Define File Block (DFB) Usage
The file description parameters given in the sequential OPEN or DEFINE FILE
statements can also be specified in a Define File Block (DFB) external to the FORTRAN
program.  A DFB used by FORTRAN must exist in the file DFP$.  Prior to execution of
the FORTRAN program, a DFB is produced by the Define File Processor (DFP) as
follows:

@DFP,E  fname.,DFP$.unit

where the E option indicates that DFB is to be produced.  The variable fname specifies
the external file name to which the DFB applies and is inserted in the DFB. DFP$.unit is
the file name and element name into which the DFB is inserted.  For FORTRAN, this
must be the file DFP$ and the element name must be equivalent to a FORTRAN unit
specifier.  The variable fname must be followed by a period or the default file TPF$ is
associated with the unit number.



ASCII FORTRAN Input/Output Guide

UP-8244.4-BG-36

When the FORTRAN input/output routines attempt to retrieve a DFB, the unit specifier
from the sequential OPEN or DEFINE FILE statement is used as the element name of
the DFB.  You must assign the file DFP$ to the run prior to execution of the FORTRAN
program.

If a DFB is found in DFP$, the input/output routines perform the following @USE
statement on the file, providing it isn’t a standard symbiont file:

@USE x,q*f

where x is the unit number of the file and q*f is the qualifier and file name from the DFB.
This q*f is the same as fname, which is used by the DFP when the DFB is created.  If the
file is a buffered input/output file, the following assignment statement is also performed
by the input/output routines:

@ASG x.

If the file type from the OPEN or DEFINE FILE statement matches the file type from the
DFB, the parameters that exist in OPEN or DEFINE FILE statements and DFB override
the file default parameters, respectively.  If the file type from the OPEN or DEFINE FILE
statement does not match the file type from the DFB, just the DFB parameters override
the file default parameters.

The only DEFINE FILE statement or DFB parameter, other than ft (file type), that
applies to symbiont files is rs (record size). Symbiont file unit members can be
predefined in the file reference table (FRT).  If a DEFINE FILE statement is executed for
a predefined symbiont unit, the file type from the DEFINE FILE statement and the file
type from the DFB (if a DFB exists) must match the file type in the FRT for the unit.  If
an OPEN or DEFINE FILE statement is executed for a symbiont unit that is not
predefined in the FRT, the file type from the OPEN or DEFINE FILE statement, if not
overridden by the DFB, is placed in the FRT and remains there for the duration of the
run or until the unit is closed via the CLOSE statement and opened via the OPEN
statement with a different file type.

The define file processor can’t modify the parameters given in a direct access OPEN or
DEFINE FILE statement; only sequential file parameters can be adjusted.

The following examples illustrate the DFP call and the keyword parameter lists
applicable to the various FORTRAN file types.

� If fname is a sequential SDF file:

@DFP,E fname.,DFP$.unit 
FILE = SDF  
RECORD = rs (record size)  
BLOCK = bs (block size)  
LINESIZE = ss (segment size)

where:

unit

is the unit number.
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rs

is a positive integer (optional).

bs

is an integer greater than 224 (optional).

ss

is a positive integer (optional).

� If fname is an ANSI file:

@DFP,E fname.,DFP$.unit
FILE = ANSI  
RECORD = rs/rf (record size/record format)  
BLOCK = bs/bo (block size/buffer offset)

where:

unit

is the unit number.

rs

is a positive integer (optional).

rf

is U, F, V, FB, VB, VS, or VBS (optional).

bs

is a positive integer (optional).

bo

is a positive integer less than bs (optional).

� If fname is a shared direct-access file:

@DFP,E fname., DFP$.unit  
SHARE = a

where:

unit

is the unit number.

a

is the value NO or YES.

Note: This clause overrides the S values of the RFORM clause in the OPEN

statement, if both are present.

� If fname is a print symbiont file:

@DFP,E  fname.,DFP$.unit
FILE = ft (file type)  
RECORD = rs (record size)
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where:

unit

is the unit number.

ft

is one of the following: APRINT, APRINT$, APRNTA, APRNTA$.

rs

is a positive integer less than or equal to 160.

Note: The DFP requires the fname parameter, but fname is not used by the

input/output routines for file assignment when the file type is for a

standard symbiont file.

Symbiont
Default Record Size (in

Characters) Allowable Range with DFP

051  APRINT 132 0 < rs ≤ 252

052  APUNCH 80 0 < rs ≤ 80

053  AREAD 80 0 < rs ≤ 131,071

054  APRNTA 132 0 < rs ≤ 252

055  APNCHA 80 0 < rs ≤ 80

056  AREADA 132 0 < rs ≤ 160

 

For example, consider the following program called TEST:

   COMMON I,DATA(90) 
   DEFINE FILE 11(SDF,,10,224,112)  
   CALL SUB  
   DO 90 J = 1,I 
90     WRITE(11,20) (DATA(K),K=1,J) 
20     FORMAT (90(A1))  
   END

Assume that something is going wrong with writing unit number 11.  The following
DFP-modified execution causes unit 11 output to go to the printer rather than to an SDF
file:

@ASG,T   DFP$.  
@DFP,E   DUM.,DFP$.11 
 FILE = APRINT 
 RECORD = 40 
@XQT TEST

This use of DFP changes the maximum record size of all print units for this execution to
40 characters also.
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G.11.Storage-Allocation Packet (Element M$PKT$)
A set of common storage allocation routines (which are used by the libraries of the
ASCII FORTRAN, ASCII COBOL, and PL/I compilers) is used to control storage used by
the I/O routines at run time (except in ASCII FORTRAN checkout mode).  The packet
used by the common routines contains values for the maximum address that the
program can reach, the storage request increment size, and the storage free increment
size.

The service routine MAXAD$ (see 7.7.3.19) can be called to change values in the
common storage-allocation packet at run time.
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Appendix H
Using Multibanking for Large
Programs

H.1. Large Programs
The default address range for the instructions and data of a collected program, including
all user subprograms and all referenced run-time library routines, is 65,535 decimal
words.  If the size of the collected program is larger than this 65K-word range, the
collector produces truncation errors because it is trying to place an address that is
greater than 65K into a 16-bit instruction u-field.  Index registers can hold an 18-bit
address.  Therefore, ASCII FORTRAN generates code using index registers to hold
addresses if the O option (the over-65K-address option) is used on the ASCII FORTRAN
processor call.  This raises the boundary to a 262K-word address range for your collected
program before truncation problems again appear.

If the O option is used on the processor call and truncation errors do not occur during
collection, your problem is solved.  (Having the statement COMPILER(PROGRAM=BIG)
in source programs is equivalent to using the O option when compiling them.)

However, if a program still gets truncation errors during collection, you must construct a
multibanked program or place some large data items in virtual space.  When the size
problems are due to large user data objects, use either banked space or virtual space to
solve the problem.  Using virtual space is preferred since it is easier to set up and use
(see Appendix M).  When the size problem is due to a large amount of executable code
rather than large data objects, you must construct a multibanked program to solve the
problem.  When the problem stems from both the size of the code and the size of the
data objects, you must construct a multibanked program to solve the code size problem
and use either banked or virtual space to solve the data size problem.  (Multibanked
programs can also use virtual space.)

H.2. Banking
Banking is a mechanism for sharing the address space between different pieces of code
or data.  For example, you can use the collector IBANK directive to direct the collector
to construct a bank (an I-bank) holding subprogram X, and to construct another I-bank
to hold subprogram Y.  These two I-banks can be created with overlapping addresses.
The same thing can be done with data.  You can use the collector DBANK directive to
place common block CB1 into one bank (a D-bank) and common block CB2 into another
parallel D-bank using the same address space.  These are called paged data banks. In this
general manner, you create a banked program that needs less address space than the
unbanked program. You can define almost any number of I-banks and D-banks; refer to
the collector documentation for the exact limit (it is currently limited by the Exec to
about 250).  You must construct a collector symbolic (sometimes called a MAP
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symbolic) containing a sequence of collector directives that define the banking structure
of your program.

For this mechanism to work, generated code must be able to move an address window
from bank to bank.  A Processor State Register (PSR) is a hardware register that defines
two address windows for an executing program, an I-bank window and a D-bank
window.  An LIJ (load I-bank base and jump) instruction moves the I-bank window, and
an LDJ (load D-bank base and jump) instruction moves the D-bank window from one
bank to another.

ASCII FORTRAN is supported on two basic types of systems:

1. Older single-PSR systems, such as the 1106, 1108, 1100/10, and 1100/20 systems.

2. Newer dual-PSR systems and systems that are compatible with the dual-PSR
structure.  These include the 1110, 1100/40, 1100/60, 1100/70, 1100/80, 1100/90, and
the 2200 systems.

On dual-PSR systems, the two PSRs are referred to as the main PSR (PSRM) and the
utility PSR (PSRU).  Systems that are compatible with dual-PSR systems use Base
Descriptor Registers (BDRs) or Base Registers (B-registers).  There is a one-for-one
correspondence between BDRs or B-registers and the four windows defined by the two
PSRs.

This appendix refers to only PSRs since there is a one-for-one equivalence to BDRs and
B-registers.

When constructing a collector symbolic to create a multibanking structure for ASCII
FORTRAN programs, you must follow certain conventions:

1. No address overlap should ever occur between I-banks and D-banks since results are
unpredictable.

2. When multiple D-banks containing paged data are defined, they must start at the
same address (FORTRAN’s mechanism to switch D-bank basing depends on this).

3. In any multibanked collection, one bank is defined as the control bank.  The control
bank is assumed to be always available and based since it contains any unbanked
programs and data and also the unbanked portions of the run-time library routines.
The control bank cannot be overlapped by any other bank.
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H.2.1. General Banking Example (Dual-PSR System)

The following example consists of three separately compiled elements.  MAIN1 is the
main program and SUB1 and SUB2 are subroutines.  The first statement in each sample
routine is a directive to the compiler indicating that the final collected program is
banked, and appropriate linkages (e.g., LIJ, LDJ, LBJ instructions) must be used to
ensure that the correct banks are visible when necessary.  The sizes of the code and data
in the examples don’t warrant the use of banking since these are simple examples for
instruction only.

Example of a Main Program (MAIN1):

      COMPILER (BANKED=ALL)
      COMMON /cb1/ a,x /cb2/ b,y
      CHARACTER*1 a,b
      DATA a/’a’/, b/’b’/
      WRITE(6,100) ’reference to:’, a
      WRITE(6,100) ’reference to:’, b
      a = ’c’
      b = ’d’ 
      WRITE(6,100) ’reference to:’, a 
      WRITE(6,100) ’reference to:’, b
100   FORMAT (1X, A13, 1X, A1)
      x = 2.
      y = sqrt(x)
      z = x + y
      WRITE(6,200) x, y
200   FORMAT (1X, ’sqrt of’, F10.5, ’ is’, F10.5)
      CALL sub1 (a, b, x, y, z)
      END

Example 1 of a Subprogram (SUB1):

      COMPILER(BANKED=ALL)
      SUBROUTINE sub1 (a, b, x, y, z)
      CHARACTER*1 a, b
      WRITE(6,100) ’in subroutine sub1’
100   FORMAT(1X, A18) 
      WRITE(6,200) a, b, x, y, z
200   FORMAT(1X, ’a=’, A1, ’ b = ’, A1, ’ x = ’, F10.5, ’ y = ’,
      1F10.5, ’ z = ’, F10.5)
      CALL sub2(b, 2.0)
      END

Example 2 of a Subprogram (SUB2):

      COMPILER (BANKED=ALL) 
      SUBROUTINE sub2(a, x)
      CHARACTER*(*) a
      CHARACTER*19 b3cell /’common block cb3’/
      COMMON /cb3/ b3cell
      CHARACTER*19 b4cell /’common block cb4’/ 
      COMMON /cb4/ b4cell
      PRINT *, ’a, len(a), x:’, a, len(a), x
      PRINT *, ’common block cb3:’, b3cell
      PRINT *, ’common block cb4:’, b4cell
      END
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H.2.1.1. Collection of the General Banking Example

The following collector symbolic can be used to collect the three sample program
elements into a banked program.  The LIB directive can be dropped if the ASCII
FORTRAN library is in the system relocatable library, SYS$LIB$*FTN.  This is the
general form that you should follow for multibanking of ASCII FORTRAN programs on
dual-PSR OS 1100 systems.

 LIB SYS$LIB$*FTN.  
 IBANK,MRD    IBANKM          .  INITIALLY BASED, MAIN PSR
     IN MAIN1
 IBANK,RD IBANK1,IBANKM
     IN SUB1
 IBANK,RD IBANK2,IBANKM
     IN SUB2
 DBANK,UD DBANK1,(040000,IBANKM,IBANK1,IBANK2) 
     . INITIALLY BASED, UTILITY PSR
     IN F2ACTIV$($1) 
     IN CB1
 DBANK,D    DBANK2,DBANK1
     IN(MAIND) F2ACTIV$($3)
     IN CB2
 DBANK,D    DBANK3,DBANK1
     IN(MAIND) F2ACTIV$($3)  
     IN CB3
 DBANK,CM MAIND,(DBANK1,DBANK2,DBANK3)
     . MAIND IS THE CONTROL BANK, ALWAYS BASED, ON MAIN PSR
     IN MAIN1
     IN SUB1
     IN SUB2
 END

The collection of the sample program using this collector symbolic would result in the
banking structure shown in Table H-1.  The lines under the bank names are similar to
the lines in a collector S-option listing in that they indicate length.

If the three FORTRAN relocatables are copied to file TPF$ and if the above collector
symbolic is in element TPF$.BMAP, you can collect this program in a banked absolute
and execute it with the following control images. (This assumes that there are no other
relocatables in file TPF$.)

@MAP   BMAP,BABS
@XQT   BABS

The following control images do a default nonbanked collection of the program and give
the same execution results.

@MAP,I MAP,ABS
IN MAIN1
LIB SYS$LIB$*FTN. 
@XQT   ABS
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Table H-1.  Dual-PSR Banking Structure  

I-Banks Based on Main
I-Bank PSR (PSRM) (starts

at 01000)

D-Banks Based on Utility
D-Bank PSR (PSRU) (starts

at 040000 or over)

Control D-Bank Based on
Main D-Bank PSR (PSRM)

(starts after largest of
D-banks based on utility

D-bank PSR and may
reach 262K limit)

IBANKM

MAIN1

____________________

DBANK1

CB1

__________

IBANK1

SUB1

______

DBANK2

CB2

____________________

Local data,

library-MCORE$ area

___________

IBANK2

SUB2

________

DBANK3

CB3

______________

C2F$

I/O Common Bank

___________

 

Notes:

1. Program code goes into I-banks.

2. Named common blocks go into D-banks (paged data banks).

3. Data local to subprograms, blank common, any programs or named common not

placed in other banks and the run-time library routines, all go into the control

bank.

4. The C2F$I/O common bank is not mentioned in the collection, though it is

referenced at run time for all I/O activities.

5. The paged data banks must start at or after address 040000 to avoid address

overlap with the hidden C2F$ I/O common bank.

6. The area after the control bank is open for the I/O complex to acquire buffer space.

Executive Requests (ERs) to MCORE$ are made at run time to expand this area.

7. If any collected addresses go over 65K, use the O option or the COMPILER

(PROGRAM=BIG) statement with all of the ASCII FORTRAN compilations.
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The execution of the banked or nonbanked absolute results in the following output:

reference to: a
reference to: b
reference to: c
reference to: d 
sqrt of 2.00000 is 1.41421
in subroutine sub1
a= c b = d x = 2.00000 y = 1.41421 z = 3.41421
a, len(a), x:d         1 2.0000000
common block cb3:common block cb3 
common block cb4:common block cb4

H.2.1.2. Analysis of the Collector Symbolic

This subsection describes the collector symbolic listed in H.2.1.

The main program MAIN1 is placed in an I-bank with the M option, which makes it
initially based on the main PSR.  (The main program must be in an initially based bank.)

The other two routines, SUB1 and SUB2, are placed into two other I-banks, each starting
at the same address as the I-bank containing MAIN1.  (They can also be put into the
same I-bank as MAIN1 since they are so small.)

All I-banks have the R option on the IBANK directive to indicate they are read-only
I-banks.  As a read-only bank, there is less Executive swap file activity.

All D-banks except the control D-bank have the D option on the DBANK directive to
indicate that they are dynamic banks.  This means that they can be swapped out by the
Executive if they are not currently based, saving on main storage usage (though possibly
causing more Executive swap file activity).

The bank names given on the IBANK and DBANK directives (for example, IBANKM) are
called Bank Descriptor Indexes, or BDIs.  The collector gives them integer values that
are used by the LIJ and LDJ bank-switching instructions.

The paged data banks contain named common blocks and must be based on the utility
D-bank PSR.  The paged data bank DBANK1 is chosen to be the one initially based.  The
U option on the DBANK directive for DBANK1 indicates it is initially based on the utility
PSR. The other paged data banks holding named common are put at the same address as
DBANK1.

The location counter one code ($1 code) of the run-time activate element F2ACTIV$ is
put at the beginning of initially based paged data bank DBANK1.  The same is done with
$3 code of F2ACTIV$ for each of the other paged data banks.  The F2ACTIV$ location
counter ($1) contains information to make the bank in which it resides self-identifying.
This location counter is often referred to as the bank’s ID area.  The code under location
counter ($3) in F2ACTIV$ is an exact copy of location counter one.  To work properly,
location counters one and three must be collected at the same address in the banks.  The
IN directive of F2ACTIV$ ($3) has MAIND in parentheses.  This is called local element
inclusion and bypasses possible LOCAL-GLOBAL CONFLICT messages from the
collector.
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The control bank MAIND is the D-bank named in the DBANK directive with the C option,
and the M option on it means it is also initially based on the main D-bank PSR.  Only the
main program MAIN1 is included through use of an IN statement in this bank, since the
collector puts anything not specifically included in another bank in the control bank.
The control bank MAIND is placed after the largest of the three paged data banks so that
no address overlap occurs.

The area after the end of the control bank is used by the storage management complex
to obtain buffer space for the ASCII FORTRAN run-time system.  Executive Requests
(ERs) to MCORE$ are made to acquire this space.

The three paged data banks must not be defined at less than an 040000 (octal) address
and the paged data banks must start at an address higher than the highest I-bank
address.  This is because their address space would then overlap the C2F$ I/O common
bank, and the results would be unpredictable.

The named common block CB4 is not given a home in any paged data bank.  If the main
program and any subprograms are explicitly included in an I-bank and a D-bank by an IN
statement, CB4 falls in the control bank and, since the control bank is always based, it is
not dynamically banked.  (See the section on element placement in the OS 1100

Collector Programming Reference Manual, Level 33R1, 7830 9887.) This does not result
in any problems; in fact, any subprograms not specifically included in a bank by an IN
statement fall harmlessly in the control bank.  As long as the control bank does not get
so large as to cause collector truncation errors again, this is harmless.  Any number of
subprograms can be included in an I-bank, and any number of named common blocks
can be included in a paged data bank.  (Blank common and data local to subprograms
must be in the control bank.) The criteria for the contents of a bank should be a function
of the final collected size of the bank, and also a function of the locality of reference to
the bank to try to minimize thrashing between banks.  (You can minimize any problem
caused by excessive Executive swap file activity by carefully making selected banks
static by not putting the D option on their I-bank or D-bank statements.)  A reasonable
size for an I-bank or paged data bank is approximately 16,000 decimal words.  This
means that the control bank can be as large as about 32,000 words before truncation
problems occur again.

H.2.1.3. Large Paged Data Banks

If reasonable I-bank and paged data bank sizes still result in truncation errors at
collection time, or if large paged data banks (greater than approximately 30,000 words)
are to be defined, the O option is needed on the ASCII FORTRAN processor calls to
allow a 262K address range.  In addition, the ordering of the paged data banks and the
control bank must be inverted to prevent collector truncation errors on the run-time
library routines in the control bank.  This means that the control bank must be placed
after the I-banks and before the paged data banks in the address space.  Since the ASCII
FORTRAN run-time system makes the control bank larger via ER MCORE$ to obtain
buffer space, you must leave enough room between the control bank and the paged data
banks for I/O main storage requirements.  (Appendix G contains formulas for estimating
I/O main storage requirements for a program.)  Allowing 10,000 decimal words is usually
sufficient.  However, if an ER MCORE$ results in an address overlap of the control bank
and paged data banks, incorrect results or error termination may occur. The F2FCA
library element can also be reassembled with a sufficiently large local area in it (see
G.7).
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To collect your program with large D-banks, the collector symbolic (from H.2.1.1) must
be changed. The DBANK directive for D-bank MAIND and the IN directive on MAIN1 are
moved back to just before the DBANK1 definition.  Then these statements are changed
as follows:

  .
  . 
  . 
DBANK,CM MAIND, (040000, IBANKM, IBANK1, IBANK2)
   IN MAIN1 
DBANK,UD DBANK1,(MAIND+10000)
  .   
  .   
  .

The rest of the collector symbolic remains unchanged.

The resulting collector symbolic is:

LIB SYS$LIB$*FTN.
IBANK,MR IBANKM . INITIALLY BASED, MAIN PSR
    IN MAIN1
IBANK,R IBANK1,IBANKM
    IN SUB1
IBANK,R IBANK2,IBANKM
    IN SUB2 
DBANK,CM MAIND,(040000,IBANKM,IBANK1,IBANK2)
    .MAIND IS THE CONTROL BANK, ALWAYS BASED, ON MAIN PSR
    IN MAIN1
    IN SUB1
    IN SUB2
DBANK,UD DBANK1,(MAIND+10000) . INITIALLY BASED, UTILITY PSR
    IN F2ACTIV$($1) 
    IN CB1 
DBANK,D DBANK2,DBANK1
    IN(MAIND) F2ACTIV$($3) 
    IN CB2
DBANK,D DBANK3,DBANK1
    IN(MAIND) F2ACTIV$($3)
    IN CB3
END

The collection then results in the banking structure of Table H-2.  The lines under the
bank names are similar to the lines in a collector S-option listing in that they indicate
length.

When the common blocks don’t fit in the paged D-banks (truncation errors appear), put
them in virtual space (see Appendix M).

H.2.1.4. Variations on the Dual-PSR Structure

The generalized example shows multiple I-banks and multiple D-banks being used at the
same time.  If your program is large only in the amount of I-bank code, you can simply
omit the definition of the paged data banks and define only I-banks and the control bank.
If the program has large common blocks causing the size problem, then the Collector
symbolic element can be cut back to defining only one I-bank, the control bank, and
multiple-paged data banks.
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The LIB directive tells the collector where to obtain the ASCII FORTRAN run-time
library.  The simple form of the LIB directive causes all run-time library routines, both
code and data, to fall into the control bank MAIND since they are not explicitly included
in any bank.  The following form of the LIB directive directs the Collector to put
anything taken from SYS$LIB$*FTN into I-bank IBANKM and D-bank MAIND in a
normal $ODD/$EVEN I-bank/D-bank split:

LIB SYS$LIB$*FTN.(IBANKM/$ODD,MAIND/$EVEN)

This can minimize the size of the MAIND control bank.

Table H-2.  Dual-PSR Banking Structure, Over 65K  

I-Banks Based on Main
I-Bank PSR (PSRM) (starts

at 01000)

Control Bank Based on
Main D-Bank PSR (PSRM)

(starts at 040000)

D-Banks Based on Utility
D-Bank PSR (PSRU) (starts
after the control bank and
goes up to a 262K limit)

IBANKM

MAIN1

_____________

MAIND

Local data,

Library-MCORE$ area

______________

DBANK1

CB1

_________

IBANK1

SUB1

________

DBANK2

CB2

__________________

IBANK2

SUB2

______________

DBANK3

CB3

________________

C2F$

I/O common bank

_______________

 

Notes:

1. The paged data banks can extend out to the 262K address limit.

2. The 10K area between MAIND and the paged data banks is used by the I/O

complex for buffers.  If it is not sufficient, the separation must be increased or the

library element F2FCA reassembled with a nonzero reserve.

3. I/O acquires storage in increments of eight storage blocks (4096 decimal words).
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H.2.2. Banking for Single-PSR 1100 Systems

The collector symbolics described in H.2.1 through H.2.1.4 use the utility PSR of
dual-PSR systems to hold an address window for paged data.  This utility PSR does not
exist on single-PSR systems such as the 1106, 1108, 1100/10, and 1100/20.  If your
program needs only multiple I-banks and not multiple D-banks, the previously described
collector symbolics can be used with the definitions of the paged data banks removed.
If your program needs both multiple I-banks and multiple D-banks, it cannot be done on
single-PSR hardware.  However, you can define a banking structure for multiple D-banks
for single-PSR systems.  A single I-bank is defined, and it is also made the control bank
to hold all unbanked code and data.  The paged data banks are defined to come after the
control bank, but enough room must be left between them for I/O buffers (which are
dynamically acquired by ER MCORE$ at run time).

However, this type of collection has a problem resulting from the I-bank holding all
unpaged data.  Because of this, no common banks can be referred to at run time to do
I/O, calls to the Common Mathematical Library (CML), etc.  The run-time library used
must have all run-time routines in relocatable form.  (The ASCII FORTRAN library must
be built as a type1 library, with the relocatable form of the PCIOS common I/O modules,
and also the relocatable form of the CML modules.)

Another problem results from ASCII FORTRAN putting a SETMIN directive on all
relocatable elements it generates, which ensures that code referencing array elements is
correct.  The collector emits a warning on each FORTRAN element.  For example:

MAIN1 MINIMUM ADDRESS IGNORED-LC0 NOT IN DBANK

These collector warnings can be ignored, but the I-bank must be started at address
040000 or higher to ensure that the FORTRAN-generated code works correctly.

You must also edit and reassemble the ASCII FORTRAN library element F2BDREQU$
when performing a multibanked collection for single-PSR systems.  Adjust the values of
three EQUs as follows:

Tag Dual-PSR (default) Single-PSR

CBDR$ 2 0

VBDR$ 1 1

BKBDR$ 3 2

 

The example in H.2.1 using MAIN1, SUB1, and SUB2 can be collected using multiple
D-banks for single-PSR systems with the following collector symbolic:

LIB FTN*RLIBX.   . SPECIAL (TYPE1) LIBRARY !
IBANK,MC     IBANKM,040000 . CONTROL BANK NOW
    IN MAIN1,SUB1,SUB2
DBANK,MD     DBANK1,(IBANKM+10000)
    IN F2ACTIV$($1) 
    IN CB1
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DBANK,D     DBANK2,DBANK1
    IN(IBANKM) F2ACTIV$($3)
    IN CB2
DBANK,D     DBANK3,DBANK1
    IN(IBANKM) F2ACTIV$($3)
    IN CB3
END

Collection results in the following collector diagnostics:

MAIN1   MINIMUM ADDRESS IGNORED - LC O NOT IN DBANK
SUB1    MINIMUM ADDRESS IGNORED - LC O NOT IN DBANK
SUB2    MINIMUM ADDRESS IGNORED - LC O NOT IN DBANK
CB4     MINIMUM ADDRESS IGNORED - LC O NOT IN DBANK

The collection results in the banking structure given in Table H-3 for the single-PSR
multiple D-bank problem.  The lines under the bank names in Table H-3 are similar to
the lines in a collector S-option listing in that they indicate length.

Table H-3.  Single-PSR Banking Structure  

One I-Bank (the Control Bank) Based on
the Main I-Bank PSR (PSRM) (starts at

040000)

D-Banks Based on the Main D-Bank PSR
(PSRM) (starts after the control bank and

may go up to 262K)

IBANKM

Code, library, unbanked data-MCORE$

____________________________

DBANK1

CB1

_________

DBANK2

CB2

_______________________

DBANK3

CB3

___________________

 

Notes:

1. There are unavoidable collector diagnostics.

2.  A totally local library must be used; no run-time common banks can be

referenced.

3. The 10K separation between IBANKM and the D-banks must be able to satisfy all

buffer requests from the ASCII FORTRAN run-time system, or it must be

increased, or the library element F2FCA must be reassembled with a nonzero

reserve large enough to satisfy the buffer requests.

4. The I-bank must start at or after address 040000.
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5. If the paged data banks extend beyond 65K, use the O option on all of the ASCII

FORTRAN compilations.

6. IBANKM cannot extend beyond 65K in addressing.

H.2.3. Banking, Efficiency, and Source Program Directives

The examples in H.2.1 through H.2.2 use a simple generalized directive to the ASCII
FORTRAN compiler to indicate that banking is used in the final absolute program. In
fact, this generalized statement, COMPILER(BANKED=ALL), means:

� Each subprogram referenced can be in a different I-bank, in the same I-bank, or in
the control bank.

� Input arguments can be in paged data banks or in the control bank.

� Named common blocks can be in paged data banks or in the control bank.

Therefore, the actual banking structure is virtually unknown to the compiler, and yet it
must create linkages to ensure that items are visible or based when they are referenced.

H.2.3.1. I-Bank Linkages

The ASCII FORTRAN compiler uses the LIJ instruction to link between I-banks.  This
linkage is fairly efficient since the bank switch is done and then the called subprogram is
entered, usually for some period of time.  The compiler generates a pseudo-linkage
called the IBJ$ linkage.  The collector replaces this linkage with an LMJ instruction if the
destination is in the control bank, or the same I-bank, and with an LIJ instruction if the
destination is in a different I-bank.

H.2.3.2. D-Bank Linkages

Each time the compiler generates code to reference data in a (possibly) paged data bank
(which may be currently based), it must also generate an activate sequence.  This
activate code has several variations, but a typical sequence is two to four instructions
long.

Example:

Variables A, B, and C are in named common blocks CB1, CB2, and CB3.

The FORTRAN statement A = B+C is to be compiled.

If you haven’t given any directives to the ASCII FORTRAN compiler indicating that
multiple D-banks are being used, three machine instructions are generated for this
statement:  a LOAD, an ADD, and a STORE. If you indicate to the ASCII FORTRAN
compiler (through BANK statements) that multiple D-banks are being used, there are
also three activate sequences generated.  This results in nine instructions instead of
three for the unbanked program.  In addition, each activate sequence contains LBJ
instructions. The LBJ instruction is simulated in the Executive for older single-PSR
systems and may cause a presence-bit interrupt if the bank is swapped out on any OS
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1100 system.  Program efficiency is extremely dependent on the contents of the paged
data banks and on the organization of the ASCII FORTRAN code.

Because performance can be so dramatically affected, you can supply several directives,
including the BANK statement (see 6.6) and several COMPILER statement options (see
8.5), to the ASCII FORTRAN compiler to help program efficiency.

H.2.3.3. Multiple I-Banks Only

If your collected program is constructed using multiple I-banks for code and does not
define multiple paged data banks, use the LINK = IBJ$ option of the COMPILER
statement rather than the more general BANKED=ALL option.  The compiler then
generates the efficient IBJ$ linkage for subprogram references and generates code
assuming that data is not banked.  The resulting program should be as efficient as an
unbanked program.

H.2.3.4. Multiple Paged Data Banks

Once your multiple D-bank program is debugged and running, you might notice many
activate code sequences in the generated code that are not necessary, since a given
paged program bank may contain several named common blocks.  Also, if you are often
hopping between paged data banks in the generated code, you may wish for a much
faster activate sequence.

H.2.3.4.1.The BANK Statement

The BANK statement associates a paged data bank BDI name with one or more named
common blocks.  Therefore, you can tell the compiler that common blocks CB1, CB2,
and CB3 are in the same paged D-bank; therefore the compiler does not generate
activate sequences when the program references them.  Since the BANK statement tells
the compiler that these items are definitely banked and the BDI is supplied, a more
efficient bank switch can be done.  The compiler generates a direct LBJ instruction to
change the currently based D-bank rather than calling an F2ACTIV$ run-time routine.

Using a BANK statement to associate a BDI with a common block results in more
efficient code to reference that common block.  However, if the COMPILER
(BANKED=ALL) statement is left in the program, the compiler still generates inefficient
code sequences.  These code sequences reference those named common blocks not
specified in BANK statements.  When you use BANK statements to associate BDIs with
common block names for all common blocks residing in paged D-banks, you can replace
the BANKED = ALL option of the COMPILER statement with the following three
options:

(BANKED=ACTARG), (BANKED=DUMARG), (LINK=IBJ$)

In addition to more efficient code to reference nonbanked common blocks, the options
ensure that:

� banked arguments are handled properly, and
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� linkages to subprograms are correct.

Since BANK statements associate specific BDI names with common blocks, you must
also change all the programs and recompile them if you change the banking structure.

The BANK statement and various COMPILER statement directives are described in 6.6
and 8.5.

H.2.3.4.2.Optimization and Program Organization

The ASCII FORTRAN compiler remembers which bank is currently based and does not
generate unnecessary activate sequences if global optimization is used during program
compilation.  (Global optimization is called with the Z option on the ASCII FORTRAN
processor call.  See 9.6.2.)  You should attempt to organize your code so that references
to a given D-bank are grouped in areas of code.  This is especially true for the inner loop
of DO-loops.  Try to have any inner loops refer to items in one paged data bank.
(Unbanked data items can be referred to in any manner.)

Example:

   SUBROUTINE     SUBX (A,IA)
   COMPILER(BANKED=ALL)  
   DIMENSION     A(IA)  
   COMMON/C1/A1(1000),B1(1000)  
   COMMON/C2/A2(1000),B2(1000)  
   BANK/BNK1/C1,C2  
   COMMON WORK(1000) @BLANK COMMON  
   IL = IA-1  
   DO 10 I=1,IL
10     WORK(I)=A(I)/A(I+1)+.03
   DO 20 I=1,IL  
       A1(I)=WORK(I)*B2(I)/B1(I)-A2(I)     
       IF(A1(I).NE.O.O) A2(I)=1/A1(I)
20     CONTINUE  
   END

You have (possibly) banked arguments A and IA and two named common blocks that are
known to be in D-bank BNK1.

Blank common can never be banked, so the program does some initial processing on the
input array A and moves it to WORK in blank common.  (A local array can also be used.)
Since only one bank is referenced inside the first loop, the activate code sequence is
moved out of the loop (if global optimization is used).  The same thing is true for the
second loop, and no activate sequences are done inside the loop.  A single reference to
an external routine inside either loop causes at least one set of activate code to be
generated inside the loop since the external routine can possibly change which paged
data bank is currently based.

If you had not supplied the BANK statement, the generated code would contain many
unnecessary activate sequences since the compiler must assume the worst case.
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H.2.4. Banking Summary

� Programs constructed using multiple I-banks and no multiple D-banks should use
the COMPILER(LINK=IBJ$) statement to indicate banking to the ASCII FORTRAN
compiler.

� The COMPILER(BANKED=ALL) statement stresses ease of use for multiple D-bank
programs.  However, CPU efficiency suffers when compared to the use of the BANK
statement for common block names.

� Programs with multiple D-banks can reduce the number of activate code sequences
generated, and can cause the direct generation of LBJ instructions by the selected
use of BANK statements to associate named common blocks with specific paged
data bank BDIs.  Replace the COMPILER (BANKED=ALL) statement with
COMPILER (BANKED=ACTARG), (BANKED=DUMARG), (LINK=IBJ$) to enhance
efficiency.

� If BANK statements are used in a FORTRAN program to enhance efficiency, no error
diagnostics occur if they are incorrect.  Bad program results can occur.

� Use global optimization to dramatically reduce the number of generated activate
sequences.

� Performance can be enhanced by judicious organization of program logic and
careful definition of the contents of paged data banks.

� An address overlap must never occur between any I-bank and any D-bank, or
between the control D-bank and any paged data banks.  If the run-time library used
is a normal common bank, the C2F$ I/O common bank can extend to address 037777
(octal).  Therefore, no D-bank should start below address 040000.

� The control bank holds all of your unbanked data and routines, all run-time library
D-bank, and any unbanked library routines.  The control bank must be initially based
and must never be unbased by an LIJ, LDJ, or LBJ instruction.

� If any addresses go beyond 65K in the collection, the O option or the statement
COMPILER (PROGRAM=BIG) is needed on all ASCII FORTRAN compilations.

� Any element containing only BLOCK DATA subprograms must be included using an
IN directive in the control bank in the collection, since the collector may otherwise
ignore it.  This also is true for nonbanked collections.

� Minimize control bank size by supplying a LIB statement to the collector that causes
the code or I-bank portions of the run-time library to go into one of your I-banks. For
example, LIB SYS$LIB$*FTN.(IBANKM/$ODD,MAIND/$EVEN).

� Multiple D-bank operation depends on copies of the activate code existing in each
paged data bank at exactly the same relative address.  The $1 and $3 F2ACTIV$ code
segments are identical, and the only reason for the location counter split is to avoid
local-global conflict messages during collection.  The easiest way to ensure the same
address for ACTIV$ code is to make each paged data bank start at the same address
and to have the ACTIV$ code first in each D-bank.

� The local element inclusion of F2ACTIV$ code is also important.  The $3 code (an
exact copy of $1 code) has no tags, but refers to data in the control bank; therefore,
it must be visible only to the control bank.
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� Single-PSR 1100 systems can’t have both multiple I-banks and multiple D-banks in
the same collection.

� The TYPE BLOCKSIZE64 collector directive can save storage when the absolute
element resulting from the collection has many banks.

� The single-PSR multiple D-bank setup needs a special library that contains a totally
relocatable form of all run-time routines so that no common banks are referenced.
The run-time element F2BDREQU$ must also be reassembled with some EQU
values changed (see H.2.2).
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Appendix I
Error Diagnostics in Checkout Mode

The following messages are associated with the checkout mode of the ASCII FORTRAN
compiler (see 10.3):

Messages Occurring During Program Load

****CHECKOUT RELOCATION ERRORS****

If any errors are encountered while loading your program, this message is issued and
the error messages are then printed.

WARNING: NAME IS UNDEFINED: name

You referenced a subprogram that is not defined in your compilation unit or the FTN
library.  The offending name is printed on the line following the message.

ERROR: USER PROGRAM TOO LARGE

An address generated while loading your program doesn’t fit in an address field.
Your program is too large.  It may fit if the O option is used or if the Z option is
omitted on the processor call image.

NO MAIN ENTRY POINT, NO EXECUTION POSSIBLE

This message is produced if your program does not contain a main program.  Instead
the program contains only subroutines, functions, and BLOCK DATA subprograms.
Interactive debug mode is entered.

Messages Generated by Interactive Debugging

BAD LINE NUMBER n

The line number, n (specified in the BREAK command), is either out of range for
your program or is on a nonexecutable statement.

BLOCK DATA PROGRAM NOT FOUND

The BLOCK DATA program specified in the p field of the PROG command or the p
subfield of a command doesn’t exist in the FORTRAN symbolic element.

COMMAND NOT ALLOWED

The GO command (no fields) or the WALKBACK command can’t be executed
because normal execution of the FORTRAN program is not possible; that is, there is
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no main program in the element, or the CALL command has executed a subprogram
and returned.

COMMAND NOT ALLOWED BECAUSE OF CONTINGENCY

The GO command (no fields) can’t be executed because a contingency is captured
by the compiler.  For example, if the FORTRAN program encounters a guard mode
(IGDM) contingency, then normal execution of the program can’t resume.  A
RESTORE command can bring back an original version of the program.

CONSTANT MUST BE TYPE data-type

The constant in the third field of the SET command isn’t the same data type as the
variable in the first field.  The SET command doesn’t perform conversions between
data types.

ELEMENT HAS NO MAIN PROGRAM

The main program is specified in the p field of the PROG command or in the p
subfield of a command, but the FORTRAN symbolic element doesn’t contain a main
program.

ENTIRE ASSUMED-SIZE ARRAY CANNOT BE DUMPED

The range of an assumed-size array is unknown.  Only individual elements of an
assumed-size array can be dumped.

ENTRY POINT NOT FOUND

The entry point specified in the s field of the CALL command or in the parameter list
of the CALL command doesn’t exist in the FORTRAN source.

ERROR: NO USER PROGRAM FOUND

You are using a RESTORE command but haven’t previously done a SAVE on the
desired version.

FTEMP$ STORAGE DESTROYED

A subprogram’s temporary storage area (for saving registers and the parameter list)
is destroyed because of an error in your program.  The specified variable can’t be
dumped.

FUNCTION HAS NOT BEEN CALLED

A reference is made to a variable that is a character function entry point, but the
function has not yet been called during execution of the FORTRAN program.
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ILLEGAL COMMAND

An illegal debug command name is specified when input is solicited with ER
ATREAD$, or the name specified in the cmd field of the HELP command isn’t a
debug command name.

ILLEGAL SYMBOLIC NAME

An illegal FORTRAN variable name is specified in the v subfield of a command, or an
illegal subroutine or function name is specified in the p field of the PROG command
or the p subfield of a command.

ILLEGAL SYNTAX

A general syntax error is found.  This includes specifying a field for a command
when none is required, or not specifying a field when one is required.

INCORRECT NUMBER OF SUBSCRIPTS FOR ARRAY *

The number of subscripts specified for the array in the v subfield of a command
does not equal the number of dimensions declared for the array in the specified
FORTRAN program unit.

IO ERROR ON LOADING USER PROGRAM, LOAD ABORTED

An I/O error occurs while accessing your program file during execution of the
RESTORE command.  The command is aborted.  This may result in error
termination also.

IO ERROR ON USER OUTPUT FILE, ’SAVE’ COMMAND ABORTED

An I/O error occurs while accessing your program file during execution of the SAVE
command.  The command is aborted.

LABEL BREAK LIST IS FULL

An attempt is made to add an entry to the statement label break list with the
command BREAK n L [/p], but the list already has eight entries.

LABEL UNDEFINED *

The statement label n in the BREAK nL [/p] command is not declared in the
specified FORTRAN program unit.

LINE NUMBER BREAK LIST IS FULL

An attempt is made to add an entry to the line number break list with the command
BREAK n, but the list already has eight entries.
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NO BREAK SET FOR LABEL *

The statement label n (in the specified program unit) in the command CLEAR n L
[/p] is not in the statement label break list.

NO BREAK SET FOR LINE NUMBER

The line number n in the command CLEAR n isn’t in the line number break list.

PARAMETER’S SUBPROGRAM HAS NOT BEEN CALLED

An attempt is made to reference a subroutine’s or function’s argument, but the
subprogram has not yet been called during execution of the FORTRAN program.

PROGRAM UNIT NOT FOUND

The symbolic name specified in the p field of the PROG command or the p subfield
of a command doesn’t exist in the FORTRAN symbolic element as a named program
unit.

SETBP NOT ALLOWED ON COMPILER GENERATED FOR SINGLE-PSR MACHINE

The SETBP command can only be executed on an ASCII FORTRAN compiler
generated for a dual-PSR machine.  The nonreentrant ASCII FORTRAN absolute
taken off the test file (file 2) of the ASCII FORTRAN release tape is a compiler
generated for single-PSR machines.

SUBSCRIPT OUT OF RANGE FOR ARRAY

The constant subscripts specified for the array in subfield v of a command are too
big or too small.

****UNDEFINED SUBROUTINE ENTRY****

During execution, your program calls a function or subroutine that is undefined.
The name of the subprogram was previously printed out with the checkout
relocation errors.

USER FILE REJECTED, NOT FASTRAND FORMATTED

You are attempting a SAVE or RESTORE command, but the file is not a program file.
Something has happened, making it unusable.  The file affected is the Relocatable
Output (RO) file specified on the @FTN processor call command.

USER INPUT FILE CANNOT BE ASSIGNED

Your program file can’t be assigned to do the RESTORE command.  Some other run
must be using it.
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USER OUTPUT FILE CANNOT BE ASSIGNED

Your program file can’t be assigned to do the SAVE command.  Some other run must
be using it.

VARIABLE IS AN ARRAY *

The variable in subfield v of a command has no subscripts, but the variable is
declared as an array in the specified program unit.  An array element is required.

VARIABLE IS NOT AN ARRAY *

The variable in subfield v of a command has subscripts, but the variable is not
declared as an array in the specified program unit.

VARIABLE NOT DEFINED *

The variable in subfield v of a command is not declared in the specified FORTRAN
program unit.

WARNING: CHARACTER CONSTANT TRUNCATED

The character constant in the third field of the SET command has too many
characters to fit in the character variable.  It is truncated to the declared length of
the variable.

An asterisk (*) indicates that the error message is followed by a second printed line.
This line specifies the program unit (in the FORTRAN element) from which the variable
or statement label (in the command image) comes.  One of the following formats will
appear:

IN MAIN PROGRAM
IN MAIN PROG n 

IN BLOCK DATA n
IN BLOCK DATA PROGRAM m

IN SUBROUTINE n [:e ]

IN FUNCTION n [:e ]

where:

n

is a program unit name.

e

is an external program unit name.

m

is an unnamed BLOCK DATA subprogram sequence number.
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The specified program unit is taken from the p subfield of the command, or from the
PROG command default program unit, if p is not specified in the command.
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Appendix J
Differences between ASCII FORTRAN
Level 8R1 and Higher Levels

J.1. General
ASCII FORTRAN levels 9R1 and higher contain all the features of the ANSI FORTRAN
standard, X3.9-1978 (called FORTRAN 77).  ASCII FORTRAN level 8R1 doesn’t have all
these features.  This appendix compares ASCII FORTRAN levels 9R1 and higher to level
8R1.

ASCII FORTRAN level 8R1 is missing the following six statements: PROGRAM (see
7.2.1), INTRINSIC (see 6.10), SAVE (see 6.11), OPEN (see 5.10.1), CLOSE (see 5.10.2),
and INQUIRE (see 5.10.3).  It is incompatible with ASCII FORTRAN levels 9R1 and
higher in the storage allocation of character data, DO-loops, typing of symbolic names of
constants and statement functions, and list-directed input/output.  It doesn’t contain the
intrinsic functions:  ICHAR, CHAR, LEN, INDEX, ANINT, DNINT, NINT, IDNINT,
DPROD, LGE, LGT, LLE, LLT, UPPERC, LOWERC, and TRMLEN (see 7.7.1), or the
logical operators, .EQV. and .NEQV.

An option, STD=66, has been added to the COMPILER statement (see 8.5 and 8.5.6) for
levels 9R1 and higher.  This option forces the ASCII FORTRAN compiler and library
routines for levels 9R1 and higher to execute as previous levels of ASCII FORTRAN do in
the areas of storage of character data, DO-loops, typing of statement functions and
symbolic names of constants, and list-directed input and output.

This appendix is organized into subsections corresponding to the sections of the ANSI
standard document, X3.9-1978.  Each subsection of this appendix contains extensions in
levels 9R1 and higher over ASCII FORTRAN level 8R1, and conflicts between ASCII
FORTRAN levels 9R1 and higher and level 8R1.  ASCII FORTRAN extensions to level 8R1
in levels 9R1 and higher are features that have been implemented to make ASCII
FORTRAN conform to the standard completely.  Conflicts occur where the same
construct can have different meanings in the two levels.  Thus, conflicts imply that a
change has been made to a feature in ASCII FORTRAN level 8R1 to achieve
compatibility with the standard.



Differences between ASCII FORTRAN Level 8R1 and Higher Levels

UP-8244.4-BJ-2

J.2. FORTRAN Terms and Concepts
Extensions:

A main program can have a PROGRAM statement as its first statement.  Level 8R1 has
no PROGRAM statement (see 7.2.1).

Conflicts:

Character storage units for a datum are logically consecutive.  Level 8R1 starts each
character datum on a word boundary.  The COMPILER statement provides an option,
STD=66, to allow compatibility with previous levels on character data (see 8.5 and 8.5.6).

J.3. Characters, Lines, and Execution Sequence
Extensions:

PARAMETER statements can occur before and among IMPLICIT statements.  Any
specification statement that designates the type of a symbolic name of a constant must
precede the PARAMETER statement that defines that particular symbolic name; the
PARAMETER statement must precede all other statements containing the symbolic
names of constants that are defined in the PARAMETER statement.  Level 8R1 does not
allow typing of symbolic names of constants (see 6.3 and 6.8).  The COMPILER
statement provides an option, STD=66, to allow compatibility with previous untyped
symbolic names of constants.

Conflicts:

None.

J.4. Data Types and Constants
Extensions:

A complex constant can be written as a pair of integer constants or real constants.  Level
8R1 allows only real constants (see 2.3.3).

Conflicts:

None.

J.5. Arrays and Substrings
Extensions:

You can use array names in a SAVE statement.  Level 8R1 does not have a SAVE
statement (see 6.11).
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Conflicts:

None.

J.6. Expressions
Extensions:

� Complex operands are allowed in relational expressions with the .EQ. and .NE.
operators unless one operand is double-precision. The comparison of a
double-precision value and a complex value is not permitted.  Level 8R1 does not
allow complex operands in relational expressions (see 2.5.3).

� The logical operators .NEQV. and .EQV. with lowest precedence are allowed.  These
operators are not in level 8R1 (see 2.5.4.1).

Conflicts:

None.

J.7. Executable and Nonexecutable Statement
Classification
Extensions:

None.

Conflicts:

None.

J.8. Specification Statements
Extensions:

� EQUIVALENCE statements can contain character substring names.  Level 8R1
doesn’t allow character substring names in EQUIVALENCE statement lists (see 6.4).

� Integer constant expressions are allowed for subscript and substring expressions in
EQUIVALENCE statements.  Level 8R1 does not allow substring expressions in
EQUIVALENCE statements (see 6.4).

� In the COMMON statement, an optional comma is allowed before the slash that
comes before the common block name, that is, [ [ , ] / [ cb ] / nlist ] . . . .  No comma
is allowed for level 8R1; an error occurs (see 6.5).

� A symbolic name of a constant can be typed in an IMPLICIT statement or in an
explicit type statement (see 6.3 and 6.8).  Level 8R1 does not allow typing of
symbolic names of constants.  The COMPILER statement provides an option,
STD=66, to allow compatibility between levels 9R1 and higher and level 8R1 of
ASCII FORTRAN for typing of symbolic names of constants (see 8.5 and 8.5.6).
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� The name of a statement function can appear in an explicit type statement.  The
name of a statement function can be typed by an IMPLICIT statement.  Level 8R1
does not type statement functions (see 6.3 and 7.3.1).  The COMPILER statement
provides an option, STD=66, to allow compatibility between levels 9R1 and higher
and level 8R1 of ASCII FORTRAN for typing of statement functions (see 8.5 and
8.5.6).

� The length in a CHARACTER type statement can be an asterisk or an integer
constant expression in parentheses such as (*) or (exp), or a constant with no
parentheses, such as const.  An entity in a CHARACTER statement must have an
integer constant expression as a length specification unless that entity is an external
function, a dummy argument of an external procedure, or a character constant that
has a symbolic name.  These exceptions can have a length specification of asterisk.

The length specified for a character statement function or statement function
dummy argument of type character must be an integer constant expression.  Neither
an asterisk nor an expression is allowed in the length specification in level 8R1 (see
6.3.2).

� The length for a CHARACTER array element can occur before and after the element
(that is, a(d)*length).  In level 8R1, the length can come before the subscript but an
error is issued if it appears after the subscript (see 6.3.2).

� The comma is optional in the character type statement in the form:

CHARACTER[*len[,]] nam[,nam] . . .

Level 8R1 issues an error message for the comma following len (see 6.3.2).

� In the IMPLICIT statement, the length for character entities can be an unsigned,
nonzero integer constant, or an integer constant expression enclosed in parentheses
that has a positive value.  An unsigned, nonzero integer constant is allowed in level
8R1 but not an expression (see 6.3.1).

� A BLOCK DATA subprogram name can occur in an EXTERNAL statement.  Level
8R1 does not allow the optional name for a BLOCK DATA subprogram (see 6.9 and
7.6.2).

� The INTRINSIC statement identifies a symbolic name as representing an intrinsic
function.  Level 8R1 does not have the INTRINSIC statement (see 6.10).

� The SAVE statement retains the definition status of an entity after execution of a
RETURN or an END statement in a subprogram.  Level 8R1 does not have a SAVE
statement (see 6.11).

Conflicts:

� Character equivalencing is based on character storage units in levels 9R1 and higher
and on words in level 8R1.  This can give different results.  This applies to both
explicit EQUIVALENCE statements and to argument association and COMMON
association.  For example:

CHARACTER A*4,B*4,C(2)*3
EQUIVALENCE (A,C(1)),(B,C(2))
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Levels 9R1 and Higher:

1 2 3 4 5 6 7 8

A

B

C(1) C(2)

Level 8R1:

1 2 3 4 5 6 7 8

A B

C(1) C(2)

The COMPILER statement provides an option, STD=66, to provide for compatibility
with lower levels of ASCII FORTRAN (see 8.5 and 8.5.6).

� The PARAMETER statement gives a constant a symbolic name.  If the type of the
name is not implied by the name rule (see 2.4.2.1), the type must be specified by an
explicit type statement or by an IMPLICIT statement prior to the appearance of the
name in a PARAMETER statement.  Symbolic names of constants defined in
PARAMETER statements have no type in level 8R1.  Assignment of the value of the
expression is done in levels 9R1 and higher as in an assignment statement (that is,
with type conversion, if necessary).  The syntax of the PARAMETER statement is
different in level 8R1 in that no parentheses can be used.  Both forms of the
PARAMETER statement syntax are allowed in levels 9R1 and higher (see 6.8).  The
STD=66 option of the COMPILER statement provides for compatibility on previous
levels of ASCII FORTRAN for typing of symbolic names of constants (see 8.5 and
8.5.6).
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J.9. DATA Statement
Extensions:

� The comma before the variable list is optional, that is, [[,]nlist/clist/] . . . .  The
comma is required in level 8R1.  A warning is given if the comma is omitted (see
6.12.1).

� Substring names are allowed in the variable list.  Level 8R1 doesn’t allow substring
names in a DATA statement variable list (see 6.12.1).

Conflicts:

A symbolic name of a constant (defined in a PARAMETER statement) that begins with
the letter O, and appears in the constant list of a DATA statement is interpreted by level
8R1 as an octal constant and by levels 9R1 and higher as the symbolic name of the
constant (see 6.12.1).

For example:

PARAMETER (02=5.)
DATA A/02/

J.10. Assignment Statements
Extensions:

None.

Conflicts:

None.

J.11. Control Statements
Extensions:

The DO-variable and the DO-statement parameters can be real, double precision, or
integer.  Level 8R1 generates an error for noninteger DO-variables (see 4.5).

Conflicts:

In the standard, a DO-loop need not be executed.  The iteration count is given by
MAX(INT((m2-m1+m3)/m3),0).  The DO-loop is not executed if m1 > m2 and m3 > 0 or
if m1 < m2 and m3 < 0.  In level 8R1, a DO-loop is always executed.  The iteration count
is given by MAX e2-e1)/e3+1),1).  If e1 > e2 and e3 is omitted, level 8R1 assumes e3=-1,
and levels 9R1 and higher assume e3=+1 (see 4.5.4.1).  The STD=66 option of the
COMPILER statement provides for compatibility with previous levels of ASCII
FORTRAN for DO-loops (see 8.5 and 8.5.6).
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J.12. Input/Output Statements
Extensions:

� The internal unit identifier is a character variable or character array or character
array element or character substring that specifies an internal file.  Level 8R1 does
not allow a character substring for an internal unit identifier (see 5.9.1 and 5.9.3).

� An empty I/O list is allowed on reads or writes to skip a record or to write an empty
record.  A level 8R1 compiler requires a nonempty I/O list on list-directed reads,
unformatted sequential-access writes, list-directed write or print, and unformatted
direct-access writes.  Errors are issued when the list is missing (see 5.6.1.4, 5.6.2.2,
5.6.2.4, and 5.7.3).

� Character substring names are allowed in I/O lists.  Level 8R1 allows them only in
output lists (see 5.2.3).

� Character constants produced by list-directed output are not delimited by
apostrophes, are not preceded or followed by a blank or comma, and do not have
internal apostrophes represented by two apostrophes.

� The implied-DO list parameters are the same as the new DO-loop parameters (that
is, more types, zero iterations possible).  Level 8R1 doesn’t allow the new
parameters (see 4.5 and 5.2.3).

� The OPEN statement is not in level 8R1 (see 5.10.1).

� The CLOSE statement is not in level 8R1 (see 5.10.2).

� The INQUIRE statement is not in level 8R1 (see 5.10.3).

Conflicts:

Character variables are only blank-filled to the declared size of the variable during
assignment statements and I/O.  Prelevel 9R1 compilers and I/O systems performed
blank-fill to word boundaries even though the character variable was not a multiple of
four characters.  The STD=66 option does not change this incompatibility.  Prelevel 9R1
absolute elements that use the FORTRAN common bank C2F$ will not execute as
before.  That is, the old compiler will blank-fill to a word boundary, but formatted I/O
will not blank-fill to a word boundary.  Character comparisons of the data will not find
any equal conditions.

J.13. Format Specification
Extensions:

If the output format is Gw .d Ee and the value of the variable fits an F format, the format
used is F(w- (e+2)).d -i, (e+2)(’b’), where b is a blank.  The format is F(w-4).d -i, 4(’b’) in
level 8R1 (see 5.3.1).
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Conflicts:

� During list-directed input, if the first record read in a read operation has no
characters preceding the first value separator, this indicates a null field.  In level
8R1, it does not indicate a null field but is handled the same as any other record.  If
you use the STD=66 option of the COMPILER statement, execution chooses level
8R1 and earlier methods of input.

� During list-directed output, character constants always have the PRINT format (that
is, no apostrophes around character output).  In level 8R1, PRINT and WRITE have
different formatting in that apostrophes are used during the WRITE.  Also, on
list-directed output in levels 9R1 and higher, a complex constant must be written on
one record if it fits, by itself, on a record.  Level 8R1 breaks it up without checking to
see if it fits on one line.  If you use the STD=66 option of the COMPILER statement,
execution proceeds with level 8R1 and earlier methods of output.

J.14. Main Program
Extensions:

The PROGRAM statement to name a main program must be the first statement in the
main program if it occurs.  The PROGRAM statement is not implemented in level 8R1
(see 7.2.1).

Conflicts:

None.

J.15. Functions and Subroutines
Extensions:

� The following intrinsic functions are not in level 8R1: ICHAR, CHAR, LEN, INDEX,
ANINT, DNINT, NINT, IDNINT, DPROD, LGE, LGT, LLE, LLT, UPPERC, LOWERC,
and TRMLEN (see 7.7.1).

� Extended conversion intrinsic functions are the following: INT, REAL, DBLE, and
CMPLX for all argument types.  Level 8R1 gives warnings for use of complex type
with INT and proceeds to flag further uses of INT as a user function.  Levels 9R1 and
higher allow integer, real, complex, and double-precision types as arguments for
INT.  Level 8R1 gives warnings for any use of REAL with variables other than
complex and proceeds to flag further uses of REAL as a user function.  Levels 9R1
and higher allow integer, real, and complex types as arguments for REAL.  Level 8R1
gives warnings for any use of DBLE with complex variables, and interprets further
calls of DBLE as a user function. Levels 9R1 and higher allow integer, real,
double-precision, and complex types as arguments for DBLE. Level 8R1 gives
warnings for any complex variables used as arguments of CMPLX and interprets
further calls of CMPLX as a user function.  Levels 9R1 and higher allow integer, real,
double-precision, and complex types arguments for CMPLX (see 7.7.1).
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� The FUNCTION statement specifies the length for a character function as
CHARACTER[*length]C(A).  Level 8R1 allows the length after the function name,
that is, CHARACTER FUNCTION C*3(A) (see 7.3.2.1).  Both forms are allowed in
level 9R1 and higher.

� Empty parentheses are allowed on the SUBROUTINE statement.  The level 9R1 and
higher form is SUBROUTINE sub [([d[,d]. . .])]; the level 8R1 form is SUBROUTINE
sub [(d[,d] . . .)] .  The forms sub and sub() are equivalent (see 7.3.3.1).

� An actual argument for a subroutine call can be *s, where s is a statement number.
Level 8R1 uses currency signs ($) or ampersands (&) for the statement number (see
7.3.2.2 and 7.3.3.2).

� A dummy argument array name can be associated with an actual argument that is an
array element substring as well as an array or array element.  Level 8R1 passes a
temporary for an array element substring.

� A dummy argument that becomes defined can be associated with a substring as an
actual argument.  Level 8R1 associates it with a variable, an array element, or an
expression.

� Empty parentheses are allowed in the ENTRY statement. The level 9R1 and higher
form is ENTRY en[([d[,d] . . .])] while the level 8R1 form is ENTRY en[(d[,d] . . .)] .
Levels 9R1 and higher require that the function be specified with the form en() even
if the entry statement did not have the empty set of parentheses (see 7.5).

Conflicts:

� Statement functions are typeless in level 8R1, but are typed (just like other
functions) in levels 9R1 and higher.  This can cause different results because of
implied type conversions (see 6.3 and 7.3.1).  The STD=66 option of the COMPILER
statement provides for compatibility of levels 9R1 and higher with previous levels of
ASCII FORTRAN for typing of statement functions (see 8.5 and 8.5.6).

� Register A1 contains a function packet address for character function references
(see K.4.6).  For ASCII FORTRAN level 8R1, register A1 contains a result address for
character function references.  This is an incompatibility between level 8R1 and all
higher levels.  If a program compiled with level 9R1 or higher refers to a character
function program compiled by level 8R1, the STD=66 option of the COMPILER
statement must be present in the level 9R1 or higher program.

� If the value of e in RETURN[e] is less than one or greater than the number of
asterisks in the subroutine entry, control in level 9R1 returns to the CALL statement
that initiates the subprogram reference.  In level 8R1, an error is issued and the
program continues with unknown results (see 7.4).
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J.16. BLOCK DATA Subprogram
Extensions:

An optional global name can be specified for a BLOCK DATA subprogram, that is,
BLOCK DATA [name ].  Level 8R1 doesn’t allow the optional name.

Conflicts:

None.
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Appendix K
Interlanguage Communication

K.1. ASCII FORTRAN (FTN) to FORTRAN V
The FORTRAN V subprogram must be declared as:

EXTERNAL a(FOR)

or:

EXTERNAL *a

where a represents the FORTRAN V subprogram name.

The syntax of a call to a FORTRAN V subprogram is the same as a call to an ASCII
FORTRAN subprogram.

Restrictions and Considerations:

� If both the ASCII FORTRAN and FORTRAN V programs perform I/O operations, you
must reassemble the ASCII FORTRAN library element F2FCA.  Buffer area
allocation and release is not common between the two FORTRANs, and I/O
operations may fail.  This problem is resolved by reassembling element F2FCA with
the required amount of main storage.  To determine the required amount, refer to
G.7.

� FORTRAN V Series E subprograms are restricted to symbiont types of I/O; the tag
CLOST$ will be undefined at collection time.  This can be ignored since CLOST$ is
defined in FORTRAN V Series T.

� Any files opened by FORTRAN V Series T must be explicitly closed using a CALL
CLOSE statement in a FORTRAN V subprogram if they are to be usable after
program termination.

� The FORTRAN V subprogram cannot call the EXIT service subprogram.

� The FORTRAN V subprogram name can’t appear in a BANK statement.

� FORTRAN V subprogram arguments and function names should not be type
character or double-precision complex, because FORTRAN V supports neither data
type.

� The walkback mechanism doesn’t work if a walkback is attempted from a
FORTRAN V subprogram to an ASCII FORTRAN program.

� Common blocks or local variables shared with or passed to FORTRAN V routines
should not be in virtual or banked space.
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K.2. ASCII FORTRAN to PL/I
The PL/I external procedure must be declared as:

EXTERNAL a(PL1)

where a represents the PL/I procedure name.

The syntax of a call to a PL/I procedure is the same as a call to an ASCII FORTRAN
subprogram.

K.2.1. Restrictions and Considerations

� Level 8R1 PL/I or higher must be used.

� Any file opened by a PL/I procedure must be closed by a PL/I procedure.  Files can
be shared between ASCII FORTRAN and PL/I, but they must be closed by the
language that opened them before they can be accessed by the other language.  A
file that is opened by a given language does not have to be closed before switching
to another language as long as the called language routine does not access the file.

� The PL/I procedure name can’t be a dummy argument name.

� An argument to a PL/I procedure cannot be a label, subprogram name, or array
name.  An array element can be passed from ASCII FORTRAN to PL/I, but PL/I must
declare its counterpart as a single data item; structures or cross-sections of arrays
are not allowed.

� You can use common blocks to pass an array name from ASCII FORTRAN to PL/I.
The PL/I procedure must use the EXTERNAL attribute on the declaration, and the
ASCII FORTRAN program must specify the array in a named common block.  The
PL/I common block name is the variable name with the EXTERNAL attribute.  ASCII
FORTRAN stores arrays in column-major order while PL/I stores them in row-major
order.  This means that either the ASCII FORTRAN program must transpose the
array so that it is in row-major order when the PL/I procedure is called or the PL/I
procedure must refer to the array with the subscripts in reverse order and the array
dimensioned in reverse order.

For example:

ASCII FORTRAN                PL/I

EXTERNAL PL1SUB(PL1)         PL1SUB: PROC; 
INTEGER ARR(2,4,6)           DCL 1 BLK1 EXTERNAL ALIGNED,
COMMON/BLK1/ARR                   2  ARR(6,4,2) FIXED DECIMAL(10,0);
ARR(2,3,4) = 234             PUT SKIP (’WANT 234 :’, ARR(4,3,2));
CALL PL1SUB                  PUT SKIP;  
END                          END;

� If execution is stopped by the PL/I procedure using the STOP statement, any files
opened by ASCII FORTRAN are not properly closed unless the ASCII FORTRAN
program explicitly closes them via the CLOSE statement.

� Common blocks or local variables shared with or passed to PL/I should not be in
virtual or banked space.



Interlanguage Communication

UP-8244.4-B K-3

K.2.2. PL/I Argument Counterparts

PL/I has the following argument counterparts to ASCII FORTRAN.

ASCII FORTRAN PL/I Comment

INTEGER FIXED BINARY (p,q)

FIXED DECIMAL (p,q)

p can range 1-35, q must be 0.

p can range 1-10, q  must be 0.

REAL FLOAT BINARY (p)

FLOAT DECIMAL (p)

p can range 1-27.

p can range 1-8.

DOUBLE

PRECISION

FLOAT BINARY (p)

FLOAT DECIMAL (p)

p can range  28-60.

p can range 9-18.

COMPLEX FLOAT BINARY COMPLEX (p)

FLOAT DECIMAL COMPLEX (p)

p can range 1-27.

p can range 1-8.

COMPLEX*16 FLOAT BINARY COMPLEX (p)

FLOAT DECIMAL COMPLEX (p)

p can range  28-60.

p can range 9-18.

LOGICAL BIT (36) ALIGNED Only the rightmost bit is used by ASCII
FORTRAN.  The PL/I string may not be of varying
length.

CHARACTER*n CHARACTER (n) The PL/I string may not be of varying length.

 

K.3. ASCII FORTRAN to ASCII COBOL (ACOB)
The ASCII COBOL (ACOB) subprogram must be declared as:

EXTERNAL a(ACOB)

where a represents the ASCII COBOL subprogram name.

The syntax of a call to an ACOB subprogram is the same as a call to an ASCII FORTRAN
subprogram.

K.3.1. Restrictions and Considerations

� ACOB level 4R2 or higher must be used.

� Any file opened by an ACOB subprogram must be closed by an ACOB subprogram.
Files can be shared between ASCII FORTRAN and ACOB, but they must be closed
by the language that opened them before they can be accessed by the other
language.  A file that is opened by a given language doesn’t have to be closed before
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switching to another language as long as the called language routine doesn’t access
the file.

� The ACOB subprogram name can’t be a dummy argument name.

� It is your responsibility to ensure the data alignment is the same for an ASCII
FORTRAN argument and its ACOB counterpart.  Special care must be taken when
passing character type data to ACOB.  If the ASCII FORTRAN argument is not
word-aligned, the ACOB argument declaration must reflect the offset via the use of a
structure.  To ensure that an ASCII FORTRAN character scalar or array is
word-aligned, place it as the first item in COMMON or equivalence the character
item to an integer variable.

� The ACOB subprogram name must not be a function name since ACOB doesn’t
support functions.

� An argument to an ACOB subprogram must not be a label or subprogram name since
ACOB has no argument counterpart.

� An array name can be passed from ASCII FORTRAN to ACOB as an argument.
However, ASCII FORTRAN stores arrays in column-major order while ACOB stores
them in row-major order.  This means either the ASCII FORTRAN program must
transpose the array so that it will be effectively in row-major order when the ACOB
subprogram is called, or the ACOB procedure must reference the array with the
subscripts in reverse order and the array dimensioned in reverse order.  Beware of
ASCII FORTRAN and ACOB alignment conventions.

Example:

ASCII FORTRAN                           ACOB

EXTERNAL C(ACOB)                        LINKAGE SECTION.
CHARACTER*5 ARR(2,4,6)                  01   BUFF.
EQUIVALENCE (ARR(1,1,1),IDUM)                02 BUFA OCCURS 6 TIMES.
ARR(2,3,4) = ’ABCD’                          03 BUFB OCCURS 4 TIMES.
CALL C(ARR)                                  04 BUFC PIC X(5) OCCURS 2
TIMES.
PRINT *, ’WANT EFG:’, ARR(2,3,4)        PROCEDURE DIVISION USING BUFF.  
END                                     C.
                                             DISPLAY ’WANT ABDC:’,
                                              BUFC (4, 3, 2).
                                             MOVE ’EFG’ TO BUFC (4, 3, 2).
                                             EXIT PROGRAM.

� If execution is stopped by the ACOB subprogram, any files opened by ASCII
FORTRAN don’t close properly unless the ASCII FORTRAN program explicitly
closes them via the CLOSE statement.

� If ASCII COBOL passes a group item with no explicit type to an ASCII FORTRAN
program, the corresponding ASCII FORTRAN argument can be type INTEGER,
REAL, DOUBLE PRECISION, or LOGICAL.  CHARACTER type is not allowed.
ASCII FORTRAN can only access that portion of a COBOL group item that is
declared, either explicitly or implicitly, by the ASCII FORTRAN program.

� Common blocks or local variables shared with or passed to ACOB should not be in
virtual or banked space.
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K.3.2. ASCII COBOL Argument Counterparts

ASCII COBOL (ACOB) has the following argument counterparts to ASCII FORTRAN.

ASCII FORTRAN ACOB Comment

INTEGER PIC S9(10) COMP SYNC Ensure that the ACOB item is word-aligned.

REAL COMP-1

DOUBLE PRECISION COMP-2

COMPLEX No ACOB counterpart

LOGICAL PIC 1 (36) SYNC Only the rightmost bit is used by ASCII FORTRAN.
Ensure that the ACOB item is word-aligned.

CHARACTER*(n) PIC X(n) Ensure that the alignment is the  same for ASCII
FORTRAN and ACOB.

TYPELESS � PIC 1 (36) SYNC Ensure that the ACOB item is word-aligned.

 

� A typeless argument results from a typeless function, see 2.5.5.1.

K.4. ASCII FORTRAN and MASM Interfaces
This subsection provides information needed when writing Assembler routines that call
or are called by ASCII FORTRAN routines.

K.4.1. Arguments

For procedure calls with one or more arguments, ASCII FORTRAN requires an argument
list.  The address of the argument list is in H2 of register A0.  A0 also contains the
number of character arguments in S1 and the total number of arguments in Q2.  Bit
number 9 of A0 (leftmost bit is bit 1) specifies when argument type checking is desired
by the caller.

Format of register A0 for calling an ASCII FORTRAN program:

A B C D

where:

A

(S1 of A0) is the number of character arguments (maximum of 63).
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B

(Bit 9 of A0; assume bits are numbered 1-36 and the leftmost bit is 1) is the argument
type checking bit. If set to 1 by the caller, argument type checking will not be done.
If set to 0, argument type checking will be done unless the called subprogram has
disabled type checking.  The called subprogram can disable type checking by using
the COMPILER statement option ARGCHK=OFF or by compiling the called
subprogram with optimization (Z or V option).

C

(Q2 of A0) is the total number of arguments (maximum is 250).

D

(H2 of A0) is the address of the argument list descriptor words that are explained in
the following discussion.

Addressing Words:

BDI of argument Address of argument

Character Descriptor Words:

offset length 0

Argument Type Words

type type type type type type

The addressing words follow one another consecutively in storage.  There is one
addressing word for each argument.  The Bank Descriptor Index (BDI) is required if the
ASCII FORTRAN subprogram being called expects banked arguments and the argument
is not in the control D-bank. It is also required if the argument is an external subprogram
name and the ASCII FORTRAN subprogram being called has the LINK=IBJ$ or
BANKED=ALL COMPILER statement options present.  Otherwise, the BDI is zero.  If an
ASCII FORTRAN program calls a MASM routine with arguments that have a BDI
associated with them (that is, the actual data passed resides in a banked common
block), the MASM routine is responsible for basing the argument’s data bank.  All D-bank
basing must be done by an ASCII FORTRAN library routine in element F2ACTIV$.  In
other words, no LDJ or LBJ instructions should appear in your assembly code to switch
the utility D-bank basing.  The interface to the activate routine is:

LA       A0, addreswd       .  GET BDI and address in A0
LMJ      X11,VACTIV$        .  base D-bank

A0 now contains the item’s absolute address, and its bank is based.  All registers except
A0 and X11 are preserved.  For details on ASCII FORTRAN banked programs, see
Appendix H.
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The character descriptor words follow one another consecutively in storage and follow
the addressing words.  A character function name or a Hollerith string passed as an
argument does not have a character descriptor word.  All other character types of
arguments have a character descriptor word.  The offset is the byte offset of the start of
the character item within the word and has the value 0, 1, 2, or 3. If the character item
begins on a word boundary, the offset is zero.  A character item beginning on Q2 of the
word has an offset of 1, an item beginning on Q3 has an offset of 2, and an item
beginning on Q4 has an offset of 3.  The character length, represented in number of
characters, is in Q2 of the character descriptor word.  If a character array is passed as an
argument, the length passed is the size of an array element.  If a character substring is
passed as an argument, the length passed is the length of the substring.

If argument type checking is desired, bit 9 of A0 (assume bits numbered from 1 to 36 and
the leftmost bit is 1) must be zero and the argument type words must be present.  The
argument type words follow one another consecutively in storage and follow the
character descriptor words.  There is one type word for each six arguments.  The
following is a list of allowable types:

0 Subprogram

1 Integer

2 Real

3 Double-Precision Real

4 Complex

5 Double-Precision Complex

6 Character

7 Logical

8 Label

9 Hollerith

A type 0 subprogram matches any other type.  Type 9, Hollerith, matches all types except
character and label.  All other types must match exactly or else a run-time diagnostic
message is issued when type checking is enabled.  The argument type words are
optional.  If they are not present, either the caller must specify so by setting bit 9 of A0 to
1 or the callee must disable type checking by using the COMPILER statement option
ARGCHK=OFF or compiling with optimization.

If an Assembler routine refers to an ASCII FORTRAN subprogram that contains a
COMPILER statement STD=66 option, or is compiled by an ASCII FORTRAN compiler
lower than level 9R1, the contents of A0 and the packet format differ. S1 and bit 9 of A0
are ignored.  The character descriptor words and the argument type words are not
required.  In addition, any character item passed to the ASCII FORTRAN subprogram
must begin on a word boundary.
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K.4.2. ASCII FORTRAN Register Usage

An ASCII FORTRAN subprogram saves and restores all registers that it uses except for
the volatile set X11, A0-A5, and R1-R3.  An ASCII FORTRAN subprogram requires
register R15 to contain the address of a storage control table (F2SCT), which is used on
I/O operations and by several of the ASCII FORTRAN library routines.  Register R15 is
loaded with the F2SCT address as part of the initialization performed by an ASCII
FORTRAN main program.  Once R15 has been initialized, it is the responsibility of any
routine outside the ASCII FORTRAN environment to preserve its contents upon reentry
to an ASCII FORTRAN subprogram.

K.4.3. Initializing the ASCII FORTRAN Environment

Under normal conditions, the ASCII FORTRAN environment is initialized by a call from
the ASCII FORTRAN main program to the ASCII FORTRAN initialization routine.  If an
ASCII FORTRAN subprogram is called from an Assembler routine and there is not an
ASCII FORTRAN main program, it is the responsibility of the Assembler routine to call
the ASCII FORTRAN initialization routine.  One of two ASCII FORTRAN initialization
routines must be called by the Assembler routine before the ASCII FORTRAN
subprogram is called.  The ASCII FORTRAN initialization need be called only once
during the program execution.  The initialization routines use only the volatile set of
registers.  Both initialization routines acquire buffer space and initialize tables that are
used by I/O and ASCII FORTRAN library routines.  This space is acquired by the
common storage management system.  If the Assembler routine or controlling program
has its own storage management system, the ASCII FORTRAN library element F2FCA
can be modified and reassembled to avoid calls to ER MCORE$.  See G.7 for details.

One of the initialization routines also registers a contingency routine for capturing
contingency interrupts, which is required for the proper execution of some ASCII
FORTRAN programs.  However, since some applications prefer to capture their own
contingencies, a second routine that does not register contingencies is provided.  The
ASCII FORTRAN service subprograms UNDSET, OVFSET, and DIVSET register
contingencies and should not be called if an application depends on another contingency
registration.

The following call initializes the ASCII FORTRAN environment but doesn’t register the
ASCII FORTRAN contingency routine.

LMJ A2,FINT$

The following call initializes the ASCII FORTRAN environment and registers the ASCII
FORTRAN contingency routine.

LMJ X11,FINT2$

On return from either of the initialization routines, register R15 contains the address of
the ASCII FORTRAN storage control table (F2SCT).  It is the responsibility of the
Assembler routine to ensure that R15 contains the F2SCT address when calling an ASCII
FORTRAN subprogram.
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K.4.4. Terminating the ASCII FORTRAN Environment

Under normal conditions, the ASCII FORTRAN environment is terminated by a call from
the main program to the ASCII FORTRAN termination routine.  The function of the
termination routine is to output buffered I/O to the appropriate files and close all opened
files.  An ER EXIT$ is then performed which terminates the program. If an Assembler
routine calls an ASCII FORTRAN subprogram and control never reaches an ASCII
FORTRAN main program for normal program termination, it is the responsibility of the
Assembler routine to close all opened I/O files.  Files can best be closed by using the
CLOSE statement in the ASCII FORTRAN subprogram.  If the ASCII FORTRAN
termination routine is called, files are closed but control is not returned to the caller.
The following is the Assembler call to the ASCII FORTRAN termination routine.

LMJ X11,FEXIT$

K.4.5. Calling an ASCII FORTRAN Subprogram

A call to an ASCII FORTRAN subprogram takes one of several forms, depending on
whether the subprogram is banked or not.  For a nonbanked ASCII FORTRAN
subprogram call, the following Assembler linkage can be used:

LXI,U  X11,0
LMJ    X11,entry-point

ASCII FORTRAN returns to the caller via:

J  0,X11

For a banked ASCII FORTRAN subprogram call (that is, the ASCII FORTRAN
subprogram has the COMPILER statement option BANKED=ALL, BANKED=RETURN,
or LINK=IBJ$), use one of two calling sequences:

LXI,U  X11,bdi-of-the-subprograms-bank
LIJ    X11,entry-point

or:

LXI,U  X11,BDICALL$+entry-point
IBJ$   X11,entry-point

For a description of IBJ$ and BDICALL$, see the Series 1100 Collector, Programmer

Reference, UP-8721.

An ASCII FORTRAN banked subprogram returns by:

LA,H1  A4,X11-save-location
JZ     A4,0,X11
LIJ    X11,0,X11
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K.4.6. ASCII FORTRAN Function References

If an ASCII FORTRAN (level 9R1 or higher) character function is referred to, register A1
must be set up by the calling routine to contain:

0 fctn-pkt-addr

where fctn-pkt has the form:

0 result-addr

0 char-length 0

The result-addr field in H2 of the first word points to the caller’s storage area where the
result of the function will be stored.  This storage area must be in the control bank or be
visible to the function.  It is the caller’s responsibility to ensure that the function result
area is large enough to hold the function result.

The char-length field in Q2 of the second word of the packet is the length of the function
result expressed in number of characters.

For ASCII FORTRAN levels 8R1 and lower, or whenever the COMPILER statement
option STD=66 is used in the function being called, register A1 must contain:

0 result-addr

The result-addr field description is the same as for levels 9R1 and higher.  A fctn-pkt is
not required for levels lower than 9R1.

An ASCII FORTRAN character function places the function result in the caller’s storage
area pointed to by result-addr.  If the value of a function isn’t a character string, it is
returned in registers A0, A0 through A1, or A0 through A3, depending on the function
type.

K.4.7. Example

The following is an example of an Assembler routine that passes three arguments to the
ASCII FORTRAN subroutine FTEST.

1.          AXR$
2. $(1)
3. MATH*    LMJ      A2,FINT$          . initialize FTN
4. .
5.          L,U      R4,4              . loop initialization count
6. FTNREF   LA       A0,(020003,ARGS)  . list pointer
7.          LXI,U    X11,0             .
8.          LMJ      X11,FTEST         . call nonbanked FTN rtn
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9.          LA       A4,REALNO         . bump 2nd arg by 1.0
10.         FA       A4,(1.0)          .
11.         SA       A4,REALNO         .
12.         JGD      R4,FTNREF         . repeat call to FTN rtn
13. .
14.         LMJ      X11,FEXIT$        . terminate program
15. .
16. $(0)
17. CHARD   FORM     9,9,18            .
18. .
19. ARGS    +        STRING            . address of 1st arg
20.         +        REALNO            . address of 2nd arg
21.         +        STRING            . address of 3rd arg
22.         CHARD    0,3,0             . ’ASM’ offset=0 len=3
23.         CHARD    3,3,0             . ’B17’ offset=3 len=3
24.         +        6,2,6,0,0,0       . char real char type
25. .
26.         ASCII
27. STRING  ’ASMB17’                   .
28. REALNO  +        2.5               .
29.         END      MATH              .

The following is the ASCII FORTRAN subroutine FTEST that is called from the
preceding Assembler routine:

1.     SUBROUTINE FTEST (CALTYP, X, CALID)
2.     CHARACTER CALTYP*(*), CALID*3
3.  *
4.     PRINT *, ’CALLER ID ’, CALID, ’ TYPE ’, CALTYP
5.     PRINT *, ’SIN OF’, X, ’ = ’, SIN(X)
6.     PRINT *, ’COS OF’, X, ’ = ’, COS(X)
7.     RETURN
8.     END

The execution of the program is:

CALLER ID B17 TYPE ASM 
SIN OF 2.5000000  =  .59847214
COS OF 2.5000000  = -.80114362
CALLER ID B17 TYPE ASM
SIN OF 3.5000000  = -.35078323
COS OF 3.5000000  = -.93645669
CALLER ID B17 TYPE ASM
SIN OF 4.5000000  = -.97753011
COS OF 4.5000000  = -.21079580
CALLER ID B17 TYPE ASM
SIN OF 5.5000000  = -.70554033
COS OF 5.5000000  =  .70866977
CALLER ID B17 TYPE ASM
SIN OF 6.5000000  =  .21511999
COS OF 6.5000000  =  .97658762

At line 3 of the Assembler routine, a call is made to initialize the ASCII FORTRAN
environment.  The ASCII FORTRAN initialization routine acquires I/O buffer storage via
the common storage management system.  If the Assembler routine has its own storage
management system, the ASCII FORTRAN library element F2FCA needs modifications
and reassembling.  See Appendix G for details.

At line 6, register A0 is loaded with a literal that specifies:

1. Two character arguments (S1)
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2. Argument type checking (bit 9 of the literal is 0)

3. Three total arguments (Q2).

The second half of A0 contains the address of the argument list.

Lines 19 through 21 contain the argument addressing words.  Lines 22 through 23
contain the character descriptor words for the first and third arguments, respectively,
which are character types.  The first argument passed is the character string ASM, the
second argument passed is the real number 2.5 (which is modified after each call by the
Assembler routine), and the third argument is the character string B17.

Line 24 contains the argument type word that the ASCII FORTRAN subprogram requires
for argument type checking.  The first and third arguments are character types as
indicated by the 6, and the second argument is a real type as indicated by the 2.

At line 14, the ASCII FORTRAN termination routine is called.  This closes any opened I/O
file and then terminates program execution using an ER EXIT$.
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Appendix L
ASCII FORTRAN Sort/Merge Interface

L.1. General
A sort/merge interface is available from ASCII FORTRAN to the sort/merge package.
The sort/merge package is described in the OS 2200 Sort/Merge Programming Guide,

Level 17R1 (7831 0687).

L.2. Sort/Merge Features Available Through ASCII
FORTRAN
Enter the sort/merge interface using the CALL statement in ASCII FORTRAN.  The
sort/merge interface provides the following functions:

CALL FSORT

Perform a sort.

CALL FMERGE

Perform a merge.

CALL FSCOPY

Specify an Assembler sort parameter table to be copied.  This table can be used in
subsequent sorts or merges.  The use of such a table can also be inhibited.

CALL FSSEQ

Specify the collating sequence that is used in subsequent sorts or merges.  The use
of such a collating sequence can also be inhibited.

CALL FSGIVE

Deliver an input record to sort without leaving your input subroutine.

CALL FSTAKE

Receive an output record from sort without leaving your output subroutine.

L.3. Sort/Merge Interface Restrictions and
Concerns
The following are sort/merge interface restrictions.
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1. The data passed to the sort/merge interface must not be banked.  The scratch area
used by the sort/merge interface must not be banked.

2. The sort/merge interface is restricted to reading files that can be read by an ASCII
FORTRAN READ statement.  Files such as those created by NTRAN$ are not
allowed.

3. You can’t use an asterisk as a length specification for the dummy character
arguments for the following user-specified subroutines:

� Input

� Output

� Comparison

� Data reduction

The length specification must be an unsigned, nonzero integer constant, or an
integer constant expression enclosed in parentheses that has a positive value.

4. When the file R$CORE is not assigned to the run (for FSORT only), the sort/merge
interface attempts to get storage space from the ASCII FORTRAN library Common
Storage Management System (CSMS).  If you supply a version of ASCII FORTRAN
library element F2FCA so that the CSMS routines are not used, you must make
element F2FCA large enough to accommodate the storage area needed by the
sort/merge interface routines, the sort/merge package, and the FORTRAN library
(see G.7).

5. After a call to FSORT or FMERGE, the file pointers for the input and output files are
positioned to their initial point.

L.4. CALL Statement for a Sort (FSORT)
The form of the CALL statement for a sort is:

CALL FSORT (infost,inpt,outpt [,comprt] [,datrd] )

where:

infost

is the information string, a character variable or literal that describes various
parameters to the sort/merge interface, such as record sizes, key fields, and scratch
facilities for FSORT.  A key field (or your comparison routine) and a record size
must be specified in infost.

infost contains items of information separated by commas.  Blanks in infost are
ignored.  No distinction is made between uppercase and lowercase alphabetic
characters.  infost is scanned from left to right and must be terminated by some
character that is an illegal ASCII FORTRAN character, such as an exclamation point
( ! ).  An asterisk (*) must not terminate infost.

infost can contain several clauses.  The mnemonics used are truncated by the
sort/merge interface to the first four characters.  The following items can be used in
infost for the call to FSORT:
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1. RSZ=rlch

rlch is the record length in ASCII characters.  This record size must be specified
when a sort is to be done.  The RSZ clause can appear only once in infost.  A record
size clause can appear only once in infost; for example, the RSZ and VRSZ clauses
can’t appear in the same infost.

2. VRSZ=mrlch/lnkszch

mrlch is the maximum record size in ASCII characters for variable length records.
lnkszch is an optional parameter indicating link size in ASCII characters.  When
lnkszch is omitted, the slash (/) can also be omitted.  lnkszch must be large enough
to accommodate all keys.  For example, if the keys are specified by:

KEY=(11/15,1/10/d/s)

the last character in any key field for this KEY specification is the 25th character.
Therefore, the link size must be at least 25 characters long.  The link size should be
specified only when a comparison routine has been specified.  The VRSZ clause can
appear only once in infost.  A record size clause can appear only once in infost; for
example, the RSZ clause and the VRSZ clause can’t both be used in the same infost.

When sorting variable-length records, the records are separated into smaller parts
(links) of equal size that are joined by pointers. As an example, consider a record of
nine words with the link size four words.  Schematically, the record is stored as:

When the link size is given in the VRSZ clause, consider the following rules:

� The link size should not be too small.  For example, if the link size is given as
one word, the core (main storage) required for each record is exactly twice the
record size.  This means that the sort uses many more resources (main storage,
mass storage, and tapes) than necessary.

� The link size should not be too large, since this may mean that much of the area
remains unused in the last link.  This causes problems because of poor use of
main storage.

Note: The two rules are in conflict.  The choice of a link size requires a

compromise between these two rules.
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It is frequently advantageous to sort short variable-length records as if these records
were fixed-length records because of the resources used by the sort/merge package.
If these records are treated as fixed length, you must keep track of the record length.

3. CONS

CONS indicates that the closing messages from the sort/merge package are to be
sent to the system console.  If CONS is not present, the SORT CONSOLE
configurable runtime parameter determines if messages are sent to the system
console.  The opening messages give the block sizes on mass storage and may be
used to check the efficiency of the sort/merge usage of the scratch area.  The closing
messages give the input and output record counts and the bias of the data.  The
CONS specification can appear only once in infost.

4. DELL

DELL is used to indicate that the opening and closing messages from the sort/merge
package should not be sent to the system log. If DELL is not present, the SORT LOG
configurable runtime parameter determines if messages are sent to the system log.
This clause can appear only once in infost.

5. KEY=keysp

or:

KEY=keyspn

keysp  is a single key specification; keyspn is a multiple key specification of the form
(keysp1, keysp2, . . . ).  The single key specification form, KEY=keysp, can occur a
maximum of 40 times in infost. There can be a maximum of 40 keysp specifications
within the keyspn.  More than one KEY=keyspn clause can occur in infost, but only
40 keys are allowed for each call to FSORT.  The limit of 40 keys includes any keys
given in the sort parameter tables copied through the COPY clause (see L.7).  The
key specification can indicate a character key, that is, a key that begins and ends on
a character boundary, or a bit key that either starts or ends outside a character
boundary.  The form of the character key is:

charpos/length/seq/type

where:

charpos

is the position within the record of the most significant character of the key.
Character positions are counted from left to right beginning with position 1.

length

is an optional field that specifies the length of the key in characters.  The default
for length is 1.

seq

is an optional field that specifies the sequencing order of the key.  The value A is
used for ascending order; D is used for descending.  The default value is A.

type

is an optional field that specifies the type of the key.  The value of this field is B,
Q, R, S, T, U, or V; U is the default value.  The values for this field indicate:
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B

The key field contains a signed number in an OS 1100 system internal
representation.

Q

The key field contains a signed decimal number in 9-bit ISO character
representation with a sign overpunched on the last digit.

R

The key field contains 9-bit ISO characters with a leading sign, that is, a plus,
minus, or blank.  Any character in the sign position that is not a plus, a minus, or
a blank is set to a blank.

S

The key field contains 9-bit characters.  See L.7.

T

The key field contains 9-bit ISO characters with a sign in the last character
position, that is, a plus, minus, or blank. Any character in the sign position that
is not a plus, minus, or blank is set to a blank.

U

The key field contains an unsigned number in the OS 1100 system internal
representation.

V

The key field contains a signed decimal in 9-bit ISO characters with a sign
overpunched on the first character.

The form of the bit key is:

BIT/wordpos/bitpos/length/seq/type

where:

wordpos

is the position within the record of the word that contains the most significant bit of
the record.  Words within the record are numbered from 1.

bitpos

is the position of the first bit of the key in the first word of that key.  Bits are
numbered from left to right beginning at 1.

length

is an optional field that specifies the length of the key in bits.

seq

is an optional field that specifies the sequencing order of the key: A for ascending or
D for descending.  The default is A.
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type

is an optional field that specifies the type of the key. The values for type can be A, B,
D, G, L, M, P, or U; the default is U.  The values for type indicate:

A

The key field contains 6-bit characters.  All A key fields must start and end on
6-bit byte boundaries.

B

The key field contains a signed number in the OS 1100 system internal
representation.

D

The key field contains 6-bit Fieldata characters with a leading sign, that is, a
plus, minus, or blank.  Any character in the sign position that is not a plus,
minus, or blank is set to a blank.  All D key fields must start and end on 6-bit
byte boundaries.

G

The key field contains 6-bit Fieldata characters with a sign in the last character,
that is, a plus, minus, or blank.  Any character in the sign position that is not a
plus, minus, or blank is set to a blank.  The key field must begin and end on a
6-bit byte boundary.

L

The key field contains a number in 6-bit Fieldata characters with a sign
overpunched on the first digit.  The key field must start and end on a 6-bit byte
boundary.

M

The key field contains a number in signed magnitude representation.  This
means that the first bit is the sign (that is, a 1 for negative and a 0 for positive),
and the rest of the field is the absolute value of the number.

P

The key field contains a signed decimal number in 6-bit Fieldata characters with
a sign overpunched on the last digit.  The key field must begin and end on a 6-bit
byte boundary.

U

The key field contains an unsigned number in OS 1100 system internal
representation.

6. COMP

COMP indicates the use of your comparison routine.  This indicates the presence of
comprt in the call to FSORT.  The COMP clause can appear only once in infost.  See
L.8.2.

7. COPY

COPY indicates that an Assembler sort parameter table is to be copied.  The COPY
clause can appear only once in infost.  See L.6.
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8. DATA

DATA indicates that your data reduction routine is present.  This indicates the
presence of datrd in the call to FSORT.  This option can only be specified when
fixed length records are sorted.  The DATA clause can appear only once in infost.

See L.8.3.

9. SELE=recno1

or:

SELE=recno1/recno2

or:

SELE=(recno1[/recno2] ,recno3[/recno4] , . . . )

recno1 through recno4 are record numbers.  The SELE, or select, clause indicates
which records are given to the sort/merge package.  If the first form is used, only the
record specified by recno1 is given to the sort.  If the second form is used with
recno2, all records from recno1 through recno2 are given to the sort.  If the third
form of the SELE clause is used, the records between each pair of record numbers
are given to the sort individually.  All records are read, but only those records
specified in the SELE clause are given to the sort.  Only 10 record number pairs can
be used in the third form.  For each pair, recno1 must be less than or equal to
recno2, and the last number of each pair must be less than the first number of the
next pair. If recno1 appears without recno2, or recno3 appears without recno4, only
recno1 or recno3 are given to the sort.  This clause can appear only once in infost.

10. CORE=corsz

corsz is the size in words of the scratch area to be used by the sort.  At least 3,000
words must be used.  In general, the sort runs faster if the scratch area given to sort
is expanded.  This clause can appear only once in infost.  See L.9.2.

11. FILE=file-name

or:

FILE=( file-name, file-name, . . . )

file-name is an internal file name.  The second form of the FILE clause permits the
specification of more than one file name within the clause.  See L.9.3.1 for
restrictions that apply to scratch files.

12. NOCH=chksm

chksm is any combination of the letters D, F, K, and T. The letter T refers to tape and
D, F, and K refer to mass storage.  The nocheck clause is used to omit a checksum.
When the sort uses one or two mass storage scratch files, D refers to the smaller of
the two (one must be at least twice the size of the other) and F refers to the larger of
the two, if both files are present.

If the sort uses three or more mass storage scratch files, K refers to the checksum on
all the files.

If K is specified for a sort with fewer than three mass storage files, D and F are
assumed. If D or F is specified for a sort with more than two mass storage scratch
files, K is assumed.  This clause can appear only once in infost. See L.9.3.2.

13. MESH=meshsz/device
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meshsz is the mesh size and device is any combination of the letters D, F, K, and T.  If
meshsz is not given, the value 5 is assumed.  If device is not present, the mesh size is
assumed to apply to all device types. The letter T indicates the use of tape scratch
files; D, F, and K indicate the use of mass storage scratch files.  D and F are used if
one or two mass storage scratch files are used.  D refers to the smaller of the two
mass storage scratch files and F refers to the larger of these two files.  The letter K
indicates the checksum of three or more mass storage scratch files.  The MESH=
specification can appear only once in infost.  The letters D, F, K, and T can be used
only once each in the MESH specification.  See L.9.3.2.

14. BIAS=biasno

biasno is the average number of records in sorted subsequences present in the input
file.  For example, biasno is 1 if the input is in exactly reverse order.  For random
data, biasno is 2.  If the input file is in an almost sorted order, the bias value is
higher.  The BIAS clause can appear only once in infost.  Giving the bias value, if
known, improves the performance of the sort substantially.  See L.9.1.

An example of an information string infost to sort variable-length records with a
maximum length of 200 characters with four key fields is:

’VRSZ=200,KEY=(1/10//s,11/10/d/q,21/10,31/10/d),CONS!’

The key fields in the record are defined as:

1. The first key starts in the first character position of the record, is 10 characters long,
and is sorted in ascending order with a user-specified collating sequence, if that
sequence is present.

2. The second key starts in character position 11, is 10 characters long, and is sorted in
descending order with a sign overpunched on the last digit.

3. The third key starts in character position 21, has a length of 10 characters, and is
sorted in ascending order.

4. The fourth key starts in character position 31, has a length of 10 characters, and is
sorted in descending order.

The CONS clause is present so that all messages are sent from the sort/merge package to
the console.

To sort record images of 80 characters with a key that starts in character position 1, that
has a length of 5 characters, and that is sorted in ascending order, the information string
infost can be:

’RSZ=80,KEY=1/5!’

infost must be the first parameter in the call to FSORT.  The other parameters follow
infost.

inpt

is either a logical unit number or the name of an input subroutine.  If inpt is the
name of an input subroutine, the subroutine must be declared in an EXTERNAL
statement in the program unit containing the call to FSORT.  See L.8.1.
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outpt

is either a logical unit number or the name of an output subroutine.  If outpt is the
name of an output subroutine, the subroutine must be declared in an EXTERNAL
statement in the program unit containing the call to FSORT.  See L.8.4.

comprt

is the name of a comparison subroutine supplied by you.  The subroutine is called
whenever two records are to be compared.  The name of the comparison subroutine
must be declared in an EXTERNAL statement.  This parameter must not be present
if you have not provided a comparison subroutine.  This parameter must be present
if the COMP clause occurs in infost.  See L.8.2.

datred

is the name of a data reduction subroutine. The name of datred must be declared in
an EXTERNAL statement.  This subroutine is called whenever two records with
equal keys are found.  It decides whether the two records are merged into one
record or are not merged.  This feature sorts fixed length records only.  Datred must
not be present if you have not specified the DATA clause in infost; it must be present
if the DATA clause occurs in infost.  See L.8.3.

At compile time, the ASCII FORTRAN compiler prints out a warning each time FSORT is
called from the same program unit with a different number of arguments than was
specified on the first call in the program unit.  You can ignore these warnings.

L.4.1. Examples of Sort with Logical Unit Numbers

The following runstream contains a call to FSORT with a simple information string
infost that contains a KEY clause and an RSZ clause.  The RSZ clause gives a record size
of 80 characters.  The KEY clause states that the key begins in the first character
position of the record, has a length of five characters, and is sorted in ascending order.
infost ends with an exclamation point ( ! ).  The input and output parameters are simply
unit numbers 5 and 6.  The sort/merge interface does formatted reads on unit 5 until all
the input data is read.  The interface then calls the sort/merge package to sort the data,
and does formatted writes on unit 6 of the data from the sort/merge package.

@RUN
@FTN,SI

      CALL FSORT(’key=1/5,RSZ=80!’,5,6)
      END 

@XQT
. . . data images to be sorted . . .
@FIN

Note: TheRSZ clause should not be greater than 1,024 characters when you use

FSORT with logical unit numbers.  If the RSZ clause is greater than 1,024

characters, the output file is larger than the input file.  Utilize user-supplied

input and output routines to handle larger record sizes so that the input and

output files can be the same size.
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Another example of a simple sort appears in the following runstream.  This program
assumes that the source input from file IN*PUT is written to the file OUT*PUT.  The
records are 80 characters long with keys starting in character positions 1 and 6. Each
key is five characters long.  The first key is sorted in ascending order, and the second
key in descending order.

@RUN
@FTN,SI

     CALL FSORT(’rsz=80,key=(1/5,6/5/d)!’,9,10)
     END  

@ASG,A  IN*PUT
@ASG,C  OUT*PUT
@USE  9,IN*PUT
@USE  10,OUT*PUT
@XQT
@FIN

L.4.2. Examples of Sort with User Subroutines

The following example is a simple variation of the first example in L.4.1.  The RSZ clause
declares the record size to be 80 characters.  The KEY clause indicates that the key
starts in the first character position of the record, has a length of five characters, and is
sorted in ascending order.  The inpt and outpt parameters are user-supplied input and
output subroutines that are declared in an EXTERNAL statement in the program.  The
subroutines contain formatted I/O statements to read from unit 5 and write to unit 6.

@RUN
@FTN,SI

   EXTERNAL IN,OUT
   CALL FSORT(’key=1/5,rsz=80!’,IN,OUT)
   END

@FTN,SI IN

   SUBROUTINE IN(RECORD,LENGTH,IEOF)
   CHARACTER*4 RECORD(20)
   READ(5,1,END=2) RECORD
   LENGTH=80
   IEOF=0
   RETURN
1  FORMAT(20A4)
2  IEOF=1
   RETURN
   END

@FTN,SI OUT

   SUBROUTINE OUT(RECORD,LENGTH)
   CHARACTER*4 RECORD(20)
   IF (LENGTH.GE.0) WRITE(6,1) RECORD
1  FORMAT(1X,20A4)
   RETURN
   END

@XQT
. . . data images to be sorted . . .
@FIN
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Another example of a sort with user I/O routines appears in the following runstream:

@RUN
@FTN,SI  EXTERNAL IN,OUT
         CALL FSORT(’rsz=80,key=(1/5,6/5/d),core=20000!’,IN,OUT)
         END

@FTN,SI    IN

         SUBROUTINE IN(RECORD,LENGTH,IEOF)
         CHARACTER*4 RECORD(20)
         READ(9,1,END=2) RECORD
1        FORMAT(20A4)
         LENGTH=80
         IEOF=0
         RETURN
2        IEOF=1
         RETURN
         END

@FTN,SI  OUT

         SUBROUTINE OUT(RECORD,LENGTH)
         CHARACTER*4 RECORD(20)
         IF (LENGTH.GT.0) THEN
           WRITE(10,1) RECORD
1          FORMAT(20A4)
           RETURN
         END IF
         ENDFILE 10
         RETURN
         END

@ASG,A  IN*PUT
@ASG,C  OUT*PUT
@USE  9,IN*PUT
@USE  10,OUT*PUT
@XQT
@FIN

L.5. CALL Statement for a Merge (FMERGE)
The form of the CALL statement for a merge is:

CALL FMERGE (infost, inpts, outpt [,comprt] )

where:

infost

is the information string, a character variable or literal that describes various parameters
to the sort/merge interface, such as record sizes, key fields, and scratch facilities for
FMERGE.  A key field (or your comparison routine) must be specified in infost.

infost contains items of information separated by commas.  Blanks in infost are ignored.
No distinction is made between uppercase and lowercase alphabetic characters.  infost

is scanned from left to right.  infost must be terminated by some character that is an
illegal ASCII FORTRAN character, such as an exclamation point (!), but don’t use an
asterisk (*).
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infost can contain several clauses.  The mnemonics are truncated by the sort/merge
interface to the first four characters.  The following items can be used in infost for the
call to FMERGE:

1. RSZ=rlch

rlch is the record length in ASCII characters.  This clause is not required.  If the RSZ
clause is not given, the sort/merge interface assumes that the maximum record
length is 1,000 words.  This wastes some main storage.  If the RSZ clause is present,
the interface checks that the records from each input source are in sequence.  The
RSZ clause can appear only once in infost. Only one record size clause can appear in
infost at a time.  Thus, the VRSZ clause can’t be used if the RSZ clause is used in
infost.

2. VRSZ=mrlch/lnkszch

mrlch is the maximum record size in ASCII characters for variable-length records.
lnkszch is an optional parameter indicating link size in ASCII characters.  If lnkszch

is omitted, the slash (/) is also omitted.  lnkszch must be large enough to
accommodate all keys.  For example, if the keys are specified by:

KEY=(11/15,1/10/d/s)

the last character in any key field for this KEY specification is the 25th character.
Therefore, the link size must be at least 25 characters long.  Specify the link size only
when a comparison routine is specified.  The sort/merge checks to see if the keys fit
in the link size but otherwise ignores the link size for a merge.  The VRSZ clause can
appear only once in infost and only one record size clause can be specified in infost

at a time.  Thus, the RSZ clause can’t be used if the VRSZ clause appears in infost.

3. KEY=keysp

or:

KEY=keyspn

keysp is a single key specification and keyspn is a multiple key specification of the
form (keysp1, keysp2, . . .).  The single key specification form KEY=keysp can occur a
maximum of 40 times in infost. There can be a maximum of 40 keysp specifications
in keyspn. More than one KEY=keyspn clause can occur in infost, but only 40 keys
are allowed for each call to FMERGE, including any keys copied through the COPY
clause (see L.7).  The key specification can indicate a character key, that is, a key
that begins and ends on a character boundary, or a bit key that either starts or ends
outside a character boundary.  The form of the character key is:

charpos/length/seq/type

where each field is the same as for FSORT.  See L.4.

The form of the bit key is:

BIT/wordpos/bitpos/length/seq/type

where each field is the same as for FSORT.  See L.4.

4. COMP
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COMP indicates the use of your comparison routine.  This requires the presence of
comprt in the call to FMERGE.  The COMP clause can appear only once in infost.

See L.8.2.

5. COPY

COPY indicates that an Assembler sort parameter table is to be copied.  This clause
can appear only once in infost.  See L.6.

6. INPU=inptsor  

inptsor is an integer constant from 2 through 24 that indicates how many input
sources are given in the parameter inpts.  The INPU clause must appear only once in
infost.

An example of an information string infost that merges two files containing variable
length records with a maximum length of 200 characters with four key fields is:

’VRSZ=200,KEY=(1/10//s,11/10/d/q,21/10,31/10/d), INPUT=2!’

The key fields in the record are defined as:

� The first key starts in the first character position of the record, is 10 characters
long, and is sorted in ascending order with a user-specified collating sequence if
that sequence is present.

� The second key starts in character position 11, is 10 characters long, and is
sorted in descending order with an overpunched sign in the last digit.

� The third key starts in character position 21, has a length of 10 characters, and is
sorted in ascending order.

� The fourth key starts in character position 31, has a length of 10 characters, and
is sorted in descending order.

To merge three files that:

� contain records of 80 characters,

� have a key starting in character position 1,

� have a length of five characters, and

� are sorted in ascending order,

the information string infost may be:

’RSZ=80, INPUT=3, KEY=1/5!’

infost must be the first parameter in the call to FMERGE.  The other parameters
follow infost.

inpts

is two or more logical unit numbers, the names of two or more input subroutines, or
a combination of logical unit numbers and input subroutines.  The parameter inpts

can contain from 2 through 24 input sources.  When inpts contains the names of
input subroutines, the subroutine names must be declared in an EXTERNAL
statement in the program unit containing the call to FMERGE.  See L.8.1.
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outpt

is either a logical unit number or the name of an output subroutine.  If outpt is the
name of an output subroutine, the subroutine must be declared in an EXTERNAL
statement in the program unit containing the call to FMERGE.  See L.8.4.

comprt

is the name of a comparison subroutine that you supply.  The subroutine is called
when two records are to be compared.  The name of the comparison subroutine
must be declared in an EXTERNAL statement.  This parameter must not be present
if you don’t provide a comparison subroutine.  This parameter must be present if you
use the COMP clause in infost.  See L.8.2.

At compile time, the ASCII FORTRAN compiler prints out a warning each time FMERGE
is called from the same program unit with a different number of arguments than was
specified on the first call in the program unit.  You can ignore these warnings.

L.5.1. Examples of CALL Statements to Merge

The following runstream contains a call to FMERGE with a simple information string
infost that contains a KEY clause and an RSZ clause.  The RSZ clause declares a record
size of 80 characters.  The KEY clause indicates that the key starts in the first character
position of the record, has a length of five characters, and is sorted in ascending order.
infost contains the clause INPUT=2 to indicate that there are two input sources
contained in the input parameter inpts.  The inpts parameters are the logical unit
number 8 and the user-supplied input subroutine name IN.  The output parameter outpt

is the logical unit number 9. infost ends with an exclamation point ( ! ).

@RUN
@FTN,SI     MAIN

     EXTERNAL IN
     CALL FMERGE(’rsz=80,key=1/5,input=2!’,8,IN,9)
     END

@FTN,SI IN

     SUBROUTINE IN(RECORD,LENGTH,IEOF)
     CHARACTER*4 RECORD(20)
     READ(5,1,END=2) RECORD
     LENGTH=80
     IEOF=0
     RETURN
1    FORMAT(20A4)
2    IEOF=1
     RETURN
     END

@ASG,A IN
@ASG,C OUT
@USE 8,IN
@USE 9,OUT
@XQT
. . . the secofd input file on data images . . .
@FIN
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The example that follows merges two input image files (IN*1 and IN*2) that were sorted
in ascending order on columns 1 through 10 and the merged data is written to file
OUT*PUT.  The input subroutine ignores all records in the input file IN*2 that have a 1 in
column 11.

@RUN
@FTN,SI

    EXTERNAL IN
    CALL FMERGE(’rsz=80,key=1/10,input=2!’,8,IN,10)
    END

@FTN,SI   IN

    SUBROUTINE IN(RECORD,LENGTH,IEOF)
    CHARACTER RECORD*80,I,ONE/ ’1’/
1   FORMAT(A)
2   FORMAT(10X,A1)
3   READ(9,1,END=4) RECORD
    DECODE(2,RECORD) I
    IF (I.EQ.ONE) GO TO 3
    LENGTH=80
    IEOF=0
    RETURN
4   IEOF=1
    END

@ASG,A IN*1
@ASG,A IN*2
@ASG,C OUT*PUT
@USE 8,IN*1
@USE 9,IN*2
@USE 10,OUT*PUT
@XQT
@FIN

L.6. CALL Statement to Copy an External Sort
Parameter Table (FSCOPY)
This facility provides access to the Assembler procedure R$FILE.

The form of the CALL statement to copy an external Assembler sort parameter table is:

CALL FSCOPY[([table])]

where table is the name of an externalized entry point. table must be declared in an
EXTERNAL statement.  The CALL statement to FSCOPY with one external argument
must occur before a call to FSORT or FMERGE with the COPY clause in its information
string infost.  (See L.4 and L.5.)  The call of FSCOPY establishes which sort parameter
table is copied.  The subroutine argument is the first word of the sort parameter table to
be copied.  The subroutine argument is not an ASCII FORTRAN subroutine but is an
Assembler entry point.

Only one sort parameter table can be copied at one time.  Each call on FSCOPY deletes
the previous table that was copied.  If FSCOPY is called without any arguments, a new
table is not copied and the previous table is deleted.
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The optional field-number field in a KEY parameter table entry must not be present.

L.6.1. Record Size When FSCOPY Is Used

Key positions, record lengths, and link sizes in Assembler sort parameters must be given
as if there were an extra word in front of the record.  (See L.4 and L.5.)

L.6.2. Example of CALL Statement to FSCOPY

The following runstream contains an Assembler sort parameter table and program that
calls FSORT and FSCOPY.  The program sorts the source input from character positions
1 through 6 in ascending order, from character positions 7 through 12 in descending
order, and from character positions 13 through 16 (Fieldata character positions 19
through 24) in ascending Fieldata order, with a special collating sequence such that all
Bs precede all As.  The information for character positions 13 through 16 comes from the
Assembler sort parameter table.  The source input is on logical unit 5 and the output is
placed on logical unit number 6.  Note the extra word or six characters in the starting
character position (19+6).  This is described in L.6.1.

If SORT/MERGE has been installed in a file other than SYS$*RLIB$, the following
example will need the $INCLUDE statement for the MASM processor to find the R$FILE
proc.  In the example below, assume that SORT/MERGE has been installed in the file
SYS$LIB$*SORT.  If SORT/MERGE has been installed in SYS$*RLIB$, no $INCLUDE
statement is necessary. See the OS 2200 Sort/Merge Programming Guide, Level 17R1

(7831 0687) for more information on R$FILE.

@RUN
@MASM,SI  COPIED
          $INCLUDE  ’SYS$LIB$*SORT.RPROC$/’

COPIED*   R$FILE    ’KEY’,19+6,6,’A’,’A’ ; Extra word!
                    ’SEQ’,’@’,’UPTO’,’ ’,
                    ’B’,’A’,’ALL’
          END

@FTN,SI
          INTEGER CORE(21000)
          EXTERNAL COPIED
          CALL FSCOPY(COPIED)
          CALL FSORT(’key=(1/6,7/6/d),copy,rsz=80,core=20000!’,
        1   5,6,CORE)
          END

@XQT
. . . data images . . .
@FIN

L.7. CALL Statement to Provide a User-Specified
Collating Sequence (FSSEQ)
A user-specified collating sequence can’t be explicitly declared in the information string
infost of a call to FSORT or FMERGE.  The use of a nonstandard collating sequence is
specified only in the KEY clause field type in a character key with the value S.  (See L.4
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and L.5.)  The user-specified collating sequence is set up through a call to FSSEQ with a
single argument.

The form of a CALL statement to FSSEQ is:

CALL FSSEQ [ ([seqtbl]) ]

where seqtbl is an argument containing a character string that is 256 characters long.
Seqtbl contains the user-defined collating sequence of the ISO character set.  If seqtbl is
not present, the previous user-defined collating sequence is deleted.  Only one
user-defined ISO collating sequence is in use at any one time.  A second CALL statement
to FSSEQ causes the previous collating sequence to be replaced with the new
user-defined collating sequence.

L.7.1. Example of CALL Statement to FSSEQ

The following runstream contains two calls to FSORT and two calls to FSSEQ.  The first
call to FSSEQ contains a user-defined collating sequence in array SEQTAB.  The
collating sequence is the same as the standard ISO collating sequence except that the
letters A and B (uppercase and lowercase) are interchanged.  The first call to FSORT
uses the user-defined collating sequence.  The input is read from unit 5.  The input is
sorted according to:

1. The first key that starts in character position 1 of the record, has a length of 10
characters, and is sorted in ascending order.

2. The second key that starts in character position 11 of the record, has a length of five
characters, and is sorted in descending order according to the user-defined collating
sequence specified in the call to FSSEQ.

3. The third key that starts in character position 16 of the record, has a length of five
characters, and is sorted in ascending order.

The result is written by the user output routine OUT.

The second call to FSSEQ deletes the previous user-defined collating sequence and does
not set up another sequence.  This means that the normal ISO collating sequence is used
when sorting.  Note the use of the CORE= clause in infost in both calls to FSORT.

@RUN
@FTN,SI
  
    EXTERNAL OUT
    INTEGER SEQTAB(64),POSN
C         set up collating sequence.
    POSN(I)=BITS(SEQTAB(1+I/4),1+9*MOD(I,4),9)

    DO 1 I=0,255
1      POSN(I)=I
    POSN(65)=POSN(65)+1
    POSN(66)=POSN(66)-1
    POSN(97)=POSN(97)+1
    POSN(98)=POSN(98)-1
C        give collating sequence to sort.
    CALL FSSEQ(SEQTAB)
C        do the first sort
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    CALL FSORT(’key=(1/10,11/5/d/s,16/5),rsz=80,
   1     core=20000!’,5,OUT)
C        remove collating sequence.
    CALL FSSEQ
C        do the second sort.
    CALL FSORT(’key=(1/10,11/5/d/s,16/5),rsz=80,
   1    core=20000!’,10,6)
    END

@FTN,SI  OUT

    SUBROUTINE OUT(RECORD,LENGTH)
    CHARACTER*80 RECORD
    IF (LENGTH.LE.0) RETURN
    WRITE(10,1) RECORD
    PRINT 2,RECORD
    RETURN
1   FORMAT(A)
2   FORMAT(1X,A)
    END

@ASG,T TEMP
@USE 10,TEMP
@XQT
. . . data images . . .
@FIN

L.8. User-Specified Subroutines
The sort/merge interface lets you provide subroutines to:

� Read records

� Compare records

� Examine fixed-length records with equal keys and optionally merge the records

� Write records

You are not required to supply any of these subroutines.  The sort/merge interface and
package handles all these areas when you don’t want to supply any subroutines.

L.8.1. User-Specified Input Subroutine

An input subroutine can be supplied to be called by the sort/merge package to read the
records.  (See L.4 and L.5.)  The input subroutine is called with three arguments.  The
first argument is an array that contains the input record to be returned to the sort/merge
package.  The second argument is an integer that contains the length of the input record
in characters.  The third argument is an integer that indicates when the last record is
delivered.

The input subroutine can do the following:

1. Read a record and return the record to the sort.

2. Return the null string with a record length of zero and the third argument set to a
one to indicate the end of the input file.
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3. Read a record and call FSGIVE with that record as an argument.  The input
subroutine can enter FSGIVE several times before returning an input record or an
end-of-file mark to the sort/merge package.

The end of the file can be signaled through FSGIVE.  Control is not returned to the
instruction following the call to FSGIVE in the input subroutine.  Control returns to the
sort/merge package.

L.8.1.1. Example of a User-Specified Input Subroutine

The following input subroutine reads the source input from unit 5 and returns a record
length of 80 characters.  The third argument is set to 0 if the end of the file is not reached
and set to 1 if the end of the file is reached in the input file.

    SUBROUTINE IN(RECORD,LENGTH,IEOF)
    CHARACTER*4 RECORD(20)
    READ(5,1,END=2) RECORD
    LENGTH=80
    IEOF=0
    RETURN
1   FORMAT(20A4)
2   IEOF=1
    RETURN
    END

L.8.1.2. CALL Statement to FSGIVE

The call to FSGIVE provides the capability of giving a record to the sort without leaving
the user-specified input subroutine.  Call FSGIVE with three arguments:

1. the input record for sort,

2. the length of the record given to the sort, and

3. the flag given to sort to indicate that the end of the file is reached.

When the flag is 0, the end of the file was not reached, while a nonzero flag indicates that
the end of the file is found.

These arguments are similar to the arguments for the input subroutine.

L.8.1.3. Example of User-Specified Input Subroutine with FSGIVE

The following input subroutine reads characters separated into words by blanks or by
the end of the line from input unit 5.  Any character except a space can be part of a
word.

The input subroutine reads from unit 5 when first entered.  The subroutine moves each
word that it finds to the record area and then calls FSGIVE for each word that is not the
last word on a data image.  The input subroutine IN is reentered each time a new data
image is needed from the input file.  The end of the input file is signaled by the input
subroutine IN.  The end of the input file can also be indicated by setting the third
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argument to FSGIVE to a nonzero value.  The calls to FSGIVE are intermixed with calls
to the input subroutine IN.

    SUBROUTINE IN(RECORD,LENGTH,IEOF)
    CHARACTER RECORD*80,CARD(80),BLANK/ ’ ’/
1   READ(5,2,END=99) CARD
2   FORMAT(80A1)
C            find last nonblank character
    DO 3 IMAX = 80,1,-1
3      IF (CARD(IMAX) .NE. BLANK) GO TO 4
C           The input record was blank, so read a new record.
    GO TO 1
4   I = 1
C           Find first blank separator.
5   DO 6 J = I,IMAX
6      IF (CARD(J) .EQ. BLANK) GO TO 8
C           Record has no more blanks - deliver.
    ENCODE(80,2,RECORD) (CARD(J),J = I,IMAX)
    LENGTH = 80
    IEOF = 0
    RETURN
C           At least one blank was found.
8   IF (J .EQ. I) THEN
C           It was a leading blank - ignore it.
        I = I + 1
    ELSE
C           A word was found - deliver.
        ENCODE(80,2,RECORD) (CARD(K),K = I,J - 1)
        CALL FSGIVE(RECORD,80,0)
        I = J + 1
    END IF
    GO TO 5
C          This is end of input - tell the sort.
99  IEOF = 1
    RETURN
    END

L.8.2. User Comparison Routine

If a comparison routine is present, it is called whenever the sort/merge package must
compare two records.  The COMP clause must be present in the information string of the
call to FSORT or FMERGE.  The parameter comprt must also be specified in the call to
FSORT or FMERGE.  (See L.4 and L.5.)

The compare subroutine is called with three arguments.  The first two arguments are the
two records compared when the records are fixed-length records or the first links of the
two records compared when the records are variable length.  The third argument is an
integer whose value informs the sort of the result of the comparison done by the
comparison subroutine.  The result can be:

� The value 1 if the first record precedes the second record

� The value 2 if the order of the records is immaterial

� The value 3 if the second record precedes the first record

Care is necessary when using a comparison subroutine together with keys specified in
the information string because the sort/merge package translates the key fields
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according to certain rules.  The OS 2200 Sort/Merge Programming Guide, Level 17R1

(7831 0687), contains a description of the translation rules.

L.8.2.1. Example of a User Comparison Subroutine

For the following example, assume the first five characters of each record contain a
signed, nonzero number between -49999 and 49999.  A negative number X is represented
by 50000-X.  If key translation is not used, the following comparison subroutine can be
used:

    SUBROUTINE COMP(FIRST,SECOND,CODE)
    INTEGER FIRST,SECOND,CODE,F,S
    DECODE(1,FIRST) F
    DECODE(1,SECOND) S
1   FORMAT(I5)
    IF (F.GE.50000) F=50000-F
    IF (S.GE.50000) S=50000-S
    IF (F-S) 2,3,4
2   CODE=1
    RETURN
3   CODE=2
    RETURN
4   CODE=3
    RETURN
    END

L.8.2.2. Example of a Runstream with a Comparison Subroutine

In the following example of a comparison subroutine, the first two characters of the
records given to the comparison subroutine contain an integer that indicates the starting
position of the key within the record.  The key is five characters long and contains a
right-justified integer value.  A complete runstream for using this comparison subroutine
is:

@RUN
@FTN,SI

    EXTERNAL COMP
    CALL FSORT(’comp,rsz=80,core=20000!’,9,10,COMP)
    END

@FTN,SI COMP

    SUBROUTINE COMP(R1,R2,CODE)
    INTEGER CODE,P1,P2
    CHARACTER R1*80,R2*80,F1*8,F2*8
C             Compute the key values.
    DECODE(4,R1) P1
    DECODE(4,R2) P2
    ENCODE(8,5,F1) P1-1
    ENCODE(8,5,F2) P2-1
    DECODE(F1,R1) P1
    DECODE(F2,R2) P2
C             Do the comparisons.
    IF (P1-P2) 1,2,3
1   CODE=1
    RETURN
2   CODE=2
    RETURN



ASCII FORTRAN Sort/Merge Interface

UP-8244.4-BL-22

3   CODE=3
    RETURN
4   FORMAT(I2)
5   FORMAT(’(’,I2,’X,I5)’)
    END

@ASG,A  IN*PUT
@ASG,C  OUT*PUT
@USE    9,IN*PUT
@USE    10,OUT*PUT
@XQT
@FIN

L.8.3. User Data Reduction Subroutine

The data reduction subroutine is called by the sort/merge package whenever the
sort/merge package finds two records whose order is immaterial.  The data reduction
subroutine may or may not merge the two records into the first record.  The data
reduction subroutine can be specified only when sorting fixed-length records.  The
DATA clause must be specified in the information string in the call to FSORT.  The
datred parameter must be present in the call to FSORT.  Two restrictions must be
remembered:

1. The records, if merged, must always be merged into the first record (that is, the first
argument).

2. The data reduction routine can’t change key fields.

The data reduction subroutine is called with three arguments.  The first two arguments
are the two records.  The third argument is an integer result assigned by the data
reduction subroutine with the following possible values:

� The value 1 indicates that the two records are merged.

� The value 2 indicates that the two records are not merged.

The sort/merge subroutines translate the key fields according to certain rules.  Exercise
care when using a data reduction subroutine together with keys specified in the
information string in the call to FSORT.  The translation rules are described in the OS

2200 Sort/Merge Programming Guide, Level 17R1 (7831 0687).

L.8.3.1. Simple Example of a Data Reduction Subroutine

The following data reduction subroutine assumes that any input record that contains a 1
in character position 6 is chosen over any other record.  If both records contain a 1 in
character position 6, the first record is chosen over the second record.

    SUBROUTINE DATA(FIRST,SECOND,CODE)
    INTEGER CODE
    CHARACTER FIRST*80,SECOND*80,TEST,ONE/’1’/
    DECODE(1,FIRST) TEST
1   FORMAT(5X,A1)
    IF (TEST.EQ.ONE) THEN
       CODE=1
       RETURN
    END IF
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    DECODE(1,SECOND) TEST
    IF (TEST.NE.ONE) THEN
       CODE=2
       RETURN
    END IF
    FIRST=SECOND
    CODE=1
    END

L.8.3.2. Example of a Runstream with a Data Reduction Subroutine

This example with a data reduction subroutine assumes that two records with equal
keys are merged if character position 11 of at least one of the records is blank.  The
record with the blank in character position 11 is retained.  If both records have character
position 11 blank, the first record is retained.

This runstream chooses the decision field outside the key fields to avoid any problems
with key field translation.

@RUN
@FTN,SI

    EXTERNAL DATA
    CALL FSORT(’key=(1/5,6/5/d),rsz=80,data reduction
   1      user code,core=20000!’,9,10,DATA)
    END

@FTN,SI DATA

    SUBROUTINE DATA(R1,R2,CODE)
    INTEGER CODE,BLANK/’ ’/
    CHARACTER*80 R1,R2
    DECODE(1,R1) IB
1   FORMAT(10X,A1)
    IF (IB.EQ.BLANK) THEN
       CODE=1
       RETURN
    END IF
    DECODE(1,R2) IB
    IF (IB.NE.BLANK) THEN
       CODE=2
       RETURN
    END IF
    R1=R2
    CODE=1
    END

@ASG,A   IN*PUT
@ASG,C   OUT*PUT
@USE     9,IN*PUT
@USE     10,OUT*PUT
@XQT
@FIN

L.8.4. User-Specified Output Subroutine

The output subroutine is called by the sort/merge package when a record is written.  The
output subroutine is called with two arguments.  The first argument is the record to be
written and the second argument is the length in characters of the record to be written.
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The second argument is also a flag to your output subroutine to indicate when the sort
delivers the last record to be written.  The length is normally a positive number
indicating the size of the record in characters.  If the length is negative or zero, the last
record has already been delivered to the output subroutine.

L.8.4.1. Simple Example of a User-Specified Output Subroutine

The following output subroutine outputs records to unit 6 through a formatted write:

    SUBROUTINE OUT(RECORD,LENGTH)
    CHARACTER*80 RECORD
    IF (LENGTH.GT.0) PRINT 1,RECORD
1   FORMAT(1X,A)
    RETURN
    END

L.8.4.2. CALL Statement to FSTAKE

Your output routine can indicate to the sort/merge package when the output routine
needs a new output record.  This is done by a CALL statement to FSTAKE with two
arguments.  The first argument is the record received from the sort/merge package.  The
second argument is the length in characters of the new record.  If the length argument is
negative after returning from FSTAKE, the last record has already been delivered from
the sort/merge package.

L.8.4.3. Example of FSTAKE in an Output Subroutine

The following example moves records containing one word each into card images with
exactly one space between the words, and then writes the record when the card image
becomes full.  The sorted records are assumed to contain 80 characters.

    SUBROUTINE OUT(RECORD,LENGTH)
    INTEGER POS/1/
    CHARACTER CARD(80),CR(80),BLANK/ ’ ’/,RECORD*80
    IF (LENGTH.LT.0) GO TO 99
C              Blank the output record.
    DO 1 I=1,80
1        CARD(I)=BLANK
C              Place each character of the record in a word.
2   DECODE(80,3,RECORD) CR
3   FORMAT(80A1)
C              Find actual length of record.
    DO 4 IL=80,1,-1
4        IF (CR(IL).NE.BLANK) GO TO 5
C              This is a blank record--ignore the record.
    GO TO 10
5   IF (POS+IL.GT.81) THEN
C              The card image to print is full--print it.
         PRINT 6,CARD
6        FORMAT(1X,80A1)
         DO 7 I=1,80
7              CARD(I)=BLANK
         POS=1
    END IF
    DO 9 I=1,IL
9        CARD(POS-1+I)=CR(I)
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    POS=POS+IL+1
C               Get next record to get next word.
10  CALL FSTAKE(RECORD,LENGTH)
    IF (LENGTH.GE.0) GO TO 2
99  IF (POS.GT.1) PRINT 6,CARD
    RETURN
    END

L.9. Optimizing Sorts
An understanding of this subsection is not required to do a sort. This information is
provided for those who need to sort larger data sets than the standard scratch
assignments (main storage and mass storage) allow.  This information also helps those
who need to minimize the resources used in a sort.  You also need to use this
information if the sort/merge package error B5 is given for a sort (see the OS 2200

Sort/Merge Programming Guide, Level 17R1, 7831 0687).

The standard scratch file assignments are:

� 19,000 words of main storage

� Six disk files of 512 tracks each (initial reserve 0)

This amount of storage should be sufficient to sort some 200,000 to 250,000 80-character
records.  If a very large sort (that is, a multiple cycle sort requiring operator
intervention) is necessary, you should consult the OS 2200 Sort/Merge Programming

Guide, Level 17R1 (7831 0687).  The performance of a sort is mainly determined by the
following three factors:

1. The bias of the input data

2. The size of the main storage scratch area

3. The scratch files used

The CPU time used by the sort is decreased slightly by inhibiting the checksum on the
sort’s scratch files or by increasing the size of the checksum mesh.

L.9.1. Bias of the Input Data

The bias is the average number of records in sorted subsequences present in the input
file.  (See BIAS=biasno in L.4.)  For example, if the input file is exactly in reverse order,
the bias is 1.  Also, random data has a bias of 2.  Generally, the bias is greater if the input
file is almost sorted; that is, the more nearly sorted the input file, the greater the bias.

If a bias is specified, the sort is able to use available resources optimally so that more
data can be sorted using the same amount of scratch storage.  You should specify the
bias whenever it is known and when the bias is less than 1.4 or greater than 3.

The bias is specified by the form:

BIAS=biasno
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L.9.2. Size of the Main Storage Scratch Area

The size of the main storage scratch area is specified two ways:

1. Assign the file R$CORE with a suitable maximum granule value.

2. Specify the size of the main storage scratch area in the information string for the
sort or merge.

If the size of the main storage scratch area is given by both methods, the R$CORE value
overrides the size of the main storage scratch area given in the information string.  (See 
L.4.)

L.9.2.1. Using R$CORE

The size of the main storage scratch area in words is specified at run time by assigning
the file R$CORE with a suitable maximum size. For example, if 20,000 words of main
storage scratch area are desired, the following control statement guarantees that 20,000
words of storage are available to the sort/merge interface and package:

@ASG,T R$CORE,///20

L.9.2.2. Using the CORE Clause in the Information String

The amount of main storage scratch area for the sort is specified by the following CORE
clause in the information of the call to FSORT:

CORE=corsz

where corsz is the size of the main storage scratch area in words.  The sort/merge
interface rejects any size that is less than 3,000 words.  The sort generally executes
faster when it is given more main storage.

When you use this clause in the information string, don’t assign the file R$CORE.

L.9.3. Using Scratch Files and Checksum

Avoid the use of tape scratch files when possible.  Tape sorts are slower and require
operator intervention.  The sort/merge package distinguishes two cases for mass storage
files:

1. One or two mass storage files

2. More than two mass storage files

The first case is more suitable when only one or two mass storage units are available to
the sort.  However, this case requires a careful assignment of main storage and mass
storage scratch resources.  The optimal amount of main storage will depend on how
much mass storage is available to the sort.  A suitable assignment of facilities appears in
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the OS 2200 Sort/Merge Programming Guide, Level 17R1 (7831 0687).  Different mass
storage scratch files should be kept on separate mass storage units if possible.

L.9.3.1. Naming Scratch Files in the Information String

Scratch files are specified by the FILE clause in the information string.  (See L.4.) The
following restrictions apply when the FILE clause is used:

1. All scratch files must be assigned when the sort is started.

2. A maximum of 26 scratch files can be specified.

3. At least three tape scratch files must be used if any tape scratch files are used.

4. If tape scratch files are used, a maximum of two mass storage files is used for the
sort.

L.9.3.2. Checksum and the Sort

A checksum is normally done on all tape and mass storage files.  You can omit the
checksum on one or more device types (mass storage or tape).  You can also specify a
checksum mesh size for each device type.  For example, if a mesh size of 5 is given, only
every fifth word of each block written to tape or mass storage is included in the
checksum.

You can omit the checksum by specifying the nocheck clause (NOCH) in the information
string for the call to FSORT.  You provide a mesh size by specifying the MESH clause in
the information string.  These clauses are described in the CALL statement to FSORT.
(See L.4.)

L.10. Sorting Very Large Amounts of Data
When it is not practical to assign enough scratch storage to hold all of the data to be
sorted, a multicycle sort must be done.  For that case, the ASCII FORTRAN program
must be executed with the P option (@XQT,P) and some sort/merge package parameter
data images must be prepared.  These data images are fully described in the OS 2200

Sort/Merge Programming Guide, Level 17R1 (7831 0687).

The SMRG parameter data image format is:

’SMRG’,’outptprefx’, nbrrecds, nbrreel

where:

outptprefx

is a string two characters long that identifies the intermediate output tapes.

nbrrecds

specifies the number of records sorted in each cycle.  It is optional.
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nbrreel

specifies the number of reels to be produced in each cycle and is optional.  If the
number given in nbrrecds specifies more records than the assigned hardware can
hold, nbrrecds is ignored.

The parameter data images are read after the call to FSORT but before the first input
record is read or before your input routine is first called.

You must use the following control image after the last sort/merge parameter data image:

@EOF A

If you wish to rerun interrupted multicycle sorts, refer to the OS 2200 Sort/Merge

Programming Guide, Level 17R1 (7831 0687).

L.10.1.Example of a Large Single-Cycle Sort

The following runstream contains a sort that must run as efficiently as possible.  The
records are in nearly reverse order (the bias is about 1.2).  A checksum is not done.
About 400,000 records must be sorted, so the standard scratch assignments cannot be
used.  Ample amounts of main storage and mass storage are available for the sort.

The first step is to calculate the sort volume.  This is the record size times the number of
records times a safety factor:

20 * 400000 * (1 + .1)

which equals about 9 million words.

For a big sort, use six equal-size files.  This makes each file about 1.5 million words, or
about 850 tracks.

A suitable amount of main storage scratch area is about 50K words.

The scratch files must be assigned before the sort begins.  The runstream for the sort
can be:

@RUN
@FTN,SIO

     CALL FSORT(’rsz=80,key=(1/5,6/5/d),core=50000,
   1      bias=1.2,files=(M1,M2),nocheck=dft,
   1      files=(m3,m4,m5,m6)!’,9,10)
     END

@ASG,A   IN*PUT
@ASG,T   OUT*PUT,T,REELNO
@ASG,T   M1,///850
@ASG,T   M2,///850
@ASG,T   M3,///850
@ASG,T   M4,///850
@ASG,T   M5,///850
@ASG,T   M6,///850
@USE     9,IN*PUT
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@USE     10,OUT*PUT
@XQT
@FIN

L.10.2.Example of a Multicycle Sort

The following runstream is used for a multicycle sort.  The information is much the same
as the large single-cycle sort except that there are about 20 million records sorted, using
the same amount of main storage and mass storage.  In addition, four scratch tape files
are used.

@RUN
@FTN,SIO

     CALL FSORT(’rsz=80,key=(1/5,6/5/d),core=50000,
   1      bias=1.2,file=(M1,M2,T1,T2,T3,T4),noch=dft,
   1      files=(m3,m4,m5,m6)!’,9,10)
     END

@ASG,A    IN*PUT
@ASG,TV   OUT*PUT,U9V/2,REEL1/REEL2/REEL3
@ASG,T    M1,///1117
@ASG,T    M2,//POS/715
@ASG,T    T1,T
@ASG,T    T2,T
@ASG,T    T3,T
@ASG,T    T4,T
@USE      9,IN*PUT
@USE      10,OUT*PUT
@XQT,P
’SMRG’,’EX’
@EOF A
@FIN

L.11. Error Messages from a Sort or a Merge
Two different types of error messages can be produced during a sort or a merge.  The
first type is written to the console and its form is:

XXXX ERROR CODE YZ

where XXXX is SORT or MERGE, Y is a letter, and Z is a digit.  This message is
immediately followed by an ER ERR$ exit.  This type of message is produced by the
sort/merge subroutines and is described in the Series 1100 Sort/Merge, Programmer

Reference, UP-7621.

The second type of message is produced by the sort/merge interface with the form:

FTN SORT/MERGE ERROR CODE NN strg

where NN is a 2-digit error code.  The error codes and an explanation for each follow.
Strg is a four-character string that provides further information about the error.



ASCII FORTRAN Sort/Merge Interface

UP-8244.4-BL-30

01

The mnemonic in the information string whose first four characters are given in strg

is not known to the routine called (for example, SELE is not allowed for merges and
UNKNOWN is not allowed for sorts or for merges).

02

The routine specified in strg is called with the wrong number of arguments.

03

The character position of the most significant character of a key is negative or too
large.

04

A key length is negative or too large.

05

An erroneous key type (such as A for a character key) is specified.

06

The sorting sequence is not A, D, or a null string.

07

The word position of the most significant bit of a bit key is negative or too large.

08

The bit position of the most significant bit of a bit key is incorrect (0 or greater than
36).

09

The translation table in FSSEQ does not contain the full ISO set.  Strg contains the
octal code for the first character found that cannot be translated.

10

The maximum record size (RSZ) given in the information string is negative or
greater than 65K.

11

No record size (RSZ) is specified in the information string for a sort.

12

An impossible link size (0 or greater than the maximum record size) is specified.

13

No keys and no user comparison routine are given in the information string.
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14

An error exists in the collating sequence (FSSEQ).  The given string is less than 256
characters.

15

The auxiliary main storage area is full.  For remedial action, please submit a
Software User Report (SUR).

16

An overflow occurs in the sort parameter table.  For remedial action, please submit
a Software User Report (SUR).

17

At least one key extends beyond the record.

18

A bit key of type A, D, G, L, or P does not start on a 6-bit byte boundary.

19

The length in bits of a bit key of type A, D, G, L, or P is not divisible by 6.

20

An erroneous return code is given on exit from your comparison routine.

21

An erroneous record length is given on exit from your input routine.

22

The link size is not specified for variable length records and no key specifications
are given.

23

A forbidden character was found in the information string.

24

The output routine/file or your comparison routine is not in the argument list.

25

The COPY specification is given in the information string, but FSCOPY is not called
(or the most recent call has no arguments).

26

For a sort, an input file/routine is not in the argument list.  For a merge, either too
few (less than two) or too many (more than 26) input files/routines are given in the
argument list.
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27

The bias is given as less than 1.

28

The mnemonic whose first four characters are in strg appears more than once in the
information string.  If strg is RSZ, VRSZ may have appeared before (and vice versa).

29

The size of the main storage scratch area is given as less than 3,000 words or greater
than 262,141 words.

30

An illegal character is given in the NOCH specification (only D, F, K, and T are
accepted to the right of the equals sign) in the information string.

31

Your data reduction routine is not in the argument list.

32

A given scratch file is not on mass storage.  The most common reason is that the file
is not assigned to the run.

34

More than 26 scratch files are specified in the information string.

35

The first member of a select pair (SELE clause) is not greater than the previous
pair’s second member.

36

The second member of a select pair is less than the first member.

37

An erroneous return code is given on exit from your data reduction routine.

38

A facility reject status is generated in the attempt to assign one of the sort scratch
files.  Strg specifies which of the six standard files can’t be assigned.  The next line
gives the FAC REJECT code.

39

Some keys overlap.  Strg gives the number of the major key of the pair that overlaps
(the most major key is number 1, the next number 2, etc).
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40

An illegal sign appears in an arithmetic field.  Strg gives the first four characters
found after (and including) the one in error.

41

An illegal character appears in a numeric field.  Strg gives the first four significant
digits.

42

The field in strg is not followed by an equals sign.

43

A numeric field given in strg appears when an alphabetic field is expected.

44

Nonblank characters appear between an equals sign and a left parenthesis.

45

The first field of a keyspn in a KEY clause is alphabetic and is not BIT.

46

An alphabetic field in strg appears when a numeric field is expected.

47

An integer field contains a decimal point.

48

An invalid delimiter in strg is found.

49

The name of a scratch file contains more than 12 characters.

50

The first instruction of your routine is illegal.  You may also have passed a banked
argument in the position indicated by strg.

51

Too many parameters in the call to FSORT or FMERGE exist.

52

No main storage scratch parameter argument is given and an OWN clause is in the
information string.

53

The data reduction routine is specified for a sort of variable-length records.
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55

The first word of the user-provided sort parameter table is wrong.

63

The mesh size is previously specified for a device given in strg (strg has a value D, F,
K, or T).

64

An impossible mesh size is specified.

65

An illegal device type in strg is used in a MESH specification.

66

An illegal delimiter is used in a MESH specification.

67

Banked or virtual data arguments are not allowed.  Strg indicates the argument with
the error.

68

Only the first argument to FSORT, FMERGE, FSGIVE, or FSTAKE can be of type
CHARACTER.

69

The logical unit number for input or output is a reread unit or outside the defined
range of logical units.

70

A bit key of the type A, D, G, L, or P is not allowed when input is from a logical unit
number, because such input is always formatted input, and FTN converts Fieldata
records to ASCII during formatted input.  You must use an input subroutine rather
than a logical unit number.
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Appendix M
Virtual FORTRAN

M.1. General
When a collected FORTRAN program doesn’t fit in the traditional 65,535 words of main
storage (or 262,143 words if the FORTRAN programs were compiled with the O option)
and collector truncation diagnostics result, consider putting large objects, such as
common blocks or local arrays, in virtual space.

Putting a large object in virtual space reduces the main storage requirements of the
collected absolute element.  For example, a subroutine that processes two REAL
argument arrays of extent NxN needs six local arrays of the same size (or larger) as
working storage during its processing.  Since a local array can’t be dimensioned as NxN,
a reasonable maximum size must be picked and the subroutine must be compiled with
that size.  But, the following problems exist:

� When NxN is 150x150, this takes up 22K words of main storage per local array or
132K words total in local storage for this one routine.

� When a typical N in an execution is only 50, most of the storage space just
mentioned goes to waste.

� When using an N over 150, the element must be recompiled with a larger size to
handle it.

� When using an N over 180, the main storage requirements are too large to fit in the
262,000-word address range limit of the OS 1100 architecture.

But when these six arrays are put in virtual space, the following occurs:

� The collected size drops by about 132K words.

� The local arrays are dynamically allocated in virtual space on subprogram entry, and
freed on subprogram exit.

� During execution, main storage requirements are only marginally larger than the
collected size.
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� Virtual space is exempt from the 262,000-word limit of the current OS 1100
architecture, and you can pick a value for N that is rarely exceeded (thereby forcing
recompilation) with minimal extra overhead.

The following example shows the same subroutine written with and without virtual
space:

Program before change:

SUBROUTINE SUB(N,AR1,AR2)
PARAMETER (M=150)              @ marginal size 
REAL L1(M,M),L2(M,M),L3(M,M) 
REAL L4(M,M),L5(M,M),L6(M,M) 
REAL AR1(N,N),AR2(N,N)

Program after change:

SUBROUTINE SUB(N,AR1,AR2)
VIRTUAL L1,L2,L3,L4,L5,L6 
PARAMETER (M=300)              @ comfortable size 
REAL L1(M,M),L2(M,M),L3(M,M) 
REAL L4(M,M),L5(M,M),L6(M,M) 
REAL AR1(N,N),AR2(N,N)

Named common can also be put into virtual space as shown below.

Program before change:

PARAMETER (M=100)              @ marginal size
COMMON/C1/A(M,M),B(M,M) 
COMMON/C2/D(6000),F(99000),G(M) 
COMMON/C3/PIVOT(M)

Program after change:

VIRTUAL /C1/,/C2/
PARAMETER (M=400)              @ comfortable size 
COMMON/C1/A(M,M),B(M,M) 
COMMON/C2/D(6000),F(99000),G(M) 
COMMON/C3/PIVOT(M)

A maximum virtual address range of 32 million words is currently available using virtual
space.  The default size is 6.5 million words.  A big difference exists between theoretical
limits and practical limits.  We recommend that a casual user keep within two or three
times the real memory size to keep thrashing levels acceptable.

Compiler-generated code that references a virtual object is generally less efficient than
that for references to objects in nonvirtual space.  (An object refers to a scalar variable
or an array in common, or local to, the subprogram.)  Only the larger common blocks
and local arrays that cause size problems should be put into virtual space.  For example,
when arrays dimensioned as NxM are put in virtual space, smaller single-dimension
arrays dimensioned by N or M to hold a row or column should be left in normal
nonvirtual space.
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Several routines are available to you that enhance CPU performance of virtual or banked
programs.  For more information, see M.17.

M.2. Method
Multiple D-banks are used in the implementation of virtual space.  Each D-bank contains
a page of virtual space.  A virtual object from your program is dynamically allocated by
the ASCII FORTRAN run-time system and gets as many pages as are necessary to hold
the object.  Since the Executive currently allows a maximum of 251 banks in a collected
absolute, this puts an upper limit on the number of D-banks used for virtual pages.  The
amount of virtual space available is the maximum number of banks (pages) times the
virtual page size.  You can select the maximum number of pages allocated for virtual
space and their size.  Defaults are 200 pages and 32K words, giving a default of 6.5
million words of virtual space.  (K means 1,024 words.)  Page sizes are a power of 2 and
can be 4K, 8K, 16K, 32K (default), 64K, or 128K words.  A total of 246 banks of size 128K
words gives a range of 32 million words.  Large page sizes give a large virtual address
space, but smaller page sizes minimize main storage requirements and dramatically
reduce potential thrashing problems of a large page size.

The D-bank pages used for virtual space are defined in the FORTRAN main program’s
relocatable by use of a collector INFO-11 directive.  Use of these directives in the
generated relocatable defines a set of initially void D-banks to the collector.  COMPILER
statement options can be used in the main program to change the size or the number of
these D-banks from the default values.  When the main program does not contain a
VIRTUAL statement or is not written in FORTRAN, virtual space can still be used.  The
run-time library element VSPACE$ then supplies the INFO-11 directives defining virtual
space.  Default values can be altered by changing tags in the procedure VIRTPROC$ in
the MASM procedure element FTNPROC (see 9.5.3), reprocessing FTNPROC with PDP,
and then reassembling elements VSPACE$ and VFTNEQU$.

Virtual space is allocated and initialized dynamically during execution of your program.
When an external subprogram is entered for the first time, it calls the virtual storage
allocator to allocate space for the static virtual objects belonging to it or to any of its
internal subprograms.  These static virtual objects can be named common blocks and
selected large local arrays.  Generated code saves the virtual addresses of these objects
returned by the virtual storage allocator.  After allocation, execution of code performs
any initialization needed resulting from DATA statements on the virtual items.  On
subsequent entries to the subprogram, the above process is skipped for the allocation
and initialization of static virtual space; it is done only once per external program unit.
When a named common block has already been allocated by a previous program unit,
the virtual allocation routine simply returns its virtual address.

Each D-bank holding a page of virtual space has a 64-word ID area at the beginning of
the bank.  This area makes the bank self-identifying, and is used by generated code to
speed up execution time.

Virtual local arrays in the automatic storage class (those that do not have SAVE
statements specifying them) are allocated and initialized on each entry to an external
subprogram, and are freed on each return from the subprogram.  Local virtual space
defaults to the automatic storage class and local nonvirtual space defaults to the static
storage class.
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Expect the following when virtual space is allocated for a virtual object:

� The object is allocated on a 64-word boundary in a virtual page.

� The first 2,048 words of a virtual object are guaranteed to be in one virtual page.
This permits more efficient code to be generated to reference virtual objects when
they are in the first 2K of their allocation.

M.3. Restrictions for Declaration Matching
Since special code sequences are required to reference virtual objects, all FORTRAN
routines that reference a virtual object must declare the object as a virtual object.
However, arguments don’t need to be specified in a VIRTUAL statement.  A VIRTUAL
statement in a FORTRAN element guarantees that arguments are correctly referenced
when they reside in normal, banked, or virtual space.  For more information on banking,
see Appendix H.

Example

One element:

VIRTUAL L1,/C1/
COMMON/C1/C1(999) 
COMMON/C2/C2(10000) 
REAL L1(9999) 
CALL X(L1(I),1.0,l) 
END

Separate element:

SUBROUTINE X(A1,XL,l)
VIRTUAL/C1/ 
COMMON/C1/C1(999) 
REAL A1(*) 
C1(I)=A1(I)
    .
    .
    .
END

When subprogram X doesn’t contain a VIRTUAL statement or when common block C1 is
not named in its VIRTUAL statement, fatal run-time diagnostics result, indicating storage
mismatch.

In current FORTRAN library files holding FORTRAN relocatables, often a simple
COMPILER(BANKED=ALL) statement is put in each FORTRAN element in case any
program using the library has multiple D-banking present.  Obtain the same results by
inserting a VIRTUAL statement into each element in case any arguments are in virtual
space.  (This also handles banked arguments.)  When any named common blocks are in
virtual space, they must be named in VIRTUAL statements in any subprogram that
declares them.
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M.4. Initialization of Virtual Objects
Initialization for objects in virtual space is needed when they have initial values specified
in DATA, DIMENSION, or type statements.  This initialization is accomplished by code
that executes after the allocation calls.  A DATA statement consisting of a mismatch of
storage classes presents a problem, as the following example shows:

VIRTUAL /CBVIRT/,LOCALD,LOCALS
COMMON /CB1/A(1000)        @ standard common 
COMMON /CBVIRT/V(1000000)  @ virtual common block 
DIMENSION LOCALD(1000000)  @ virtual dynamic local 
DIMENSION LOCALS(1000000)  @ virtual static local 
SAVE LOCALS                @ put LOCALS in static class 
DATA A(1),V(1),LOCALD(1),LOCALS(1)/1.,2.,3,4/    @ mismatch

The DATA statement in the above example calls for:

� Initialization of nonvirtual common block CB1.  (This is normally done by ROR
packets, that is, code is normally not executed to initialize items in nonvirtual
common.)

� Initialization of virtual common block CBVIRT.  (This must be done only once by
generated code after allocation.)

� Initialization of the static local array LOCALS.  (This must be done only once by
generated code after allocation.)

� Initialization of the dynamic local virtual array LOCALD.  (This must be done by
generated code after allocation, on each entry to the subprogram.)

The ASCII FORTRAN compiler can’t separate the initializations of these various types so
that they can be done in their respective manners.  Therefore, when any item in any
initialization statement is in virtual space, the entire statement is accomplished by
generated code.  When any item in an initialization is in the virtual automatic storage
class, all items must be in the automatic storage class or the statement is flagged in
error.  (The preceding example is in error.)  When an initialization statement has a
virtual/nonvirtual mismatch on static class items, a warning is issued at compile time,
and code is generated to accomplish the entire statement at execution time.  The
warning is issued since dynamically initializing nonvirtual common can lead to incorrect
program results.  Initialization done by the collector resulting from ROR packets is
insensitive to program execution flow, whereas initialization done by generated code
exactly follows the program execution flow and can result in an item being used before
it is initialized.

To prevent problems in an initialization statement, you should ensure that:

� A mixture of static storage class virtual items and automatic storage class virtual
items is not contained in an initialization statement

� A mixture of virtual items and nonvirtual items is not contained in an initialization
statement
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The following shows the compiler action on combinations of various storage classes in a
single initialization statement:

Note: E means an error diagnostic; W means a warning diagnostic.

M.5. BLOCK DATA Subprograms
BLOCK DATA subprograms initializing common blocks in virtual space must appear in
an element holding one or more executable program units.  The first program unit
entered in the element also causes the BLOCK DATA initializations to be done
dynamically.  Due to this, we recommend that you place the BLOCK DATA subprograms
in the element holding the main program.  Always place BLOCK DATA subprograms in
an element holding executable code because the collector ignores the BLOCK DATA
element unless the element is part of the collection.

M.6. COMPILER(DATA=AUTO) Statement
The COMPILER(DATA=AUTO) statement activates the ASCII FORTRAN automatic
storage feature.  Programs using this feature can also use the VIRTUAL statement.
However, one or more noncommon static D-bank cells are allocated per program unit,
and the prolog code is slightly longer.
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M.7. Error Detection

M.7.1. Insufficient Space

A request for virtual space that cannot be met results in a run-time diagnostic and error
termination.  You must either limit your storage requirements or increase the virtual
address space available by putting COMPILER statements in your main program that
specify larger banks or more banks for virtual space.

Once the Executive is changed to allow the loading of a program containing over 251
banks, the full 2,047 banks allowed by the collector can be used, and the maximum
virtual address range rises to 262 million words.

Most run-time diagnostics are accompanied by a walkback to aid in debugging.  The
walkback is available only when one or more of the compilations uses the F option.

M.7.2. Bad Allocation or Initialization

Because of the dynamic allocation and initialization of named common blocks in virtual
space, the first program unit that calls the virtual storage allocator for a given common
block must have the same or larger size for the common block of any other program unit
and must be the only program unit with DATA initialization on it.  An exception to this is
when there are BLOCK DATA program units in the same element that are executed first.
A program unit presenting a request to the virtual storage allocator for an allocated
common block results in a run-time diagnostic when either:

� The requested size is greater than that originally allocated and the allocation can’t be
expanded

� Initialization is to be performed by this program unit

The virtual storage allocator keeps track of nonvirtual common blocks.  When one
subprogram indicates a common block is a virtual object and another says it is not, a
fatal run-time diagnostic occurs.

When a nonvirtual common block has dynamic initialization due to a DATA statement in
a given program unit and the common block is already referenced by another program
unit, a run-time diagnostic also occurs.

M.7.3. Page Spanning

A major restriction of virtual FORTRAN is:

No portion of a scalar or array element may span from one virtual page to the

next.

The compiler is not aware of the page size to use unless a main program is present in the
compilation unit.  Thus, for many instances it can’t diagnose a scalar or array element
that illegally spans a page boundary.  So, the generated code calls a span-check routine
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for each referenced variable that has a potential spanning problem.  A run-time
diagnostic occurs when a problem exists.

Example:

VIRTUAL /C1/
COMMON /C1/ R,DP(400000),R2(100000) 
COMPILER(PAGESIZE=4K) 
REAL R,R2 
DOUBLE PRECISION DP
    .
    .
    .

This program is in error.  The double-precision array DP will have spanning problems on
page sizes from 4K to 64K, and can also span on a 128K page size when the common
block is allocated far enough into the virtual page.  Change the program to place the
double-precision array DP on a double word boundary.  One method is:

COMMON /C1/ R,TRASH,DP(400000),R2(100000)

Insertion of the variable TRASH puts array DP on a double-word boundary.  Run-time
diagnostics appear when bank spanning is detected.

Arguments also pose a problem.  Bank spanning can occur when the size or type
declared for the dummy argument isn’t the same as that declared for the actual argument
passed.  Examples include:

� passing a REAL array, but declaring it as DOUBLE PRECISION or COMPLEX in the
called routine

� a mismatch on size declarations on actual and dummy character arguments (these
can be either scalars or arrays)

To detect a bank-spanning problem on arguments from any of the above causes, a
span-checking routine is called on entry to a subprogram to check its arguments.  A
run-time diagnostic occurs for each argument with a problem.

This span-checking routine is not called for arguments when optimization is used or
when a COMPILER(ARGCHK=OFF) statement is in the called routine.  It is handled like
the normal ASCII FORTRAN argument type-checking routine (for being called or not
being called).

Example:

    VIRTUAL /C1/,/C2/
    COMMON /C1/C4(9000) 
    COMMON /C2/R(9000) 
    CHARACTER*4 C4 
    REAL R
C
C       Arrays C4 and R can’t incorrectly span banks; they start on
C       acceptable boundaries.
C
    CALL SUBR(C4(1),R(2))
           .
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           .
           .
    SUBROUTINE SUBR(C,DP) 
    VIRTUAL COMPILER(ARGCHK=OFF) 
    CHARACTER*11 C(4000) 
    DOUBLE PRECISION DP(3000)
C
C      These actual to dummy argument type-
C      mismatches may cause spanning problems.
C
           .
           .
           .

Program execution errors can result because bank spanning can occur on some array
elements, depending on virtual page size, where the common blocks are allocated in
them, and which array elements are referenced.  When dummy argument arrays have an
asterisk (*) as the last dimension, the extent of the array is unknown and no
span-checking function takes place.

Example:

SUBROUTINE INTX(C,X,Y,N,COK)
VIRTUAL 
CHARACTER*(*) C(*),COK(9991,N) 
DOUBLE PRECISION X(N,*) 
COMPLEX*16 Y(100,N,*)

Only array COK can be span-checked in this example.

M.8. Character Arrays
Code generated to reference a character array uses a compiler-generated variable
referred to as a virtual origin variable.  The virtual origin variable contains the address of
the array manipulated to simplify index calculations.  The virtual origin of a character
array whose element size is not a multiple of four characters (including all
CHARACTER*(*) arrays) is kept in character address form (for example, base address
times four).  When the array is in virtual space, its base address is a virtual address.
When the run-time library element F2BDREQU$ (see M.10) is changed to use BDR3 for
referencing virtual space, the D-bit of the BDR field is shifted up to make the virtual
origin value overflow and become negative when using 128K banks for virtual space.  All
other virtual bank sizes don’t cause a problem.  Therefore, the following restriction is
placed on the use of virtual FORTRAN:

A program defining a virtual or dummy character array whose element size is not a
multiple of four characters results in a run-time diagnostic when the collected bank
size is 128K and BDR3 is used for virtual space.

There is no problem with 128K banks when the default BDR1 references virtual space.
The span-check routines issue the diagnostics for this nonmultiple-of-four character
array problem for 128K banks.
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M.9. Banking and BDR Use
The D-banks used for virtual pages start near the end of the standard 262,143-word
address space: 262,144 minus page size minus 512. Don’t overlap this address space with
the control bank or other banks.

M.10. Hidden User Banks
When on dual-PSR machines, you can use the utility PSR that is not used for the virtual
banks, as long as its use is hidden from ASCII FORTRAN.  You must define the banks in
the collector symbolic and manage all basing of banks under that window.  ASCII
FORTRAN treats items in these user banks as if they are in the control bank.  BDIs
should never be passed for arguments in user banks; instead, a BDI field of zero should
be passed so that ASCII FORTRAN treats the items as unbanked (that is in the control
bank).  This happens automatically for FORTRAN programs when nonvirtual common
blocks are included by the IN directive in the user banks.

When hidden user banks are used, the following rules apply:

� When a named common block is in a hidden bank, it may not be referenced from a
FORTRAN subprogram with a COMPILER(BANKED=ALL) statement in it.

� User banks can’t overlap in address space with any other program banks (I-banks,
control bank, or virtual banks).

� Two BDRs simultaneously basing banks with overlapping address space are not
allowed.

� A virtual bank must not be based under a BDR used for user banks.

� A request for storage by an MCORE$ statement on the control bank must not
overlap address space with user banks.

� No FORTRAN-generated code (location counters 0, 1, and 4 in an ASCII FORTRAN
compilation) should be placed in hidden user banks.

The utility I-bank BDR (BDR1) is used to base the virtual banks. When you are using this
BDR for FORTRAN banked space, or for your own use hidden to FORTRAN, the utility
D-bank BDR can be used instead for virtual space.  The run-time library element
F2BDREQU$ holds EQU values for the BDRs, as follows:

VBDR$ BDR used for virtual space

BKBDR$ BDR used for banked space

CBDR$ BDR used for the control bank

When your program is not collected according to these conventions, you must edit
F2BDREQU$ and reassemble it.
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M.11. Performance
Virtual FORTRAN adds the ability to define and use large user objects such as scalar
variables and arrays to the ASCII FORTRAN system.  Referencing a virtual object
requires more code than referencing a nonvirtual object, so only put larger objects in
virtual space (an object here means an array or scalar variable).  When a large common
block has mostly large arrays, you can place the larger arrays in a new common block
that is then placed in virtual space.  This leaves the smaller items in nonvirtual space,
which is more efficient to reference.

The software paging of virtual FORTRAN is similar to the virtual memory architectures
of other manufacturer’s machines.  Improper use of a large user address space in these
machines often means disaster for you.  This is also true for the ASCII FORTRAN virtual
system.  CPU performance and page traffic depend on what you do and don’t place in
virtual space, as well as on how you use it.  It is possible to cause dramatic CPU
performance and page-traffic changes by a simple reordering of key loops in some
programs.  A program that goes through a large amount of virtual space referencing one
item per page doesn’t execute in a reasonable amount of time.

A program that uses a large amount of virtual space takes some setup time.  This is
because even static virtual space is dynamically allocated and initialized, and each bank
must have its correct size allocated by an ER to MCORE$.  The overhead involved with
allocation of virtual space is incurred only once per program.  For a program with a large
amount of virtual space, this overhead is not unreasonable.

M.12. Thrashing
On virtual storage machines, your user address space is broken into pages for purposes
of swapping.  A reference to something in a nonresident page automatically brings that
page into real memory.  Resident pages not currently being referenced are swapped out
by the operating system when storage becomes scarce.

In the ASCII FORTRAN virtual system, the pages reside in the D-banks defined by the
main program’s INFO-11 directives.  The allowable page sizes are 4K, 8K, 16K, 32K, 64K,
and 128K words.  You select the page sizes in your main program.  Large page sizes can
cause thrashing when your reference pattern doesn’t result in a reasonably sized
working set of pages.  Avoid large page sizes unless necessary for a larger virtual address
range.  Programs that need a very large address space (i.e., 4 million words or more)
should be run when the system is lightly loaded.

When a program takes excessive wall clock time to execute in comparison to the SUP
times accumulated, thrashing is occurring.  Look for loops in your program that
reference virtual objects inefficiently.

Example 1:

The following program defines and references its data in an inefficient manner:

    SUBROUTINE COMP
    VIRTUAL /CB1/,VEC 
    COMMON /CB1/A1(2000,2000),B(2000,2000)
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    REAL VEC(2000) 
    DO 5 K = 1,2000
5          VEC(K) = 0.0
    DO 10 J=1,2000 
    DO 10 I=1,2000
10         VEC(I) = A1(J,I) - SIN(B(J,I))
            .
            .
            .

The inner loop of this program references three separate virtual pages on each iteration,
and two of these pages are referenced for only a very few iterations before a bank
change occurs.  The local vector VEC isn’t that large (2,000 words) and should not be
placed in virtual space when used in this manner.

Example 2:

The following variation on the above program segment is essentially equivalent, and
greatly reduces page traffic and thrashing:

    SUBROUTINE COMP
    VIRTUAL /CB1/ 
    COMMON /CB1/A1(2000,2000),B(2000,2000) 
    REAL VEC(2000) 
    DO 5 K = 1,2000
5               VEC(K) = 0.0
    DO 10 J=1,2000 
    DO 10 I=1,2000
10              VEC(I) = A1(J,I) - SIN(B(J,I))
                  .
                  .
                  .

In this code sequence, there are many references to a page before it is no longer needed.
The working set of pages referenced by the program changes very slowly with time.  In
addition, page traffic and bank swapping by the operating system are substantially
reduced.

The Dynamic Allocator (DA) in the Executive controls storage allocation and swapping;
thus, its operation directly influences the thrashing potential of a program.  An executing
program must have the ability to accumulate a reasonable working set of resident pages
or thrashing occurs.  DA modifications improve its operation in this area.  The changes
are called the PEF-1 package.  This package is available starting with Exec level 38R1.
This DA enhancement is needed for a program that heavily uses a large amount of virtual
address space.
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M.13. CPU Performance

M.13.1. Generated Code

When you make a reference to a virtual object, the ASCII FORTRAN compiler must
generate a decomposition code sequence.  This can add three to seven machine
instructions to a simple reference of an array element.  One of these instructions is
either an LBJ, which is a very slow instruction, or a link to an activation run-time
routine.  There are several variations of code sequences that reference items in virtual
space.  Some of these sequences have a test around the LBJ instruction or around the
link to an activation run-time routine.  These test sequences are used when the
probability of a bank change occurring is low.  For example:

A (I) = A (I+100) - A (I-1)

The decomposition code sequences are generated when referencing an array that is
known to be in virtual space by its declaration, or is a dummy argument.  It is not known
whether an argument is in virtual space or not, so a special virtual code sequence must
be used when a VIRTUAL statement is in the subprogram.

Scalar arguments or scalars in virtual space must also be activated. No decomposition
sequence needs to be done, but an LBJ (and possibly a preceding test instruction) must
be executed to reference the scalar. Since scalars take up little space, we strongly
recommend that you place as few scalars as possible in virtual space.  For heavy use of
scalar dummy arguments in a subprogram, it is faster to move them to local variables in
the subprogram to cut down on unnecessary LBJ instructions that can cause unwanted
page traffic to occur.

A scalar in virtual space that resides wholly under a relative of address 2K in its location
counter has better code generated to reference it.  A full decomposition sequence need
not be generated, though the LBJ activation is still needed.  The LBJ is expensive and
can cause page traffic, so we again recommend that you keep scalars and small arrays
out of virtual space.

ASCII FORTRAN-generated code uses index registers to reference all data when the O
option (over 65K addressing option) is used.  This is normally needed when the last
address of the collected program is over 65K.  Use of this option may be needed in a
virtual FORTRAN program when the control bank that holds all nonvirtual data is too
large, and truncation errors result during collection.  However, the location and size of
the banks defining virtual space do not affect use of the O option.  The code generated to
reference nonvirtual data is faster without the O option.  Therefore, the O option is not
assumed by default.

M.13.2. Input/Output

M.13.2.1. Striping and Implied-DOs
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A system that needs a large amount of virtual space may also need to do a large amount
of I/O on these large arrays for input and results.  Unformatted I/O on a whole large array
does striping to avoid heavy addressing arithmetic and LBJ usage.

Example:

VIRTUAL A
REAL A(2000,1000) 
READ(10,END=20,ERR=22) A

An implied DO in the I/O statement causes CPU usage on the statement to increase
dramatically, because the compiler generates codes for each element reference and a
control transfer occurs between this code and the I/O complex for each array element.

Example:

VIRTUAL A
REAL A(2000,1000) 
READ(10,END=20,ERR=22)((A(I,J),I=1,2000),J=1,1000)

You often want to do a large block of I/O from a contiguous area of an array but cannot
simply use the whole array name as a list item because of one of the following:

� The starting point is a variable.

� The end point is a variable.

� You only want to do one column of a multidimensional array.

Thus, you can use only the inefficient implied DO in the I/O list.

Example:

SUBROUTINE X(NSTRT,NEDN,A,INX)
COMMON/CX/C(100000),C2(4000,20) 
DIMENSION A(2000,1000) 
READ(10) (A(I),I=NSTRT,NEND) 
READ(11) (C(I),I=NSTRT,NEND) 
WRITE(12)(C2(I,INX),I=1,4000) 
END

You can change the previous example to do more efficient whole-array I/O by the
method shown below:

SUBROUTINE X(NSTRT,NEND,A,INX)
COMMON/CS/C(100000),C2(4000,20) 
CALL ARYIO(.TRUE.,10,A(NSTRT),NEND-NSTRT+1) 
CALL ARYIO(.TRUE.,11,C(NSTRT),NEND-NSTRT+1) 
CALL ARYIO(.FALSE.,12,C2(1,INX),4000)

SUBROUTINE ARYIO(READ,UNIT,ARY,SIZE)
LOGICAL READ 
INTEGER UNIT,SIZE 
REAL ARY(SIZE) 
IF (READ) THEN   
   READ(UNIT) ARY
ELSE   
   WRITE(UNIT) ARY
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ENDIF
END

Note: This method applies to FORTRAN programs that either do or do not use

virtual space.

M.13.2.2. Buffer Sizes

When you do unformatted I/O on large arrays, the OPEN statement should specify a
reasonable block size and segment size.  The defaults of 111 words for segment size and
224 words for block size are not appropriate when transferring millions of words of data
(see Appendix G and 5.10.1).  Control bank space is used for I/O buffers.  You cannot
define very large buffer sizes such as 300K words.

M.13.2.3. NTRAN$

The NTRAN$ service subprogram can do very efficient, primitive I/O on any size virtual
object.  (See 7.7.3.16.1 and 7.7.3.16.2.)

M.13.3. Intrinsic Functions

The ASCII FORTRAN compiler moves banked or virtual array elements to local storage
when these are passed as arguments to selected mathematical intrinsic functions.

M.14. Timings
The following tests show the effect of various addressing decomposition code sequences
on execution times.  The results are also compared to nonvirtual FORTRAN timings.
The basic test is a simulation of the following FORTRAN program segment:

      REAL A(1048576),B(1048576),C(1048576),D(1048576)
      DO 10 I = 1,1048576
10    A(I) = B(I)*C(I) + D(I)

Several different decomposition code sequences are run (called A, B, C, D, E, etc., in
Table M-1), some having tests around the LBJ instruction or activation call.

This program shows ASCII FORTRAN nonvirtual code-generation capabilities in the best
light, since all array references are strength-reduced and a free auto-increment can be
done on X-registers for each array reference.  It is an inefficient example for the virtual
approach since each array reference requires a full decomposition sequence and LBJ.
Real programs are never nearly as optimizable for ASCII FORTRAN as this one, and are
hopefully not as inefficient as this one is for virtual FORTRAN.
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Test setups:

� TEST1:

Four simulated one-million-word arrays, each getting eight 128K banks.  (The arrays
are 1,048,576 words each, octal 04000000.)

� TEST2:

Four 32K arrays all in one bank.  An outer loop brings the number of iterations up to
be the same as the four one-million-word arrays.  The purpose of this test is to see
what effect the test instructions skipping around the LBJ or activation calls has.

The following control tests are done for comparison purposes using ASCII FORTRAN
level 10R1 with compiler options O and Z.  An outer loop brings the number of iterations
up to one million.

� TEST5:

No banking.

� TEST6:

Banking, all arrays in one bank, a BANK statement is supplied to the compiler.

� TEST7:

Banking, each array in a different bank, four BANK statements are supplied to the
compiler.

� TEST8:

Banking, all arrays in one bank, no BANK statements, but BANKED=ALL used to
indicate banking.

� TEST9:

Banking, each array in a different bank, no BANK statements, but BANKED=ALL
used to indicate banking.

In Table M-1, the VA/addr column gives the registers that the virtual address is taken
from, and the register that the absolute address resides in after activation.  Ax means a
single Ax- register such as A0, A1, A2, A3.  Pair means an even-numbered non-Ax-register
pair, such as A4-A5, A6-A7.

Example:

A/Ax

The VA is in an A-register, and the absolute address is in an Ax-register after activation.
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Table M-1.  Timings (in seconds)  

Code
Sequence

Added
Instr.
/Ref. VA/Addr.

TEST1
Time

TEST2
Time

Activate
Link

Nontest Sequences C

EAO

5

6

Ax/Ax

Pair/Ax

20.93

21.15

20.93

21.15

LBJ

LBJ

Nonargument Test
Sequences

TLEABS1

FAO

4

6

Ax/Ax

Pair/Ax

27.71

25.16

10.44

10.87

LMJ

LMJ

Argument Sequences TLARGB

TLARGU

5

6

Ax/Ax

Pair/Ax

29.82

31.11

12.60

15.09

SLJ

SLJ

 

Control Tests (FTN 10R1):

Test Time Comments

TEST5 2.663 Control test, no banking done

TEST6 2.647 One LBJ per 32K iterations

TEST7 14.991 Four LBJs per iteration

TEST8 6.748 One SLJ, total

TEST9 33.902 Four SLJs per iteration

 

These tests were done on an 1100/80 system using a UNISCOPE 200 display terminal.
We obtained CPU timings by executing a TIME program before and after each execution.

M.15. Efficiency Suggestions
� Avoid using the ALL option of the VIRTUAL statement because it places all named

common blocks into virtual space.  Separate out the largest arrays, and put those
arrays into one or more common blocks in virtual space.  (Large local arrays can
also be named in the VIRTUAL statement.)

� Keep scalers and small arrays out of virtual space as much as possible.  When heavy
use of scalar arguments occurs (especially in loops), move them to local variables
after subprogram entry and use the local copies in the subprogram.  (The compiler
often does this itself, when it is safe to do so.)

� When a subprogram has many array arguments that you know are usually in
nonvirtual space, drop some of these arguments and use nonvirtual common
instead.
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� When possible, organize your code so that references to items in virtual space
iterate in small increments, rather than randomly or in large increments.  This can
minimize bank switching and thrashing.  

Note: Using the MOVWD$ service subprogram to move data from one array to

another often aids efficiency.

� Increase the default buffer sizes for files having heavy unformatted I/O on large
arrays.  Use whole arrays for I/O list items when possible.  See the method shown in
M.13.2.1.

� Use the smallest bank size possible for virtual space to help minimize thrashing
potential.

M.16. Argument Forms
When arguments pass to a FORTRAN program, a packet is generated that contains one
address word for each argument.  There are four address forms that can pass for an
argument in ASCII FORTRAN.

where 0 is size n and offset is 18- n; see Form D explanation below.

The 6-bit BDR field in forms C and D is set as follows (the bits are numbered from left to
right, starting at 1 by the FORTRAN convention):

� Bit 1:  0

� Bits 2 - 3:  BDR number.
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BDR1 Utility I-bank

BDR2 Main D-bank

BDR3 Utility D-bank

� Bits 4 - 6:  0

The different forms are used for the following purposes:

� Form A is passed for arguments known to be in the control bank at compile time.
This includes nonvirtual and nonbanked data (local and common), constants, and
temporaries (expression results).

� Form B is passed for arguments that are banked items declared with the standard
banking mechanism (the BANKED=ALL COMPILER statement option or a BANK
statement with a common block list).  Form B is also used in I/O packets and
packets for character run-time routine calls.  In addition, it is used internally by
generated code for certain character array arguments when VIRTUAL is on.
Normally, a form B address converts to a form C address for internal use by
compiled code.

� Form C is used when passing a dummy argument as an actual argument when
BANKED=DUMARG is on, and for passing a dummy scalar argument as an actual
argument when VIRTUAL is on.

� Form D, the virtual address form, is passed for variables in virtual space.  The BDR
can be 1 or 3 (it is defined in element F2BDREQU$).  It cannot be 0 or 2 because
then a virtual address is not unique (that is, forms C and D look identical).  Form D
is used for virtual items only.  The bit size n is defined according to the virtual bank
size as follows:

Virtual Bank Size Value of n

4K 6

8K 5

16K 4

32K 3

64K 2

128K 1

 

Note: K mean 1,024 words.

There is no ambiguity between the four forms because of the BDR field used in forms C
and D.  This field is used by subprogram prolog code and run-time routines to distinguish
between the forms.
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To get this uniqueness of forms, the following assumptions are made concerning the
maximum number of pages in the program:

500 when banking with no virtual

500 when virtual with bank size 4K

1,000 when virtual with bank size 8K

2,000 when virtual with bank size 16K, 32K, 64K, or 128K

Note: The defaults are 200 pages of 32K words each.

Nonvirtual FORTRAN with standard banking handles forms A, B, and C.  Virtual
FORTRAN handles all four argument forms.

M.16.1. Processing Dummy Scalars

In a virtual FORTRAN subprogram-generated code, dummy scalar references use a
banking sequence that involves an LBJ (or test and LBJ), but no virtual address
decomposition.  Therefore, dummy scalars must have their argument words converted
to form C by a run-time call in the subprogram prolog code.  In nonvirtual FORTRAN
with standard banking, a banking sequence and form C are used for all dummy scalars
and dummy arrays.

M.16.2. Processing Dummy Arrays

A large number of decomposition code sequences can be used on a virtual address.
Arguments pose a special problem since it cannot be determined at compilation time
that they are in virtual space.  When these dummy arguments are not in virtual space,
they need not be activated by an LBJ since they are always visible.  A coding sequence
manipulating fields of a virtual address has a problem when used on an array argument
that is in nonvirtual space. Once the array is indexed past the collected virtual page size,
a BDI switch occurs.  This would mean that a program using 4K-sized virtual pages
cannot safely pass a control bank (nonvirtual) array larger than 4K words in size as an
argument.  This would be a poor restriction.  There are other activation sequences that
do not do a simple decomposition into fields.

Assume that two words in each ID area (RANGEABS and RANGEABS+1) give the
absolute address range for that virtual page.  Another ID area word (MAGICCELL) is
structured such that the virtual address of any word in that bank added to the word gives
the absolute address of that word.  Assuming that register X10 points at the virtual ID
area, the following range test code sequence is possible for items declared in virtual
space.

Sequence TLEABS1:

.

.                         .VA ->  A0, VA means virtual address
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.
A A0,MAGICCELL,X10        .Make absolute address if visible
TLE  A0,RANGEABS+1,X10    .Address too big?
TLE  A0,RANGEABS,X10      .No. Too small?
LMJ  X11,ACTA0            .Wrong bank visible, fix it.
.
.                         .Use address in A0
.

An argument may or may not be in virtual space, so the canned X10 pointer to the virtual
ID area is insufficient; a control bank argument would always cause an out-of-line
activation call.  So, each argument needs an associated ID area pointer to be used by a
variation of the above sequence.  (Even the control bank has an ID area.)

Sequence TLARGB:

.

.                         .VA ->  A0, VA of elt of X to A0

.
L X11,ARGXIDPTR           .Ptr to ID area for arg X
A A0,MAGICCELL,X11        .
TLE  A0,RANGEABS+1,X11    .
TLE  A0,RANGEABS,X11      .
SLJ  X11,ACTA0X           .
.
.                         .Use address in A0
.

The control bank ID area defines its absolute address range in cells RANGEABS and
RANGEABS+1 as FIRST$ to 0777777.  The control bank ID area has a MAGICCELL of
zero and argument prolog code uses an absolute address for control bank array
arguments rather than a virtual address when creating the virtual origin variable for a
dummy array.  Use of range test sequences like the above on array arguments means
that:

� the code sequence works correctly for both virtual and nonvirtual arguments

� no bank needlessly activates when already based, even control bank arguments

� artificial size restrictions do not have to be placed on nonvirtual arrays when they
are passed as arguments (even when they are in banked space)

These test sequences are used to reference dummy array arguments.

M.16.3. Example of Argument Forms Passed

The following example has items in virtual space, banked space, and the control bank:

SUBROUTINE x(e,b)
VIRTUAL /C1/ 
COMPILER(BANKED=ALL) 
COMMON/C2/c(1000) 
DIMENSION e(100000) 
COMMON /C1/d(10000000) 
CALL y( 1, b, c(i), d(i), e(i) ) 
END
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The following list shows the address forms in the parameter packet passed to subroutine
y from subroutine x:

Argument Description of Argument Address Form

1 Constant (control bank) A

b Dummy scalar C

c (i) Element of banked array B

d (i) Element of virtual array D

e (i) Dummy array element A, C, or D

 

When dummy array e is a control bank array, form A is passed; when e is in virtual
space, form D is passed; and when e is an array in banked space, form C is passed.

M.17. Library Utility Routines

M.17.1. VACTIV$

Purpose:

Use VACTIV$ to base an item’s bank and return its absolute address.  Only experienced
programmers should use this routine.

Form:

L     A0,address
LMJ   X11,VACTIV$

Description:

Use the VACTIV$ linkage protocol from MASM routines only.  It is called from the
FORTRAN library, including I/O, and user MASM routines to base an item’s bank (if it
has not already been based) and returns its absolute address.  It replaces the old ACTIV$
routine that could not handle virtual addresses.  The linkage is LMJ X11,VACTIV$.
VACTIV$ is in the control bank, so an IBJ$ or LIJ need not be done.  All registers are
restored except X11 and A0.

Example:

Input:

A0 has an address in one of the four forms: A, B, C, or D.
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Output:

H2 of A0 contains the item’s absolute address.  Also, the item’s bank is based. 

Note: H1 of A0 may be nonzero on the return.

M.17.2. Service Routines

Several routines aid you in enhancing CPU performance of virtual or banked programs.
With the exception of the MOVWD$ and MOVCH$ routines, the following routines
should be used only by programmers skilled in the use of assembly language and familiar
with multibanking and the ASCII FORTRAN subprogram linkage conventions.  The
MOVWD$ and MOVCH$ routines, on the other hand, are easy to use, and their use in a
few key places enhances performance.  All of these routines can be called from
FORTRAN programs.

Several examples can be found in M.17.4, following the presentation of all of the
routines.

M.17.2.1. LOCV$

Purpose:

LOCV$ is an extension of the ASCII FORTRAN LOC service subprogram that handles
virtual addresses.

Form:

I = LOCV$(arg)

where arg is a FORTRAN variable.  The argument can be in the control bank, in banked
space, or in virtual space.

Description:

The address of the passed-argument is returned.  The form A address word is returned
when the argument is in nonvirtual space.  A form D address word is returned if the
argument is in virtual space.  

Note: When the item is type character, its offset is ignored.  The address word

passed for the argument can be in one of the forms A, B, C, or D.  An item in

virtual space can only have a form C or D address word.

M.17.2.2. CVVA$F

Purpose:

CVVA$F returns information about the bank in which the argument resides.
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Form:

DP = CVVA$F(arg)

where arg is a FORTRAN variable.

Description:

This routine returns information in registers A0 and A1.  The address returned in register
A0 is in one of three forms: A, C, or D.  The form A address word is returned for a control
bank argument, form C is returned for an argument in banked space, and form D is
returned for an argument in virtual space.  Register A1 holds the ID area pointer for the
bank in which the argument resides.

When you want both results, type the function as DOUBLE PRECISION.  Otherwise, type
the function as REAL or INTEGER.

Note: An ID area pointer for a bank has the BDR+BDI in H1, and H2 is the address

of the 64-word ID area for that bank.

M.17.2.3. CVBK$F

Purpose:

CVBK$F returns information about the bank in which the argument resides.

Form:

DP = CVBK$F(arg)

where arg is a FORTRAN variable.

Description:

This routine returns information in registers A0 and A1.  The address returned in register
A0 can be one of two forms: A or C.  The form A address word is returned for a control
bank argument, and form C is returned for an argument in banked or in virtual space.
Register A1 holds the ID area pointer for the bank in which the argument resides.

When you want both results, type the function as DOUBLE PRECISION.  Otherwise, type
the function as REAL or INTEGER.

M.17.2.4. CVBK$I

Purpose:

CVBK$I returns information on the BDI portion of the address contained in its argument.
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Form:

DP = CVBK$I(arg)

where arg is a FORTRAN variable holding an address.

Description:

CVBK$I is an indirect version of CVBK$F.  This routine returns information in registers
A0 and A1.  The address returned in register A0 is in one of two forms: A or C.  The form
A address word is returned for a control bank address, and form C is returned for an
address representing banked or virtual space.  Register A1 holds the ID area pointer for
the bank that the address represents.

When you want both results, type the function as DOUBLE PRECISION.  Otherwise, type
the function as REAL or INTEGER.

M.17.2.5. LBJ$IT

Purpose:

LBJ$IT performs an LBJ instruction to base a desired bank.

Form:

CALL LBJ$IT(arg)

where arg is a one-word FORTRAN variable or array element.  It holds a form C address
word for a bank that is to be based.  The address can be for virtual space, banked space,
or the control bank.

Description:

An LBJ instruction is done on the passed argument to base the desired bank.  Then a
return takes place to the caller.

Note: The argument is not checked for validity. H2 of the argument (the address) is

not used and need not be a valid address in the bank.

M.17.2.6. FTNWB$

Purpose:

FTNWB$ performs a full walkback trace.

Form:

CALL FTNWB$

Note: There are no arguments.
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Description:

This walkback call doesn’t pull the FTNPMD complex into your collected program.
When the FTNPMD complex is collected in your program, this call activates a full
walkback trace from the point of call; then normal execution resumes.  When the
FTNPMD complex is not collected in your program, the call has no effect.

Note: The FTNPMD complex is brought into a collection when one or more

FORTRAN relocatables are compiled with the F option, when you include

element FTNPMD1 in your collection with the INCLUDE directive, or when

you call the FTNPMD complex entry points FTNPMD or FTNWB in the

FORTRAN program.

M.17.2.7. MINE$F

Purpose:

The MINE$F routine is a strip-mining routine that is callable by a FORTRAN program.  It
is meant to be used as a primitive in strip-mining basic operations on virtual banks.

Form:

I = MINE$F(present,direct,next)

where (the arguments on input to MINE$F are):

present

is a variable holding an address in one of the forms A, B, C, or D.  You want to know
the number of words remaining in the bank indicated by this address.

direct

is an integer variable that indicates the direction taken to check the amount
remaining in the bank.

When direct .GE. zero, movement is forward.

When direct .LT. zero, movement is backwards.

The values that the arguments to the MINE$F routine contain when the function returns
are:

present

Unchanged.

direct

contains a signed integer value that indicates the remaining number of words in a
virtual bank.  When the present argument is not for virtual space, the value returned
is a positive or negative 0777776, depending on the direction as specified by the
direct argument on input.
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next

contains the form D address of the start of the next virtual bank when the flag in
direct is positive.  When the flag is negative, the virtual address points to the end of
the previous virtual bank.  When the present argument does not hold an address for
virtual space, the address returned in next is 0.

I

The function value returned is the original item address as held on entry in present,

but possibly changed to another form.  Two forms of output for I are:

1. The function result is a form A address when present holds a control bank
address.

2. The function result is a form C address when present holds an address for
banked or virtual space.

Description:

The caller wants to know the number of words remaining in a virtual bank from some
present point (present).  The FORTRAN variable present holds an address in one of four
forms: A, B, C, or D.  The direction can be forward or backward as indicated by direct

being positive or negative.  The function result can be used in an LBJ instruction to base
the bank where the stripe resides.

M.17.2.8. MOVWD$

Purpose:

The MOVWD$ routine moves word-oriented items efficiently.  It can also broadcast a
scalar item to an array.  Either source or target or both items can be banked or virtual.

Form:

CALL MOVWD$(source,srceincr,target,trgtincr,precision,itercount)

where:

source

is the item that is moved to a target.

srceincr

is an integer expression indicating the increment in elements to find the next source
item to be moved.  This increment can be positive, negative, or zero.  When the
increment is zero, the item is a scalar and the scalar is broadcast in the target array.

target

is the destination item that is filled from the source.
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trgtincr

is an integer expression indicating the increment in elements to find the next target
item to be stored to.  This increment can be positive, negative, or zero.  When the
increment is zero, the item is a scalar.

precision

is an integer expression indicating the number of words of storage per array element
of the source and target items.  The precision is assumed to be the same for both
source and target.  The values for precision are: one, two, or four words.

itercount

is an integer expression indicating the number of iterations or loops of this move.
For zero or negative values of itercount, no moves are done.  This form of a
zero-trip DO-loop allows you to easily replace simple loops that move data with
CALL statements to MOVWD$.

Note: Character items can be used for source and target items only when the

character items have no offset and the size of their array elements is one, two,

or four words.

Restriction:

If source and target overlap, and the target address is greater than the source address,
the move must be set up to start at the end of the source and target, and copy towards
the beginning.  A negative increment for both the source and target would be used to do
this.

M.17.2.9. MOVCH$

Purpose:

Use the MOVCH$ routine to move character items efficiently.  It can also broadcast a
scalar item to an array.  Either source or target or both items can be banked or virtual.

Form:

CALL MOVCH$(source,srceincr,target,trgtincr,itercount)

where:

source

is the character item to be moved to a target.

srceincr

is an integer expression indicating the increment in elements to find the next source
item that is moved.  This increment can be positive, negative, or zero.  When the
increment is zero, the item is a scalar and the scalar is broadcast in the target array.
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target

is the destination character item that is filled from the source.

trgtincr

is an integer expression indicating the increment in elements to find the next target
item to be stored to.  This increment can be positive, negative, or zero.  When the
increment is zero, the item is a scalar.

itercount

is an integer expression indicating the number of iterations or loops of this move.
For zero or negative values of itercount, no moves are done.  This form of a
zero-trip DO-loop allows you to easily replace simple loops that move data with
CALLs to MOVCH$.

Note: The target and source items do not have to be the same character lengths.  The

normal rules of truncation or filling with blanks for character assignment

statements are followed by the MOVCH$ routine.

Restriction:

If source and target overlap, and the target address is greater than the source address,
the move must be set up to start at the end of the source and target, and copy towards
the beginning.  A negative increment for both the source and target would be used to do
this.

M.17.3. Virtual Storage Allocator

There are three routines to allocate virtual storage.  Two allocate static virtual storage
for virtual common blocks and static local virtual variables.  One allocates and frees
dynamic virtual space for local virtual storage in the automatic class.  These routines are
called by generated code, or explicitly called by FORTRAN programs.

Note: The virtual storage allocators acquire about 500 words of control D-bank

storage by use of the MCORF$ routine.  Other utilities that you use can also

acquire storage in a similar manner.

M.17.3.1. SALC$P

Purpose:

The SALC$P routine allocates static virtual storage in a packed manner.

Form:

VA = SALC$P(cbnam,size,flag,base)

where:
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cbnam

is a one-word code (or name) used as a tag on this allocation.  It must be unique for
all allocations.  The compiler uses the common block name in Fieldata for virtual
common blocks.  It uses a created name for local static virtual space.

size

is the size in words of this virtual allocation.

flag

is either .TRUE. or .FALSE.   When .FALSE., this allocation is dynamically initialized
by the caller to simulate DATA statement operation.  It prints run-time diagnostics.

base

is set to the form C BDR-BDI/address of the first word of this allocation by the
virtual storage allocator.

Description:

The function result is the form D virtual address of the first word of this allocation.  The
virtual storage allocator SALC$P allocates size words of virtual space to the static
virtual object of name cbnam.  When the object already exists in virtual space, the
existing allocation is used.  When size is greater than the existing size on a previously
allocated object, an attempt is made to expand it.  Expansion is possible when the object
is the last one allocated in static virtual space or when there is room between the end of
its current allocation and the next allocation.

When expansion is not possible, a nonfatal run-time diagnostic occurs.  When the object
is already allocated and flag is .FALSE., indicating that the object undergoes dynamic
initialization on the return, a nonfatal run-time diagnostic occurs.

When the object is a common block and another program unit has already used the
common block but did not indicate it as being a virtual object, error termination occurs.
When not enough virtual space is available for the allocation, error termination also
occurs.

Note: The size and number of D-banks that virtual space uses is defined by the

main program or by the library element VSPACE$ when the main program is

not FORTRAN or does not contain a VIRTUAL statement.

The routine SALC$P allocates virtual space in a packed manner and is the compiler
default.  This means that each allocation starts where the last allocation left off instead
of at the beginning of a new D-bank.  However, all virtual allocations start on a 64-word
boundary in virtual space, and the first 2,048 words of an allocation are in one D-bank.
(The 64-word boundary minimizes potential bank-spanning problems, and the first 2,048
words being in one bank allows efficient coding to reference scalars in the first 2,048
words of a virtual common block.)

If a virtual array is to be expanded, it should be declared to be one element long.  This
tells the compiler to not make any assumptions about the size of the array.  Therefore,
the code that is generated can handle any size array that can fit in virtual memory.



Virtual FORTRAN

UP-8244.4-B M-31

M.17.3.2. SALOC$

Purpose:

The routine SALOC$ allocates static virtual space in an unpacked manner.

Form:

VA = SALOC$(cbnam,size,flag,base)

where:

cbnam

is a one-word code (or name) used as a tag on this allocation.  It must be unique for
all allocations.  The compiler uses the common block name in Fieldata for virtual
common blocks.  It uses a created name for local static virtual space.

size

is the size in words of this virtual allocation.

flag

is either .TRUE. or .FALSE.   When .FALSE., this allocation is dynamically initialized
by the caller to simulate DATA statement operation.  It prints run-time diagnostics.
When .TRUE., this allocation is not dynamically initialized.

base

is set to the form C BDR-BDI/address of the first word of this allocation by the
virtual storage allocator.

Description:

SALOC$ operates identically to SALC$P, except that it allocates virtual storage in an
unpacked manner, starting a new allocation at the beginning of a new D-bank.

M.17.3.3. DALC$P

Purpose:

The routine DALC$P allocates and frees dynamic local virtual space.

Form:

VA = DALC$P(size,base)

where:

size

is the size in words of this virtual allocation.  When negative, it is a deallocation call.
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base

is set to the form C BDR-BDI/address of the first word of this allocation by the
virtual storage allocator (allocation call only).

Description:

The function result is the form D virtual address of the first word of this allocation.
Dynamic virtual space is allocated in a LIFO (last-in-first-out) manner.  A deallocation
call size must be the negative of the allocation size, or error termination occurs.
Dynamic virtual space is allocated from the last virtual D-bank backwards, and static
virtual space is allocated from the first virtual D-bank forwards.  This separates the two
forms of allocation so that fragmentation of virtual space does not occur.  When not
enough virtual space is available for the allocation, error termination occurs.  On a
deallocation call the base argument isn’t set, and no function result is returned.

M.17.4. Examples Using the Virtual Feature

Example 1:

The following example shows changes that can be done to enhance performance of
programs that use virtual or banked space heavily.  This program does a simple sum
reduction of a REAL array.  The code is:

      PARAMETER(N=<size>)   
      REAL A(N), SUM    
      SUM=0    
      DO 10 I=1,N
10    SUM=SUM + A(I)  
      PRINT*,SUM

Now let’s define a service routine that performs a sum reduction, and replace the loop
with a call to it:

PARAMETER(N=<size>) 
REAL A(N),SUM,SUMRED  
SUM=SUMRED(A,N)  
PRINT*,SUM

The SUMRED service routine does a sum reduction by strip-mining portions of its input
array, basing the stripe to make it visible, and performing several adds in its inner loop to
hide the costs of storing the sum and the JGD instruction.  It references the source array
using base-offset type of referencing, which means it can access the source array in
virtual space, banked space, or the control bank.

      REAL FUNCTION SUMRED(SOURCE,ITER) 
      VIRTUAL    
      COMPILER(PROGRAM=BIG),(U1110=OPT)    
      IMPLICIT INTEGER(A-Z)    
      REAL SOURCE(*),DUM(1),DUMY    
      DEFINE DUMY(i)=DUM(i+OFF)  

      SUMRED=0    
      REMAIN=ITER    
      NOWDS=1                          @ go forwards in source    



Virtual FORTRAN

UP-8244.4-B M-33

      START=CVVA$F(SOURCE)             @ starting point in input array   
      LOCDUM=LOCV$(DUM)                @ abs. addr. of local array DUM
C
C  Calculate a stripe size and address, set up for
C  base-offset referencing using DUMY, base the stripe,
C  do a sum reduction on the stripe.
C
1     START=MINE$F(START,NOWDS,NEXT)  
      IF (NOWDS.EQ.0) RETURN  
      IF (BITS(START,1,18).NE.0)CALL LBJ$IT(START)  
      OFF=BITS(START,19,18)-LOCDUM     @ offset to stripe

      NUM=MIN(REMAIN,NOWDS)            @ # words in this stripe
      LITTLE=MOD(NUM,4)  
      DO 10 I=1,LITTLE                 @ do remains of MOD 4 first
10    SUMRED=SUMRED+DUMY(I)  
      DO 20 I=LITTLE+1,NUM,4           @ do most of the stripe
20    SUMRED=SUMRED+DUMY(I)+DUMY(I+1)+DUMY(I+2)+DUMY(I+3)    

      REMAIN=REMAIN-NOWDS  
      IF(REMAIN.LE.0)RETURN  
      START=NEXT  
      GO TO 1  
      END

This SUMRED example can be extended to have increments other than one.  Similar
routines can handle primitives other than sum reductions.

This program was executed on an 1100/80 system with an array size of 67,000 words.  It
was timed with the array in virtual space and in the control bank.  The original program
executed once with the simple loop and once with the modification to call SUMRED.

The following shows the 1100/80 system CPU timings in seconds:

Nonvirtual Array (in
Control Bank)

Virtual Array (32K
Banks)

Original Program 0.1141 0.3118

Program Modified to Call
SUMRED

0.0637 0.0638

 

There are 67,000 floating-point adds performed.  Using the 0.0638- second time, that is
over one million floating-point operations per second (one MFLOP).

Even the nonvirtual sum reduction has its CPU time cut approximately in half by calling
SUMRED.  This is due to the SUMRED routine stringing out the inner loop by doing four
operations per iteration.  The original program can also do this.

Example 2:

The following example shows the use of the MOVWD$ call to enhance performance on
an inner loop:
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      SUBROUTINE SUB(ARG,N) 
      VIRTUAL/CX/    
      COMMON/CX/C(2000,2000)    
      REAL LOCAL(2000),ARG(2000)    
      DO 10 I=1,2000 
   
      LOCAL(I)=C(I,N)
10    ARG(I)=C(I,N+1)
         .
         .
         .

The loop can be replaced by:

CALL MOVWD$(C(1,N),1,LOCAL,1,1,2000) 
CALL MOVWD$(C(1,N+1),1,ARG,1,1,2000)

The subprogram SUB is called 100 times from a driver, where the N passed as the second
argument is the loop index. Timings are done on the original program, the program
modified to call MOVWD$, with variations of the argument array being in the control
bank or in virtual space.  The default page size (32K words) is used for virtual space.

The following shows the 1100/80 system CPU times in seconds:

ARG Array in Control
Bank

ARG Array in Virtual
Space

Original Program With a Loop 1.508 3.226

Program Modified to Call
MOVWD$

0.106 0.157

 

When MOVWD$ calls can replace a loop, it is usually much more efficient than the
original loop.  When the target or source items are banked objects, virtual objects,
banked dummy arguments, or virtual dummy arguments, a speed-up factor of 10 to 20
can result.  The number of words to be moved must be large enough to cover the setup
cost.  A call to MOVWD$ to move 40 words or less is of marginal benefit over regular
compiled code.

Example 3:

MOVWD$ can also be used to broadcast a scalar in an array as the following example
shows:

Original Program:

     REAL A(10000) 
     COMPLEX C(20000),CX  
     DO 10 I=1,10000  
     A(I)=2.0  
     C(I*2-1)=(1.0,0.)
10   C(I*2)=CX 
       .
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       .
       .

This program can be modified as follows:

REAL A(10000) 
COMPLEX C(20000),CX  
CALL MOVWD$(2.0,0,A,1,1,10000)  
CALL MOVWD$((1.0,0),0,C(1),2,2,10000)  
CALL MOVWD$(CX,0,C(2),2,2,10000)
       .
       .
       .

This program segment executed 20 times in both the original and modified form.

The following shows the 1100/80 system CPU times in seconds:

Nonvirtual (Arrays in
Control Bank) Virtual Arrays

Original Program 1.294 2.787

Modified Program to Call
MOVWD$

0.410 0.414

 

M.17.5. User-Controlled Dynamic Storage Allocation Examples

The FORTRAN language has only static and dynamic data classes for user variables.
Common is always in the static class, and local variables can be placed selectively into
either the static or dynamic class.  Often a program needs to obtain space in a more
controlled manner than this, like PL/I’s BASED storage.  You can simply allocate
portions of a larger array as space is needed. 

Method 1:

      SUBROUTINE GETDAT(RSIZ,DATAI) 
C
C          This routine is entered periodically to acquire a buffer of
C          size rsiz and initialize it.  Later, all of the buffers acquired
C          are processed elsewhere as a group.
C
      COMMON /BUFFRS/ BUFRS(40 000)    
      INTEGER RSIZ,RECEND,NORECS,RECINX,RECSIZ    
      REAL BUFRS,RECORD,DATAI    
      COMMON /BUFDSC/ RECEND,NORECS,RECINX(500),RECSIZ(500)    
      DEFINE RECORD(I) = BUFRS(I+RECINX(NORECS))    
      DATA NORECS,RECEND/0,0/    
      NORECS = NORECS + 1    
      IF (NORECS .GT. 500 .OR. RECEND+RECSIZ .GT. 40000) THEN     
         STOP ’Allocation overflow’    
      ENDIF  
      RECINX(NORECS) = RECEND             @ Remember record location
      RECSIZ(NORECS) = RSIZ               @ and its size.     
      RECEND = RECEND + RSIZ              @ New start point for next time
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      DO 10 I = 1,RSIZ                    @ Initialize new record
10    RECORD(I) = AMOD(FLOAT(I),DATAI)   
      END

Other program units can access the various records in the buffer pool by using statement
functions similar to RECORD in the preceding example.

If the 40,000-word area in the preceding example is not sufficient, the buffer area can be
expanded and placed into virtual space as follows:

SUBROUTINE GETDAT(RSIZ,DATAI)   
VIRTUAL /BUFFRS/  
COMMON /BUFFRS/ BUFRS(4 000 000)          @ Note, 4 million words
     .
     .
     .

This method uses a large virtual object as a buffer source and has an unfortunate side
effect.  The D-banks used for virtual space are dynamically based and space is acquired
dynamically by an MCORE$ Executive Request by the first program unit to reference the
virtual object.  When the amount of buffer space needed is quite variable (thereby
forcing a large maximum size), but usually only a small amount of space, the additional
virtual space acquired is wasted.  The full declared size is allocated, resulting in
unnecessary additional start-up time and an unnecessarily large allocation of system
swap file.  A method using the virtual storage allocation routines can be used that does
not have these undesirable side effects.  It is almost identical to the method using
MCORF$ for acquiring control D-bank space dynamically.

Method 2:

      SUBROUTINE GETDAT(RSIZ,DATAI)
C
C           This routine is entered periodically to acquire a buffer of
C           size rsiz and initialize it.  Later, all of the buffers acquired
C           are processed elsewhere as a group.
C
      VIRTUAL /BUFFRS/    
      COMMON /BUFFRS/ BUFRS(2050)    
      INTEGER RSIZ,NORECS,RECINX,RECSIZ    
      INTEGER LOCV$,SALC$P    
      REAL BUFRS,RECORD,DATAI    
      COMMON /BUFDSC/ NORECS,RECINX(500),RECSIZ(500)    
      DEFINE RECORD(I) = BUFRS(I+RECINX(NORECS))    
      DATA NORECS/0/    
      NORECS = NORECS + 1    
      IF (NORECS .GT. 500) THEN     
           STOP ’Allocation overflow’    
      ENDIF
C
C          Note:  We use the record index as the name of our
C          virtual allocation for this record.
C
      I = RSIZ    
      RECINX(NORECS)=SALC$P(NORECS,I,.TRUE.,TRASH)-LOCV$(BUFRS)
C
C          “I” passed to SALC$P instead of RSIZ, since RSIZ could be
C          in virtual or banked space.
C
      RECSIZ(NORECS) = RSIZ  
      DO 10 I = 1,RSIZ              @ Initialize new record
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10    RECORD(I) = AMOD(FLOAT(I),DATAI)
      END

Note: The various arguments passed to the virtual storage allocator must not be in

virtual or in banked space.

This program acquires a portion of virtual space dynamically for each record.  There is
no wasted space, no undesirable start-up overhead, and no unnecessary use of the
system swap file.  The sections of virtual space acquired can be separated from one
another by allocations for virtual common (or static local) initiated by other
subprograms.

One difference of the preceding method is that you can’t easily do a collection process to
compact your buffer space.  When buffers must be capable of being released, it is better
to use the first method of directly allocating out of an array or to use the modification
described next.

There is a side effect of ASCII FORTRAN’s virtual allocation mechanism that can
eliminate the overhead of unused virtual space.  When the virtual storage allocator is
asked to allocate an object that is already in static virtual space, it attempts to expand
the existing allocation when the requested size is greater than the existing size.  A small
amount of expansion is possible when there is unused space between the end of the
current allocation and the start of the allocation of the next virtual object.  Multiple
open-ended expansions are possible for an existing virtual allocation when it is the last
object that is allocated in virtual space.  Your allocation routine then must simply ensure
that the virtual object used for dynamic allocation of buffers has a size last presented to
the virtual storage allocator that is sufficient to materialize the needed amount of space.
To do this, use modifications of either of the two allocation methods previously
described.  The following example is an expansion of the second method.

Method 3:

      SUBROUTINE GETDAT(RSIZ,DATAI)  
C
C           This routine is entered periodically to acquire a buffer of
C           size rsiz and initialize it.  Later, all of the buffers acquired
C           are processed elsewhere as a group.
C           This routine expands an existing virtual allocation.  No
C           static virtual space can be allocated by any other subprogram
C           once this subroutine is entered.
C
      VIRTUAL /BUFFRS/    
      COMMON /BUFFRS/ BUFRS(2050)    
      INTEGER RSIZ,RECEND,RECMAX,NORECS,RECINX,RECSIZ,OFFSET    
      INTEGER LOCV$,SALC$P    
      REAL BUFRS,RECORD,DATAI 
      COMMON/BUFDSC/RECEND,RECMAX,NORECS,RECINX(500),RECSIZ(500)    
      DEFINE RECORD(I) = BUFRS(I+RECINX(NORECS))    
      DATA NORECS,RECEND,RECMAX/0,0,-33 000 000/    
      NORECS = NORECS + 1    
      IF (NORECS .GT. 500) THEN     
           STOP ’Allocation overflow’    
      ENDIF
    IF (RECEND+RSIZ .GE. RECMAX) THEN   
      RECMAX = RECEND + RSIZ          @ Expanded size of $MINE$     
      OFFSET = SALC$P(FDCBNM,RECMAX,.TRUE.,TRASH)-LOCV$(BUFRS)   
      DATA FDCBNM/’$MINE$’F/          @ Fieldata name of our buffer 
      IF (RECEND .EQ. 0) THEN
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C
C       First entry: Set RECEND to get at the beginning of our $MINE$
C       buffer area by base-offset referencing of BUFFRS in common block
C       BUFFRS.  We could have expanded the BUFFRS common
C       block allocation also, passing BUFFRS in Fieldata to SALC$P.
C       Then the variable OFFSET would not be needed.  However, other
C       subprograms may have already allocated the common block BUFFRS
C       and they may also have caused subsequent allocations in virtual
C       space, thus ensuring that BUFFRS could not be expanded when
C       needed.
C
          RECEND = OFFSET    
      ENDIF    
   ENDIF  
   RECINX(NORECS) = RECEND             @ Remember record location
   RECSIZ(NORECS) = RSIZ               @ and its size  
   RECEND = RECEND + RSIZ              @ Start point for next request  
   DO 10 I = 1,RSIZ                    @ Initialize new record
10 RECORD(I) = AMOD(FLOAT(I),DATAI)
   END

This method has no extra start-up overhead and causes no unnecessary swap file load.
You can easily compact your buffer pool by supplying simple buffer release and buffer
compaction routines.
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