
, .

PROGRAMMER
REFERENCE

n n
11

U

SERIES

OPERATING
SYSTEM

UP-4144 Rev. 2

This document contains the latest information available at the time of publi
cation. However, the Univac Division reserves the right to modify or revise its
contents. To ensure that you have the most recent information, contact your
local Univac Representative.

UNIVAC is a registered trademark of the Sperry Rand Corporation.

Other trademarks of the Sperry Rand Corporation in this publication are:

FASTRAND
UNISCOPE
UNISERVO

©1971 - SPERRY RAND CORPORATION PRINTED IN U.S.A.

I

'-----

4144 Rev. 2
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

CONTENTS

1. INTRODUCTION

1.1. SCOPE OF MANUAL

1.2. THE OPERATING SYSTEM

1.3. THE EXECUTIVE SYSTEM
1.3.1. MULTIPLE MODES OF OPERATION
1.3.1.1. BATCH PROCESSING
1.3.1.2. DEMAND PROCESSING (TIME-SHAR ING)
1.3.1.3. REAL TIME PROCESSING
1.3.1.4. MUL TIPROGRAMM ING AND MULTIPROCESSING
1.3.2. UTILIZATION OF MASS STORAGE
1.3.3. FUNCTIONAL AREAS OF THE EXECUTIVE SYSTEM
1.3.3.1. EXECUTIVE CONTROL LANGUAGE
1.3.3.2. THE SUPERVISOR
1.3.3.3. FACI LlTI ES ASSIGNMENT
1.3.3.4. FILE CONTROL
1.3.3.5. OPERATOR COMMUNICATIONS
1.3.3.6. INPUT/OUTPUT DEVICE HANDLERS AND SYMBIONTS

1.4. SYSTEM PROCESSORS
1.4.1. COLLECTOR
1.4.2. FILE UTILITY PROCESSOR (FURPUR)
1.4.3. POSTMORTEM DUMP PROCESSOR (PMD)
1.4.4. DATA AND ELT PROCESSORS
1.4.5. FILE ADMINISTRATION PROCESSOR (SECURE)
1.4.6. TEXT EDITOR (ED)
1.4.7. PROCEDURE DEFINITION PROCESSOR (PDP)

1.5. SYSTEM UTILITY PROCESSORS
1.5.1. CUR-TO-FUR CONVERSION (CON78)
1.5.2. FLUSH
1.5.3. SSG PROCESSOR
1.5.4. CULL PROCESSOR
1.5.5. DOCUMENT PROCESSOR (DOC)
1.5.6. LIST PROCESSOR

1.6. LANGUAGE PROCESSORS

1.7. RELOCATABLE SUBROUTINE LIBRARY

1.8_ APPLICATIONS PROGRAMS

PAG ERE VISION

Contents 1
PAGE

CONTENTS

1 to 23

1-1 to 1-8

1-1

1-1

1-2
1-2
1-2
1-2
1-3
1-3
1-3
1-3
1-3
1-3
1-4
1-4
1-4
1-5

1-6
1-6
1-6
1-6
1-6
1-6
1·6
1-6

1-6
1-6

'-7
1-7
1-7
1-7
1-7

1-7

1-7

1-8

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

2. GENERAL CONCEPTS AND DEFINITIONS

2.1. INTRODUCTION

2.2. DEFINITIONS AND ABBREVIATIONS
2.2.1. INTRODUCTORY DEFINITIONS
2.2.2. HARDWARE DEFINITIONS
2.2.3. PROGRAM ORGANIZATION DEFINITIONS
2.2.4. DEFINITIONS CONCERNING FILES
2.2.5. RUN PROCESSING DEFINITIONS
2.2.6. MULTIPROGRAMMING DEFINITIONS
2.2.7. MISCELLANEOUS DEFINITIONS
2.2.8. ABBREVIATIONS USED IN THIS MANUAL

2.3. CONVENTIONS
2.3.1. NOTATIONAL CONVENTIONS
2.3.2. CONTROL STATEMENT NOTATION

2.4. BASIC CONCEPTS OF RUN CONTROL
2.4.1. RUN INITIATION
2.4.2. R UN EXECUTION
2.4.3. SYMBIONT OUTPUT
2.4.3.1. SYMBIONT FILE CONCEPTS
2.4.4. RUN TERMINATION

2.5. BASIC CONCEPTS OF TASK CONTROL
2.5.1. REAL TIME
2.5.2. TASK INITIATION
2.5.3. TASK EXECUTION AND SWITCHING
2.5.4. EXECUTIVE REQUESTS
2.5.5. MULTIPROGRAMMING CONSIDERATIONS
2.5.6. TASK TERMINATION
2.5.7. PROGRAM PROTECTION

2.6. FILE NAMES AND ELEMENT NAMES
2.6.1. FILE NAMES
2.6.2. EXTERNAL AND INTERNAL FILE NAMES
2.6.3. FILE CYCLES (F-CYCLES)
2.6.4. ELEMENT NAMES
2.6.5. SYMBOLIC ELEMENT CYCLE
2.6.6. REFERENCING FILES AND ELEMENTS
2.6.7. EXAMPLES OF FILE AND ELEMENT REFERENCE

3. EXECUTIVE CONTROL STATEMENTS

3.1. INTRODUCTION

3.2. CONTROL STATEMENT FORMAT
3.2.1. LABEL FI ELD
3.2.2. OPERATION FIELDS
3.2.3. OPERAND FIELDS
3.2.4. CONTROL STATEMENT ANNOTATION
3.2.5. CONTROL STATEMENT CONTINUATION
3.2.6. LEADING BLANKS IN FIELDS
3.2.7. GENERAL DROPOUT RULES

PAGE REVISION

2-1

2-1

2-1
2-1
2-1
2-3
2-4
2-4
2-5
2-6
2-8

2-12
2-12
2-13

2-13
2-13
2-13
2-14
2-14
2-15

2-15
2-15
2-15
2-15
2-16
2-16
2-17
2-17

2-18
2-18
2-18
2-19
2-20
2-21
2-21
2-22

3-1

3-1

3-1
3-1
3-2
3-2
3-2
3-2
3-2
3-3

Contents 2
PAGE

to 2-22

to 3-50

', "

'''--..../

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS Contents 3
PAGE REVISION PAGE

3.3. SUMMARY OF CONTROL STATEMENTS 3-3

3.4. SCHEDULING CONTROL STATEMENTS 3-5
3.4.1. RUN INITIATION (@RUN) 3-5
3.4.2. RUN TERMINATION (@FIN CONTROL STATEMENT) 3-9
3.4.3. DYNAMIC INITIATION OF AN INDEPENDENT RUN (@START) 3-9

3.5. MESSAGE CONTROL STATEMENTS 3-11
3.5.1. DISPLAYING A MESSAGE (@MSG) 3-11
3.5.2. INSERTING INFORMATION IN THE MASTER LOG (@LOG) 3-12

3.6. SYMBIONT DIRECTIVE STATEMENT 3-13
3.6.1. PRINT OUTPUT HEADING CONTROL (@HDG) 3-13
3.6.2. SYMBIONT FILE BREAKPOINTING (@BRKPT) 3-14
3.6.2.1. PRIMARY OUTPUT FILE BREAKPOINT 3-14
3.6.2.2. ALTERNATE SYMBIONT FILE BREAKPOINT 3-15
3.6.3. SYMBIONT OUTPUT FILE QUEUING (@SYM) 3-16
3.6.4. @BRKPT/@SYM CONTROL STATEMENT USAGE 3-17
3.6.5. CARD READER MODE CONTROL (@COL) 3-18

3.7. FACILITY CONTROL STATEMENTS 3-19
3.7.1. ASSIGNING FILES AND PERIPHERAL DEVICES (@ASG) 3-19
3.7.1.1. FASTRAND-FORMATTED FI LE ASSIGNMENT 3-21
3.7.1.2. MAGNETIC TAPE ASSIGNMENT 3-26
3.7.1.3. WORD ADDRESSABLE DRUM ASSIGNMENT 3-31
3.7.1.3.1. NORMAL ASSIGNMENT 3-31
3.7.1.3.2. WHOLE UNIT ASSIGNMENT 3-32
3.7.1.4. ARBITRARY DEVICE ASSIGNMENT 3-33
3.7.2. TAPE UNIT MODE CONTROL (@MODE) 3-34
3.7.3. INDEPENDENT CATALOGUING OF FILES (@CAT) 3-35
3.7.4. RELEASING FILES AND PERIPHERAL DEVICES (@FREE) 3-37
3.7.5. ATTACHING INTERNAL FILENAMES (@USE) 3-40
3.7.6. SPECIFYING FILENAME QUALIFIER (@QUAL) 3-41

3.8. DATA PREPARATION CONTROL STATEMENTS 3-42
3.8.1. DIRECT CREATION OF CARD IMAGE FILES (@FILE) 3-42
3.8.2. TERMINATING THE FILE MODE (@ENDF) 3-43

3.9. DYNAMIC RUN STREAM MODIFICATION 3-44
3.9.1. DYNAMIC RUN STREAM EXPANSION (@ADD) 3-44
3.9.2. CONDITIONAL STATEMENTS 3-45
3.9.3. STATEMENT LABELING 3-45
3.9.4. CONDITION WORD 3-46
3.9.4.1. CONDITION WORD CONTROL (@SETC CONTROL STATEMENT) 3-47
3.9.4.2. CONDITION WORD TESTING (@TEST) 3-48
3.9.4.3. BRANCHING FROM WITHIN RUN STREAM (@JUMP) 3-49
3.9.4.4. CONDITIONAL RUN STREAM EXAMPLE 3-50

4. EXECUTIVE SERVICE REQUESTS 4-1 to 4-30

4.1. INTRODUCTION 4-1
4.1.1. CODING RESTRICTIONS 4-1
4.1.2. CALLING SEQUENCE CONVENTIONS 4-1
4.1.3. E R SYNCH RONY 4-2
4.1.4. ERROR HANDLING 4-2

4.2. SUMMARY OF EXECUTIVE REQUESTS 4-2

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

4.3. ACTIVITY AND PROGRAM CONTROL
4.3.1. ACTIVITY REGISTRATION
4.3.1.1. CREATE A NEW ACTIVITY (FORK$)
4.3.1.2. CREATE A NEW ACTIVITY WITH TIMED WAIT (TFORK$)
4.3.2. ACTIVITY TERMINATION
4.3.2.1. ACTIVITY NORMAL TERMINATION (EXIT$)
4.3.2.2. ACTIVITY ERROR TERMINATION (ERR$)
4.3.2.3. ABORT RUN (ABORT$)
4.3.2.4. PROGRAM ERROR TERMINATION (EABT$)
4.3.3. ACTIVITY SYNCHRONIZATION
4.3.3.1. JOINING OF ACTIVITIES (AWAIT$)
4.3.3.2. ACTIVITY NAMING (NAME$)
4.3.3.3. ACTIVITY DEACTIVATION (DACT$)
4.3.3.4. ACTIVITY ACTIVATION (ER ACT$)
4.3.4. REAL TIME PROGRAM/ACTIVITY CONTROL
4.3.4.1. CHANGING PROGRAM/ACTIVITY TO REAL TIME STATUS (RT$)
4.3.4.2. REMOVAL OF PROGRAM/ACTIVITY REAL TIME STATUS (NRT$)
4.3.5. TIMED ACTIVITY WAIT (TWAIT$)

4.4. CONDITION WORD CONTROL
4.4.1. SETTING THE CONDITION WORD (SETC$)
4.4.2. CONDITION WORD RETRIEVAL (COND$)

4.5. RETRIEVAL OF THE TIME AND DATE
4.5.1. TIME AND DATE IN FIELDATA (DATE$)
4.5.2. TIME AND DATE IN BINARY (TDATE$)
4.5.3. TIME IN MILLISECONDS (TIME$)

4.6. CONSOLE COMMUNICATIONS
4.6.1. CONSOLE OUTPUT AND SOLICITED INPUT (COM$)
4.6.2. UNSOLICITED CONSOLE INPUT (11$)

4.7. PROGRAM STORAGE EXPANSION AND CONTRACTION
4.7.1. MAIN STORAGE EXPANSION (MCORE$)
4.7.2. MAIN STORAGE CONTRACTION (LCORE$)

4.8. MISCELLANEOUS EXECUTIVE REQUESTS
4.8.1. DYNAMIC REOUEST OF CONTROL STATEMENTS (CSF$)
4.8.2. RETRIEVING @XOT CONTROL STATEMENT OPTIONS (OPT$)
4.8.3. PROGRAM CONTROL TABLE RETRIEVAL (PCT$)
4.8.4. ALTERING PROCESSOR STATE REGISTER (PSR$)
4.8.5. SNAPSHOT DUMP (SNAP$)
4.8.6. MASTER CONFIGURATION TABLE RETRIEVAL (MCT$)

4.9. CONTINGENCI ES
4.9.1. INTRODUCTION
4.9.2. CONTINGENCY TYPES AND STANDARD ACTION
4.9.2.1. ERROR TERMINATION CONSIDERATIONS
4.9.3. CONTI NG ENCY REG ISTRATION (lALL$)
4.9.4. CONTINGENCY PROCESSING (NON-ESI)
4.9.4.1. THE CONTINGENCY ROUTINE
4.9.4.2. CONTINGENCY MODE TERMINATION (CEND$)
4.9.4.3. ADDITIONAL CONTINGENCY CONSIDERATIONS
4.9.5. ESI CONTINGENCIES

PAGE REVISION

Contents 4
PAGE

4-6
4-6
4-6
4-6
4-7
4-7
4-7
4-7
4-8
4-8
4-8
4-9
4-9
4-10
4-10
4-10
4-11
4-11

4-11
4-11
4-12

4-12
4-12
4-13
4-13

4-13
4-13
4-15

4-15
4-15
4-16

4-17
4-17
4-18
4-19
4-20
4-21
4-22

4-23
4-23
4-23
4-25
4-25
4-27
4-27
4-28
4-28
4-29

"- '--_.-.'

,.~"'"

(

~-.

4144 Rev. 2
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS Contents 5
PAGE REVISION PAGE

5. SYMBIONT INTERFACE REQUESTS 5·1 to 5·17

5.1. INTRODUCTION 5-1
5.1.1. SYMBIONTS 5-1
5.1.2. SYMBIONT/USER INTERFACE ROUTINES 5-2

5.2. OBTAINING INPUT IMAGES 5-3
~.2.1. READING FIELDATA IMAGES (READ$) 5-3
5.2.2. READING ASCII IMAGES (AREAD$) 5-4
5.2.3. FIELDATA IMAGES - ALTERNATE FILE (READA$) 5-4
5.2.4. ASCII IMAGE - FROM AN ALTERNATE FILE (AREADA$) 5-5
5.2.5. FIELDATA IMAGES - CONVERSATIONAL MODE (TREAD$) 5-6

5.3. TRANSFERRING OUTPUT IMAGES 5-7
5.3.1. PRINTING FIELDATA IMAGES (PRINT$) 5-7
5.3.2. PRINTING ASCII IMAGES (APRINT$) 5-7
5.3.3. FIELDATA IMAGES - ALTERNATE PRINT FILE (PRNTA$) 5-8
5.3.4. ASCII IMAGES - ALTERNATE PRINT FILE (APRNTA$) 5-9
5.3.5. PUNCHING FIELDATA IMAGES (PUNCH$) 5-9
5.3.6. PUNCHING ASCII IMAGES (APUNCH$) 5-10
5.3.7. FIELDATA IMAGES - ALTERNATE PUNCH FILE (PNCHA$) 5-10
5.3.8. ASCII IMAGES - ALTERNATE PUNCH FILE (APNCHA$) 5-11

5.4. OUTPUT CONTROL FUNCTIONS 5-11
5.4.1. FIELDATA CONTROL FUNCTIONS - PRINT FILE (PRTCN$) 5-11
5.4.2. ASCII CONTROL FUNCTIONS - PRINT FILE (APRTCN$) 5-12
5.4.3. FIELDATA CONTROL FUNCTION - ALTERNATE PRINT FILE (PRTCA$) 5-13
5.4.4. ASCII CONTROL FUNCTIONS - ALTERNATE PRINT FILE (APRTCA$) 5-13
5.4.5. FIELDATA CONTROL FUNCTIONS - PUNCH FILE (PCHCN$) 5-14
5.4.6. ASCII CONTROL FUNCTION - PUNCH FILE (APCHCN$) 5-14
5.4.7. FIELDATA CONTROL FUNCTIONS - ALTERNATE PUNCH FILE (PCHCA$) 5-15
5.4.8. ASCII CONTROL FUNCTION - ALTERNATE PUNCH FILE (APCHCA$) 5-15

5.5. LISTING USER·DEFINED CONTROL STATEMENTS (CLlST$) 5-16

5.6. FIELDATA AND ASCII TRANSLATION 5-17

6. INPUT/OUTPUT DEVICE HANDLERS 6-1 to 6-34

6.1. INTRODUCTION 6-1
6.1.1. BASIC I/O EXECUTIVE REQUEST 6-1
6.1.2. INTERRUPT ACTIVITY 6-4
6.1.3. QUEUEING AND UNIT CONTROL 6-4

6.2. I/O PACKET GENERATION 6-4
6.2.1. MAGNETIC TAPE I/O PACKET GENERATION (I$OT) 6-4
6.2.2. MASS STORAGE I/O PACKET GENERATION (1$00) 6-6

6.3. PROGRAM - I/O SYNCHRONIZATION 6-7
6.3.1. WAIT FOR COMPLETION OF SPECIFIC I/O (WAIT$) 6-7
6.3.2. WAIT FOB_GOMPLETION OF ANY I/O (WANY$) 6-8
6.3.3. INITIATE I/O AND RETURN CONTROL IMMEDIATELY (10$) 6-8

6.3.4. INITIATE I/O AND RETURN CONTROL IMMEDIATELY, WITH INTERRUPT (101$) 6-8
6.3.5. INITIATE I/O AND WAIT FOR COMPLETION (lOW$) 6-9
6.3.6. INITIATE I/O AND WAIT FOR COMPLETION, WITH INTERRUPT (lOWI$) 6-9
6.3.7. INITIATE I/O AND EXIT, WITH INTERRUPT (lOXI$) 6-9

6.3.8. REDUCING INTERRUPT ACTIVITY PRIORITY (UNLCK$) 6-10

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

6.4. MAGNETIC TAPE HANDLER
6.4.1. TAPE HANDLER FUNCTIONS
6.4.1.1. SET MODE FUNCTION
6.4.2. GENERAL CONSIDERATIONS
6.4.2.1. READ BACKWARD LIMITATIONS
6.4.2.2. WRITE CONSIDERATIONS
6.4.2.3. MOVE CONSIDERATIONS
6.4.2.4. ABNORMAL FRAME COUNT CONSIDERATIONS
6.4.3. MULTIPLE-CHANNEL OPERATION

6.5. MAGNETIC DRUM AND UNITIZED CHANNEL STORAGE HANDLER
6.5.1. HANDLER FUNCTIONS
6.5.2. GENERAL CONSIDERATIONS
6.5.3. MULTIPLE·CHANNEL OPERATION

6.6. FASTRAND MASS STORAGE HANDLER
6.6.1. FASTRAND HANDLER FUNCTIONS

6.7. DISC HANDLER
6.7.1. DISC HANDLER FUNCTIONS
6.7.2. PREPPING THE DISC

6.8. ABSOLUTE READ/WRITE CAPABI LlTY

6.9. ARBITRARY DEVICE HANDLER
6.9.1. ADH I/O PACKET
6.9.2. INITIATE ADH AND RETURN CONTROL IMMEDIATELY (I0ARB$)
6.9.3. INITIATE ADH, EXIT AT INTERRUPT (lOAXI$)
6.9.4. FREE FORMAT DISC HANDLER

6.10. STATUS CODES

7. FILE CONTROL

7.1. INTRODUCTION

7.2. FILE ORGANIZATION
7.2.1. MASTER FILE DIRECTORY
7.2.2. MASS STORAGE ALLOCATION
7.2.3. FILE ADDRESSING
7.2.4. EXCLUSIVE USE OF FI LES
7.2.5. ROLLOUT AND ROLLBACK OF FI LES
7.2.6. RETRIEVING FACILITY ASSIGNMENT (FITEM$)
7.2.6.1. UNIT RECORD AND NONSTANDARD PERIPHERAL
7.2.6.2. FASTRAND MASS STORAGE PERIPHERALS
7.2.6.3. MAGNETIC TAPE PERIPHERALS
7.2.6.4. MAGNETIC DRUM PERIPHERALS
7.2.6.5. COMMUNICATIONS PERIPHERALS
7.2.6.6. DISC PERIPHERALS
7.2.7. ALTERNATE METHODS OF RETRIEVING FACILITY ASSIGNMENT SYNOPSIS

(FACIL$ AND FACIT$)
7.2.8. TAPE FILE INITIALIZATION (TINTL$)
7.2.9. TAPE SWAPPING (TSWAP$)

PAGE REVISION
Contents 6

PAGE

6-10
6-10
6-12
6-14
6-14
6-14
6-18
6-18
6-18

6·21
6·21
6·23
6-23

6·23
6-23

6·25
6-25
6-26

6-27

6-27
6-27
6·30
6·31
6·31

6·32

7-1 to 7-19

7·1

7-1
7-1
7-2
7-2
7-3
7·3
7-3
7-5
7·6
7-7
7-10
7-11
7-13
7-14

7·14
7-15

/

'---..

.........

4144 Rev. 2
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS Contents 7
PA GE REVISION PAGE

7.3. TAPE LABELING 7·15
7.3.1. READING AND WRITING TAPE LABEL BLOCKS (LABEL$) 7-18

7.4. DISC LABELING 7·19

8. FILE UTILITY ROUTINES (FURPUR) 8·1 to 8-26

8.1. INTRODUCTION 8·1
8.1.1. COMMON INFORMATION 8-2
8.1.2. SIMULTANEOUS USE OF FILES 8-3
8.1.3. MULTI REEL FI LES 8-3
8.1.4. BASIC FILE FORMATS 8-3

8.2. FURPUR CONTROL STATEMENTS 8-5
8.2.1. FILE COPYING (@COPY) 8-5
8.2.2. COPYING FROM TAPE TO PROGRAM FILES (@COPIN) 8-9
8.2.3. COPYING PROGRAM FILES TO TAPE (@COPOUT) 8-11
8.2.4. POSITIONING TAPE FILES (@MOVE) 8-13
8.2.5. LISTING FILES AND MASTER FILE DIRECTORY (@PRT) 8-14
8.2.6. EMPTYING A PROGRAM FILE (@ERS) 8-17
8.2.7. DELETING FILES AND ELEMENTS (@DELETE) 8-17
8.2.8. REWINDING TAPE FILES (@REWIND) 8-18
8.2.9. MARKING AN EOF ON TAPE (@MARK) 8-19
8.2.10. CLOSING TAPE FILES (@CLOSE) 8-19
8.2.11. ENTRY POINT TABLE CREATION (@PREP) 8-19
8.2.12. PUNCHING PROGRAM FILE ELEMENTS (@PCH) 8-20
8.2.13. POSITIONING WITHIN ELEMENT FILES (@FIND) 8-21
8.2.14. REMOVAL OF DELETED ELEMENTS (@PACK) 8-22
8.2.15. CHANGING FILE ELEMENT, AND VERSION NAMES, AND FILE KEYS AND 8-22

MODES (@CHG)
8.2.15.1. CHANGING CATALOGUED FILE NAMES, KEYS, AND MODES 8-22
8.2.15.2. CHANGING PROGRAM FILE ELEMENT AND VERSION NAMES 8-23
8.2.15.3. EXAMPLES 8-24
8.2.16. ALTERING CYCLE RETENTION LIMIT (@CYCLE) 8-24
8.2.17. ENABLING FILES DISABLED DUE TO MALFUNCTIONS (@ENABLE) 8-26

9. LANGUAGE PROCESSORS AND LIBRARIES 9-1 to 9-13

9.1. INTRODUCTION 9-1

9.2. OPERATING SYSTEM LIBRARY FILES (LlB$, RLlB$) 9-1

9.3. TEMPORARY PROGRAM FI LE (TPF$) 9-1

9.4. PROCESSOR CONTROL STATEMENTS 9-1
9.4.1. LANGUAGE PROCESSOR CONTROL STATEMENTS 9-2
9.4.2. SOURCE INPUT ROUTINE CONTROL OPTIONS 9-6
9.4.3. COMPRESSED SYMBOLIC ELEMENTS 9-6

9.5. MODIFYING SYMBOLIC ELEMENTS 9-7
9.5.1. LINE CORRECTION STATEMENT 9-7
9.5.1.1. REDEFINITION OF THE CORRECTION INDICATOR 9-8
9.5.2. PARTIAL LINE CORRECTIONS 9·8
9.5.2.1. RANGE CORRECTION STATEMENT 9·8
9.5.2.2. CHANGE CORRECTION STATEMENTS 9-9
9.5.2.3. PARTIAL LINE CORRECTION DIAGNOSTICS 9-10

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SE RI ES SYST EMS Contents 8

9.6. PROCESSOR INTERFACE ROUTINES

9.7. PROCEDURE DEFINITION PROCESSOR (PDP)

10. PROGRAM CONSTRUCTION AND EXECUTION

10.1. INTRODUCTION

10.2. THE COLLECTOR
10.2.1. COLLECTOR INITIATION (@MAP)
10.2.2. COLLECTOR DIRECTIVES
10.2.2.1. ELEMENT INCLUSION (IN)
10.2.2.2. ELEMENT EXCLUSION (NOT)
10.2.2.3. FILE SEARCH SEQUENCING (LIB)
10.2.2.4. EXTERNAL DEFINITION RETENTION (DEF)
10.2.2.5. EXTERNAL REFERENCE RETENTION (REF)
10.2.2.6. STARTING ADDRESS REDEFINITION (ENT)
10.2.2.7. EXTERNAL REFERENCE DEFINITION (EQU)
10.2.2.8. ELEMENT SELECTION DETERMINATION (CLASS)
10.2.2.9. CORRECTIONS FOR A RELOCATABLE ELEMENT (COR)
10.2.2.10. ADDING SNAPSHOT DUMPS (SNAP)
10.2.2.11. END OF INPUT (END)
10.2.2.12. ABSOLUTE ELEMENT OPTIMIZATION (MINGAP, MINSIZ)
10.2.2.13. PROGRAM SEGMENTATION (SEG)
10.2.2.14. RELOCATABLE SEGMENTS (RSEG)
10.2.2.15. DYNAMIC SEGMENT DEFINITION (DSEG)
10.2.3. FUNCTIONAL ASPECTS OF THE COLLECTOR
10.2.3.1. COLLECTOR-PRODUCED RELOCATABLE ELEMENTS
10.2.3.2. ELEMENT INCLUSION
10.2.3.3. SEGMENTED VERSUS NONSEGMENTED PROGRAMS
10.2.3.4. COLLECTING REENTRANT PROCESSORS
10.2.3.5. PROCESSING ELEMENT PREAMBLES
10.2.4. PROGRAM SEGMENTATION
10.2.4.1. SEGMENTATION DIRECTIVES
10.2.4.2. INSTRUCTION AND DATA AREAS
10.2.4.3. SEG 01 RECTIVE CONSIDERATIONS
10.2.4.4. RSEG DIRECTIVE CONSIDERATIONS
10.2.4.5. LOADING PROGRAM SEGMENTS
10.2.4.5.1. DIRECT METHOD (L$OAD AND LOAD$)
10.2.4.5.2. INDI RECT METHOD
10.2.4.5.3. RELOADING THE MAIN SEGMENT
10.2.4.6. USE OF COMMON BLOCKS
10.2.4.7. SEGMENTATION EXAMPLE
10.2.4.8. COLLECTOR GENERATED TABLES

10.3. PROGRAM EXECUTION
10.3.1. INITIATING EXECUTION (@XQT)
10.3.1.1. INITIAL EXECUTION STATUS
10.3.2. PROGRAM DATA SEPARATION (@EOF)

PA GE REVISION PA GE

9-10

9-12

10-1 to 10-43

10-1

10-1
10-2
10-4
10-5
10-6
10-7
10-7
10-8
10-9
10-9
10-10
10-12
10-13
10-15
10-16
10-16
10-17
10-17
10-18
10-18
10-18
10-19
10-20
10-20
10-20
10-21
10-21
10-21
10-23
10-24
10-24
10-26
10-26
10-27
10-27
10-30

10-31
10-31
10-32
10-32

.-"

\
............ - ..

.... -... ~

(
"-/'

4144 Rev. 2
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

10.4. REENTRANT PROCESSOR EXECUTION
10.4.1. GENERAL
10.4.2. SEARCHING THE REENTRANT PROCESSOR LISTS
10.4.3. ENTERING A LIST OF USER-CREATED REENTRANT PROCESSORS (RLlST$)
10.4.4. REFERENCING A REENTRANT PROCESSOR (LlNK$ AND RLlNK$)
10.4.4.1. LlNK$ EXECUTIVE REQUEST
10.4.4.2. RLlNK$ EXECUTIVE REQUEST
10.4.5. REENTRANT PROCESSOR TERMINATION (EXLNK, UNLNK$, AND EXIT$)
10.4.5.1. EXLNK$ EXECUTIVE REQUEST
10.4.5.2. UNLNK$ EXECUTIVE REQUEST
1004.5.3. EXIT$ EXECUTIVE REQUEST
10.4.6. REENTRANT PROCESSOR FORKING
10.4.7. REENTRANT PROCESSOR CONTROL AND RESTRICTIONS

10.5. REENTRANT PROCESSOR PREPARATION
10.5.1. USAGE OF A REENTRANT PROCESSOR
10.5.1.1. COMMON I BANKS
10.5.1.2. ADDITIONAL INSTRUCTION SPACE
10.5.2. STORAGE ALLOCATION AND REENTRANCY
10.5.3. WRITE PROTECT MODE
10.5.4. D BANK ADDRESSING
10.5.4.1. COLLECTION
10.5.4.2. REGISTER BASING
10.504.3. COLLECTOR PRODUCED TABLES
10.5.5. REP SIZE
10.5.6. EXECUTIVE REQUESTS WITHIN REENTRANT PROCESSORS
10.5.6.1. MCORE$ AND LCORE$ USAGE
10.5.6.2. IALL$ USAGE
10.5.6.3. CMS$ AND CPOOL$ USAGE
10.5.6.4. LOAD$ USAGE
10.5.6.5. RLlNK$ USAGE
10.5.7. DUMPING REENTRANT PROCESSORS

11. POSTMORTEM AND DYNAMIC DUMPING

11.1. INTRODUCTION

11.2. POSTMORTEM DUMP PROCESSOR (PMD)
11.2.1. @PMD CONTROL STATEMENT

11.3. DYNAMIC DUMPS
11.3.1. CUMP CALLING PROCEDURES
11.3.1.1. MAIN STORAGE DUMP (X$CORE)
11.3.1.2. CONTROL REGISTER AND MAIN STORAGE DUMP (X$DUMP)
11.3.1.3. CHANGED WORD DUMP (X$CW)
11.3.1.4. TAPE BLOCK DUMP (X$TAPE)
11.3.1.5. MASS STORAGE DUMP (X$DRUM)
11.3.1.6. FILE DUMP (X$FILE)
11.3.1.7. CONTROL REGISTER (USER SET) DUMP (X$CREG)
11.3.1.8. EDITING FORMATS FOR DYNAMIC DUMPS
11.3.1.8.1. STANDARD EDITING FORMATS FOR DUMPS
11.3.1.8.2. USER-DEFINED EDITING FORMATS (X$FRMT)
11.3.2. CONDITIONAL CONTROL PROCEDURES
11.3.2.1. INITIATING A STRING OF CALLS (X$IF)

PAGE REVISION

10-33
10·33
10-33
10-34
10·35
10-35
10-35
10-37
10-37
10-37
10-37
10-37
10-38

10-39
10-39
10-39
10-39
10-39
10-40
10-40
10-40
10-41
10-41
10-41
10-41
10-41
10-41
10-41
10-41
10-42
10-42

11-1

11-1

11-1
11-l

11-4
11-5
11-5
11-6
11-8
11-9
11-10
11-11
11-12
11-13
11-13
11-14
11-15
11-16

Contents 9
PAGE

to 11-29

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

11.3.2.2. LOGICAL OR CONTROL OF DUMPS (X$OR)
11.3.2.3. LOGICAL AND CONTROL OF DUMPS (X$AND)
11.3.2.4. CONTROLLING THE CONDITIONAL DUMP SWITCH (X$TAL Y)
11.3.3. SPECI FICATION PROCEDURES
11.3.3.1. INITIALIZING A BUFFER (X$BUFR)
11.3.3.2. ALLOWING AND IGNORING DUMP PROCEDURE CALLS (X$ON and X$OFF)
11.3.3.3. SAVING AND DELETING DYNAMIC DUMPS (X$MARK AND X$BACK)
11.3.3.4. PLACING A MESSAGE IN THE DUMP (X$MESG)
11.3.4. EXAMPLES OF DYNAM IC DUMPI NG

11.4. PROGRAM TRACE ROUTINE (SNOOPY)

12. DEMAND PROCESSING

12.1. INTRODUCTION
12.1.1. GENERAL DEMAND TERMINAL OPERATIONAL PROCEDURES
12.1.1.1. INITIALIZATION
12.1.1.2. DEMAND RUN STREAM SUBMISSION
12.1.1.3. TERMINATION
12.1.1.4. DEMAND TERMINAL/SYSTEM INTERFACE MESSAGES
12.1.2. DEMAND SYMBIONT/USER INTERFACE
12.1.3. EXECUTIVE LANGUAGE INTERFACE

12.2. GENERAL OPERATION OF THE DEMAND SYMBIONTS
12.2.1. TELETYPEWRITER DEMAND SYMBIONT
12.2.1.1. OPERATIONAL CONSIDERATIONS
12.2.1.2. PAPER TAPE INPUT
12.2.1.2.1. FORM I PAPER TAPE INPUT
12.2.1.2.2. FORM" PAPER TAPE INPUT
12.2.1.3. SPECIAL CONTROL SEQUENCES
12.2.1.4. BREAK KEY
12.2.1.5. TAB CONTROL STATEMENT (@TABSET)
12.2.1.6. CENTRAL SITE TO REMOTE SITE OPERATOR COMMUNICATION
12.2.1.7. FRIDEN 7100
12.2.1.8. OCT 500 IN TELETYPEWRITER MODE
12.2.2. OCT 500 DEMAND SYMBIONT (SEMI-AUTOMATIC)
12.2.2.1. OPERATIONAL CONSIDERATIONS
12.2.2.2. SPECIAL CONTROL SEQUENCES
12.2.2.3. USER/PROGRAM INTERFACE
12.2.3. UNISCOPE 100/DCT 1000 DEMAND SYMBIONT
12.2.3.1. OPERATIONAL CONSIDERATIONS FOR THE UNISCOPE 100
12.2.3.2. OPERATIONAL CONSIDERATIONS FOR THE OCT 1000
12.2.3.3. SPECIAL CONTROL SEQUENCES
12.2.3.4. USER PROGRAM INTERFACE
12.2.4. UNISCOPE 300 DEMAND SYMBIONT
12.2.4.1. OPERATIONAL CONSIDERATIONS
12.2.4.2. SPECIAL CONTROL SEQUENCES
12.2.4.3. USER PROGRAM INTERFACE

12.3. TERMINAL USER TECHNIQUES

12.4. EXAMPLE OF A DEMAND RUN

PAGE REVISION

11-17
11-17
11-18
11-19
11-19
11-20
11-21
11-22
11-22

11-24

12-1

12-1
12-1
12-2
12-2
12-3
12-3
12-4
12-4

12-5
12-5
12-5
12-5
12-6
12-7
12-7
12-8
12-9
12-9
12-10
12-10
12-11
12-11
12-13
12-14
12-14
12-14
12-16
12-16
12-19
12-20
12-20
12-21
12-22

12-22

12-22

Contents 10
PAGE

to 12-24

4144 Rev. 2
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS Contents 11
PAGE REVISION PAGE

4144 Rev. 2
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS Contents 12
PAGE REVISION PAGE

13.5.3.2. EXAMPLE OF A COMPLETED FORMAT DEFINITION 13-38
13.5.3.3. RULES FOR CODING FORMAT SUBROUTINES 13-38
13.5.3.3.1. LABEL RECORD SUBROUTINES 13-41
13.5.3.3.2. BLOCK RECORD SUBROUTINES 13-41
13.5.3.3.3. ITEM RECORD SUBROUTINES 13-41
13.5.3.3.4. END-OF-REEL SUBROUTINES 13-42
13.5.3.3.5. END-OF-FILE SUBROUTINES 13-42

13.6. HANDLING OF LABELS AND SENTINELS 13·42
13.6.1. LABEL AND SENTINEL HANDLING FOR OUTPUT FILES 13-42
13.6.2. LABEL AND SENTINEL HANDLING FOR INPUT FILES 13-43

13.7. DATA FILE ORGANIZATION 13-43

13.8. ERROR PROCESSING 13-46
13.8.1. DEVICE ERROR HANDLING 13-46
13.8.2. FILE ERROR HANDLING 13-46
13.8.3. ABNORMAL ERROR HANDLING 13-49

14. OUTPUT EDITING PACKAGES 14-1 to 14-14

14.1. INTRODUCTION 14-1

14.2. EDIT$ (IMAGE COMPOSITION EDITING PACKAGE) 14-1
14.2.1. GENERATING THE EDIT$ PACKET (E$PKT AND E$PKTF) 14-3
14.2.2. INITIALIZATION AND TERMINATION OF EDITING MODE 14-4
14.2.3. GENERAL PURPOSE EDITING ROUTINES 14-4
14.2.4. FLOATING-POINT EDITING ROUTINES 14-9

14.3. EOUT$ (GENERALIZED OUTPUT EDITING ROUTINES) 14-10
14.3.1. EDITING FUNCTIONS 14-11
14.3.2. OUTPUT FUNCTIONS 14-12
14.3.3. MODAL FUNCTIONS 14-12
14.3.4. CONTROL FUNCTIONS 14-13
14.3.5. EXAMPLES 14-13

15. COMMUNICATIONS HANDLER 15-1 to 15-24

15.1. INTRODUCTION 15-1
15.1.1. EQUIPMENT 15-1
15.1.1.1. THE CTS AND WTS 15-1
15.1.1.2. THE CTMC 15-1
15.1.2. MODES OF OPERATION 15-2

15.2. ASSIGNING LINE TERMINAL (L T) DEVICES 15-2

15.3. THE LINE TERMINAL TABLE 15-2

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS Contents 13
U P.NUMBER PAGE REVISION PAGE

15.4. COMMUNICATIONS HANDLER OPERATIONS 15-8

(15.4.1. SUPPORT OPERATIONS 15-8
....

15.4.1.1. INITIALIZATION (CMS$) 15-9
15.4.1.2. DIALING (CMD$) 15-9
15.4.1.3. INPUT (CMI$) 15-10
15.4.1.4. OUTPUT (CMO$) 15-10
15.4.1.5. SEND AND ACKNOWLEDGE (CMSA$) 15-11
15.4.1.6. SINGLE BUFFER MODE FOR INPUT/OUTPUT OPERATIONS 15-11
15.4.1.7. POOL MODE FOR I/O OPERATIONS 15-12
15.4.1.8. DUAL POOL MODE FOR INPUT OPERATIONS 15-13
15.4.1.9. HANGUP (CMH$) 15-13
15.4.1.10. TERM INATION (CMT$) 15-13
15.4.2. COMMUNICATION POOLS 15-14
15.4.2.1. ESTABLISHING A COMMUNICATIONS POOL (CPOOL$) 15-15
15.4.2.2. REMOVING BUFFERS FROM A POOL (CGET$) 15-17
15.4.2.3. RETURNING BUFFERS TO A POOL (CADD$) 15-17
15.4.2.4. EXPANDING A POOL (CJOIN$) 15-18
15.4.2.5_ RELEASING COMMUNICATIONS POOL (CREL$) 15-18
15.4.3. ALTERING COMMUNICATIONS PATHS (ROUTE$) 15-19
15.4.3.1. ROUTING PROCEDURES 15-20

15.5. COMPLETION ACTIVITIES 15-20
15.5.1. EXITING FROM AN ESI ACTIVITY (ADACT$) 15-20

15.6. IDLE LINE MONITOR 15-21

15.7. TIMING CONSIDERATIONS 15-21
i 15.7.1. INTERRUPT RESPONSE 15-22 \

15.7.2. BUFFER PROCESSING 15-22

15.8. INFORMATION ANALYSIS 15-24

15.9. ERROR CODES FOR L T CONTINGENCIES 15-24

16. REAL TIME PROCESSING 16-1 to 16-9

16.1. INTRODUCTION 16-1

16.2. PROGRAM LOCATION 16-1

16.3. BUFFER OPERATIONS 16-1

16.3.1. TRANSM ISSION TYPES 16-2
16.3.2. MAIN STORAGE AVAILABILITY 16-2

16.3.3. POOL SIZE 16-2

16.3.4. BUFFER SIZE 16-2

16.3.5. DUAL POOL METHOD 16-3

16.4. PROGRAM EXECUTION CONSIDERATIONS 16-3

16.4.1. PRIORITY CATEGORIES 16-3

16.4.1.1. I/O PRIORITY 16-4

16.4.1.2. DISPATCHING PRIORITY 16-4
/
(
'"--,,

4144 Rev. 2
UP-NUMBER

UN IV AC 1100 SE RI ES SYS T EMS Contents 14
PAGE REVISION PAGE

16.4.2. PRIORITY CONTROL 16-5
16.4.2.1. CHANGING ACTIVITY PRIORITIES (RT$ AND NRT$) 16-5
16.4.2.2. APPLICATION OF MULTIPROGRAMMING TO REAL TIME 16-6
16.4.2.3. INTERRUPT ACTIVITY PRIORITY REDUCTION (UNLCK$) 16-6
16.4.2.4. ACTIVITY TERMINATION (EXIT$) 16-6
16.4.2.5. TIMED WAIT CONSIDERATIONS 16-7
16.4.2.6. CONSOLE INTERRUPT HANDLING 16-7
16.4.3. EXCEEDING MAXIMUM TIME LIMITATION 16-7
16.4.4. TEST AND SET USAGE 16-7

16.5. PROGRAMMER'S GENERAL RESPONSIBILITIES 16-8

16.6. ESI CONSIDERATIONS 16-8
16.6.1. ESI ACTIVITY CONCEPT 16-8
16.6.2. ESI TIMING 16-9
16.6.2.1. ESI INTERRUPTS 16-9
16.6.2.2. REAL TIME ACTIVITIES 16-9

17. CHECKPOINT/RESTART 17-1 to 17-10

17.1. INTRODUCTION 17-1

17.2. COMPLETE CHECKPOINT/RESTART 17-1
17.2.1. COMPLETE CHECKPOINT - RUN SAVE 17-1
17.2.1.1. CONTROL STATEMENT (@CKPT) 17-2
17.2.1.2. EXECUTIVE REQUEST 17-2
17.2.1.3. UNSOLICITED CONSOLE REQUEST 17-2
17.2.1.4. EXAMPLES OF CH ECKPOINT 17-3
17.2.2. CHECKPOINT FILE FORMAT 17-3
17.2.3. CHECKPOINT FILE IDENTIFICATION MESSAGE 17-5
17.2.4. COMPLETE RESTART - RUN RESTORE 17-5
17.2.4.1. CONTROL STATEMENT (@RSTRT) 17-6
17.2.4.2. EXECUTIVE REQUEST 17-6
17.2.4.3. UNSOLICITED CONSOLE REQUEST 17-6
17.2.4.4. EXAMPLES OF RESTART 17-7
17.2.5. RESTART CONTINGENCY ROUTINE 17-7

17.3. PARTIAL CHECKPOINT/RESTART 17-8
17.3.1. PARTIAL CHECKPOINT - PROGRAM SAVE (@CKPAR) 17-8
17.3.2. PARTIAL RESTART - PROGRAM RESTORE (@RSPAR) 17-9

17.4. CHECKPOINT/RESTART ERROR CODES 17-10

18. SYSTEM SYMBOLIC PROCESSORS 18-1 to 18-20

18.1. INTRODUCTION 18-1

18.2. E L T PROCESSOR 18-1
18.2.1. INPUT TERMINATION SENTINEL (@END) 18-4

18.3. DATA PROCESSOR 18-4

..... - . ~

--..
I

~~~ .... " 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS Contents 15 
PAGE REVISION PA GE 

18.4. ED PROCESSOR 18-6 
18.4.1. EDIT MODE COMMANDS 18-7 
18.4.2. USAGE CONSIDERATIONS 18-15 

18.5. CULL PROCESSOR 18-15 

18.6. LIST PROCESSOR 18-18 

18.7. CON78 PROCESSOR 18-19 

19. FILE ADMINISTRATION PROCESSOR (SECURE) 19-1 to 19-13 

19.1. INTRODUCTION 19-1 

19.2. MAJOR FUNCTION DEFINITIONS 19-2 

19.3. @SECURE CONTROL STATEMENT 19-2 

19.4. INPUT AND OUTPUT BACKUP TAPE ASSIGNMENTS 19-3 

19.5. CATALOGUED FILE ASSIGNMENTS 19-4 

19.6. USE OF SYS$*DLOC$ 19-4 

la~ SECURE SOURCE LANGUAGE 19-5 
19.7.1. STANDARD COMMANDS 19-5 
19.7.2 . NAMELISTS AND LIMITERS 19-6 
19.7.3. EXCLUSIONS 19-7 
19.7.4. DIRECTION 19-7 
19.7.5. EXAMPLES OF SOURCE LANGUAGE 19-7 

19.8. SELECTION OF FILES FOR UNLOAD 19-7 

19.9. OWN-PROJECT APPLICATIONS 19-8 

19.10. CATALOGUED FILE RECOVERY APPLICATIONS 19-8 

19.11. SUMMARY OF SECURE PROCESSOR COMMANDS 19-9 

19.12. EXAMPLES OF THE USE OF THE SECURE PROCESSOR 19-10 

20. SYMBOLIC STREAM GENERATOR (SSG) 20-1 to 20-28 

20.1. INTRODUCTION 20-1 

20.2. INPUT STREAMS 20-1 

20.3. OUTPUT STR EAMS 20-2 

20.4. @SSG CONTROL STATEMENT 20-3 

20.5. FILE IDENTIFICATION STATEMENTS 20-4 



4144 Rev. 2 
UP-NUMBER 

UN IVAC 11 00 SE RI ES SYST EMS Contents 16 
PA GE RE VISION PA GE 

20.6. SUPPLEMENTARY INFORMATION 20-4 

20.7. FUNDAMENTALS OF SYMSTREAM 20-5 
20.7.1. ELEMENTS OF SYMSTREAM 20-5 
20.7.1.1. VAR IABLES 20-5 
20.7.1.2. PROCESS PARAMETERS 20-5 
20.7.1.3. INTEGER EXPRESSIONS 20-5 
20.7.1.4. STREAM GENERATION STATEMENTS 20-5 
20.7.1.5. NUMERIC EXPRESSIONS 20-6 
20.7.1.6. SUPPLEMENTARY BASICS 20-6 
20.7.2. SYNTAX OF SYMSTREAM 20-6 
20.7.2.1. GENERATING OUTPUT STREAMS (*BRKPT) 20-7 
20.7.2.2. ZEROING EXISTING AND CREATED VARIABLES (*CLEAR) 20-7 
20.7.2.3. MERGING INPUT AND SKELETON STREAMS (*CORRECT AND *END) 20-8 
20.7.2.4. DYNAMIC EXPANSION OF SSG's OR PERM AND TEMP CHAINS (*CREATE) 20-9 
20.7.2.5. DEFINING SKELETON IMAGE SEQUENCES (*DEFINE AND *END) 20-9 
20.7.2.6. VARIABLE DIVISION (*DIVIDE) 20-10 
20.7.2.7. OUTPUTIING NONDIRECTIVE SKELETON IMAGES AS ONE IMAGE (*EDIT) 20-10 
20.7.2.8. SKIPPING SKELETON IMAGES (*IF, *ELSE, AND *END) 20-11 
20.7.2.9. SKELETON IMAGE LOOPS (*INCREMENT AND *LOOP) 20-13 
20.7.2.10. VARIABLE MULTIPLICATION (*MULTIPLY) 20-14 
20.7.2.11. CALLING A PREDEFINED SEQUENCE OF SKELETON IMAGES (*PROCESS) 20-14 
20.7.2.12. DELETING SGS's, AND PERM AND TEMP ELEMENT/VERSION NAMES (*REMOVE) 20-15 
20.7.2.13. CHANGING EXISTING OR CREATED VARIABLES (*SET) 20-16 

20.8. EXAMPLES OF SSG STREAM GENERATION 20-17 

20.9. MERGE OF INPUT STREAMS 20-22 

20.10. BACKUS NORMAL FORM OF SYMSTREAM ELEMENTS 20-25 

20.11. DIRECTIVES STRUCTURE 20-26 

21. DOCUMENTATION PROCESSORS 

21.1. INTRODUCTION 

21.2. FLOWCHART GENERATOR (FLUSH) 
21.2.1. GENERAL OUTPUT 
21.2.2. OPERATION MODES 
21.2.3. FLUSH DIRECTIVE OPTIONS 
21.2.3.1. TYPE I OPTIONS (I, J, P, T, W) 
21.2.3.2. TYPE II OPTION (A) 
21.2.3.3. TYPE III OPTIONS (E, H) 
21.2.3.4. TYPE IV OPTIONS (B, C, D, N, R) 
21.2.3.5. TYPE V OPTIONS (L, S) 
21.2.4. CONTINUATION REQUIREMENTS 
21.2.5. SUMMARY OF BOX TYPES 

21.3. DOCUMENT PROCESSOR (DOC) 
21.3.1. OUTPUT LISTINGS 
21.3.2. INTERNAL CONTROL DIRECTIVES 
21.3.2.1. TITLE CONTROL 
21.3.2.2. LISTING CONTROL 
21.3.2.3. TEXT CONTROL 
21.3.2.4. EDITING CONTROL 

21-1 

21-1 

21-2 
21-2 
21-3 
21-4 
21-5 
21-6 
21-9 
21-11 
21-12 
21-12 
21-13 

21-13 
21-14 
21-14 
21-15 
21-15 
21-16 
21-17 

to 21-19 



\~ 

'-.. -_/ 

........ _ ... 

4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS Contents 17 
PAGE REVISION PAGE 

22. MASTER FILE DIRECTORY 22·1 to 22·36 

22.1. INTRODUCTION 22·1 

22.2. MASTER FILE DIRECTORY STRUCTURE 22·1 

22.3. MASTER FILE DIRECTORY MANIPULATION (MSCON$) 22·2 
22.3.1. ITEM RETRIEVAL FOR ALL FILES (DGET$) 22·4 
22.3.2. ITEM RETRIEVAL FOR DISC PACKS (DGETP$) 22·8 
22.3.3. ITEM RETRIEVAL FOR AN INDIVIDUAL FILE (DREAD$) 22·9 
22.3.4. ALTERING MAIN ITEM (DBIT$) 22·10 
22.3.5. ALTERING BACKUP FILE ENTRIES (DBACK$) 22·10 
22.3.6. ALTERING LAPSE ENTRIES (DLAPS$) 22·11 
22.3.7. CHANGING UNLOAD TIME (DUNLD$) 22·13 
22.3.8. CHANGING MAXIMUM CYCLE RANGE (DCYC$) 22·13 
22.3.9. CHANGING READ/WRITE KEYS (DKEY$) 22·14 
22.3.10. CHANGING BLOCK BUFFERING EOF SECTOR ADDRESS (DBB$) 22·14 
22.3.11. MODIFYING FILE IDENTITY (DREG$) 22·15 
22.3.12. LINK INSERTION FOR REMOVABLE DISC PACKS (DLlNK$) 22·16 
22.3.13. ADDING GRANULE ITEMS (DADD$) 22·16 
22.3.14. MONITORING MASS STORAGE AVAILABILITY (MSALL$) 22·17 

22.4. MSCON$ STATUS CONDITIONS 22·21 

22.5. DIRECTORY ITEM FORMATS 22·22 

23. LOGGING AND ACCOUNTING 23·1 to 23·27 

23.1. INTRODUCTION 23·1 

23.2. LOG ENTRY INITIATION AND CONTROL 23·1 

23.3. PRINT FILE OUTPUT 23·2 

23.4. SUMMARY ACCOUNT FILE CREATION AND UPDATING 23·3 

23.5. MASTER LOG FILE CREATION AND CONTROL 23·3 

23.6. FILE FORMATS 23·3 
23.6.1. BASIC NOTATION 23·3 
23.6.2. SUMMARY ACCOUNT FILE STRUCTURE 23-4 
23.6.3. SUMMARY ACCOUNTING FILE ENTRY FORMAT 23·5 
23.6.4. MASTER LOG ENTRY FORMATS 23·7 
23.6.4.1. CONTROL STATEMENT LOG ENTRIES 23·8 
23.6.4.2. FACILITY USAGE LOG ENTRIES 23·9 
23.6.4.3. CATALOGUED MASS STORAGE FILE USAGE ENTRY 23·10 
23.6.4.4. PROGRAM TERMINATION LOG ENTRY 23·12 
23.6.4.5. RUN TERMINATION LOG ENTRY 23·13 
23.6.4.6. I/O ERROR LOG ENTRY 23·14 
23.6.4.7. CONSOLE LOG ENTRIES 23·16 
23.6.4.8. CHECKPOINT LOG ENTRY 23·17 
23.6.4.9. RUN INITIATION LOG ENTRY 23·18 
23.6.4.10. CONSOLE REPLIES LOG ENTRY 23·19 
23.6.4.11. LOG KEYIN ENTRY 23·19 
23.6.4.12. UNSOLICITED KEYIN LOG ENTRY 23·20 
23.6.4.13. TAPE LABELING LOG ENTRY 23·30 



4144 Rev. 2 
UP.NUM BER 

UNIVAC 1100 SERIES SYSTEMS Contents 18 
PAGE REVISION PAGE 

23.7. BILLING ROUTINE (BILLER) 23-21 
23.7.1. GENERAL DESCRIPTION 23-21 
23.7.2. CONSTRAINTS FOR USER-IMPLEMENTED BILLING ROUTINES 23-21 
23.7.3. INITIALIZING AND CHAINING OF ACCOUNT ENTRIES 23·22 
23.7.3.1. INSERT COMMAND 23·22 
23.7.3.2. REMOVE, PURGE, AND READ COMMANDS 23·23 
23.7.3.3. NO INPUT SPECIFIED TO BILLER 23·24 
23.7.4. PRINTER OUTPUT 23·24 

23.8. LOG FI LE EDITOR (LOGFED) 23-25 

24. FILE STRUCTURE AND MAINTENANCE 24-1 to 24-14 

24.1. INTRODUCTION 24-1 

24.2. FILE FORMATS 24-1 
24.2.1. PROGRAM FILE FORMAT 24-1 
24.2.2. ELEMENT FILE FORMAT 24-3 
24.2.3. SYSTEM DATA FILE (SDF) FORMAT 24-4 

24.3. FILE MAINTENANCE 24-7 
24.3.1. PROGRAM FILE MAINTENANCE EXECUTIVE REQUESTS 24-7 
24.3.1.1. UPDATING THE ELEMENT TABLE (PFI$) 24-7 
24.3.1.2. TABLE OF CONTENTS SEARCH (PFS$) 24-10 
24.3.1.3. MAR K ELEM ENT FOR DELETION (PFD$) 24-11 
24.3.1.4. UPDATING NEXT WRITE LOCATION )PRUWL$) 24-12 
24.3.1.5. RETRIEVING NEXT WRITE LOCATION ADDRESS (PFWL$) 24-12 
24.3.1.6. PROGRAM FILE PACKAGE STATUS CONDITIONS 24-13 
24.3.2. PROGRAM FILE BASIC SERVICE PACKAGE 24-13 

25. INTERNAL EXECUTIVE DESIGN 25·1 to 25-17 

25.1. INTRODUCTION 25·1 

25.2. BASIC DESIGN PHILOSOPHY 25-1 

25.3. EXECUTIVE MAIN STORAGE USAGE 25-2 
25.3.1. GENERAL LAYOUT AND DISCUSSION 25·2 
25.3.2. PCT USAGE 25-3 
25.3.3. DEFINITION AND RESIDENCY OF COMPONENTS 25-3 

25.4. MULTIPROCESSING 25-5 

25.5. SCHEDULING 25-5 
25.5.1. GENERAL 25-5 
25.5.2. FACILITIES INVENTORY AND SELECTION 25-5 
25.5.3. CONTROL STATEMENT INTERPRETER (CSI) 25-7 
25.5.4. COARSE SCHEDULER 25-7 
25.5.5. DYNAMIC ALLOCATOR 25-9 
25.5.5.1. GENERAL OVERVIEW 25-9 
25.5.5.2. DYNAMIC MAIN STORAGE ALLOCATION 25-9 
25.5.5.3. DEMAND/BATCH SHAR ING 25-11 
25.5.5.4. TIMESHARING 25-11 
25.5.6. DISPATCHER 25·12 
25.5.6.1. INTERLOCK PROCESSING 25-12 
25.5.6.2. SWITCHING 25-13 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS Contents 19 
PAGE REVISION PAGE 

25.6. CLOCKI NG 
25.6.1. REAL TIME CLOCK 
25.6.2. DAY CLOCK 

25.7. INTERRUPT HANDLING 
25.7.1. INPUT/OUTPUT INTERRUPTS AND QUEUEING 
25.7.2. INTERPROCESSOR INTERRUPTS 
25.7.3. HARDWARE FAULT INTERRUPTS 
25.7.3.1. STORAGE AND ICR PARITY ERROR INTERRUPTS 
25.7.3.2. POWER LOSS INTERRUPTS 
25.7.4. PROGRAM-GENERATED INTERRUPTS 

25.8. CATALOGUED FILE RECOVERY 

26. RUN SETUP EXAMPLES 

APPENDIXES 

A. SUMMARY OF CONTROL STATEMENTS 

B. SUMMARY OF EXECUTIVE REQUESTS 

C. SYSTEM DIAGNOSTIC MESSAGES AND STATUS CODES 

C.1. RUN STREAM DIAGNOSTIC MESSAGES 

C.2. FACILITY REQUEST STATUS CODES 

C.3. ERR MODE (EMODE) AND I/O STATUS CODES 

C.4. CSF$ EXECUTIVE REQUEST STATUS CODES 
C.4.1. FACILITY REQUEST STATUS CODES (@CAT, @ASG, @FREE, @LOG, @MODE, @USE) 
C.4.2. @SYM AND @BRKPT STATUS CODES 
C.4.3. @ADD STATUS CODES 
C.4.4. @START DIAGNOSTICS AND STATUS CODES 
C.4.5. CHECKPOINT/RESTART STATUS CODES (@CKPT, @CKPAR, @RSTRT, @RSPAR) 

C.5. MSCON$ AND PFP STATUS CODES 
C.5.1. MSCON$ REQUEST STATUS CODES 
C.5.2. PROGRAM FILE PACKAGE STATUS CODES 

C.6. CHECKPOINT/RESTART ERROR CODES 

C.7. BLOCK BUFFERING AND ITEM HANDLER ERROR CODES 
C.7.1. DEVICE AND FILE EXIT CODES 
C.7.2. ABNORMAL EXIT CODES 

25-14 
25-14 
25-14 

25-14 
25-15 
25-15 
25-16 
25-16 
25-16 
25-17 

25-17 

26-1 to 26-12 

A-1 to A-6 

B-1 to B-6 

C-1 to C-29 

C-1 

C-10 

C-12 

C-22 
C-22 
C-22 
C-22 
C-23 
C-23 

C-23 
C-23 
C-25 

C-25 

C-27 
C-27 
C-29 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS Contents 20 

D. CONVERSION TABLES 

0.1. INTRODUCTION 

0.2. ASCII AND FIELDATA CONVERSION TABLES 
0.2.1. THE SPECIAL CHARACTERS IN ASCII 

0.3. UNISCOPE 100 DISPLAY TERMINAL 

0.4. CHARACTER CODES, XS·3, BCD CONVERSION TABLE 

0.5. BINARY/HEXADECIMAL CONVERSION TABLE 

0.6. OCTAL/DECIMAL CONVERSION TABLE 

E. EQUIPMENT CODES 

FIGURES 

6-1. I/O Packet, Mass Storage and Magnetic Tape Peripherals 
6-2. Arbitrary Device Handler Packet 

8-1. FURPUR Control Statements Used tq Alter File Formats 

10-1. Instruction Area (I Bank) Main Storage Map for the Segmented FILEA 
10-2. Data Area (0 Bank) Main Storage Map for the Segmented FILEA 

11-1. Standard Editing Format for Integer and Octal Dumps, Sample Printout 

13-1. Data Block Layout 
13-2. Single Item Layout 
13-3. Blocked Item Layout 
13-4. File Control Table Format 
13-5. Example of Complete Format Definition 
13-6. Item Level Tape File Organization, Single·File Reels 
13-7. Item Level Tape File Organization, Muotifile Reels 
13-8. Item Level Tape File Organization, Multifile Reels with Void File 
13-9. Item Level Tape File Organization, Multireel Files 
13-10. Item Level FASTRAND·Formatted Mass Storage File Organization 

22-1. Example of an MFD Entry 
22-2. Search Item 
22-3. Lead Item - Sector 0 
22-4. Lead Item - Sector 1 
22-5. Mass Storage File Main Item - Sector 0 
22-6. Mass Storage File Main Item - Sector 1 
22-7. Main Item - Sectors 2'n 
22-8. Tape File Main Item - Sector 0 
22-9. Mass Storage File Granule Item 
22-10. Tape File Granul~ Item 

PAGE REVISION PAGE 

0·1 

0·1 

0·1 
0·4 

0·6 

0·9 

0·11 

0·11 

E·1 

6·2 
6·28 

8·4 

to 0·15 

to E·3 

10·29 
10·30 

11·13 

13·10 
13·23 
13·23 
13·27 
13·38 
13·44 
13·44 
13·45 
13·45 
13·46 

22·2 
22·23 
22·24 
22·25 
22·26 
22·29 
22·31 
22·32 
22·35 
22·36 



\ 
'-

. ,.,'.' , 
( 
\ ..... _ ..• ,~' 

4144 Rev. 2 
UP-NUMBER 

UN IV AC 1100 S E R I ES SY STEMS Contents 21 
. PAGE REVISION PAGE 

23-1. Logging and Accounting Process, Block Diagram 23-2 
23-2. Summary Account File Format 23-4 

24-1. Program File Format 24-2 
24-2. Element File Format 24-4 
24-3. Element in Element File Format 24-5 

TABLES 

3-1. Summary of Executive Control Statements 3-4 
3-2. @RUN Control Statement, Options 3-6 
3-3. @MSG Control Statement, Options 3-12 
3-4. FASTRAND @ASG Control Statement, Options 3-22 
3-5. Magnetic Tape -ASG Control Statement, Options 3-26 
3-6. @CAT Control Statement, Options 3-36 
3-7. @FREE Control Statement, Options 3-38 

4-1. Available ERs 4-3 
4-2. Contingency Types 4-24 
4-3. Error Types 4-25 

5-1. Bit Settings in Control Register AO for A R EAD$ Request 5-4 
5-2. Print Control Functions 5-12 

6-1. Octal and Mnemonic I/O Codes Defined in SYS$*RLlB$ 6-3 
6-2. Magnetic Tape I/O Functions and Codes 6-10 
6-3. Type 5017 Fieldata/BCD Translations 6-15 
6-4. MSA Data Word Formats 6-17 
6-5. Magnetic Tape Function vs. Unit Type 6-19 
6-6. Standard Tape/Processor Code Translation (Octal) 6-20 
6-7. Magnetic Drum and Unitized Channel Storage I/O Functions and Codes 6-21 
6-8. FAST RAND Mass Storage I/O Functions and Codes 6-24 

7-1. Volume Header Label Field Description for Table Labeling 7-16 
7-2. First File Header Label Field Description for Table Labeling 7-17 

8-1. Summary of FURPUR Control Statements 8-1 
8-2. @COPY Control Statement, Options Applicable When Filenames are Specified 8-5 
8-3. @COPY Control Statement, Options Applicable When Element Names are Specified 8-7 
8-4. @COPIN Control Statements, Options Applicable When Filenames are Specified 8-9 
8-5. @COPIN Control Statement, Options Applicable When Element Names are Specified 8-10 
8-6. @COPOUT Control Statements, Options Applicable When Filenames are Specified 8-11 

. 8-7. @COPOUT Control Statement, Options Applicable When Element Names are Specified 8-12 
8-8. @PRT Control Statement, Options Applicable When Filenames, Account Numbers, 8-14 

or Project-id are Specified 
8-9. @PRT Control Statement, Options Applicable When Elements are Specified 8-15 

9-1. Processors Which Use the SI, SO, and RO Parameters 9-4 

9-2. Processors Which Require the SI and SO Parameters 9-5 

9-3. Source Input Routine Options 9-6 

9-4 . Partial Coding Line Correction Diagnostics 9-10 

9-5. @PDP Control Statement, Options 9-12 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS Contents 22 
PAGE REVISION PAGE 

10-1. @MAP Control Statement, Options 10-3 

11-1. @PMP Control Statement, General Options 11-2 
11-2. @PMD Control Statement, Special Options 11-3 
11-3. Standard Editing Formats for Dump Printouts 11-14 
11-4. Demand Mode Commands 11-27 

12-1. Demand Terminal Interface Messages 12-3 
12-2. Teletypewriter Control Characters 12-8 
12-3. DCT 500 Control Characters 12-13 
12-4. UNISCOPE 100 and DCT 1000 Control Messages and Sequences 12-17 
12-5. UNISCOPE 300 Symbiont, Control Sequences 12-21 

13-1. Device Error Status Codes 13-47 

14-1. Editing Routines for Initiation and Termination of Editing Mode 14-4 
14-2. General Purpose Editing Routines 14-5 
14-3. Floating-Point Editing Routines 14-9 

15-1. L TT Input-Status Codes 15-6 

18-1. @ELT Control Statement, Options 18-2 
18-2. @DATA Control Statement, Options 18-5 
18-3. @ED Control Statement, Options 18-7 
18-4. ED Processor Commands 18-8 
18-5. @CULL Control Statement, Options 18-16 

19-1. @SECU REControl Statement, Options 19-3 
19-2. Summary of SECU R E Processor Commands 19-9 

20-1. @SSG Control Statement, Options 20-4 

21-1. Summary of FLUSH Directive Options 21-4 
21-2. @DOC Control Statement, Options 21-14 
21-3. DOC Processor, Title Control Directives 21-15 
21-4. DOC Processor, Listing Control Directives 21-16 

25-1. Executive Components That Reside Permanently in Main Storage 25-3 
25-2. Nonresident (Transient) Components of the Executive System 25-4 

C-1. Facility Status Bits C-10 
C-2. ERR Mode (EMODE) and I/O Status Codes C-12 
C-3. @SYM and @BRKPT Status Codes C-22 
C-4. Status Codes for Successful Completion (S=O) C-24 
C-5. Status Codes for Error Termination (S=1) C-24 
C-6. Checkpoint Error Codes C-26 
C-7. Restart Error Codes C-26 
C-8. Device and File Exit Codes C-27 



\ 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 

D-1. Fieldata=to-ASCII Conversion 
D-2. ASCII-to-Fieldata Conversion 
D-3. UN ISCOPE 100 Display Term inal Control Functions 
D-4. Illegal Text Characters 
D-5. Cursor/SOE Coordinates 
D-6. XS-3 Fieldata-EBCD IC-BCD Conversion Table 
D-7. Binary/Hexadecimal Conversion 
D-8. Octal/Decimal Conversion 

PA GE RE VISION 

D-2 
D-3 
D-6 
D-7 
D-8 
D-9 
D-11 
D-12 

Contents 23 
PAGE 





4144 Rev. 2 
UP.NUMBER 

1.1. SCOPE OF MANUAL 

UNIVAC 1100 SERIES SYSTEMS 1-1 
PAGE REVISION pAGE 

I. INTRODUCTION 

The UN IVAC 1100 Series Operating System comprises the Univac-supplied software for the UN IVAC 1100 Series Computer 
Systems. This manual discusses the base portion of the operating system, that is, the executive system (EX EC 8) and the 
associated software needed to construct, execute, and maintain user programs. Information on language processors such 
as COBOL, FORTRAN, and the assembler, and on applications software such as SORT/MERGE, APT, and PERT can be 
found in their respective manuals. 

Information that is primarily of interest only to an operator, installation manager, or systems analyst is covered only briefly if 
at all (for example, operating procedures, system generation procedures, internal system logic, and so forth). Such material is 
covered in other Univac publications. 

The purpose of this manual is to provide information for the user programmer so that he can make full use of the wide range 
of capabilities provided by the UN IVAC 1100 Series Hardware/Software Systems. Any differences between the operating 
system described in this manual and the latest released software are described in the Univac 1100 Series System 
Memorandum. 

A knowledge of the 1100 series hardware architecture and machine (assembler) language programming is assumed. This 
knowledge is helpful, but not mandatory for the user of a higher level language or ~pplications package. 

1.2. THE OPERATING SYSTEM 

The UNIVAC 1100 Series Operating System was designed to meet the total computing requirements of today's users, and to 
allow for the change and growth required for the future. The operating system is the outgrowth of Univac's many years of 
experience in multiprogramming, multiprocessing, time sharing, communications, and real time oriented systems, and 
provides a system that contains the facilities required in complex environments, yet it is easy to operate and use. 

A complete set of software, ranging from high level language compilers to basic service functions, is included in the operating 
system. The six major categories are: 

II Executive System 

II System Processors 

11 Utility System Processors 

II Language Processors 

a Subroutine Library 

Applications Programs 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 1-2 
PAGE REVISION PAGE 

The first three categories are discussed in detail in this manual. The execution environment is specified for the software falling 
into the last three categories. In addition to the standard operating system, this manual describes certain utility routines 
provided only for the convenience of the user and they are not supported as operational software. These unsupported utility 
routines are: 

Document Processor (DOC) - see Section 21 

Flow Charting Processor (FLUSH) - see Section 21 

Log File Editor (LOGFED) - see Section 23 

Billing Routine (BILLER) - see Section 23 

Element Listing Routine (LIST) - see Section 18 

Cross-reference Processor (CULL) - see Section 18 

CUR-to-FUR Conversion (CON78) - see Section 18 

Program Trace Routine - see Section 11 

1.3. THE EXECUTIVE SYSTEM 

To take full advantage of the speed and hardware capabilities of the 1100 series and to make effective use of a given hardware 
configuration, a comprehensive internal operating environment has been created. 

This environment permits the concurrent operation of many programs; it allows the system to react immediately to the 
inquiries, requests, and demands of many different users at local and remote stations; it accords with the stringent demands 
of real time applications; it can store, file, retrieve, and protect large blocks of data; and it makes the best use of all available 
hardware facilities, while minimizing job turnaround time. 

Only through central control of all activities of the system can this environment of the combined hardware and software 
systems be fully established and maintained to satisfy the requirements of all applications. The responsibility for efficient, 
flexible, centralized control is borne by the executive system, which controls and coordinates the functions of the complex 
internal environment. By presenting a relatively simple interface to the programmer it allows him to use the system easily, 
while relieving him of concern for the internal interaction between his program and other coexistent programs. 

1.3.1. MULTIPLE MODES OF OPERATION 

The technical capabilities of the executive system cover a great variety of data processing activities. Its design is such that no 
penalties are imposed upon anyone of these activities by the support provided for the others, and an installation not 
interested in making use of the full range of capabilities may specify component features to be eliminated at system 
generation time. 

1.3.1.1. BATCH PROCESSING 

Foremost among the capabilities of the executive system is the support provided for batch processing. The system is designed 
to ease run preparation and submission, to shorten job turn-around time, and to reduce the need for operator intervention and 
decisions. Batch jobs may be processed from a variety of remote terminals, as well as from central site equipment. 

1.3.1.2. DEMAND PROCESSING (TIME-SHARING) 

Complementing the batch processing capabilities of the executive system are its time-sharing capabilities, the simultaneous 
accommodation by the executive system of requests and demands from users at numerous remote inquiry terminals, 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 1-3 
PAGE REVISION PAGE 

operating in a demand (or conversational) mode. All facilities available to the batch processing user are also available in the 
demand mode, the primary difference being that the executive system permits the user additional flexibility in the statement 
and control of individual runs; when an error is made, the user simply corrects it online and proceeds rather than suffering the 
turn-around cycle inherent in batch processing. The demand user may communicate directly with either the executive or a 
user program or he may communicate with a conversational processor, such as Conversational FORTRAN. 

1.3.1.3. REAL TIME PROCESSING 

The executive system is also designed to be applicable to programs which have real time requirements. The UNIVAC 
Communications Subsystem, together with efficient scheduling and interrupt processing features of the executive system, 
provide an environment satisfactory for any real time program. 

1.3.1.4. MULTIPROGRAMMING AND MULTIPROCESSING 

Runs may come from many sources, remote and central. These various runs, through the executive system's use and control 
of efficient multiprogramming and multiprocessing techniques may, at any given moment, be in different stages of activity; 
input, processing, and output may all be occurring simultaneously, thus ensuring efficient operation. 

1.3.2. UTILIZATION OF MASS STORAGE 

The executive system is designed to ensure effective and efficient utilization of the mass storage devices. The consequence is 
an unprecedented ability to relieve operators and programmers of the responsibility of maintaining and handling cards and 
magnetic tapes, thus eliminating many of the errors which heretofore have accompanied the use of large scale software 
systems. At the same time, the overall operating efficiency is considerably improved. 

Permanent data files and program files are maintained on the mass storage devices, with full facilities for modification and 
manipulation of these files. Security measures are established by the executive system to ensure that files are not subject to 
unauthorized use. Provisions are also made within the executive system for automatic relocation of infrequently used files to 
magnetic tape, as unused mass storage space approaches exhaustion. When the use of files relocated in such a manner is 
requested, they are retrieved and restored under control of the executive system with no inconvenience to the user. 

1.3.3. FUNCTIONAL AREAS OF THE EXECUTIVE SYSTEM 

The executive system is composed of many different routines which perform many different functions. These functions and 
routines are summarized in the following paragraphs. 

1.3.3.1. EXECUTIVE CONTROL LANGUAGE 

In the executive system, the user has a simple means of directing the execution of the individual tasks of a run and of relaying 
operational information concerning the run to the executive. This is accomplished through a set of control statements capable 
of performing all of the functions desirable or necessary in a modern executive system. The control language is open ended 
and easily expanded, so that features and functions may be added as the need arises. 

The basic format of a control statement is quite simple, and is adaptable to a large number of input devices. Statements are 
not restricted to punched cards and may be of variable lengths. Each control statement consists of a heading character (@), 
for recognition purposes, followed by a command and a variable number of parameters. The end of a control statement is 
indicated by the end of a card, a carriage return, or an equivalent signal, depending on the type of input device. 

1.3.3.2. THE S,UPERVISOR 

The supervisor is the executive system component that controls the sequencing, setup, and execution of all runs. It is 
designed to control the execution of a large number of independent and interdependent programs. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 1-4 
PAGE REVISION PAGE 

The supervisor contains three levels of scheduling: coarse scheduling, dynamic allocation of storage space, and central 
processor unit (CPU) dispatching. Runs entering the system are sorted into information files and these files are used by the 
supervisor for run scheduling and processing. Control statements for each run are retrieved and scanned by a control 
statement interpreter in the supervisor to facilitate the selection of runs for setup by the coarse scheduler. The coarse 
scheduling of each run primarily depends on two factors: the priority of the run, and its facility requirements. 

The dynamic allocator takes runs set up by the coarse scheduler and allots storage space according to the needs of the 
individual tasks (programs) of a run. Normally, tasks from many different runs are located in storage at the same time. Each 
run may be thought of as being made up of tasks, where a task is a single operation of a system processor or the execution of 
a user program. All tasks for a given run are processed serially but not necessarily consecutively; if there are several runs, the 
tasks of separate runs are interleaved. 

When time-sharing of storage is appropriate, the dynamic allocator initiates storage swaps. This involves writing one program 
on mass storage and replacing it temporarily in main storage with another program. Such action is taken only to provide 
reasonable response time to remote demand-processing terminals, or to satisfy batch priority requirements. 

The CPU dispatching routine is a third level of scheduling; it selects among the various tasks currently occupying main storage 
whenever it is appropriate to switch the commitment of the CPU from one task to another. Under normal circumstances, a 
batch program is allowed to use a CPU either until it becomes interlocked against some event or until some higher priority 
program is freed of all of its interlocks. On multiprocessor systems, two or more tasks will be in actual execution at the same 
time. 

1.3.3.3. FACILITIES ASSIGNMENT 

Available facilities and their disposition are indicated to the system at system generation time; thereafter, the executive 
system assigns these facilities, as needed and as available, to fulfill the facilities requirements of all runs entering the system. 
The executive system maintains current inventory tables that indicate what facilities are available for assignment, and which 
runs are using the currently unavailable facilities. 

1.3.3.4. FI LE CONTROL 

The executive file control routines afford the highest degree of operational flexibility in storing and retrieving data, without 
concern for the physical characteristics of the recording devices. Thus, most files are made insensitive to input/output (I/O) 
media characteristics, as the system adjusts the interface between the file and the device. Security measures ensure that files 
are not subject to unauthorized use or destruction. File control routines are provided to roll out files from mass storage 
devices to magnetic tape, as well as reconstruct such files on the mass storage devices when the'user calls for them. 

Comprehensive utility routines are available for manipulation of files and for informing the user of current status and 
structure of his files. Provisions are made for random storage and retrieval of data, under the direction of the user. User 
program files and data files are maintained and processed in the same environment. 

1.3.3.5. OPERATOR COMMUNICATIONS 

Operator functions are required for a large variety of activities. The executive system groups them into four classes, thus 
equally dividing operator duties in a multioperator installation. These functions may be associated with as many as three 
system consoles or as few as one, depending on the complexity and layout of the installation. 

The executive system displays information such as current system load and operator requests associated with I/O setup and 
I/O interlocks. The operator can request other information, such as backlog status. If the display area becomes filled up, the 
executive defers lower priority displays. 

Since this manual is for the user programmer as opposed to the computer operator, it does not contain detailed information 
concerning the operator communication functions. 



.\.. .. 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 1-5 
PAGE REVISION PA GE 

1.3.3.6. INPUT/OUTPUT DEVICE HANDLERS AND SYMBIONTS 

The input/output device handlers and symbionts control the activities of all I/O channels and peripheral equipment attached 
to the system. 

The following is a list of the onsite and remote peripheral hardware that is supported by the executive: 

IJ Mass Storage Devices 

FH-432, FH-880, and FH-1782 Magnetic Drum Subsystems 

Unitized Channel Storage 

8414 0 isc Subsystem 

FASTRAND II and" I Magnetic Drum Subsystems 

13 Magnetic Tape Devices 

UN ISE RVO 12 and 16 Magnetic Tape Subsystems 

UNISERVO IV-C, VI-C, and VIII-C Magnetic Tape Subsystems 

UNISERVO II-A and III-A Magnetic Tape Subsystems 

lEI Printer Subsystems 

Type 0751,0755,0758, and 0768 High Speed Printers 

UNIVAC 1004 Printer 

a Card Subsystems 

Type 0706 and 0711 Card Readers 

Type 0600 and 0603 Card Punches 

UNIVAC 1004 Card Reader/Punch 

C Remote Devices 

Onsite Interface Hardware 

(1) Communications Terminal Module Controller Subsystem (CTMC) 
(2) Communications Terminal Synchronous Subsystem (CTS) 
(3) Word Terminal Synchronous Subsystem (WTS) 

Remote Terminal Hardware 

(1 ) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 

I 

UNISCOPE 100 Display Terminal 
UNISCOPE 300 Visual Communications Terminal 
OCT 2000, 1000, and 500 Data Communications Terminals 
UN IV AC 9300/9300-11 Remote System 
UNIVAC 9200/9200-11 Remote System 
Teletypewriter Models 33 and 35 
UN IVAC 1004 Card Processor 
Friden 7100 Typewriter 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 1-6 
PAGE REVISION PAGE 

1.4. SYSTEM PROCESSORS 

The system processors of the operating system are programs which provide for the utilitarian functions required to construct 
and modify programs, maintain and modify files, and provide diagnostic information upon program termination. 

1.4.1. COLLECTOR 

The collector is designed to provide the user with the means of collecting and linking relocatable subprograms to produce an 
absolute program in the form ready for execution under control of the executive system. 

1.4.2. FILE UTILITY PROCESSOR (FURPUR) 

FURPUR consists of a set of file maintenan"ce routines which provide the flexibility in management and manipulation of 
catalogued or temporary files containing data or programs. 

1.4.3. POSTMORTEM DUMP PROCESSOR (PMD) 

The postmortem dump processor (PMD) produces edited dumps of the contents of main storage at program termination; 
dumps produced dynamically during execution are automatically printed. Individual program parts are identified with the 
assistance of diagnostic tables produced with the absolute program by the collector. 

1.4.4. DATA AND EL T PROCESSORS 

The DATA and E L T processors are used to create and manipulate data streams and program elements. 

1.4.5. FILE ADMINISTRATION PROCESSOR (SECURE) 

The SECU R E processor uses a source language structure which allows the user to define specific tasks with simple 
COBOL·like statements. The processor's primary functions are to produce backup tapes for catalogued files, and to provide a 
recovery mechanism for these files in case of system failure. / 

1.4.6. TEXT EDITOR (ED) 

The ED processor is a text editor which enables a user to modify or move character strings in either program files or data 
files. 

1.4.7. PROCEDURE DEFINITION PROCESSOR (PDP) 

The procedure definition processor (PDP) accepts source language statements defining assembler, COBOL, or FORTRAN 
procedures and builds an element in the user·defined program file. These procedures may subsequently be referenced in an 
assembly or compilation without definition. 

1.5. SYSTEM UTILITY PROCESSORS 

The system utility processors provide features which are commonly required and used. Unlike the system processors, the 
features provided are not necessary for the effective utilization of the operating system. 

1.5.1. CUR-TO-FUR CONVERSION (CON78) 

This processor converts magnetic tapes created by the UNIVAC EXEC II complex utility routine (CUR) to magnetic tapes 
acceptable as input to UNIVAC 1100 series program files. The processor will accept UN IVAC EXEC II symbolic elements, 
COBOL library elements, and procedure elements, and converts them to the proper formats. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 1-7 
PAGE REVISION PAGE 

1.5.2. FLUSH 

FLUSH (Flowcharting Language for User's Simplified Handling) is a processor which accepts assembler format input to 
produce a flowchart. F LUSH can: 

• be instructed through the use of parameters, called options, which are contained in the comments field of the 
instructions to be flowcharted, or 

• perform an analysis based on the assembler instruction statements. 

1.5.3. SSG PROCESSOR 

The SSG processor is a general·purpose symbolic stream generator. Any variety of symbolic streams, varying from a file of 
data to a run stream which configures an executive system, may be generated. Directions and models for building of the 
desired stream images are conveyed to SSG through a skeleton which is written in SYMSTREAM, an extensive manipulative 
language. 

1.5.4. CULL PROCESSOR 

CULL is a processor which produces an alphabetically-sorted, cross·referenced listing of all symbols in a specified set of 
symbolic elements. Provisions are included, via options, to selectively include or exclude defined symbols or symbol groups 
from the output. 

1.5.5. DOCUMENT PROCESSOR (DOC) 

DOC accepts the contents of a document and composes that document according to the user's specifications. Control 
statements provide listing and text control, including pagination, justification, indentation, and hyphenation. Document 
maintenance is provided on a line·image basis and by content addressing of text character strings. 

1.5.6. LIST PROCESSOR 

This special·purpose processor provides edited element listings which include associated element control information not 
normally of interest to the user. It is intended for debugging of software which deals with program files. 

1.6. LANGUAGE PROCESSORS 

The operating system provides several language processors, such as FORTRAN, COBO L, ALGOL, and the assembler. Certain 
of these processors are specifically designed for demand mode operation. Consult the appropriate manual for information on 
using a particular language. 

1.7. RELOCATABLE SUBROUTINE LH3RARY 

An extensive library of relocatable subroutines is provided. Subroutines referenced by user programs are automatically 
included when the absolute program is constructed by the collector. The library elements included in the operating system 
fall into the following general categories: 

• Subroutines that support higher level languages (COBOL Library, FORTRAN Library, and so forth) 

• Processor Interface Routines 

• SORT/MERGE 

• Diagnostic Subroutines 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 1-8 
PAGE REVISION PAGE 

• Item Handler and Block Buffering Package, which provide intermediate-level record and block I/O control 

• Service Routines, for editing, conversion, segment loading, and so forth 

• MATH-PACK/STAT -PACK - Mathematical and Statistical Functions 

• Assembler Procedure Library - Provides macro capability for generation of common machine-level coding and 
parameter sequences. 

This manual describes only those subroutines that fall into the base portion of the operating system, such as the diagnostic 
subroutines, the item handler and block buffering package, the editing routines, and certain assembler procedures. Please 
consult the appropriate' manual for information on a subject not covered in this document. 

1.8. APPLICATIONS PROGRAMS 

The operating system provides many applications programs such as APT, GPSS, PERT, and so forth. Please consult the 
appropriate manual for information on a particular applications program. 



" -

4144 Rev. 2 

UP.NUMBER 

2.1. INTRODUCTION 

UNIVAC 1100 SERIES SYSTEMS 2-1 

PAGE REVISION PAGE 

2. GENERAL CONCEPTS AND 
DEFINITIONS 

This section presents certain basic information that is essential for comprehension of the remaining sections of the manual 
which deal with specific areas of the operating system. 

2.2. DEFINITIONS AND ABBREVIATIONS 

The following paragraphs (2.2.1 through 2.2.8) define terms that aid in comprehending the remainder of the manual. The 
reader is encouraged to become familar with them before proceeding. 

2.2.1. INTRODUCTORY DEFINITIONS 

Sytem 

Operating System 

Executive 

User 

2.2.2. HARDWARE DEFINITIONS 

Application 

Facilities 

CPU 

The total UNIVAC 1100 series hardware/software complex comprising an integrated 
information processing installation. 

The UNIVAC 1100 Series Operating System. The entire set of system software available 
for the UNIVAC 1100 series which is either a part of or operates under the executive 
system. This includes the executive system proper, compilers, utility programs, 
subroutine libraries, and so forth. 

1100 Series Executive System, (EXEC 8). An executive is a routine that controls the 
execution of other routines. The executive is the principal interface between the user and 
the system as a whole. It is responsible for such functions as time and space allocation of 
system resources; first·level I/O control and interrupt answering; logging of system 
accounting data; first-level debugging assistance; and protection against undesired 
interaction of users with other users or the system. 

An individual or organization that consumes services provided by the system. 

The total hardware configuration, or a subset, resulting from partitioning that 
configuration by using either the availability control unit (ACU) or software downing of 
components. 

The peripheral units associated with an application; for example, tape units, mass storage, 
printers, and so forth. 

Central Processing Unit. A unit of the system containing circuitry and operating registers 
which control the interpretation and execution of instructions. A CPU does not contain 
any main or auxiliary storage. Under the executive, mUltiple CPUs may access common 
main and auxiliary storage. 



4144 Rev. 2 

UP.NUMBER 

Mu Iti processor 

Un it Processor 

Control Registers 

P Register 

PSR 

SLR 

Main Storage 

Mass Storage 

Core Storage 

Unitized Channel Storage 

Word 

Granule 

Word Addressable Drum Mass 
Storage 

FASTRAND·formatted Mass 
Storage 

Track 

Position 

Communication Device 

Central Site 

UNIVAC 1100 SERIES SYSTEMS I 2-2 
PAGE PAGE REVISION 

An application having two or more CPUs. Commonly abbreviated as MP. 

An application having a single CPU. Commonly abbreviated as UP. 

Those operating registers of a CPU which can be utilized directly by a program; that is, 
the X, A, and R registers (except XO and RO). 

CPU operating register whose contents reflect the instruction currently being executed. 

Processor State Register. A privileged register which controls the absolute main storage 
location of a program's I and D banks and specifies modes of operation of the CPU for the 
program. The PSR contains two basing fields which in conjunction with a program 
relative address determine an absolute main storage location within a 262K range. 

Storage Limits Register. A priveleged register which provides program isolation in a 
multiprogramming environment. The executive loads the SLR with the programs I and D 
bank limits such that if a program attempts to access an address outside the program area, 
a guard mode fault interrupt is generated. 

The general puspose, high speed core storage of the system, directly accessible by CPU 
operating registers, and serving principally to contain executing programs. As opposed to 
auxiliary storage. 

Supplemental storage which has random access capability; as opposed to magnetic tape, 
for example. Any type of flying-head magnetic drum, FASTRAND drum, disc, or 
unitized channel storage. 

Synonymous with main storage. 

Core storage which is treated as and accessed by peripheral I/O hardware. 

A sequence of bits or characters treated as a unit and capable of being stored in a single 
main storage location (A word is represented by 36 bits for the 1100 series), 

The incremental unit of size in which a storage medium can be allocated. 

Mass storage which is capable of being accessed in units of single words. This is generally 
restricted to hardware having this capability (that is, flying head magnetic drum or 
unitized channel storage) but in some cases may be simulated by the executive. As 
opposed to FASTRAND mass storage. 

Mass storage which is accessible in units of 28 words (one sector). This may be on actual 
FASTRAND hardware, or may be simulated (by the executive) on any other mass storage 
device. The term FASTRAND in this manual refers to the format, not the hardware 
device, unless otherwise stated. This is the most common mass storage format. As 
opposed to word addressable drum mass storage. 

In the context of FASTRAND-formatted mass storage, a granule consisting of 64 sectors, 
each sector consisting of 28 words giving a total of 1792 words per track. 

A granule of 64 contiguous tracks, in the context of FASTRANT-formatted mass storage. 

An input or output device which operates in a real time mode. CPUs must be prepared to 
receive input at any time or information may be lost. 

The CPU(s), main storage, and attached on·site peripheral equipment in a particular 
appl ication. 



\ .... 

't l't't nt:v. L. 

UP-NUMBER 

Remote Site 

CRT 

UNIVAC 1100 SERIES SYSTEMS 
PAGE REVISION PAGE 

Data terminal equipment that is time, space, or electrically distant from a central site, and 
capable of information exchange with the central site through some common carrier or 
transmission scheme, typically as a communication device. 

Cathode ray tube (CRT). Used to denote any of several supported remote terminals 
which incorporate a CRT as the output display device as opposed to a typewriter. 

2.2.3. PROGRAM ORGANIZATION DEFINITIONS 

Program 

User Program 

Element 

Symbolic Element 

Relocatable Element 

Absolute Element 

Processor 

Language Processor 

System Processor 

Collection 

Collector 

Generally, a series of instructions, in a form acceptable to a computer, prepared in order 
to achieve a certain result. In the context of run processing (see below), a program is an 
absolute element to be executed as a task, and may be a processor or a user program. 

Any program other than a processor. Usually developed by a user; however, certain 
UN I VAC system software packages operate as free-standing user programs (for example, 
PERT). 

A named grouping of information, typically manipulated as a unit, and typically defining 
a logical program part such as a subroutine. There are three basic types of elements: 
symbolic, relocatable, and absolute. 

An element containing information generally in human-intelligible format (typically card 
images). The most common usage of symbolic elements is as source language to be input 
to a language processor_ 

An element containing a program part in relocatable binary format, suitable for 
combination with other relocatable elements to produce an executable program (absolute 
element). Such elements occur must commonly as the output of a language processor to 
be input to a collection. 

An element containing a complete program in binary form suitable for execution by the 
executive. Such elements normally occur as output from a collection of relocatable 
elements, with all necessary linkages and relocation performed. 

A program incorporated as an integral component of the operating system. Such 
programs typically reside in the system library (LlB$) as absolute elements, and are 
invoked in a special standardized manner, but are otherwise treated as ordinary user 
programs. Processors fall in two broad classes: language processors and system processors. 

A processor whose principal functions include compiling, assembling, translating, or 
related operations for a specific programming language (for example, COBOL, 
FORTRAN, ASSEMBLER, and so forth). As opposed to system processor. 

A processor whose principal functions are of a specialized systemic service or utility 
nature (for example, the collector, postmortem dump, and so forth). As opposed to 
language processor. 

The process by which individual (relocatable) elements are combined to form a complete 
program (absolute element). This process begins with expicit specification of elements to 
be included, and typically involves inclusion of additional unspecified elements required 
to satisfy undefined references (these are most commonly obtained from the system 
relocatable subroutine library R LI B$). 

A system processor that provides the collection function. 



4144 Rev. 2 UN I VA C 1100 S E R I E S S Y S T EMS 2-4 
UP.NUMBER PAGE REVISION PAGE 

2.2.4. DEFINITIONS CONCERNING FILES 

File 

Catalogued File 

Temporary File 

Master File Directory 

Public File 

Private File 

External File name 

Internal File name 

Qualifier 

Program File 

An organized collection of data, treated as a unit, and stored in such a manner as to 
facilitate the retrieval of each individual datum. 

A file known to and retained by the executive, for an indefinite period not necessarily 
related to the life of a particular run, and generally retrievable by runs other than the run 
which originally created the file. In some cases, a catalogued file may be accessed 
simultaneously by two or more runs. As opposed to temporary file. 

A transient file created by, accessible to, and existing within the life of, a single run only. 
As opposed to catalogued file. 

A directory maintained by the executive to control the retrieval and retention of 
catalogued files. 

A catalogued file that can be assigned and accessed by a run of any project. As opposed 
to private file. 

A catalogued file that can be assigned and accessed only by runs of a particular project. 
As opposed to public file. 

The full· name by which a file is identified to the system. In addition to the basic name, 
full identification may require qualifier, cycle, and key information. As opposed to 
internal file name. 

An abbreviated file name used on individual I/O and related operations concerning a 
particular file. The internal file name may have an implicit association with an external 
filename, or may be associated to a particular external filename by explicit programmer 
directive. As opposed to external file name. 

An extension to the basic name of a file, employed to resolve a variety of ambiguous 
situations. Every file has a qualifier, but is normally implied according to system 
conventions, rather than being explicitly stated in references to the file. 

A spec i ally structured file containing a group of elements, residing on 
FASTRAND·formatted mass storage. As opposed to element file. 

Element File A specially structured file containing a group of elements, residing on magnetic tape. As 
opposed to program file. The arbitrary distinction between the two file types is made to 
avoid confusion between operations that may be done on one medium but not the other. 

Temporary Program File (TPF$) A mass storage file assigned automatically by the executive to each run. As a convenience 
to the user, in a wide variety of program file and element manipulation operations TPF$ 
is assumed as the program file in the absence of an explicit filename reference. 

SDF Format System Data File Format. The standard data format employed by the operating system. 
Briefly, SDF format is a sequential, fixed-block, variable-record format in which records 
may span blocks. 

DATA File A file in SDF format created or updated by one of several operating system mechanisms, 
usually a system processor called DATA. Not to be confused with the generic term "data 
file". 

2.2.5. RUN PROCESSING DEFINITIONS 

Control Statement A data image, used to direct the executive in processing a run. A control statement is 
identified by a master space (@) in column 1. 



4144 Rev. 2 

UP-NUMBER 

Executive Control Language 

Task 

Run 

Run Stream 

Processor Control Statement 

Batch Processing 

Demand Processing 

Real Time Processing 

Deadline Run 

peT 

UNIVAC 1100 SERIES SYSTEMS 2-5 
PAGE REVISION PAGE 

The language in which control statements are written. 

A discrete processing step in a run, involving the execution of an absolute element (that 
is, a processor or user program). Synonymous with program in run processing contexts. 

Job. A specified group of tasks prescribed as a unit of work for the system. The run is the 
largest work grouping treated and manipulated as a unit by the executive. The tasks of a 
particular run are executed serially in the order specified by the run stream. 

A sequence of data images which, taken as a whole, constitute the specification of a run. 
A run stream consists of a @RUN control statement, followed by other control 
statements and data, which direct the performance of individual tasks. 

A control statement used to direct the execution of a processor. Such statements have a 
standardized format which facilitates specification of parameters typically required by 
processors, such as element names. 

A mode in which runs are processed without any basic requirement for interactive manual 
data or control input (such as from a keyboard) during processing. As opposed to demand 
processing. 

A mode in which run processing is basically dependent on manual interaction with the 
system during processing, typically from a remote site. Also commonly known as 
'time-sharing'. As opposed to Batch Processing. 

A mode of operation in which the system's response to external stimuli is sufficiently fast 
to influence the process or operation being monitored or controlled so as to obtain a 
desired result. Generally, real time processing is under the influence of asynchronous 
inputs from one or more communications devices. Real time processing may occur in 
batch or demand mode (typically batch). 

A deadline run is a batch run which is afforded certain scheduling priorities to assure run 
completion by a prespecified time. Except for these scheduling exceptions, deadline runs 
are treated as batch runs by the executive. 

Program Control Table. A special table maintained by the executive containing the bulk 
of the control information for a particular run and the program (if any) currently in 
execution for that run. 

2.2.6. MULTIPROGRAMMING DEFINITIONS 

Activity 

Activity Registration 

Activity Name 

Activity-id 

Formally, a logical CPU. That is, a software mechanism wherein the executive maintains a 
CPU environment (current P register value, control register contents, and so forth) for an 
execution sequence or thread, called an activity, such that the activity appears to have 
continuous use of a single CPU as long as it desires, even though the executive may in 
fact, interleave CPU usage among many activities and execute them on different CPUs. 
All program execution is by activity. A program is initially assigned and typically needs 
just one activity; complex programs may register additional activities to be executed 
asynchronously. 

Forking. The act of creating and registering a new activity with the executive. 

A general-purpose identifier acquired by an existing activity to allow other activities of 
the same program to communicate or synchronize with it. 

A special-purpose numeric identifier which may be acquired upon registeration of a new 
activity. An activity having such an identifier may wait for the termination of one or 
more other activities having an id. Activity-id is not to be confused with activity name; 
their functions are separate and independent. 



4144 Rev. 2 

UP.NUMBER 

Activity Termination 

Switching 

Multiprocessing 

Multiprogramming 

Reentrant Routine 

REP 

UNIVAC 1100 SERIES SYSTEMS 2-6 
PAGE REVISION PAGE 

The permanent cessation of execution by an activity. This is normally done voluntarily 
by the activity itself, but may also result from an externally initiated action such as an 
abort sequence. A program terminates when all of its activities have terminated. 

The process by which the executive controls CPU usage. This principally involves 
determination of which activity(s) of which program(s) are to be executed on which 
CPU(s) for how long, and the control functions needed to fulfill that determination. Also 
called dispatching. 

The simultaneous execution of multiple activities of one or more programs, by employing 
two or more CPUs which access a common main storage. 

The concurrent (interleaved) execution of two or more programs or activities which 
reside in main storage. This is accomplished by sharing CPU usage through switching. 

A routine coded such that more than one activity at a time may execute the routine and 
still obtain desired results. Most commonly this is achieved by executing the same 
instructions on different data sets, frequently with some sort of locking procedure 
invoked at critical moments to prevent simultaneous operation on the same data set. The 
use of mu Itiple activities by a program generally implies that part of the program is 
reentrant. 

Reentrant Processor. A common reentrant routine that may be referenced by more than 
one program simultaneously. Typically, one or more REPs contain the bulk of the 
instructions necessary to a particular task, with the data area provided by the referencing 
program(s). In this manner, a substantial saving in main storage space can be achieved 
when several runs require performance of the same or very similar tasks. (For example, 
Conversational FORTRAN). 

2.2.7. MISCELLANEOUS DEFINITIONS 

ER 

PMD 

Swapping 

Symbionts 

Breakpoint 

Project 

Cycle 

Contingency 

Executive Request. An instruction which causes a special interrupt used to request 
executive service (for example, I/O, time of day, and so forth). Also, the service resulting 
from the request. This is the standard interface between programs and the executive. 

Postmortem Dump. A printout of a program's main storage contents following execution. 
Also, the system processor which produces the printout. 

The process of storing low priority or suspended programs on mass storage to allow main 
storage space to load other higher priority programs. 

A complex of executive routines providing the user interface with unit record peripherals 
and nonreal time remote devices. 

Division of symbiont· defined files into parts such that the output of completed parts 
may be initiated prior to run completion. This procedure allows more efficient utilization 
of printers and punches when large symbiont output files are involved. 

An identifier used to classify a run for accounting purposes. May also be used to provide 
implied filename qualification to avoid confusion of similarly named files of different 
projects. 

A number used to differentiate successive updates of files or symbolic elements. 

An abnormal or unanticipated event requiring special action, and usually causing 
diversion of an activity's execution path to a specially prepared routine or to a standard 
action sequence. 



4144 Rev. 2 
UP-NUMBER 

Standard Action 

ACW 

Scatter /Gather 

Packet 

Interlock 

Noise Constant 

Privi I eged Instruction 

Fieldata 

Data I mage or I mage 

\, 

lSI 

ESI 

ESI Completion Activity 

AXR$ 

ERU$ 

UNIVAC 1100 SERIES SYSTEMS 2-7 
PAGE REVISION PAGE 

Action performed by the operating system in a particular circumstance, in the absence of 
explicit user directive. 

Access Control Word. A word defining the length and location of a data area in main 
storage, most commonly an I/O buffer. 

Scatter Read/Gather Write. An I/O technique wherein mUltiple discontiguous buffers in 
main storage (described by a string of access control words) are read into (scatter read) or 
written out (gather write) in a single continuous operation involving a contiguous area or 
block on the peripheral device being accessed. 

A contiguous set of words that contains information to enable the execution of an 
operation or function to be performed, typically an ER. 

A condition by which a peripheral unit is unable to perform an executable command 
until the condition is removed by the operator. 

The size of a record, in characters, to be skipped as a noise record on parity error. Applies 
only to magnetic tape files. 

One of a set of machine instructions reserved for use by the executive. If the execution of 
a privileged instruction is attempted by a user program, a guard mode fault interrupt 
occurs. 

A six-bit character code which is the native character set of the operating system. The 
character set and associated codes are listed in Appendix D. 

A data record in human intelligible (character) format; most commonly refers to punched 
card or printer data. 

Internally Specified Index. A mode of I/O operation for an 1100 Series computer I/O 
channel, wherein the I/O access to main storage is determined solely by the CPU. This is 
the normal mode for noncommunications I/O. As opposed to ESt. 

Externally Specified Index. A mode of I/O operation for an 1100 series computer I/O 
channel through which many communication peripheral devices are multiplexed into one 
I/O channel. Each communication line has its own area in main storage for access control 
words and specifies this area by an identification word. An I/O operation wherein this 
identification word is given to the computer by the peripheral device is known as 
externally specified index (ESI). 

An ESI completion activity is created when a real time program initializes a line terminal. 
The ESI completion activity is activated upon the detection of ~n ESI interrupt for the 
line associated with its line terminal group and operates as the highest level activity in the 
system while processing that interrupt. 

A system procedure that contains the numeric definitions of the standard mnemonic 
designators for control registers, partid word designators, and so forth, which are used in 
assembly language coding. 

A system procedure that defines the numeric index associated with the mnemonic 
designation of each executive service request (E R). 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 2-8 
UP-NUMBER PAGE REVIS;ON PAGE 

2.2.8. ABBREVIATIONS USED IN THIS MANUAL 

abs absolute 

acct account 

ack acknowledge 

act activity 

ACU availability control unit 

ACW access control word 

addr address 

ADH arbitrary device handler 

AFC abnormal frame count 

ANSI American National Standard Institute 

ASCII American Standard Code for Information Interchange 

BBP block buffering package 

BCD binary coded decimal 

BPI bits per inch 

BPS bits per second 

BSP basic service package 

CA character availability 

CB column binary 

CCC core contents control 

char character 

ckpt checkpoint 

CLT communications line terminal 

col column 

cpm cards per minute 

cps characters per second 

CPU central processor unit 

CR carriage return 

CRT cathode ray tube 



4144 Rev. 2 UNIVAC 1100 SE RI ES SYSTEMS 2-9 

UP.NUMBER PAGE REVISION PA GE 

CSI control statement interpreter 

CTMC communications terminal module controller 

ctr counter 

CTS communications terminal synchronous 

DA dynamic allocator 

DAPA dynamic allocator periodic adjustment 

DAS directory allocation section 

D bank data bank 

EF external function 

EI external interrupt 

eltname element name 

EOB end of buffer 

EDF end of file 

EOFMRK end of file mark 

EOI end of input 

EDM end of message 

EDT end of transmission 

ER executive request 

ESI externally specified index 

ETX end of transmission 

FAC REJ facility reject 

FACWARN facility warning 

FCT file control table 

FGC final granule count 

FH flying head 

FPI frames per inch 

FURPUR file utility routine/program utility routine 
/~""'" 

( 
1.., ..... ____ " •. 



4144 KeV. L 

UP.NUMBER 

IACW 

I bank 

int 

INFOR 

I/O 

10C 

lSI 

j-desig 

LAF 

LF 

LlB$ 

loc 

LT 

LTG 

LTR 

LTT 

MFD 

MP 

MSA 

msg 

nbr 

NOL' 

NRTF 

OACW 

PCT 

PDP 

PET 

PFP 

UNIVAC 1100 SERIES SYSTEMS L-1U 

PA GE RE VISION PAGE 

input access control word 

instruction bank 

interrupt 

internal control statement format 

input/output 

input/output controller 

internally specified index 

partial word designator 

look ahead factor 

line feed 

system library 

location 

line terminal 

line terminal group 

line terminal routine 

line terminal table 

master file directory 

mu Iti processor 

multi subsystem adapter 

message 

number 

number of open lines 

nonreal time flag 

output access control word 

program control table 

, procedure definition processor 

program error table 

program file package 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 
2-11 

UP.NUMBER PA GE RE VISION PAGE 

pkt packet 

pktaddr packet address 

PMD postmortem dump 

pos position 

prev previous 

proc procedure 

PSR program state register 

refs references 

rei relation 

req requirement 

REP reentrant processor 

ret return 

RLlB$ system relocatable library 

RSEG relocatable segment 

.,,----- RTS real time subroutine 

SDF format system data fi Ie format 

secs seconds 

SGS stream generation statement 

SLR storage lim its register 

TPF$ temporary program file 

trans translator 

TRK track 

TS-flag test and set flag 

UP unit processor 

wd word 

wds words 

( .. 
WSA working storage area 

'-...-'~ 

WTS word terminal synchronous 



4144 Hev. :l 
UNIVAC 1100 SERIES SYSTEMS 

~-I~ 

UP.NUMBER PAGE REVISION PAGE 

2.3. CONVENTIONS 

2.3.1. NOTATIONAL CONVENTIONS 

The 36 bits in the 1100 series computer word are numbered from right to left. For example: 

35 o 

(The mnemonic W is used in ambiguous situations to indicate whole word references.) 

To reference partial words, the following mnemonics are used: 

S1 S2 S3 S4 S5 S6 
35 30 29 24 23 18 17 12 11 65 0 

Sixth-word 

Ouarter-word 01 02 03 04 
35 27 26 18 17 98 C 

Third-word T1 T2 T3 
35 24 23 12 11 0 

Half-word H1 H2 
35 18 17 0 

The 1100 series assembler mnemonics are used whenever machine instructions are discussed (see UNIVAC 1100 Series EXEC 
/I & 8 Assembler Programmers Reference Manual, UP-4040, current version). The assembler mnemonics for partial word 
transfers and registers are defined in system procedure AXR$ for use in assembly language routines. 

The mnemonic U is used to indicate immediate data references (operand taken directly from address portion of instruction 
rather than from the main storage location referenced by that address). 

Control registers are referenced by the following mnemonics: 

• AO, A 1, ... , A 15 Accumulators (AO - A3 also usable as index registers), 

• A 15+1, A 15+2 Additional accumulators involved in double or triple precision instructions. 

• Xl, X2, ... ,X11 Index registers. 

• Rl, R2, ... , R15 R registers. 

Activities may use one of two sets of control registers: 

• Major Set All control registers as given above. 

• Minor Set Registers Xll, AO through A5, Rl, R2, R3. 

The dollar sign ($) is generally used in system-defined external symbols, procedure names, and file names; to avoid 
duplication, the user should not use this character. The $ generally occurs as the last character of a symbol excepting 
procedure names in which it is the second character. 



UNIVAC 1100 SERIES SYSTEMS 
UP.NUMBER PAGE REVISION PAGE 

In packet and table formats, parameters in regular type indicate information that must be supplied by the programmer; 
parameters in italics indicate information that the system returns. Brackets ([] ) are used to indicate optional parameters. 

The symbol1r used to indicate a blank character. 

When specifying the formats of procedure calls and tables, brackets are used to indicate optional parameters. 

In control statement, executive request, and procedure call formats, capital letters represent themselves and must be coded as 
shown; lower case letters represent variables which must be coded as directed in the text. 

Numbers are represented in examples as in assembler syntax, that is, a leading zero specifies octal. 

2.3.2. CONTROL STATEMENT NOTATION 

Control statements have the general format: 

@Iabel:command,options parameters· comment 

Parameters are given in one or more fields separated by commas. A field may specify a single parameter, or may contain 
several related parameters given in subfields, which are delimited by slahses. An ellipsis ( ... ) indicates that any number of 
additional parameters, of the same format as the last shown, may be given (for example, reel numbers of a tape file, elements 
to be listed, and so forth). 

See 3.2, for a complete discussion of control statement syntax. 

2.4. BASIC CONCEPTS OF RUN CONTROL 

2.4.1. RUN INITIATION 

The executive symbiont complex provides the primary input interface between the user and the system. The symbionts 
control run input from onsite card readers and remote sites, as follows: 

(a) In batch mode, the entire run stream is normally buffered to mass storage by the symbionts before run processing is 
initiated. At this point, an executive component called the coarse scheduler takes over. It examines that portion of the 
run stream prior to the first task for initial facilities requirements. Based on those requirements, and certain other 
operating parameters such as run priority and deadline time (if any), the coarse scheduler determines the proper time to 
open the run. 

(b) In demand mode, the run is normally initiated immediately upon acceptance of the @RUN control statement. 
Additional run stream input generally occurs dynamically on an interactive or conversational basis. See Section 12 for a 
complete discussion of demand processing. 

When a run is opened, two temporary files are automatically assigned to it: the temporary program file (TPF$), and the run 
diagnostic file (DIAG$) which is not normally referenced directly by the user. 

2.4.2. RUN EXECUTION 

Once a run is opened, the coarse scheduler, in cooperation with the symbiont interface routines, processes the run stream 
sequentially. When a control statement is encountered, the appropriate executive routines are invoked to accomplish the 
specified action. When a control statement that causes execution of a task is encountered, the coarse scheduler sets up the 
task and passes control to the dynamic allocator (see 2.5) for execution. Run stream images are then passed by the symbiont 
interface routines directly to the task as data, one at a time as requested by the task, until the next control statement is 
encountered or the task terminates (certain control statements are transparent and do not signify the end of run stream input 
to the task). Run stream data images (that is, images that are not control statements) are ignored with a warning diagnostic if 
encountered when a task is not being executed. 



4144 Rev. 2 UNIVAC 1100 SE RI ES SYSTEMS 2-14 
UP.NUMBER PAGE REVISION PAGE 

2.4.3. SYMBIONT OUTPUT 

Every run has asso~iated with it an output print file. In general, all control statements, executive diagnostic messages, and 
summary accounting, information are printed in this file, as well as primary output print generated by the tasks of the run. An 
output punch file also is created if any user tasks generate card output. 

Normally, the executive controls the disposition of these files without the need for user directives, as follows: 

(a) In batch mode, the files are buffered on mass storage. At run termination, they are printed (or punched) at the site 
from which the run was initiated. 

(b) In demand mode, print output occurs at the terminal as it is generated. Punch output is unusual, and occurs at the 
central site in the normal case. 

2.4.3.1. SYMBIONT FI LE CONCEPTS 

From the standpoint of run processing, there are two basic classes of symbiont files: primary files and alternate files. They 
differ in usage rather than structure. 

Primary symbiont files comprise the standard files through which the user communicates with unit·record equipment. There 
are three types of primary symbiont file: 

(1) Primary Input File (READ$). This file is automatically established for each run and contains the run stream (see 2.3.1 
and 2.3.2). This file cannot be manipulated, as a unit, by user directive. 

(2) Primary Print File (PRINT$). Each run has associated with it a standard output print file. In general, all control 
statements, executive diagnostic messages, and summary accounting information are printed in this file, as well as 
primary print output generated by the tasks of the run. 

In the normal case, the executive establishes and controls the disposition of the primary print file without the need for 
user directives, as follows: 

(a) In batch mode, the file is buffered on mass storage. At run termination, it is printed at the site from which the 
run was initiated. 

(b) In demand mode, print output occurs at the terminal as it is generated. 

Primary print file may be thought of as an output stream. By a procedure called breakpointing, the user may direct this 
stream to his own files and/or partition it into several files called parts. The use of breakpointing allows printing of large 
volume of output to begin prior to run termination. To simplify file referencing, the current primary print file is always 
referenced by the generic name PRINT$, regardless of whether the file is an executive or user file. 

(3) Primary Punch File (PUNCH$). Primary punch output is handled in the same fashion aSllrimary print output, with two 
exceptions: 

(a) No file is established unless user tasks generate primary punch output. 

(b) Punch output generated at demand terminals is punched at the central site in the absence of user directives. 

The current punch output file is always referenced by the generic name PUNCH$. 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 
2-15 

UP-NUMBER PAGE REVISION PAGE 

The user may define alternate symbiont files in addition to the primary files. The principal purpose of this feature is to allow 
the user multiple concurrent symbiont operations of a particular type (read, print, or punch). 

Symbiont concepts and interfaces are discussed in detail in 3.6 and Section 5. 

2.4.4. RUN TERMINATION 

A run terminates upon reaching the end of the run stream (@FIN control statement) or as the result of an abnormal task 
termination. A number of actions are triggered at run termination, normally including: 

• Summary accounting information is entered in the print file, including such items as run start and termination time, 
CPU time used, pages printed, pertinent console message, and so forth. 

• Symbiont output files are closed, and queued for printing/punching in batch mode (see 2.4.3). 

• Any main storage space allocated to the run is released. 

• All facilities allocated to the run are released back to the system facilities pool, with the exception of mass storage 
space being retained in a catalogued file. 

• Temporary files are freed and cease to exist. 

• Catalogued files are freed, and, in the absence of assignment options to the contrary, retained. Any exclusive use 
interlocks are released. 

2.5. BASIC CONCEPTS OF TASK CONTROL 

The primary responsibility for the execution of individual tasks (programs) belongs to two executive components: the 
dynamic allocator, which manages main storage, and the dispatcher, which allocates CPU usage. Of these, the dynamic 
allocator is dominant in the sense that a task cannot use CPU time unless it is loaded in main storage. 

Normally, the executive executes a number of tasks concurrently (unit processor) and/or simultaneously (multiprocessor) by 
time-sharing the usage of main storage and CPU time. However, in most cases the user is unaware of, and need not be 
concerned with, the presence of other tasks in the system. 

2.5.1. REAL TIME 

Runs and tasks are always initiated in demand or batch mode. Real time mode is entered only when a task requests it. 

Most operational details of executive task control are of interest primarily in real time applications. These are covered in 
Section 16. The following sections apply only to demand and batch tasks and activities. 

2.5.2. TASK INITIATION 

The dynamic allocator initiates a task by allocating sufficient main storage space to accommodate the program, loading the 
program into main storage, assigning it a single activity with the major set of control registers and setting that activity's 
current instruction address (P register) to the program starting address specified at collection. 

2.5.3. TASK EXECUTION AND SWITCHING 

Once the task is ready for execution, its initial activity is passed to the dispatcher. Eventually, that activity is given control 
and allowed to execute instructions for a period of time until it either voluntarily relinquishes control (for example, to do 
I/O), has used up the time allotted it by the dispatcher, or is preempted by a higher priority activity, at which time the 
dispatcher switches to another activity (if there is one requiring CPU service). When the original activity's turn comes again, 
its CPU environmemt is restored and it resumes execution at point of interrupt. This switching process continues until the 
activity terminates; the same process also applies to any additional activities registered by the program. 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 
2-16 

UP-NUMBER PA GE RE VISION PAGE 

A task remains loaded in main storage until it terminates, or until it must be removed (swapped) in favor of a higher priority 
task or because its space requirements have increased. In the case of swapping, the dynamic allocator first suspends the 
program by deactivating all of its activities such that the dispatcher will not attempt to given them control. The program's 
main storage contents are then written to mass storage. When the dynamic allocator determines that the program should be 
reloaded, it is then read back into main storage and its activities are reactivated (made candidates for switching). 

Although batch programs may be swapped, swapping occurs must commonly for demand programs, which need not be in 
main storage while awaiting input from the demand terminal user. 

Note that a program is not necessarily always executed in the same place in main storage, and is generally 'unaware' of where 
it is loaded. This is accomplished by means of hardware relocation using basing registers. Whenever a program is loaded (or 
reloaded) into main storage, the dynamic allocator sets the basing register values associated with each activity to reflect the 
program's absolute position in main storage. The program itself uses program-relative addresses which the hardware adds to 
the appropriate basing register to determine the true absolute main storage addresses of the program's operands and 
instructions. 

2.5.4. EXECUTIVE REQUESTS 

A program activity accomplishes its functions in two basic ways. The most common, of course, is by executing instructions; 
the other is by having the executive do the actual execution. This is done via the Executive Request (ER) instruction. 

The ER is the principal interface between an executing program and the executive; it has the same fundamental relationship 
to task control that control statements have to run control. ERs are provided for a wide variety of functions, including 
activity control, input/output, facilities control, clocking, storage control, and so forth. 

ERs related to specific areas of the executive (for example, I/O, symbionts, and so forth) are covered in associated sections. 
Section 4 contains a more detailed discussion of the ER mechanism, certain ERs not covered elsewhere, and a master 
cross-reference for all E Rs. 

2.5.5. MULTIPROGRAMMING CONSIDERATIONS 

Programs which do not register multiple activities in general need not be concerned with the impact of switching. In essence, 
such programs can be written as if they have a single CPU to themselves. 

Multiactivity programs, however, must take care that their activities do not interact in an undesirable fashion. For example, 
two activities calling a common subroutine via the Store Location And Jump (SLJ) instruction could return to the wrong 
address if the second activity made its call before the first had exited (this can be solved by using the Load Modifier And 
Jump (LMJ) instruction). Or two activities trying to update a counter in main storage concurrently could produce incorrect 
results. The possibilities for confusion are infinite. 

For demand and batch programs, the dispatcher treats all activities equally, insofar as no activity can be certain of executing 
ahead of any other activity unless the programmer employs some method of synchronization; interrupt activities are given 
priority but only for a short period that is not programmer controllable. 

Two basic approaches to activity synchronization are provided: 

(1) A set of ERs which allow activities to wait for events triggered by other activities (see Section 4). 

(2) By use of the Test And Set (TS) hardware instruction, which is designed expressly for synchronization of asynchronous 
processes. This instruction functions, in conjunction with the dispatcher, as follows: 

(a) If bit 30 of the operand is zero, the next instruction is executed. 

(b) If bit 30 is a 1, an interrupt occurs and the activity's switching priority is reduced. The activity receives control 
back at the TS instruction on its next turn to execute; if bit 30 is still set, the process is repeated. In this fashion, 
the activity spirals downward in priority until bit 30 is reset to 0 and execution then proceeds to the next 
instruction. 



..... ~. _ ... -' 

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 
U P.NUMBER PAGE REVISION PAGE 

(c) Regardless of the setting of bit 30, bit 30 is set to 1 and bits 35-31 are cleared to zero; bits 29-0 are unaltered. 

(d) The testing and setting of bit 30 occurs in a single main storage reference, thus assuring that two CPUs cannot 
both find bit 30 set to zero. 

When the protected sequence has been completed a simple store zero (SZ) instruction will clear the test and set condition. 
The instruction sequence for protecting against concurrent execution of a critical instruction sequence is: 

TS IND 
CRITICAL SEQUENCE 
SZ,SI IND 

where: 

IND is any main storage location; it may be associated with a particular data set to be protected or may be a global 
lock for the sequence. 

The executive performs software simulation of the Test And Set (TS) instruction for UNIVAC 1108 unit processors which do 
not have test and set hardware. The a field of the TS instruction must be zero for it to be recognized as a TS. Also, the h bit 
(automatic incrementation) must be zero. The simulation code does not check for this, and errors result if the h bit is set and 
the increment portion of the index register in use is nonzero. The test and set should not be executed by way of the Execute 
Remote instruction. 

2.5.6. TASK TERMINATION 

A task terminates when all of its activities have terminated. On termination, main storage space for the program is released. 
On a normal termination, the coarse scheduler continues processing the run stream. 

An error termination occurs when one or more activities terminate in error. In this case, further run stream processing is 
usually limited to at most the processing of a postmortem dump (PMD). 

All E Rs are subject to extensive validation to ensure against interference with other runs. In most cases, when an error is 
found, the activity is placed in error mode. This does not necessarily mearr that the activity acutually terminates, but rather 
that a contingency occurs; standard action is error termination in the absence of a user specified contingency routine. 

See 4.3.2 and 4.9 for details on activity termination and contingencies. 

2.5.7. PROGRAM PROTECTION 

The multiprogramming capabilities of the executive system imply that many unrelated programs may be residing in main 
storage at the same time. Such jobs may be real time, production, classified, or simple debugging. Infringement of privacy in 
such a mixture is highly probable especially in cases where debugging tasks are executing. The knowledge or ignorance of an 
invasion may range from little or no concern for some runs to great concern for classified or real time applications. 

To combat this invasion, intentional or unintentional, the executive system has unique features that automatically guarantee 
absolute protection for each program. The protection guards against two forms of invasion, direct and indirect. 

Direct protection safeguards all programs in main storage from an active program that may attempt to read, write, or jump 
into another program area. This safeguard is effected by locking out any area of main storage that is not assigned to the 
presently active program or, in effect, locking in the active program. Any attempt to perform any of the above functions is 
immediately reported to the executive system in the form of a guard mode fault interrupt. The same applies to the attempted 
use of privileged instructions. 

Indirect protection is realized by reserving certain control functions for the exclusive use of the executive system. These 
functions are of the type that could cause a system malfunction and, in turn, a program malfunction if erroneously used. The 
executive system will prohibit the direct use of these functions; ERs are used to achieve the desired result . 

In both forms of protection, the executive system is, in reality, guaranteeing its own safety from abuses that may prove 
catastrophic to the system. 



UNIVAC 1100 SERIES SYSTEMS 
2-18 

UP-NUMBER PAGE REVISION PAGE 

2.6. FILE NAMES AND ELEMENT NAMES 

2.6.1. FI LE NAMES 

Each file in the operation system is assigned a unique name to distinguish it from all other files. The file name is required in 
the many control statements and directives that are used to reference files. 

The following notation is used to specify file names: 

[[qualifier] *] file-name[ (F-cycle)] [/[read-key] [/write-key] ] 

File-name is used as the basic name of the file and qualifier is used to establish uniqueness between files that have the same 
basic name. F-cycle is used to identify a particular file from a set of related files that have the same qualifier, file-name, 
read-key, and write-key (see 2.6.3). Read-key and write-key are used to obtain read and write access, respectively, to the file; 
these keys are not a part of the file name for purposes of assigning a file (see 3.7). 

Oualifier and file-name each consist of from one to twelve characters selected from the set: A-Z, 0-9, -, and $ (see 2.3.2 for 
caution on the use of $). F-cycle is an integer number (see 2.6.3 for range of values). Read-key and write-key each consist of 
one to six characters; any Fieldata character may be used except blank, comma, slash, period, and semicolon. 

All parameters, except file-name, are optional when naming a file. For those parameters that are omitted, the executive 
provides standard values. Whenever qualifier is omitted but the * is specified, the qualifier specified on the last @OUAL 
control statement (see 3.7.6) is used; however, when no @OUAL control statement is given or if both qualifier and the * are 
omitted, the project-id from the @RUN control statement (see 3.4.1) is used as the qualifier. If the read-key or write-key is 
omitted, blanks are supplied as the key. If F-cycle is omitted when naming a set of files, the relative cycle number of -0 is 
supplied (see 2.6.3). 

2.6.2. EXTERNAL AND INTERNAL FILE NAMES 

The term 'external file name' refers to the name of a catalogued file or to a temporary file assigned to a particular run. As 
previously stated (see 2.6.1), it may be necessary to specify the qualifier, file-name, and F-cycle to ensure that the file is 
uniquely identified. In the case where the file is uniquely identified, but file-name is not unique (either qualification or 
cycling has caused unique identification), it is necessary to attach a unique file-name (internal filename) to accomplish I/O or 
related operations. It may also be convenient to have a short name by which to refer to a file that has a long external file 
name; or a standard name which is attached to the particular file assigned or to be assigned to the run. By means of the @USE 
control statement (see 3.7.5), the executive provides the capability of attaching such an alternate or 'internal filename' to a 
file for referencing within a run. For example, the file name EZ can be made the internal filename for file 
ABCDEFGHIJLM*MLJIHGFEDCBA(-23} by the control statement: 

@USE EZ,ABCDEFGHIJLM*MLJIHGFEDCBA(-23} 

For the remainder of the run, whenever a reference to the file is to be made, EZ can be used as the filename. Thus the file can 
be referenced by either the external or internal filename. Several internal filenames can be attached to a particular external 
file name by multiple @USE control statements. For example: 

@USE EZ,ABCDEFGHIJLM*MLJIHGFEDCBA(-23) 

@USE BACKUP,EZ 

@USE O,BACKUP 

The file can now be referenced by the filenames: 

ABCDEFGHIJLM*MLJIHGEFDCBA(-23) 

EZ 

BACKUP 

o 



'"-,, - ' 

( 
", 

4144 Rev. 2 
UNI VAC 11 00 SE RIES SYSTEMS 

,c.-I;;] 

UP-NUMBER PAGE HEVISION PAGE 

The internal filename established is valid only for the particular F-cycle of the external filename. Thus, the internal filenames 
established in the foregoing example are valid only for cycle -23 of the set of files. 

The I/O device handlers (see Section 6), the symbiont interface routines (see Section 5) and others use a 12-character name to 
reference files; therefore, each file so referenced in a run must have a unique 12-character name by which it may be 
referenced. The following is an example of the use of internal file names for referencing files with nonunique file-name 
parameters: 

@USE NEWCYC,ID*FILESET(-O) 

@USE OLDCYC,ID*FILESET(-1) 

@USE OTHER,OUAL*FILESET 

@USE SAME, UNIOUE*PF 

The internal filenames NEWCYC and OLDCYC may be used to accomplish I/O on different cycles in a set of files. The name 
OTH ER is used distinguish the file to which it is attached from all other files with file-name F I LESET. Assuming that no 
other file with file·name PF is used in the run, file-name PF or SAME may be used in I/O and related references to uniquely 
identify the file to be accessed~. 

Internal filenames may contain one to twelve characters from the set: A-Z, 0-9, -, and $. 

2.6.3. FI LE CYCLES (F-cycles) 

In order to produce and maintain a set of catalogued files with the same qualifier, filename, read-key, and write-key, an 
integer parameter called F-cycle is associated with each file. The use of F-cycles enables the user to manipulate any of the set 
or the entire set of files without modifying his run stream. 

A system-standard maximum of 32 consecutively numbered F-cycles may be retained in the set of files. This value may be set 
to any value needed (from 1 to 32) for a particular set of files by the use of standard may be changed at system generation. 
Files within the set of files maybe referenced by using either an absolute or relative F-cycle number. Relative F-cycle numbers 
are integers in the range -0 to -31. As a new cycle of a file is being constructed, its F-cycle must be specified as +1 if the 
relative F-cycle scheme is being used. When the new cycle of the file is catalogued by freeing the file or by run termination, 
its relative F-cycle number is set to -0 and existing files of the set have their relative F-cycle number decreased by 1. In 
addition, the name of the file is treated by the executive as a new filename (even though it has the same name as a previously 
existing file) until the file is actually catalogued. At this point, the executive recognizes the fact that the updated file is 
actually a new cycle of an already existing set of files, and is catalogued and handled accordingly. When the maximum 
number of F-cYcies that may be retained is exceeded, record of the file with the most negative relative F-cycle number is 
deleted and, if the file is stored on mass storage, the file itself is deleted. 

When a file is deleted from a set, it may be necessary to change the relative F-cycle number of other files in order to maintain 
consecutive numbering from -0 to on. If the file at the beginning of a set is deleted, the relative F-cycle of all other files must 
be increased by one; whereas, if a file is deleted from the middle of a set, only those files with rpore negative relative F-cycle 
numbers need be adjusted. The deletion of the last remaining file of a set causes all recognition of the set to be removed from 
the system. 

As a file of a given set is being created, a number is assigned to it. This number is called the absolute F-cycle. Absolute 
F-cycle numbers are unsigned integers that begin with 1 and continue through 999, at which point, the numbering recycles to 
1. The circular assigment of cycle numbers does not cause conflicts since a maximum of 32 consecutively numbered F-cycles 
may be retained. 

Absolute F-cycles and their usage differ from relative F-cycles in two respects: 

• An absolute F-cycle number is permanently assigned to a fi Ie - a file's relative F-cycle may change as files are added to 
and deleted from the set. 

• The absolute F-cycle numbers of files in a set need not be consecutive - consecutive numbering of relative F-cycles in a 
set is always maintained. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 2-20 
PAGE REVISION PAGE 

As an example of the correlation between the absolute and relative F-cycle numbering schemes, assume that the most 
recently catalogued cycle of a file had an absolute F-cycle number of 28. When referring to this file, the F-cycle could be 
given as 28 or -0. Now assume a new cycle of the file is to be catalogued. Since the file has not yet been catalogued, its 
relative F-cycle is +1 and its absolute F-cycle is 29. When the new file is catalogued, the absolute F-cycle remains at 29 but 
the relative F-cycle becomes -0. The file whose absolute F-cycle is 28 is now given a relative F-cycle of -1; the file whose 
absolute F-cycle is 27 is now given a relative F-cycle of -2; and so on down the line. The use of relative F-cycle numbers 
enables the user to refer to a particular relative backup file. 

For example, assume that the nature of the program requires that a particular file always be created from a file four cycles 
earlier than the file being created and later catalogued. The relative F-cycle of -3 could be used when referencing the earlier 
file and this reference would be valid each time the program is run. If an absolute F-cycle notation had been used, the F-cycle 
designation must be changed each time the program is run. 

2.6.4. ELEMENT NAMES 

Three different types of elements are recognized by the operating system: 

(1) symbolic elements, 

(2) relocatable elements, and 

(3) absolute elements. 

Typically, symbolic elements contain source language images for language processors or executive control statements and data 
to be processed by other control statements. Relocatable elements are the binary output of certain processors such as COBO L 
and FORTRAN. Absolute elements are the output of the collector. 

Elements of any or all of the three types are contained in program files (see 24.2.1) on mass storage or in element files (see 
24.2.2) on tape. Each element is uniquely identified within a file by its element type and element name. Of course, each file 
in the operating system has a unique name and the filename is used as part of the element name to uniquely identify each 
element. The following notation is used to specify element names: 

[[ filename] .] element-name [/version] [(cycle)] 

Filename is the name of the file in which the element is contained; filename conforms to all the rules specified for file names 
in 2.6.1. Element-name is used as the basic name of the element and version is used to establish uniqueness between elements 
in the same file that have the same type and element-name. Cycle is used to specify a particular update of a symbolic element; 
cycles are not used for relocatable and absolute elements. 

Element-name and version may consist of one to twelve characters selected from the set:A-Z, 0-9, -, and $ (see 2.3.2 for 
caution on use of $). Cycle is an integer number (see 2.6.2 for range of values). All parameters, except element-name, are 
optional when naming an element. For those parameters omitted, the executive supplies values according to standard rules. If 
cycle is omitted for a symbolic element, relative cycle -0 is supplied in order to select the most recent cycle. If version is 
omitted, blanks are supplied. Omission of filename and the period implies reference to the run's temporary program file 
(TPF$). Filename must refer to a program file, unless otherwise stated. In a series of element names such as on a processor 
call statement (see 9.4), the period may be given without filename to specify the same file as for the preceding element in the 
series. 



• ,,I''''~'''' • 

UNIVAC 1100 SERIES SYSTEMS 
UP-NUMBER PAGE REVISION PAGE 

2.6.5. SYMBOLIC ELEMENT CYCLE 

To save altered or. deleted images (updates) within symbolic elements, an integer parameter called cycle is associated with 
each symbolic element. New cycles are created by specifying the U option on the processor call statement (see 9.4). 

Each item (image) in a symbolic element has a cycle number that indicates to which element cycle it belongs, and, if deleted, 
a delete cycle number to indicate in which cycle the item was deleted. When an element is updated, the updated items are 
inserted in their proper position and they are given a cycle number one greater than the last cycle of the element. Any items 
deleted by the update are so marked. 

When specifying a symbolic element for compilation or assembly, the user may select a specifc update from a sequence of 
retained updates by referencing the proper cycle number as part of the element name. In compilation, the update entry is 
combined with the element in its complete state thereby creating a complete element as of that cycle. 

A system-standard maximum of five, consecutively numbered cycles may be retained in a symbolic element. This maximum 
may be set to any value needed (up to 63) for a particular element by the use of the @CYCLE control statement (see 8.2.16). 
In addition the system standard may be changed at system's generation time. As soon as the number of retained updates for 
an element exceeds the specified maximum, the update with the lowest numbered cycle is combined with the update having 
the next higher cycle number to create a new element which in effect becomes the oldest cycle of the element. 

A particular cycle may be referenced by either an absolute or a relative cycle number. Absolute cycle numbers are unsigned 
integers in the range 0 to 62; however, since only a limited number of cycles are retained, the absolute cycle numbers used 
when referencing an element must be in the range of those absolute cycles retained. Relative cycle numbers are signed 
integers. If the relative cycle is given as -n, then absolute cycle r-n is referenced, where r is the most recent absolute cycle 
retained. If +n is used, then absolute cycle x+n is referenced, where x is the oldest absolute cycle retained. The use of relative 
cycle numbers makes it unnecessary to know the absolute cycle number of either the oldest or most recent cycle retained. 

Since absolute cycle numbers may not be greater than 62, when absolute cycle 62 of an element is updated all retained cycles 
are renumbered. The renumbering assigns cycle 0 to the oldest cycle retained, 1 to the next oldest, and so forth. For example, 
assume that a maximum of three cycles may be retained, cycles 60, 61, and 62 are currently retained, and cycle 62 is to be 
updated; as a result of the update, the element would contain cycles 0, 1, and 2. Cycle 0 is the equivalent of the previous 
cycle 61, 1 is the equivalent of 62, and 2 is the update of cycle 62; cycle 60 was dropped since a maximum of three cycles 
may be retained. 

The technique of using cycled symbolic elements offers two distinct advantages over other methods: 

(1) The equivalent of many different copies of the same element can be kept while requiring very little additional storage 
space over that needed for a single copy. 

(2) Eartier copies of the element can be referenced without having to prepare correction cards to delete later corrections. 
If, however, any cycle other than the latest cycle is corrected and the corrected cycle is to be retained, all cycles 
following the cycle to be updated are deleted. The new cycle number is the updat.ed cycle number plus one. 

2.6.6. REFERENCING FILES AND ELEMENTS 

Many of the control statements and directives discussed in this manual require that the particular file or element desired be 
specified. If the control statement or directive specifies filename, the following form is used: 

qual ifier*fi le-name( F-cycle) fread-key fwrite-key 

If eltname is specified, the following form is used. 

filename.element-namefversion(cycle) 

If name is specified, either a filename or element name may be used . 

On certain control statements (such as those of the FURPUR processor, see Section 8), if a filename is expected but the field 
is left empty, reference to the run's TPF$ is assumed. On other control statements (such as the processor call statement, see 
Section 9) if an element name is expected but the field is left empty, the name TPF$.NAME$ is supplied. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 2-22 
PAGE RF.VISION PAGE 

Note that if all optional parameters are dropped from a filename or eltname, it would seem that the executive could not 
distinguish between a file and element name where either may be used. In such cases, the absence of a period in the 
specification implies that it is an element name. Thus: 

name references an element (in TPF$); 

name references an element (in some implied file); 

name-1.name-2 references an element (name-2) in a specific file (name-1); 

name. references a file. 

The use of the period to distinguish a file from an element name is required only when either of them could be specified. In 
some control statements and directives, only a file name is required and the executive assumes that any name specified is a 
filename. Confusion may be avoided by always giving a period following a filename. 

2.6.7. EXAMPLES OF FILE AND ELEMENT REFERENCE 

Name 

PAYROLL*BACKUP(-2). 

*BACKUP.TLU/TWO 

PCF6.INTL(14) 

SORT 

SORT 

SORT. 

SORT(-4). 

SORT(7)/YES/NO. 

MERGE//IN. 

MERGE/IN. 

A*B(-1 )/CO/OT.C/D(-3) 

Interpretation 

References relative F-cycle -2 of file BACKUP with a qualifier of PAYROLL 

References element EDIT in file COST*PROG 

References version TWO of element TLU in file BACKUP. Oualifier will be taken from 
the last @OUAL control statement encountered or the project-id parameter if no 
@OUAL control statement was used. 

References absolute cycle 14 of element INTL in file PCF6. Oualifier will be taken 
from project-id parameter in @RUN control statement. 

References element SORT in TPF$ file. 

References element SORT inTPF$ file. 

References file SORT. 

Reference the fifth most recent F-cycle of file SORT. 

References F-cycle 7 of file SORT: The read and write keys are YES and NO, 
respectively. 

References file MERGE. Write key is IN and read key is blanks. 

Reference file MERGE. IN is the read key. 

References the fourth most recent cycle of version D of element C in the second most 
recent F-cycle of file A*B. Read and write keys are CO and OT, respectively. 

Note that when an F-cycle or element cycle is not specified, it is assumed that the most recent (that is, newest) cycle is 
desired. 



I 
\ .... 

4144 Rev. 2 
UP.NUMBER 

UN I V A C 1100 S E R I E S S Y S T EMS 3-1 

3.1. INTRODUCTION 

PAGE REVISION PAGE 

3. EXECUTIVE CONTROL 
STATEMENTS 

Control of the operating environment for the 1100 series computers is accomplished through a set of executive control 
statements. These control statements direct the executive system in the processing of a run. Control statements may envoke 
executive functions such as scheduling, assignment of facilities, and so forth; or may cause the execution of a user program or 
a processor (that is, a task). The executive control statements are designed in a compact and descriptive manner to facilitate 
use and yet provide full access to all of the features and functions of the executive system. 

3.2. CONTROL STATEMENT FORMAT 

Control statements con"sist of a recognition character and three major sections: 

• the label field 

• the operation fields 

• the operand fields 

Each of these sections may contain one or more parameter fields and each of the parameter fields may be further subdivided 
into parameter subfields. The recognition character is the master space (@) which is a 7-8 multipunch for punched cards or its 
equivalent for other devices. The recognition character must always appear in column 1. The format of the control 
statements, with the exception of the @END, @ENDCL, @EOF, and @FIN control statements, is free-form; that is, the order 
of the parameter fields within the control statement is fixed, but the parameter fields are not restricted to a particular 
column. The aforementioned control statements must be coded exactly as shown in their respective descriptions. 

The basic format of a control statement is: 

@ 

Label 
Field 

label: 

3.2.1. LABEL FIELD 

Operation Fields 

command,options 

Operand Fields 

parameter-field-1 ,parameter-field-2, ... ,parameter-field-n . comment 

The label field need not appear but may be used to name a control statement. The label is limited to six characters from the 
set: A-Z, 0-9. The first character of a label must be alphabetic. If a label is specified, it must be followed immediately by 
the colon (:). A label is used only when dynamic adjustment of the run stream is required. The discussion of its use is given in 
3.9.3. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 3-2 
PAGE REVISION PAGE 

3.2.2. OPERATION FIELDS 

Unless the control statement is to be used only as a label statement (see 3.9.3), the command field must always be specified 
as it determines the control statement's basic operation. The command on all control statements except the processor control 
statements (see 9.4) is limited to six characters from the set A-Z and 0-9, the first of which must be an alphabetic. The 
command field is terminated by a blank, or if options are specified, by a comma. 

The options field provides the user with ability to specify certain options in the form of unsequenced alphabetic characters 
related to the particular command. On some control statements, the options can be broken into subfields, each of which is 
separated by a slash (I). A blank character or a series of blank characters separates the command or options field from the 
operand fields. 

3.2.3. OPERAND FIELDS 

The operand fields specify parameters associated with the command fields. These are separated by commas and are specified 
by the user as dictated by his requirements. The content of each operand field, the number of operand fields, and whether 
each is required or optional varies with command selected. Operand fields, in turn, may contain parameter subfields that are 
separated by a slash (I). For the most part, these subfields are optional within a field. Thus, it is possible to specify parts of a 
field without specifying the entire field. 

3.2.4. CONTROL STATEMENT ANNOTATION 

Control statements may be annotated with comments following the operand field. At least one blank character must precede 
the comment. The comment itself may contain any character except the semicolon (;), which is the continuation character. 
The comment is terminated by the end of the card or its equivalent for other input devices. The comment is never required. If 
the operand parameter fields are omitted, the comment must begin with a period (.) followed by a blank. This is also true 
when the content of an operand parameter field is unrestricted and variable in length (as with the @LOG and @MSG control 
statements). The @XQT control statement is an example of a statement where operand parameter fields are possible but may 
be omitted. 

3.2.5. CONTROL STATEMENT CONTINUATION 

In certain situations, a control statement may require more than one line or card. In such cases, coding a semicolon (;) 
indicates continuation on the next card or line. A control statement may be split at any point, after the options field, where a 
leading blank is allowable or within the comment field. It is treated logically as a space. Continuation on the next line can 
begin in any column, with one exception: a master space character (@) must not be placed in column one of the continuation 
line. 

3.2.6. LEADING BLANKS IN FIELDS 

Leading blanks within a statement are permissible in the following cases: 

• Following the master space (@) character 

• Following a colon (:) when a label is specified 

• Following a parameter field separator (,) 

• Following a parameter subfield separator (/) 

A blank, placed at any position in the coding other than those listed, is interpreted as the termination of the parameter field. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 11 00 SE RI ES SYST EMS 3-3 
PA GE RE VISION PA GE 

3.2.7. GENERAL DROPOUT RULES 

When parameter fields and subfields are optional, the following rules apply, where an empty field is defined as one that 
contains no non blank characters: 

(1) Parameter field separators must be specified, left to right, through the last parameter given; fields preceding the last 
parameter may be empty; trailing field separators need not be specified. 

(2) The same holds true of parameter subfield specifications within a field. 

For example, in the magnetic tape @ASG control statement, the only required parameters are ASG and filename (see 2.6.1). 
The format of this control statement is: 

@I abe I: AS G, options filename, type/u nits/I og/noi se/MSA·trans/u nit-trans/format,reeI1 / .. .Ireel n,ex pi ration-period 

The following symbolically illustrates the possicle coding combinations that result from applying the general dropout rules: 

[~~=~:::~=-~---=:~=~g~~=== 30 OPERAND 

~A;8J~'lA; .. £lil'1~J'1g,mel' L,!tle.L~J.~l 

,\ 
40 

COMMEI'HS 
50 

=======: 

L.i._L_L.; .. L .J .; ... j .. ~l .J .j ... L._1..1 .•.... l ... J .i.. .. .1 ... j .;. .. L .... .1 .... 1... ...• L_ .. 1 ... L. 

f&A,SlG: J . .1 :f;j.,I .. l~Jt:"ax'tJei ,ltlYJp;e! .. II .. i.llr'tQLi . ..1s1e:.L ... LLL_l ... 1 ..... L .... L.L., ..... J .. 1 .. .1 .. 1. J __ .1 ........ I .. L .. .1. I ' 

~A~S .. ~,;Bl.. ..L ... i •. L. j~Jj.ll.l~tr.1~J!"e!1,LbtPi~l(,Jlg-8L':rle.le.LL1JLllJ .1 .... 1-.1 .... ...1 .... L .•.. LL . .i .... L ... LL.t ... L_L1. .... .1 .... 1. .• L 

1 .... :... ..... 1 ... L.L1 : .. L .... Lrjg~J;Z/LtJt;i~llt:;;: .. L .... L ..... .L ... 1 ... 1 ....... : .. L .... L.L ... .J ...... .1 .... , ...... L ...... 1. .... L.1 ... ..1 .... .1 ... _1-; .... J .... 1-1... .. 1 .. i ..... 1. . .1_.1 ...... 1 ........ L._L ... .1 .... L ..... 1. .. 

~A~;§-:li~oL . .L_~_-l ... j .. _.LlfjJ-L.€:ttL~~.l;l,Jl.l_/ ·njQJ~.~S_g.LJ._~L---"_t-L-L_j_L._~ .. _L.J_(_,'--'--: ~--i.i ~L..l........L~ 
~TA:<.:r.l:A,sr::T;! fLi.LI it:;;n~c:::tlml~jl:'jrJ<=,giL.:..l! .. L ... 1-. .. L .. L .... .1. J .. 1 ....... 1 .. I ..... L J .. L .. L .... Li ._.L .. L ... L ... .1 .. L . ..l. .... J .. 1 .... L ..... L ... L .... ..: .... L.L ... L .. 

I ' .... L.J .. _3. .. ..! . L.! .. t." ... L .. L .. J ...... J ..... I ..... L .... .1 _L .. l. ... 1. ...•. 1.. .... 1 j .... L ... L ... L.L.L ..... L ... L 

Although control statements are free-form, most programmers align the label, operation, and operand fields when coding to 
make the ru n I isting easier to read. 

3.3. SUMMARY OF CONTROL STATEMENTS 

The executive control statements can be divided into eight groups. These groups are: 

(1) Scheduling statements 

(2) Message statements 

(3) Symbiont directive statements 

(4) Facility statements 

(5) Data preparation statements 

(6) Program execution statements 

(7) Dynamic run stream modification statements 

(8) Checkpoint and Restart statements 

Table 3-1 lists all the executive control statements in their respective groups and presents a brief description of each 
statement's function. 

Certain control statements, because of their complexity or their close association with concepts discussed elsewhere in this 
manual, are not discussed in this section. Table 3-1 contains references to the sections in which these statements are 
discussed. 



4144 Rev. 2 
UP.NUMBER 

Statement 
Group 

Scheduling 
Statements 

Message 
Statements 

Symbiont 
Directive 
Statements 

Facility 
Statements 

Dynamic 
Run Stream 
Modification 
Statements 

Checkpoint 
and Restart 
Statements 

Control 
Statement 

@RUN 

@FIN 

@START 

@LOG 

@MSG 

@HDG 

@SYM 

@BRKPT 

@COL 

@ASG 

@MODE 

@CAT 

@FREE 

@USE 

@QUAL 

@ADD 

@SETC 

@JUMP 

@TEST 

@CKPT 

@CKPAR 

@RSTRT 

@RSPAR 

UN I VA C 1100 S E R I E S S Y S T EMS 3-4 
PAGE REVISION PAGE 

Description 

Appears at the beginning of each run. Provides accounting, scheduling, and run identification 
information (see 3.4.1 ). 

Appears at the end of each run (see 3.4.2). 

Used to initiate the execution of an independent run (see 3.4.3). 

Places user specified information in the system log (see 3.5.2). 

Places a message on the operator's (cental site) console (see 3.5.1). 

Used to place a heading line on print output (see 3.6.1). 

Used to direct nonstandard symbiont output action (see 3.6.3). 

Used to segment prrmary symbiont output files and to close alternate symbiont files(see 3.6.2) 

Used to specify various forms of image input (see 3.6.5). 

Used to assign files (peripheral devices) and catalogued files to a run. There are five types of 
@ASG control statements: 

FASTRAND format (see 3.7.1.1), 
tape (see 3.7.1.2), 
word addressable drum (see 3.7.1.3.1), 
word addressable unit (see 3.7.1.3.2), and 
arbitary device (see 3.7.1.4). 

Used to change the mode settings (density, parity, etc) of tape files (see 3.7.2). 

Catalogues mass storage or existing tape files (see 3.7.3). 

Used to deassign a file and its input/output device or mass storage area (see 3.7.4). 

Used to set up a correspondence between internal and external filenames (see 3.7.5). 

Used to define a filename qualifier (see 3.7.6). 

Used to dynamically expand the run stream (see 3.9.1). 

Places a value in the condition word (see 3.9.4.1). 

Used to bypass a portion of a run stream (see 3.9.4.3). 

Used to test the condition word when determining portions of the run stream to be 
processed or bypassed (see 3.9.4.2). 

Used to establish a checkpoint dump that may be used for restart at some future time 
(see 17.2:1.1). 

Used to establish a program checkpoint dump that may be used for restart at some future 
time (see 17.3.1). 

Used to restart a run at some previously·taken checkpoint (see 17.2.4). 

Used to restart a program at some previously-taken checkpoint (see 17.3.2). 

Table 3-1. Summary of Executive Control Statements 
(Part 1 of 2) 



4144 Rev. 2 
UP.NUMBER 

Statement 
Group 

Program 
Execution 
Statements 

Data 
Preparation 
Statements 

NOTE: 

Control 
Statement' 

@processor 

@MAP 

@XQT 

@EOF 

@PMD 

@ELT 

@DATA 

@END 

@FILE 

@ENDF 

UNIVAC 1100 SERIES SYSTEMS 3-5 
PAGE REVISION PAGE 

Description 

Used to execute a processor (that is, @COB for COBOL compiler, and so forth), see 9.4. 

Used to call the collector and prepare an absolute element (see 10.2.1). 

Used to initiate the execution of a program (see 10.3.1). 

Used to separate data within the run stream (see 10.3.2). 

Used to take edited postmortem and dynamic dumps of the program just executed (see 
11.2.1 ). 

Inserts or updates a program file element from the run stream (see 18.2). 

Used to introduce or update a data file from the run stream (see 18.3). 

Used to terminate a data file (see 18.2.1). 

Used to cause the direct creation of a file containing data taken from the run stream 
!(see 3.8.1 ). 

Used to terminate the data that follows the @FI LE statement (see 3.8.2). 

The total system control statement capability is not given in the above table in that the control statements for the 
system processors are not shown. 

Table 3-1. Summary of Executive Control Statements 
(Part 2 of 2) 

3.4. SCHEDULING CONTROL STATEMENTS 

3.4.1. RUN INITIATION (@RUN) 

Purpose: 

Identifies the run to the executive and provides the information needed for accounting and scheduling purposes. The @RUN 
control statement must be the first statement of each run. 

All parameters in the @RUN control statement are optional. 

Format: 

@RUN,priority/options run-id,acct-id,project-id,run-time/deadline,pages/cards,start-time 

Parameters: 

priority Indicates the preference this run should be given in relation to all other runs which are 
available for execution. This parameter consists of a single alphabetic character selected 
from the set A-Z. The nearer the selected letter is to be beginning of the alphabet, the 
higher the priority assigned to the run. If a priority is assigned higher than that permitted 
for the specified account number, the executive alters the priority to the highest permis
sible level for that account. The executive system also suppl ies a standard run priority 
whenever the priority parameter is omitted. 



4144 Rev. 2 
UP-NUMBER 

options 

Option 
Character 

C 

E thru L 

N 

P 

R 

S 

T 

Y 

run-id 

acct-id 

project-id 

run-time 

UNIVAC 1100 SERIES SYSTEMS 3-6 
PAGE REVISION PAGE 

The options are alphabetical characters that may be given in any order. The options and 
their meanings are given in Table 3-2. 

Description 

Terminate the run if punched card estimate is exceeded. 

Designates the initial size of the PCT and is necessary only for real time programs. The letters have the 
following meaning: 
E = two main storage blocks, F = three main storage blocks, ... , L = nine main storage blocks. 

Inhibit all postmortem and dynamic diagnostic dumping. 

Terminate the run if the page estimate is exceeded. 

Restart the run in the event of a recoverable system failure. 

Process this run in sequence with the previous run submitted from this terminal. This run is not 
considered for execution until the previous run has terminated. 

Terminate the run if the run time estimate is exceeded. 

Allow postmortem and dynamic diagnostic dumping of processors and programs in the systems absolute 
library file SYS$*L1B$. 

Table 3-2. @RUN Control Statement, Options 

Identifies the run to the executive. Run-id may consist of one to six characters selected 
from the set A-Z, 0-9. If the specified run-id duplicates a run-id already in the system, 
the executive modifies the newly submitted run-id to make it unique. When the run-id is 
omitted, the executive assigns a run-id of RUNOOO. The numbers 000 may vary in order 
to establish a unique run-id. When the run-id is modified, both the original and the 
modified runJids are output on the operator's console, in the master log, and in the printer 
listing. ' 

Specifies an account number. Consists of 1 to 12 characters selected from the set A-Z, 
0-9, period, and dash. When omitted, the executive assigns an acct-id of 000000. If the 
submitted acct-id is not registered with the executive, the operator is notified and he can 
either: 

(1) abort the run, 

(2) accept the submitted acct-id which is then registered as a valid account. 

(3) accept the submitted acct-id without adding to the list of allowable acct-ids. 

Classifies the run for accounting purposes, and provides for the insertion of an implied 
qualifier for filenames. This parameter may consist of 1 to 12 characters from the set 
A-Z, 0-9, -, and $. If omitted, the executive provides 0$0$0$ as the project-id. 

Estimate of run time in minutes. When preceded by the letter S, the entry is interpreted 
as time in secon.~s.:_ If omitted, the executive assumes standard system value. When 
the estimated run time is exceeded, the executive: 

(1) notifies the operator allowing him to manually terminate the run, or 

(2) terminates the run, providing that the T option is specified in @RUN control 
statement or if automatic run termination was specified at systems generation. 



...... -.... 

4144 Rev. 2 
UP·NUMBER 

deadline 

pages 

cards 

start·time 

Description: 

UNIVAC 1100 SE RI ES SYSTEMS 3-7 
PAGE REVISION PAGE 

Specifies a time (based on a 24·hour clock) by which a run must be completed. The 
parameter format is: 

[0] hhmm 

where: 

hh specifies hours 
mm specifies minutes 

Leading zeros may be omitted from hhmm. The deadline time can be specified as either 
time of day or elapsed time from run submission. The optional 0 prefix indicates a 
time-of-day deadline; when the 0 is omitted, elapsed time deadline is indicated. 
Examples: 

0910 - Run must be done by 9: 1 0 A.M. 
02110 - Run must be done by 9: 10 P.M. 

100 - Run must be done one hour after submission 
230 - Run must be done 2.5 hours after submission 

The deadline parameter is ignored if the run-time parameter is not specified. 

If a deadline becomes critical or if a deadline cannot be met by normal scheduling, the 
executive reschedules the run (raises run priority) so that it is completed, if possible, at 
the specified completion time. This action, however, degrades system operation since it 
most likely involves suspending other runs. 

Estimate of the number of printed pages expected as output from the run. When omitted, 
the executive assumes a standard system value. If the estimate is exceeded, the executive: 

(1) notifies the operator and gives him the option of terminating the run, or 

(2) terminates the run if the P option,is specified or if automatic run termination was 
specified at system generation. 

Estimate of the number of punched cards expected as output from the run. When 
omitted, the executive provides a standard system value. If estimate is exceeded, the 
executive: 

(1) notifies the operator and gives him the option of terminating the run, or 

(2) terminates the run if the C option is specified or if automatic run termination was 
specified at system generation. 

The earliest time at which a run is considered for processing. Before that time is reached, 
the run is placed in a hold state. The format of the parameter is the same as for deadline 

[0] hhmm 

Once the start time has been reached, the run is released from the hold state and 
considered for scheduling under normal priority rules. 

Other @RUN control statement parameters such as deadline and priority are not 
interpreted until the start time has been reached; for example, the start-time parameter is 
considered to be the time of run submission when considering the deadline. 

Postmortem and dynamic dumping is governed by three modes of operation which are established at the beginning of a run. 
To establish each of these modes, the user must specify the proper options parameter (N or Y) or omit the options parameter 
entirely. The effects of each condition are described in the following paragraphs. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 
PAGE REVISION 

3-8 
PAGE 

• Normal Mode.- No Option Specified 

When the options parameter is omitted, all programs, except processors loaded from the system library (LlB$), are 
dumped to the diagnostic file (DIAG$) and normal PMD action occurs. (See 11.1 and 11.2 for information concerning 
normal PMD action.) @PMD control statements encountered after a processor control statement are not honored and 
are only printed out along with the message: PMD DUMPS AND DIAGNOSTIC PRINT·OUT NOT ALLOWED. The 
rules governing postmortem dumping also apply to the printout for diagnostic dumping. The no-option mode should be 
used whenever one or more programs, other than those in the library LlB$, are being debugged. This is the normal 
mode for user debugging of runs, but still provid~s reduced overhead as opposed to the complete capability (Y option). 

• N Option Mode 

When the N option is specified on the @RUN control statement, no program or processor is dumped to the diagnostic 
file upon run completion. @PMD control statements are not honored, but are printed along with the message described 
in the preceding paragraph. Diagnostic dumps are not printed. Specify the N option whenever the run is being executed 
for production purposes because the need for the overhead of saving the program for a possible @PMD control 
statement does not exist. The use of the N option provides minimum overhead in the run. 

• Y Option Mode 

The specification of the Y option in a @RUN control statement establishes a mode in which all programs and processors 
in the run are dumped to the diagnostic file. All @PMD control statements are honored, and diagnostic dumps are 
printed. This option should be used only when a program in the LlB$ library is being debugged. 

The R option on the @RUN control statement ensures that the run stream of an open run is recovered in the event of a 
system failure. If the R option is specified and the associated run is open at the time of a system failure, the run is reinstated 
in the schedule queue during a recovery bootstrap. The following actions and restrictions govern the use of the R option: 

(1) All queued print and punch files generated by the open run being rescheduled are released during the recovery 
bootstrap unless these files are user defined files. 

(2) The R option is ignored on all demand runs and these runs are never rescheduled. 

(3) A run executed with an R option is rescheduled only once. This prevents a nonrecoverable situation where a particular 
program causes system failure each time it is executed. 

(4) The programmer is responsible for handling facility assignments in his run such that conflicts during the restart of the 
run, resulting in the abort of this run, do not occur. 

Examples: 

1.~R.~:eELL' ,~lOL~'"J;I::;~~~OI:';l~I~"~~'P"~g'::L:~~''':~: i ~~:~&TBI~i~~_'1 .. ~::M~~~~,' 1 ... LI ... L 

2 ..... J.RJ.!li,Jr:;...,ILr:>L1 . [ . .I ....... L .... JR1:z.:!~Jl.l'.tq311Jtl~L'J:JAPL£;g,L,J3.J.Qiq.L . ..L .. L.LLJ ... L.J. __ L .... L ..... L.i ..... .1 .... J ... , .. 1 ._1-L .... .1 ..... L . .l .. 1 ...... L ... . 

3. ...... .1.Ki~l~J'lAL .. L ..... l ... Ll ..... .L . .l-.l.?LQLLL}-19J.Q I '113.LJP.l.tJ~i.'j.~~I~lD.j .. ldlS1J ... l)lg..lf.Q.J.~lLSIQ1,.;.DJ8.l3Q_l .... .1 .. -1-.1 ... t ... ..L_LJ .... ..l.l_.L. 

If. _._ Rj~ ,N L,J~lLI1~jSl_.j ........ L_,~, .. ,tAL"':J.L3.L9L~J , ... ts:,.()1P.j~1B..'JZlJi./J.ZL~JC?J.~.L81QL..LJ ........ L_L.J ........ L ...... L.1.._1 .... L .... J . ....Li ..... .1 .... ..l_L.1 .... J ...... 1.._ 

1. Run R231 of project CAPER is assigned standard system priority by the executive. Expenses incurred by the run are 
charged to account 03412. Run·time is estimated at 10 minutes with results required within one hour of run 
submission. Automatic run termination does not occur if run-time, page, or card estimates are exceeded unless provided 
for at system generation· time. The executive uses standard system card and page output estimates since these 
parameters are omitted. The run is scheduled by the executive for execution according to its priority (start-time 
parameter omitted). 



/,-, 
I 
I 
\ 

'-..--/ 

4144 Rev. 2 UNIVAC 1100 SE RI ES SYSTEMS 3-9 
UP-NUMBER PAGE REVISION PAGE 

2. Run R231 of project CAPER has a C priority. Automatic run termination occurs if the page output estimate of 300 
pages is exceeded (P option). Expenses incurred by the run are charged to account 03412. The executive provides 
system standard entry for estimated run time (run-time parameter omitted) and assumes that there is no deadline since 
this parameter is also omitted. The run is considered immediately (start-time parameter omitted) and scheduled for 
execution according to its priority. 

3. Run 201 of project EXODUS1 has a priority of A. Run expenses are charged to account 90431010. Running time is 
estimated at 50 seconds with an expected punched card output of approximately 50 cards. The start-time specifies that 
the run not be considered for execution before 8:30 AM. Unless provided for at system generation, automatic run 
termination does not occur if running time or output card estimates are exceeded, since these options were not 
specified. 

4. Run Z of project SUPER has a priority of E and is to be considered for execution only after termination of the 
previous run inputted from the same device (S option). The T and C options ensure that automatic run termination will 
occur if the specified running time or card output estimates are exceeded. Charges incurred by the run are charged to 
account A-1396. Running time is estimated at 20 minutes with the results expected within 2.5 hours of run 
submission. Card output is estimated at 80 cards. 

3.4.2. RUN TERMINATION (@FIN CONTROL STATEMENT) 

Purpose: 

Identifies the end of a run. The @FIN control statement must appear as the last statement in all runs. 

Format: 

@FIN 

Description: 

@FIN control statements cannot be continued and must be coded exactly as shown (punched into first four columns of the 
card). 

When the @FI N control statement is encountered, the accounting routines are called and all facilities, temporary files, and 
main storage areas assigned to the run are released. 

The @F II~ control statement is never treated as data by the E L T or DATA processors. 

When the @FIN control statement is encountered, the operating system prepares a printout summary that includes initiation 
time, termination time, page count of printed output, and all @LOG and operators console messages. 

At a demand terminal, the @FIN control statement is normally followed either by another @RUN control statement or an 
end-of-transmission (EOT) keyin. 

3.4.3. DYNAMIC INITIATION OF AN INDEPENDENT RUN (@START) 

Purpose: 

Permits the user to schedule independent batch runs where the run streams for these runs have been previously created and 
entered into the system. This feature allows the user to automatically schedule run execution at a time of his choosing (for 
example, on a daily basis). Runs scheduled by -this control statement must be SDF format and must be catalogued as either 
data files or data elements. The run stream may be created by: 

• the DATA processor 

• the E L T processor 

• an @ELT,D control statement 

• a user program 



4144 Rev. 2 
U P.NUMBER 

UN I V A C 11 00 S E R I E S S Y S T EMS 3-10 
PA GE RE VISION PA GE 

Two formats are provided for the @START control statement. Format 1 is used when all parameters from a prestored @RUN 
control statement are to be used. Format 2 is used when changing all or part of a @RUN control statement. 

All parameters in the @START control statement are optional except name. 

Format 1: 

@Iabel :ST ART name,set 

Format 2: 

@Iabel : START ,priority loptions name,set,ru n-id,acct-id,project-id,run-time/dead line,pages/cards,start-time 

Format 1 
Parameters: 

name 

set 

Format 2 
Parameters: 

Specifies the file or element. The file or element named must contain all the control 
statements required for the run. The @RUN control statement must be the first statement 
and the end of the file or element denotes an implied @FIN control statement. 

Specifies an octal number to be placed in T2 of the condition word (3.9.2) of the run 
being scheduled. 

Format 2 of the @START control statement results from the integration of the basic @START and @RUN control 
statements. VVhen this format is used, all parameters in the operand fields and subfields replace the corresponding pa
rameters in the prestored @RUN control statement. Parameters existing in @RUN control statement therefore can be 
modified or replaced, but not deleted, by using this format of the @START control statement. 

The acct-id specified in the @START control statement replaces the acct-id on the prestored @RUN control statement. If the 
@START control statement does not contain an acct-id parameter, the acct-id of the run containing the @START control 
statement is used. 

Description: 

The prestored set of images must have a @RUN control statement as the first image. The @RUN control statement for the 
prestored run must comply with the rules detailed in 3.4.1. 

The @START control statement can be used when one run is used to generate data for input by another run. In fact, the 
generating run could build a catalogued file containing an entire run control stream and then call for it to be scheduled. As a 
result of this facility, the @START control statement can be used to initiate parallel processing since tasks from different runs 
can be executed concurrently. 

Demand terminals, through the @START control statement, can initiate a batch run whose control stream has been 
previously entered into a data file, thus eliminating the necessity of retyping the required control statements. Any run 
initiated from a demand terminal using the @START control statement is scheduled as a batch run with its output going to 
the onsite peripherals. 

The @START control statement is of particular benefit at the central site for initiating prestored utility routines and standard 
production runs. 

The @START control statement can be issued by a user program by means of the CSF$ request (see 4.8.1). 



.. ,.,.'- ". 

4144 Rev. 2 
UP.NUMBER 

Examples: 

LABEL ,\ 
10 

UNIVAC 11 0 0 SERIES SYSTEMS 3-11 

OPERATION .\ OPERAHD 
20 30 

,\ 
40 

PAGE REVISION PAGE 

COMMEtHS 
50 

I. SJ.TA"RL ..... J ... L ..... 1EIJ.:'lbJ;t\---L.!.J....._LJ. .. ...l. .. _.J ....... l ....... L ..... L .... J ..... ...LL..L....L...L.J..._L.J ..... ..L._l . .....1....-1......l ... ....L-LJ .. _L .. L ..... L.J ......... L-.L..L..L..1 ....... J .... L._L.....1....-1......l ........ i .... 1... .... .1 

2. _ $I1AE::C .... ..J ...... .! ... ...JFJ:t!h~lt\!.J'.lQLI.I.~L ... J .... _ 1_ .. l. __ L..J __ .. ,L_L ... _.L .... 1.. ...... L ... .L ....... l._..L.L....L-L .... L .... L ... L .. L....l ........ .L ...... 1 . .....J-LJ. ... _ .. L._ ... i ...... .1. .... 1... ... 1 .. ...L.l_...l._ .. J.. ...... l ....... I ...... .L 

3. SJl\;RT.C ...... .l........l.........lEfI~JEC, • ,~.bJ]3.L,j.,J~Z1311 I, ,O,~~:hJ .. l.~h,L' " ,0 16~-L1-j ..... _L .... l 1 , L. .... L ... L_ .. L.l-LL.....L_L 

....... L. .. J._l_J. .. _ . ..l .. --l_l I 1 I I I J_ .. _.L. ..... l.. ... J ...... .l ........ l-1_L.....J.........L .. L ... L. .. L ..... I... ...... L .. .L .... L.L .. LJ........l.....L .. .l ....... .l .... _.l._L..J--L-1 -11--1..........1-.1 ........ 1 ..... l ... _ ... L~_L_.l ........ l ...... .J. 

1. The run found in file FILEA is scheduled for execution by this statement. FILEA must contain all the control 
statements needed to initiate the run. 

2. FI LEA is scheduled for execution; however, the normal execution sequence of the run for this file is altered by 
changing T2 of the condition word for the run to 12 8 , 

3. The run·id (R231), acct-id (03414), and the page/card (0/50) parameters are used instead of the values found in the 
@RUN control statement prestored in element EL TB of the file FILEC. 

3.5. MESSAGE CONTROL STATEMENTS 

3.5.1. DISPLAYING A MESSAGE (@MSG) 

Purpose: 

Used to display messages. 

All parameters in the @MSG control statement are required except label and options. 

Format: 

@label:MSG,options message 

Parameters: 

options 

message 

See Table 3-3. If the C, H, I, or S options are omitted, messages are displayed on the 
operator's console. 

Contains the message to be displayed. The length of this parameter is variable with a limit 
of 50 characters (including embedded blanks). Start·of-message is marked by first 
nonblank character encountered. End·of·message is signified by the last character prior to 
an end of line, a comment, or 50-character limit, whichever occurs first. 

When the message is displayed, it is prefixed with the run·id. 

The continuation character (;) and the blank-period·blank sequence which introduces a 
comment are not permitted as part. of the message. The carriage return character, 
however, may be used in formatting the message. This character causes both a carriage 
return and a line feed . 



4144 Rev. 2 
UP.NUMBER 

Options 
Character 

C 

H 

I 

N 

S 

W 

Description: 

UNIVAC 1100 SERIES SYSTEMS 3-12 
PAGE REVISION PAGE 

Description 

Displays message on communications console. 

Displays message on hardware confidence console. 

Displays message on I/O console. 

Suppresses message display. Message appears only in the users print file. N option overrides W option. 

Displays message on operator's (system) console. 

Holds run until operator responds to message display. The message specified by the user is displayed and 
requires a response by the operator. A batch run may be aborted by answering X. Any other response 
allows the run to continue. 

Table 3-3. @MSG Control Statement, Options 

The message can be directed to one console only. The order of precedence is I, C, H, and S. If none of these options is 
present, the message is displayed on the operator's console. 

The W option can be used to direct the operator in loading and general management of an arbitrary device for which the 
loading, and so forth, is not taken care of automatically by the executive. 

Examples: 

LABEL ,\ OPERATION .\ 
10 20 

OPERAND 
30 

/\ 
40 

COMMEtHS 
SO 60 

,. ~~,~ ..... I ...... l ........ l~~.EJg£T~-gj~J.~bS.J..._.-L~F: ~UJ]P.1UJ:l.~lblJ;1-1Xt~ .... .L ...... J ..... ..J .... -L.LL_l_ .. l ...... .J ..... 1 ........ 1 ...... I .... J-t 

2 ........ 1~t$~iL,MIt .... L_J_~~LJ.'81f;..M~L~ ....... jHI~~.u.EL.RJ:;,A"P.IY.;?L~_.Al~lS.WJ.;iRL ..... R~.!.L .... l ..... 1... ..... L.L.-1_L.-1_..L ...... 1 .... 1 ....... 1 ...... L ... -LJ_-L 

I LL.L .... L .... L .... L-1.-LJ-LJ. I I 1 1-t ..... l ........ L .. L .. L.J .. _ .. ! I i I 1.""'L .. L .. ..1. ..... .L_LJ..-LJ.......L..L.J-......' _LL.J ...... L .. I 1 I 1 L ... .l. ...... L ..... L ... ..L1 -,1--1-1 .......I.-..L1 .... L ... L ... L..L 

1. Illustrates a 37-character message to be displayed at the I/O console (I option). The message is strictly an informational 
one and no operator response is expected. 

2. This 23-character message requires a reply from the operator (W option). Since no particular console has been specified, 
the message is displayed on the operator's console; the program halts; and it will not continue until the operator replies 
to the message. The comment is: ANSWER REO. 

3.5.2. INSERTING INFORMATION IN THE MASTER LOG (@LOG) 

Purpose: 

Places user-specified information in the master log. 

All parameters are required except label. 

Format: 

@Iabel: LOG message 



4144 Rev. 2 
UP.NUMBER 

Parameters: 

message 

Description: 

UN I VA C 11 00 S E R I E S S Y S T EMS 3-13 
PAGE REVISION PAGE 

Contains a user-specified message to be placed in the master log. The length of this 
parameter is variable with a maximum limit of 132 characters including embedded blanks. 
The first non blank character encountered marks the start of the message. The end of the 
message is signified by the last character prior to an end of line, a comment, or 
132-character limit, whichever occurs first. 

When encountered, the executive extracts the message, prefixes it with the program 
identification, date, and time, and enters it in the master log. 

The continuation character (;) and the blank-period-blank sequence which introduces a 
comment are not permitted as part of a message. 

See CSF$ (4.8.1) for the executive linkage which permits this function to be called from within the user program. 

Example: 

LABEL ,\ OPERATION .\ 
10 20 

OPERAND 
30 

,\ 
40 

COMMEHT5 
50 

.1..1.. 

_l... ..... L .. J ...... J ....... L. .. L.J ... LJ.._L...l.-L.l_.L .... L .... L .... L .. L. ..... .L. •... .I. ...... J •. ..L. •. l-.-J.J_ .. L ...... L.. .... L. ..... L ... L. ...... J ..... .L--L-L_L ..... i ....... .l ........ L .... J... .. .J. ...... .l ....... .l ..•.. I_l_J ...... l ..... 1. ..... 1 .... ..li ...... l_ ... 1 ...... 1 ........ I .. I ... 1 .1 .... . 

In the example, the message consists of 26 characters (the blank preceding the period is considered part of the message) and is 
terminated by the comment: 

REVISED 5-1 

3.6. SYMBIONT DIRECTIVE STATEMENTS 

The following paragraphs describe the control statements related to symbiont operations. See 2.3.3. ,and Section 5 for 
additional discussion of symbionts. 

3.6.1. PRINT OUTPUT HEADING CONTROL (@HDG) 

Purpose: 

Provides a means of printing a heading on successive pages of primary printer output along with the print file's cumulative 
page number and the current date. 

All parameters in the @HDG control statement are optional. 

Format: 

@label:HDG,options heading 

Parameters: 

options The options are: 

N - Suppresses printing of heading, date, and page number 

P - Starts page numbering with PAGE 1 

x - Suppresses printing of date and page number 



4144 Rev. 2 
UP-NUMBER 

UN I V A C 1100 S E R I E S SYSTEMS 3-14 
PAGE REVISION PAGE 

heading Contains the heading which is to appear within the top margin of each page (two print 
lines prior to the first logical print line of the page). This parameter is of variable length 
and is limited to a maximum of 96 characters including embedded blanks. 

Descri ption: 

The heading starts with the second character after the operations field. Leading blanks are permitted in the heading. The end 
of the heading is signified by the end of the statement, a period, or the 96-character limit, whichever occurs first. 

If the margin at the top of a page is nonexistent or consists of only one print line, the header is suppressed and not printed. 
Unless suppressed (N or X options), the date and page number are printed to the right of the header. Page numbering begins 
with the page count current to the print file unless the P option is specified, in which case page numbering begins with PAGE 
1. 

Any number of @HDG control statements may appear in the run stream. 

The continuation character (;) and the blank-period-blank sequence which introduces a comment are not permitted as part of 
the heading format. 

Examples: 

LABEL :\ OPERA TlON ,\ 
10 20 

OPERAND 
30 

!\ 
40 

COMMENTS 
50 

, . ~HD~L,.B ..... J .... 1 .. J3~RjJ;P-L !Cfl.M1?l'lN!Y.i ..... i.:-"~~.u IAibL ... B~..l .... L ... J-L-L...J.-L .. Ll .... L .... L_LL. .. L . .L_L ... ..l ...... L. 

2. . .. H~.,.XL ... .L ... j __ ;B~Y:R.~..1.blbl. ..... RlEJ?fI.;RIL..J:-.. .L ... R.lYNL..l. .. L .. ..L_L_L..L ... L.. .. l.. ... 1... ... J ....... L . .1 ...... L_L_L....J.. ...... L ... 1 .... 1.. ..... L .. J.--1-1....1._ .. .L ..... .1 ........ I ...... .1 ... . 

3. ~'D6J, .. Nl. ..... L . ..l.-.l-1 .. .....L...I-L.L.J....._L.l .... l. ...... L.L .. L.J! I I I L ..... L ... L . .1 ........ L.J '!! I "_ .. L .. L. .. ..J I I I .: .. 1.. . .1 ... .l ....... L..L .. L. .. l_L...l ... . 

....... l... .... .L ..... L .. 1._L..J-L_..L...J.....l........L..L....J. ..... L ... 1... ..... l... ..... 1 ........ l I I I i I . ..L.LL ... L ... ..l ......... l... .. l...J..1........).....i -L-.Jc........L.....J.1 • ..1. .... L ..... LJ. I I ! .L ... 1 .... L .. 1.. I ! I I ' ...... l ........ L .... 1. .... 

1. The heading PYREP COMPANY - ANNUAL REPORT is printed at the top of each printed page along with the date 
and the page number. Page numbering begins with page number 1 (P option). 

2. The specified heading appears at the top of each printed page but page numbers and date are suppressed (X option). 

3. The N option suppresses further printing of the heading, date, and page numbers. 

3.6.2. SYMBIONT FILE BREAKPOINTING (@BRKPT) 

3.6.2.1. PRIMARY OUTPUT FILE BREAKPOINT 

Purpose: 

Used to partition and redirect the primary output files, PR I NT$ and PUNCH$. 

All parameters in the @BRKPT control statement are optional except @ and BRKPT. 

Format: 

@Iabel: B R KPT ,options generic-name/part-name 

Parameters: 

options L - Used to provide labeling of parts when stacking multipart output on magnetic tape. 



4144 Rev. 2 
UP.NUMBER 

generic-name 

part-name 

Description: 

UN I V A ell 00 S E R I E S S Y S T EMS 3-1 5 
PAGE REVISION PAGE 

Identifies the primary symbiont output file being breakpointed; must be PR INT$ or 
PUNCH$. 

An internal filename (see 2.6.2) identifying a new user-assigned file to which subsequent 
primary output is to be written, or in the case of the L option, this parameter is required 
and specifies a label to be written identifying a new part to be written on a previously 
breakpointed magnetic tape file. Omission of part-name directs subsequent primary 
output to an executive-controlled file. 

The @BRKPT control statement closes the previous file part. If the part is executive controlled, it is queued for printing or 
punching. If the part is a user-defined file, the file is closed by writing an EOF mark; no other action occurs for the file (that 
is, it is not freed, rewound, and so forth), and in the case of a magnetic tape file, the tape is positioned such that a new file 
may be started. 

A user-defined mass storage file should only be breakpointed once; attempts to write multiple parts into such files causes 
overwriting of previous parts. 

User-defined breakpoint files are not automatically printed; the user must use the @SYM control statement (see 3.6.3) to 
queue such files for printing. 

See 3.6.3 for examples of the use of the @BRKPT and @SYM control statements. 

See 4.8.1 for the linkage used to invoke a @BRKPT control statement from within a user program by means of the CSF$ 
service request. 

The @BRKPT control statement may be used from a demand terminal. However, when breakpointing PR INT$ to a 
user-defined file, conversational mode is lost until the PR INT$ file is redirected to executive control (that is, the terminal) by 
a subsequent breakpoint. 

3.6.2.2. ALTERNATE SYMBIONT FILE BREAKPOINT 

Purpose: 

Used to close or partition alternate print, punch, and read files defined by the user (see 5.1.2). 

All parameters in the @BRKPT control statement are optional except @ and BRKPT. 

Format: 

@label:B R KPT ,option internal·filename 

Parameters: 

option E - Inhibits EOF positioning for alternate read files on magnetic tape. 

internal-filename Identifies the alternate read, print, or punch file being breakpointed. 

Description: 

The discussion on primary file breakpointing (3.6.2.1) is generally applicable to alternate file breakpoints. The differences 
are: 

[J The alternate file is closed in that it is no longer known to the symbionts. 



4144 Rev. 2 
UP-NUMBER 

UN I V A C 1100 S E R I E S S Y S T EMS 3-16 
PAGE REVISION PAGE 

• In the case of input tape files, breakpoint is normally used to prematurely terminate reading of the file; in the absence 
of the E option, the input tape is positioned forward to the next EOF mark so that a subsequent file on the tape may 
be initiated as a new alternate read file. Using the E option avoids needless tape movement when the user is finished 
with the tape. 

• Stacking of output on tape is possible, but the user must provide his own part labelling by varying the internal-name 
(see 3.7.5) for each alternate file written to a tape. 

• Error and status codes applicable to the @BRKPT control statement can be found in Appendix C. 

3.6.3. SYMBIONT OUTPUT FI LE QUEUING (@SYM) 

Purpose: 

Directs the queuing of previously-created symbiont files to a specified device, or group of devices, for printing or punching. 

All parameters in the @SYM control statement are optional except @ and SYM. 

Format: 

@label:SYM,options filename.,device,part-name-1 Ipart-name-2, .. .lpart-name-n 

Parameters: 

options 

filename 

device 

part-names 

Description: 

The options are: 

C - Directs the file to the card punch at the remote site specified in the device 
field. If omitted implies printing when @SYMing to a remote site. 

U - Inhibits decataloguing of the file when processing is completed; applicable 
only to user-defined files. 

Specifies the file to be processed. If filename is a user-defined file, it must be a catalogued 
public file. Otherwise, filename must be a generic name (PRINT$ or PUNCH$). 

Specifies the device on which the file is to be printed or punched. This may identify a 
specific onsite device, a specific remote site, or a group of onsite devices (that is, the 
group might be all onsite punches, or all onsite 1004 printers). Device group and remote 
site identifiers are defined at system generation. If omitted, the devices associated with 
the run initiation device are assumed. 

Specifies the labels (see 3.6.2.1) of the symbiont file parts of a multifile tape to be 
printed or punched. If omitted, only the first part on the tape is processed. This 
parameter is not applicable to mass-storage files. 

At system generation, an association of output devices to input devices is established to allow the system to direct output 
files created by run stream execution to the proper output device. The @SYM control statement is used to direct a standard 
PRINT$ or PUNCH$ file to a device or group of devices other than that specified by system generation, or to direct a user file 
to a device for processing. The @SYM control statement may be used to queue any SDF-formatted file. 

All user-defined files processed by the @SYM control statement are decatalogued after processing unless the U option is 
specified. If multiple @SYM control statements are submitted for a given file, each @SYM control statement must contain the 
U option to ensure that the file is not decatalogued between the processing of the individual @SYM statements. 

When filename is PRINT$ or PUNCH$, the directive applies only to the current primary output (print or punch) part being 
created. I n this case, the primary output cannot have been breakpointed to a user-defined file. 

The order in which the part names are specified on the @SYM control statement must correspond to the order in which the 
parts are located on tape. However, not all parts on the tape need be processed; any parts located on tape between those 
named on the @SYM control statement are bypassed. 



4144 Rev. 2 
UP.NUMBER 

UN I V A C 11 00 S E R I E S S Y S T EMS 3-17 
PAGE REVISION PAGE 

Error and status codes applicable to the @SYM control statement can be found in Appendix C. 

3.6.4. @BRKPT/@SYM CONTROL STATEMENT USAGE 

The following example illustrates the usage of the @BRKPT and @SYM control statements. 

[
---LABE~-----"-~-- OPERATIO~-~ --.\-----.-. OPER.\HD .--~-.. -.------ CO}.~:·;f~-;~·-···~-···--· 

1 10 20 30 40 50 
!.==;;;;;.=:::::;;::::.=,=;:;."""=;;;;:;==.c==:=---=-:.:::-...:::=,c:..~=c:=--==,=.:::.c.-:::=::--·-=:,::::::::,,,-::-=..::c=='::;;:=":=7..~~'=---=--:=~;:::::'::;:':';:::"-C:::=:.:'''''''=:='~::::::;;:::::=;-~,~; 

I. !@:R\).J.~LJ_L.L . L .... 1. L ... 1..1. t ... L.LL.J!Ll .. L .. L..... t. L ..... L . ..l ........ LL .... L ..... i. .... .L . J ,j 1. j J 1 

2. ~AI$lGi.,:CiPLJ1~1:IIA1PIEJIT1J1LL.:JI'+: I .. I .i.. j J 

3.I~A;Sj6:L'iC"PLL .. 15lyJ1JEJLbJ~lJL6 ....... L. ... L ..... L .. 1 ...... LJ.:L.l ... L .. L . ...J ... 1_ .. 1 ....... L ..... I. L f • 

if. ~6jR~PjL _ .. J. ." .. .L .... f !.RJj~·LII$.llMJT1AJPLt=; ....... L ..... L .... L.I ...... 1 ... L ... 1.. : .. 

( 1 i. l . L. iLL J 1. 

b::~~.~~~:~.:.:~~~~ .... ~.LLLLL~..J...j.-'-L-L.LLLJ._~_~L-.L-".~._:LL.~.L.'_~-'--
51~~JR:K:P!TL'L~ tAR;J.it·LT$illhAI8J:l~Ji. ' ' . L .. 1. .. 1 .: ..... 1 

I 

I::L~~~~::~~~·~ :~~:~::LLLj .. L:.~~ ... J...J.L1. LLLL~L L.L-C .. L . .LLJ-.J .. L .LL .. L. ..i ,;; . 

6. ~_61 RJ,~e_J.L..L_L.J~lgili~LU..!"S...L\{~!l.LhJ;l.~L._L_L_.L_L_L_L_.L.-Ll ... 1 __ L.,..;._.L_l_LJ_ . ..J~._L_ .. J. ___ LJ>_!.>,.j_:_.>1_L_ . ..L • .J __ : __ L.L __ c .. L._. 

7. ~E&.E.: E .. L .... t ._ .. l ... ''-IT:AlP.L~ .... L ] ...... l ..... J ! .... L ... .1 ... ,J . 

8·t~~_:r:r~L._L .. \ ... L ... 1.., ~lTIAPifiJ,i' IP,R; tlJJ~lrj~;p:J:;111LAL61E;;~LJJ ...... : ....... i t. 

~ .... i._. L .... J .... 1... •. 1. ., i._I . L .... 1 .. J ...... :.. ....... L .... .1 _ .. '-.. ..... .'-. ...... .1 •.•.•• L ...... L ..... L .. _f ................. . 

J-L~J. .. .L..~ .... 1. .. ,L...L .. J ..•. L .. i.. .. L ..... L .... L.L ..... .L .... .1 ... .! .... L ...... L.L.L ..... L .. L_.J_.L ..... 1 ... , .. .L __ .L ..... J .1. ... .1 L f : ' L.l ... ' 

9. ~B!RJ;.J?_lIL.L.L : Pi IS:ItJ...tIL1LLl_LLJ._LLL...L.J.._LwwL._L i LL_L.L_L_J_L .. L.LL>~' ~, .... L_L.._.L_L • .L l_.L._L .. L_L . .L.J __ ,J_ 

I o. i~lEgLE. ELl ... J_J ... J$jYJ~\F.;IJ= l~l .. •• _ ..... , ...... , ..... , __ L. ................ L .. _' ..... , ........•........ ,_. 1.. ••.••. i... ...... L •. ~ •... , ....... 1.. ....• , ..••• L ..... L ..... 1 ..• -'_ .•. L ........ L ....... 1_ ... ' _ .... , ........ 1... .... L .• ,L ..... L ..... 1... ........... '-. ...... 1 ........ L .... 1 ....... 1... •... , ........ L 

1I·1~~YjMjJJ~J L_L~JyJf1EL,1:d,,,d;:L.l LJ l 1.._1.. ! t L_l.J 1....1- ••• 1 ... 1.._1.. .... ; .. L .. L ... L ... J .... LLJ ' , • L._ 

1~~.Ltty}'~,\( ",U i., S!y ~~tF ,IJ',"!~i, I }l&f!1jg:l_T:E::. L.J _ 1 ~L.J .. LJ ...... L..l. .. _L..i . i .. L.L . ..!. L .. L .. J ... 1..-1 .. i 1 LLl L._L l 

13'k;le.J81c; ~.LL ! .1 _lPiU l~..LC:-lH,$L.L., , .. ..1 : :....l. ~ 1 _1 _l J • .L_L! J L_L _ LL .' \...J._1. ..... L .L_ . .L._.1 L 1. .• 1...1 J 

,~e,g,m).L~.lJ11 Nc,J:L;h,.:."R,Mtfu;!: T~ __ < ~..L.J_ , f I I i _L.L...LJ......L.L_..L_.L ••. .L • ...L_.L. • ..J.....l._L....L.,_J.~L_LL • ...:-

I .1~=1~~~.~ .. ~ :::: :=",:=~.:.:.:: ... ~.:-~.:~~::::~:::~:=:.::::~.:::~_~:~:-~ ::~ .LI L.L :::~=:: ...• ~.~ 
This run partitions its primary print output into five parts and its primary punch output into two parts. 

The first and last print parts, and the first punch part, are handled automatically by the executive, and are processed on the 
devices associated with the run initiation device. 

The second and third print parts are stacked on the magnetic tape file MTAPE, with the labels MTAPE and LABEL1 
respectively. Line 8 prints these parts on onsite printer PR1. Tape file MTAPE is then decatalogued. 

The fourth print part is written on mass storage file SYMFI LE. Line 11 prints this part on one of the devices associated with 
run initiation. Line 12 prints the same part at remote site RMSITE. SYMFI LE is not decatalogued (note requirement for U 
option to allow multiple @SYM control statements). 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 
PAGE REVISION 

3-18 
PAGE 

Line 7 and 10 are required, since cataloguing does not occur until a file is freed. 

Line 14 punches the second punch part at remote site RMSITE. Note that the C option is required; otherwise, printing would 
occur. Also note that no other user directives (such as assignment of a file) are required to direct this part to the remote site, 
since it is executive·defined. 

3.6.5. CARD READER MODE CONTROL (@COL) 

Purpose: 

Permits the user to switch read mode from the defined system standard to the read mode specified by the first parameter on 
the @COL control statement. The @COL control statement is only valid when read from an onsite card reader. 

All parameters on the @COL control statement are optional except xx. 

Format: 

@COL xx,sentinel 

Parameters: 

xx 

sentinel 

Description: 

Specifies the mode in which the input data following the @COL control statement is to 
be read from the control stream. The user must specify the characters CB to switch to 
column binary mode when input is from 900-cpm reader or 1004 subsystem. The 
specified input mode remains in effect until a termination sentinel is encountered or the 
end of the input stream is detected, at which time the standard system mode is restored. 

Specifies user-defined sentinel for terminating the nonstandard read mode data input 
stream. The sentinel may consist of from one to five characters. 

The nonstandard read mode is terminated by encountering a termination control 
statement in the input run stream. The termination control statement consists of the 
one-to-five-character sentinel in the sentinel field of the @COL control statement 
preceded by the master space (@) character. If omitted, the standard system sentinel 
(ENDCL) is assumed. Use of the characters FI N results in termination of the input run 
stream in addition to the nonstandard read mode. 

To properly condition the input media for handling the change of input mode, the control stream must be arranged so that 
the @COL control statement, @ENDCL control statement, or sentinel statements are followed by three blank cards which, in 
turn, are immediately followed by the data cards to be read in the new input mode. The termination control statement 
containing the end sentinel image for the input mode must follow the data cards. The @COL control statement and its 
accompanying END sentinel statement are always processed at input time and in no case is action delayed until execution 
time. In addition, the three blank cards which trail these two statements are eliminated from the run stream. 

Examples: 

LABEL ;\ OPERATION i\ OPERAND !\ 
40 

COMMENTS 
50 10 20 30 

, • - LJ._J. .. m • ..L .. C'BL.LL .L .... L~ __ LJ .. J .... L ..... 1. .. .J.. I! ..... L..L._L--L._LL_L_L.Ll. ...... L .. J....J_-1--L..L...L .... l ..... L ..... 1... I I I I .J. ...... L .... L 

2. . ... ie.lL..L ... L-L.Jca..,1.N.&WSN1 ....... l ..... L .... L .... .l ...... L ... L_-L---'--'--'--l ...... 1 ..... I ...... J. . ...1 ..... t .. -L..L..L...L ... l ...... L ... L .... .L_ .. l ........ I ..... J._..L.....L-l ..•• l ...... J ........ L ..... l ...... J ... -l_l....J.-.J .... 1 ........ 1 ........ 1 ... . 

. LJ.. ...... L ... L . ..J.-L--L.l.-L.l I I I L .. L ... L .. L.Lj.. I I I I I '-_L.l. .. _ . ..L..L I I ' I ! I.-L_L .. L ... L .. _L..I I i I I L.L._.L_ I i I I I ._1.. 



.... --....... /. 

4144 Rev. 2 
UP-NUMBER 

U N I V A C 11 00 S E R I E S S Y S T EMS 3-19 
PAGE REVISION PAGE 

1. The input mode is switched to accept column binary input. The standard system end sentinel (ENDCL) is assumed 
(sentinel omitted). The run stream associated with this statement should appear as follows: 

@COL CB 

Three Blank Cards 

Binary Data Cards 

@ENDCL 

Three Blank Cards 

Continuation of Run Stream 

2. The user-specified terminating (ending) sentinel NEWSN is used to terminate the column binary input mode. The run 
stream for this example should appear as follows: 

@COL CB,NEWSN 

Three Blank Cards 

Binary Data Cards 

@NEWSN 

Three Blank Cards 

Continuation of Run Stream 

3.7. FACILITY CONTROL STATEMENTS 

3.7.1. ASSIGNING FILES AND PERIPHERAL DEVICES (@ASG) 

The @ASG control statement is used to name a file, state its I/O facility requirements, and assign it to the requesting run, 
under the given external filename. If the file is catalogued, the facility requirements are known and need not be specified 
when assigning the file. The information pertaining to files and file naming presented in 2.6 is a prerequisite to assigning and 
cataloguing files. 

The variety of I/O devices available makes several formats necessary for this statement. The five basic formats are: 

(1) FASTRAND@ASG control statement (see 3.7.1.1) 

(2) Magnetic tape @ASG control statement (see 3.7.1.2) 

(3) Word addressable drum @ASG control statement (see 3.7.1.3.1) 

(4) Unit assignment of mass storage @ASG control statement (see 3.7.1.3.2) 

(5) Arbitrary device@ASG control statement (see 3.7.1.4) 

A" user files must be assigned prior to being referenced for I/O operations. The assignments may occur in one of three ways: 

(1) by an @ASG control statement 

(2) by an executive request from within a user program 

(3) by an eX,ecutive request from within a part of the system itself, such as a system processor. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SE R IES SYSTEMS 3-20 
PAGE REVISION PAGE 

The only instances where a file can be referenced without using an @ASG control statement are when catalogued files are 
being named on control statements or being named in the source language input to a system processor, such as the collector. 
The actual assignment is then made by that part of the system handling the given control statement, and information 
concerning the assignment is taken from the master file directory. If any information is needed for the file assignment other 
than its external name, an @ASG control statement must be used to assign the file. The @ASG control statement must also be 
used when the file is not a catalogued file. The user is always free to assign a file prior to referencing it on a control 
statement. In this case, the part of the system handling control statement will detect that the assignment has already been 
made. The @ASG and @FREE control statements can be placed anywhere in the run stream. Dynamic @ASG and @FREE 
control statements may appear anywhere in the user program. These features allow the user to assign and free files as 
required, without tying up the files and facilities from'the beginning of the run until its completion. However, the user might 
be forced to wait until the facility or file is made available when the request is for one of the following: 

(1) a magnetic tape unit that is being used by another run 

(2) an arbitrary device that is being used by another run 

(3) a catalogued magnetic tape file that is being used by another run. 

(4) exclusive use of a catalogued file which is being used by another run 

(5) a catalogued file which is being used exclusively by another run 

To prevent the possible prolonged wait of a run when requesting an exclusive-use facility, and yet not force a run to specify 
all requirements before the first program (task) of the run stream, the executive does: 

(1) not open a run for execution until all the @ASG control statements located before the first task in the run stream have 
been satisfied 

(2) not start the execution of a program until all the @ASG control statements located before the program call statement in 
the run stream have been satisfied. 

On magnetic tape @FREE control statements (see 3.7.4), there is an option which releases just the file and not the physical 
unit. The saved physical unit is placed in the facility pool of the run and is available for reassignment at any point in this run. 
The unit is not returned to the executive facility pool (made available to all runs) until it is reassigned and completely 
released or until run termination. The user reassigns facilities through normal means, confident that the request can be 
immediately honored, since the run facility pool is always referenced before the executive facility pool. By using this option 
and, before the first program of the run, specifying the maximum amount of each type of magnetic tape the run will require 
at anyone given time, the user has the ability to place @ASG control statements or dynamic control statements anywhere in 
the run stream or programs and be assured that the run or programs will always immediately receive the facility requested. 

The files referenced by most of the @ASG control statements may be catalogued with read and write keys. At a later time, 
when the catalogued file is assigned to a run, the keys must be given in the @ASG control statement in order to read from, 
write into, or delete the file. The following table shows system action according to the keys specified at cataloguing time and 
the keys given in the @ASG control statement. The entries FAC WARN and FAC REJ in the table indicate that FAC 
WARNING d,jdddddddddd and FAC REJECTED dddddddddddd messages are displayed and inserted into the PRINT$ file 
(see Appendix C for the meaning of these messages). 



. "'-. 

4144 Rev. 2 
UP.NUMBER 

K C 
E 
Y A 
S T 

A 

S L 

P 0 

E G 

C U 

I I 

F N 

I G 

E T 
D I 

A M 
T E 

READ 

WRITE 

BOTH 

NEITHER 

UNIVAC 1100 SERIES SYSTEMS 3-21 
PAGE REVISION PAGE 

KEYS SPECIFIED AT ASSIGN TIME 

READ WRITE BOTH NEITHER 

Read Abort Run Abort Run 

Write FAC REJ FAC REJ Write 
Allowed 

Abort Run Read Abort Run 
Read 

FAC REJ Write FAC REJ 

Read Write Read 
FAC WARN 

FAC WARN FAC WARN Write 

Abort Run Abort Run Abort Run Read 

FAC REJ FAC REJ FAC REJ Write 

The basic formats for the @ASG control statement are discussed in the following paragraphs. See th.e CSF$ request (4.8.1) for 
linkages used to call this control statement from within a user program . 

3.7.1.1. FASTRAND-FORMATTED FI LE ASSIGNMENT 

Purpose: 

Assigns FASTRAND-formatted mass storage files to a particular run. 

All parameters on the @ASG control statement are optional except @ and ASG. 

Format: 

@label:ASG,option filename, type/reserve/granule/maximum,packid-1/packid-2 .. ./packid-n 

Parameters: 

options See Table 3-4. The cataloguing options (C,G,P ,R,U,V, and W) are only valid during 
catalogued file creation. The C and U options are used to initiate cataloguing action. The 
G, P, R,· V, and W options place restrictions on the file when it becomes catalogued. 

The option set A, D, K, Q, X, and Y is only valid when used with files which are currently 
catalogued. Use of the A option with any of the rest of the set guarantees their validity. 
Omitting the A option results in an attempt to find the file in lhe master file directory. A 
find assigns the file from the master file directory and honors the remainder of the set. A 
no-find results in a temporary file assign. Any attempt to delete a catalogued file (use of 
D or K option) requires the specification of the read and write keys, if there are any 
assigned to the file. 

The B, E, H, and M options control the saving and restoration of catalogued 
FASTRAND-formatted files in connection with checkpoint/restart. The B option 
controls file saving whereas the E, H, and M options control file restoration. The file is 
always restored at restart if the E and H options are omitted. 



4144 Rev. 2 
UP.NUMBER 

Options 
Character 

UNIVAC 1100 SERIES SYSTEMS 3-22 
PAGE REVISION PAGE 

Description 

Options For Cataloguing 

C Catalogues file if the run terminates normally. If the file is freed prior to termination, the file is 
catalogues at that time. If a file by this filename already exists in the master file directory, the run 
is placed in error mode. 

G Indicates that when this file is catalogued, it is to be guarded against having its read key, write key, 
and similar protection overridden by privileged runs. (A privileged run may be initiated by the site 
manager for such purposes as producing a backup copy of the file on tape to use in catalogued file 
recovery.) 

P Catalogues file as a public file. If omitted, file is catalogued as a private file and can be accessed 
only by those runs having the same project·id as the run which created the file. 

R Catalogues file as a read·only file. A file catalogued with the R option cannot be overwritten. The 
file can only be read or decatalogued. Any activity requesting to write in the file is placed in error 
mode (see 4.1.4). 

U Same as C option except that the file is catalogued at run termination (regardless of the manner of 
termination beyond this statement). The @FREE control statement causes cataloguing prior to t~e 
termination. 

W Catalogues file as a write·only file. The file can only be written into, and in the process, be 
extended. 

V Indicates that when this file is catalogued, its text is not to be unloaded to tape at any time. 

Options for Catalogued Files 

A Specifies that the file is currently catalogued and ensures that the file is not treated as a temporary 
file if the name cannot be found. The run is terminated if the name cannot be found in the master 
file directory. 

D Deletes catalogued file from the master file directory (decatalogue) if the run terminates normally 
or when a @FREE control statement is encountered prior to run termination. This option is only 
meaningful if used with the A option. 

K Same as D option ex.cept that the file is decatalogued at run termination regardless of the manner 
of termination. A @FREE control statement decatalogues the file prior to termination. The option 
is only meaningful if used with the A option. 

Q Requests that this file assignment be honored even if the system has disabled the file. 

X Specifies that this run is to have exclusive use of the file until the run has terminated or the file is 
released by a @FREE control statement. (If the file is not currently catalogued, the X option is 
not needed because the run has exclusive use of temporary files. 

Y Requests that this file be assigned only for the purpose of examining the master file directory. 
Exclusive use is overridden by this option but the file cannot be read or written when this option 
is used. 

Table 3-4. FASTRAND @ASG Control Statement, Options 
(Part 1 of 2) 



'. 
'- .. -

4144 Rev. 2 
UP.NUMBER 

Option 
Character 

T 

B 

E 

H 

M 

filename 

type 

UNIVAC 1100 SERIES SYSTEMS 3-23 
PAGE REVISION PAGE 

Description 

Options for Temporary Files 

Specifies that the file is temporary and allows it to have a name the same as that of a catalogued 
file. The user need not be concerned if a currently catalogued file has the same name. If this 
option is omitted for temporary files, the executive attempts to find the file in the master file 
directory. If a find is made, the assignment is made from the master file directory. 

Checkpoint/Restart Options for Control of Catalogued FASTRAND 'Files 

Dumps the file as a part of any checkpoint 

Reloads the file if any other run has referenced the file since the checkpoint 

Relaods the file only if no other run has referenced the file since checkpoint 

If a catalogued file by this name exists when reloading, make the reloaded file available to this run 
as a temporary file. 

Table 3-4. FASTRAND @ASG Control Statement, Options 
(Part 2 of 2) 

Specifies the external name of the file to be assigned (see 2.6.1). 

Specifies that the @ASG control statement is for a FASTRAND-formatted file and 
identifies the specific device required. If the device type specified is for a catalogued file, 
it is checked for compatability. If not compatible, the control statement is rejected. 
Permissable entries for this parameter are: 

FCS FASTRAND mass storage simulated in unitized channel storage 

F4 FASTRAND mass storage simulated on FH-432 drum 

F17 FASTRAND mass storage simulated on FH-1782 drum 

F8 FASTRAND mass storage simulated on FH-880 drum 

F2 FASTRAND mass storage, Model II and Model III 

F FASTRAND formatted mass storage, type independent 

F14 FASTRAND mass storage simulated on 8414 disc 

FASTRAND mass storage simulated on drum or disc has all the characteristics of a 
FASTRAND file except for sector padding on write functions. 

When space is not available for specified device type, another type is substituted which 
satisfies the request. The following chart illustrates the order in which requests are 
satisfied. 



4144 Rev. 2 
UP-NUMBER 

reserve 

granule 

maximum 

UNIVAC 1100 SERIES SYSTEMS 3-24 
PAGE REVISION PAGE 

Device Order of Satisfying 
Requested Request 

F F4,F17,F8,F2,F14 

F2 F2,F14 

F4 F4,F17,F8,F2,F14 

F8 F8, F2,F14 

F17 F17, F8, F2 ,F14 

F14 F14 

FCS FCS, F4,F17,F8,F2,F14 

An integer specifying the number of granules required by the file (not to exceed 
262,143). This parameter should give a reasonable estimate of the space needed to create 
or update the file. The value used for a file update must include those granules already in 
use. Files contained within the limits of the reserve are guaranteed creation without the 
delays involved when the executive must find and allocate the space dynamically. 
Specification of a reserve aids the executive allocation routines as the space is allocated in 
contiguous granules, if possible. Omission causes the executive to dynamically allocate 
the granules as they are required by the file. If the file does not extend to the highest 
granule reserved, the empty granules after the highest granule referenced are returned to 
the available status when the file is freed. For catalogued files, the reserve value is placed 
in the master file directory for future file updates. This parameter is ignored for 
catalogued read-only files, however, for write-enabled files, the recorded value is 
overridden and replaced by the value given in this parameter. 

Specifies granule size. It may be 

TR K One track (64 sectors) 

POS One position (64 tracks) 

If omitted, TRK is assumed. If the file is currently catalogued, this parameter is ignored. 
The granularity is recorded in the master file directory. For most efficient use of mass 
storage, all program files should be allocated as TRK granularity because POS granularity 
creates unused space in files (64 contiguous tracks assigned for POS). 

Specifies the maximum allowable length (in granules) of the file. Permissable values are as 
for the reserve parameter. When specified, this parameter overrides the system standard 
maximum specified at systems generation. If omitted, the reserve pa'rameter value or 
system standard is used, whichever is larger. 

If a maximum was supplied when the file was catalogued, its value and the number of 
granules currently in use are recorded in the master file directory and used whenever the 
file is referenced. If a maximum is supplied on the referencing of an @ASG control 
statement, it is used and recorded in the master file directory and it replaces the previous 
maximum. 

This parameter is used to indicate that the run is to be terminated if the length of the file 
exceeds the number of granules specified. It is used primarily to ensure that a 
run-away-file situation does not occur during debugging. However, it may also be used to 
override the system standard for all files. 



4144 Rev. 2 
UP-NUMBER 

pack ids 

Description: 

UNIVAC 1100 SE RI ES SYST EMS 3-25 
PAGE REVISION PAGE 

Specifies the removable disc packs required for the file. Packids consist of from one to six 
characters. The packids for catalogued files are recorded in the master file directory. 
Packid is applicable only to removable discs. If omitted, fixed disc is assumed. 

Note that many jobs may specify the same set of removable disc packs for unique files. 

The device type of a FASTRAND-formatted file can be changed to a new type when extending a file. To make the change, 
the file must be reassigned as it was previously assigned, but with a different equipment code (device type). For example: 

@ASG,C FI LEA,F 
(user program writes 100 tracks) 

@ASG,C FI LEA,F2 
(user program writes 200 tracks) 

@FREE FILEA 

In the given example, the device type was changed from F to F2 after 100 tracks were written. The end result was 100 tracks 
on type F (drum if available) and 200 tracks on type F2 (FASTRAND mass storage). 

The following rules apply: 

(1) The file must be 'currently assigned to the run when the @ASG control statement with the new device type is 
submitted. 

(2) If space is not available on the new device type, allocation occurs on a slower device providing space is available. 

(3) The new device type is used on the first occurrence of additional space acquisition. The switch is allowed for both track 
(TRK) and position (POS) granularity. 

(4) There is no restriction on the number of times a file can be switched to a different device. 

Examples: 

LABEL .\ OPERATIOH :\ 
10 20 

OPERAHD 
30 

COMMEHTS 
50 

I.. S&,.l.C1RL. .. L. .... .l..L .. jEJ.l~~,.£:L5L. ... L.. ...... L.. ..... L....L.L.L--L.....L...L.L. .. ..l .... L.L-l_.LL...L..-LJ.. .. ..J. ....... l ........ L.._L .. L-LJ....J ....... L ... .J ... J ... L-L .. -LJ ........ J ....... L ..... 1.. .. 

2. ASG.L)D.iA .... _L_L~11b..l.J;;BlA2!2R 1't11l-.J .. ......1_L ..... 1.. ..... 1 ........ L .... ! ........ L.L.....LL.......L ..... L ... L .... L .... L ... L ..... L ..... L .... L ..... L ... .L. ..... L ..... L ...... L ...... L. L . ......L.... .. l_L.L. ...... l .... 1 .... 1 ... . 

3. IAS.GJ..,J"t ....... L.....LLJ._EILEC).15LlfL.'£~$/SI 1. ..... L ... L.L ..... J........l. I I I I I ! i 1 .. 1._1.. ... ..1 i I .. L .... L ... L .. I I I ! 1 ... 1.... 

4..... ... ~ .. ~A I I I FJ......lL1EIl .. , .. lL..L6.i,/B ! I .L_L.L ..... L ...... L.. ... L ... LJ_L....L.......L. ....... J ....... .J.. ...... LD I I ! ...... 1 ..... L ...... LL..t..........t_LJ ..... L. ... L. 

1. If the run terminates normally or a @FREE control statement for FILEA is processed, FILEA is catalogued as a 
read-only file. Five tracks are assigned initially and the system-maximum size is assumed, as no maximum was specified. 

2. FILEB is currently catalogued and is to be decatalogued if the run terminates normally. The key A2294B is required to 
read the file. 

3. 

4. 

FI LEC is a temporary file requiring four FASTRAND positions to be reserved initially. Termination is to occur if more 
than five positions are required. 

FI LED is currently catalogued and this run is to have exclusive use of the file for updating. A reserve of six tracks is 
specified, and the run is to be terminated if more than eight tracks are used. 



4144 Rev. 2 
UP-NUMBER 

UN I V A C 11 00 S E R I E S S Y S T EMS 3-26 
PAGE REVISION PAGE 

3.7.1.2. MAGNETIC TAPE ASSIGNMENT 

Purpose: 

Assigns a magnetic tape file to a run. 

All parameters on the @ASG control statement are optional except @, ASG, and filename. 

Format: 

@label:ASG,options fi lename, type/u n its/log/noise/MSA-trans/u nit-trans/format,; 
reel-1/reel-2 ... /reel-n,expiration-period 

Parameters: 

options 

filename 

Option 
Character 

S 

B 

E 

H 

I 

See Table 3-5. 

The A,C,D,G,K,p,a,R,T,U,W, and Y options have the same meaning as on the 
FASTRAN D @ASG control statement (see 3.7.1.1). The remain ing options control the 
mode in which the file is recorded and read, and tape labeling. 

I n the absence of overriding mode options on seven-track tape assignments, the Hand 0 
options are assumed. For these assignments, mode option V is invalid. 

For nine-track tape assignments, excluding UNISERVO 12/16 nine-track assignments, the 
Hand 0 options are assumed with B,E,I,L,M, and V mode options being invalid. 

For UNISERVO 12/16 nine-track assignments, the V and 0 options are assumed. Mode 
options B,E,I,L, and M are considered invalid. 

The function and use of this parameter is the same as that specified for the FASTRAND 
@ASG control statement (see 3.7.1.2). 

Description 

Option for Pooling Facilities 

Retains physical assignment for the file. That is, a @FREE control statement 
releases the file, but the tape unit is saved for future use by the program. 

Mode Options 

Binary (translation not required) 

Even parity (assumed when the I option is specified and translation is 
performed by software). Not recommended if file manipulation is via 
UN IVAC-supplied software. 

High density tape (not available for UNISERVO 12/16 nine-track if the 
hardware dual density feature does not exist on the unit). 

Decimal (translation required). The translation of BCD to Fieldata on input 
and Fieldata to BCD on output is performed by hardware, if available. 
Otherwise, standard system conversion routines are used for translation. The 
E option is assumed when software performs translation. 

Table 3-5. Magnetic Tape @ASG Control Statement, Options 
(Part 1 of 2) 



4144 Rev. 2 
UP-NUMBER 

Option 
Character 

L 

M 

0 

V 

F 

J 

type 

'-.. 

-'''. 

""-- ~~' 

UNIVAC 1100 SERIES SYSTEMS 3-27 
PAGE REVISION PAGE 

Description 

Low density tape (not available for nine-track subsystems) 

Medium desnity tape (not available for nine-track subsystems) 

Odd parity (assumed when type parameter specifies nine-track requirement) 

Density mode of 1600 FPI (UNISERVO 12/16 nine-track subsystems only) 

Options For Tape Labeling 

Allows the user to assign any previously unassigned tape. Any reel is accepted 
even though the volume and file header do not exist. If the volume and file 
headers exist on a tape assigned with the F option, normal label checking is 
performed. 

Specifies that the reel loaded must not be a labeled tape. If a label exists on 
the assigned tape, an error message appears. 

Table 3-5. Magnetic Tape @ASG Control Statement, Options 

(Part 2 of 2) 

Specifies that the @ASG control statement is for a magnetic tape device and identifies the 
specific type of unit required. Permissible entries for this parameter are: 

T tape unit, type independent 

C UNISERVO IV-C, VI-C, and VIII-C tape units 

U UNISERVO VI-C and VIII-C tape units 

2A UNISERVO II-A tape unit 

3A UNISERVO II I-A tape unit 

4C UNISERVO IV-C tape unit 

6C UNISERVO VI-C tape unit 

8C UNISERVO VIII-C tape unit 

12 UNISERVO 12 tape unit 

16 UNISERVO 16 tape unit 

12N UNISERVO 12 nine-track tape unit 

16N UN ISE RVO 16 nine-track tape unit 

12D UNISERVO 12 dual density nine-track tape unit 

16D UNISERVO 16 dual density nine-track tape unit 



4144 Rev. 2 
UP.NUMBER 

units 

log 

UNIVAC 1100 SERIES SYSTEMS 3-28 
PAGE REVISION PAGE 

Magnetic tapes are always assigned with the following rules of allocation: 

Order of Satisfying 
Type Request 

T 8C,8CB,6C,6CB,12,16,8C9,6C9 12N,16N,4C,4CB,3A,2A 

C 8C,8CB,6C,6CB,4C,4CB 

U 8C,8CB,6C,6CB 

8C 8C,8CB 

6C 6C,6CB 

4C 4C,4CB 

CB 8CB,6CB,4CB 

UB 8CB,6CB 

U9 8C9,6C9 

12N 12N,12D 

16N 16N,16D 

The following magnetic tape assignments do not have a second choice (12,16,120,160, 
8CB, 6CB, 4CB, 8C9, 6C9, 3A, 2A). 

The use of type T or C is encouraged as it gives the system more freedom in assigning 
units. When using type T, only those functions and options compatible with all types of 
units may be specified. 

Some installations may not have nine-channel/frame capabilities on all units. In addition, 
there may not be translation hardware on all tape channels. In order to select this 
equipment, the character 9 or the character B may be added to the type symbols to 
indicate nine-channel/frame unit or translate channel, respectively (with the exception of 
the UNISERVO 12/16 tape units). As an example, if a UNISERVO VIII-C unit with 
nine-channel capabilities is needed (but not available on all units), the type subfield 
would contain BC9. The symbol 6C9 would call for a UNISERVO VI-C nine-channel. The 
symbol 6C would call for a UNISERVO VI-C channel with the hardware translation 
feature. The combination of TB and T9 is not allowed. 

Software translation is not assumed if a unit with the hardware capability is selected 
unless the I option is specified or translation is called for by either an @MODE control 
statement or the set mode function of the magnetic tape handler. See Description for 
absolute assignment. 

Specifies the number of tape units required, and may be integers 1 or 2. If omitted or a 
number other than 1 or 2 is specified, the executive assumes that one unit is required. 
The number of units assigned is not retained in the master file directory upon 
cataloguing. See Description for absolute assignment. 

Assigns a single letter indicating a logical channel. The executive attempts to assign all 
files with the same letter to the same physical channel and those with different letters to 
different channels. The letter specified is not placed in the master file directory upon 
cataloguing. This parameter permits more efficient I/O operation because of the separate 
channels. 



/ .... '. 
( 

\./ 

4144 Rev. 2 
UP-NUMBER 

noise 

MSA-trans 

unit-trans 

format 

reels 

UNIVAC 1100 SERIES SYSTEMS 3-29 
PAGE REVISION PAGE 

Specifies an integer from 1 to 99 which overrides the standard system noise constant. If 
omitted, the standard system noise constant is assumed if parameter is omitted. 

(UNISERVO 12/16 only) Specifies the type of translator needed in the MSA. The MSA 
translator mnemonics are: 

EBCDIC Fieldata to or from EBCDIC 

ASCII Fieldata to or from ASCII 

XSEBCD XS-3 to or from EBCDIC 

XSASCI XS-3 to or from ASCII 

OFF turns off translator if assign is from the master file 
directory and file was catalogued with a translator specification. 

(UNISERVO 12/16 only) Specifies the type of translator needed in the control unit (not 
available for UNISERVO 12/16 nine-track tape units). The control unit translator 
mnemonics are: 

BCD EBCDIC to or from BCD 

DC Three-to eight-bit bytes converted to or from 
four- to six-bit tape characters. 

OFF turns off translator if assign is made from the master file 
directory and the file was catalogued with a translator specification. 

(UN ISERVO 12/16 only) Specifies the data transfer format for the word-to-byte 
conversion in the MSA. The data transfer mnemonics are: 

Q quarter word 

6 six-bit packed 

8 eight-bit packed 

Specifies the identifier for each tape reel required. Each reel identifier is limited to six 
characters. Reels are used and catalogued in the order specified. If the file is to be 
catalogued, all reel identifiers are recorded in the master file directory. If omitted and 
cataloguing is indicated, the executive directs the operator to mount blank reels on the 
appropriate tape units to provide reel identifiers for each reel. If additional tape reels are 
requested by a TSWAP$ request (see 7.2.8), operator is requested to load the required 
blank reels and provide identifiers for each reel. 

For currently catalogued files, the reel parameter is normally void, indicating that the 
reels listed in the master file director are to be used in the order in which they were 
created. If reel numbers are supplied, they must be of the set listed in the master file 
directory, but may be a subset and listed in any order, allowing the user to omit or access 
them in any order. If an invalid reel number is supplied, the @ASG control statement is 
not honored. In either case, when the known reels are exhausted and additional reels are 
requested,. blank reels are used and their numbers added to the master file directory. (This 
is not allowed if the file is catalogued in the read-only state.) 

For temporary files, the reel parameter is not specified and the operator is requested to 
mount blank reels (reel numbers are not required). If reel numbers are given on the @ASG 
control statement, they are used in the given order. When additional reels are requested, 
blanks are used, but reel numbers are not requested. 



4144 Rev. 2 
UP.NUMBER 

expiration'period 

Description: 

UNIVAC 1100 SERIES SYSTEMS 3-30 
PA GE RE VISION PA GE 

Specifies the number of days that this file is to be retained. The maximum number 
allowed is 4,095 days. 

The executive normally controls the selection of units for the assignment of tape files. However, the user may direct the tape 
assignment to a particular subsystem or unit by specifying the absolute subsystem and unit. Absolute subsystem and unit 
specification is not the recommended procedure for assigning tapes, however, maintenance routines, real time programs, or 
special hardware requirements may dictate the need for such specifications. 

A unit that has been placed in the reserved state by a RV unsolicited console keyin can only be assigned by specifying the 
absolute subsystem and unit on the assign statement. However, it is not necessary to have a unit in a reserve state in order to 
assign it absolutely. 

For absolute tape assignment, all parameters except type, units, and log retain their meaning as described earlier. The 
contents of these three parameters are: 

type 

units 

log 

Examples: 

LABEL ,\ 
10 

Contains subsystem in the format Sxxx where xxx is the subsystem number (1 to 127) 

If a particular unit is required, specifies the unit in the format Uyy where yy is the unit 
number (0 to 15). If the executive is to choose the units, this parameter has the same 
meaning as described earlier. 

If a second unit is required, specifies the unit in the format Uzz where zz is the unit 
number (0 to 15). In all other cases of absolute assignment, the contents of this 
parameter are ignored. 

OPERA TlON ,\ OPERAND 
20 30 

A 
40 

COMME~TS 
50 

.. L .. L.J .... J ........ l ........ L._L..J.._L. .. L ... .l. ... L .... L . ..J. .. -L_.L.l._ . .L ...... l... .... .I .... ".L. 

I I I ......l. ..... L.. .. L..LJ---L-.L....L. . .L 

! i t J 1 _ . .L. 

I I I I .-1.._.L . ..l .• -L-L 

.--L.-L-..L-.l_LJ ....•. L_l J...I ....I..-..L....J'---l-

1. FI LEX is catalogued and all necessary options, facility requirements, and reel numbers are taken from the master file 
directory. The project-id of the current run is used as a qualifier. 

2. FI LEA is a temporary file requiring one unit selected by the executive; one or more blank reels are used. The noise 
constant is to be set to 36 characters. 

3. FILEB is a temporary file requiring two UNISERVO VIII-C tape units. It is recorded in even parity and low density. 
Reel number N432 is specified. 

4. FILEC is to be catalogued in the read-only mode if the run terminates normally. One UNISERVO VIII-C tape unit with 
nine-channel capabilities is required. 



\ 

'-...... -

4144 Rev. 2 
UP-NUMBER 

UN I V A C 11 00 S E R I E S S Y S T EMS 3-31 
PAGE REVISION PAGE 

5. F I LED is currently catalogued but is to be released if the run terminates normally. A key of 4896 is requ ired to read 
this file. The UNISERVO VIII-C tape unit is to be on logical channel A and reel N212 is to be used. 

6. FI LEE is to be catalogued. It requires two UNISERVO VII I-e tape units on any channel. Reels 707 through 710 are to 
be used. The file is locked by the specified read (492671) and write (RA 1234) keys. 

7. FI LEF is a temporary file and the symbol SCRTCH is used as a reel number. 

8. FI LEY is assigned two units of the systems choosing from subsystem 12. 

9. FI LEY is assigned unit 6 on subsystem 12; reel 29416 is to be used. 

10. Units 6 and 4 from subsystem 12 are assigned to the file. 

3.7.1.3. WORD ADDRESSABLE DRUM ASSIGNMENT 

3.7.1.3.1. NORMAL ASSIGNMENT 

Purpose: 

Assigns word addressable mass storage and simulated word addressable mass storage to a particular run. 

All parameters are optional on the @ASG control statement except filename. 

Format: 

@label:ASG,options filename, type/reserve/granu Ie/max imum ,pack id-l /packid-2/ .. ./packid-n 

Parameters: 

With the exception of the following differences, the parameters of this statement are basically the same as those for the 
FASTRAND @ASG control statement (see 3.7.1.1). 

options 

filename 

type 

Same as 3.7.1.1. except no distinction is made between file types except in the 
conversion of logical to physical addresses. Word-addressable files cannot be used as 
program files. 

Specifies the external name of the file to be assigned. 

Specifies that the @ASG control statement applies to word addressable drum format and 
names the specific type of recording equipment to be used. Permissible parameters are: 

D - Word-addressable storage, type independent 

D4 - Word-addressable storage, FH-432 drum 

D8 - Word-addressable storage, FH-880 drum 

D17 Word-addressable storage, FH-1782 drum 

DCS Word-addressable storage, unitized channel storage 

D14 - Word-addressable storage, simulated on 8414 disc 

Use of the D entry is recommended since it allows the executive freedom in allocating file 
space. 

The use of the D 14 entry forces the executive to simulate word addressability which 
introduces additional overhead each time the file is accessed. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 3-32 
PAGE REVISION PAGE 

reserve Same as 3.7.1.1 

granule Same as 3.7.1.1. 

maximum Same as 3.7.1.1. except the entry is the number of words needed for the file. 

packids Sameas3.7.1.1. 

Description: 

The mass storage allocation routine attempts to satisfy word addressable drum requests in the same manner as it satisfies 
FASTRAND·formatted requests. Allocations are made on contiguous granules if possible, thereby permitting dynamic 
expansion of a word-addressable file. Although dynamic expansion is available, the user is not allowed to dynamically 
contract a word·addressable file (read and release, and release I/O functions are not allowed) (see 6.1.1). 

Examples: 

LABEL .. \ 
10 

OPERATION ;\ 
20 30 

OPERAND COMMEIHS 
50 

( • ~,.cRL .... L. .... L . ..lEJ:b.JJ;;A.,.D&.LZJ15L"~K I I 1 ...... L ... ..1._.L....L..L_LL...L..J.....L .. .1 ...• LJ.. I I I I ... .1 ... ..J ....... L.._L-L.LL ... L .... L ..... L. .. . 

2. AS.G.L"'>.J:; .... l_ .. J __ L.JF~l~'B ... ':Dl.ltl..J~ .. .l.I'J~L .... l ....... 1 ....•. 1 ....... 1 ........ t .. _L..LL...l_ ..... i ..... l._ ... l .... J ....... 1 ........ l... ...• 1 ..... _L....L....1.... ..• 1 ..•... l.. .... I ...... ..l ...... J ... _L ... L . ..l._ • .1. ... 1 ....... 1 ........ 1 ..... . 

3. ~l~.lU;P.I----L.LJ6LLIEC ;n..L1i .. Li. .. J1...5.,bo; tx"RKLJ.. ... l-1. I I I I ! _L.L ... LL ... L ... 1 i! _.L_.1.. ..• 1. .. L. I .L .. 

, .... 1. .... L. ...• L. 

1. FI LEA is to be catalogued in the read-only mode on the FH-432 drum upon normal termination of the run or when a 
@FREE control statement (see 3.7.4) is encountered. Initial length of FILEA is one track. The standard system 
maximum is assumed for maximum subfield. 

2. FI LEB is a temporary file requiring an initial reserve of two tracks and residing on a drum selected by the executive. 

3. FI LEe is to be catalogued on the FH-1782 drum as a public file at run termination (regardless of the manner of 
termination), or when the @FREE control statement is encountered. Initial length of the file is ten tracks. Standard 
system maximum is assumed. 

3.7.1.3.2. WHOLE UNIT ASSIGNMENT 

A mass storage unit in the reserve state (see 7.2.3) may be assigned as a facility to the run. Only the operator can place units 
in the reserved state. .. 

The following format is used to assign a word-addressable, unit-granular file: 

@label:ASG,options filename, type, unit-l/unit-2/ ... /unit-n 

All parameters are interpreted identically to the normal @ASG control statement except type. The valid entries for the type 
parameter are: 

D4U FH·432 drum 

D8U FH-880 drum 

D7U FH·1782 drum 



. "' ....... " 

4144 Rev. 2 
UP.NUMBER 

UN IVAC 11 00 SE RI ES SYST EMS 3-33 
PAGE REVISION PAGE 

The equipment on the requested subsystem/unit need not be the same as the mnemonic. For example, a type of D7U may 
have FH-432 and FH-880 units requested. 

Any number or type of allowable units may be requested. The unit parameters (unit-1, unit-2,) have the format nnnUnn 
where nnn is the decimal. subsystem number; the U is the separation character; and nn is the decimal unit number. All six 
characters need not be supplied, but the separation character must have decimal numbers on both sides. 

For example, the request @ASG,T FN,D8U,3U1/12U5/3U3 assigns the file FN as a word-addressable, unit-granular file with 
the three requested units. 

3.7.1.4. ARBITRARY DEVICE ASSIGNMENT 

Purpose: 

Assigns all devices except FASTRAND-formatted mass storage, drum, and magnetic tape units. Used primarily for the 
assignment of special I/O devices and communications equipment. 

A" parameters on the @ASG control statement are required. 

Format: 

@label:ASG filename,type 

Parameters: 

filename 

type 

Specifies the external name of the file. 

Specifies: 

(1) The mnemonic definition of a class of devices; the executive selects the specific unit 
if more than one unit exists 

(2) absolute subsystem; the executive selects specific unit 

(3) absolute subsystem/unit 

Mnemonic definitions of standard devices other than magnetic tape units or mass storage 
devices are: 

CRD Card reader system 

PTP Paper tape subsystem 

PRT Printing device 

HSP High speed printer 

1004 - 1004 reader/printer/punch 

Mnemonic defintiions used to assign communications devices must agree with those 
defined at systems generation. For example, communications devices are defined, at 
system generation, as units under a group class identity called the L T group. 

This group identity, when specified in the type parameter, causes the executive to select 
that L T group to satisfy the request . 



4144 Rev. 2 
UP-NUMBER 

Examples: 

LABEL 
10 

UNIVAC 1100 SERIES SYSTEMS 3-34 
PAGE REVISION PAGE 

For absolute subsystem assignment, the type parameter contains the subsystem number 
(1 to 127) in the format: 

Sxxx 

For absolute unit assignment, the type parameter contains both the subsystem number 
and the unit number in the format: 

Sxxx/Uyy 

If absolute subsystem and unit are used for communications devices, the unit specified is 
assumed to be the input rather than output or dial (see Section 12). 

A disc can be assigned for use with the arbitrary device handler by using the absolute 
subsystem and unit form of the arbitrary device @ASG control statement. The format is: 

@ASG,options filename ,Sxxx/Uyy ,pack id 

The requested unit must be in the reserved state to satisfy this type request (units can 
only be put in the reserved state by the operator. The packid parameter is used in a load 
messsage to instruct the operator to mount a specific pack on a specific unit. 

OPERA TlON ;\ 
20 30 

OPERAND A 
40 

COMMENTS 
50 

I. S~L .. L_.L .... L .... 16~1~M.~, C;RU -I ........ L ..... l.... .... L..-i.-LL.L I I I .... L.....L-L-L_..L-1_...L_L ..... L ..... L .. J ...... .L.--L1-L.L_L .. l ....... J. ...... L . ...L..L.LL... .... L._.l... ..... L. 

2. ..lASGJ ........ L .... ! .... J._J~~4l-$..h.1LIJ~ ......... I. ........ J. I I _.L ... _L ...... L ... 1 .. ..l. ..... _L~...L..~R...I..l~..I~E ........ J.. ...... J .. _....L.L...L .. _L ....... l ........ ! ........ .1 ....... l. .. ...l_l........l. __ L ... .t ........ I ........ L . 

.. Ll.. ... .J ...... .L..L_L .... L.J--'--1 I I ! ! 1 ...... L._L .. LLj .. -->'--.....J.........JI--.....J....! .....11...-1 ...... j_ .. .1. .... _1 I ! I I I I ! .L..l. .. L.J ..... ..J I ! I I I I. ..... L .. L I I I ! L. 

1. The card subsystem is assigned, and the specific device is selected by the executive. 

2. The printing device identified as unit 2 of subsystem 6 is assigned to the run. 

3.7.2. TAPE UNIT MODE CONTROL (@MODE) 

Purpose: 

Changes the mode settings initially set by a previous tape @ASG control statement. The file must be currently assigned to the 
run. 

All parameters on the @MODE control statement are optional except filename. 

Format: 

@label:MODE,options filename,noise/MSA-trans/un it-trans/format 



4144 Rev. 2 
UP.NUMBER 

Parameters: 

options 

filename 

noise 

MSA·trans 

unit·trans 

format 

Description: 

UNIVAC 1100 SERIES SYSTEMS 3-35 
PAGE REVISION PAGE 

Same as mode options in Table 3-5. 

Specifies external name of tape file to which mode change applies. 

Same as 3.7.1.2. 

Same as 3.7.1.2. 

Same as 3.7.1.2. 

Sames as 3.7.1.2. 

With the @MODE control statement, options (modes) are never assumed in the absence of others. The specified options are 
not placed in the catalogue, since they apply only to the current assignment. 

See the CSF$ request (4.8.1) for the linkage used to call this control statement from within a user program. 

Example: 

LABEL ,\ OPERATION ,\ 
10 20 

OPERAND 
30 

i\ 
40 

COMMEtHS 
50 

F=''-..J.~=:i..=.J=E;.)l''B.I~bl ...... L .... J... .. -.lEb.LIE, y; ').l~lQ ...... L ..... l ..... L...Ll.-l ____ 1 -'--'--.1.....1 ..... 1 ........ L. ... LJ .. ......l.. .... L.....L-L...J .. _L .... J ...... J.......l_l_-L.....L...L ..... l ..... J ........ L .. _L.....L-L...J.......J. ....... l ........ l .. 

.... 1... .... 1...._1..... .J ... _ .. L.....L..J .. _L .. L-l._ .. L ... J ....... l ....... L ..... L. .. J ....... I. ... L .... L-L-L...J._L ..... L .... i .... .J ........ l... ...... L ... .L....l.-L-L. ..... L.. ... J. ........ L . .J ........ L ...... 1 ........ LJ.........L-..l. ....... I... ..... L .... .t ...... L ... L..J.......J. . .....l_.L .. l ...... 1 ....... L 

The initial mode settings assigned to FI LEY are overridden by the B, E, and L options specified in the @MODE control 
statement. A noise level of 30 is also specified for FILEY. 

3.7.3. INDEPENDENT CATALOGUING OF FI LES (@CAT) 

Purpose: 

The @CAT control statement is used to catalogue one or more files without having them assigned to the run. This may be the 
case when building the initial master file directory or when a previously prepared tape file is to be catalogued. The file is 
catalogued but is not assigned to the run and no facilities are assigned. 

Formats: 

The @CAT control statement has two formats: one for cataloguing tape files and one for cataloguing FASTRAND files. Both 
formats are presented. 

All parameters on the @CAT control statement are optional except filename. 

Format for cataloguing tape files: 

@label:CAT,options filename, type/noise/MSA-trans/un it-trans/formatl ,reel-1 /reel-2/ ... /reel-n 

Parameters: 

options 

filename 

type 

. See Table 3-6. 

Specifies the external name of the file to be catalogued. 

Same as 3.7.1.2. If omitted, the executive assumes that the request is for a 
FASTRAND-formatted file. 



4144 Rev. 2 
UP.NUMBER 

Options 
Character 

noise 

MSA-trans 

unit-trans 

format 

reels 

B 
E 

G 

H 

L 

M 

o 

P 

R 

v 

w 

UNIVAC 1100 SERIES SYSTEMS 3-36 
PAGE REVISION PAGE 

Description 

Binary code (no translation required) 
Even parity (if not specified, standard system value is used) 

Indicates that when this file is catalogued, it is to be guarded against having its 
read key, write key, and similar protection overridden by privileged runs. (A 
privileged run may be initiated by the site manager for such purposes as 
producing a backup copy of the file on tape to use in catalogued file recovery.) 

High density!(if no tape density is specified, standard system value is used) 

Decimal code (translation required). Conversion is performed by hardware, if 
available. Otherwise, standard software conversion routines are used to translate 
BCD to Fieldata (input) and Fieldata to BCD (output). When software 
conversion routines are used, the E option is assumed. 

Low density (if no tape density is specified, standard system value is used) 

Medium density (if no tape density is specified, standard system value is used) 

Odd parity (if not specified, standard system value is used) 

Catalogue file as public file 

Place in read-only state 

Indicates that when this file is catalogued, its text is not to be unloaded to tape 
at any time. 

Place in write-only state 

Table 3-6. @CA T Control Statement, Options 

Same as 3.7.1.2. 

Same as 3.7.1.2. 

Same as3.7.1.2. 

Same as 3.7.1.2. 

Same as 3.7.1.2. 

Format for cataloguing FASTRAND-formatted or' word·addressable files: 

@label:CAT,options filename,type/reserve/granule/maximum,packid-1/packid-2I ... /packid-n 



l~r'"' • , 

4144 Rev. 2 
UP.NUMBER 

Parameters: 

options 

filename 

UNIVAC 1100 SERIES SYSTEMS 3-37 
PAGE REVISION PAGE 

The G,P,R, and W options are the only valid options (see Table 3-6). 

Same as 3.7.1.1 and 3.7.1.3. 

type Same as 3.7.1.1 or 3.7.1.3, depending on file format. If omitted, the standard system 
entry (F) is assumed. 

reserve Same as3.7.1.1 and 3.7.1.3 

granule Sameas3.7.1.1 and 3.7.1.3 

maximum Sameas3.7.1.1 and 3.7.1.3 

packids Sameas3.7.1.1 and 3.7.1.3 

See the CSF$ request (4.8.1) for the linkage used to call this control statement from within a user program. 

Examples: 

LABEL ,\ OPERATION .\ 
10 20 

OPERAND 
30 

,\ 
40 

COMMEtHS 
50 

I. C~').J~L.L .. l... ... LEIJ~J.~Y' /, i,WLOOK).I., :f\J,2:4:7, L~~i~8L.L.L-1.~_.1 .l ...... L..l-L-LL-1._ .... LJ ... J.L_L-1. __ L. .. _.L .... L .... 1... .. . 

2. .1A;L.,MLL_j-.-E:LLE;XtLllWWC.:KI~1JX1S.l<!tJ.JQ..L...L_-L ... L .. l .... .L. ..... L ... L ... 1.. .... J_L_L __ 1. .... I. ..... I. ..... .I .. L.J ... _L.1. __ 1.... .. 1.. ... .1 .... 1 ..... .1 .. . 

3. 8.L.,g ... J-LJWAJ1~~:~~t~nclsjllL10,Q tT;f?IJ~t?(jQq : , .LL.L_l_.l ... _l ... LLL.L...LL.l .... L. ... L . ..L.J....._L..L..L._ .. L .. . 

.... 1 ..... J._L .. l-1 .. ....l---L.--'--'--............. --L.. ........ ' .... L .... L .... l... ...• L .... L-LJ.--'-' -'--'~.L .. L.L ... L.. ..... L .. _1 ..... L-'-i .....l-J........L--II..J .... L .... L .... J.._L....l I I I I L ... 1. ..... I. .. .1 I I I ,_L. .. .1 ........ L .... L_ 

1. FI LEY is to be catalogued as a public file with the write-key WLOCK. The device type is specified as tape with the 
specific tape device selection made by the executive. The standard system noise level is used as this parameter has been 
omitted from the statement. The file is recorded on the two reels identified as N247 and N248. 

2. File FI LEX is to be catalogued in the write-only mode. The key WLOCK is required to write in the file. The recording 
device is specified as FASTRAND with the specific device selected by the executive. At assign time, seven FASTRAND 
tracks are initially reserved for the file. The run is terminated if more than 10 tracks are used. 

3. File WADD RUM is to be catalogued in the read-only state. The recording device is specified as word-addressable 
format, unitized channel storage. 1700 words are reserved for the file and the run is terminated if the file exceeds 2000 
words. 

3.7.4. RELEASING FILES AND PERIPHERAL DEVICES (@FREE) 

Purpose: 

Deassigns files and releases their facilities, reels, and exclusive use areas assigned to the run. Files and facilities should be 
released the moment they are not needed. If they are not released by means of a @FREE control statement, they are retained 
until run termination. 

All parameters on the @FREE control statement are optional. 

Format: 

\"'." @label:FREE,options filename 



4144 Rev. 2 
UP.NUMBER 

Parameters: 

options 

filename 

Option 
Character 

A 

B 

D 

E 

R 

S 

x 

Description: 

UNIVAC 1100 SE RI ES SYSTEMS 3-38 
PAGE REVISION PAGE 

See Table 3-7. 

Specifies the internal or external name of the file to be deassigned. This entry must agree 
with the filename specified by the @ASG control statement (see 3.7.1) or equated to the 
file by the @USE control statement (see 3.7.5). 

Description 

Releases only the specified internal name relationsh ip to the file. 

Releases only the specified internal name associated with the file unless it is only 
the internal name attachment, in which case the entire file is freed. 

Deassigns a catalogued file. The file must have been assigned with the correct 
keys. 

Sets the first file header in the tape label back to skeleton format to logically 
set it to a blank tape. 

Il1hibits final cataloguing action if the file was assigned by an @ASG control 
statement with a C or U option. 

Releases the file assigned but retains the internal name ;relationships to the 
filename and the F-cycle. 

Frees the file but retains the physical tape unit. 

Releases exclusive use of the file. The file, however, is not deassigned from the 

run. 

Table 3-7. @FREE Control Statement, Options 

A file that is deassigned by a @FREE control statement can no longer be referenced by the run. It can, of course, be 
reestablished by an @ASG control statement provided its facility requirements can be met. 

The actions taken by the system when a file is deassigned by a @FREE statement (and the S option was not specified) are 
discussed below. 

For a temporary file (not catalogued or to be catalogued): 

FASTRAND The FASTRAND area is made available as file space for other runs. 

Drum Same as F ASTRAN D mass storage. 

Disc Same as FASTRAND mass storage. 

Tape Units are released for use by other runs. 

Other equipment (communications and so forth) - The device is released for use by other runs. Always temporary. 



(' 
\,- -

4144 Rev. 2 
UP-NUMBER 

UN I V A C 11 00 S E R I E S S Y S T EMS 3-39 
PAGE REVISION PAGE 

t. 

For a file being catalogued (C or U option on @ASG control statement): 

FASTRAND - Catalogue entry is made in the master file directory and FASTRAND area containing the file is held. 
The file can now be referenced by other runs. 

Disc Same as FASTRAND mass storage. 

Tape Catalogue entry containing reel numbers is made; units are released for other runs. 

For a file being de-catalogued (D or K option on @ASG control statement): 

FASTRAND - Same as for a temporary file except that the file area is not released until all runs currently using the 
file have also finished. It is no longer available for assignment. 

Disc Same as FASTRAND mass storage. 

Tape Units are released for use by other runs. The file is no longer available for assignment. 

See the CSF$ request (4.8.1) for the linkage used to call this control statement from within a user program. 

Examples: 

LABEL ,\ 
10 

!=.I."'--'-'"""",,,=~~-

OPERATION ,\ 
20 

OPERAND 
30 

/\ 
40 

COMMEtHS 
50 

.......L..-L--L-l........L--L-L-.. .l .. _L-L-L...L . .....LI---L.......L-.L1 ..1 ....... L ..... L.L....l.......L-L. .. L .. l ..... 1.. .... 1.. I I 1 1 ...... .1 ..... .1 ....... 1. 

... _L .. I 1 ! I .. L.. .... 1... L .. L .. J ........ l... .... L...L....L....L ..... L .. .l ..... l... .... 1.... ... 1.. ...... 1.... ..... L .. 1._1.. ....... 1..I .... 1 

--'---'--1.1 ............. 1 -J..........J.I ....... L. ... L .. .l-1 -,I~I .......I.-...L.I ... 1. 

--'--'-..J.........JI.......l.... .... l --L.....J...-L........l.1.......l..... ... 1. .... L ... J .. 

1 I .1 . 

. ...L.........L........JI.-.L.' L .. L... .... L.....l-L..L--'--'--.1-...J--l...--I--'I ....... .l ........ 1. .... ..l ....... L...L-l........I.-.J..........JL..-..1., --1-1 -1..1 ....l ... 1.......l..-L .. L..L.....l........L....1..._.l ..... L....LJ.. 

1 . .J. .... _L_L......III....-L-.I--L-...L 

-.1---'-...1.-.1.....1 .... .1... .. .1 ..... L . ...l..........L..-'--L.......L. 

2.-.-....... r-,_. 

3. I , I 1 , II! I 1 

4.F=-~~ .......1...-L....1-..l-......IL......I..--'--'-.....L..I ....l._ ... l... ..... L_J....I .....L-..L-L.......!..--'--'--LL ... .L ..... L 1 I .....l. . ....l ....... L_L..l.. 

5.pci=---C~= ..... 1. ...... .J ..... _.L ... _L_ . .J-1 -'---'--"'--'--'---'---'--'--... L...l. ....... L-L...L'--'--L.....1-..L-'--l.--L-..I.I_ .. _l... . ...l. I_LL .... L.. ... l. 

6.t--L.UUIJI:=::1-L-.l--L--I.......J.1--=t!::1~ I I I I I I ! L .. L I 

1. 

2. 

3. 

FILEA is to be catalogued upon normal run termination or by execution of the @FREE control statement as specified 
by the C option on the @ASG control statement. The @FREE control statement, however, inhibits cataloguing of 
FI LEA because of the I option. 

FI LEB is deassigned and all filenames are released (with no special considerations). 

Exclusive use of F I LEC (currently catalogued FASTRAND file designated as exclusive use for current run) is released. 
The exclusive use obtained by the @ASG control statement is released by the X option on the @FREE control 
statement. 



4144 Rev. 2 
U P.NUMBER 

UN I V A C 11 00 S E R I E S S Y S T EMS 3-40 
PAGE REVISION PAGE 

4. FI LEX (designated to be catalogued at normal termination of the run or by execution of the @FREE control 
statement) is deassigned. The UN ISERVO VIII-C tape unit is retained for run use (S option). The reel number (R121) 
is recorded in the master file directory. 

5. Temporary tape file FI LEY is deassigned. The internal filename relationship to the file is retained (R option specified). 
The F-cycle is also retained. 

6. FI LEZ is decatalogued from the master file directory. The UNISERVO VIII-C tape unit is not retained for run use (S 
option). 

3.7.5. ATTACHING INTERNAL FILENAMES (@USE) 

Purpose: 

Equates filenames so that any particular file can be referenced by more than one filename. This need arises when: 

(1) run construction can be simplified by using a shorter internal filename in place of a long external filename 

(2) identical filenames must be differentiated 

(3) internally programmed filenames must be connected to external filenames 

The information presented in 2.6.2 on file naming is a prerequisite for understanding internal and external filename 
relationships. 

The @USE control statement has two formats: equating internal filenames to external filenames (Format 1), and equating 
internal filenames to internal filenames (Format 2). 

All parameters are required except label. 

Format 1: 

@label:USE internal-filename,external-filename 

Format 2: 

@label:USE ,'internal-filename.internal-filename 

Parameters: 

internal-filename 

externa I-fi I enam e 

Description: 

Specifies the name by wh ich the file can be referenced within the run after the @USE 
control statement is encountered in the control stream. 

Specifies the full external name of the file. The external name always takes the form 
qual ifier*filename. 

All internal filenames equated to an external filename are listed and maintained for the run. Once equated, the user can 
reference the file by its internal or external filename from within a program or the run stream. If a conflict of filenames 
exists, it is the user's responsibility to attach an internal name to the file (with the conflicting external name before any 
references to that file are attempted). The internal filename list is always searched first on an I/O reference. 

If a no-find condition occurs on the internal names, the external filename list is searched. 

Multiple internal filenames can be attached to an external filename. 



4144 Rev. 2 
UP.NUMBER 

UN I V A C 1100 S E R I E S S Y S T EMS 3-41 
PAGE REVISION PAGE 

See the CSF$ request (4.8.1) for the linkage used to call this control statement from within a user program. 

LABEL . .\ OPERATION .\ 
10 20 

OPERAND 
30 

:\ 
40 

COMMEIHS 
50 

,.. U~ .L-L._JE.b.~lt;;B .. "C~MP:A.tiYJ~;BAY;RfXLL, I I .... LL-L.L.L.L....LL..Li .... .l ..... J---1-1---L.L...L.l ..... L .... L. 1 1 1 1-1 ... _.L ..... L. .. 

2. ~t$'& .. LL.JC,~JIL'£'L.klt:;B ..... LJ ..... .J ... _l 1 I 1 I L_L. .... L.J ... ...I ..... L...L...L.LJ.... ... L ... .L._LL.J ....... L .... J.-1-L...L.._L ... L ..... L ... L.L......L_LL . ..L ..... L .. 1..1.. .. . 

2. 

.Ll._ . .J ...... .l ...... L.LD-1---1 .. --'--'--''--'--'I.--.l ... .-J_ •.. L .. L..J .. I 1 1 J J .. 1.... __ 1 1 J 1 I 1 1 1 L-L.J ___ L-1 1 I I 1 1 .-1. ...• L.L...L1 ...j1L.-L1 --,--,--.L 

1. The internal filename FILEB is equated to external filename COMPANY*PAYROLL. The file can now be referenced 
for I/O by either the internal name FILEB or the external name PAYROLL. 

2. The internal name COST is now a third association to the file for I/O. 

3.7.6. SPECIFYING FILENAME OUALIFIER (@OUAL) 

Purpose: 

Speci.fies a standard filename qualifier for implied usage on succeeding control statements involving filenames. 

All parameters in the @OUAL control statement are required except label. 

Format: 

@label:OUAL qualifier 

Parameters: 

qualifier Specifies name extension used to qualify subsequent filenames which are immediately 
preceded by an asterisk (*). 

Description: 

Any number of @OUAL control statements can appear throughout the control stream. Each time a @OUAL control 
statement is encountered, the new qualifier overrides the qualifier specified in the previous @OUAL control statement. 

See the CSF$ request (4.8.1) for the linkage used to call this control statement from within a user program. 

Examples: 

1. 

LABEL . .\ OPERATION :\ 
10 20 

OPERAND 
30 

:\ 
40 

COMMENTS 
50 

. ...L--L..-J.---'--'--L1_L ... i .. _...L....l-L.J....J..-L.J....J...--L .... l ..... J_-1-J-L..L..l._.l ..... J ........ L . ...1-J-1---1_J ...... .1 ..... 1.. .... . 

... I ....... 1 ....... !. ....... L._.LJ-l._' .... 1 ..... 1 .. _ ... L..J ...•.. .J ......... I.. ....• L_L_L..J..._L ...... 1 ........ 1 ..... 1 ...... I .... ..l.-1---1._.1. ....... 1 ..... 1 ....... 1 ..... . 

1 II! .L-L . .J ... J--1---I.-...L1 _IL-..LI _.1. ..... L .. L...L.! ---,--,--,--,-I •• L . 

..L-.....I...-..L-L--1..-...L-.lLl._ •. L_.Li I I I , ..L ...• L ... ..L.. 

The @OUAL control statement provided in this example specifies that all subsequent filename references, which have a 
preceding asterisk, be interpreted as having the qualifier 1STOUAL. For example, the @FOR control statement element 
shown in the example is interpreted as: 

@FOR 1STOUAL*FILEA.DO/ABC 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 3-42 
PAGE REVISION PA GE 

2. This @QUAL control statement overrides the @QUAL control statement in example 1. Therefore, subsequent filename 
references which have preceding asterisk will have the implied qualifier 2NDQUAL. For example, the @FREE control 
statement is interpreted as: 

@FREE 2NDQUAL*FILEA 

3.8. DATA PREPARATION CONTROL STATEMENTS 

3.8.1. DIRECT CREATION OF CARD IMAGE FILES (@FILE) 

Purpose: 

The @FI LE control statement creates SDF·formatted mass storage or magnetic tape files while the input symbiont is reading 
the run stream. Creating a file in this manner rather than by means of the EL T or DATA processors reduces overhead since it 
is accomplished at input time rather than at execution time. The data is handled only once in creating the file rather than 
being read again from auxiliary storage with the run stream and then transferred to the file by the DATA or EL T processors 
at execution time. The file into which the images are placed must be FASTRAND formatted or magnetic tape. 

Format: 

For each storage device, the format of the @FI LE control statement is identical to the @ASG control statement for that 
device (except that the label field is not used). 

If the device type specifies FASTRAND format mass storage the format is: 

@FI LE,options filename, type/reserve/granule/maximum, packid·1 /packid·2/ ... packid·n 

NOTE: 
The packid's are only used if the type field specifies removable disc. 

If the device type is magnetic tape, the format is: 

@FI LE,options filename( F·cycle) ,type/units/log/noise/MSA·trans/; 
unit·trans/format,reel·1/reel·2 ... /reel·n expiration period 

Parameters: 

options When device type is mass storage, the options are: 

A - Already catalogued 

G - Guard modes 

p - Catalogue as public 

R - Catalogue as read only 

W - Catalogue as write only 

Cor U - Catalogue (assumed if not present) 

T - Temporary (used on tape files only) 



4144 Rev. 2 
UP.NUMBER 

UN I VA C 1100 S E R I E S S Y S T EMS 3-43 
PA GE RE VISION PA G E 

When device type is magnetic tape, the options are: 

B - Set no translate mode 

E - Set even parity 

F - Check label only if present 

H - 800 FPI density 

- Set translate mode 

J - Label not present 

L - 200 FPI density 

M - 556 FPI density 

o - Odd parity 

v - 1600 FPI density 

Description: 

For a more complete explanation of these options and the remainder of the control statement, see the @ASG statement for 
FASTRAND mass storage or magnetic tape (see 3.7.1.1 and 3.7.1.2). 

@FI LE control statement processing \ is terminated upon encountering an @ENDF control statement, a @FIN control 
statement, or another @FILE control statement. Data images and all control statements except @COL and its accompanying 
end sentinel are placed into the created file (the @COL control statement and sentinel are processed immediately, and the file 
is marked when the mode switch is mode). 

If the device type is magnetic tape and a @FILE control statement is encountered while processing a previous @FILE control 
statement for the same filename, then the current file is closed, and an EOF mark is written and the second file follows 
immediately on the same reel. 

Since the file created by the @FILE control statement is not available until it is closed (by an @ENDF, @FIN or second 
@FILE control statement), the user should physically structure his input run streams so as to not access the file until it is 
available, that is, calls on this file by any language processor or user requests should physically follow the @FILE, @ENDF 
sequence which created it. 

3.8.2. TERMINATING THE FILE MODE (@ENDF) 

Purpose: 

Marks the end of the images for a file created by the @FI LE control statement. 

Format: 

@ENDF 

Description: 

@ENDF control statements cannot have labels and cannot be continued. 



4144 Rev. 2 UN IVAC 1100 SE RI ES SYSTEMS 3-44 
UP.NUM 8ER PAGE REVISION PAGE 

3.9. DYNAMIC RUN STREAM MODIFICATION 

3.9.1. DYNAMIC RUN STREAM EXPANSION (@ADD) 

Purpose: 

Provides a means of inserting images into the run streams from any file currently assigned to the user or any catalogued file, 
provided that it is a FASTRAND-formatted file in SDF format, or from any source element of a program file created by such 
means as the: 

• DA T A processor 

• ED processor 

• E l T processor 

• user program 

Images being added may be data or any control statement normally allowed in a run stream with the exception of those 
control statements which are acted upon at input time, such as: 

@RUN 

@COl 

@FIN 

@FllE 

@ENDF 

All parameters on the @ADD control statement are required. 

Format: 

@label:ADD,options name 

Parameters: 

options 

name 

The options are: 

D Allows the insertion of files or elements when operating under the 
DATA or El T,D processors. 

E Return control at the EOF address of the READ$ request as if an 
@EOF control statement had been encountered when the end of the 
added file or element is Ireached (see 5.2.1). 

P The @ADD control statement is to be printed in the program listing. 

Names th~ f.ile or element to be added (see 2.6). If a filename is intended, the filename 
must be followed b'y a period, otherwise it is interpreted as an element name. 



/ 
\ 
\ 

rOO . 

"'-. .. , 

4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 3-45 
PAGE REVISION PAGE 

Description: 

When the @ADD control statement is encountered, the first image of the file or element being added replaces the @ADD 
control statement image. All subsequent run stream images are taken from the file or element being added until either 
end-of-file or end-of-element is encountered. Subsequent images are obtained from the file in which the @ADD control 
statement was encountered. 

@ADD control statements may be nested to the level specified at systems generation. However, a given file or element may 
not be referenced twice in the same nest. When this occurs, or when a nonexistent file or element is referenced, the run is 
placed in the error mode and processing continues. 

This control statement is a valuable tool for remote users (batch or demand) because control statements or data need be 
submitted only once but may be used in many subsequent runs. The prestored, partial control streams can be corrected prior 
to their addition by placing correction lines after an @ElT,D or an @DATA control statement. 

Examples: 

LABEL ,\ OPERATION 
10 

,\ 
20 30 

OPERAND COMMENTS 
50 

( • ;U~_L.L_L. .. L. .... :I~&LS, I I ,_ L ... L. ..... L .... L .. J.-L..l- 1 : .... 1 .... L.L .. J ......... L_L_L.l..._1.....1 ..... .1 ... L...i._L ..... Ll.... .... L.L ... .J .... L. .. ..L..L....L..L. ..... {L.L. 

2. ~.A1>.~ ....... .L .. L..l_L.......J".eiR~LI~ .. ! ... L."".L.. ..... L. ..... .l.."".I.........l..-l... ..... L...L......L .. _.L .. 1.. .. __ 1 .. L ..... .L I I I I ____ .L __ ..I.. __ .L.. .... L...l ..... .I ........ L_L_L .. L. __ I. __ .. L .. L. .... L.J .... ....LJ.......l ....... l. ...... l ... I. ..... L .. . 

3. D..Dl'J~L .... L.1 J>iB,~F,LI.s'.l_L .. _L.. .. L.LJ ... _! I : ! 1._.J........1-... 1.._ .. L .... 1.. I I ! J--1-.J......L_L .. 1 Iii I 1-.1. ... J ..... L I I .L .. 

. L .. l ... J ..... L. 

1. The images in file TPF$, element TOTALS replace the @ADD control statement. 

2. The images in file PROFITS replace the @ADD control statement. 

3. The images in file PROFITS replace the @ADD control statement. The @ADD control statement is to appear in the 
program listing (P option). 

3.9.2. CONDITIONAL STATEMENTS 

Conditional statements are those executive control statements which are used for the dynamic adjustment of the control 
stream while it is being executed. The conditional control statements provided are: 

@SETC control statement (see 3.9.4.1 ) 

@TEST control statement (see 3.9.4.2) 

@JUMP control statement (see 3.9.4.3) 

Through the use of these control statements, the user can set values in a condition word that is maintained for each run, test 
that value, and depending upon the results of that test, skip a portion of the control stream, or direct an individual task of the 
run to vary its execution. The condition word can also be accessed or altered by either the executive or by any of the user 
programs within the run. The outstanding feature of this conditional network is that it allows a given run stream to produce 
many different results with only minor modifications to the stream. 

3.9.3. STATEMENT LABELING 

Every control statement, including those registered by a CLlST$ executive request (see 5.5) may have a label specified. The 
label provides the means by which portions of the run stream can be skipped with control passed to the statement having a 
particular label. Note that labels contained on the @COL, @END, @ENDF, and @FILE control statements cannot be used for 
passing control since these control statements are not entered in the run stream. Control statements have only one label; 
however, additional labels can be attached to a statement by means of the use of label statements. 



4144 Rev. 2 UN I V A C 11 00 S E R I E S S Y S T EMS 3-46 
UP.NUMBER PAGE REVISION PAGE 

A label statement is any control statement containing a label but no other parameters; that is, just the recognition character 
(@), the label, and the colon(:). 

As an example, the @XOT control statement, which follows, can be referenced by any of the labels TAG, MARK, or LAST, 
which are attached to it by label statements. As each label statement is encountered, no operation is performed and run 
stream processing continues until a control statement with a command is found. 

@TAG: 

@MARK: 

@LAST:XOT PROGX 

If the same label appears more than once within a run, the first forward occurrence is taken as the proper label. 

3.9.4. CONDITION WORD 

The condition word format is: 

T1 T2 T3 

().or· O-or-
error-condition-bits value-set-by-@SETC value-set-by-E R-SETC$ 

The condition word is divided functionally into thirds, as follows: 

• T1 is set by the excutive to indicate various error conditions and states with the following bit settings: 

Bit 30 Inhibit run termination when a program error terminates (set by @SETC,I and cleared by 
@SETC,A-see 3.9.4.1. 

26 Most recent activity termination was an ABORT$ (not EABT$). 

25 Most recent activity termination was an error termination. 

24 One or more previous activity termination of the current task (previous task if between 
executions) was an error termination (see 4.3.2). 

For example" a value of 4 in S2, between tasks, means that the last activity of the previous task did an ABORT$ request and 
that all other activities of that task (if any) terminated normally. Note that bits 26 and 25 cannot both be set. 

• T2 is set by the @SETC control statement (see 3.9.4.1). It may also be set by means of the set parameter on the 
@START control statement (see 3.4.3). 

• T3 is set by means of the SETC$ request (see 4.4.1 ). 

While the entire condition word may be examined, either in the run stream (@TEST-see 3.9.4.2) or by an executing task 
(COND$-see 4.4.2), alteration is limited to individual thirds, where T1 can be modified only by the executive; T2 only by a 
control statement, and T3 only by an executive request. 

The condition word is set to all zeros at the start of a run, unless the run was started by a @START control statement with a 
set parameter, in which case T2 initially contains the value of that parameter. 

The run stream path may be varied using the condition word in combination with the @SETC, @TEST, and @JUMP control 
statements (see 3.9.4.1,3.9.4.2, and 3.9.4.3, respectively). 



4144 Rev. 2 
UP-NUMBER 

U N I V A C 1100 S E R I E S S Y S T EMS 3-47 
PAGE REVISION PAGE 

\. 
2. 
3. 

3.9.4.1. CONDITION WORD CONTROL (@SETC CONTROL STATEMENT) 

Purpose: 

Stores (set) a value in the T2 portion of the condition word. 

All parameters are optional on the @SETC control statement except value. 

Format: 

@label:SETC,options value/j 

Parameters: 

options 

value 

Examples: 

LABEL ,\ 
10 

The options are: 

A Clears bit 30 of the condition word which allows a normal ERR$ 
termination of this run. For example, if an error termination occurs, 
the run is terminated after processing @PMD and conditional control 
statements. This option is in effect when the run is initiated (opened). 

Sets bit 30 of the condition word which inhibits run termination after a 
program error terminates. Normal processing continues after any error 
terminations that occur while this option is in effect. 

The I option should not be specified unless the user is willing to assume CPU costs beyond 
time of error detection. This option permits runs with independent tasks or tasks with 
nonfatal errors to continue. It also permits tests in which error conditions are expected to 
be encountered, to continue. 

Specifies a positive octal value not exceeding four digits in length to be entered into the 
designated portion of the condition word. Value is right-justified, zero filled prior to a 
partial word store into the designated portion. If the magnitude of value exceeds the 
capacity of the designated portion, truncation occurs. 

Designates portion of condition word into wh ich value parameter is to be stored. 
Permissible entries are: T2, S3, or S4. If omitted, T2 is assumed. 

OPERATION ,.\ 
20 

OPERAND 
30 

!\ 
40 

I I .... J. ..... L ... L.LJ .. _! I ! I 1 .... .L..L . ..l. ...... L_L.--<-.-L-...J.......J1L-.L..J . ....Ll_.J .. _J ...• 1 I 

COMMENTS 
50 

, I I .... L.L .. L .. L.J.-.L..! ...... '--1--'-

_ .. L .. J._L.L..l..--L....L...L I I I I 1 ..... L .... L ... l... .... L .. .1 I I I I I .L .. LL .. 1... ..... L. ....• L .. L....J..1-...I.....1 -'--'--............ , .... L .... J... .•. l.-.L.;....1 ....J1L.-..J.--'---'--"1 ..•.... 1 ..... L. .•... l. I I I 1-1... .. 1 ...... ..I ...... J. 

1. Loads 68 into T2 of condition word. (T2 is assumed since j parameter is omitted.) 

2. Loads 108 into S3 of condition word. The value is treated as octal even when the leading zero is omitted. 

3. Loads 48 into S4 of condition word. 



4144 Rev. 2 
UP-NUMBER 

UN I VA C 11 00 S E R I E S S Y S T EMS 3-48 
PAGE REVISION PAGE 

3.9.4.2. CONDITION WORD TESTING (@TEST) 

Purpose: 

Tests the value of the condition word to select the particular control statements to be executed or skipped. 

All parameters on the @TEST control statement are optional except the first occurrence of f and value. 

Format: 

@label:TEST f/value/j,f/value/j ... 

Parameters: 

f 

value 

Description: 

Specifies the type of comparison to be made. If the test is met, the next control 
statement is skipped. If test is not met, the next control statement is executed. 
Permissible entries are: 

TE Test for equal 

TNE Test for not equal 

TG Test for greater than 

TLE Test for less than or equal 

Specifies a positive, octal value not exceeding 12 digits to be compared with that portion 
of the condition word specified by the j parameter. 

Specifies the portion of condition word to be tested. Permissible entries are: U, H 1, H2, 
T1 through T3, and Sl through S6. If omitted, T2 is assumed. 

When more than one test is to be made, the control statement is scanned until a test is met or all parameters are exhausted. 
When a test is met, the control statement immediately following the @TEST control statement is skipped. 

Examples: 

LABEL /\ OPERATION ,:\ 
10 20 

OPERAND 
30 

!\ 
40 

COMMEtHS 
50 

, • t:.~-r..L..J.._.L ..... ~~.L.f~L. .... .L I 1 1 I i .. .-J ..... ...J ........ L .... l ...... ..i. I 1 I I I L .... L. ..... L.L. . ...L._L..l..._L.L1... .. 1 ....... 1 ... Li_L_LJ......l. ..... l .... J. ...... L......L.-L.....l....J •.... l .... 1. ..... !... .. 

2. lIl~TL_\ .. _.L-jI51.J...~LJ..4 ..... 1 ...... 1 ....... I... ... ..J ......... l ....... LJ-L-J .. ---L-L ..... l ..... 1 ........ 1 .... ...i ........ J ..... ...L....L.l.-L .... l ....... .l .... .L ..... i ..... ..1 ......... 1 ..... J ....... J....-L.J. ..... 1 ........ 1 ........ 1 ..... 1 ....... J ... ......L.....1 ... ...1 ....... 1 .... 1 ........ \ ........ 1 ..... . 

3. TI S.-.c ...... l ....... J~.t..u::>~ ....... L .. -L .... L . ..L.J.. I I I 1 1 ..... .J.......J. ... ..1. ....... 1 1 ! ! I II! 1 ... L.L . .I ... .1 ..... 1 I 1-1...-1 ..... L ... L .. 1 1 I 1 ..... L ... 

4 ..... T..J;StL.---L.J. ;-r,L,E, ""hLT~L ... J ....... 1 I I I I I ! .... LL . ..l ........ L ...... L. . ...L . .L..LL..L---L-l_ .. J ....... L ... l . ..J I I I I I-.J... ...... 1... ..... L .... J. ... . 

1. S3 of the condition word is tested to see if it is equal to a value of 6
8

, if equal, the next control statement in stream is 
skipped. If unequal, the next control statement is executed. 

2. T2 of the condition word is tested for two conditions: greater than 68 or equal to 48 _ If either condition is met, the 
next control statement in the stream is skipped. If neither condition is met, the next control statement in the stream is 
executed. 



.. "'~'" 

4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 3-49 
PAGE REVISION PAGE 

3. H2 of the condition word is tested for a greater than 108 condition. If the condition is met, the next control statement 
in stream is skipped; otherwise, the next control statement is executed. The value is treated as even when the leading 
zero is omitted. 

4. T2 portion of the condition word is tested to see if it is less than or equal to 48 , If so, the next control statement in the 
stream is skipped; otherwise, it is executed. 

3.9.4.3. BRANCHING FROM WITHIN RUN STREAM (@JUMP) 

Purpose: 

Advances control to the specified labeled statement within the control stream. 

All parameters in the @JUMP control statement are required except label. 

Format: 

@label:JUMP label 

Parameters: 

label Specifies the label or name attached to a subsequent control statement to which control 
is passed. This parameter may instead be a decimal value indicating the number of labeled 
control statements to be advanced. Those control statements which cannot have labels 
must not be included in the count. A numeric value of 0 as a parameter is not permitted. 

Description: 

The @JUMP control statement must refer in the forward direction to a statement not yet processed. 

Examples: 

LABEL ,.\ OPERATION 
10 

.\ 
20 30 

OPERAND ,\ 
40 

COMMENTS 
50 

I. L[uMP.L .... .L __ . .J_ ...... IA~ ....... .l ......... L .. _L..L-L..L..J. .......... l ..... 1 ..... l ........ L .... J..._...L......L_L-L • .L.....L...L .... l ....... .L ..... l.-.l __ L.J._ .. ....L.......L...L.......l ..... .l ..... 1._LJ. .... ........L......L .. l •... l ...... 1 ..... I .......... L.L.....L . ...J ..... 1 ...... 1 ....... 1 ... . 

2 ..... 1C[l,tMf.t .. L. .. J._J1 ...... L .... L.L-.L._L .... 1... ..... L ..... t... ..... l... .... ..I .... ..I ..... I ......... L ... L .... J. ........ L.. .. .L ...... L .... i... ..... L .. ..l .... 1 ... 1........ .... 1-1 ........ .1-. .... 1 .... L ... 1... .. 1... ..... I ..... 1 .L ..... ,L....l_..l ... 1 ... 1 1 1 ... ,J ......... 1 .... ..1 ........ 1 it .. L 

L..l._._l. ........ L ..... L ... _L • ..L_U._LJ ...... L..L_Ll_l... .... l ... .1 ......... 1.. ._L.j ........ j, ........ ..L..L.L....l .... _.L..l_ .. .l ...... L.. .. J .. --'-I -<1--'--'--..LJ ___ L_l.._ ... L ... J ....... .L ........ ,---'--"'"!-...L.., ........ I .... L .. L .... L .... LL ...... L ........ L .... L .. J .. . 

1. Control is advanced to the control statement containing the label TAG. 

2. Control is advanced to the fourth control statement following the execution of the @JUMP control statement . 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 3-50 
PAGE REVISION PAGE 

\. 
2. 
3. 
4. 

3.9.4.4. CONDITIONAL RUN STREAM EXAMPLE 

LABEL OPERATION 
10 20 

\ OPERAND COMMEtHS 
50 

.. ..l_.v,.L .. ~!---1_ .. J .~...J..-L . ..l..~.J"'ri"..l ... J._._ .. .L.~J_.--L i_ ... l .. i .... .1 .... 1 .... _ .. L.~_ L_~. __ l .... .1 ....... 1... ... 1.. 

L .... l __ L_J ... .1_ ... L ..... L ..... 1 ...... .1 .... 1 .... .J ...... L_L_L....L ..... L. .... L .... L. ... .1 .... J ..... I ..... L .... L.1_ .. ..l ....... 1.. .... ; ....... L... •. .1...l ..... L .... i ... J ..... !... ... i ....... 1.. 

.L .. J ... __ J_L~ ....... L .. 1 . .1 ..... .L._.L ... L.l......l-L.L..1 ....... L ... L ... L .... L .... L._.LL..L....L..J. ..... 1 .... L.. .... L.. .... L .. LL....L . .....! .... 1 

. .... L . ...l_ .... L....L_L .. .1.....J._L..1. .... L ... .J ..... J ..... J __ L_L_L ... Ll ...... J ..... L .. .1 _L_L.....l_L ... L ..... l .. J ... L 

~'~~~~~~~~~~~~~~~~~~~~~~'-Ll-L~!~I~I-LI~I~i~I~'~~~I~!.~I~I~'~I ~1~1~_I~!~!~I_l~l~i~~~ 
o. 

! I 

_ .. L.L....I.-L...l-l-_'_...L.-LL ... _ .. l ..... l ..... L .... i._L_L .. l ........ l ... .J ... _ .. l. __ .L . .....i._l . ....l_.l ...... l. 

I ! I .. 1. .... L ..... 1.. ..... 1 .... L ..• .J ..... .LJ......~.L.J.. .... L .... L. ..... L . ..l_D......L.L ... L .. .J .... ~ ... .1 ... _.1 .. 

..l..J ....... L_L...l........L..L..l.........L-L..._L .... L ... L. .... L ... ..L.....L....L......L.L ... L.J ..... 1 ..... .1 ... _L 1 I L 

... 1 ....... L . ....L....-'---'----'--J.--I--I.I .. _ .. Ll ....... L_l_....L . ...J1---'---'--"1 L .... ..L._.1 .... L .. _l.......L....L...L.J .... I .... .l ........ L . ..l .. _.L....l...J-L 

! 1 1 I 1 I 1 1 1 I I i I f I I ! ! ! I i I I 1 ! ! ! ! I I ! i I ! 

.-i.--'--.L-J1-L...L....L..l ....... L .... .l ..... L ... L. .... L ... ..J L...-J..--,-I .....J1,--,---,---,L.J ... L._L .. ..J l--L--L......J..........L1 ....l m •• L. .... L .... ..L_L .. L.L.....i. . ......L .. .l.. 

.-,--,---,--,--,,--,---,-' ....L ... ..l ........ l ....... L ... J .. __ J .. _L_L .. L .. L .. L_L ..... l. .. _l ........ i ...... .J .. _L....L-L....J .. ......L .. ..l ....... l.. ...... l ........ l ....... .J ....... l. 

J---'--'---'--'--.....LI--,-I ..... L .. 1._ .. L ...... L. ..... L .... L_L I 1 ' I I L....l.. ..... L. .... L ... l .. _L ... L_L...l . ...J-L ... .l ..... L .... .1. 

L.. .... l. 

! I I I 

I~L!..J..--L_L...;.:::L.-.IL-· ....1.1--1...1 -1.1 ...L ... Ll... ... L .... LL .. ..L I 1 I L.L ... L .... .1 ... J_.L.L.....L.L...l-L..L..l . ......L .. J.. .... L_ .. L...! .....I--1-....l-l.........-J--L_L ..... L L ... LJ--,--,--,--.J... 

.. L ... LLLL..L.l......t-L...l... .... L .... l ....... L.. .• .L...L.J I II! ! I ....L_L .. L_J .. ~ ! 'I .... .1 ...... L._L_J_.J...I........L.......L......L.~ 

~..I-.lC=...:::t.....-'---L--'-! .....J1'-. ...l ..... L .. L ..... l ...... .l.........L.J_L..L......L.L.1.....L .. L.L ... J ..... L .... LLl..~-'-L.....L_.LL .. I. .. J. __ !.. . .1...1 ......L-....t........l.-...L......l_L.L .. J .... Ll.....Ji.........l.I--I..., -'--'--....L I 

..... L.L...L.......LJ...L...L....L .... l ........ J.. ...... l ...... 1._...L...L.J...1---l.-...L........L......i L.L ..... .l .... _l .. _~....L..l... . ...L_.l.._.I .... _.1 . 

As shown in this example, lines 1,2,3,5,7,15,16,17, and 18 are processed in this sample run stream, and programs 0, E, and F 
are executed in that order. 

Line 2 might be changed to set other values to produce different run stream processing, as follows: 

Line 2 Lines processed Programs executed 

@SETC3 1,2,3,4,5,7,15,16,17,18 A,D,E,F 

@SETC 4(or 10) 1,2,3,4,5,6.8,10,11,16,17,18 A,B,E,F 

@SETC 11 1,2,3,4,5,6,8,9,12,14,15,16,17,18 A,C,D,E,F 

@SETC 1 1,2,3,4,5,6,8,9,12,13,17,18 A,F 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SE RI ES SYSTEMS 4-1 
PAGE REVISION PAGE 

4. EXECUTIVE SERVICE REQUESTS 

4.1. INTRODUCTION 

This section discusses the fundamental interfaces between an executing program and the executive. These interfaces are the 
executive request (ER) mechanism, and the contingency mechanism. The material in this section is primarily of interest to 
the machine (assembler) language programmer. 

The Executive Request instruction has the general form: 

ER function-id 

The function-id is coded in the instruction u field, as a symbolic, system-defined name. At collection, this name is converted 
into an absolute ER index. The numeric index associated with each name is specified in the system relocatable element ERU$. 

The function-id identifies to the executive a particular service to be performed for the requesting activity. This service may be 
as simple as a clock reading, or a complex file handling operation. See 4.2 for a summary of all E Rs provided by the 
executive. 

4.1.1. CODING RESTRICTIONS 

Only the u field may be used when executing an ER instruction. No indexing, index modification, or indirect addressing is 
permitted. Also, an ER instruction must not be executed remotely with an Execute (EX) instruction. 

4.1.2. CALLING SEQUENCE CONVENTIONS 

The calling sequences for ERs may, in general, be used reentrantly. This means that parameters are passed in control registers, 
either directly or indirectly, by a packet whose address is passed in a control register. The use of Test and Set (TS) 
instructions across an E R to achieve reentrancy is poor practice, and in the case of real time activities may cause a system stall 
which can only be relieved by operator intervention. 

ER parameters that specify numeric values such as packet lengths are binary unles3 otherwise stated. 

Normally, when a control register is required in ER calling sequences to hold parameters or results, register AD is used. 
Additional registers, if needed, are usually allocated in the sequence A 1, A2, ... 

Control register contents (including parameters) are not altered by the execution of an ER, unless specific resultant values are 
defined in a control register. 

The coding sequences shown for particular ERs are optimal in most instances, but any coding sequence that achieves the same 
register loading is permitted. Note that many ERs require just a packet address in register AD, which means only H2 of 
register AD is significant; however, if the coding sequence given clears H 1 of register AD to zero, then it must be zero. This 
principle applies to all calling sequences. 

When a parameter must be the address of another parameter, the second parameter must not be in a control register. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 4-2 
PAGE REVISION PAGE 

4.1.3. ER SYNCHRONY 

For most ERs, processing is completed prior to returning control to the requesting activity. Such requests are divided into 
two types: synchronous and immediate. Immediate ERs are of a short, simple nature and do not normally cause switching, 
whereas synchronous E Rs are of sufficient duration or complexity to require suspension of the requesting activity while 
various executive components perform the requested service. With the exception of timing considerations pertinent to real 
time applications, the differences between synchronous and immediate ERs does not influence programming logic. 

A few E Rs return control to the requesting activity prior to completing the required processing. These E Rs are asynchronous 
ERs. In general, control is returned immediately after processing has been initiated: The activity may then do other 
processing in parallel. At some future point, the program (usually the same activity) must synchronize itself with the 
completion of the requested service; this is most commonly done by checking a status value in a packet associated with the 
request. Asynchronous ERs are generally ones which perform I/O. 

Table 4-1 specifies the type of each ER. 

4.1.4. ERROR HANDLING 

Programming errors in an executing program are detected in two basic ways. The first method is hardware detection of errors 
such as divide fault, illegal operation, guard mode violation, and so on. The second method is software detection, within the 
executive, of errors in ER usage. 

Such errors cover a wide range, from simple mistakes like forgetting to assign a file to such subtle errors as allowing all 
activities to deactivate waiting for each other to do something. 

In a few error cases, it is not feasible for the executive to do anything but abort the run. However, the vast majority of errors 
are at least potentially recoverable. 

In the case of recoverable errors, the offending activity is placed in error mode, at which point a contingency occurs and the 
activity is either error terminated or, if a contingency routine has been registered to handle error mode contingencies, the 
activity is given control at that routine. See 4.9 for details of contingency handling and error termination. 

In most cases, errors are detected immediately. However, certain kinds of errors for asynchronous ERs may be detected after 
control has been returned from the ER, in which case the contingency may occur at (and capture) an instruction address far 
removed from the offending instructions. 

Error mode errors are not to be confused with errors not normally attributable to programming errors such as a parity error 
on an I/O operation; these do not cause error mode contingencies. 

Documentation of the individual ERs in this manual gives all restrictions and warnings pertinent to their use, but generally 
does not include all possible associated error cases and error codes. In many cases, errors are common to ·many unrelated ERs; 
for example, all packet addresses are checked against program storage limits. See Appendix C for a complete list of error 
codes and diagnostic messages. 

4.2. SUMMARY OF EXECUTIVE REQUESTS 

Table 4-1 lists the name, octal function code, description, ER type, and a cross-reference for each ER. ERs that are 
fundamental to activity and program control, and the miscellaneous ERs are covered in this section. The remaining ERs are 
described in the sections covering the specific area with which the ER is associated. 

The E R type designations are as follows: 

A = Asynchronous 

= Immediate 

S = Synchronous 

= Not applicable 



4144 Rev. 2 
UP-NUMBER 

ER 
Name 

ABORT$ 

ACT$ 

ADACT$ 

APCHCA$ 

APCHCN$ 

APNCHA$ 

APRINT$ 

APRNTA$ 

APRTCA$ 

APRTCN$ 

APUNCH$ 

AREAD$ 

AREADA$ 

AWAIT$ 

BBEOF$ 

CADD$ 

CEND$ 

CGET$ 

CJOIN$ 

CLlST$ 

CMD$ 

CMH$ 

CMI$ 

CMO$ 

CMS$ 

CMSA$ 

CMT$ 

COM$ 

COND$ 

CPOOL$ 

CREL$ 

CSF$ 

DACT$ 

Octal 
Function 

Code 

12 

47 

154 

77 

75 

73 

70 

71 

76 

74 

72 

166 

167 

134 

36 

57 

100 

56 

151 

153 

51 

52 

47 

50 

45 

53 

46 

10 

66 

55 

152 

17 

150 

UNIVAC 1100 SE RI ES SYSTEMS 4-3 

Description 

Abort run 

Activity activation 

CADD$ and ACT$ (ESI only) 

ASCII punch control alternate 

ASCII punch control 

ASCII punch alternate 

ASCII print 

ASCII print alternate 

ASCII print control alternate 

ASCII print control 

ASCII punch 

ASCII read 

ASCII read alternate 

Wait for other activities to terminate 

Set block buffering end-of-file 

Add communications buffer 

Terminate contingency status 

Get communications buffer 

Expand communications buffer pool 

User access to control statements 

Dial communciations line 

Hang-up communications line 

I nitiate communications input 

Initiate communications output 

Line termi nal initiation 

Initiate communications input and output 

Terminate communications line 

Console output and solicited input 

Retrieve condition word 

Create commu niations buffer pool 

Release communications buffer pool 

Control statement function 

Activity deactivation 

Table 4-1. Available ERs 
(Part 1 of 3) 

PAGE REVISION PAGE 

Cross Type 
Reference 

- 4.3.2.3 

S 4.3.3.4 

I 15.5.1 

S 5.4.8 

S 5.4.6 

S 5.3.8 

S 5.3.2 

S 5.3.4 

S 5.4.4 

S 5.4.2 

S 5.3.6 

S 5.2.2. 

S 5.2.4 

S 4.3.3.1 

S 13.3.2.8 

I 15.4.2.3 

I 4.9.4.2 

S 15.4.2.2 

S 15.4.2.4 

S 5.5 

A 15.4.1.2 , 

A 15.4.1.9 

A 15.4.1.3 

A 15.4.1.4 

S 15.4.1.1 

A 15.4.1.5 

S 15.4.1.10 

S 4.6.1 

I 4.4.2 

S 15.4.2.1 

S 15.4.2.5 

S 4.8.1 

S 4.3.3.3 



4144 Rev. 2 
UP.NUMBER 

ER 
Name 

DATE$ 

EABT$ 

ERR$ 

EXIT$ 

EXLNK$ 

FACIL$ 

FACIT$ 

FITEM$ 

FORK$ 

IALL$ 

11$ 

10$ 

10ARB$ 

10AXI$ 

101$ 

10W$ 

10WI$ 

10XI$ 

LABEL$ 

LCORE$ 

LlNK$ 

LOAD$ 

MCORE$ 

MCT$ 

MSCON$ 

NAME$ 

NRT$ 

OPT$ 

PCHCA$ 

PCHCN$ 

PCT$ 

PFD$ 

Octal 
Function 
Code 

22 

26 

40 

11 

173 

114 

143 

32 

13 

101 

27 

1 

21 

20 

2 

3 

24 

25 

31 

44 

171 

111 

43 

41 

125 

·146 

62 

63 

165 

164 

64 

106 

UNIVAC 1100 SERIES SYSTEMS 

Description 

Retrieve time and date 

Error terminate run 

Error terminate activity 

Normal activity termination 

Return to calling reentrant processor or main program 

Retrieve file assignment information 

Retrieve file assignment information 

Retrieve file assignment information 

Create new activity 

Register contingency routine 

Unsolicited console input 

I nitiate I/O 

Initiate arbitrary device I/O 

Exit and initiate arbitrary device I/O with 
interrupt activity 

Initiate I/O with interrupt activity 

I nitiate I/O and wait 

Initiate I/O with interrupt activity and wait 

Exit and initiate I/O with interrupt activity 

Manipulate tape labels 

Release program storage 

Attach to reentrant processor 

Load program segment 

Acquire program storage 

Retrieve master configuration table 

Master file directory manipulation 

Name an activity 

Terminate real time status 

Retrieve options 

Punch control alternate 

Punch control 

Program control table retrieval 

Delete an element from a program file 

Table 4-1. Available ERs 
(Part 2 of 3) 

4-4 
PAGE REVISION PAGE 

Cross 
Type 

Reference 

I 4.5.1 

- 4.3.2.4 

- 4.3.2.2 

- 4.3.2.1 

10.4.5.3 

I/S 10.4.5.1 

S 7.2.7 

S 7.2.7 

S 7.2.6 

S 4.3.1.1 

I 4.9.3.1 

S 4.6.2 

A 6.3.3 

A 6.9.2 

S 6.9.3 

A 6.3.4 

S 6.3.5 

S 6.3.6 

S 6.3.7 

S 7.3.1 

S 4.7.2 

I/S 10.4.4.1 

S 10.2.4.5.1 

S 4.7.1 

S 4.8.3 

S 22.3 

S 4.3.3.2 

I 4.3.4.2 

I 4.8.2 

S 5.4.7 

S 5.4.5 

I 4.8.3 

S 24.3.1.3 



4144 Rev. 2 
UP·NUMBER 

ER 
Name 

PFI$ 

PFS$ 

PFUWL$ 

PFWL$ 

PNCHA$ 

PRINT$ 

PRNTA$ 

PRTCA$ 

PRTCN$ 

PSR$ 

PUNCH$ 

READ$ 

READA$ 

RLlNK$ 

RLlST$ 

ROUTE$ 

RT$ 

SETC$ 

SNAPS 

TDATE$ 

TFORK$ 

TIME$ 

TINTL$ 

TREAD$ 

TSWAP$ 

TWAIT$ 

UNLCK$ 

UNLNK$ 

WAIT$ 

WANY$ 

Octal 
Function 
Code 

104 

105 

107 

110 

145 

16 

144 

155 

137 

157 

130 

15 

42 

172 

175 

133 

61 

65 

120 

54 

14 

23 

136 

102 

135 

60 

67 

174 

6 

7 

UNIVAC 1100 SERIES SYSTEMS 4-5 

Description 

Insert an element into a program file 

Find an element in a program file 

Update next program file write location 

Obtain next program file write location 

Punch alternate 

Print 

Print alternate 

Print control alternate 

Print control 

Processor state register control 

Punch 

READ 

Read alternate 

Attach to a reentrant processor 

Reentrant processor registration 

Line terminal transfer 

Establish real time status 

Set condition word 

Snapshot dump 

Retrieve time and date 

Create new activity with timed wait 

Retrieve time of day 

I nitialize tape file to beginning of 
first reel 

Print and read 

Swap reels of tape file 

Timed wait 

Terminate interrupt activity status 

Return to main program from reentrant processor 

Wait for completion of I/O request 

Wait for any I/O completion 

Table 4-1. Available ERs 
(Part 3 of 3) 

PAGE REVISION PAGE 

Cross 
Type Reference 

S 24.3.1.1 

S 24.3.1.2 

S 24.3.1.4 

S 24.3.1.4 

S 5.3.7 

S 5.3.1 

S 5.3.3 

S 5.4.3 

S 5.4.1 

I 4.8.4 

S 5.3.5 

S 5.2.1 

S 5.2.3 

I/S 10.4.4.2 

S 10.4.3 

S 15.4.3 

I/S 4.3.4.1 

I 4.4.1 

S 4.8.5 

I 4.5.2 

S 4.3.1.2 

I 4.5.3 

S 7.2.9 

S 5.2.5 

S 7.2.8 

S 4.3.5 

S 6.3.8 

I 10.4.5.2 

S 6.3.1 

S 6.3.2 



4144 Rev. 2 
UP-NUMBER 

UN IVAC 1100 SE RIES SY STEMS 4-6 
PAGE REVISION PAGE 

4.3. ACTIVITY AND PROGRAM CONTROL 

4.3.1. ACTIVITY REGISTRATION 

4.3.1.1. CREATE A NEW ACTIVITY (FORK$) 

Purpose: 

Register and initiate an asynchronous program activity. 

Format: 

L AO,(parameter-word) 

ER FORK$ 

Description: 

Each activity of a program executes independently of all other activities. A FO R K$ request creates a new activity and 
schedules it for execution. Parameter-word describes characteristics to be associated with the new activity and specifies the 
program address at which it is to be given control. The format of parameter-word is: 

S1 S2 S3 H2 

[RT-priority ] [activity-id] registers entry-add ress 

Entry-address is the program address at wh ich the new activity is to begin execution. 

The registers field specifies the set of control registers which must be saved for the activity and which initially have the same 
contents as the corresponding registers of the initial activity. A value of zero indicates that only the minor set of registers 
(X11, AO-A5, R 1-R3) are required. A nonzero value indicates that all X, A, and R registers (except XO and RO) are 
required. Once selected, the control register set remains with the activity until it is terminated. Note that if an activity with 
only the minor set of registers creates an activity with the complete register set, the initial register contents are only defined 
for the minor set. The space and time required, within the executive to maintain a minor register set activity is significantly 
less than for an activity with the entire register set. 

The activity-id field is used to associate a numeric identity with the new activity. If used, the activity-id must be unique 
within the program and have a value from 1 through 35 and must not currently be in use. A zero specifies that the activity is 
not to have an activity-id (note that the initial activity of a program has no activity-id). See the discussion of AWAIT$ 
(4.3.3.1) for the use of activity-id's. 

The RT-priority field allows a real time priority to be assigned to the new activity. If used, the value must be in the range 2 
through 35 and within the range allowed to the account number. Note that at least one other activity must previously have 
elevated itself to real time by an RT$ request before this method can be used. 

See 4.3.4 and Section 17 for additional information on real time activity/program control and real time processing. 

4.3.1.2. CREATE A NEW ACTIVITY WITH TIMED WAIT (TFORK$) 

Purpose: 

Creates a timed activity. A TFOR K$ request is similar to a FOR K$ request (see 4.3.1.1) except that the new activity does not 
begin execution for a specified amount of time. 



"--- . 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SE RI ES SYST EMS 4-7 
PAGE REVISION PAGE 

Format: 

L AO,(parameter-word) 

L A 1 ,(wait-time-in-milliseconds) 

ER TFORK$ 

Description: 

The format and meaning of the paramter-word is identical to the parameter-word used in a FOR K$ request (see 4.3.1.1). The 
wait time may be any value from 2 to 30,000 (2 milleseconds to 30 seconds). If the value exceeds 30,000,30,000 milliseconds 
is used. If the new activity is real time, the wait time may exceed the 30,000 millisecond limit. Note that the wait time is 
simply a minimum elapsed time "by the clock", and is not influenced by the amount of processing (if any) devoted to other 
activities of the program (for example, program might be time swapped); for this reason, the TFOR K$ request is primarily 
intended for real time applications. 

4.3.2. ACTIVITY TERMINATION 

The following ERs provide various forms of activity termination. When an activity terminates, it ceases to exist for the 
program and the system. The activity-id and name are released for reuse by any other activities. When the last activity of a 
program terminates, the program is terminated. 

4.3.2.1. ACTIVITY NORMAL TERMINATION (EXIT$) 

Purpose: 

Terminate the current activity. 

Format: 

ER EXIT$ 

Description: 

The current activity is terminated, and the program is also terminated if this is the last activity. 

4.3.2.2. ACTIVITY ERROR TERMINATION (ERR$) 

Purpose: 

Place the requesting activity in error mode (normally causes error termination). 

Format: 

ER ERR$ 

Description: 

See 4.1.4 and 4.9 for a complete discussion of error termination and error mode. 

4.3.2.3. ABORT RUN (ABORT$) 

Purpose: 

Unconditionally terminate the program and the run. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SE RI ES SYSTEMS 4-8 
PAGE REVISION PAGE 

Format: 

ER ABORT$ 

Description: 

All activities of the program, including the requesting activity, are unconditionally terminated:, No register dumps are 
provided for the activities. In addition, the run is terminated and PMD requests are not honored. For demand runs, only the 
program is terminated and not the run. 

If an abort contingency routine has been registered, a single new activity is created after all the program's activities are 
terminated. The new activity is given control with a complete set of control registers (contents not saved) at the program's 
contingency routine address. If any of the terminated activities were real time, the new activity is given the highest real time 
priority allowed to the RUN's account number. 

See 4.9 for a discussion of contingencies. 

4.3.2.4. PROGRAM ERROR TERMINATION (EABT$) 

Purpose: 

Unconditionally error terminates all activitie~ but allows error diagnostics. 

Format: 

ER EABT$ 

Description: 

The EABT$ request is similar to the ABORT$ request (4.3.2.3) except that register dumps are provided for all terminating 
activities and PMD requests are honored. The program is error terminated instead of being aborted (see SETC control 
statement and SETC$ executive request, 3.9.4.1 and 4.4.1, respectively). Abort contingency also applies to the EABT$ 
request. 

4.3.3. ACTIVITY SYNCHRONIZATION 

In programs which use asynchronous activities to achieve parallel processing, it is often necessary for an activity to wait upon 
the completion of processing which is being performed by other activities. Several ERs are provided to achieve the desired 
program synchronization. 

Activity synchronization is accomplished by removing the requesting activity from consideration for CPU time (deactiviating 
it) until some other activities indicate that the desired processing is complete. 

The programmer must be careful that all activities do not simultaneously go into synchronization waits (see AWAITS -
4.3.3.1 and DACT$ - 4.3.3.3); if this occurs, the program and run are unconditionally aborted with an AWAIT/DEACT 
AMBIGUITY error diagnostic message. 

There are two I/O requests, 10XI$ and 10AXI$ (see 6.3.7 and 6.7.3, respectively), which convert existing activities into 
interrupt activities. In these cases, the interrupt activity retains the activity-id and name associated with the original activity. 
Conversely, no activity-id or name retention occurs for when a new interrupt activity is created (by 101$ - 6.3.4, 10WI$ -
6.3.6, or 10ARB$ - 6.7.2). 

4.3.3.1. JOINING OF ACTIVITIES (AWAIT$) 

Purpose: 

Deactivate requestor until all specified activities are terminated. 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 
UP-NUMBER I PAGE REVISION I PAGE 4-9 

Format: 

L AD,(activity-id-mask) 

ER AWAIT$ 

Description: 

The AWAIT$ request is used when further execution of the requesting activity is not desired until all specified activities have 
termi nated. 

The requesting activity must have an id number (note this rules out initial program activity) as must all activities for which it 
desires to wait (see 4.3.1.1). The activities to be waited upon are specified by setting the bits in the activity-id mask 
corresponding to the activity-id number. (An activity with an id of 4 corresponds to bit 4 in the mask.) Bit 0 must not be used. 
The requesting activity is deactivated until all specified activities have terminated by means of EXIT$ or ERR$. 

4.3.3.2. ACTIVITY NAMING (NAME$) 

Purpose: 

Attaches a name to an activity for identification purposes and for future referencing by ACT$ or DACT$ requests (see 
4.3.3.4 and 4.3.3.3, respectively). The attached name is not the same as that used in conjunction with an AWAIT$ request 
(see 4.3.3.1). 

Format: 

L,U AO,18-bit-activity-name 
ER NAME$ 

Description: 

The 18·bit name loaded into H2 of register AD is expanded to 36 bits (full word) by the executive and includes the three 
user-supplied characters in H2 of register AD. The user-supplied portion of the activity name must be unique for each named 
activity as the executive does not otherwise guarantee uniqueness. The full 36-bit name, which is returned in AD, must be 
used with subsequent ACT$ requests. 

4.3.3.3. ACTIVITY DEACTIVATION (DACT$) 

Purpose: 

Deactivates the calling activity which must have been previously named by the NAME$ request (see 4.3.3.2). 

Format: 

ER DACT$ 

Descriptions: 

Reactivation of this activity requires that an ACT$ request (see 4.3.3.4) be made from some other activity. Control is 
immediately returned to the next instruction following the DACT$ reference of the deactivated activity. 

If some other activity has performed an ACT$ request specifying the requestor's name before the requestor performed the 
DACT$ request, the requestor is' not deactivated but is returned control immediately. This is necessary as there is no way for 
the activity performing the ACT$ request to determine if the requestor has performed the DACT$ request. 



41jl4 Rev. 2 
U,P.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 

4.3.3.4. ACTIVITY ACTIVATION (ER ACT$) 

Purpose: 

Activates an activity which must have been previously named by the NAME$ request (see 4.3.3.2). 

Format: 

L AO,activity·name 

ER ACT$ 

Description: 

4-10 
PAGE REVISION PAGE 

The 36·bit name returned as a result of the NAME$ request is used to activate the activity. The requesting activity need not 
be a named activity. 

Prior to issuing the ACT$ request, the user must load register AO with the contents of a main storage location in which the 
name attached to the requested activity has been stored. 

If the activity being activated is already active it is flagged such that when it next executes a DACT$ request, it is 
automatically reactivated. 

4.3.4. REAL TIME PROGRAM/ACTIVITY CONTROL 

4.3.4.1. CHANGING PROGRAM/ACTIVITY TO REAL TIME STATUS (RT$) 

Purpose: 

Raises the status of a program to real time if the run's account number permits such action. The RT$ request also allows a 
real time activity to change its switching priority level within the real time class. 

Format: 

L,U AO,switching·priority·level 
ER RT$ 

Description: 

Real time status is provided for programs servicing communications lines. To allow for the time critical nature of these 
programs, a program/activity which is real time is afforded privileges which non real time programs/activities do not enjoy. 
Namely they: 

• have top priority for CPU switching and I/O; 

• are not swapped out of main storage; 

• have access to certain ER's, primarily the communications requests. 

The allowable switching priority (2 through 35) for each program's activities is controlled by account number. If a switching 
priority higher than that permitted is requested, the activity is placed in error mode. When the requesting activity currently 
has real time status, the ER is used only to control that activity switching priority. 

A program is considered real time when any of its activities acquire real time status. Because the program may not be 
swapped, an RT$ request from within a program causes it to be positioned in main storage in such a way so as to cause min
imum impact on the total system. Additional RT$ requests from within the program do not cause such relocation. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 11 0 0 SERIES SYSTEMS 4-11 
PAGE REVISION PAGE 

4.3.4.2. REMOVAL OF PROGRAM/ACTIVITY REAL TIME STATUS (NRT$) 

Purpose: 

Reduces an activity/program from real time status. 

Format: 

ER NRT$ 

Description: 

The activity is returned to the original program type (batch or demand). A program retains real time status until all real time 
activities are reduced in status or terminated, at which time the program also returns to its initial type. 

4.3.5. TIMED ACTIVITY WAIT (TWAIT$) 

Purpose: 

Places the activity in a wait state (delays execution) for a specified period of time. 

Format: 

L A 1 ,(wait-time-in-milliseconds) 

ER TWAIT$ 

Description: 

The activity must load register AI with the desired wait time period to making the TWAIT$ request. This value has the same 
meaning as the wait time for the TFORK$ request (see 4.3.1.2). 

4.4. CONDITION WORD CONTROL 

The program condition word which contains program status information supplied by the executive and information inserted 
by user-supplied control statements can also be modified dynamically from within an executing program. A complete 
description of the format and content of the condition word can be found in 3.9.4. 

4.4.1. SETTING THE CONDITION WORD (SETC$) 

Purpose: 

Dynamically sets T3 of the program condition word. 

Format: 

L,U AD,value 

ER SETC$ 

Description: 

This ER transfers T3 of register AD to T3 of the condition word. The intital contents of T3 of the condition word are D. This 
ER performs a function similar to the @SETC control statement which sets T2 of the condition word (see 3.9.4). 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 4-12 
PA GE RE VISION PA GE 

4.4.2. CONDITION WORD RETRIEVAL (COND$) 

Purpose: 

Transfers the program condition word to register AD. 

Format: 

ER COND$ 

Description: 

The program condition word is placed in register AD. This does not modify the condition word itself. 

The condition word format returned by the COND$ request is: 

T1 T2 T3 

error-condition-bits O-or-value-set-by-@SETC O-or-value-set-by-E R-SETC$ 

Error-condition-bits: 

Bit 30 

26 

25 

24 

Inhibit run termination on program error terminations (set by @SETC,I control statement 
and cleared by @SETC,A (see 3.9.4.1). 

Last activity termination was an ABORT$ (not EABT$). 

Last activity termination was an error termination. 

Some previous activity of the current task terminated in error. 

4_5. RETRIEVAL OF THE TIME AND DATE 

4.5.1. TIME AND DATE IN FIELDATA (DATE$) 

Purpose: 

Places the fieldata date and time into registers AD and A 1, respectively. 

Format: 

ER DATE$ 

Description: 

Register AD contains: 

T1 T2 T3 

month day-oF-month last-two-digits-
(01-12) (01-31 ) of-the-year 

Register A 1 contains: 

T1 T2 T3 

hour minutes seconds 
(00 through 23) (~O-59) (00-59) 



4144 Rev. 2 
UP.NUMBER 

UN I V A C 11 00 S E R IE S S Y S T EMS 4-13 
PAGE REVISION PAGE 

4.5.2. TIME AND DATE IN BINARY (TDATE$) 

Purpose: 

Places the binary date and time into register AD. 

Format: 

ER TDATE$ 

Description: 

Register AD contains: 

S1 S2 S3 H2 

month day year time·in·seconds·past·midnight 
(1·12) (1·31 ) (MODULO 1964) 

S3 is the last two digits of the year, Modulo 1964, the current year can be computed by adding 1964 to the value returned in 
S3 of AD. 

4.5.3. TIME IN MI LLiSECONDS (TIME$) 

Purpose: 

Places the current time past midnight in milliseconds into control register AO in binary. 

Format: 

ER TIME$ 

Description: 

Register AD contains: 

35 

time·in·m illiseconds-past-m idnigh t 

4.6. CONSOLE COMMUNICATIONS 

4.6.1. CONSOLE OUTPUT AND SOLICITED INPUT (COM$) 

Purpose: 

To request use of the onsite operator's console to display output messages and solicit operator input. 

Format: 

L,U AO,pkeaddr 
ER COM$ 

D 



4144 Rev. 2 
UP-NUMBER 

Description: 

UN I VA C 11 00 S E R I E S S Y S T EMS 4-14 
PAGE REVISION PAGE 

Pktaddr is the address of a packet whose format is: 

Word 0 

2 

Word 0 

error-code 

console-class 

actual-input
char-count 

Word 1 

output-char
count 

output-buffer
addr 

Word 2 

expected-input
char-count 

S1 

error-code 

0 

S2 S3 H2 

console-class 0 actual-input-char-count 

output-char-count output-buffer-addr (max. 50) 

expected-input-char-count input-buffer-addr 
(max. 50) 

Contains a COM$ request error code (see Appendix C) if an error is detected in the 
packet (the activity is also placed in error mode). 

The user may direct the message to any console by specifying the appropriate console 
class code. The codes are: 

08 - System console 

18 - I/O activity console 

28 - Communications console 

38 - Hardware confidence console 

Contains the number of input characters received. Always less than or equal to 
expected-input-char-count. 

The number of characters in the message to be displayed. The message is restricted to 50 
characters maximum. Each character is edited and master spaces (@) are deleted from the 
message (they must be included in the character count). If this field is zero, the COM$ 
request is ignored. If a character count greater than 50 is specified, the output message is 
truncated at 50 characters. 

The address of the program buffer containing the output message. The characters of the 
message are obtained from successive sixths of a word, beginning with S1 of the first 
word of the buffer. 

When this field contains a nonzero value, a console operator response is solicited. The 
activity executing the COM$ request is placed in a wait state until the input message is 
complete. If the input message exceeds the expected character count, the input message is 
discarded and the console operator is requested to retype the message. When no input 
message is desidered, set this field to zero. The maximum number of characters permitted 
in the input message is 50. 



4144 Rev. 2 
UP.NUMBER 

input-buffer-addr 

UN I V A C 11 00 S E R I E S S Y S T EMS 4-1 5 
PA GE REVISION PA GE 

The address of the program buffer that will hold the input message. Input characters are 
stored in successive sixths of a word starting with S1 of the first word of the buffer. If the 
last word of the input message does not contain six characters, the remainder of the word 
is filled with Fieldata blanks (058 ). The end-of-message (EOM) symbol is not transferred 
to the buffer. 

4.6.2. UNSOLICITED CONSOLE INPUT (11$) 

Purpose: 

Provides a means to define the activity which is to accept any unsolicited input directed to the program. 

Format: 

ER 11$ 

Description: 

The activity executing the 11$ request is deactivated as for a DACT$ request (see 4.3.3.3), however, the activity need not be 
named. If named, it may be reactivated using an ACT$ request (see 4.3.3.4). An 11$ request when an II activity has already 
been defined is not allowed. 

Unsolicited console input of up to six characters is stored (left-justified, space filled) in the activity's AO register, and the 
activity is activated. 

After activation (by either ER ACT$ or console input), the activity is no longer defined as the unsolicited console input 
activity. The same activity or some other activity must execute another 11$ request to redefine the unsolicited console input 
activity. 

Unless the program is guaranteed that unsolicitated input will occur to cause the activation of the 11$ activity, the activity 
must be named and activated by an ACT$ request prior to program termination. Failure to do this aborts the program and 
the message AWAIT /DACT AMBIGUITY is placed in the program's PRINT$ file. 

The console input activity is also activated by the remote terminal BREAK keyin. Since no input is actually received, register 
AO is space filled. 

4.7. PROGRAM STORAGE EXPANSION AND CONTRACTION 

4.7.1. MAIN STORAGE EXPANSION (MCORE$) 

Purpose: 

Permits user program to request additonal main storage for the I bank or 0 bank. 

Format: 

L,U AO,highest-addr-required 
ER MCORE$ 

Description: 

The address requested by the activity is assumed to be in the I bank if the address is less than the first D bank address 
produced at collection time. Otherwise, the address is assumed to be a D bank address. 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS I 4-16 
PAGE REVISION PAGE UP-NUMBER 

If the main storage requested is already assigned to the program, the activity's storage limits are adjusted and control returns 
to the requesting activity. If the storage is not already assigned, the requesting activity is deactivated until storage can be 
made available by swapping this or some other program. 

Additional storage cannot be obtained if any activity of the program is in real time status, unless the storage can be obtained 
without moving the program. Nonreal time programs are swapped, if necessary, to make the requested storage space available. 
Requests for less space than is currently available to a program are ignored, and control returns to the user activity. 

Each activity of a mUltiple activity program must perform a MCORE$ request before additional storage is made available to 
that activity. This provides for automatic synchronization and assures each activity of storage space when needed. 

The storage limits for ESI completion activities are not automatically expanded by a MCORE$ request. The user can cause 
this expansion by setting bit 35 in register AO at time of the request. 

The MCORE$ request permits the user to request an I bank or D bank where there previously was none. The I bank may be 
expanded to the first D bank address generated when the program is collected. The D bank may be expanded to beyond 65K. 
If expanded beyond 65K (1777778 ), an index register must be used to address those locations in excess of 65K. 

The expanded storage space allocated is maintained for the life of the program. 

The additional main storage space obtained through the MCORE$ request is cleared to zero unless the program collection 
specified the B option on the @MAP control statement (see 10.2.1). 

4.7.2. MAIN STORAGE CONTRACTION (LCORE$) 

Purpose: 

Releases unneeded main storage in the I bank or D bank. 

Format: 

L,U AO,highest-address-required 

ER LCORE$ 

Description: 

The address specified is assumed to exist in the I bank if the address is less than the first D bank address produced at 
collection time. Otherwise, the address is assumed to be a D bank address. 

The entire I bank or D bank can be released by specifying the first address of the respective bank. Before programming a 
release of the 0 bank, however, the @MAP listing for the program should be checked to ensure that necessary 
collector-produced tables are not contained in the D bank. 

Main storage is released to that spanned by the largest I and D bank of any current activity's storage limits. In making the 
storage limits check, one complete storage limits value is used for all ESI completion activities. When main storage is 
actually released, the segment load table is updated to show all segments that lay totally outside the program's area as not 
being in main storage. If the segment is in main storage at the time of the release and any part of the segments I and D bank is 
still within the program's area, the segment is left marked in main storage. If I/O is outstanding for this activity at the time of 
the LCORE$ request, request satisfaction is delayed until the I/O is completed. 

In a multiactivity program, all activities whose storage limits span the area to be released must perform an LCORE$ request 
before the program size can actually be reduced. 



4144 Rev. 2 
UP.NUM SER 

UNIVAC 1100 SE RI ES SYST EMS 4-17 
PAGE REVISION PAGE 

4.8. MISCELLANEOUS EXECUTIVE REQUESTS 

4.8.1. DYNAMIC REQUEST OF CONTROL STATEMENTS (CSF$) 

Purpose: 

Permits the user program to submit certain control statements for interpretation and processing during program execution 
rather than from the run stream. 

Format: 

L AO,(image-length,image-addr) 

ER CSF$ 

Parameters: 

image-length Length in words of the control statement image 

image-addr Address of the buffer that contains the image 

Description: 

The submitted image must be in the identical Fieldata format, including the character @ in S1 of the word 0, as it would have 
been if it had been submitted as a regular control statement in the input run stream. 

Termination of scan results from whichever occurs first: a comment of blank-period-blank is encountered, a blank following 
the last allowable parameter field is encountered, or the image-length in the H 1 of register AO has been exceeded. 

Maximum allowed value for image-length is 40 words; 14 is assumed if 0 is given. 

The control statements which may be processed by the CSF$ request are: 

@ADD 
@ASG 
@BRKPT 
@CAT 
@CKPAR 

@CKPT 
@FREE 
@LOG 
@MODE 
@QUAL 

@RSPAR 
@RSTRT 
@START 
@SYM 
@USE 

Control statement syntax and other errors generally result in error mode termination with contingency type 128 (see 4.9.4), 
error type 4, and error code as follows: 

Error Code Description 

Syntax error 

41 8 Image length greater than 40 

428 Control statement is not one that can be processed by the CSF$ request 

438 Invalid address given for the image buffer 

448 Too many @LOG control statement entries given for the program 

When certain control statements are submitted by the CSF$ request, register AO is returned containing status or error 
information. For the facility request statements (@ASG, @CAT, @FREE, @MODE, @QUAL, and @USE), bits set in register 

\, .. ' AO upon return from the CSF$ request indicate that either the request was rejected or that it was accepted with 
precautionary warnings (see 4.8.1 for interpretation of bit settings in AO). The meaning of the bits set in register AO upon 
return from processing the @BRKPT and @SYM symbiont control statements are described in section 3.6.4. The status codes 
returned in register AO for a @CKPT and @CKPAR CSF$ request are described in 17.4: on return from a @CKPT request, H1 
of register AO contains the checkpoint number. 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 4-18 
UP·NUMBER PAGE REVISION PAGE 

On return from a CSF$ @START request, register AO contains codes as follows: 

08 Request processed normally 

18 Request rejected due to improper run stream in file 

28 Request rejected due to file unobtainable 

38 Request rejected due to element obtainable 

48 Request rejected due to filename not specified 

If errors are encountered while processing an @ADD control statement submitted by the CSF$request,control is not returned 
following the CSF$ request. Rather, error mode termination is entered with contingency type 128 (see 4.9.4), error type 28 , 

and error codes as specified in 3.9.1. 

For CSF$ requests for processing @LOG, @RSPAR, and @RSTRT control statements, no status information is returned in 
register AO. . 

Example: 

The following example illustrates how an @ASG control statement (see 2.3.2.1.1) is submitted by an executive request to the 
CSF$ function. 

Assume the user wants to assign a temporary FASTRAND·formatted scratch file named FILEA and to reserve two granules. 
This can be coded as follows: 

LABEL ,\ OPE RAT ION :\ 
20 

OPERAND ,\ 
40 

COMMENTS 
50 

.... 1 ... 1._1 ~L,JJL_LL.L_L .. L AQ'L~i~J~_.L_J ...... L ... L.l--.L .. L .. , .... L_l.L .... L.l_l ... .l .... L_ .. Ll ..... L ... LJ ... 1 ...... .1 ... L .. _LJ. .. LL-L .. J .•. 

.... 1. ...... 1. .. lE1R ... L_L .. 1..1.. .... .1._L. C1FIS.$L .. L .. L.L.L .. L .... :. ..... 1.. .... .1, .• 1..1 ...... L ... L.J ..... L ..... L.LJ ..... 1.. .... 1-.1... .... 1 .... 1.. ..... 1.. ... .1 .•.. .1 ..... 1 .... 1.1_.L .... .1 ..... L . .1.I ...... .1.. 

..... L....L..J ........ L ... L_J_.L .. 

} ........ L ....... L._.l_.j ......... .! •......• L _, ...... L .... L_' .• _ .• L. ..... L .• k .... -' ........ L .... J ........ L .... L ..... ! ....... L ••. '-.... L ..... L ..... l •..• l. ..... .L ..... L •. _L. ..... L .... L._.1 ... ..J ....... L. .... L_ ......... L ..... .i. ... -L .... L ..... ' ...... J. .. _.' ........ L .... 1. _.1.. .. i. .... L ... L_.LJ ..... L .... L._L._L ..... L .... J ... __ L 

The blank·period·blank construction terminates the image scan. 

4.8.2. RETRIEVING @XOT CONTROL STATEMENT OPTIONS (OPT$) 

Purpose: 

Makes available options specified on the @XOT statement (see 2.3.3.2). 

Format: 

ER OPT$ 

Description: 

When control is returned, the specified option letters are set in register AO in master bit notation, that is, letter A sets bit 25; 
letter B sets bit 24; letter C sets bit 23; ... letter Z sets bit O. Bits 35-26 are always returned as zero. 



1 I 4-19 
PAGE REVISION. PAGE 

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 
UP·NUMBER 

4.8.3. PROGRAM CONTROL TABLE RETRIEVAL (PCT$) 

Purpose: 

Makes all or specified portions of the information stored in the program control table (PCT) available to the requesting 
program. 

Format: 

Two formats are available: 

To transfer a maximum of 1000s words starting at word zero of the main block: 

L AO,(word-count,buffer-addr) 

ER PCT$ 

To transfer all or part of the PCT starting at any PCT-relative address: 

L AO,(O,buffer-addr) 
L A 1 ,(n,relative-addr) 

ER PCT$ 

Parameters: 

buffer-addr Address within the program where the PCT is to be transferred. 

n Number of words to be transferred. 

relative-addr Address relative to the start of the PCT main block from which the transfer should occur. 

Description: 

For information concerning the contents and internal format of the PCT, refer to the latest version of the UNIVAC 1100 
Series Systems Memorandum. This ER must be used with caution in that UNIVAC reserves the right to change the content or 
format of the PCT without notice. 

A PCT's size is determined by program requirements with a normal maximum of nine main storage blocks (512 words each). 
The structure and addressing of the PCT is illustrated by the following examples. 

Assume an eight-block PCT: 

Rel-addr/770000s -l--r ___ --;-___ ~---.,-...J _ block-8 

Rel-addr 775000s - I I I 

block-4 
Rel-addr 7760008 -

block-3 
Rel-addr 777000s -

block-2 
Rel-addr Os 

main-PCT-block (1) 
Rel-addr 777 s 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 4-20 
PAGE REVISION PAGE 

L AO,(O,buffer) 
L A 1,(02000,0777000) 
ER peTS 

This call transfers block-2 and the main-PeT-block, in that order, to the address BUFFER. 

L AO,(O,buffer) 
L A1,(0500,0100) 
ER peTS 

Transfers 5008 words to BUFFER starting at relative address 1008 in the main-PCT-block. 

L AO,(O,buffer) 
L A 1,(0100,0777400) 
ER peTS 

Transfers 1008 words to BUFFER from relative address 4008 through 4778 of PCT-block-2. 

4.8.4. ALTERING PROCESSOR STATE REGISTER (PSR$) 

Purpose: 

Permits an activity to dynamically set and clear those bits within the processor state register (PSR) which establishes the 
following standard control modes: 

• quarter-word mode (bit 17) 

• double-precision underflow mode (bit 32) 

• floating-point compatibility mode (bit 35) 

Format: 

L AO,(parameter-word) 
ER PSR$ 

Description: 

Bit 0, 2, and 3 in the parameter word control the modification of PSR bits 17,32, and 35, respectively. When a control bit is 
0, 2, and 3, the associated bit in the PSR is set to the value of the corresponding bit in the parameter word. For example, if 
bit 0 in the parameter-word is set, the content of bit 17 of the parameter-word is placed in bit 17 of the PSR. 

Upon returning from the PSR$ request, register A 1 contains the program's former PSR contents. 

Examples: 

The following examples illustrate typical parameter words loaded into control register AO and their interpretations for a 
PSR$ request. 



'. ' 
'""~ •••• o· 

4144 Rev. 2 
UP-NUMBER 

Parameter Word 
(Octal) 

000000000000 

440000400015 

000000000015 

440000400010 

040000400011 

UNIVAC 1100 SERIES SYSTEMS 4-21 
PA GE RE VISION PA G E 

Description 

No modification of existing PSR; enables readout of PSR in control register A 1. 

Set bits 17, 32, and 35 of PSR (initiates quarter-word mode, double-precision underflow 
mode, and floating-point compatibility mode) 

Clears bits 17, 32, and 35 of PSR 

Sets bit 35 of PSR (initiates floating-point compatibility mode); all other modes remain 
the same (bits 17 and 32 are not interpreted when control bits 0 and 2 are not set) 

Clears bit 35 of PSR (floating-point compatibility mode); sets bit 17 of the PSR 
(quarter-word mode); other modes remain the same. 

4.8.5. SNAPSHOT DUMP (SNAP$) 

Purpose: 

Provides a snapshot dump printout of the contents of selected control registers and program storage as an aid for debugging. 

Format: 

S AO,pktaddr+2 

L,U AO,pktaddr 
ER SNAP$ 

Description: 

Pktaddr is the address of a packet whose format is: 

35343332 17 

Word 0 snapshot-id 

XA R word-count 

2 former-AO 

where: 

snapshot-id Six character Fieldata name used to identify the dump. 

X,A,R Used to designate registers to be,dumped as follows: 

• If bit 35= 1, dump all X registers. 

• If bit 34= 1, dump all A registers. 

• If bit 33=1, dump all R registers. 

If all three bits are equal to 0, no registers are dumped. 

o 

start-addr 



4144 Rev. 2 
U P.NUMBER 

word-count 

start-addr 

former contents 
of-AD 

UNIVAC 1100 SERIES SYSTEMS 4-22 
PA GE RE VISION PA GE 

Number of words of main storage to be dumped. 

Starting program address of the main storage area to be dumped. 

Save area for register AD. This is needed to capture the entire environment. Register 
AD is restored using this value before returning control to the program. 

Be careful when using the SNAPS request in a multi-activity program because packet usage is not reentrant. 

4.8.6. MASTER CONFIGURATION TABLE RETRIEVAL (MCT$) 

Purpose: 

To retrieve information from the master configuration table (MCT) or to read/update the program entry area in the MCT. 
This is a special application ER which is useful only to certain specialized programs. As a result, only those programs with a 
privileged account number are permitted to execute MCT$ requests. The contents of the MCT are subject to change as new 
executive requirements are defined. The current contents and format of the MCT are described in the 1100 Series Systems 
Memorandum. 

Format: 

L AD,packet 

ER MCT$ 

Description: 

The contents (packet) of register AD when executing a MCT$ request are: 

S1 S2 S3 H2 

status type buffer-addr 

'" . 



\. 

4144 Rev. 2 
UP-NUMBER 

where: 

status 

type 

buffer-addr 

UNIVAC 1100 SERIES SYSTEMS 4-23 
PAGE REVISION PAGE 

Indicates the status of the request. The status codes are: 

08 Normal 

18 Invalid buffer address 

28 Invalid'type specified 

Specifies the type of operation to be performed. The type codes are: 

0
8 

Read contents of the MCT (excluding program entry) into the 
specified buffer. 

18 Read contents of the program entry into the specified buffer. The 
format and content of the entry is program dependent. 

28 Write contents of the specified buffer into the program entry. 

Specifies starting address of a buffer. Buffer usage is determined by the entry in the type 
field. 

The number of words transferred on a MCT$ request is determined by either the length of the MCT or the length of the 
program entry maintained in the MCT; On a read request, the size of the specified buffer must be equal to or larger than that 
specified in the MCT. For a write request, only the number of words specified in the program entry length field are trans
ferred to the program entry. Botththe program entry and the MCT length are defined at system generation. 

The program entry is an optional entry in the MCT used for recording information related to a programs application. The 
information recorded in this entry and its format is the responsibility of the user since only user-supplied information is 
recorded in the entry. 

4.9. CONTINGENCIES 

4.9.1. INTRODUCTION 

A contingency is an abnormal condition, often associated with an interrupt, which may occur during execution of a program. 
Typical examples are illegal operation, unsolicited console input, and error mode. 

The executive allows a program to preregister routines to process contingencies, and transfers control to the appropriate 
routine should any occur. In the absence of such registration, the executive provides a system standard action for each 
contingency type. 

It should be clearly understood that in almost every case, a contingency action involves diversion of the execution path of an 
existing activity, rather than creation of a new activity to handle the contingency. Also, the diverted activity is normally the 
one to which the contingency specifically pertains. 

4.9.2. CONTINGENCY TYPES AND STANDARD ACTION 

Contingencies are classified into ten different contingency types. These, with their associated standard action, are listed in 
Table 4-2. Contingency types 10 and 12 may be further broken down into error types, (see Table 4-3). Finally, in the case 
of error mode (see 4.1.4), error types are broken down into many error codes; these are given in Appendix C. 

The mnemonics listed in Tables 4-2 and 4-3 are standard abbreviations that appear in various system diagnostic messages; 
they may not be program referenced. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 4-24 
PAGE REVISION PAGE 

Contingency 
Type (Octal) Mnemonic Description Standard Action 

1 

2 

3 

4 

5 

6 

7 

10 

11 

12 

Notes: 
(1 ) 

(2) 

(3) 

'OPR '"egal operation (machine instruction Error termination of offending activity. 
undefined) 

IGDM Guard mode fault Error termination of offending activity. 

IFOF Floating-point overflow Clear A,A+1 registers to zero except for 
the following instructions: 

IFUF Floating-point underflow FCL: Clear A only 
DFP: Clear A+1, A+2 

IDOF Divide fault (divide overflow) LCF,DSF: Clear A+1 only 

IRST Restart See checkpoint/restart (Section 17) 

IABT ABORT$ (also EABT$) Program and run termination (see 
4.3.2.3 and 4.3.2.4) 

liNT Console interrupt (see also Table 4-3) Onsite keyin: II NOT ACTIVE operator 
message 

Remote BREAK key: unconditional program 
termination (see 4.6.2) 

ITS Test And Set (TS) instruction interrupt Control returned to TS instruction (see 
(real time only) Section 16) 

IERR$ Error mode (see also Table 4-3) Error termination of offending activity 

Contingency types 1 through 5 are hardware detected. They are discussed in UNIVAC 1108 Multi-Processor 
System Processor and Storage Programmers Reference, UP-4053 (current version). Test and Set (TS) 
instruction operation is also hardware oriented (see 16.4). 

Error termination is discussed in 4.9.2.1. 

Arithmetic fault (types 3,4,5) A-register clearing on standard action is done by examining the a field of .the 
offending instruction. No clearing occurs if an Execute Remote (EX) instruction was used to execute the 
offending arithmetic instruction. 

Table 4-2. Contingency Types 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 4-25 
PAGE REVISION PAGE 

Error Name 
Error Type Mnemonic 

(Octal) 

Contingency Type 10. 

II Onsite Keyin 1 II 
Remote BREAK Key 2 RBK 

Contingency Type 12. 

I/O Call Error 1 I/O 
Symbiont Call Error 2 SYMB 
ERR$ Call (ER ERR$) 3 ERR$ 
Invalid or Bad ER 4 ER 
Console Call Error 5 CONS 
Communications Error 6 COM2 
Communications Error 7 COMM 
Reentrant Processor Error 10 REP 

Table 4-3. Error Types 

4.9.2.1. ERROR TERMINATION CONSIDERATIONS 

When an activity error terminates, it does not necessarily mean immediate termination of all activities of a multi-activity 
program, although in practice a program is usually unable to proceed much further when it loses an activity in an error 
situation. Of course, any activity termination in a single activity program does mean immediate program termination. 

Activity error terminations produce a diagnostic message in the run's print file defining the error, the point at which it 
occurred, and identification of the activity (name or id). In batch mode, a complete control register dump is provided. 

When one or more activities of a program error terminate, bits arc set in the run condition word (see 3.9.4) indicating this 
fact, and the run is marked in error. When the program ultimately terminates, further run stream processing is normally 
limited to processing a post-mortem dump, provided a @PMD control statement (see 11.2.1) is the next (nontransparent) 
control statement. A @PMD,E control statement (dump only if an error occurs) is honored in this case (but not after a 
normal program termination). The run is terminated after PMD processing is completed, unless a @SETC,I control statement 
(continue in spite of errors - see 3.9.4.1) is in effect. 

4.9.3. CONTINGENCY REGISTRATION (lALL$) 

Purpose: 

To register a routine to handle one or more contingency types, either for the entire program or for just the requesting 
activity. 

Format: 

L AO,(contingency-parameter) 
ER IALL$ 

Description: 

The format of contingency-parameter is: 

T1 

selection-mask 

S3 

contingency
application 

H2 

contingency-routine-addr 



4144 Rev. 2 
UP_NUMBER 

selection-mask 

contingency
application 

contingency
routine-addr 

UNIVAC 1100 SERIES SYSTEMS 4-26 
PA GE REVISION PAGE 

A bit mask that indicates which contingencies are to be processed. The bit settings are: 

Contingency 
Type (Octal) 

2 

3 

4 

5 

6 

7 

10 

11 

12 

Bit 
Set 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

Contingency 

Illegal Operation 

Guard Mode 

Floating-Point Overflow 

Floating-Point Underflow 

Divide Fault 

Restart 

Abort 

Console Keyin 

Test and Set (Real Time Only) 

Error Mode 

The selection-mask field must be set to 0 for ESI contingencies or when contingencies are 
being cancelled. A zero mask should not be used in any other instance. 

Specifies the scope of the operation and may take one of the following values: 

08 Program. The contingency routine being registered is to apply to all 
activities of the program (except ESI contingencies). 

18 Activity. The contingency routine is to apply only to contingencies 
pertaining to the requesting activity. In a particular contingency situa
tion, if an applicable routine (including selection mask setting) is 
registered for both the offending activity and the program, then the 
activity routine is selected. Otherwise, the program contingency routine 
is selected, or if it is also not applicable, standard action occurs. 

28 ESt. The contingency routine is to apply to all contingencies during 
ESI completion processing for the program. ESI contingencies are 
handled somewhat differently from nonESI contingencies (see 4.9.5). 

Specifies the address of the first word of the contingency routine. A zero address specifies 
no registration for the application specified in the contingency-application field. 

A program may have as many different contingency routines registered at one time as there are activities, plus a program 
contingency routine, and plus an ESI contingency routine. 

The same address may be registered as the contingency routine address for different applications or activities (the difference 
being the selection-mask settings). This does not include ESI contingencies. 

A contingency registration completely cancels any previous registration for the same application (just for the same activity 
for activity applications). 

Restart and console interrupt contingencies (types 6 and 10) are by nature not associated with any particular activity and " 
must be registered as program contingencies (application 0). The executive may divert any activity to process these 
contingencies, if registered. To avoid an arbitrary activity diversion to process the II/B REAK keyins (type 10), it may be 
preferable to use the 11$ request (see 4.6.2). 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 4-27 
PAGE REVISION PAGE 

The operator keyins X and E cause actions similar to the ABORT$ and EABT$ requests (see 4.3.2.3 and 4.3.2.4, 
respectively). No contingency registration, however, is applicable to these keyins. 

4.9.4. CONTINGENCY PROCESSING (NON·ESI) 

4.9.4.1. THE CONTINGENCY ROUTINE 

The first two words of the contingency routine are used as a contingency packet, in which the executive stores status 
information concerning the contingency prior to giving the offending acticity control to process the contingency routine that 
starts at the third word of the packet. The packet format is: 

Word 0 

2 

I 

n 

where: 

error-type 

error-code 

contingency-type 

error-addr 

ER-packet
addr 

S1 

error· type 

S2 S3 H2 

error-code contingency-type error-addr 

not used E R-packet-addr 

(first instruction of the contingency routine) 

(last instruction of the contingency routine) 

See Table 4-3. 

See Append ix C 

See Table 4-2. 

The address of the offending instruction, or in the case of asynchronous contingencies 
(see 4.9.4.3), the address of the last instruction prior to diverting to the contingency 
routine. Thus, if it is desired to return to the original execution path after the 
contingency is processed, the error-addr must be increased by one for use as a reentry 
address. The error address may not be meaningful for guard mode errors because the 
hardware does not guarantee a valid interrupt address. 

The address of the ER packet associated with the offending instruction. Applicable only 
for I/O and console error types (see Table 4-3). 

A contingency routine is entered with all control registers for the offending activity loaded as they were when the 
contingency occurred. Preservation of these registers, if they are needed, is the responsibility of the contingency routine. 

Contingencies are processed serially for the entire program. While an activity is executing a contingency routine, it is 
considered to be in the contingency mode, and no other contingency processing is allowed to occur. For this reason, 
contingency processing should be kept as short as possible. 

When the activity has completed contingency processing, it must notify the executive so that other contingencies may be 
processed. This is accomplished by executing any ER (CEND$ request - see 4.9.4.2 - is provided especially for this 
purpose). Once contingency mode is terminated, the contingency packet may be overwritten as the result of another 
contingency. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 4-28 
PAGE REVISION PAGE 

4.9.4.2. CONTINGENCY MODE TERMINATION (CEND$) 

Purpose: 

To notify the executive that the requesting activity has completed contingency processing. 

Format: 

ER CEND$ 

Description: 

Although any ER can terminate contingency mode, the CEND$ request is designed for that specific purpose, and is the most 
efficient method unless the service provided by another ER is needed. 

4.9.4.3. ADDITIONAL CONTINGENCY CONSIDERATIONS 

• Nested Contingencies 

A nested contingency occurs when an activity encounters a synchronous contingency from within a contingnecy 
handler. (A synchronous contingency is one that occurs at the same point as its cause.) All nested contingencies are 
given standard action for the particular contingency type, regardless of registration. If the standard action is 
termination, the activity is removed from contingency mode, terminated, and some other contingency (if any) is 
processed. Otherwise, the activity is left in contingency mode. E R R$ is considered a nested contingency, and standard 
error action occurs. ABORT$ and EABT$ cause standard action but if an ABORT contingency routine is registered, it 
will get control in the standard manner. 

• Multiple (Non-nested) Contingencies 

As stated previously (see 4.9.4.1) contingencies are processed serially within a program. If multiple contingencies occur, 
one is processed and the rest are queued. The queue is ordered by the switching priority of the offending activity, thus 
assuring real time activities proper treatment. When an activity terminates contingency mode, the next contingency on 
the queue is processed. 

It is possible for multiple (non-nested) contingencies to occur for a single activity, due to asynchronous contingencies. 
(An asynchronous contingency is one which occurs at a point unrelated to its cause, such as a console interrupt or 
restart, or an error relating to an asynchronous ER-see 4.1.3 and 4.1.4.) In such cases, each contingency ,is queued 
individually and the activity is subject to mUltiple successive diversions to process each contingency in serial. 

Determination of the applicable routine (if any) is made when a contingency is actually processed, and not at time of 
occurrence (that is, while a contingency is queued, an IALL$ request (see 4.9.3.1) may have been executed and 
changed the registration). 

When an activity terminates for any reason, any contingencies queued for it are discarded. 

• Test-And-Set (TS) contingency processing is available only to real time activities. This -type of contingency is 
particularly prone to interlock situations, and the programmer should use caution to ensure against such problems. 
Note that a TS conflict within a contingency routine is given standard action, while a TS conflict outside of a 
contingency routine, when the program is in contingency mode, results in stalling the conflicting activity. See 16.4 for 
more details on real time TS processing. 

• A checkpoint is not allowed while a program is in contingency mode if a restart contingency is registered. 

• For ABORT$ or EABT$ requests (see 4.3.2.3 and 4.3.2.4, respectively), the contingency is not honored until all 
activities of the program have terminated. The user then regains control at the contingency routine with a new activity. 



4144 Rev. 2 UNIVAC 1100 SE RIES SYSTEMS 4-29 
UP-NUMB~R PAGE REVISION PAGE 

4.9.5. ESI CONTINGENCIES 

The communications handler provides the user with the capability of processing various contingency conditions that might 
occur while executing an ESI activity. To establish an ESI contingency, the user real time program must register the 
contingency via the IALL$ request (see 4.9.3). All contingency types that can occur within an ESI activity are processed by 
the specified ESI contingency routine. 

The format of the ESI contingency packet is: 

S1 S2 S3 H2 

error type 
error-code contingency-type error-addr (7

8
) Word 0 

TS·indicator not used E R-packet-addr 

2 (first instruction of the contingency routine) 

n (last instruction of the contingency routine) 

Word 0: 

error-type Error-type is 78 for communications 

error-code The error-codes are: 

608 Indicates contingency type 1 through 5 

618 ESI ACT$ or ADACT$ request error 

628 ESI CADD$ or ADACT$ request error 

638 Invalid E R request 

648 ESI time-out 

contingency-type The contingency-type codes are: 

18 Invalid operation 

28 Guard mode 

38 Floating-point overflow 

48 Floating-point underflow 

58 Divide fault 

128 Error mode (see error-code). Applicable only to 618 -638 

I 



4144 Rev. 2 
UP-NUMBER 

error-addr 

Word 1: 

TS-indicator 

ER-packet-addr 

UN I V A C 11 00 S E R I E S S Y S T EMS 4-30 
PAGE REVISION PAGE 

Same as for nonESI (see 4.9.4.1) except that for error mode contingencies (type 12) 
operation is truly reentrant (no incrementation is needed). 

Set equal to 1 by the executive prior to giving control to the contingency routine. 

The address of the ER packet associated with the offending instruction. Applicable only 
to contingency type 12 (see Tables 4-2 and 4-3). 

As for nonESI contingencies, ESI contingencies are initiated serially. Prior to terminating contingency mode, however, the 
routine may enable contingency processing on another CPU by clearing the TS indicator (S1, word 1) in the contingency 
packet. This indicator serves to protect the packet contents from being overwritten until the contingency routine has had a 
chance to retrieve the information pertinent to the contingency. Termination of the ESI contingency mode also enables other 
contingency processing. 

Should another contingency occur while in contingency mode, the ESI activity is terminated and the communication line 
associated with that activity is deactivated for I/O operations. The following message is issued to the console and the master 
RUN-LOG as an error message to indicate the terminating condition: 

RUN 10 Sxxx/Uxxx ESI TERMINATION (error) 

The Sand U fields of the message indicated the subsystem and unit numbers respectively and the error field gives the error 
code. The first reference to the deactivated terminal by the real time program causes a nonESI contingency for the 
referencing activity (error type 78, code 108). 

Terminate ESI contingency mode normally, only those executive requests specified for normal ESI activities may be used: 
EXIT$, ACT$, CAOO$, and AOACT$. Any reference other than those indicated above result in a contingency within a 
contingency, causing terminal deactivation as described in the preceding paragraphs. 

ESI contingencies are independent of non ESI contingencies. A program may process ESI and non ESI contingenies 
concurrently. 



4144 Rev. 2 
UP.NUMBER 

U N I VA C 11 00 S E R I E S S Y S T EMS 5-1 
PAGE REVISION PAGE 

5. SYMBIONT INTERFACE REQUESTS 

5.1. INTRODUCTION 

The executive system contains a set of routines which provide an interface between the user and any supported unit record 
device. This set of routines is called the symbiont complex. These routines can be divided into two logical groups: 

c Symbionts (also called device routines) 

C Symbiont interface routines 

5.1.1. SYMBIONTS 

Symbionts (device routines) are available for all standard equipment. Supported equipment includes such onsite devices as 
high speed card readers, punches, printers, UN IVAC 9000 Series Systems; such batch remote site terminals as UN IVAC 9000 
Series Systems and DCT-2000; and such demand remote terminals as teletypewriter models 33 and 35, Friden, UN ISCOPE 
100 and 300, DCT-500, and DCT·1000. For all batch devices, data is buffered in SDF format using mass storage to provide an 
effective linkage between the high speed of the CPU and the low speed unit record devices. Due to the conversational nature 
of demand processing, input data from demand terminals is not buffered to mass storage except for paper tape input. 

During systems generation, one or more output devices are associated with each of the input devices. This logical linking of 
output to input devices is called device association throughout this section. The result of this association is that output files 
created as the result of an execution are normally outputted on only one of the devices associated with the input device 
which initiated the run stream. In cases where an output device is unavailable, or busy, or where a specific output device is 
desired, the association can be overriden for a specific file by means of the @SYM control statement. 

Input to the system is separated by the @RUN control statement. As each @RUN control statement is encountered, a run file 
is created and information is extracted by the coarse scheduler for run scheduling. The input symbionts also interpret the 
@ELT,D, @DATA, @END, @FILE, and @ENDF control statements to determine if a @RUN control statement is the 
beginning of another input run stream or part of a file or element in the current run stream. The @COL and @ENDCL control 
statements are interpreted to determine if the mode of the card reader should be changed. 

All files created or processed by the symbiont complex are in SDF format (see 24.2.3) and can be directly processed by either 
the input interface routines or by the output symbionts. 

Functions which control the format of the output are inserted into the symbiont output file by means of an executive 
request. These functions vary according to the output device to which the file is being directed. As the control parameters are 
submitted, they are placed into the appropriate output file, and interpreted when the file is being processed by a symbiont 
(see 5.4). 

The data in input files created from ASCII devices is in ASCII and the data in input files created from Fieldata devices is in 
Fieldata. The user may request data from these files in either ASCII or Fieldata (see 5.2) and the necessary conversion is 
done. Output files may be created in either ASCII or Fieldata (see 5.3). Data which is in ASCII is converted to Fieldata for 
Fieldata devices and requires no translation for ASCII devices. The converse holds true for data which is in Fieldata. This 
manipulation of data requires no special action by the user other than to make the proper executive request as described in 
this section. See Appendix D for translation tables. 



4144 Rev. 2 
UP-NUMBE R 

UN IVAC 11 00 SE RI ES SYST EMS 5-2 
PA GE RE VISION PA GE 

5.1.2. SYMBIONT/USER INTERFACE ROUTINES 

The symbiont user interface routines provide for data transfers in either Fieldata or ASCII. A complete set of executive 
requests is provided for each mode. The data transfered is always Fieldata when the Fieldata requests are used and is always 
ASCII when the ASCII requests are used. The user interface routines are avilable through the following executive requests. 

Fieldata 
Executive Requests 

READ$ 
PRINT$ 
PUNCH$ 
READA$ 
PRNTA$ 
PNCHA$ 
PRTCN$ 
PCHCN$ 
PRTCA$ 
PCHCA$ 
TREAD$ 
CLlST$ 

ASCII 
Executive Requests 

AREAD$ 
APRINT$ 
APUNCH$ 
AREADA$ 
APRNTA$ 
APNCHA$ 
APRTCN$ 
APCHCN$ 
APRTCA$ 
APCHCA$ 

When the letter A appears as the last alphabetic character, the request pertains to an alternate file (defined in succeeding 
paragraphs). The letter A appearing as the first character indicates an ASCII operation. ASCII and Fieldata executive requests 
may be interspersed in any order. For each executive request, the user specifies the storage area in his program for the data 
transfer. In addition, when using executive requests for alternate files, the user must specifiy the filename in Fieldata. 

The system automatically initiates three symbiont files, allowing three normal operations as follows: 

Run files (READ$ file) conta~ns input images accessed by means of READ$ or AREAD$ 

Print file (PRINT$ file) contains output images produced by PRINT$ or APRINT$ 

Punch file (PUNCH$ file) contains output images produced by PUNCH$ or APUNCH$ 

Each of the three basic interface functions (read, print, and punch) is capable of multiple file operation. The user may define 
files other than the three automatically initialized by the system. The user may assign a file and direct the normal print or 
punch output to this file by means of the @BRKPT control statement (see 3.6.2). The user may assign a file and direct only 
specific print or punch output to this file by means of the alternate executive output requests (such as, the PRNTA$ request). 
The user may also assign a previously created file of input images and read these images in the normal mode by prior use of 
the @ADD control statement (see 3.9.1) or directly input from the file by means of this alternate input executive requests 
(such as the READA$ request). These user-defined and assigned files are called alternate files. 

The @ADD control statement is used to direct the READ$ or AREAD$ requests to obtain images from the file indicated by 
the @ADD control statement instead of images from the system initiated run file. Subsequent READ$ or AREAD$ requests 
obtain images from the @ADD file until it is exhausted, at which time images again are obtained from the system initiated run 
file. Nesting of @ADD control statements is permitted. 

The @BRKPT control statement is used to direct PRINT$/APRINT$ or PUNCH$/APUNCH$ requests to place images in a file 
defined by the @BRKPT control statement instead of the system initiated print or punch files. Images continue to be placed 
in the user specified files until another @BRKPT control statement is encountered. During run termination, the normal print 
image stream is always returned to the system-initiated print file. The @BRKPT control statement also may be used to close 
user-defined alternate files. 

The output control requests, such as PRTCN$, provide specific control information describing output formatting to the 
device routines. The output control requests also provide a means of advising the device operator of any special action 
required. 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 5-3 

UP-NUMBER 
PA GE REVISION PAGE 

A more detailed discussion of the total capabilities of the symbiont interface routines is given in the paragraphs that follow. 

5.2. OBTAINING INPUT IMAGES 

5.2.1. READING FIELDATA IMAGES (READ$) 

Purpose: 

Obtains an image in Fieldata from the run stream located in the run file. 

Format: 

L AO,(EOF-return-addr,buffer-addr) 
ER READ$ 

These instructions can be generated by the procedure call: 

R$EAD (EOF-return-addr,buffer-addr) 

Parameters: 

EO F-retu rn-addr Address to which control is transferred when a control statement is encountered. 

buffer-addr Address of the input buffer into which the Fieldata image is placed. 

Description: 

If the input image is in quarter-word ASCII, READ$ converts it to Fieldata. 

Normal input image length may be up to 14 words but images from an @ADD or @START file may be any length. 

Input images must be noncontrol statement images except for the CLlST$ control statements (see 5.5) or processor control 
statements (in INFOR format - see 9.6). 

After the image is transferred to the input buffer, control is returned to the address following the R EAD$ request. 

Upon return from an @EOF control statement (see 10.3.2), bits 5-0 of register AO contain the sentinel character that 
appears in column 6 of the @EOF control statement and bit 35 is not set. 

If the EOF return is caused by an @ADD,E control statement (see 3.9.1), H2 of register AO is set to zero. 

Upon normal return from a READ$ request, H2 of register AO contains the number of words transferred. The meaning of any 
bits set in H 1 of register AO is as described in Table 5-1. 

If the run is .being made in the demand mode, the program is normally placed in a wait state until the READ$ request is 
satisfied from the demand term inal (see Section 12). 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SE RI ES SYST EMS 5-4 
PAGE REVISION PAGE 

Bit Set Decription 

35 Abnormal return taken because a control statement cannot be passed. Any further attempt to do 
R EAD$ request or a TR EAD$ request within this program causes an error termination (unless the 
request is preceded by a CSF$ request with a @ADD statement). 

34 Currently reading from a file or an element introduced by an @ADD control statement. 

33 Set on an EOF return when at the end of an @ADD file or element and an E option was used on 
the @ADD control statement. 

31 Image is in INFOR format (see 9.6). 

30 Used if bit 31 is set; indicates that more I N FOR - formatted words are to be read (see 9.6). 

23-18 Used if a statement listed by a CLlST$ request (see 5.5) was encountered; contains the CLlST$ 
index value. 

Table 5-1. Bit Settings In Control Register AD For A READ$ Request 

5.2.2. READING ASCII IMAGES (AREAD$) 

Purpose: 

Obtains an image in quarter-word ASCII from the run stream located in the run file. 

Format: 

L AO, (EOF -return-addr ,buffer-addr) 
ER AREAD$ 

These instructions can be generated by the procedure call: 

A$READ (EOF-return-addr,buffer-addr) 

Parameters: 

The interpretation of the parameters is identical to that for the R EAD$ request (see 5.2.1). 

Oeser i pti on: 

AREAD$ operation is identical to READ$ (see 5.2.1) except that input image length may be up to 20 words (@ADD and 
@START file images may be any length). 

5.2.3. FIELDATA IMAGES - ALTERNATE FILE (READA$) 

Purpose: 

Obtains an image in Fieldata from a user-specified file. 

Format: 

L,U 
ER 

AO,pktaddr 
READA$ 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 5-5 
UP-NUMBER PAGE REVISION PAGE 

These two instructions may be generated by the procedure call: 

R$EAOA pktaddr 

Description: 

Pktaddr is the address of a three-word packet whose format is: 

H1 H2 
~------------------------------------~------------------------------------~ 

Word o EOF-return-addr buffer-addr 

12-character-Fieldata-filename 

2 

Word 0 

EO F-return-addr The address to which control is returned when no more images exist in the file. 

buffer-addr The address of the input buffer into which the Fieldata image is placed. 

If the input image is in quarter-word ASCII, the R EAOA$ request converts it to Fieldata. 

Upon normal return from a REAOA$ request, register AO contains the number of words transferred. Images may be any 
length and the caller must be careful if the image length is longer than anticipated. Normal image length is 14 words. 

After the image is transferred to the input buffer, control is returned to the address following the R EAOA$ request. 

The fi Ie named in the packet must have been assigned prior to the first R EAOA$ request and must be in SO F format. 

When the file is exhausted, no image is available to transfer, and the caller regains control at the EOF return address. 

See 3.6.2 for the use of the @BRKPT control statement with read alternate files. 

5.2.4. ASCII IMAGE - FROM AN ALTERNATE FILE (AREAOA$) 

Purpose: 

Obtains an image in quarter-word ASCII from a user-specified fi Ie. 

Format: 

A,U AO,pktaddr 
ER AREAOA$ 

These two instructions may be generated by the procedure call: 

A$R EAOA pktaddr 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 5-6 
UP.NUMBER PAGE REVISION PAGE 

Description: 

The interpretation of the parameters is identical to that for the R EADA$ request (see 5.2.3). 

The AREADA$ operation is identical to READA$ request (see 5.2.3) except that the normal image length may be up to 20 
words. 

5.2.5. FIELDATA IMAGES - CONVERSATIONAL MODE (TREAD$) 

Purpose: 

Displays the Fieldata message supplied and obtains in Fieldata the response. This request requires less overhead than an 
individual PRINT$ request followed by a READ$ request and should be used for demand processing. 

Format: 

L,U AO,pktaddr 
ER TREAD$ 

Description: 

Pktaddr is the address of a two-word packet whose format is: 

Word o 

Word 0 

line-spacing 

image-length 

output-buffer-addr 

Word 1 

EOF-return-addr 

input-buffer-addr 

T1 S3 H2 

line-spacing image-length output-buffer-addr 

EOF-return-addr input-buffer-addr 

The number of lines to space before displaying the message. No spacing is performed after 
displaying the message. 

The length in words of the message. 

The address of the output buffer from which the Fieldata message is obtained. 

See R EAD$ request (5.2.1). 

The address of the input buffer into which the Fieldata image is placed. 

The program is normally placed in a wait state until both the output and the input operations are accomplished at the 
demand terminal. During the wait period, the program is a prime candidate to be swapped to auxiliary storage. 

When images that are obtained from a file introduced by an @ADD control statement, neither the output message nor the 
images obtained are displayed. 

Normal return is identical to that for the R EAD$ request (see 5.2.1). 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 5-7 
PAGE REVISION PAGE 

5.3. TRANSFERRING OUTPUT IMAGES 

5.3.1. PRINTING FIELDATA IMAGES (PRINT$) 

Purpose: 

Places a Fieldata image into the system defined print file. 

Format: 

L AO,(PF line-spacing,nbr-of-words,image-addr) 
ER PRINT$ 

These two instructions may be generated by the procedure call: 

P$R I NT (PF line-spacing,nbr-of-words,image-addr) 

Parameters: 

PF An assembler FORM directive defined as PF FORM 12,6, 18. 

line-spacing Number of lines to space before printing this image. 

nbr-of-words Number of data words in this image. 

image-addr Address where the Fieldata image is obtained. 

Description: 

The allowable values for line spacing are 0
8 

to 3777
8

, If the value of line spacing is greater than the number of lines 
remaining on the present page, the image is printed on the first printable line on the next page. If the value in line spacing is 
-0 (7777

8
) the image is always printed on the first printable line of the next page. The first printable line on a page is 

defined by means of the print control margin function (see 5.4.1). 

The number of words in the image is limited only by the number of characters that can be printed on the device that prints 
the file. For example, if the file is to be printed on a 132 character/line high speed printer, the maximum value for the 
nbr-of-words parameter is 221 O' 

The control statement @SYM PRINT$ can be used to direct the current system-defined print file to a device other than the 
device indicated by device association. The queueing of the print file is held until it is closed by @BRKPT control statement 
or the run 'is closed. 

The @BRKPT control statement is used to close and queue for printing all system defined print files and the @SYM control 
statement is not necessary if the user wants the file to go to the devices specified by device association. 

In demand mode, the program is normally placed in a wait state until the output is accomplished. 

E?3.2. PRINTING ASCII IMAGES (APRINT$) 

Purpose: 

Places a quarter-word ASCII image into the system-defined print file. 

Format: 

L AO,(PF line-spacing,nbr-of-words,image-address) 
ER APRINT$ 



4144 Rev. 2 
UP-NUMBER 

UN IVAC 1100 SE RI ES SYSTEMS 5-8 
PAGE REVISION PAGE 

These two instructions may be generated by the procedure call: 

A$PR I NT (PF line-spacing,nbr-of-words,image-address) 

Parameters: 

The parameters for the APR I NT$ request are identical to those for the PR I NT$ request (see 5.3.1). 

Description: 

All formats and limitations are the same as for the PR I NT$ request (see 5.3.1) except a standard 132-character/line printer 
prints an image of 33'0 words. 

5.3.3. FIELDATA IMAGES - ALTERNATE PRINT FILE (PRNTA$) 

Purpose: 

Places a Fieldata print image into a user-defined print file. 

Format: 

L,U AO,pktaddr 
ER PRNTA$ 

These two instructions may be generated by the procedure call: 

P$RNTA pktaddr 

Description: 

Pktaddr is the address of a three-word packet whose format is: 

T1 S3 H2 

Word o line-spacing word·count buffer-addr 

12-character-F ieldata-filename 

2 

where: 

The meaning of the line-spacing, 'Word-count,. and buffer-addr parameters are identical to those for the PR I NT$ request (see 
5.3.1) and the restrictions that apply to PR I NT$ also apply to PRNTA$. 

Descri ption: 

If an alternate file has been assigned prior to the first executive request for the file, the executive does not queue the file for 
output. If the file has not been assigned to the run, the executive assigns the file, and when the file is closed (@BRKPT or 
@FIN control statement) the file is automatically queued to the output device determined by device association. If the 
alternate output file was assigned by the user, the file must be closed with a @BRKPT control statement (see 3.6.2) and 
queued for output with a @SYM control statement (see 3.6.3) before the run terminates for the file to be properly outputted. 
All files must be catalogued before they can be referenced by the @SYM control statement. 



4144 Rev. 2 
U P.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 

5.3.4. ASCII IMAGES - ALTERNATE PRINT FILE (APRNTA$) 

Purpose: 

Places a quarter-word ASCII image into a user-defined print file. 

Format: 

L,U AO,pktaddr 
ER APRNTA$ 

These two instructions may be generated by the procedure call: 

A$PRNTA pktaddr 

Description: 

The interpretation of the parameters is identical to that for the PRNTA$ request (see 5.3.3). 

The APRNTA$ operation is idential to PRNTA$ (see 5.3.3) and the filename must be in Fieldata. 

5.3.5. PUNCHING FIELDATA IMAGES (PUNCH$) 

Purpose: 

Places a Fieldata image into the system defined punch file. 

Format: 

L AO,(nbr-of-words,image-addr) 
ER PUNCH$ 

These two instructions may be generated by the procedure call: 

P$UNCH (nbr-of-words,image-addr) 

Parameters: 

nbr-of-words Number of words of data in this image. 

image-addr Address of the buffer where the image is obtained. 

Description: 

I 5-9 
PAGE REVISION PAGE 

The number of words in the image must not exceed 63
10 

and is also limited by the number of characters that can be punched 
on the device. If the image is to be punched in SO-column Hollerith code, the maximum image length is 14

10 
but shorter 

images may be specified and are blank-filled before punching. If the image is 14
10 

words long, the last four characters must 
be blanks. 

If the images are to be punched in column binary (see 5.4.5), an image length of 27
10 

must be used, and any column that is 
not required for data must be zero filled. 

The control statement @SYM PUNCH$ can be used to direct the current system defined punch file to a device other than the 
device indicated by device association. The queueing of the punch file is held until it is closed by the @BRKPT control 
statement or the run is closed. 

The @BRKPT control statement is used to close and queue for punching all system-defined punch files and the @SYM control 
statement is not necessary if the user wants the files to go to the device specified by device association. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 5-10 
PAGE REVISION PAGE 

5.3.6. PUNCHING ASCII IMAGES (APUNCH$) 

Purpose: 

Place quarter-word ASCII images into the system-defined punch file. 

Format: 

L AO,(nbr-of-words,image-addr) 
ER APUNCH$ 

These two instructions may be generated by the procedure ca": 

A$PUNCH (nbr-of-words,image-addr) 

Parameters: 

The parameters for the APUNCH$ request have the same meaning as the parameters for the PUNCH$ request (see 5.3.5). 

Description: 

The number of words in the image must not exceed 63, 0 and is also limited by the number of characters that can be punched 
on the device. If the image is to be punched in 80-column Ho"erith code, the maximum image length is 20, o' If the image is 
to be punched in column binary (see 5.4.5) an image length of 27'0 must be used, and any column not punched must be zero 
filled. 

If the user is punching column binary, there is no difference between the PUNCH$ and APUNCH$ requests. 

5.3.7. FIELDATA IMAGES - ALTERNATE PUNCH FILE (PNCHA$) 

Purpose: 

Place a Fieldata image into a user-defined punch file. 

Format: 

L,U AO,pktaddr 
ER PNCHA$ 

These two instructions can be generated with the procedure ca": 

P$NCHA pktaddr 

Description: 

Pktaddr is the address of a two word packet in the format: 

T1 S3 H2 

Word ° not-used word-count buffer-addr 

12-character-F ieldata-fi lename 

2 

/'~. -



4144 Rev. 2 
UP-NUMBER 

U N I VA C 11 00 S E R I E S S Y S T EMS 5-11 
PAGE REVISION PAGE 

Word 0 

The meaning of word-count and buffer-addr are the same as for the PUNCH$ request (see 5.3.5) and all the restrictions which 
apply to PUNCH$ apply to PNCHA$. 

All rules for queueing for output of punch alternate files are the same as the rules for queueing of print alternate files (see 
5.3.3). 

PNCHA$ or APNCHA$ is a convenient method of building SDF-formatted files to be used later as input files in the same run 
or in a subsequent run. These files may be partial run streams introduced by an @ADD control statement (see 3.9.1), 
complete run streams referenced by a @START control statement (see 3.4.3), data to be referenced by R EADA$ or 
AR EADA$ requests, or read directly by the user program. 

5.3.8. ASCII IMAGES - ALTERNATE PUNCH FILE (APNCHA$) 

Purpose: 

Place a quarter-word ASCII punch image into a user-defined punch file. 

Format: 

L,U AO,pktaddr 
ER APNCHA$ 

These two instructions can be generated by the procedure call: 

A$PNCHA pktaddr 

Parameters: 

The interpretation of parameters is identical to that for the PNCHA$ request (see 5.3.7) and the filename must be in Fieldata. 

Description: 

APNCHA$ operation is identical to PNCHA$ operation (see 5.3.7). 

5.4. OUTPUT CONTROL FUNCTIONS 

5.4.1. FIELDATA CONTROL FUNCTIONS - PRINT FILE (PRTCN$) 

Purpose: 

Specify a Fieldata control function to a print device routine for a print file. 

Format: 

L, AO,(image-length,buffer-addr) 
ER PRTCN$ 

Parameters: 

image-length The length in words of the Fieldata control image. 

buffer-addr Address of the buffer from which the Fieldata control image is obtained. 



4144 Rev. 2 
UP.NUMBER 

Description: 

UN I VA C 11 00 S E R I E S S Y S T EMS 5-1 2 
PAGE REVISION PAGE 

The image specified in the packet consists of one or more control functions. Each control function is in Fieldata and begins 
with a letter followed by subfields. A comma is the field (or subfield) separator and a period terminates each control function 
string. 

Table 5-2 lists the print control functions and their formats. 

Control Function 
Format 

L,nn 

H ,options, page, text 

S,text 

M,length,top,bottom 

Description 

Space the printer to logical line number nn-l. 

Initiate printing page headings where: 

options The available options are: 

N - Do not print heading 

x - Suppress printing page number and date 

page The page number of the first page with this heading. If blank and there is no X or 
N option, the page numbering continues with one greater than previous page. 

text The heading text (maximum of 16 words) 

When the margin function is used, a page alignment procedure is initiated with the page 
length parameter. If a top margin of zero is specified, the heading is never printed. 

Special forms request for processing the print file. The text is a maximum of 48 
characters. When the function is encountered for onsite printers, the text is displayed on 
the operator's console. For batch remote devices, the text is displayed on a remote 
printer. 

Margin setting information for readjusting page length, and top and bottom margins. 

where: 

length - number of lines to be printed per page 

top - number of blank lines used for top margin 

bottom - number of blank lines used for bottom margin 

Table 5-2. Print Control Functions 

Standard page definition is 66 lines per page with a top margin of six lines and a bottom margin of three lines, leaving 57 
printable lines. 

5.4.2. ASCII CONTROL FUNCTIONS - PRINT FILE (APRTCN$) 

Purpose: 

Specify an ASCII control function to a print device routine for a print file. 



4144 Rev. 2 
UP-NUM 8ER 

Format: 

UNIVAC 1100 SERIES SYSTEMS 
PA GE REVISION 

L AO,(image-length,buffer-addr) 
ER APRTCN$ 

Parameters: 

image-length The length in words of the ASCII control image. 

buffer-addr Address of the buffer from which the ASCII control image is obtained. 

Description: 

I 5-13 
PAGE 

The APRTCN$ request is identical to the PRTCN$ request except that the image is in quarter-word ASCII instead of Fieldata 
(see 5.4.1 ). 

5.4.3. FIELDATA CONTROL FUNCTION - ALTERNATE PRINT FILE (PRTCA$) 

Purpose: 

Specify a Fieldata control function to a print device routine for an alternate print file. 

Format: 

L AO,(image-length,buffer-addr) 
ER PRTCA$ 

Parameters: 

image-length The length in words of the Fieldata control image. 

buffer-addr The address of the buffer from which the Fieldata control image is obtained. 

Description: 

The PRTCA$ request is identical to the PRTCN$ request (see 5.4.1) except that the first two words in the buffer specified by 
the buffer address in the packet must be the 12-character Fieldata filename of the print alternate file to which the control 
image is directed. The remainder of the image is the control information in Fieldata (see 5.4.1). 

5.4.4. ASCII CONTROL FUNCTIONS - ALTERNATE PRINT FILE (APRTCA$) 

Purpose: 

Specify an ASCII control function to a print device routine for an alternate print file. 

Format: 

L AO,(image-length,buffer-addr) 
ER APRTCA$ 

Parameters: 

image-length The length in words of the ASCII control image. 

buffer-addr The address of the buffer from which the ASCII control image is obtained. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SE RI ES SYST EMS 5-14 
PAGE REVISION PAGE 

Descr i pti on: 

The APRTCA$ request is identical to the PRTCN$ request (see 5.4.1) except that the first two words in the buffer specified 
by the buffer address in the packet must be the 12-character F ieldata filename of the print alternate file to which the control 
image is directed. The remainder of this image is the control information in quarter-word ASCII (see 5.4.1). 

5.4.5. FIELDATA CONTROL FUNCTIONS - PUNCH FILE (PCHCN$) 

Purpose: 

Specify a Fieldata control function to a punch file routine for a punch file. 

Format: 

L AO,(image-length,buffer-addr) 
ER PCHCN$ 

Parameters: 

image-length The length in words of the Fieldata control image. 

buffer-addr The address of the buffer from which the Fieldata control image is obtained. 

Description: 

The image specified in the packet consists of one or more control functions. Each control function is in Fieldata and begins 
with a letter followed by subfields. A comma is the field (or subfield) separator and a period terminates each control function 
string. 

The punch control functions and their formats are: 

S,text - Special forms request for processing the punch file. The text is a maximum of 54 characters. When the 
function is encountered for onsite punches, the text is displayed on the onsite operator's console. For batch 
remote devices, the text is displayed on the remote printer as soon as it is idle. 

C,8 - Switch the mode of punching to column binary 

C,E - Switch the mode of punching to aD-column (Hollerith) 

5.4.6. ASCII CONTROL FUNCTION - PUNCH FILE (APCHCN$) 

Purpose: 

Specify an ASCII control function to a punch device routine for a punch file. 

Format: 

L AO,(image-length,buffer-addr) 
ER APCHCN$ 

Parameters: 

image-length The length in words of the ASCII control image. 

buffer-addr The address of the buffer from which the ASCII control image is obtained. 



I"~ 

4144 Rev. 2 UN I V A C 1100 S E R I E S S Y S T EMS 5-1 5 
UP-NUMBER PAGE REVISION PAGE 

Description: 

The APCHCN$ request is identical to the PCHCN$ request except that the image is in quarter-word ASCII rather than 
Fieldata (see 5.4.5). 

5.4.7. FIELDATA CONTROL FUNCTIONS - ALTERNATE PUNCH FILE (PCHCA$) 

Purpose: 

Specify a Fieldata punch control image to a punch device routine for an alternate punch file. 

Format: 

L AO,(image-length,buffer-addr) 
ER PCHCA$ 

Parameters: 

image-length The length in words of the Fieldata control image. 

buffer-addr The address of the buffer from which the Fieldata control image is obtained. 

Description: 

The PNCHA$ request is identical to the PCHCN$ request (see 5.4.5) except that the first two words in the buffer specified by 
the buffer address in the packet must be the 12-character Fieldata filename of the alternate punch file to which the control 
image is directed. The remainder of the image is the control information in Fieldata (see 5.4.5). 

5.4.8. ASCII CONTROL FUNCTION-ALTERNATE PUNCH FILE (APCHCA$) 

Purpose: 

Specify an ASCII punch control image to a punch device routine for an alternate punch file. 

Format: 

L AO,(image-length,buffer-addr) 
ER APCHCA$ 

Parameters: 

image-length The length in words of the ASCII control image. 

buffer-addr The address of the buffer from which the ASCII control image is obtained. 

Description: 

The APNCHA$ request is identical to the PCHCN$ request (see 5.4.5) except that the first two words of the buffer specified 
by the buffer address in this packet must contain the 12-character Fieldata filename of the file to which the control image is 
directed. The remainder of the image is the control information in quarter-word ASCII (see 5.4.5). 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 
PAGE REVISIO~~ 

I 5-16 
PAGE 

5.5. LISTING USER-DEFINED CONTROL STATEMENTS (CLIST$) 

Purpose: 

Allows the user to define his own set of control statements and register them with the executive. On subsequent R EAD$ 
requests, the calling program is given special notification when such statements are encountered. A control statement is 
defined as any input image which has a master-space (7-8 multipunch - the @ character) in the first character position 
(column one on a punched card). 

Format: 

L AO,list-design~tor 

ER CLlST$ 

Parameters: 

list-designator Directs the executive to the particular list of control statemens the user wishes to receive. 
This designator may be either the address of a list in which case AO takes the format 

Description: 

H1 H2 

[ ---------------1 
zeroes 

---------------------------

list-addr 

or it may be the six-character Fieldata, alphanumeric name of one of the executive
defined lists (that is, CFOR). 

] 

The list may contain a maximum of 62 one-word alphanumeric Fieldata control statement names. The master space is 
assumed and does not appear as part of the name. These names appear left-justified and space filled and are followed by a list 
terminator of ±O. If a ±O is not supplied as a last item in the list, a minus zero (-0) is automatically supplied in place of the 
sixty-third name. 

Each name in the list has an associated index value which corresponds to its position in the list. This index value is returned 
on a READ$ or AREAD$ request (see 5.2.1) in bits 23-18 of register AO. The image is placed,in the buffer specified in the 
READ$ or READ$ packet and is in either Fieldata of ASCII depending upon the call (see 5.2.1 and 5.2_2). 

When operating in the CLlST$ mode, only those control statements in the list are passed to the user. The executive always 
handles all transparent control statements, including the @ADD, @JUMP, @SETC, and @TEST control statements, and does 
not terminate the CLlST$ mode if they are encountered. The @FIN and @EOF control statements cause an end-of-file return, 
and the @FIN control statement terminates CLlST$ mode. 

If the list terminator is a plus zero (+0), CLlST$ mode halts as soon as a READ$ request encounters a nontransparent control 
statement that is not in the list and th/e user is given an abnormal return (see 5.2.1). 

If the list terminator is minus zero (-01; all nontransparent control statements not in the list are bypassed. When an @ENDX 
or @FIN control statement is encountered, the CLlST$ mode is terminated. 

When operating in both the @ADD and CLlST$ modes, the @ADD mode is terminated if an unacceptable control statement 
is encountered. 

When in the CLlST$ mode, the @ENDX control statement is automatically assumed to be part of the list with an index value 
of 778 

If the user attempts to read an image by means of the TREAD$ request and a control statement is rejected, the output image 
is reprinted. 

CLlST$ mode may be terminated by a subsequent CLlST$ request with word 0 of the list specified equal to minus zero. 

.' -



-, 

4144 Rev. 2 
U P.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 5-17 
PAGE REVISION PAGE 

If the user program terminates prior to the CLlST$ mode termination, the executive continues to read the control statement 
until the normal manner of ending the CLlST$ mode occurs. This allows PMO's even when the program has not read all the 
control statements. 

5.6. FIELDATA AND ASCII TRANSLATION 

Tables 0-1 and 0-2 (see Appendix 0) define the software translation between ASCII and Fieldata codes as used by the 
language processors and the symbiont interface routine. 





4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 
UP-NUMBER PAGE REVISION 

6-1 
PAGE 

6. INPUT/OUTPUT DEVICE HANDLERS 

6.1. INTRODUCTION 

This section describes I/O device handlers which interface with mass storage, magnetic tape, low speed onsite devices, and 
special handling of peripheral devices. The communications device handlers are discussed in Section 15. 

The I/O packet structure, executive requests (ER's) and procedures which are applicable to both magnetic tape and mass 
storage devices are presented. These are followed by details relating to specific magnetic tape and mass storage applications. 
Finally, special device handlers are described. 

6.1.1. BASIC I/O EXECUTIVE REQUEST 

Magnetic tape and mass storage files are accessed through the packet mode using an executive request, and register AD loaded 
with the packet address as follows: 

L,U AD,pktaddr 
ER entrance-tag 

Parameters: 

pktaddr 

entrance-tag 

Address of the I/O packet (see Figure 6-1). The length of the request packet can vary 
from four to eight words, depending upon the operation desired. 

The available entrance-tags are as follows: 

10$ (see 6.3.3.) 

101$ (see 6.3.4.) 

10W$ (see 6.3.5.) 

10WI$ (see 6.3.6.) 

10XI$ (see 6.3.7.) 



4144 Rev. 2 
UP-NUMBER 

Word 0 

2 

3 

4 

5 

6 

7 

Words 0 and 1 

S1 

status 

G 

UNIVAC 1100 SERIES SYSTEMS 6-2 
PAGE REVISION PAGE 

S2 S3 H2 

filename 

0 int-act-id interrupt-activity-addr 

function 
AFC 

final-word-count-returned-bY-/ /0 (tape-only) 

word-count buffer-addr 

0 drum-addr 

search-sentinel 

0 search-find-drum-addr 

Figure 6-1. I/O Packet, Mass Storage and Magnetic Tape Peripherals 

The internal filename used in all references to the file. This name is either the same as some external filename of the @ASG 
control statement or is attached to an external filename by a @USE control statement (see 2.5.2). 

Word 2 

int-act-id 

interru pt-activity
addr 

Word 3 

status 

function 

AFC 

final-word-count
returned-by-I/O 

The numeric identity (1-35) used to identify the interrupt activity if synchronization is 
intended with some other activity. Must be zero if no activity-id is desired (101$ and 
10WI$ only). 

The address at which the user program receives control upon occurrence of an interrupt 
signifying completion of the I/O operation (101$ and 10WI$ only). 

The status of the last function performed. Must be positive when it refers to an executive 
request (see 6.10). 

Denotes the function to be performed (see Table 6-1). 

The abnormal frame count value for magnetic tape files only (see 6.4.2.4). 

For any function involving data transfer, this field contains the exact number of words 
read or written. For magnetic tape or the end of a drum file, this number may differ from 
the access word. 



(~ .. 

1 

'''-.... 

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 6-3 
U P.NUMBER PAGE REVISION PAGE 

Word 4 

An I/O access word; or for GW$, SCR$, and SCRB$ functions, this word contains the number of access words in H 1 and the 
address at which the string of access words begins in H2. 

G designator (bits 34 and 35) to increment or decrement buffer·addr by 1 for each word transferred. 

- increment 
- decrement 
- no increment or decrement. 

word-count number of words to transfer. 

buffer-addr main storage address at which transfer is to begin. 

Word 5 

For magnetic drum files, this word contains the logical mass storage address at which the described I/O operation is to start. 
This address is relative to the start of the mass storage file; the handler determines the absolute position. For 
FASTRAND-formatted mass storage files, the address is the start of a sector, and consecutive addresses are 28 words apart. 

Word 6 

The identifier word for search operations. This is applicable only to mass storage files. 

Word 7 

The find address for a mass storage search is returned in this word. The address is relative to the start of the file. This is 
applicable only to mass storage files. 

Function Octal Symbol 

Write 10 W$ 
Write end of file 11 WEF$ 
Contingency write 12 CW$ 
Skip write 13 SW$ 
Gather write 15 GW$ 
Acquire FASTRAND 16 ACQ$ 
Absolute write 17 ABSW$ 
Read 20 R$ 
Read backward 21 RB$ 
Read and release 22 RR$ 
Release 23 REL$ 
Block read drum 24 BRD$ 
Read and lock 25 RDL$ 
Unlock 26 UNL$ 
Track search all words 30 TSA$ 
Track search first word 31 TSF$ 
Position search all words 32 PSA$ 
Position search first word 33 PSF$ 
Search drum 34 SD$ 
Block search drum 35 BSD$ 
Search read drum 36 SRD$ 
Block search read drum 37 BSRD$ 
Rewind 40 REW$ 
Rewind with interlock 41 REWI$ 
Set mode 42 SM$ 
Scatter read 43 SCR$ 
Scatter read backward 44 SCRB$ 
Absolute read 47 ABSR$ 
Move forward 50 MF$ 
Move backward 51 MB$ 
Forward space file 52 FSF$ 
Backspace file 53 BSF$ 

Table 6-1. Octal and Mnemonic I/O Codes Defined In SYS$*RLlB$ 



4144 Rev. 2 
UP-NUMBER 

6.1.2. INTERRUPTACTIVITY 

UNIVAC 1100 SERIES SYSTEMS 
PAGE REVISION 

6-4 
PAGE 

The interrupt activity is the same as other registered activities using the FOR K$ function (see 4.3.1.1) except for the 
following: 

• The priority of the activity is raised to the highest possible level within the program class of the user program; that is, 
for a batch user program, these I/O completion activities receive control before any other batch program activity. 

• The interrupt routine is not interrupted in favor of any other similar activity of the same program. All are queued in a 
first-in/first-out list of all programs without regard to priority within the class. 

• Any executive request removes the interrupt activity from the high priority lis~ and returns it to the user program's 
priority. 

• The control register subset in the interrupt routine is limited to registers X11, AD through A5, and R1 through R3. 
Register AD contains the I/O packet address. If the suppress recovery mode is set, register A 1 is loaded with the status 
word from the subsystem external interrupt. No other register contents are defined. 

• In the absence of any other executive request, the normal program status can be restored by using the UNLCK$ request 
(see 6.3.8). 

When multiprogramming, every attempt is made to provide proper switching by allowing immediate access to the amount of 
computation required to initiate a new I/O option following any other I/O operation. The difficulty lies in preventing abuse 
of the high priority assigned to interrupt activities. The available facility is limited to initiate a new I/O operation after having 
checked the status of the previous I/O operation. 

6.1.3. QUEUEING AND UNIT CONTROL 

When an I/O operation is referenced, the handler controlling the desired device is entered. The handler considers the request 
and queues it for the particular subsystem. When the requested device becomes free, and entry is removed from the 
subsystem queue and the handler is entered at the appropriate point. If the subsystem is not initially busy, queueing is 
bypassed. 

The channel request queue and interrupt queue contain information to direct the attention of the device handlers to the unit 
or file with which the request or interrupt is associated. 

When an I/O request is made by the user, the executive sets the status word (word 3 of the packet) negative to indicate an in 
progress state. Before setting the word negative, a check is made to see if it is already negative which indicates a possible loop. 
If a loop occurs, a status code of 278 is placed in the I/O packet and control is transferred to the user-specified ERR mode 
routine. When the request is completed, a positive value is placed in the status word; no housekeeping is necessary by the user 
and encountering an initial negative value in the packet can be interpreted as a software logic error. 

Efficient utilization of all drum types including FASTRAND-formatted mass storage dictates that servicing requests for a 
given file are not restricted to the order of submission. The nonsequential processing of I/O requests to mass storage results in 
faster servicing and more efficient utilization of the system's I/O facilities. Testing each packet is necessary to ensure 
completion but do not assume completion by testing a subsequent packet. 

6.2. I/O PACKET GENERATION 

There are two basic procedures for generating I/O packets; I$OT (see 6.2.1) is used to generate I/O packets for magnetic tape 
files, while 1$00 (see 6.2.2) is used for mass storage file I/O packets. An I/O operation with interrupt involves inclusion of 
additional parameters for word 2 of the I/O packet (see Figure 6-1). The tag on the procedure line is allocated to the first 
word of the I/O packet. 

6.2.1. MAGNETIC TAPE I/O PACKET GENERATION (I$OT) 

II Magnetic Tape I/O Function Without Interrupt 



\ , ,--,/ 

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 6-5 
UP-NUMBER PAGE REVISION PAGE 

Format: 

I$OT 'filename',function word-count,buffer-addr[,G] 

Parameters: 

filename 

function 

woud-count 

buffer-addr 

G 

Example: 

LABEL .\ 

Specifies the tape file being referenced. 

Symbolic or octal code identifying function to be performed (see 6.4 and Table 6-1). 

Number of words to be transferred. 

The main storage address at which the transfer begins. 

Increment-decrement function designator as follows: 

'0' - Decrement 

'N' - Inhibit incrementation or decrementation 

Omit this parameter for incrementation. 

(JPf.RATIOH ,\ 
20 30 

OPER AiW :\ 
40 

c., .... ,.,L, ..... L .... l ...... L ...... ' ...... l ............ .i ........ , .... .. 

COMMEtHS 
so 

Filename T101 is entered in words 0 and 1 of I/O packet (see Figure 6-1). Symbolic function code W$ (write) is placed in 
the S2 portion of word 3. A total of 200 words are to be written (placed in word-count portion of word 4) starting at main 
storage location BFR. The omission of the G parameter indicates that incrementation is employed. 

II Magnetic Tape I/O Function With Interrupt 

Format: 

I$OT 'filename', function, [interrupt-activity-addr] ['int-act-id] word-cou nt,buffer-addr [,G] 

Parameters: 

filename 

function 

interrupt-activity-addr 

int-act-id 

word-count 

buffer-addr 

Specifies the tape file being referenced. 

Symbolic or octal code identifying the function to be performed (see 6.4 and Table 6-1). 

Address of activity to which control is passed after completion of I/O function. 

Any integer (1
10 

to 35
10

) that identifies the interrupt activity if synchronization with 
another activity is desired. 

Number of words to be transferred. 

Main storage address at which the transfer begins. 



4144 Rev. 2 
UP-NUMBER 

G 

Example: 

UNIVAC 1100 SERIES SYSTEMS 6-6 
PAGE REVISION PAGE 

Increment-decrement function designator as follows: 

'D' - Decrement 

'N' - Inhibit incrementation and decrementation 

Omit this parameter for incrementation. 

Filename AABBCD23 is entered in words 0 and 1 of I/O packet (see Figure 6-1). Symbolic function code R$ (read) is placed 
in S2 of word 3. Symbolic interrupt address GOTOAD is placed in H2 of word 2, while the interrupt-activity-id (3) is placed 
in S3 of word 2. The num ber of words (15) to be read into main storage starting at location LOCR is placed in the 
word-count portion of word 4; LOCR is placed in the buffer-addr portion of word 4, and the 'D' indicates a decrementing 
function to control the direction of the words transferred. 

6.2.2. MASS STORAGE I/O PACKET GENERATION (I$OD) 

Purpose: 

Creates I/O packet for mass storage files. 

Mass Storage I/O Function Without Interrupt 

Format: 

I$OD 'filename',function word-count,buffer-addr, [G] drum-addrLsearch-sentinel] 

Parameters: 

filename 

function 

word-count 

buffer-addr 

G 

drum-addr 

search-senti nel 

Specifies the file being referenced. 

Symbolic or octal code identifying the function to be performed (see 6.4 and Table 6-1). 

Number of words to be transferred. 

The main storage address at which the transfer begins. 

Increment-decrement function designator as follows: 

'D' - Decrementation 

'N' - Inhibit incrementation and decrementation 

Omit this parameter for incrementation. 

Identifies the logical mass storage address at which the operation starts. 

The sentinel to be recognized when a search function is performed on the mass storage 
file. 

r-
I 
\ 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 6-7 
UP-NUM SER 

Example: 

I 
, . .1 i ... l . .l : : 

PA GE REVISION PAGE 

04333222, 
... "...',,,' .. , ~,,~ -" ... , .... .., 

Filename D222 is entered in words 1 and 2 of the I/O packet. A block read drum function (BRD$) is inserted in S2 of word 
3. A total of 56 words are read into BUFS (placed in H2 of word 4) with decrementation chosen (2 placed in G of word 4). 
The word transfer starts at drum address 4333222

8 
(placed in T2 and T3 of word 5). 

" Mass Storage I/O Function With Interrupt 

Format: 

I $OD filename,function [,interrupt-activity-addr] ['int-act-id] word-count,buffer-addr [,G] drum-addr [,search-sentinel] 

Parameters: 

Same as for I$OD (see 6.2.2) without interrupt, except that the interrupt addr and id number are included in the parameters. 

6.3. PROGRAM - I/O SYNCHRONIZATION 

An activity is synchronized with the completion of an I/O operation previously submitted by the same activity to the 
executive through an 10$ request by entering the executive through a WAIT$ request (see 6.3.1) or a WANY$ request (see 
6.3.2). The WAIT$ request may also be used to wait for the completion of an I/O operation performed by other program 
activities. When interrupt activities are used, they perform the I/O, not the originating activity. 

A WAIT$ request waits for completion of a particular I/O operation and must be preceded by a Test Positive (TP) instruction 
on word 3 of the I/O packet (see Figure 6-1). A test is made within the executive on a WANY$ request to determine if any 
I/O request has been completed for the requesting activity since the last time the activity was placed in an I/O wait condition 
by a previous WAIT$, WANY$, 10W$, or 10WI$ request. 

6.3.1. WAIT FOR COMPLETION OF SPECI FIC I/O (WAIT$) 

Purpose: 

Delays execution of an activity until the I/O operation controlled by a specific I/O packet (see Figure 6-1) has been 
completed. 

Format: 

TP pktaddr+3 
ER WAIT$ 

Description: 

When an I/O executive request is submitted, the executive sets word 3 of the I/O packet (see Figure 6-1) negative; word 3 
remains negative until the completion of the I/O operation. The Test Positive (TP) check is made on this word. 

Because the executive performs a second test to determine the completion of the I/O request, the hand i designators of the 
"----.. / Test Positive instruction must be set to zero. 

The packet address is the specific request waited for at WAIT$. 



4144 Rev. 2 
UP.NUMBER 

UN I VA C 1100 S E R IE S S Y S T EMS 6-8 
PAGE REVISION PAGE 

6.3.2. WAIT FOR COMPLETION OF ANY I/O (WANY$) 

Purpose: 

Delays execution of an activity until an I/O operation, controlled by a specific I/O packet (see Figure 6-1) for that activity 
has completed. No delay occurs if the I/O operation has already occurred since the last WANY$, WAIT$, 10W$, or 10WI$ 
request. 

Format: 

ER WANY$ 

Description: 

At least one 10$ request (see 6.3.3) must have been submitted since the last WAIT$, WANY$, 10W$, 10WI$ request, or else 
it must be known that the I/O operation is outstanding for that activity, that is, the status must be found negative. 

An error results if no I/O operations are still in process for that activity and none has been submitted since the last WAIT$, 
WANY$, 10W$, or 10WI$ request. 

The following ER's cause a wait for the completion of all outstanding I/O operations for the program and affect the use of 
the WANY$ request in the same manner as a previous WANY$, WAIT$, 10W$, or 10WI$ request: 

EX LN K$ (see 10.4.5.1) 

LCORE$ (see 4.7.2) 

LI N K$ (see 10.4.4.1) 

RLlNK$ (see 10.4.4.2) 

UNLNK$ (see 6.3.8) 

6.3.3. INITIATE I/O AND RETURN CONTROL IMMEDIATELY (10$) 

Purpose: 

To request an operation on the I/O file indicated and to return control to the executing program without waiting for 
completion of the I/O operation. 

Format: 

L,U AO,pktaddr 
ER 10$ 

This linkage may be generated by the procedure call: 

1$0 pktaddr 

Description: 

Pktaddr is the address of the I/O packet (see Figure 6-1), which controls all I/O device handler operations. 

6.3.4. INITIATE I/O AND RETURN CONTROL IMMEDIATELY, WITH INTERRUPT (101$) 

Purpose: 

Same as for 10$ (see 6.3.3), except that an interrupt activity is initiated at completion of the I/O request. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 6-9 
PAGE REVISION PAGE 

Format: 

L, U AO,pktaddr 
ER 101$ 

This linkage may be generated by the procedure call: 

1$01 pktaddr 

Descri ption: 

Pktaddr is the address of the I/O packet (see Figure 6-1) which controls all I/O device handler operations. 

6.3.5. INITIATE I/O AND WAIT FOR COMPLETION (IOW$) 

Purpose: 

Same as for 10$ (see 6.3.3), except that control is not returned to the executing program until completion of the I/O 
operation. 

Format: 

L,U AO,pktaddr 
ER 10W$ 

This linkage may be generated by the procedure call: 

I$OW pktaddr 

Description: 

Pktaddr is the address of the I/O packet (see Figure 6-1) which controls all I/O device handler operations. 

6.3.6. INITIATE I/O AND WAIT FOR COMPLETION, WITH INTERRUPT (lOWI$) 

Purpose: 

Same as for 10W$ (see 6.3.5), except that an interrupt activity initiated upon completion of the I/O operation. 

Format: 

L,U AO,pktaddr 
ER 10WI$ 

This linkage may be generated by the procedure call: 

I$OWI pktaddr 

Description: 

Pktaddr is the address of the I/O packet (see Figure 6-1) which controls all I/O device handler operations. 

6.3.7. INITIATE I/O AND EXIT, WITH INTERRUPT (lOXI$) 

Purpose: 

To request an operation on the I/O file indicated and terminate the requesting activity. Upon completion, initiate an 
interrupt activity. This increases the completion priority and saves the time required to store and restore the register set. 



4144 Rev. 2 
UP.NUMBER 

Format: 

L,U AO,pktaddr 
ER 10XI$ 

UNIVAC 1100 SE RI ES SY STEMS 6-10 
PAGE REVISION PAGE 

This linkage may be generated by the procedure call: 

I$OXI pktaddr 

Descr i pti on: 

Pktaddr is the address of the I/O packet (see Figure 6-1) which controls all I/O device handler operations. 

6.3.8. REDUCING INTERRUPT ACTIVITY PRIORITY (UNLCK$) 

Purpose: 

Allows an interrupt activity to reduce its priority. 

Format: 

ER UNLCK$ 

Description: 

The UN LCK$ request enables an I/O interrupt activity to reduce its switching priority to the priority of the activity which 
initiated the I/O request. Any other executive request executed by the interrupt activity has the same result. However, in a 
time critical, multiactivity program, the UNLCK$ request provides a low overhead means of level reduction. 

6.4. MAGNETIC TAPE HANDLER 

6.4.1. TAPE HANDLER FUNCTIONS 

The various magnetic tape functions (see Table 6-2) are controlled by a routine that is always located in main storage. The 
current position of each tape is kept in terms of a block count and is made available for error logging, checkpoint, and ending 
label routines. No provision is made for automatic treatment of mixed parity and mixed density tape files. 

Utilization of the contingency write and skip write functions are automatically provided by the handler, and unless the user 
provides his own error recovery, these functions should not concern the user. 

In order to use the handler, an I/O control packet must be generated (see 6.2). 

Function Symbol 
Octal 

Description Code 

Write W$ 10 Starting at the address in H2 of word 4 of the I/O packet, transfer 
the number of words specified in H 1 of word 4 to form a single block 
on magnetic tape. Transfer is accomplished according to the standard 
modes or the requested modes, that is, parity, density, and so forth. 
Normal completion resu Its when all words have been transferred, except 
for UNISERVO VI·C/VIII·C tape units, seven·track format, even parity, 
where a character of zero, after translation is requested, will conclude 
the request for more data by the subsystem. 

Table 6-2. Magnetic Tape I/O Functions and Codes (Part 1 of 2) 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 6-11 
UP-NUMBER PAGE REVISION PAGE 

Function Symbol 
Octal 

Description 
Code 

Write end of file WEF$ 11 Write a sentinel on magnetic tape which, when read, results in an EOF 
status being returned to the program. 

Contengency write CW$ 12 Write zeros, in even channels only, for 2.5 inches of tape to allow 
writing after reading forward (UN ISERVO III-A tape units only). This 
function is automatically provided by the system and should be of no 
concern to the user unless the suppress recovery mode is employed. 

Skip write SW$ 13 Erase three inches of tape, then the same as a write function. This 
function is automatically provided in the system for write parity 
recovery. Required for the suppress recovery mode or if an extended 
interblock gap is needed on compatible tape types. 

Gather write GW$ 15 Write a single block on magnetic tape specified by a string of access 
words. The number of access words is specified in H 1 of word 4 and 
the starting address of the string is specified in H2 of word 4. 

Read forward R$ 20 Initiate tape motion in the forward direction and transfer the words 
read into the area defined by word 4 of the packet. Transfer is 
normally concluded by either encountering the end of block or 
transferring the number of words requested. 

Read backward RB$ 21 Same as read forward except opposite direction. 

Move forward MF$ 50 Move tape forward one block. 

Move backward MB$ 51 Backspace the tape one block. 

Forward Space File FSF$ 52 Move tape forward past the next EOF mark. This function is available 
only on the UNISERVO 12/16 tape units. It returns an EOF status if 
the end of the tape is not encountered. 

Backspace File BSF$ 53 Move tape backward past the previous EOF mark. It returns an EOF status 
if the beginning of the tape is not encountered first. 

Rewind REW$ 40 Reposition the tape at the load point. This is the point at which 
a read forward reads the first block on tape and a read backwards 
reports an end-of-tape status. 

Rewind with interlock REWI$ 41 Reposition the tape to unload point and lock the unit against further 
functions 

Set mode SM$ 42 Set operating mode function (see 6.4.1.1 ). 

Scatter read forward SCR$ 43 Same as read forward except the words read are transferred into 
areas specified by a string of access words defined by word 4. 

Scatter read backward SCRB$ 44 Same as scatter read forward except opposite motion direction. 

Table 6-2. Magnetic Tape I/O Functions and Codes (Part 2 of 2) 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 6-12 
UP-NUMBER PAGE REVISION PAGE 

Standard modes, in lieu of those set by the worker program, are established by the executive at initialization and 
reestablished when a tape is released as follows: 

• high density 

• odd parity 

• no character translation 

• 18-character noise constant 

• standard recovery 

In addition to the service entrance, the parity and density modes can be set by options on the @ASG control statement (see 
3.7.1). 

6.4.1.1. SET MODE FUNCTION 

For the set mode function (SM$), the I/O access control word (word 4 of Figure 6-1) is set to a one-word buffer which 
defines the modes to be set as follows: 

35 34 33 32 31 30 29 28 27 26 25 22 21 20 19 18 17 o 

field field field field field field field field field 

1 2 3 4 5 6 7 8 9 

Field 1 - Density(s) 

08 No change 

18 Low (for UNISERVO 12/16 nine-track tape units - 800 FPI) 

28 Medium 

38 High (for UNISERVO 12/16 nine-track tape units - 1600 FPI) 

Field 2 - Parity 

08 No change 

18 Odd (binary) 

28 Even (BCD) 

Field 3 - Translate 

No change 

Set character translate mode (for UNISERVO 12/16 seven-track tape units-translate Fieldata to or from BCD 
compatible with UNISERVO Vi-C/VIII-C operation) 

28 - Discontinue translation 

Field 4 - Allow noise 

08 No change 

18 Set the noise constant to the number of characters in Field 9 



I 

~/ 

'--..... / 

4144 Rev. 2 
UP-NUMBER 

Field 5 - Suppress recovery 

08 No change 

UNIVAC 1100 SERIES SYSTEMS 
PAGE REVISION 

6-13 
PAGE 

18 Return external interrupt status code to the worker program in case of malfunction without attempting recovery 

28 Discontinue suppress recovery mode 

Field 6 - MSA Translator 

°8 No change 

18 Fieldata to EBCDIC 

28 Fieldata to ASCII-6 

38 XS-3 to EBCDIC 

48 XS-4 to ASC 11-6 

58 EBCDIC to Fieldata 

68 to 168 - Reserved for additional translate options 

178 - Discontinue translation 

Field 7 - Control unit data converter (UNISERVO 12/16 only) 

08 No change 

Set data converter mode 

28 Discontinue data conversion 

Field 8 - MSA transfer mode (see Table 6-4) 

08 No change 

18 Quarter word (MSA A format) 

28 Six-bit packed (MSA B format) 

38 Eight-bit packed (MSA C format) 

Field 9 - Noise constant character count 

When suppress recovery mode is set, entry to I/O control is only possible by means of the 101$, 10WI$, or IOXI$ requests. 

When the suppress recovery mode is set the user is returned the following information at the time of the interrupt: 

Packet status code 

Register A 1 Status word 

Register A2 and A3 - If an MSA error occurred, the MSA auxiliary status word is returned in register A2. If the unit 
check or unit exception bits are set in the status word, sense bytes 0-3 are returned in register 
A2 and sense byte 4 in register A3. The sense bytes are in Quarter-word format and sense byte 
4 is in Q1 of register A3. 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 6-14 
UP-NUMBER PAGE REVISION PAGE 

6.4.2. GENERAL CONSIDERATIONS 

The following must be considered when using the magnetic tape handler for compatible magnetic tape units: 

6.4.2.1. READ BACKWARD LIMITATIONS 

The read backward function on the UNISERVO Vi-C/VIII-C tape unit should not be used if the tape to be read has been 
recorded on some other type of unit. It is necessary that the recording produce a statically deskewed longitudinal check 
frame to prevent the read backward function from interpreting the check frame as data frames. 

If a block is recorded in seven-track format with a block length greater than five frames and not a multiple of six, a read 
backward produces a different format than a read forward of the same block. For example, if the block length is seven 
frames, a read forward results in assembling frames 1 through 6 as the first word and frame 7 as the second and a read 
backward results in assembling frames 2 through 7 as the first word and frame 1 as the second. 

The same type of buffer variation exists for a read backward function on a nine-track unit if the write buffer length is not a 
mUltiple of two words (nine frames). A one-word write on a nine-track unit results in five frames being recorded with the 
fifth frame containing four bits of zero padding. A read backward results in the four bits of padding appearing as the least 
significant four bits of the first word assembled. Furthermore, regardless of the direction of reading, if a block is written on a 
nine-track format unit with an odd word count in the access word, one more word is made available as input than was sent 
out to be written. 

6.4.2.2. WRITE CONSIDERATIONS 

If the user attempts to write EOF sentinels on seven-track UNISERVO IV-C, VI-C, and VIII-C tape units by doing an even 
parity write with truncation caused by a zero character and the translate mode is set, it is essential that the first two 
characters of the buffer translate to 1700

8 
to cause an EOF status when read. 

Since hardware translation may be available and the user has the ability to vary the translation, care must be exercised to 
prevent unwanted translation of a character to zero which causes truncating a write transfer when writing in the even parity 
mode. If software conversion is used for write operations, the words are converted in the buffer before the write operation is 
performed. If a block is written with less characters than the noise constant, the risk exists of bypassing the data block as 
noise when reading. Also, a zero as the first character results in an erroneous block count. On a zero character count, up to 
three words leave the computer and are considered to have been written as reflected in the count in the substatus field of the 
request packet (UNISERVO Vi-C/VIII-C tape units). 

When using the UNISERVO 12/16 tape units, there are a number of incompatibilities with the UNISERVO IV-C/VI-C/VIII-C 
tape operations of which the programmer should be aware. They are: 

II Fieldata-to-BCD translations do not convert all the codes the same (see Table 6-3) 

III The Fieldata 00
8 

code in even parity does not stop the write operation as on the C-type units. Instead it is converted to 
a 14 BCD 

m Variable length block by character can be accomplished by using the MSA A format and setting the ninth bit of the 
character field. This records that character and then stops the write operation. 

Ii When using the MSA C format read and a block ends on the fifth or sixth frame, the even word is not transferred to the 
computer (see Table 6-4). 

The recovery procedure for a parity error or certain tape hash errors on a write operation may utilize two feet of tape or 
twice the length of the block, whichever is larger. hence, if blocks are to be recorded which are longer than two feet (or less, 
depending upon whether an ending interrupt activity submits the next request or if requests are queued ahead by I/O 
control), it is recommended that tapes be used which have the end-of-tape warning marker placed farther from the end of 
tape. The normal placement is 14 feet from the end of tape, and it is recommended that at least 10 feet of tape remain on the 
supply side of the write head to ensure that the tape is not pulled off the supply reel. 



4144Rev.2 UN I VA C 11 00 S E R I E S S Y S T EMS 6-1 5 
U P-NUMBE R PAGE REVISION PAGE 

MSA I UNISERVO 12/16 
TRANSLATIONS TRANSLATIONS 

F ieldata EBCDIC BCD 

Octal Code 
HSP 

Octal Code Hexadecimal Symbol Octal Code Hexadecimal Symbol Symbol 

00 @ 174 7C @ 14 OC @' 

01 [ 112 4A ¢ 

02 1 132 5A ! 

03 # 173 7B # 13 OB #= 

04 6 137 5F I 57 2F 6 

05 (space) 100 40 (space) 00 00 (blank) 

06 A 301 01 A 61 31 A 

07 B 302 02 B 62 32 B 
10 C 303 C3 C 63 33 C 

11 D 304 04 D 64 34 D 
12 E 305 C5 E 65 35 E 
13 F 306 C6 F 66 36 F 

14 G 307 C7 G 67 37 G 

15 H 310 C8 H 70 38 H 
16 I 311 C9 I 71 39 I 
17 J 321 D1 J 41 21 J 

20 K 322 D2 K 42 22 K 

21 L 232 D3 L 43 23 L 
22 M 324 D4 M 44 24 M 
23 N 325 D5 N 45 25 N 
24 0 326 D6 0 46 26 0 

25 P 327 D7 P 47 27 P 
26 Q 330 D8 Q 50 28 Q 

27 R 331 D9 R 51 29 R 
30 S 342 E2 S 22 12 S 
31 T 343 E3 T 23 13 T 
32 U 344 E4 U 24 14 U 
33 V 345 E5 V 25 15 V 
34 W 346 E6 W 26 16 W 

35 X 347 E7 X 27 17 X 
36 Y 350 E8 Y 30 18 Y 

37 Z 351 E9 Z 31 19 Z 

40 ) 235 5D ) 55 2D 1 
41 - 140 60 - 40 20 -

42 + 116 4E + 76 3E < 
43 < 114 4C < 74 3C 0) 

44 = 176 7E = 16 OE > 
45 > 156 6E > 36 1E \ 

46 & 120 50 & 60 30 &+ 

47 $ 133 5B $ 53 2B $ 

50 * 134 5C * 54 2C * 

51 ( 115 4D ( 75 3D [ 

52 % 154 6C % 34 1C %( 

\ 

'---/ 
53 ; 172 7A : 20 10 Sub 0 blank 

Table 6-3. Type 5017 Fieldata/BCD Translations (Part 1 of 2) 



4144 Rev. 2 UNIVAC 1100 SE RIES SYSTEMS 6-16 
UP.NUMBER PAGE REVISION PAGE 

MSA 

I 
UNISERVO 12/16 

TRANSLATIONS TRANSLATIONS 

Fieldata EBCOIC BCO 

Octal Code 
HSP 

Octal Code Hexadecimal 
Symbol Symbol Octal Code Hexadecimal Symbol 

54 ? 157 6F ? 37 1F .m.. 
55 I 117 4F I 77 3F $ 
56 , (com) 153 6B 33 1B 

57 \ 340 EO \ 
60 0 360 FO 0 12 OA 0 

61 1 361 F1 1 01 01 1 

62 2 362 F2 2 02 02 2 

63 3 363 F3 3 03 03 3 

64 4 364 F4 4 04 04 4 

65 5 365 F5 5 05 05 5 

66 6 366 F6 6 06 06 6 

67 7 367 F7 7 07 07 7 

70 8 370 F8 8 10 08 8 

71 9 371 F9 9 11 09 9 

72 ' (APO) 175 70 15 00 : 

73 ; 136 5E ; 56 2E ; 

74 / 141 61 / 21 11 / 
75 . (PER) 113 4B 73 3B 

76 Il 177 7F "(quot) 17 OF J 

77 / = (or stop) 155 60 (und) 35 10 '1 

Table 6-3. Type 5017 Fieldata/BCD Translations (Part 2 of 2) 

"" 



/-----..... 

( 

FORMAT A (QUARTER WORD) 

1 Word 

3534 

X 

27 18 9 

r l' I" I 3 I 

,-
I 

o 

4 

4 Bytes 
10 7110 7110 7110 71 

NOTE: Bits 35, 26, 17, and 8 are used for stop control on output operations and forced to binary 0 
on input operations. 

FORMAT B (6-BIT PACKED) 

1 Word 

6 Bytes 

NOTE: Bit 0 and 1 become binary 0 on output and are ignored on input, for each 8-bit byte. When 
translation is specified, bits 0 and 1 are not forced to binary O. 

FORMAT C (8-BIT PACKED) 

20 
Words 

1 * I 2 3 

Bytes DOD 
MSB 

*Numbers on arrows indicate the order of byte transfer. 

Table 6-4. MSA Data Word Formats 

Word 2 

24 23 

8 ~ 9 

0 D 10 71 
LSB 

c ~ 
11 ~ 
Z ~ 
c :IJ 
3: co 
[Il :::: 

CTl I\J 
:n 

11 
> 
Cl 
CTl 

:n 
CTl 
< 
lJl 

0 
z 

11 
> 
Cl 

c: 
z 
< 
>
n 

-<:) 
<:) 

en 
m 
;:0 

m 
en 
en 
-< 
en 
-f 
m 
~ 
en 

CTl 0) 

I ..... 
-.J 



4144 Rev. 2 UN I VA C 11 00 S E R I E S S Y S T EMS 6-18 
UP-NUMBER PAGE REVISION PAGE 

6.4.2.3. MOVE CONSIDERATIONS 

The move forward and move backward functions are concerned with position. Parity errors are not reported and are only 
examined to determine noise blocks. For the UNISERVO IV-C tape units, the parity status is not returned for the backspace 
block function; therefore, the move backward is not recommended on the UNISERVO IV-C tape units if noise is a problem, 
as a lost position may result. 

A cross-reference of magnetic tape functions, unit types, and packet lengths are provided in Table 6-5; Table 6-6 lists the 
standard tape translation. 

6.4.2.4. ABNORMAL FRAME COUNT CONSIDERATIONS 

The AFC field in the I/O packet (see Figure 6-1) is supplied by the executive when a status code of 48 is returned. The value 
of this field is calculated based on the following algorithm. If the character count is not a multiple of 6 (for seven channels 
per frame) or a mUltiple of 9 (for nine channels per frame), AFC contains the number of characters in the last word read (first 
word of the buffer for a read backward). This field is used in conjunction with a status code of 04. If the access word does 
not have a word count large enough to allow transfer of the entire block and a status code of 04 is returned, this field is set to 
zero. (For UNISERVO IV-C magnetic tape units, if the access word goes to zero, it is indeterminate whether all words were 
read. If all words of the block are read, as determined by the user, then the count of frames of data in the last word read is 
stored in the lower sixth of the last data word.) For nine-channel tapes, the count is the number of eight-bit bytes assembled 
and transferred to the CPU in the last two-word sequence; that is, a value of 1 indicates an odd number of words with one 
eight-bit byte assembled in the final word and the remainder of the word padded with zeros. A value of 5 indicates an even 
number of words with four data bits in the last word which are the least significant half of the eight-bit byte with the most 
significant four bits in the preceding word. 

6.4.3. MULTIPLE-CHANNEL OPERATION 

The magnetic tape handler is capable of a simultaneous operation on any number of channels involving any mixture of tape 
device types. 

Full dual-channel operation on UNISERVO Vi-C/VIII-C and UNISERVO 12/16 tape units are supported without user 
cognizance. 

,/'-



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 
UP.NUMBER 

Octal Pkt 
Function Code Length VI·C/VIII·C IV·C III·A II·A 12/16 12N/16N 

Read Forward 20 5 * * * * * * 

Read Backward 25 5 * I * * * * 

Scatter Read 43 5 * * I I * * 

Scatter Read Backward 44 5 * I I I * * 

Move Forward 50 4 * * * * * * 

Move Backward 51 4 * * * * * * 

Write 10 5 * * * * * * 

Write end·of·file 11 4 * * * I * * 

Contingency Write 12 4 I I * I I I 

Skip Write 13 5 * * I I * * 

Gather Write 15 5 * * I I * * 

Rewind 40 4 * * * * * * 

Rewind with Interlock 41 4 * * * * * * 

Forward Space File I I I I * * 

Backspace File I I I I * * 

Set Mode: 42 5 * * * * * * 

Very high density(1600 FPI) I I I I I * 

High density * * * * * * 

Medium density * * I * * I 

Low density * * * * * I 

Odd parity * * I * * * 

Even parity * * I * * I 

Translate * * * * * * 

Allow noise * * * * * * 

Su ppress recovery * * * * * * 

CODE: 

* Available 

Invalid function, causes termination 

Table 6-5. Magnetic Tape Function vs Unit Tvpe 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 6-20 
UP-NUMBER PAGE REVISION PAGE 

TAPE CPU TAPE CPU 
CODE CODE CODE CODE 

00 46 40 41 

01 61 41 17 

02 62 42 20 

03 63 43 21 

04 64 44 22 

05 65 45 23 

06 66 46 24 

07 67 47 25 

10 70 50 26 

11 71 51 27 

12 60 52 55 

13 44 53 47 

14 72 54 50 

15 53 55 02 

16 45 56 73 

17 00 57 04 

20 05 60 42 

21 74 61 06 

22 30 62 07 

23 31 63 10 

24 32 64 11 

25 33 65 12 

26 34 66 13 

27 35 67 14 

30 36 70 15 

31 37 71 16 

32 77 72 54 

33 56 73 75 

34 51 74 40 

35 52 75 01 

36 57 76 43 

37 76 77 03 

Table 6-6. Standard Tape/Processor Code Translation (Octa/) 



,,
I 

\ 

~ 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 6-21 
PAGE REVISION PAGE 

6.5. MAGNETIC DRUM AND UNITIZED CHANNEL STORAGE HANDLER 

While the following discussions are oriented toward magnetic drum operation, all operations and considerations described are 
equally applicable to unitized channel storage. 

6.5.1. HANDLER FUNCTIONS 

Two general modes of drum operation are provided within the handler. The first is drum simulation of FASTRAND mass 
storage which allows execution of a program with files designed for FASTRAND mass storage to be allocated to flying head 
(FH) drum storage but handled as simulated FASTRAND mass storage. The second mode is drum as a random storage device 
and is word addressable. The interpretation of function codes for simulated FASTRAND mass storage is discussed in 6.7. For 
drum format, the functions are listed in Table 6-7. 

In order to use the handler, an I/O control packet must be generated (see 6.2). 

Octal 
Function Symbol Code Description 

Write W$ 10 Starting at the main storage address specified in H2 of word 4, 
transfer the number of words specified in H 1 of word 4 to the drum 
area starting at the relative address in word 5 of the I/O packet. 
The write operation also removes any locks on the area written in 
the same manner as the unlock operation. 

Gather write GW$ 15 Transfer the number of words specified by a string of access words 
specified by word 4 from the areas specified by these access words 
to the drum area starting at the relative address in word 5. The 
number of access words is specified in H 1 of word 4 and the address 
of the access words is specified in H2 of word 4. The write operation 
also removes any locks on the area written in the same manner as 
unlock operation. 

Read R$ 20 Starting at the relative drum address in word 5 of the request packet, 
transfer the number of words in H 1 of word 4 into the area starting 
at the address in H2 of word 4. Normal completion (status 0

8
) indicates 

the specified number of words have been transferred to main storage 
from drum. 

Scatter read SCR$ 43 Starting at the relative drum address in word 5 of the I/O packet, 
transfer the number of words specified by a string of access words 
defined by word 4 to the areas specified by these access words. The 
number of access words is specified in H 1 of word 4 and the address 
of the access words is specified in H2 of word 4. 

Block read BRD$ 24 Starting at the relative drum address in word 5 of the I/O packet, 
transfer words from drum to main storage at the address in H2 of 
word 4 until either the number of words specified in H 1 of word 4 

Table 6-7. Magnetic Drum and Unitized Channel Storage I/O Functions and Codes (Part 1 of 2) 



4144 Rev, 2 UNIVAC 1100 SERIES SYSTEMS 6-22 
U P.NUMBER PAGE REVISION PAGE 

Function Symbol 
Octal 
Code Description 

has been read or until the end·of-block sentinel (a word of all 1 's) 
is read. Encountering a sentinel is noted by 18 status code 
and the sentinel word is transferred as the final word in the buffer, 
The substatus field indicates the number of words read. If completion 
is due to end of block and the buffer length is such that another word 
can be accepted, the overflow word (the word on drum following the 
sentinel) is stored in the buffer following (preceding if de-
crementation, or on if inhibit incrementation/decrementation) 
the sentinel word with the upper six bits set to 48 , 

Read and lock RDL$ 25 Perform the read operation and impose a logical lock to be placed on 
the area read, which prevents access to the part of the file defined 
by the access word and relative starting address by other activities 
(of either the same run or other runs) until such time as the locking 
activity unlocks the area. Removal of this exclusive use of a block is 
accomplished by writing into any part of the block, issuing an unlock 
request as defined in unlock, or by terminating the activity (see 6.6.1). 

Unlock UNL$ 26 Remove any logical locks imposed on other activities by read and lock 
requests submitted by this activity for the area of the file specified 
by the address and length of the access for this request. Locks are 
maintained by block, and unlocking any part of a block unlocks the 
entire block. Also, one unlock request can unlock several blocks 
(see 6.6.1). 

Block search read BSRD$ 37 Starting at the relative drum address in word 5 of the .110 packet, 
/ 

compare equal between the drum words and word 6 of the packet. No 
fund is recognized by encountering an end-of-block sentinel or the 
end of the granule (track or position). Upon a find, store the 
relative address of the find word in word 7 of the packet and transfer 
words as with a block read, with truncating for end-of-block sentinel 
or end of granule. Storing the overflow word follows the same criteria 
as with the block read function. 

Search SD$ 34 Starting at the relative drum address in word 5 of the I/O packet, 
compare all words on drum until either a compare equal is made with 
word 6 of the packet or until the remainder of granule (track 
or position) has been tested. If a find is made (status °8 ), 
the relative address of the find is stored in word 7 of the packet. 

Search read SRD$ 36 Starting at the relative drum address in word 5 of the I/O packet, 
compare all words on drum until either a compare equal is made with 
word 6 of the packet or until all remaining words of the granule 
(track or position) are tested. If a find is made, store the relative 
address of the find in word 7 of the packet and transfer the number 
of words specified in H 1 of word 7 into the main storage area starting 
at the address in H2 of word 4. Truncate the read cycle if the end of 
assignment precedes the count in H 1 of word 4. 

Block search BSD$ 35 Same as a search, with the added condition that reading an end-of-block 
sentinel word terminates the search with a no find status code (3

8
)' 

Table 6-7. Magnetic Drum and Unitized Channel Storage 110 Functions and Codes (Part 2 of 2) 



4144 Rev. 2 UNIVAC 1100 SE RIES SYSTEMS 6-23 
UP-NUMBER PAGE REVISION PAGE 

6.5.2. GENERAL CONSIDERATIONS 

The functions listed in Table 6-7 are performed on areas reserved through the use of the @ASG control statement (see 
3.7.1). These assignments are fixed in length, hence, an attempt to read, write, or initiate a search past the end of the assigned 
area results in an error condition. A write request must be totally within the assigned area. 

Search functions are terminated by the software after a time interval has elapsed; passing over the area of concern without 
receiving an interrupt indicates a find. The area of concern would be the end of the track or position equivalent. Thus, the 
length of time the subsystem is tied up for a search is nearly the same as a read or write of the same length area. The handler 
ensures that a search find is within the assigned area before reading thus guaranteeing file privacy. If a read after search must 
be truncated, a status code of 18 is returned to the program. A search function issued from a user's program searches a 
maximum of one granule of the file. If a find is made, it must be within the same granule in which the search was started. A 
search read drum or block search read drum is terminated if the access control word is zero. When the read phase of the 
SRD$ or BSRD$ functions involves going over granule boundaries, the read is completed for the user. If any part of a read 
after search find is outside of the assigned area, the request is truncated. 

The I/O status code 58 for drum format results from attempting I/O in an area of a file not currently allocated. Status code 
228 does not occur unless referencing beyond the file-maximum granule; this includes references to words beyond the last 
word specified at assignment by lying outside the last granule. 

6.5.3. MULTIPLE-CHANNEL OPERATION 

The full dual-channel operation is supported for the simultaneous FH-432/1782 subsystems without user inconvenience. The 
magnetic drum handler is capable of simultaneous operation on any number of channels involving a combination of magnetic 
drum types. 

6.6. FASTRAND MASS STORAGE HANDLER 

6.6.1. FASTRAND HANDLER FUNCTIONS 

The various FASTRAND mass storage I/O functions are listed in Table 6-8. Although the system functions without a 
physical FASTRAND mass storage unit, at least some portion of magnetic drum must be set aside to simulate the 
FASTRAND mode in its absence. The minimum FASTRAND format area has space for symbiont input and output files, 
system processor data area, program file storage, and other system functions. 

Space on FASTRAND mass storage is assigned in granules of one track (64 sectors) or one position (64 tracks). A file 
consisting of more than one granule may be considered contiguous by the programmer because the handler takes care of the 
processing that must occur whenever a granule boundary is passed. The handler works in conjunction with the file supervisor 
to convert the relative sector addresses supplied by the user program into physical channel, unit, position, and sector 
addresses. 

An attempt to read from an area of a file which is not entirely assigned results in a status code of 58 being returned to the I/O 
packet. If the area starts within the assignment and runs beyond it, the substatus count reflects the part assigned. If granules 
have been released causing voids within the file, a request could generate a legal start and ending address but a void within the 
file and this would result in the 58 status being returned with only the first part of the file read. Writing into an unassigned 
area of a FASTRAND-formatted file causes space to be assigned to the portion of the file. The automatic expansion on a 
write function can be overridden by the maximum granule parameter on the @ASG control statement (see 3.7.1). In this case, 
a status code of 228 is returned in the I/O packet. 

FAST RAND-formatted files can be exclusively assigned to a run. Thus an activity can read an area of the file and update it 
without having another activity of any program, to which the file is assigned, access t;le volatile data. The exclusive-use 
feature applies only to the area being accessed. All other areas of the file can be accessed during this period of exclusive use. 
The only activity permitted to access the locked out area is the activity that initially set the exclusive-use option. All other 
references either partially or totally within the locked out data area are suspended until the exclusive-use lock is removed. 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 6-24 
UP-NUMBE R PA GE RE VISION PA G E 

Function Symbol Octal Description 
Code 

Write W$ 10 Starting at the relative sector address specified in word 5 of the I/O packet, 
transfer the number of words specified in H1 of word 4 from the main storage 
area starting at the address in H2 of word 4 to FASTRAND mass storage. If 
the count is not a mUltiple of 28, write zeros into the remainder of the 
last sector. (Zero padding is not simulated on drum; hence, the partial 
sector is not changed.) If the area being written into is not currently 
assigned, expansion of the file is automatic up to the maximum from the @ASG 
control statement (see 3.7.1). The write operation also removes any locks 
on the area written in the same manner as the unlock operation. 

Gather write GW$ 15 Same as write except word 4 specifies a string of access words each specifying 
a word count and a main storage area. 

Acquire FASTRAND ACQ$ 16 Starting at the relative sector address specified in word 5 of the I/O packet, 
the file is expanded by the number of granules required to hold the number 
of words specified in H1 of word 4. This allows expansion of a file without 
writing into it. Expansion of the file is automatic up to the maximum from 
the @ASG control statement (see 3.7.1 ). 

Read R$ 20 Starting at the relative sector address specified in word 5 of the I/O packet, 
transfer the number of words specified in H 1 of word 4 into the main storage 
area starting at the address in H2 of word 4. Reading always starts at a 
sector boundary but may end anywhere. 

Scatter read SCR$ 43 Starting at the relative sector address specified in word 5 of the I/O packet, 
transfer the number of words specified by a string of access words specified 
by word 4 into the main storage areas specified by the access words. The number 
of access words is specified in H 1 of word 4, and the address of the access 
words is specified in H2 of word 4. 

Read and release RR$ 22 Same as read with the additional condition that after the read has been 
performed, all granules with any part within the set of addresses described 
by the packet are released to the available mass storage pool. 

Release REL$ 23 Same as read and release, except no reading is performed. 

Read and lock RDL$ 25 Perform the read operation and impose a logical lock to be placed on the area 
read, which prevents access to the part of the file defined by the access 
word and relative starting address by other activities (of either the same 
run or other runs) until such time as the locking activity unlocks the 
area. Removal of this exclusive use of a block is accomplished by writing into 
any part of the block, issuing an unlock request as defined in unlock, or 
by terminating the activity. 

Unlock UNL$ 26 Remove any logical locks imposed on other activities by read and lock requests 
sumbitted by this activity for the area of the file specified by the address 
and length of the packet for this request. Locks are maintained by block, 
and unlocking any part of a block unlocks the entire block. Also, one unlock 
request can unlock several blocks. 

Table 6-8. FASTRAND Mass Storage I/O Functions and Codes (Part 1 of 2) 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 6-25 
PAGE REVISION PAGE 

Function Symbol 
Octal 

Description 
Code 

Track search all TSA$ 30 Starting at the relative sector address in word 5 of the I/O packet, compare 
words each word on FASTRAND mass storage with the identifier in word 6 of the 

packet until either a compare equal is made or the end of the track is en· 
countered (sector address is the next multiple of 100

8
). If a compare equal 

is found, store the relative sector address of the sector in which the find 
is made in word 7 of the packet and read as many words as are specified in 
H 1 of word 4 (or to the end of the assignment, whichever is smaller) starting 
withtthe beginning of the sector in which the find was made. If no compare 
equal is made before end of track, return a no find status code (3

8
). 

Track search TSF$ 31 Same as track search all words, except a comparison is made only on the 
first word first word of each sector. 

Position search PSA$ 32 Same as track search all words, except comparisons are made until a sector 
all words address which is a multiple of 10000

8 
is reached. 

Position search PSF$ 33 Same as position search all words, except comparisons are made only on 
first word the first word of each sector. 

Table 6-8. FASTRAND Mass Storage I/O Functions and Codes (Part 2 of 2) 

Since the exclusive use of files by block (as defined by the address and access word) involves an interaction between activities, 
the user should ensure that proper order is maintained in submitting requests to prevent two activities from locking against 
each other. To aid in detecting this interlock condition, I/O control checks the length of time that an activity leaves a lock on 
an item. If an item is locked by anyone activity for over 12 minutes, at the time of the unlock sequence (either a write or 
unlock function) a status code (10

8
) is returned to the I/O packet, indicating that exclusive use had timed out and has been 

removed. Removing exclusive use by this means allows the locked activities to progress in the normal manner and the locking 
activity no longer interferes. If the unlock operation is the result of a write request, the write function is not performed if the 
10

8 
status code (see 6.10) is returned. The 10

8 
status code is also observed for areas which must be unlocked if a packet 

format error is detected on a subsequent request when taken off of the channel list. This results from a change in the packet 
by the worker program while the request is listed and after any lock has been imposed for the request in error. 

During normal operation, the handler prepositions the various units to keep access time to a minimum. For this reason, the 
position function is not needed in the user's repertoire. 

The position searches are legal only if the granularity is position. The track searches are available for both granularities. 

6.7. DISC HANDLER 

The disc handler provides control of the 8414 disc for both FASTRAND·formatted and word·addressable files. 

6.7.1. DISC HANDLER FUNCTIONS 

The handler provides support for all functions that are supported by the drum (see Table 6-7) and the FASTRAND (see 
Table 6-8) handlers. That is, the disc handler fully supports both FASTRAND·formatted and word·addressable files. The 
disc hardware provides for direct support of standard read and write operations but does not provide for block type 
operations (for exam pie, BSR D$) and search operations. Thus, the following functions are simulated by the disc handler 
software: 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 6-26 
UP-NUMBER PAGE REVISION PAGE 

(1 ) Block Read (B RD$) 

(2) Block Search (BSD$) 

(3) Block Search Read (BSRD$) 

(4) Search (SD$) 

(5) Track Search First Word (TSF$) 

(6) Track Search All Words (TSA$) 

(7) Position Search First Word (PSF$) 

(8) Position Search All Words (PSA$) 

Space is allocated in granules of one track (64 sectors) or one position (64 tracks) as denoted on the @ASG statement (see 
3.7.1). The file space may be considered contiguous by the programmer in that the handler will handle any discontiguities 
that exist. 

The handler also provides for the mounting and dismounting of disc packs (that is, other than those specified as part of the 
fixed mass pools). This feature benefits the installation in that it can have an infinite amount of mass storage space. It 
benefits the user program in that files can be assigned to specific disc packs. The executive provides protection in this area so 
as to secure packs from unauthorized access. 

Because of the ability to specify file placement, the programmer should be aware of the addressing mechanism provided on 
the packs. Disc packs are prepped, normally, so as to allow four sectors/record and 12 records/track (disc). The system 
provides the ability to, if desired by the individual user, prep the program's packs in either of two other methods (that is, one 
sector/record or two sectors/record). The alternate prep factors are provided if the programmer finds that the standard prep /-
factor is not optimal for his application. Note, however, that these alternate prep factors cause a considerable loss in usable 
data space, and this should be taken into account when considering an alternate prep factor. 

Once a pack is prepped, there should never be a need to rep rep the pack. However, the executive does provide an override so 
as to enable reprepping, if necessary. The prepping of a pack is specified only at the system console and not internal to the 
program. Thus, the program need not concern itself with prepping in that it has already been done. 

The user program need not concern itself with accessing part of a multisector record because the handler controls this. 

In order to use the handler, an I/O control packet must be generated (see 6.2). 

6.7.2. PREPPING THE DISC 

Disc operation has been defined as a drum or FASTRAND mass storage simulation mode of operation; the data is referenced 
by word or sector address (28 computer words). It is assigned by FASTRAND granule (1792 or 114,688 computer words) 
and must be prepped to achieve random access capability. 

In prepping the following points should be considered: 

(1) Prepping can take 5 to 10 minutes per pack per channel and is accumulative for every pack on a subsystem (up to 64 
drives). Dual access preps two packs concurrently. 

(2) One, two, or four sector records (28, 56, or 112 computer words) can be selected for a pack. Four sector records (112 
computer words) are supported as an optimum length when considering capacity, which decreases with smaller records. 

(3) Bad tracks are mapped as unassignable at prep time. 

(4) Bit map granules currently are FAST RAND mass storage oriented and represent a track of 1792 words. A downed disc 
track is 1344 words when using the four-sector prep and in many cases is represented by two granule bits or 3584 
words. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 6-27 
PAGE REVISION PAGE 

(5) The suggested 112-word record may not be optimum and application studies will determine this. Simple system 
generation parameterization and operator key-in will allow the variance of the record length on a pack. 

(6) Once prepped, a pack is not usually reprepped. Override parameters, however, are provided to change the prep factors 
and remap bad tracks. 

6.8. ABSOLUTE READ/WRITE CAPABILITY 

The executive provides the ability for a user program to assign and absolutely access a mass storage device under one common 
file name (see @ASG control statement - 3.7.1). 

The devices that may be accessed in this manner are the FH-432, FH-880, and FH-1782 drums. 

The devices are referenced by means of the software function codes absolute read (ABSR$ - 47 e) and absolute write 
(ABSW$ - 178 ), The I/O packet has the same format as for other mass storage files except for the file address specified in 
word 5 of the packet. In this case, the format of this field is: 

35 24 23 o 

su bsystem-nbr device-addr 

The device-addr field contains the physical unit number and unit address appropriate to the device being accessed. I/O control 
ensures that the unit being referenced is truly assigned to the associated file. If the unit or file is not assigned to the 
requesting program, the activity is taken to the error mode routine (see 4.9). 

At time of completion, word 6 of the I/O packet will contain the first external interrupt (EI) status returned by the 
subsystem. The normal handler recovery mechanisms are exercised in case of abnormal operation. The number of handler 
recovery attempts is returned in S3 of word 3 of the I/O packet. If the recovery attempts fail, a status code of 11 8 is 
returned in the status field of the packet and an unanswerable message is displayed on the operator's console. In the event of 
timeout condition, a status of 78 is returned in the I/O packet. 

6.9. ARBITRARY DEVICE HANDLER 

The arbitrary device handler (ADH) allows the user to directly control the I/O functions to a device on an I/O channel. This 
capability provides support for special devices where standard handlers are not provided and for special operations on devices 
where standard handlers are provided. 

The ADH is entered through either the 10ARB$ or IOAXI$ requests described in 6.9.2 and 6.9.3, respectively. 

6.9.1. ADH I/O PACKET 

The format for the arbitrary device I/O packet as illustrated in Figure 6-2. 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 6-28 
UP-NUMBER PAGE REVISION PAGE 

S1 S2 S3 H2 

Word 0 

filename 

2 0 int-act-id interrupt-activity-addr 

3 monitor-interrupt-activity-addr 

4 status time-out time-ind function-string 

5 initial-access-word-1 

6 final-word-count-1 rel-time-' 

7 

8 

9 initial-access-word-n 

10 final-word-count-n rel-time-n 

Figure 6-2. Arbitrary Device Handler Packet 

Word 0 and 1 

The internal filename used in all references to the file. This name is either the same name as the external filename specified in 
an @ASG control statement or is equated to an external filename by a @USE control statement. 

Word 2 

int-act-id 

interrupt-activity-addr 

Word 3 

Monitor-interrupt-starting-addr 

Numeric identity (1-35) given to the external interrupt activity (lOARB$ only). This 
field can be left as zero as for the magnetic tape or drum handler packet if no 
synchronization is required with this activity. For entrance at IOAXI$, the interrupt 
activity has the same id as the original activity. 

Address at which control is to be given upon occurrence of an external interrupt. 

The address at which the interrupt activity is given control if the function string indicates 
a monitor interrupt is to be returned to the user, and the interrupt which indicates 
completion of the operation is a monitor interrupt. 



I 
\. 

4144 Rev. 2 
UP-NUMBER 

Word 4 

status 

time-out 

time-ind 

function-string 

Words 5, 7, ... ,n-' 

UNIVAC 1100 SERIES SYSTEMS 6-29 
PAGE REVISION PAGE 

Status code indicating the disposition of the request. 

The number of six-second intervals the subsystem should be timed before the lack of a 
monitor or external interrupt is to be considered an error. The value 1 corresponds to 6 
seconds, 2 to 12 seconds, and so forth. 

Indicates the disposition of a timeout condition. If this field is not zero and an operation 
is left outstanding on a channel for a time in excess of the time-out value, a unique status 
code is returned to the packet. If the field is zero, a timeout message is displayed on the 
operator's console, and the response is returned. 

Consists of a group of three-bit bytes (octal digit string) interpreted from left to right 
(bits 17-15 comprise the first byte). The assigned codes are: 

o - End of string 

1 - Initiate function mode without monitor (LFC) 

2 - Initiate function mode with monitor (LFCM) 

3 - Initiate output mode without monitor (LaC) 

4 - Initiate output mode with monitor (LOCM) 

5 - Initiate input mode without monitor (LlC) 

6 - Initiate input mode with monitor (LlCM) 

The initial access words to be used to control the channel. 

Words 6, 8, ... ,n 

final-word-count-n 

rel-time-n 

Final word count as contained in access control register. 

Relative time between execution of the corresponding operation in the string and the 
execution of the next operation or the occurrence of an interrupt. The time is given in 
200·microsecond increments. 

Starting at the left of the function-string, the operations represented by the code are carried out as directed. As the string is 
interpreted, succeeding pairs of access words are referenced. The final word count of the preceding operation is updated and 
the initial access word for the current operation is loaded. At most, six modes can be specified in the initiation string. As a 
practical limit, the combined length of all external function buffers is set at 9; exceeding this count is considered a program 
logic error and causes reference to the error mode return point. As an example of string interpretation. If an input operation 
is to be performed with termination by an external interrupt, the initiation string could be 51 OOOOa with two sets of access 
words. The first operation by the ADH is to load the input channel assigned to the filename specified in the packet using the 
access word in word 5. This is followed by a Load Function In Channel instruction (LFC) using the access word in word 7 to 
locate the function word. Upon occurrence of an external interrupt, the final access word count and the relative time are 
stored in word 6, and the final values for LFC are placed in word 8. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 6-30 
PA GE RE VISION PA G E 

The user can specify instructions in any desired order to perform a particular I/O operation. When a monitor instruction is 
encountered, the ADH halts further interpretation of the string until the particular monitor occurs. The user program must 
make certain that the proper instructions are monitored to ensure that the respective access words do not get overlaid; that is, 
if two successive operations initiate output transfer, the first one should be with monitor unless the time between I/O 
instruction executions allows for transfer of all words of the first output buffer. To determine whether or not an access word 
has sufficient time to count down between initiation of operations by the ADH and hence possibly allow operating at times 
without a monitor, the minimum time between execution of the I/O instructions by the ADH is at least 1 D microseconds 
(this varies upward, depending upon operation, overlapping data transfers, and so forth). For such sequences as a function 
transfer of a single-word external function (EF) buffer followed by an output transfer, this is sufficient time for the function 
transfer to be completed before output transfer is initiated without the necessity of monitoring the function transfer. 

The appearance of monitored modes does not necessarily indicate the need for a monitor completion activity (specified in 
word 3), as the ADH interprets intermediate monitor modes. A monitor activity is required if either: 

• the last mode in a string is with monitor; or 

II the last mode is not monitored, and no external interrrupt is expected to signal conclusion of the mode established as a 
result of the final mode. 

If any monitored modes precede the final mode, whether a wait for external interrupt should be done after the final I/O 
instruction is executed is determined by a nonzero value in H2 of word 3. For example, an input drum operation is normally 
terminated without interrupt; hence, the sequence LFC, LlCM, LFC is used, and a monitor interrupt activity is specified and 
executed without waiting after sending out the second function following the input monitor interrupt whereas an output 
drum operation is normally terminated with interrupt; hence, the sequence LFC, LOCM, LFC may be used without a monitor 
interrupt activity, in which case a wait for external interrupt is done after sending out the second function. 

Regardless of the manner in which the ADH gives control to the interrupt activity, in all cases, the input and output active 
states are cleared on the particular channel by execution of the Disconnect Input In Channel (DIC) and Disconnect Output In 
Channel (DOC) instructions before control is given to the interrupt activity. 

When a function mode is called, the ADH inserts the proper unit designator and adds the proper base address to the relative 
address of the function word. At that time, if the channel contains equipment shared by other assignments, it may be 
necessary to perform certain error checks to prevent leaving the channel in an indeterminate state and to prevent intrusion 
upon other assignment privacy. Nonstandard special I/O devices are assigned by channel, and the ADH makes no 
modifications to the function words for these devices. 

The function buffer for magnetic tape or mass storage channels is limited to a word count of one word, except for search 
functions, in which case a second word, the identifier, and for UNISERVO "I-A tape units, a third word, the mask, are 
allowed. For other than these cases, in a multiple-word EF buffer, each word is modified by the unit designation and 
subjected to the particular tests based on equipment type. 

Word 2 and word 3 of the packet may be used to specify interrupt activities, one of which is executed when the 
corresponding interrupt occurs. Word 2 specifies the activity to be executed in case of an EI. The lower half of the word gives 
the activity starting address, and S3 is set to the activity identity if synchronization is necessary. The register save and priority 
are assumed to be X 11 through A5, R 1 through R3, and top priority, respectively. An EI activity must always be specified 
regardless of whether a monitor interrupt is to be used. The monitor activity is defined in words in the same format as the EI 
activity. If both a monitor and an EI occur, the EI activity is given control, and occurrence of the monitor interrupt can be 
determined by examining the access word. When control is given to the interrupt activity, register AD is loaded with the 
packet address, and, for the EI activity, register A 1 contains the EI status word. 

Upon completion of an I/O operation by the ADH, a status code is stored in S1 of word 4 of the request packet denoting the 
conditions of the completion. 

6.9.2. INITIATE ADH AND RETURN CONTROL IMMEDIATELY (IOARB$) 

Purpose: 

Initiates an arbitrary device I/O operation with control returned, in line, as soon as the request is either listed or the 
operations have been initiated. An interrupt activity is initiated when the request is completed. 



4144 Rev. 2 
UP-NUMBER 

Format: 

L AO,pktaddr 
ER 10ARB$ 

Parameters: 

pktaddr 

UNIVAC 1100 SERIES SYSTEMS 

Address of device I/O Packet (see Figure 6-2). 

6.9.3. INITIATE ADH, EXIT AT INTERRUPT (lOAXI$) 

Purpose: 

PA GE RE VISION 
6-31 

PAGE 

Initiates an arbitrary device I/O operation with the referenced activity simulating an exit function, and controls the return to 
the program at the appropriate interrupt activity specified in the request packet. 

Format: 

L AO,pktaddr 
ER 10AXI$ 

Parameters: 

pktaddr Address of device I/O packet (see Figure 6-2). 

Description: 

The activity performing the 10AXI$ request does not actually exit, but saving and restoring registers is eliminated (except for 
register AO), and the register set is reduced to the minor set only. The' continuation of the 10AXI$ activity at the interrupt 
point is with the same activity-id; hence, the value in the int-act-id field is ignored for the 10AXI$ request. 

6.9.4. FREE FORMAT DISC HANDLER 

This handler is designed to format, read, and write disc packs in other than the standard 1100 series executive formats. It is 
an adaptation of the ADH to control multi-interrupting, byte-oriented, command chain disc subsystems with the 1100 series 
executive format handler operating on other drives of the same subsystem. 

The I/O packet format for free format disc is as described in 6.9.1 and illustrated in Figure 6-2 with the following 
exceptions. 

Word 3 

The monitor-interrupt-activity-addr field is unused. No monitor operations to free format disc are permitted. When the 
packet is checked for the function string (word 4), any monitor operation that is encountered causes reference to the error 
mode return point. 

Word 4 

The time-out field specifying the number of six-second intervals is unused. All free format disc I/O operations are confined to 
one six-second time interval by the executive system. 

The free format device I/O is limited to one external function (EF) access control word per packet request where the 
function access word may be up to eleven words in length. The EF access words may contain the command parameters as 
well as the command string. For example an operation to do a read may be as follows: 



4144 Rev. 2 UNIVAC 1100 SE RI ES SYSTEMS 6-32 
UP-NUMBER PAGE REVISION PAGE 

Word 0 Set file mask command 

Seek command 

2 Search command 

3 Read command 

4 Jump command 

5 Set file mask command 

6-7 Seek parameters 

8-9 Search parameters 

When one function operation has been found and a second fu nction operation is indicated, the program is considered in logic 
error and causes a reference to the error mode return point. 

Once the mode string has been accepted and the I/O is to be started at initiation of the EF, a delay occurs if the next 
operation is to be an output operation. This delay is done to ensure that the EF chain and parameters access word has been 
sent before the output access control word is issued. Otherwise, the output access control word would overlay the EF access 
control word. If an input operation follows the issuance of the function chain, no delay occurs in opening input (L1C). 

Once the I/O access control word has been initiated by either a Load Input Channel (L1C) or Load Output Channel (LOC), 
another I/O access control word (ACW) may follow until the limit of six modes is reached. This method is not advised 
because no delays are done after the ACW has been initiated, and thus the new ACW would overlay the previous ACW before 
it was completed. As a practical limit, it is recommended that a single I/O operation following the EF be used per packet 
request. 

The EF command chain is checked to ensure that the M field (multiple function string) of the MSA/disc command is not set. 
If in the command chain the M field is found to be set, a program logic error is assumed and causes a reference to the error 
mode return point. 

The device address field of the MSA/disc command is cleared by the executive and the file associated device address is 
inserted. 

The external status received by the executive is returned at the normal mode return point in register A 1 where the external 
status is found in H2 of register A 1. If during the operation, an error condition (MSA error, unit check) is detected by the 
executive from the external status, the auxilary status or sense byte (byte 0 and byte 1) is requested from the MSA or control 
unit and returned with the original status at the normal return point. The external status occupies H2 of register A 1 with the 
secondary status in H 1 of register A 1. The sense bytes are returned in the A Format, that is, 01 = sense byte 0, 02 = sense 
byte 1. 

When the external status specifies a busy status, the executive waits for the control unit end external status and upon 
receiving it, causes reference to be made to the normal mode return point with the original busy external status in H2 of 
register A 1. 

When an external status specifies a channel end without an accompanying device end, the executive waits for the device end 
status and then causes reference to the normal mode return point with the device end external status in H2 of register A 1. 

6.10. STATUS CODES 

Upon completing an I/O request, a status code is stored in S1 of word 3 of the I/O packet indicating the completion status. 
All status codes from 208 to 378 are considered error conditions where either the activity is terminated or the activity 
reentry point is reset to the error contingency point (previous reference to IALL$). If interrupt activity was specified by the 
executive request, the interrupt activity has the reentry point set to the contingency point. For status code 28

8 
no status is 

stored in the packet. An illegal value for the packet address in register AO (detected during the initial checking routine) results 
in an error type 4 and code 2. If detection is within executive request control, no interrupt activity is created and the main 
activity is reactivated at the contigency point. 



I 
( 
"-_., . 

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 6-33 
UP.NUMBER PAGE REVISION PAGE 

Whenever a request for I/O is in error and the request causes an interrupt activity, it is the interrupt activity which is reset to 
the contingency entry point. The submitting activity is reset only when an illegal value in the control register is detected 
before the interrupt activity is created. When an illegal value is detected in register AO during an I/O request, the interrupt 
activity exists and a status code of 23

8 
is passed to the contingency routine. 

The status codes are: 

Octal 
Code 

o 

2 

3 

4 

5 

10 

11 

Description 

The request has been completed normally. If data transfer is involved, the count is given in H2 of word 
4. 

EO F block detected on magnetic tape. 

• Answer of E was given to an I/O error message. 

II EOF block was detected on magnetic tape. 

a Block read drum function was truncated by encountering an end-of-block word. 

EJ Block search read function was truncated by encountering an end-of-block word before the specified 
number of words were transfered. 

End-of-tape mark encountered on magnetic tape on a read backward from load point or on a write. No 
transfer takes place for the read backward. The write is done in the normal manner. Subsequent writes 
are performed in the same fashion and, barring other problems, results in returning the same status code. 

No find was made on a mass storage device search. The search was terminated by an end-of-block, 
end-of-track, end-of-position, or expiration of sufficient time to pass over the entire area of concern 
depending upon the physical device and type of search. 

A nonintegral block was read from magnetic tape. The number of data characters accepted from the last 
word is indicated by S3 of word 3 of the I/O packet and is explained in 6.4.2.4. 

An attempt was made to initiate a mass storage search or read from an area which is wholly or partially 
unassigned. If the starting address is legal, the read is truncated as reflected by the word count in the 
suDstatus field. 

The area of the FASTRAND mass storage file being unlocked by this write or unlock request timed out 
in the locking list or a subsequent request by the same activity had a packet format error detected 
between the time of submitting the request and the time of servicing. Other requests by other activities 
for the area may have been honored in the interim. If the function is write, the transfer is not 
performed. 

A nonrecoverable error has occurred, the suppress recovery mode is set for magnetic tape or an answer 
of G was given to an error message. If the suppress recovery mode is set, the EI status code is stored in 
register A 1 of the interrupt activity control register set. All suppress recovery operations come back with 
this status. 



4144 Rev. 2 
UP-NUMBER 

Octal 
Code 

12 

13 

20-37 

40 

UNIVAC 1100 SERIES SYSTEMS 

Description 

PA GE REVISION 
6-34 

PAGE 

A read, or write error on magnetic tape has resulted in loss of position on the unit. This code is returned 
for all outstanding requests at the time the answer of B was entered in response to the I/O error message. 
Any subsequent request is honored but the lost position is maintained and no further program 
check-points are valid. This condition can be cleared by requesting that the tape unit be rewound to load 
point. 

The peripheral unit was declared down either by an unsolicited operator keyin or in response to an error 
message typed after the normal recovery failed to resolve a malfunction. 

See Appendix C. 

The request is either in the process of being executed or is listed on the request queue for the 
particular channel. 

.'.'" 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 7-1 
PAGE REVISION PAGE 

7. FILE CONTROL 

7.1. INTRODUCTION 

The file control routines exercise centralized control over all files in the system. The primary functions of these routines are: 

• Maintain a t..:irectory (master file directory) of both the catalogued and temporary files 

• Control mass storage allocation as new files are assigned and existing files are expanded 

• Provide the interface between the user programs and mass storage liD device handlers (maintains a record of the 
absolute addresses of the file granules) 

• Prevent assignment of or access to any exclusively assigned file by any run other than the run to which the file has been 
exclusively assigned 

a Automatically move files from mass storage to magnetic tape as available mass storage space becomes exhausted 
(known as rollout) and automatically retrieve these files when needed (called rollback) 

• Provide the means which enable the user to obtain information on the assignment, contents, and facilities of a file 

7.2. FILE ORGANIZATION 

7.2.1. MASTER FILE DIRECTORY 

For files which are to be retained beyond run termination, entries are constructed containing the identification and character
istics of each file and are maintained by the system in a master file directory. The process of entering a file in the master file 
directory is referred to as cataloging and effected by the @ASG control statements. 

The information contained in each file entry includes the following: 

• External name of the file including qualifiers 

• Project identity from the @RUN control statement 

• Account number from the @RUN control statement 

.. Date on which the file was catalogued 

• Activity of the file including the date of last reference 

• Usage authorization 

• Recording mode (magnetic tape only) 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 

• Granularity and number of granules assigned (mass storage only) 

• Number of reels of tape and tape reel numbers (tape only) 

• Linkage to the granule description (mass storage) 

PAGE REVISION PAGE 

See Section 22 for a description of the master file directory structure and the means of retrieving information from it. 

7.2.2. MASS STORAGE ALLOCATION 

Mass storage is accessed by the executive in two ways: 

7-2 

(1) FASTRAND format - A FASTRAND-formatted file is accessed by sectors (28 words in length) which are allocated in 
granules of track and positions. A track is 64 addressable areas of 28 words each or 1792 words of storage. A position is 
64 tracks (4096 addressable areas or 114,688 words). 

(2) Word addressable format - A word addressable formatted file is accessed on a word basis and is allocated in the same 
manner as FASTRAND format. 

When a mass storage file is initially assigned, only the number of granules initially requested in the @ASG control statement 
are allocated. After that, only those granules needed to service a given expansion request are automatically assigned. For 
example, if the initial request was three tracks and a one track write was requested starting at relative address 256, an 
assignment is made for tracks 1,2,3, and 5. Track 4 is not assigned until a reference is made to a relative address from 192 to 
255. 

The file supervision routines automatically effect the assignment of additional increments of mass storage space as required to 
satisfy the needs of the worker programs. The space availability function also handles the release of granules to the available 
status. Release of any part of a granule causes the release of the entire granule area. 

Since files can be released a granule at a time, it is possible to end up with an empty file catalogued in the system with a 
master file directory item and no allocated space. . 

7.2.3. FILE ADDRESSING 

As an extension to the master file directory, the executive maintains tables specifying the location of the various granu les 
allocated to a given filename. These tables are stored in sector·sized areas of mass storage and are used by the qevice handlers 
to convert the relative location furnished in the request to absolute hardware locations. For example, a request to read at 
address 129 of a file with track granularity would refer to the second sector of the third track assigned to the file. This 
reference table allows voids and overlapping various types of mass storage within a file. 

Unsolicited console input messages are available to control mass storage availability. This allows mass storage to be taken 
from and returned to the configuration without forcing an initial boot which would cause all user files to be deleted from the 
system. It allows users to reserve units for their own assignments and allows absolute addressing for I/O on those units. 

Mass storage is defined to be in one of four states. They are: 

UP - Up indicates that a mass storage unit is fully accessible by the operating system. This status allows the executive to read, 
write, and allocate on this unit. 

SU - Suspend status indicates that a mass storage unit is accessible for I/O, however, the executive cannot allocate any space 
on this unit. 

RV - Reserve status indicates that a mass storage unit is accessible only by absolute assignments and absolute I/O requests; 

DN- Down status indicates that a mass storage unit is not to be used for any purpose by the system. 



4144 Rev. 2 
UP.NUMBER 

UN I V A C 1100 S E R I E S S Y S T EMS 7-3 
PAGE REVISION PAGE 

7.2.4. EXCLUSIVE USE OF FILES 

The file supervisor routines allow assignment of mass storage files to any number of runs at one time providing the exclusive 
use option is not exercised on the @ASG control statement. This option delays the assignment of a file until no other run has 
that file assigned to it and ensures that other runs are delayed until a run releases the needed exclusively·assigned files. 

All magnetic tape files are exclusively assigned regardless of the presence or absence of the option. 

The read-and·lock and unlock functions are available at the handler level where logically contiguous areas (successive relative 
addresses) can be exclusively assigned to allow oth~r runs simultaneous access,of all the unlocked portion of the file. The 
complete definition of the various functions involved and the timing limits to be considered are given in Section 6. 

7.2.5. ROLLOUT AND ROLLBACK OF FILES 

Depending upon the amount of available FASTRAND·formatted mass storage, the degree of use given to cataloguing files on 
mass stor.age, and the manner in which FASTRAND-formatted files are assigned, there may occur during normal operation 
the necessity to obtain additional space on FASTRAND mass storage by rolling out catalogued files to magnetic tape. This 
feature is provided automatically by the executive. The points at which rollout is turned on and off are expressed as system 
generation parameters. 

Rollout to magnetic tape occurs when the request for allocation reduces the available mass storage below a system generation 
threshold. 

The rollout routine utilizes the file activity as part of the criterion for file rollout eligibility. 

A request to assign a rolled out FASTRAND·formatted file causes the executive to request mounting of the proper magnetic 
tape, unless already mounted, and it automatically retrieves the file back to FASTRAND-formatted mass storage. See Section 
19 (SECURE processor actually performs the rollout and rollback). 

7.2.6. RETRIEVING FACILITY ASSIGNMENT (FITEM$) 

Purpose: 

Provides a method to obtain a variable amount of information on file or facility 'assignments. 

Format: 

LA AO,(pkt-lngth,pktaddr) 
ER FITEM$ 

Description: 

A filename must be placed in the first two words of the information packet. 

The remaining words of the packet are filled as a result of the FITEM$ request. 

The minimum packet length is nine words; the maximum packet length is dependent upon the equipment type: 

Equipment 

Word addressable mass storage, 
arbitrary devices, 
communications devices, 
whole unit mass storage 

FASTRAND mass storage 

Magnetic tape removable disc 

Length 

9 

10 

13 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 7-4 
PAGE REVISION PAGE 

If the pkt-Iength is 03777778, the maximum amount of information available for the equipment type is transfered to the 
packet. If the pkt-Iength given is less than 9 or greater than the maximum for the equipment type, only nine words are 
transfered to the packet and an error status is returned in register AO (see following). 

Rejection of the FITEM$ request occurs only if the relative packet address specified in the request packet is invalid; that is, 
the address falls outside the user's bounds, or the span of the FITEM$ packet violates the user's bounds. 

The status codes applicable to F ITEM$ requests are (returned in S1 of register AO): 

18 - The requested packet length exceeded the allowable maximum. 

28 - The requested packet length was less than the allowable minimum. 

Pktaddr is the address of a packet whose general format is: 

35 o 

Word 0 

internal-filename 

2 

external-filename 

3 

4 

qualifier 

5 

6 

7 

8 Device dependent 

9 
See 7.2.6.1.through 7.2.6.6. 

10 

11 

12 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 7-5 
PAGE REVISION PAGE 

7.2.6.1. UNIT RECORD AND NONSTANDARD PERIPHERALS 

The F ITEM$ request packet format is: 

35 3029 2625 o 

Word 0 

internal-fi lename 

2 

external-filename 

3 

4 

qualifier 

5 

6 equip-code 

7 35 34 33 @ASG-control-statement-options 

8 

! 
" not-used 

" 

12 IL-----__ -------IJ 
Word 6 

equip-code See Appendix E 

Word 7 

bit 35 If set, system has label check 

bit 34 If set, file assigned as a temporary file 

bit 33 If set, assigned unit is in a downed state 

.' @ASG-control-statement-options Indicates the options specifi~d on the @ASG control statement (see 3.7.1) that assigned 
the equipment. Master bit notation is used; that is, a 1 in bit 25 indicates the A option 
was specified, a 1 in bit 24 indicates the B option was specified, and so forth. 



4144 Rev. 2 
UP-NUMBER 

UN I V A C 11 00 S E R I E S S Y S T EMS 7-6 

7.2.6.2. FASTRAND MASS STORAGE PERIPHERALS 

The F ITEM$ request packet format is: 

S1 S2 

Word 0 

2 

3 

4 

5 

6 equip-code file-mode 

S3 S4 

internal-filename 

external-filename 
(file-portion) 

qualifier 

granularity relative-F
cycle-nbr 

PAGE REVISION PAGE 

T3 

absolute-F-cycle-nbr 

7 353433 @ASG-control-statement-options 

Word 6 

equip-code 

file-mode 

8 initial-granule-count 

9 largest-track-reference 

10 

11 

12 

not-used 

See Appendix E 

Bit 29 set - Exclusively assigned file 
Bit 28 set - Read key is needed 
Bit 27 set - Write key is needed 
Bit 26 set - Read-only file 
Bit 25 set - Write-only file 
Bit 24 set - Word addressable drum 

maximum-granule-count 

highest-granule-nbr 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 7-7 
PAGE REVISION PAGE 

granularity All zeros indicate position granularity; nonzero indicates track granularity 

relative-F-cycle-nbr Negative number is indicated by a 1 in bit 17. 

Word 7 

Same as word 7 in 7.2.6.1. 

7.2.6.3. MAGNETIC TAPE PERIPHERALS 

The F ITEM$ request packet format is: 

S1 S2 S3 S4 S5 S6 

Word 0 

internal-filename 

2 

external-filename 

3 

4 

qualifier 

5 

equip-code file-mode unit-count 
relative-F-

absolute-F-cycle-nbr cycle-nbr 6 

7 35 34 33 @ASG-control-statement-options 

8 total-reel-count logical-channel noise-constant mode-settings 

9 subsystem-1 unit-1 subsystem-2 unit-2 

10 expiration-period reel-index files-extended blocks-extended 

11 current-reel-nbr 

12 next-reel-nbr 



4144 Rev. 2 
UP-NUMBER 

Word 6 

equip-code 

file-mode 

unit-count 

relative- F-cycl e-nbr 

Word 7 

Same as word 7 in 7.2.6.1. 

Word 8 

mode settings 

UN I VA C 11 00 S E R I E S S Y S T EMS 7-8 

See Appendix E 

Bit 29 set - Exclusively assigned file 
Bit 28 set - Read key is needed 
Bit 27 set - Write key is needed 
Bit 26 set - Read-only file 
Bit 25 set - Write-only file 
Bit 24 set - Word addressable drum 

Number of units assigned 

Negative number is indicated by a 1 in bit 17. 

PAGE REVISION PAGE 

The mode settings depend upon the equipment. For all tape units except UNISERVO 
12/16 tape units, the modes are: 

Bits Set 

17 -15 
14 
13 and 12 
13 only 
12 
11 
10 
9 
8-6 

Description 

Not used; contents ignored 
Even parity 
High density 
Medium density 
Low density 
Hardware translate 
Software translate 
User I/O recovery 
Not used; must be zero 

For seven-track UNISERVO 12/16 tape units, the mode settings are: 

Bits Set 

17 
16 

15 
14 

13 
12 
11 
10 
9-8 
7-6 

Description 

Eight-bit packed MSA data transfer format 
Six-bit packed MSA data transfer format 
NOTE: If bits 17 and 16 are both zero, it 

indicates quarter-word MSA transfer. 
High density 
Medium density 
NOTE: If bits 15 and 14 are both zero, it 

indicates low density. 
Data converter (O-on; 1-off) 
Parity (O-even; 1-odd) 
control unit translator 
Not used; must be zero 
Must be set to mode set for hardware 
Not used; must be zero 



4144 Rev. 2 
UP-NUMBER 

Word 10 

reel-index 

fi Ie-extended 

block-extended 

UNIVAC 1100 SERIES SYSTEMS 
PAGE REVISION 

For nine-track UNISERVO 12/16 tape units, the mode settings are: 

Bits Set 

17 - 16 
15 - 14 
13 - 12 
11 
10 
9-8 
7-6 

Description 

Same as seven track 
Must be set to mode set for hardware 
Not used; must be zero 
Density (0-1600 FPI; 1-800 FPI) 
Not used; must be zero 
Must be set to mode set for hardware 
Not used; must be zero 

Index to the current reel of a multireel file. 

I 7-9 
PAGE 

Count of the number of hardware EOF marks encountered (applicable only to 
UNISERVO 12/16 tape units). 

UNISERVO 12/16: Count of the number of physical tape blocks encountered since 
load point or last EOF mark. 

All other tape units: Count of the number of physical tape blocks encountered since 
load point. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 7-10 
PAGE REVISION PAGE 

7.2.6.4. MAGNETIC DRUM PERIPHERALS 

The FITEM$ request packet format is: 

S1 S2 S3 S4 T3 

Word 0 

i nterna I·name 

2 

external-name 
3 

4 

qualifier 

5 

equip-code file-mode 
relative-F-

absolute-F-cycle-nbr cycle-nbr 6 

7 35 34 33 @ASG-control-statement-options 

8 length-of-file-in-words 

9 maximum-file-Iength 

10 

11 not-used 

12 

Word 6 

Same as word 6 in 7.2.6.3. For an absolute drum, the format of word 6 is: 

S1 S2 S3 S4 T3 

equip-code file-mode 
total-nbr- relative-F-

absolute-F-cycle-nbr 
of-units cycle-nbr 

Word 7 

Same as word 7 in 7.2.6.1. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 7-11 

7.2.6.5. COMMUNICATIONS PERIPHERALS 

The F ITEM$ request packet format is: 

Word 0 

2 

3 

4 
I 

5 

6 

7 

8 

9 

-.I 

Word 6 

equip-code 

execution-mode 

carrier-type 

S1 

equip-code 

bitslchar 

CTM-speed 

S2 

execution-mode 

CTM-code 

line-status 

See Appendix E 

CTMC only: 
Os - Half word 
!s - Quarter word 

Os - Leased line 
1s - Telephone 
2s - TELEX· 

*Trademark of Western Union Telegraph Co. 

PAGE REVISION PAGE 

S3 S4 S5 S6 

internal-filename 

external-filename 

qualifier 

carrier-type line-speed-in-bits-per-second 

EOM/ETX-character CTM-options 

not-used 
'" 



4144 Rev. 2 
UP-NUMBER 

Word 7 

bits 

CTM-code 

CTM-options 

WordS 

CTM-speed 

line-status 

UNIVAC 1100 SERIES SYSTEMS 7-12 

Number of bits per character (including parity) 

Indicates type of CTM: 
08 - Standard (monitor) 
18 - NASA 
28 - GSA3EI (external) 
48 - CTM IV (external interrupt with status word) 
68 - CTM VI (external interrupt with status word) 
78 - CTM VII (external interrupt with status word) 

Options are (indicated bit set): 
Bit 10 - Block parity absent (0) or present (1) 

9 - Continuously emitting modem 

PAGE REVISION PAGE 

8 - Release function indicator (for ring interrupt feature) 
7 - ECM/ETX character passed as status word 
6 - Even (0 bit) or odd (1 bit) parity indicator 
5 - Block parity character transferred to CPU 
4 - Space-to-mark transition 
3 - Block parity, character parity, or late input acknowledge 
2 - Ring indicator 
1 - Carrier off 
0- Send data with idle character 

Units speed. Codes are: 
08 - Low 

18 - Medium 
28 - High synchronized 
38 - TELPAK* 
48 - Parallel 

Indicates status of line as follows: 

Bit 20 = 0 - Line is not initialized for idle line monitor. 
= 1 - Line is initialized for idle line monitor. 

Bit 21 = 0 - Dial CL T is operable. 
= 1 - Dial CL T is inoperable. 

Bit 22 = 0 - Output CL T is operable. 
= 1 - Output CL T is inoperable. 

Bit 23 = 0 - Input CLT is operable. 
== 1 - Input CL T is inoperable. 

Bit 24 = 0 - CL T group (input, output, and dial) is not reserved. 
= 1 - CL T group (input, output, and ~:lial) is reserved. 

Bit 25 = 0 - CLT group (input, output, and dial) is not assigned. 
= 1 - CL T group (input, output, and dial) is assigned. 

*Trademark of American Telephone and Telegraph Company. 



UNIVAC 1100 SERIES SYSTEMS 7-13 4144 Rev. 2 
UP-NUMBER PAGE REVISION PAGE 

7.2.6.6. DISC PERIPHERALS 

The FITEM$ request packet format is: 

S1 S2 S3 S4 S5 S6 

Word 0 

internal-name 

2 

external-name 

3 

4 

qualifier 

5 

6 equip-code file-mode granularity 
relative-F
cycle-nbr absolute-F-cycle-nbr 

7 353433 @ASG-control-statement-options 

8 initial-granule-reserve max imum-granu Ie-reserve 

9 largest-track-reference highest-granule-reference 

10 total-pack-count nbr-of-units 

11 

not-used 

12 

Word 6 

Same as word 6 in 7.2.6.3. 

Word 7 

Same as word 7 in 7.2.6.1. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 7-14 
PAGE REVISION PAGE 

7.2.7. ALTERNATE METHODS OF RETRIEVING FACILITY ASSIGNMENT SYNOPSIS (FACIL$ AND FACIT$) 

These linkages obtain a subset of the facility assignments previously defined in 7.2.6. 

To obtain the first nine words of the FITEM$ packet, the following linkage is used: 

L,U AO,pktaddr 
ER FACIL$ 

To obtain the first ten words of the FITEM$ packet, the following linkage is used: 

L,U AO,pktaddr 
ER FACIT$ 

7.2.8. TAPE FILE INITIALIZATION (TINTL$) 

Purpose: 

Causes a specified tape file to be logically rewound so that a subsequent pass can be made from the load point of the 
first reel. 

Format: 

L AO,(function,pktaddr) 
ER TINTL$ 

Description: 

Pktaddr is the address of a two- (or three) word request packet whose format is: 

35 

Word 0 

filename 

2 for-use-on-a-function-1-or-2-request 

Inclusion of a function specification (0-2) in H1 of the register AO indicates the following: 

Function 

o 

2 

Description 

Standard initialization of a tape file 

Standard initialization of a tape file occurs and the reel number of the file's 
initial tape reel is placed in word 2 (the third word) of the request packet. 

If there is no reel number in the initial reel position, the reel number specified 
in word 2 (the third word) of the request packet is placed therein, and normal 
tape file initialization occurs. If a function 2 request is made, however, and 
the initial reel position already contains a reel number, the run is placed in 
error mode. 

o 

Access to the ;reel currently in use is closed. If the initial tape of the file is mounted on the first unit, the tape is simply 
rewound. Otherwise, the tapes on the units involved are rewound, and a LOAD message is issued in order to have the initial 
reel mounted. If there are two units involved, they may be switched in order to ensure that the initial reel is mounted on the 
first unit. 



4144 Rev. 2 
U P.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 7-15 
PAGE REVISION PAGE 

7.2.9. TAPE SWAPPING (TSWAP$) 

Purpose: 

Closes access to the current reel of a tape file and requests loading of the next reel of the file (unless special action is 
requested). 

Format: 

Word 0 

filename 

2 for·use-on-a-fu nction-1-or-2-request 

L AO,(function,pktaddr) 
ER TSWAP$ 

Description: 

Pktaddr is the address of a two- (or three-) word packet whose format is: 

Inclusion of a function in H 1 of the register AO indicates the following: 

Function 

o 

2 

Description 

Standard tape reel swap 

Standard tape reel swap occurs and the reel number of the tape swapped to is 
placed in word 2 (the third word) of the request packet. 

A nonstandard request. A request is made to mount the reel specified in word 2 
(the third word) of the request packet. If this reel is not currently recorded 
as part of the file, it is added as the last reel. 

Access to the reel currently in use is closed and the reel is rewound. A request is issued to mount the next reel of the file. If 
two units are involved in the assignment, the LOAD request specifies the unit other than that which was just in use. 

7.3. TAPE LABELING 

The executive provides a mechanism which: 

(1) honors labeled tapes 

(2) automatically creates a first file header label on a prelabeled blank (allocates the tape to the file being written) 

(3) gives the user the ability to write ANSI-standard tape labels on a prelabeled tape. 

To prelabel a tape the user writes a volume header and a skeleton format first file header at the begining of a tape reel. The 
volume header label and first file header are each 80 characters long and are described in Tables 7-1 and 7-2, respectively. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 7-16 
PAGE REVISION PAGE 

The reel number, if entered on the @ASG control statement, must agree with the reel number in the volume header. If they 
do not agree, an error message is added to the user's print file and the run is put in error mode. 

After a reel is allocated, the qualifier and filename (or project-id and filename) on the @ASG control statement requesting the 
reel must agree with the qualifier and filename on the first file header. If they do not agree, the run is terminated. 

If the file expands to a new reel, the retention period expiration-period parameter on @ASG control statement (see 3.7.1) on 
the new reel becomes one of the following: 

(1) If the expansion occurs on the original assignment, the retention period is the same as for the other reels. 

(2) If the expansion occurs on a subsequent assign with no retention field given, the new reel gets the system standard 
retention period. 

(3) If the expansion occurs on a subsequent assign with a retention period stated, the retention period is the number of 
days stated on the @ASG control statement starting from the date the new reel was allocated. 

Reels become logical blanks after the expiration date has elapsed. 

The label blocks are protected from normal user I/O. A read or move backward function issued by the user does not allow 
him to read anyof the header label fields. When the user issues a read or move backward from his first data block, he receives 
an 28 status in his I/O packet, informing him that he has reached load point. 

A rewind function or @REWIND control statement issued by the user causes the tape reel to be rewound to load point. When 
the user I/O request is issued, the tape is moved forward until it is positioned on the user's first data block or the first block 
past the tape mark. 

Field Length 
Field Contents in Characters Description 

VOL 3 Recognition sentinel 

1 1 Fixed by standard 

reel number 6 Six alphanumeric characters identifying the 
physical reel 

blank or non blank 1 Nonblank indicates restricted access, as the 
tape reel is privately owned 

blanks 26 Unrequired available space 

account number 14 Account number of owner if this is a privately 
owned tape reel (UNIVAC uses a maximum of 12 
characters left-justified, space filled) 

blanks 28 Fixed by standard 

1 1 Fixed by standard 

Table 7-1. Volume Header Label Field Description for Table Labeling 



4144 Rev. 2 
UP.NUMBER 

Field Contents 

HDR 

1 

filename 

UNIVAC 

0001 

0001 

0001 
00 

creation date 

expiration date 

access i bility 

block count 

qualifier 

blanks 

UNIVAC 1100 SERIES SYSTEMS 7-17 
PAGE REVISION PAGE 

Field Length 
in Characters Description 

3 Recognition sentinel 

1 Fixed by standard 

17 Left·justified filename. The first 12 characters 
are referenced by the executive system 

6 Fixed as set identifier when referenced by 
system 

4 Reel sequence number within a file 

4 File sequence number within a reel which is 
fixed at 1 

4 Generation and version numbers which are fixed 
2 at 1 and 0 

6 A blank followed by two characters for the year, 
followed by three characters for the day (001 
through 366) within the year 

6 Same format as creation date field. The date 
after which this tape reel may be considered 
as available for reallocation 

1 A space indicates unlimited access to this 
reel and 

15
8 

- This reel is catalogued (on tape) 
35

8 
- This reel is catalogued, with read key 

55
8 

- This reel is catalogued, with write key 
75

8 
- This reel is catalogued, with read and write keys 

6 Fixed at zeros 

13 Used by the executive system (UNIVAC uses a maximum 
of 12 characters left-justified, space filled) 

7 Fixed by standard 

Table 7-2. First File Header Label Field Description for Table Labeling 

The master file directory may indicate that tape reels have been allocated to a catalogued file before the HDR 1 block on the 
reel has been updated to show that the reel is allocated or HDRl blocks may have been written to indicate that a reel has 
been allocated to a catalogued file for which no master file directory items exist. The following examples illustrate how these 
situations may occur: 

(1) Tape reel numbers specified on a @CAT control statement are entered in the master file directory, but the tape labels 
are not changed to show that they are allocated. Tapes must be assigned to a run before the labels may be changed, 
because tape labels are not filled in to show that the tape is allocated until the first I/O request to a reel is initiated. 
Using the @CAT control statement to catalogue tape files is not advised since tapes which are catalogued in the master 

.. ,..... file directory but not yet referenced on an I/O request are regarded as blank by the system. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 7-18 
PA GE REVISION PA GE 

(2) If a run containing an @ASG,C of a tape file terminates abnormally after the tapes have been referenced, the tape file is 
not catalogued but the HDR1 block shows the tape as allocated to a catalogued file which does not exist in the master 
file directory. These tape reels cannot be referenced by means of a temporary assignment. Master file directory links 
can be reestablished with any of the standard cataloguing control statements (@CAT, @ASG,C, @ASG,U). 

(3) Using a @DELETE control statement for a tape file eliminates a catalogued file without updating the HDR 1 block to 
show the reels as unallocated. 

7.3.1. READING AND WRITING TAPE LABEL BLOCKS (LABEL$) 

Purpose: 

Enables the user to read or write any label block in the first label group on the volume except the VO L 1 block. 

Format: 

L,U AO,pktaddr 
ER LABEL$ 

Description: 

Pktaddr is the address of packet whose format is: 

S1 

Word 0 
ASCII-Fieldata 

translation 

2 

where: 

ASCII-Fieldata-translation 

write- EO F-or-Iabel-block 

label-buffer-addr 

S2 S3 H2 

write-EOF-or 
label-buffer-addr label block 

filename 

If equal to 1, indicates ASCII format label block. 

If equal to 0, the read packet is to be translated to Fieldata format or the write packet is 
to be translated from Fieldata format. 

If equal to 2, write an EOF mark. 

If equal to 1, write a label block. 

If equal to 0, read a label block. 

Label buffer address where a 20-word buffer is required for read and write label requests; 
the buffer is not required for write EOF requests. 

Control is returned to the user at the location immediately following the LABEL$ request after the request has been 
completely processed. Register AO contains the following: 

S1 If set to Os' indicates normal completion; if set to 40s ' indicates abnormal completion (check S2 and S3). 

S2 Contains I/O status (if Os' all I/O has completed normally; if a nonzero value, see status for abnormal I/O in 
Appendix C). 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 7-19 
PAGE REVISION PAGE 

S3 If 18 , indicates invalid label buffer address. 

If 2
8

, indicates that a request was made to read a label following a request to write a label. 

If 4
8

, indicates invalid filename. 

If 68 , indicates an attempt was made to write on a tape file that wa~ not available for writing or an attempt 
was made to write a label following a request to read a label. 

If 108' indicates an invalid request (not 18 , 28 , or 48 ), or a write EOF request following a read of a label, or a 
write EOF request before HDR1 has been written. 

H2 The label buffer address originally supplied by the user. 

7.4. DISC LABELING 

A label record is written on a disc pack when it is prepared by the executive (see 6.7) for use as mass storage. This 
record is only accessable to and used exclusively by the executive. It contains the pack identity and all the information 
necessary to establish executive control over the pack. The pack·id field of the label record is used at assign time to 
guarantee that the requested pack is received (see 3.7.1). 





4144 Rev. 2 
UP.NUMBER 

U N I V A C 11 00 S E R I E S S Y S T EMS 8--1 
PAGE REVISION PAGE 

B. FILE UTILITY ROUTINES CFURPURJ 

8.1. INTRODUCTION 

In addition to the executive control statements, there is a set of control statements recognized by the executive as calls for 
the file utility routines (FURPUR). When the executive encounters a FURPUR control statement, it loads the FURPUR 
processor. FURPUR continues to process control statements until signalled by the executive that the next statement is not a 
FURPUR control statement. 

Table 8-1 summarizes the function of each FUR PU R. control statement. 

FURPUR Control 
Statements 

@CHG 

@CLOSE 

@COPIN 

@COPOUT 

@COPV 

@CYCLE 

@DELETE 

@ENABLE 

@ERS 

@FIND 

@MARK 

Description 

Changes element name, filename, version name, read key, write key, and mode of a file. (See 
8.2.15.) 

Writes two hardware EOF marks on a magnetic tape file and rewinds the tape. (See 8.2.10.) 

Copies elements from an element file located on magnetic tape into a program file on 
FASTRAND-formatted mass storage. (See 8.2.2.) 

Copies a program file, or selected elements from a program file, located on 
FASTRAND-formatted mass storage onto a magnetic tape file in element file format. (See 
8.2.3.) 

Copies a file or element from one file to another. (See 8.2.1.) 

Sets the maximum range of absolute F-cycle numbers to be retained for specified files which 
are listed in the master file directory or sets the maximum number of element cycles to be 
retained for specified symbolic element. (See 8.2.16.) 

Drops catalogued files or marks elements in a program file as deleted. (See 8.2.7.) 

Clears the disable flags for catalogued files. (See 8.2.17.) 

Resets next write location to the first sector of the text area, clears the table of contents, and 
returns to the system all FASTRAND·formatted mass storage allocated to a program file. (See 
8.2.6.) 

Locates an element in a magnetic tape file (file must be in element file format) and positions 
the file before the element's label block. (See 8.2.13.) 

Writes two hardware EOF marks on a magnetic tape file and positions the tape between the 
EOF marks. (See 8.2.9.) 

Table 8-1. Summary of FURPUR Control Statements (Part 1 of 2) 



4144 Rev. 2 
UP-NUMBER 

FURPUR Control 
Statements 

@MOVE 

@PACK 

@PCH 

@PREP 

@PRT 

@REWIND 

UNIVAC 1100 SERIES SYSTEMS 8-2 
PAGE REVISION PAGE 

Description 

Moves a magnetic tape file forwards or backwards over a specified number of EOF marks. (See 
8.2.4.) 

Rewrites an entire program file, removing all elements marked as deleted from the program file. 
(See 8.2.14.) 

Punches program file elements into 80-column cards. (See 8.2.12.) 

Creates an entry point table from the preambles of the nondeleted elements of a program file. 
(See 8.2.11.) 

Provides a listing of the master file directory items for catalogued files, the table of contents of 
a program file, or the text of a symbolic element (see 8.2.5). Listings of absolute or relocatable 
elements may be obtained using the LIST processor (see 18.2.5). 

Rewinds magnetic tape files back to the load point of the first reel. (See 8.2.8.) 

Table 8-1. Summary of FURPUR Control Statements (Part 2 of 2) 

8.1.1. COMMON INFORMATION 

The operand fields may contain a filename (see 2.6.1), an element name (see 2.6.4), or a parameter value, depending on 
the control statement and its use. 

If the filename in any parameter is identical to that specified in the immediately preceding parameter, coding a period in the 
parameter indicates to the FURPUR processor that the same filename is intended. Omitting the filename completely, 
including the period, indicates to the FURPUR processor that TPF$ is intended (only valid if the parameter normally 
specifies a file that resides on FASTRAND·formatted mass storage). 

As with most other system processors, the FURPUR processor automatically assigns any catalogued file that was not assigned 
when the FURPUR control statement is encountered. In many cases, the FURPUR processor requires exclusive use of a file, 
and it places user files in the exclusive-use state as necessary to carry out the specified operation. After use, the FURPUR 
processor automatically returns all files to the assigned status the file has except when the function of the FURPUR control 
statement wsa to alter the file status. Temporary files, except TPF$, must be assigned by the user. 

In most instances, the meanings of options used in FURPUR control statements vary with the statement. The meaning, 
however, of the following options is the same for all FURPUR control statements: 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 8-3 

UP.NUMBER PAGE REVISION PA GE 

A 

C 

R 

S 

Description 

Process absolute elements 

Do not exit through ER R$ if an error is encountered. The FURPUR processor would go on to process 
the next command or parameter field if more than two parameter fields are permitted as in the case of 
the @DELETE,C control statement. The C option can always be used, even when the discussion of the 
options specify 'no options'. 

Process relocatable elements 

Process symbolic elements 

The FURPUR control statements are device dependent as well as file-type dependent. Program files exist only on 
FAST RAND-formatted mass storage, and element files exist only on magnetic tape. Thus, the statement 'the @PCH control 
statement is used to punch program file elements into 80-column cards' necessarily implies a mass-storage-to-card transfer. 
If the program file has been copied onto magnetic tape, the @PCH control statement cannot be used to punch elements into 
cards. The program file elements must be returned to FASTRAND-formatted mass storage priority to the attempt to execute 
the @PCH control statement. 

8.1.2. SIMULTANEOUS USE OF FILES 

The FURPUR processor, in comm.on with other system processors, such as the collector, can directly access catalogued 
program files, even though they have not been assigned to the user's run. The mechanism which the FURPUR processor and 
the other processors use is the same; that is, a dynamic @ASG,AX (see 3.7.1) is done using a CSF$ request (see 4.8.1). These 
processors return each previously unassigned, catalogued file to its original status, using a dynamic @FREE control statement 
(see 3.7.4) with the appropriate options. 

The X option in the @ASG,AX control statement means that the processor is requesting exclusive use of the file by the run 
which called the processor. This is done to make certain that no other runs currently in the system will add or delete 
elements, or otherwise tamper with the file, while the processor is attempting to determine the locations and contents of its 
various tables, pointers, and element texts. 

If a dynamic @ASG,AX is attempted, and another run already has requested the program file assigned, the CSF$ request 
returns with status bit 18 set, which means: request on wait status for facilities. In this case, FURPUR prints a diagnostic 
indicating that the file cannot be assigned and terminates by means of ERR$. 

8.1.3. MULTIREEL FILES 

The FURPUR processor can handle multireel files. The @COPOUT control statement (see 8.2.3) automatically swaps reels 
when an end-of-reel condition is detected. The @COPOUT control statement writes a 14-word the end-of-reel sentinel 
which indicates to the @COPIN control statement (see 8.2.2) that the element being read extends onto a second reel. 

The @REWIND control statement (see 8.2.8) returns the first reel of the file to the user when it returns control. 

The @COPV control statement (see 8.2.1) also permits the reading and writing of multireel files. 

8.1.4. BASIC FILE FORMATS 

Figure 8-1 illustrates the relationships of files to each other. The exact formats have been simplified for clarity; for more 
detail see Section 24. The control statements illustrated are control statements that change the format of the files. 



BASIC FILE FORMATS RECOGNIZED BY FURPUR 

PROGRAM FILE (Mass Storage) 
Random File 

* * LL Table of contents (TOC) 
Program file elements 
usually originate from 
the processors (ASM, 

" 

Q. 

* * 
Points to location of specific elements 

etc.) or from the@COPY,1 
control statement 

Element -I 1 Element Element 1 1 Element 1 
~ ELEMENTS 

1 ~;~Q " Types: (a) Symbolic (SDF format) 
'--____ ....1 _________ (b) Relocatable 

(c) Absolute 

Element 1 1 Element 

,. .... "/" 

" " " ,. 

.... 
@EO,O" 

(ED processor) 

,. 

.. Makes an element into 
,." an SOF·formatted file. 

/" 

SDF·FORMATTED FILE (Tape or Mass Storage) 
Sequential File- Symbolic only 

5001 

*SDFF* 

f-
f-
f-

l-
f-

-
~ 

-./"'"- ........ 
I:=:-" --
l-
I-
I-

7777 , ----

} Each group of words is a data image. 

An SOF·formatted file would 
typically be a run stream as 
created by the DATA processor. 

;I' 
./ 

@COPY,I 

Inserts an SDF·formatted 
file into a program file as 
an element. 

@COPIN @COPOUT 

Converts element file Converts program file 
to program file format. to element file format. 

ELEMENT FILE (Tape Only) 
Sequential File (No TOC) 

TAPE FILE 

The main purpose of an **EF**;:n :;e:e~ f-;;: -::'a-; , 
element file is to save a be one of many files 

File 1 ofthis 
tape 

program file on tape for on a tape file. 
future use. 

ELEMENTS 
Types: 
(a) Symbolic 

(SOF format) 
(b) Relocatable 
(c) Absolute L...-___ --.J,I 

I 
I 

I 
/ 

/ 

I 
I 

/ 

/ -EOF mark 
/ File 2 of this 

/ tape 
t--------I-EOF mark 

"......,,-
--.... 

1-------1-1 .. • -EOF mark 
File n of this 

tape 

Two EOF marks -
Normally indicates 
end of writing on 
this tape (EOT) 

Figure 8-1. FURPUR Control Statements Used to Alter File Formats 

c ~ 
11 ~ 
Z ~ 
C JJ 
~ (1) 

III ~ 
1'1 t.) 

:u 

11 
l0-
G) 

1'1 

:u 
fTl 
< 
CJI 

o 
z 

11 
l0-
G) 

c: 
z 
< 
~ 
n 

Q 
Q 

en 
m 
:;0 

m 
en 
en 
-< 
en 
-I 
m 
~ 
en 

fTloo 
I 
~ 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 8-5 
PAGE REVISION PAGE 

8.2. FURPUR CONTROL STATEMENTS 

Paragraphs 8.2.1 through 8.2.17 describe the various FURPUR control statements. The most frequently used control 
statements are presented first and the infrequently used control statements are presented last. 

8.2.1. FILE COPVING (@COPV) 

Purpose: 

Copies a file or element to another file. 

All parameters of the @COPV control statement are optional except name-1 and name-2. 

Format: 

@label:COPV ,options name-1,name-2,no.-of-files 

Parameters: 

options 

name-1 

name-2 

no.-of-fi les 

Option 
Character 

No option specified 

A, R, S 

See Table 8-2 for file options and Table 8-3 for element options. See 8.1.1 for 
additional information on the A, C, R, and S options. 

Specifies the input file or element to be copied. 

Specifies the output file into which the input file or element is to be copied. 

Used only for tape-to-tape copying of entire files. It specifies the number of input files to 
copy onto the output tape. If omitted, one file is copied onto the output tape. When an 
attempt is made to copy an empty file (two hardware EOF's) I the copy operation is 
immediately terminated regardless of the contents of the no.-of-files parameter. The input 
tape remains positioned following the last EOF mark of the last file copied. The number 
of blocks in each file copied and the number of files copied are indicated in the output 
tisting. 

Description 

FASTRAND-to-FASTRAND Copying - Overwrite one mass storage file (name-2) with the 
contents of another mass storage file (name-1), without regard to the fi les format. 

Tape-to-Tape Copying - Copies one or more files (depending on no.-of-files parameter) from 
the input tape to the output tape without regard to the file's format. No hardware EOF 
marks are written (see M option). 

Copy the elements of the type specified from one program file and add them to another. 
Both program files must be located on FASTRAND-formatted mass storage. 

All elements of the type specified by the selected options are copied into the output file. 
Any combination of A, R, and S can be used. 

Table 8-2. @COPY Control Statement, Options Applicable when Filenames are Specified (Part 1 of 3) 



4144 Rev. 2 
UP-NUMBER 

Option 
Character 

F 

G 

M 

N 

UNIVAC 1100 SERIES SYSTEMS 8-6 
PAGE REVISION PAGE 

Description 

Copy the contents of one file into another file. Program and element files must not be 
copied using this option. The input file must be in SDF format. Reading of the input file is 
terminated by the SDF EOF mark. Block sizes for tape files must be 224 words. When the 
output file is a magnetic tape file, two hardware EOF marks are written following the file 
and the tape is positioned between the two EOF marks. 

When used with the M option, copy a FASTRAND-formatted mass storage file to magnetic 
tape. When used without the M option, copy a magnetic tape file produced by the 
@COPY,GM control statement back onto mass storage. 

FASTRAND-to-Tape Copying - Each track of the file, beginning with relative track 0, is 
prefixed with its relative track number and written onto the tape. The @COPY operation is 
terminated after the highest track referenced in the file has been written to tape. The first 
block in the output file is a label block that indicates the file format (@COPY,G). The M 
option writes a EOF mark on the tape. 

Tape-to-FASTRAND Copying - The first two words of each tape block provides the relative 
track number into which the block (minus the first two words) is to be written. The @COPY 
operation is terminated when an EOF mark is encountered on the input file. 

Since track-size blocks of data are transferred on a @COPY,G operation without regard to 
forl)'lat of the contents, the transfer is done relatively qu ickly and the files contents are not 
changed. The G option provides an efficient method of saving and recreating FASTRAND
formatted files. 

Used to add an SDF-formatted file to a program file as a symbolic element. 

name-1 - Specifies the input file in SDF format. 

name-2 - Specifies the output file and element name. 

The SDF-formatted file being copied is entered into the program file (located on 
FASTRAND-formatted mass storage) as a symbolic element with an element cycle of O. 
Reading of the input file (which may be either tape or FASTRAND-formatted mass storage) 
is terminated by an SDF EOF mark. 

The option can be specified only when the output file is a magnetic tape file. 

FASTRAND-to-Tape Copying - used with the G option to copy a FASTRAND-formatted 
mass storage file to magnetic tape. Two hardware EOF marks are written on the tape 
following the file copied, and the tape is positioned between the two EOF marks. 

Tape-to-Tape Copying - Used without other options or with the N option for tape-to-tape 
copying of one or more files (depending on no.-of-files parameter). If more than one file is 
being copied, a hardware EOF mark is written on the tape following each file copied except 
the last, where two hardware EOF marks are written and the tape is positioned between the 
two. 

Copy a magnetic tape file containing an abnormal frame count to another magnetic tape file 
or to a FASTRAND-formatted mass storage file. When the output file is tape, the M option 
may be used along with the N option to write hardware EOF marks. 

Table 8-2. @COPY Control Statement, Options Applicable when Filenames are Specified (Part 2 of 3) 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 8-7 
UP-NUMBER PAGE REVISION PAGE 

Option 
Description 

Character 

P Used to copy all nondeleted elements from one program file and add them to another. Both 
program files must be located on FASTRAND-formatted mass storage files. 

V Copy one file into another file. The input and output files must not both be on magnetic 
tape or FAST RAND-formatted mass storage. 

FASTRAND-to-Tape Copying - Variable block size is assumed. The first word of the block 
(containing the block size) is stripped from the block before it is written into the tape file. 

Tape-to-FASTRAND Copying - A word containing the block size is prefixed to the block 
before it is written on FASTRAND-formatted mass storage. The input tape file must be 
terminated by a hardware EOF mark. 

A copy to or from FASTRAND-formatted mass storage always begins in sector 0 and each 
block starts in a new sector. If the block size is not divisible by 28, the excess words of the 
last sector contain random data. 

Table 8-2. @COPY Control Statement, Options When Filenames Are Specified (Part 3 of 3) 

Option 
Description 

Character 

A, R,orS Copy the specified element in the input program file and add it to the output program file. 
The options represent the types of elements to be copied (one or more is needed). The 
element name can be changed by renaming it in name-2. Both input and output files must be 
on FASTRAND-formatted mass storage. 

Table 8-3. @COPY Control Statement, Options Applicable When Element Names Are Specified 

Descri ption: 

See 2.6.1 for additional information on specifying file names. 

When any of the A, P, R, or S options are used, the procedure name entries are automatically added to the output file's 
procedure name table. If a relocatable element is copied, the output file's entry point table is destroyed and the @PREP 
control statement (see 8.2.11) must be used to recreate it. 

Before doing any copy operation from tape, it may be necessary to execute a @MOVE control statement (see 8.2.4) to 
position the tape beyond some EOF mark. No @COPY operation will move backward or forward over an EOF mark prior to 
the start of the copy. 



4144 Rev. 2 
UP-NUMBER 

UN I VA C 1100 S E R I E S S Y S T EMS 8-8 
PAGE REVISION PAGE 

Examples: 

In the following examples, tape filenames start with a T, and FASTRAND-formatted mass storage filenames start with an F. 

,\ OPERA TlOH 
10 20 30 

OPERAND 

I ! i I I 

;\ 
40 

! ! ! ! I I I ! t I 

1. The contents of FASTRAND-formatted mass storage file FLAP4 is copied into FASTRAND-formatted mass storage 
file F LAP5 over writing any previous contents of the F LAP5 file. 

2. The nine files which form magnetic tape file TRAP3 are copied into magnetic tape file TRAP6. Each file in output file 
TRAP6 is separated by EOF marks as directed by the M option. The last file copied into the output file is followed by 
two EOF marks and the output file is positioned between the two final EOF marks. 

3. Copy the contents of FASTRAND-formatted mass storage file FI LLUP into magnetic tape file TANK. Two EOF marks 
are written at the end of the output file (TAN K) and the tape is positioned between the two EOF marks (M option). 
Since file TANK is in @COPY,G format, the @FIND and @COPIN control statement cannot be used to access the file; 
however, @COPY,G format makes more economical use of time and space. The entire file, as it was before this 
operation was initiated, including all tables of contents and deleted elements, is reproduced when the file is returned to 
FASTRAND-formatted mass storage using a @COPY,G control statement. Do not attempt to merge two program files, 
each of which were saved on tape using the @COPY,GM control statement because the second file would overlay the first. 

4. The nondeleted elements of program file FLYBY are copied into program file FLIGHT. 

5. The contents of input file FLIP, which is in SDF format, are copied into output file FORK in program file format. 
Input file F LIP is entered in FOR K as an element having UPT3 as its element name and I NOUT as its version name. It is 
set at element cycle O. 

6. The nondeleted relocatable and symbolic elements (R and S options) located in program file FOR6 are copied into 
program file FOR9. 

7. The nondeleted relocatable and symbolic elements with element name C (version name of spaces) in program file FIRM 
are copied into program file F I REUP as elements with element name A (version name of spaces). 

8. Magnetic tape file TAP1 is copied onto magnetic tape TAP2. Two EOF marks are written on TAP2 and the tape is 
positioned between the two. File TAP1 may contain abnormal frame counts. 

9. The contents of file F1 are copiedontofile F2. File F1 must be an SDF-formatted file. 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 8-9 
UP-NUMBER PA GE RE VISION PA G E 

8.2.2. COPYING FROM TAPE TO PROGRAM FILES (@COPIN) 

Purpose: 

Used to copy one or more elements from an element file located on magnetic tape into a program file located on 
FASTRAND-formatted mass storage. 

All parameters of the @COPIN control statement are optional except name-1. 

Format: 

@label:COPIN,options name-1,name-2 

Parameters: 

options 

name-1 

name-2 

Description: 

See Table 8-4 for file options and Table 8-5 for element options. See 8.1.1 for 
additional information on the A, C, R, and S options. 

Specifies the input element file or input element to be copied. 

Specifies the output program file, or output program file and element name. If name-1 is 
an element name and name-2 is a file name, the element will retain its name in the new 
file. 

See 2.6.1 for additional information on specifying file and element names. 

Procedure names are saved, but the entry points were discarded when the program file was converted to an element file with a 
@COPOUT control statement (see 8.2.3). When a relocatable element is added to a program file, any entry point table that 
may have existed for the file prior to the execution of the @COPIN control statement is destroyed. The @PREP control 
statement (see 8.2.11) may be used to recreate the entry point table. If a tape error occurs, only those elements transferred 
before the error occurred are entered in the program file's table of contents. 

Option Description 
Character 

No option specified Copies elements from the input magnetic tape file (in element file format) into the program 
file located on FASTRAND-formatted mass storage. The tape file must be positioned at the 
label block of the first element being copied (use @FIND control statement - see 8.2.13) 
and continues until a hardware EOF mark is encountered. The elements retain the element 
name they had in the element file. 

A,R,S Same operation as if no options were specified except that the A, R, and S options can be 
used to designate the type of elements to be copied. Any combination of A, R, and S can be 
used. All elements of the types specified are transferred. The elements retain the names they 
had in the element file. 

V Same as for elements (see Table 8-5). 

Table 8-4. @COPIN Control Statements, Options Applicable When Filenames Are Specified 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 8-10 
PAGE REVISION PAGE 

I. 

2. 
3. 
4. 

Option 
Character 

A,R,S 

v 

Examples: 

LABEL 
10 

Description 

One element is copied and inserted into the output program file. The input tape must be 
positioned (with the @FIND control statement - see 8.2.13) to the correct element to be 
copied. The option and element specified must match the type and element to which the 
tape is positioned. Only one option may be specified. The element name remains the same 
unless renamed in name-2. 

Used to copy elements having the same version name from an element file on magnetic tape 
into a program file on FASTRAND-formatted mass storage. The input file must be 
positioned at the label block of the first element to be copied and copying continues until a 
hardware EOF mark is encountered. 

name-1 - Specifies an input file, or input file and element version name. 

name-2 - Specifies an output file, or output file and element version name. 

When the version name is omitted from name-1, only those elements having a blank version 
name are copied into the output file. When the version is omitted from name-2, the elements 
retain the version names they had in the input file. 

The V option may be user with the A, R, and S options to select particular types of elements 
within version names for copying. 

Table 8-5. @COPIN Control Statement, Options Applicable When Element Names Are Specified 

,\ OPERA nOM OPERAND :\ 
40 

COMMEMTS 
SO 

.L ... _L.._ .. .L_L_l.-L_L ... .1 ..... L ..... L .. _L._L-LJ .... _1 .... .1 ..... 1.. ..... 1. 

.1 ....... L .. _L......L...J. .....• l ....... l... ..... L. .. 1.J ... _L .. 1 . ...J. ...•... L ...... 1. .1 ... J ...... l 

. .. 1 ....... .1 __ ... L--L-Li-L_._.l ....... L. ...... l ...... ~.....-L. .. _.1 ! 

L ..•.. L __ L_L_L-L.l_ .. Ll ...... ..L ..... I ...... L_.L.:......L .. L.l. .... .l .... .1 ... 1. . .1 

5.~~~~~~~~~~~~~~~~~~. I i I ! I , I I I ' I ! ! I I I I ! I 

_1 ___ l._...L .. .1-L..L---L..l.-.l_ .. L ... 1 ....... .l._ ... J .• ...i---L-L.L_L-L_..L..l ..... l ..... 1. .. _ .. .J_._ .• .L-L-l --,--,---,--,--I LL .. .1 ...• 1 .. _ . ..l-.l __ L_L_L . .l ... L .. _L.--'--..i-.."'---'--L., .•... 1... ... 1 

1. Element file HOLDPROG located on magnetic tape is copied and reformatted into program file format and added to 
program file PROGRAM on FASTRAND-formatted mass storage. 

2. Relocatable element E L TA in element file TEMP is copied into program file PF 1. The tape must be prepositioned to 
the label block of relocatable element ELTA. The entry point table of file PF1 is not updated (a @PREP control 
statement is needed to update the entry point table - see 8.2.11). 

3. All relocatable elements in element file A with the version name B are copied into program file C. They retain the 
version name B in the program file. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 
PA GE RE VI SION 

8-11 
PAGE 

4. All symbolic elements in element file A with a blank version name are copied into program file C. These elements added 
to the program file have a blank version name. 

5_ The relocatable element in element file PET with the element name EL T3 and a blank version name is copied into 
program file REPET and given the element name VERS6 with a blank version name. The tape must be prepositioned 
to the label block of the relocatable element E L T3 with a blank version name (use a @FIND control statement -
see 8.2.13). 

8.2.3. COPYING PROGRAM FILES TO TAPE (@COPOUT) 

Purpose: 

Copies a program file, or selected elements from a program file, located on FASTRAND-formatted mass storage into a 
magnetic tape file in element file format. 

All parameters of the @COPOUT control statement are optional except name-2. 

Format: 

@label:COPOUT,options name-l,name-2 

Parameters: 

options 

name-l 

name-2 

Description: 

See Table 8-6 for file options and Table 8-7 for element options. See 8.1.1 for 
additional information on the A, C, R, and S options. 

Specifies the input program file or element to be copied 

Specifies the output element file, or output element file and element/version names. 

See 8.1.1 for additional information on specifying file names. 

Procedure name entries are saved but entry points are discarded. Tape files must be in element file format in order to use the 
@FIND and @COPIN control statements (see 8.2.13 and 8.2.2, respectively). 

If either the A, R, S, or V option is specified the @COPOUT control statements, an EOF mark is not written aut'omatically 
and a final @MAR K control statement (see 8.2.9) may, therefore, be necessary. 

Option 
Character 

No option specified 

A,R,S 

V 

Description 

All nondeleted elements are written onto the magnetic tape output file in element 
file format. Two EOF marks are written at the end of the file and the tape is backspaced one EOF 
mark. Elements retain the element name they had in the program file. 

All nondeleted elements of the types specified by the options are written onto the magnetic 
tape output file in element file format. The elements retain the names they had in the program file. 
Any combination of A, R, and S can be used. 

Same as for elements (see Table 8-7). 

Table 8-6_ @COPOUTControl Statements, Options Applicable When Filenames Are Specified 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 8-12 
PAGE REVISION PA GE 

/. 

Option 
Character 

A, R,S 

v 

Example: 

LABEL 

Description 

All specified element types for the element names given are written into the output magnetic 
tape file in element file format. Only nondeleted elements are transferred. If the name-2 
element name is different than the name-1 element name, all elements copied have the new 
name. One or more options must be specified. No EOF mark is written. 

All nondeleted elements, selected by version name and type, are written onto the magnetic 
tape output file in element file format. The V option may be used in combination with the 
A, R, and S option. When it is used alone, all element types are considered. 

name-1 - Specifies an input file, or an input file and element version name. File, 
must be on FASTRAND-formatted mass storage and be in program file 
format. 

name-2 - Specifies an output file, or an output file and element version name. 

If the version name is omitted from name-1, on Iy those elements with a blank version name 
are considered for copying into the output file. 

When a version name is given in name-2, it replaces the original version name. When the 
version name is omitted from name·2, the elements written into the output file retain the 
names they had in the input file. 

Version Mask - An * in the version name in name-1 causes the character in the corresponding 
position in the version names of the elements in the input file to be ignored. For example: 
TAB'/**D********* in name-1 would write all nondeleted elements in file TAB with a D as 
the third character in their version name into the output file. The V option must be specified 
when the version mask is used. 

Table 8-7. @COPOUT Control Statement, Options Applicable When Element Names Are Specified 

i\ OPERATION \ 
10 20 

OPERAND ,\ 
30 40 

COMMENTS 
50 

J ....... L ...... L . .L.....J........L ... 1 .... .L .... L.J ..... L ..... L.L ... .J ... t ... 1 ..... .1 

.. L.. ..... L ... ..l .... .l. ..•... L ... L ..... L . ..L. ..... L. .. L ..... L. .... L ... ..1 ....... .1 .... .l ......• L. ... .L .. ..L .....• L ..... L. .... .1 ..... .1 ... ..! .... L .. 1 ....... L. .... 1. ..... .1 .... i ...... L .... .l 

.. J ....... L...1 ..... LL ..... .L.....J.......J...L.L.L ... L..1. ..... ..J .... L.1 .............. ' -'-; . ....L.l ....... LL..J ..... l.........L ... L ... .L ..... L ... J. .. .1 

... .l ....... L. ... L...L . ..L ... LL . ..1 ....... L .. .1 .... .1 ..... .1 .J .... ..J ... ....l-.L...L .. ~.L .... .1 .... L ..... L..J.....J. . ......L...J. ....... L .... .1 .... 1 ...... 1-...l 

! ! i ! ! I j 

--,--,---,--,-I ... L .... L .1. ..... L ........... , ......I........J.....' ...... ' ...... L. .. 1 ... .L ..... L......l.... . ..L......L....Ll.. ...•. L ... l 

.... L. ..•. L .... L.1 I I I I . .1. ..... 1 .... L. .... L.L ... ~L_.L .... L .... L .. J..J . ....J.. 

L ... LL.L .. L .... L. ..• .J •...• L .... L.J. I I I I _.1...._1... .... 1.. .. L .. ..l ....... L....l.........L.L...L-l ........ L.....L.l_L. ... L I I I I , , I .J_L ... l ...... L ... l ...... .J._L .... I........1. ....... L..J ....... L .... J. ..... L.L.J.........L. ..... ...L 

1. The contents of program file PROG RAM located on FASTRAND-formatted mass storage are copied into magnetic tape 
file HOLDPROG and reformatted as an element file. Since no options are specified, two EOF marks are written 
following the output file, and the tape is positioned between the EOF marks. 



4144 Rev. 2 UNIVAC 1100 SE RI ES SYST EMS 8-13 
UP-NUMBER PA GE RE VISION PA G E 

2. The nondeleted elements of program file C located on FASTRAN D-formatted mass storage are copied into magnetic 
tape file D and reformatted as an element file. No EOF marks are written following the file (option having been 
specified). 

3. All nondeleted relocatable elements in program file A located on FASTRAND-formatted mass storage are copied into 
magnetic tape file B and reformatted as an element file. No EOF marks are written following the file. 

4. Symbolic element B in program file A is copied into magnetic tape file C in element file format and given element name 
D. 

5. All nondeleted symbolic elements in program file A with a version name of B are copied into magnetic tape file C and 
retain the version name B. File C is in element file format. 

6. All nondeleted absolute elements in program file A with a blank version name are copied into magnetic tape file C. File 
C is in element file format. 

7. All nondeleted elements in program file A with a version name containing a B as the second character are copied to 
magnetic tape file C. The version names are unchanged. 

8.2.4. POSITIONING TAPE FILES (@MOVE) 

Purpose: 

Moves a magnetic tape file forward or backwards over a specified number of EOF marks. 

All parameters in the @MOVE control statement are required except label and options. 

Format: 

label :MOVE,options filename,n 

Parameters: 

options The B option is the only valid option. If specified, tape movement is backward; if omitted 
tape movement is forward. 

filename Specifies the name of the tape file. 

n Specifies the number of EOF marks to be skipped. 

Description: 

Tape movement in the forward direction leaves the tape positioned at the start of the file on a multifile reel. 

Care must be exercised when moving tape in the backward direction. Assume that tape file BOB is positioned at file 6: 

DESIRED 
TAPE POSITION 

CURRENT 
TAPE POSITION 

') 

* 
l ~ , 

E E E E E E E 
( 

TAPE FILE BOB 0 file 1 0 file 2 a file 3 0 file 4 a file 5 0 file 6 0 file 7 

~ F F F F F F F -) , 
J 

POSITION A 

To position the tape to the start of file 2, the following sequence must be executed: 

@MOVE,B BOB,5 

@MOVE BOB,1 

Step 1 moves to tape to position A, and step 2 moves the tape to the start of file 2. 

If a @MOVE,B control statement for a multireel tape file encounters the load point of the file it is currently on, a diagnostic 
message is given and the E R R$ exit is taken. 

l 



4144 Rev. 2 UN I V A C 1100 S E R IE S S Y S T EMS 8-14 
UP_NUMBER PAGE REVISION PAGE 

8.2.5. LISTING FILES AND MASTER FILE DIRECTORY (@PRT) 

Purpose: 

Obtains a listing of the text of a symbolic element, the table of contents of a program file, or the master file directory items 
(see Section 22) of catalogued files. The control statement does not list absolute or relocatable elements, as this may be done 
by the LIST processor (see 18.6). 

All parameters in the @PRT control statement are optional. 

Format: 

@label:PRT,options name-1,name-2 ... ,name-n 

Parameters: 

options 

names 

Option 
Character 

No option specified 

F 

L 

N 

P 

T 

See Table 8-8 for options (applicable to files, project-ids, and account numbers) and 
Table 8-9 for element options. 

Specifies any of the following: 

• the name of a catalogued file in any format 

• the name of a program file 

• the name of a symbolic element 

• the name of an account number 

• the name of a project-id 

Description 

When no parameters are specified, the entire master file directory is listed. The read/write 
keys are not included in the listing except when the SYS$*DLOC$ file (see 22.3) is assigned. 
The items are listed first by project-id, then by account number, and then by qualifier and 
filename. 

List the information from the master file directory items for each catalogued file specified, 
subject to existing system security regulations. The read/write keys are not listed except 
when the SYS$*D LOC$ file (see 22.3) is assigned. 

Used with the T option (in a demand run) to obtain a long rather than a short listing of a 
program file's table of contents. This option is meaningful only for demand runs. 

List the information from the master file directory items for each account number specified, 
subject to existing system security regulations. The read/write keys are not listed except 
when the SYS$*DLOC$ file (see 22.3) is assigned. When no account number is specified, the 
entire master file directory is listed, first by account number, then by project-id, and then by 
qualifier and filename. 

List information from the master file directory items for each project-id specified, subject to 
existing system security regulations. The read/write keys are not listed except when the 
SYS$*D LOC$ file (see 22.3) is assigned. When no project-id is specified, the entire master 
file directory is listed, first by project-id, then by account number, and then by qualifier and 
filename. 

List the table of contents for each specified program file (located on FASTRAND-formatted 
mass storage). 

Table 8-8. @PRT Control Statement, Options Applicable When Filenames, Account Numbers, or Project-ids 

Are Specified 



, 
" .. ' 

4144 Rev. 2 
UP-NUMBER 

Option 
Character 

No option specified 

S 

T 

UNIVAC 1100 SE RI ES SYSTEMS 8-15 
PAGE REVISION PAGE 

Description 

List the text of the specified symbolic elements. 

Same as if no options were specified 

List the table of contents for each element specified. All element types (A, S, R) with the 
specified element name are listed. 

Table 8-9. @PRTControl Statement, Options Applicable When Elements Are Specified 

Description: 

When the @PRT control statement is used to obtain a listing of the master file directory, the read/write keys and the 
project-id's are replaced by slashes (/ / / / / I)' except for those files that have the same project-id as the run making the request. 
For more information, see 22.3.1. 

The table of contents information output from the execution of a @PRT,T control statement contains heading information 
describing the contents of the table of contents. Some of the heading information is not self-explanatory. These are: 

Element Table: 

DELETE FLAG 

TYPE 

DATE AND TIME 

SEOU ENCE NO. 

SIZE-PRE,TEXT 

CYCLE WORD 

PSRMODE 

Location (Relative 
Sector No.) 

An asterisk means entry deleted. No other symbol is used. 

If the element is symbolic, the processor which created the element is indicated. 

Time that element was created or, in some cases, when it was added to this file. 

The element sequence number is the position of the element in this file (this is 
sequentially issued) as elements are added to the file. 

TEXT is the text size in sectors (a sector is 28 words). PRE is the preamble size in sectors 
(relocatable elements only). 

The first field is the maximum number of cycles (cycle limit) to be maintained for the 
unit (see 2.6.5). The second field is the most current cycle (absolute). The third field is 
the number of cycles currently being maintained. 

Blank if element does not contain third- or quarter-word mode operations. 

OUARTR if element is quarter-word sensitive. 

TH I R 0 if element is third-word sensitive. 

Refers to the sector position of the start of the text. 

Procedure Table (Assembler, COBOL, FORTRAN): 

DELETE FLAG An asterisk means entry deleted. No other symbol is used. 

LOCATION Refers to the word position relative to the start of the file. 

LINK The sequence number of the element that contains this procedure name. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SE RIES SYSTEMS 8-16 
P AGE REVIS ION PA GE 

Entry Point Table: 

NAME Name of externally defined symbol. 

LINK The sequence number of the element that contains this entry point. 

The @PRT,TL control statement from a demand terminal results in the listing at the demand terminal of the table of contents 
in the format described above. When using the TL options; if an element name is given in addition to the filename, the table 
of contents is listed for the specified element only. 

When the L option is omitted, the @PRT,T control statement from a demand terminal results in the following short-form 
table of contents format: 

. where: 

type 

cycles 

Examples: 

type element-name/version(cycles) 

Indicates the type of element. The element type codes are: 

ABS 
ALG 
ASM 
ASMP 
COB 
COBP 
DOC 
ELT 
FOR 
FORP 
MAP 
REL 
SYM 

- Absolute element 
- ALGOL symbolic element 
- Assembler symbolic element 
- Assembler procedure 
- COBOL symbolic element 
- COBO L procedure 
- DOC processor symbolic element 
- EL T processor symbolic element 
- FORTRAN symbolic element 
- FORTRAN procedure 
- Collector (MAP processor) symbolic element 
- Relocatable element 
- Symbolic element of unspecified type 

Indicates the number of element cycles accumulated 

I , i , i , ! I 

1. The table of contents for program file PROGFILE is listed following the format given in Description. The period must 
follow the filename; otherwise, the specified name is considered to be an element name in TPF$. 

2. The most recent cycle of symbolic element SAM, version XYZ, in program file PROGFILE is listed. 

3. Information from the master file directory items for all catalogued files whose project-id is MERCURY is listed subject 
to current system security restrictions. This information is completely labeled to prevent any ambiguities as to the 
meaning of any entry in the listing. The project-id MERCURY must be the same as the run's project-ide If not, no 
listing is generated. 

4. A complete table of contents is to be given for element E LEY in TPF$. 



".' 

4144 Rev. 2 UN I V A C 11 00 S E R I E S S Y S T EMS 8-17 
UP-NUMBER PAGE REVISION PAGE 

8.2.6. EMPTYING A PROGRAM FILE (@ERS) 

Purpose: 

Resets the next write location to the first sector of the text area, clears the table of contents, and returns to the system all 
FASTRAND-formatted mass storage granules allocated to a program file. 

All parameters in the @ERS control statement are optional. 

Format: 

@label:ERS filename-1,filename-2, ... ,filename-n 

Parameters: 

filenames Specifies the program files to empty. 

8.2.7. DELETING FILES AND ELEMENTS (@DELETE) 

Purpose: 

Drops catalogued files or marks elements in program files as deleted. 

All parameters in the @DELETE control statement are optional except name-1. 

Format: 

@label:D E L ETE,options name-1,name-2, ... ,name-n 

Parameters: 

names 

options 

Specifies the catalogued file or the element to be deleted. 

See 8.1.1 for additional information on the A, C, R, and S options. 

II No Options Apply When Deleting a Catalogued File 

Each catalogued file specified is marked as dropped. The filenames specified 
may be external or internal. 

When an external filename is specified, the F-cycle must be specified if it is 
not the latest F-cycle. If the file has read/write keys and is to be assigned to 
the run by the FURPUR processor, the read/write keys must be specified. 
The keys may be omitted if the file was assigned prior to calling the FURPUR 
processor. 

If an internal filename is used, it must have been attached to an external 
filename by means of a @USE control statement (see 3.7.5). 

The file is not actually dropped until all other runs that have the file assigned 
to them have freed the file. When the file is dropped, the master file directory 
items are updated. The older F-cycles have their relative F-cycle increased. 

See 2.6.3 for a discussion of file cycles. 



4144 Rev. 2 
UP-NUMBER 

Description: 

UNIVAC 1100 SERIES SYSTEMS 8-18 
PAGE REVISION PAGE 

• Deleting Elements 

When the A, R, and S options are specified, an element of that type in a 
program file is marked deleted. Each entry in the operand fields names the 
element and the program file that contains it. Any combination of A, R, and 
S options may be used, but at least one must be specified. 

Each element specified in the @DELETE control statement must exist as a 
nondeleted element before the @DELETE control statement is encountered. 
Including a cycle number for a symbolic element is illegal; all cycles of the 
element must be deleted. All procedure names associated with the deleted 
element are marked as deleted and the entry point table is destroyed. A 
@PACK control statement (see 8.2.14) may be used to physically eliminate 
the deleted elements. 

The effect of a @DELETE control statement on a catalogued file is the same as the sequence: 

@ASG,AYQ 
@FREE,D 

Examples: 

LABEL ,\ 
10 

FILEA 
FILEA 

OPERATION 
20 

OPERAND !\ 
40 

COMMENTS 
50 

1. The symbolic elements EL T1/VERS in program file F and EL TY in program F1 are marked as deleted. Any associated 
procedure names are also marked as deleted. 

2. Relative F-cycle -0 of catalogued files FLAP, TARE5, ZEBRA4, and BAKER is dropped from the master file directory 
(the files are decatalogued). 

8.2.8. REWINDING TAPE FILES (@REWIND) 

Purpose: 

Rewinds magnetic tape files back to the load point of the first reel. 

All parameters in the @R EWI N D control statement are optional except fi lename-1. 

Format: 

@Iabel: R EWI N D,options filename-1,filename-2, ... ,filename-n 

Parameters: 

options 

filenames 

The C (see 8.1.1) and I options are the only valid options. If the I option is specified, the 
tape file is rewound with interlock; if omitted, the tape file is rewound without interlock. 

Specifies the tape files to be rewound. 



4144 Rev. 2 UN I V A C 1100 S E R I E S S Y S T EMS 8-19 
UP-NUMBER PAGE REVISION PAGE 

8.2.9. MARKING AN EOF ON TAPE (@MARK) 

Purpose: 

Writes two hardware EOF marks on a magnetic file and leaves the tape positioned between them. Some FU RPUR control 
statements do an automatic @MARK or can be made to do a @MARK by specifying the M option. 

All parameters in the @MARK control statement are optional except filename-1. 

Format: 

@label:MARK filename-1,filename-2, ... ,filename-n 

Parameters: 

filenames Specifies the tape files on which hardware EOF marks are to be written. 

8.2.10_ CLOSING TAPE FILES (@CLOSE) 

Purpose: 

Writes two hardware end-of-file (EOF) marks on a magnetic tape file and then rewinds it. 

All parameters in the @CLOSE control statement are optional except @, CLOSE, and filename-1. 

Format: 

@label:CLOSE,options fi lename-1, fi lename-2, ... , fi lename-n 

Parameters: 

options 

filenames 

The C (see 8.1.1) and I options are the only valid options. If the I option is specified, the 
tape is rewound with interlock; if omitted, the tape is rewound without interlock. 

Specifies the tape files to be closed. The tapes are then rewound. 

8.2.11. ENTRY POINT TABLE CREATION (@PREP) 

Purpose: 

Creates an entry point table from the preambles of the nondeleted elements of a program file. 

All parameters in the @PR EP control statement are optional. 

Format: 

@label:PREP filename-1,filename-2, ... ,filename-n 

Parameters: 

filenames Specifies the program files for which entry point tables are to be created. 

Description: 

If a previous entry point table existed, it is destroyed prior to creating the new one. Note that whenever a relocatable element 
'"'_.... is added to or deleted from a fiie, any existing entry point table is deleted. 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 8-20 
UP.NUM8ER PAGE REVISION PAGE 

8.2.12. PUNCHING PROGRAM FILE ELEMENTS (@PCH) 

Purpose: 

Punches program file elements into 80-column cards. 

All parameters in the @PCH control statement are optional except eltname. 

Format: 

@label:PCH,options eltname,seq-char 

Parameters: 

options 

eltname 

seq-char 

Description: 

See 8.1.1 for additional information on the A, C, Rand S options. The function of the 
options are as follows: 

A, R,S- Specifies the type of element to be punched. Any combination of A, 
R, or S may be used, but at least one must be given. 

The following options may be used only in conjunction with the S option: 

G - Produce punched card output containing compressed symbolic 
images. 

H - Punch sequence number into columns 73-80 of each image. 
Seq-char must contain an alphabetic sequence of from one to three 
characters. The characters are left-adjusted and overlay columns 
73-75. 

J - Compress input images and sequence output cards in columns 73-80. 

The G and J options may not both be specified in the same control statement. 

Specifies element to be punched. 

Specifies alphabetic sequencing characters when H option is selected. 

See 2.6.4 for information on how to specify element names. 

The FURPUR processor ensures that the elements punched contain the control cards needed to reinsert them into the same 
program file, or a program file with the same name in a later run. The first card of a procedure element is a @PDP,I control 
card (see 3.6) otherwise, it is an @ELT,I card. The filename on the control card is the name of the file from which the 
element was punched. 

Relocatable and absolute elements are automatically (without special option) sequenced in columns 79-80. Sequencing starts 
with AA and ends with ZZ (starts over with AA if necessary). If the H option is specified, symbolic images are sequenced in 
columns 76-80. The card sequence will be 100 apart and is preceded by the designated alphabetic string given in the seq-char 
field on the @PCH control statement. 

The punched output is normally preceded by a properly formatted @ELT,I card. The @ELT,I card produced by @PCH has 
the same element name as the @PCH control statement. Thus, if the file containing the element that was punched is assigned 
to a subsequent run, all that is necessary to reintroduce the element is to include the @PCH-produced cards in the run stream. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 8-21 

Examples: 

LABEL ,\ OPERATION 
10 

~====== .... ~~=-=-=-=.~=~=-======= 
OPERAND 

20 30 

PAGE REVISION PAGE 

COMMENTS 
50 

1 .. 1 i.. .. l I 

.1._L.1 ....... 1. ...... 1. ..... l ..... L_LL1 .. __ LJ.--L-L-.L_L_L ... l ..... _.L . ..l ... L .. J ....... L ....... I -,'_L..L. L . .l .. .1 ..... 1.._.L._L..._L... .. L.L .. L_L .. L.. ... 1 ..... ! ..... L ..... 1.. .... L .. L_L .. L . ..J ..... L ... 1 ..... 1 ....... L....J __ .L..L .. L .... 1. .1 

1. Symbolic element RUNPROG in program file UPDATE is punched onto 80-column cards, one image per card. 

2. Symbolic element 8 of program file A is punched on 80-column cards. The input images are sequenced in columns 
76-80. The identification sequence is punched in columns 73-75. The input images are compressed, and the output is 
sequenced in columns 73-80. 

Relocatable element B of program file A is also punched. The text has been previously sequenced, and the FURPUR 
processor sequences the preamble. 

See 9.4.3 for a discussion of compressed symbolic elements. 

8.2.13. POSITIONING WITHIN ELEMENT FILES (@FIND) 

Purpose: 

Locates an element in a magnetic tape file (file must be in element file format) and positions the tape immediately preceding 
the element's label block. 

All parameters in the @FIND control statements are required except label and options. 

Format: 

@Iabel: FIN D ,options eltname 

Parameters: 

options 

eltname 

Description: 

Only one of the options A, R, S may be used to specify the type of element. See 8.1.1 for 
additional information on these options. 

Specifies the file and the element to be located. 

The search is made in the forward direction until either the element is found or an EOF mark is encountered. When the EOF 
mark is encountered, the tape is backspaced to the previous EOF mark (or load point, whichever is encountered first) and the 
search is repeated. If no find is made, the error exit is taken when the EOF mark is encountered. 

Normally, the @FIND control statement is used just prior to a @COPIN control statement (see 8.2.2) requesting that the 
element just located (or all elements up to the EOF mark) be inserted into a program file located on FASTRAND-formatted 
mass storage. 

Care must be exercised when doing a @FIND operation on other than the first reel of a multireel file. If an EOF is 
encountered prior to locating the desired element the reel is backspaced only to the load point, not to the EOF which is located 
on a previous reel. 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 8-22 
UP-NUM BE R PAGE REVISION PAGE 

8.2.14. REMOVAL OF DELETED ELEMENTS (@PACK) 

Purpose: 

Rewrites an entire program file, removing all elements marked as deleted. @COPOUT and @COPY,P control statements (see 
8.2.3 and 8.2.1, respectively) have the same effect on output files since they do not copy deleted elements. 

All parameters of the @PACK control statement are optional. 

Format: 

@label:PACK filename-1,filename-2, ... ,filename-n 

Parameters: 

filenames Specifies the program files to be rewritten. 

8.2.15. CHANGING FILE ELEMENT, AND VERSION NAMES, AND FILE KEYS AND MODES (@CHG) 

The @CHG control statement is described in 8.2.15.1, which discusses how to change catalogued file names, keys, and modes; 
and in 8.2.15.2, which discusses how to change program file element and version names. Some examples of @CHG control 
statements are given in 8.2.15.3. 

8.2.15.1. CHANGING CATALOGUED FILE NAMES, KEYS, AND MODES 

Purpose: 

Changes catalogued mass storage file names, keys and modes. 

All parameters in the @CHG control statement are optional except name-1. 

Format: 

@Iabel :CHG,options name-1,name-2 

Parameters: 

options 

name-1 

name-2 

Description: 

The options are: 

P - Set public mode 

Q - Set private mode 

V - Set read-only mode, clear write-only mode 

W - Set write-only mode, clear read-only mode 

Z - Clear read only and/or write-only modes (must not be used in conjunction 
with V and Woptions). 

Specifies the file to be changed 

Specifies the new name of the file. 

The contents of name-2 when different from the corresponding field in name-1 determine what other functions are to be 
performed. A blank field indicates no change of that field in name-1. 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 8-23 
UP-NUMBER PAGE REVISION PAGE 

One F-cycle series exists for each set of files with the same file name. Each catalogued file belongs to only one F-cycle series. 
Read/write keys, if any, are the same for all members of the series. The master file directory contains a lead item for each 
F-cycle series that lists the read/write keys for the series and points to a main item for each member of the series. The read
only mode and write-only mode indicators are kept in the main item for that member. 

The @CHG control statement may be used to perform the following functions related to catalogued files: 

(1) Change the read/write keys for all files of a given F-cycle series. 

(2) Remove or set read-only or write-only modes on a file. 

(3) Remove a file from an F-cycle series and add it to another series as the latest F-cycle. 

(4) Set public or private mode on a file. 

If an F-cycle series contains only one member, (1) is equivalent to changing the keys for a file, and (3) is equivalent to 
changing the name of a file. 

Although the functions performed by the @CHG control statement do not include reading or writing in text areas of the files 
named, read/write keys, if the files have any, are required in order for @CHG to modify their master file directory items. This 
means that the filename on the first @ASG control statement given to the executive must include the keys if an exeternal 
name is used. If an internal name is used, it must be associated by a @USE control statement still in effect that includes the 
keys. FURPUR performs the initial assignment, if the user has not assigned the file. In this case, the same rules apply to the 
name furnished on the @CHG control statement as for the @ASG control statement furnished by the user. 

8.2.15.2. CHANGING PROGRAM FILE ELEMENT AND VERSION NAMES 

Purpose: 

Changes program file element and version names. 

All parameters in the @CHG control statement are required except label and options. 

Format: 

@label:CHG,options eltname-1,eltname-2 



4144 Rev. 2 
UP-NUMBER, 

UNIVAC 1100 SERIES SYSTEMS 8-24 
PAGE REVISION PAGE 

Parameters: 

options The A, C, R, and S options are the only valid options for this statement (see 8.1.1). 

eltname-1 Specifies the program file element. 

eltname-2 Specifies the same program file and the new element and version names. 

Description: 

One or more of the A, R, and S options must be specified; only the elements of types specified by options will have their 
names changed. Element cycles may not be specified. 

This operation can also be performed during a @COPIN (see 8.2.2), @COPOUT (see 8.2.3), or a @COPY,SRA (see 8.2.1) 
control statement. 

8.2.15.3. EXAMPLES 

The following six examples illustrate the operation of the @CHG control statement. 

LABEL ,.\ OPERATION ,\ OPERAND 
10 

COMMENTS 
50 

I I I I I , ....l.. ...• L .. J ........ L ... J ...... L .. L..L...L.L....L-L_L.L ... L ... L._L--1.......L..-'---...I.-J'---'..........L..' •. L .... L ..... L . ..l ... L .. J .. _L..L~L.1. _.L ..... L ... .L I I I '_LL_.1 ..... 1 ... 1......J..-I 

1. Changes the element and version names of symbolic element 8, version F4 of program file A to element name GOTO, 
version A 1. 

2. Assigns the version name VER3 to the absolute, relocatable, and symbolic elements named PACK in program file UP. 

3. Changes the version name of relocatable element PUT in program file IN from A to F. 

4. Changes the element name of the absolute element PUT in program file OUT to GO. The version name is not altered. 

5. Changes the mode of catalogued file FILE from its present mode to read-only mode. 

6. Change the read key of catalogued file FILE1 from KEY1 to KEYA and delete the write key. 

8.2.16. ALTERING CYCLE RETENTION LIMIT (@CYCLE) 

Purpose: 

Sets the maximum range of absolute F-cycle numbers to be retained for a catalogued file (see 2.6.3) or the maximum number 
of element cycles for a program file symbolic element (see 2.6.5). 

All parameters of the @CYCLE control statement are required except label. 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 8-25 
UP-NUMBER PAGE REVISION PAGE 

Format: 

@label:CYCLE name,n 

FILES 

Parameters: 

name Specifies a catalogued file whose cycle limit is to be changed. 

n Specifies the maximum range of F-cycles to be retained. 

Description: 

When a catalogued file is specified, the @CYCLE control statement sets the maximum number of F-cycle numbers. The 
filename specified must be in the master file directory. If n is 0, the file and all its cycles are marked as dropped. If n specifies 
a new maximum less than the current number of F-cycles being retained, the drop flag is set in enough F-cycles of the file to 
satisfy the new range (starting with the oldest cycle). 

ELEMENTS 

Parameters: 

name Specifies a program file symbolic element whose cycle limit is to be changed. 

n Specifies the maximum number of element cycles to be retained. 

Description: 

When a program file element is named, the @CYCLE control statement sets the maximum number of element cycles. If n 
specifies a new maximum less than the current number of element cycles being retained, a new element with the same name is 
created with as many of the oldest cycles marked deleted as needed to satisfy the new lower maximum. 

Examples: 

LABEL ,\ OPERATION 
10 20 

.\ 
30 

OPERAND COMMENTS 
50 

., .... QI~l~L"' .. ~...J.}-~..L.L-'. .... l ... 1 .L ..... 1 ..... L .... L-L . ..L • .J ... L ... l .. L ..... 1. ... L._!._J .. .1 ..... L . ..1 .. 1. .... 1 ..... 1 .L .. L .. _I._L .. L..1 .i. .... 1 ... ..1 .... .1 .• 1._1 ... 1 .J L.l J 

.J~j~ j:)L~ 1)1.1. .. L .. L ... .L ...... L .. 1 .. L .. L .. .1 .• _.1 .. .l. ..... L .... L . .1 ...... .1 .... 1 .1-. .L_1 ..... 1... ..... L ..... L ..... 1 .. 1 .. .1 I .... .I ..... -L_L.J ....... L.: .... 1 ... J .. L ..... 1. 1 ...... 1 I L. I L! 

._L.L .... L ..... .1 ...... 1 ..... 1. .. L .... L.L ..... L .. J-1.J._L ..... L ..... L ..... L ... J . .J ...... 1.. .• J .. .L-L....1. __ L.l .. J ..... J .. .I ..... 1._ 1. ... .1._ ,--.L.L.L ... L .. L.l ! ... L ..... L .... .1._L..l. .... L1 .. 1 .... 1.1 .... L.J. __ L_LJ . .1. 

1. Assume that symbolic element B in program file O*A consists of element cycles 5, 6, 7, and 8. Since the new limit is 
two cycles, anew element B is created consisting of cycles 7 and 8. 

2. Assume that the master file directory entry for file O*D indicates that four absolute F-cycles 18, 15, 14 and 12 of the 
file exist. Since the new limit is two, the drop flag for absolute F-cycles 15,14, and 12 is set. The limit is considered to 
be the range starting from the highest current a~so!ute F-cycle number. 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 8-26 
UP-NUMBER PAGE REVISION PAGE 

8.2.17. ENABLING FI LES DISABLED DUE TO MALFUNCTIONS (@ENABLE) 

Purpose: 

Resets (removes) the disable flag for catalogued files. 

All parameters in the @ENABLE control statement are optional except filename-1. 

Format: 

@label:ENABLE filename-1,filename-2, ... ,filename-n 

Parameters: 

filenames Specifies the catalogued files to be reactivated. 

Description: 

If the specified file is not disabled, a message to this affect is printed on the listing (normal exit is taken). 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 9-1 
PAGE REVISION PAGE 

8. LANGUAGE PROCESSORS AND 

LIBRARIES 

9.1. INTRODUCTION 

This section describes the processor control statement and how it is used. Information is also given concerning the system 
library files (LI B$ and R LI B$) and the user's temporary program file (TPF$). 

9.2. OPERATING SYSTEM LIBRARY FILES (LIB$, RLIB$) 

Two separate library files are available during the processing of a user run: the absolute library file (SYS$* LlBR$) and the 
relocatable library file (SYS$* R LI B$). 

The absolute library file (LlB$) contains the absolute elements of each standard processor included in the operating system. 
LlB$ may contain processors such as COBOL, PDP, FURPUR, and any other processor and executable program added by the 

'-'. installation. 

The relocatable library file (RLlB$) contains the system-supplied relocatable elements and procedure elements which may be 
needed to assemble, compile, or collect the user program. 

9.3. TEMPORARY PROGRAM FILE (TPF$) 

A temporary program file (TPF$) is created by the executive for each run that is initiated. The qualifier for the filename is 
taken from the project-id field of the @RUN control statement. The file may be used as a scratch file for the user program's 
symbolic, relocatable, and absolute elements. 

9.4. PROCESSOR CONTROL STATEMENTS 

Processors form a special class of absolute elements which provide standard services for the user. The principal distinction is 
in regard to the manner in which the absolute element is invoked and the means by which information is made available to 
the processor. The general format of the processor control statement is: 

@Iabel:processor,option param-1,param-2,param-3, ... ,param-n 

The label field is as described in 3.2.1. The processor field is the name and file location (see 3.2.2) of the absolute element 
desired. The following is an example of a generalized processor control statement where the processor is located in a 
user-specified file rather than in the system library file LlB$: 

LABEL ,\ OPERA T ION .\ 
10 20 

OPERAND 
30 

COMMEIHS 
50 

.... L ..... L ..... L ..... L ..... L.L .. .1 ...... 1 .... LJ .. _L.1._.L .. 1 ...... L ...... L ..... L ..... L ..... .L ..... L..1 .... I .... L. 1 •. .L . . t ..... L .... L .... L .... L.L.L .. L_L ... .L ..... L .... l ... I .... 1.1..1 ... L ... L.L .. .L .... L ..... L ...... L ...... L .. l ... L 1 ...... L .... .l ... 1 .L. 1 ... L 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 9-2 
PAGE REVISION PAGE 

The rules for locating the element in the processor field are slightly different from the standard rules for locating an element 
specified on an @XQT control statement (see 10.3.1): 

(1) If a filename is specified, then that file is searched for the absolute element. 

(2) If a filename is not specified but there is a leading period, then TPF$ is searched for the element. 

(3) If a filename is not specified and there is no leading period, then the system library file SYS$*LfB$ is searched for the 
element; if there is no find, then TPF$ is searched . .The acronums for the standard processors (COB for COBOL, FOR 
for FORTRAN, and so forth) are the names of the respective absolute elements. 

With one exception (the 0 option on the @ELT control statement - see 18.2) the option field has meaning only for the 
particular processor, though there are some options that have the same meaning for all processors. The format of the options 
parameter is described in 3.2.2. 

The param-l, param-2, ... param-n parameters contain information supplied to the processor. With the exception of the DATA 
processor (see 18.3), which works only with files and, therefore assumes fifenames, the parameter fields are assumed to be in 
element name form although they need not represent element names. The meaning of the parameter fields is determined by 
the processor although the following rules are followed by the processors supplied by UNIVAC: 

(1) If a field intended to contain the name of a program file is not specified, TPF$ is assumed. 

(2) If a field is to contain an element name and the element name is specified but not the filename and there is no leading 
period, TPF$ is assumed. If there is a leading period, then the filename is taken from previous field provided that the 
field exists and was intended to name an element or a program file. 

9.4.1. LANGUAGE PROCESSOR CONTROL STATEMENTS 

The source language processors (ASM, COB, FOR, ALG, and so forth) have a common interpretation of several options as 
well as the first three parameters. The typical standard language processor control statement takes the form 

LABEL ;\ OPERATION ;\ OPERAND .\ 
40 

COMMENTS 
50 10 20 30 

: ...L..L..l ...... l ...•. .L .... L_L...L...J....-L-1-l ..... L .... l. .... .L--L-.1~L .... i ..... 1 ........ L ... ..Ll........L...l ...... l ..... 1 ...... j ..... ..J. 

-1 ...... 1 ........ L. •• 1 ....... .L.. .• t. .•... L .. L . ..L ... l_L..l._l._ ... 1... ... 1 ........ 1 ...... .1 ....... 1.. .... .1 ..... 1. ... L...l __ l.-1_...l. ..... i .... L. ..... L .... .1 ...... L. ..... .l ...... l_..L_l_..L ..... L ... .l. ....... L. . ...I ...... ..l. ....... I ...... J.._ .• L . .L.....l. .....• L. ..... l ........ L. ..... 1... .. 1.. .. -1_1 ....... L ... 1.. .... 1 ....... 1 .... 1.. ..... l 

where SI, RO, and SO represent eltname-l, eltname-2, and eltname-3. 

The meanings of these parameters are: 

SI(Source Input) 

RO (Relocatable Output) 

SO (Source Output) 

If a new symbolic element is being introduced from the run stream, this parameter 
specifies the file into which the new element is placed and the name which it is given. If 
an update is being performed, then this parameter specifies the element and the cycle of 
the element being updated. 

This parameter specifies the name and the program file into which the element produced 
by the processor is placed. There is no restriction on the type of element being produced. 
For example, most of the processors produce relocatable binary elements; the collector 
produces either absolute or relocatable binary elements. 

This parameter specifies the name and the file for the updated symbolic element 
produced. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 9-3 
PAGE REVISION PAGE 

The source input routine options, I and U, assist in specifying the type of processing to be performed (see Table 9-3). 

If no element name is specified or the parameter is left blank the following rules apply: 

(1) If there is no file information and the parameter does not have a preceding period or if the parameter is void, then the 
file specified in the SI parameter is assumed. 

(2) The element name from the SI parameter is assumed. 

(3) If there is no version specified, then the version from the SI parameter is used. 

Tables 9""'" 1 and 9-2 describe the valid possibilities. The I and U options along with the SI parameters determine the inter
pretation of processor control statement. An error message is printed if there is any deviation from these rules. Table 9-1 is 
valid for the ASM, COB, FOR, ALG, and CFOR language processors (require SI, RO, and SO); Table 9-2 is valid for the PDP 
and LIST processors (requires only SI and SO). 



lor U SI Type Element SI Notes RO Notes 
Option Type Produced 

Neither Not specified New element None This parameter mayor may not 
be specified. If is not specified, 
NAME$ is assumed. It is invalid to 
specify a cycle. 

Neither Specified Update This parameter must If this parameter is not completly 
be completely specified. specified, then the information 

from the SI parameter is used. It 
is invalid to specify a cycle. 

I Only Not specified New element None This parameter must be completely 
specified but without a cycle. 

I Only Specified New element This parameter must be If not completely specified, the 
completely specified information from SI parameter 
but without a cycle. is used. It is invalid to 

specify a cycle. 

UOnly Specified Update with This parameter must be If this parameter is not completely 
cycling completely specified. specified, then the information 

from the SI parameter is used. It 
is invalid to specify a cycle. 

--- - _.-

Table 9-1. Processors Which Use the SI, SO, and RO Parameters 

" 

SOcNotes 

Illegal to use this parameter 

If void, no source output is 
produced. If this parameter is 
not completely specified then 
information from the SI parameter 
is used. It is valid to specify 
a cycle. 

Illegal to use this parameter. 

Illegal to use this parameter. 

If this parameter is not completely 
specified, then the information 
from the SI parameter is used. It 
is invalid to specify a cycle. 

. 

c ~ 
11 ~ 
i: ~ 
c :0 
~ ~ 
!DO 
[lI1\J 

:0 

11 
> 
G) 
[lI 

:0 
fll 
< 
(Jl 

o 
z 

11 
> 
G) 

c 
z 
< 
> 
n 

o 
o 
CI' 
m 
:;0 

m 
CI' 

CI' 
-< 
CI' 
-I 
m 
~ 
CI' 

fll(O 
I 
~ 



lor U 
SI Type 

Element Type 
SI Notes SO Notes Option Produced 

Neither Not specified New element An L option is assumed. Illegal to use this parameter. 

Neither Specified Update (no cycling) This parameter must be completely If this parameter is void, no source output is 
specified produced. It it is not completely specified, then 

the information from the SI parameter is used. 
Invalid to specify a cycle. 

I only Not specified New element None Illegal to use th is parameter. 

I only Specif1ed New element This parameter must be completely Illegal to use this parameter. 
specified but without the cycle. 

Uonly Specified Update (with cycling) This parameter must be completely If this parameter is not completely specified, 
specified. then the information from the SI parameter is 

used. It is invalid to specify a cycle. 
--

Table 9-2. Processors Which Require the 51 and SO Parameters 

~ 

I 

I 

c:: 
1)~ 

z~ 
c JJ 
~ ~ 
Ill' 
Ill'" 
:0 

1) 

:t> 
Cl 
III 

:0 
III 
< 
tn 

o 
Z 

1) 

:t> 

c:: 
z 
< 
> 
n 

o 
o 
CI' 
m 
;;c 

m 
CI' 

CI' 
-< 
CI' 
-I 
m 
~ 
CI' 

Cl 
111(0 

I 
(J1 



UNIVAC 1100 SERIES SYSTEMS 9-6 4144 Rev. 2 
UP-NUMBER PAGE REVISION PAGE 

, 

9.4.2. SOURCE INPUT ROUTINE CONTROL OPTIONS 

Table 9-3 contains a list of those options used by the source input routine (SI R - see 9.6) to control the input and output 
of the source language elements. Most UNIVAC supplied language processors (FOR, ASM, COB, ALG, and so forth) use the 
source input routine to obtain their input, therefore, the listed options are generally applicable to language processors. 

Option 
iCharacter 

Description 

G 

H 

J 

K 

P 

o 

U 

w 

Input is compressed symbolic in columns 1-80 of the card deck. 

Input contains sequence numbers in columns 73-80 of the symbolic images. 

Insert a new symbolic element into the program file. 

Input contains compressed symbolic images in columns 1-72 of the cards and sequence numbers in 
columns 73-80. These sequence numbers are not checked by the K option. 

Check sequence numbers in columns 73-80 of the symbolic images (valid only with H option). 

Card image input, if any, is in Fieldata. Output symbolic element in Fieldata. (Compare with 0.) 

Output symbolic element in ASCII. Card image input, if any, is in ASCII. (If neither P nor 0 is 
specified, code type of input element, if any, is used; otherwise, P is assumed.) 

Update and produce a new cycle of the symbolic element. 

List correction lines. 

Table 9-3. Source Input Routine Options 

9.4.3. COMPRESSED SYMBOLIC ELEMENTS 

In order to minimize the number of cards required to contain a symbolic element, the FURPUR processor (see Section 8) can 
compress strings of blanks in symbolic images before punching the element. The source input routine can expand the 
compressed images on input. 

A compressed symbolic card deck is produced when the appropriate options are used on the FURPUR @PCH control 
statement (see 8.2.12). The source input routine converts compressed card decks to SDF-formatted images (see 24.2.3) upon 
initial input when the appropriate options are used on the processor control statement (see 9.4.2). 

The first card punched is an @ELT control statement (see 18.3) with the appropriate options. Following the @ELT control 
statement are the cards which contain the compressed symbolic images. 

The compressed image consists of a stream of characters in the following format: 

xccc ... cyxccc ... cz 

where: 

x Number of characters C (1 ~ x ~ 378 ) 

Y 408.+ Number of blanks (41 8 < y~778) 

Z 408 = End-of-image. 

The number of characters in a string is limited to 378 ; the number of blanks is limited to 368 . If either is larger, a new x or y 
is initiated. 



. .....~. 

4144 Rev. 2 
UP-NUMBER 

U N I V A C 11 00 S E R I E S S Y S T EMS 9-7 
PA GE REVISION PAGE 

In addition to the x, y, and z characters, two other special characters are used; 

(1 ) 418 character 

(2) 0
8 

character 

Indicates the end-of-images in this element. 

A special character used in column 80 if a new x would begin in column 80. The x is moved to the 
next physical card and the 0

8 
is placed in column 80. 

The compressed images immediately follow one another on the physical card and continue to the next card when the 
end-of-card is reached. The punch routine begins each physical card with an x, y, or z by breaking an x string at the end of 
the card, and starting a new string on the next card. This guarantees a nonzero character in the first character position of the 
card. A compressed blank image would be represented by an 40

8 
character. The physical card may contain compressed image 

characters in columns 1-80. 

Compressed images are not retained in the program file. The source input routine expands the images, and stores them in the 
program file in SDF format. 

9.5. MODIFYING SYMBOLIC ELEMENTS 

9.5.1. LINE CORRECTION STATEMENT 

On a symbolic listing, the successive lines of code are sequentially numbered. When altering the symbolic element, these 
numbers are used on the line correction statement to indicate where the correction lines are to be inserted. The format of the 
line correction statement is: 

-n,m 

The minus sign in column one is the correction indicator which specifies that symbolic code lines n through m are to be 
replaced by correction lines. The lines of code immediately following the -n,m construction are inserted until another 
correction indicator is read in column one or another correction statement is read. If no lines of code follow the -n,m line 
correction statement, lines n through m are deleted. 

The construction -n with the correction indicator appearing in column one specifies that the succeeding lines of code are to 
be inserted in the symbolic element after line n. 

If correction lines are to be inserted before the first line in the symbolic element, the correction lines are placed immediately 
after the processor control statement without specifying any insertion line numbers. 

Examples: 

LABEL OPERATION 
10 

,\ OPERAND ;'\ 
40 

COMMEtHS 
SO 

.A~}jL}t:I:..l ... 1 ... 1 ... LPtf.'::';~L·~~l1....L~~J:L?Ll.L: .. W.l~~~U ~_1 .. J .... L . .L_L_LJ_..J-1---1 .... L.J ..... LJ .. _..L-LL.L ... l.l.J .. LJ...-L.J ... L ... L. .. 1.. .... .1 

-::r?iQll1~1..'L.j .. Ll .J .. l ..... l_ . .l ..... L ... J ........ L.. ..... L. ... l ... L .. J. .. L...l_ .. l._.J .... L.L ...... 1 .... 1. ... 1.. .. 1 ... L ..... J_ . ..l._LJ... ..... l ...... L. ..... L.. .... L. ... J ........ L ..... L ... L.....L....L ... L .... 1 "L. ..... L .... L ... J... __ l_..l_.L .... L. ..... L. .... L .... 1 

J __ ~.J~P...l-gl~jG .. JJ!~~J lLIII~~L...1~Lj, .... L .. L . .L_L .. LJ .... ....l ..... L.L ... L ...... L.L_.L I i I 1...J._.J.....l ..... L ... L. .... .l Ii: I I .... L .... L. ... L ..... .L.J......L..L..L._L. ' 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERI ES SYST EMS 9-8 
PAGE REVISION PAGE 

The U option on the @ASM control statement specifies that a new cycle of symbolic element WINDUP is to be produced. 
Lines 30 and 31 are replaced by correction line A. Lines 100 through 115 are to be deleted. Correction lines B, C, and Dare 
inserted after line 120. Line 150 is deleted. Encountering the @MAP control statement indicates that there are no more 
correction lines to the symbolic element. 

9.5.1.1. REDEFINITION OF THE CORRECTION INDICATOR 

It is possible to redefine the correction indicator so that a symbol other than the minus sign may indicate the insertion of 
correction lines. Redefinition of the correction indicator makes it possible to insert correction lines that may be actual data 
preceded by a minus sign. The format for redefinition is: 

-=x 

x may be one to three special characters in length with no intervening blanks. The correction indicator may be redefined any 
number of times but only one symbol is recognized as the correction indicator at any time. 

Examples: 

~-----------------------------------------------------------------------------------------------
LABEL ,\ OPERATIOH 

10 20 
OPERAHD 

30 
COMMEtHS 
50 

.... J. ...... L.l .... J::.:l!.1l.::j~! J ! I IF; 'J:.J.~J~lf.l ..... 1... .•. j .. _...LL~i ~'~1 • .....l .... 1 ... L .• L ... L_'_L..l .... -1.......L . ..l ... ..L ...... l ...• L.L . ..l.-L-L .... L .. .l .... .1 ..... ..! ..... ..L_L..l_ ...... L ... 1 ...... 1... .. L . ..1 

2. - ........ 1 ....... L .... L ..... L.L . .J .. L .. LJ .. _1.._J.._L..l ...... J ....... 1... .... 1 ... 1.. ....... 1.. ... L. .... L.1 __ 1-.I_-1-L ..... l .... 1.. ..... 1.. ... ..1 ...... 1. .. 1...... .. 1-1-.. .L.. .... 1... .... 1 ........ 1.. ... 1 .. L ..... .1 ..... L .... L....L....L ... L .... L ..... .l .... , .... L . ...L_J .... .l ....... .1 .... 1.1 ... .1 ..... 1 

.3. C ~J?jRl~I.~JIJ.~.l~l.~JL!IIN!£i~L ... l .. J ..... .J ........ LJ .. ...L....LLLl L..1 J ..... L._L......L....!---.LL ... LJ._..L_.L . .l .... _L. .... L . .L.....L....L.L.L ... ..l.J ....... L .... .Ll_.L .. L_L .. .l .... 1 

5.~~~~~~~~~~~~~_~~~1~1~1~1_!~1~1~1 ~!~I~! ~~I~I~!~I~i~l~l~~.~I~I_I~I~I~1 ~~~~I~!~I~!~I~I~~~ 
6. 
7. ...;.....L..:;.-'--'---'---'---'--'---J... 

I 1 1 I I 1 I 1 1 J ! ! ! ! I ! 

. .l.-..<'--'---'--'--l-. . .L . ...L.l ..... l... ..•. J ....• J-Lh...L..J.----L..L-L..J. ....... 1 ....... .l ... ..1_ ... .1 ....... .1 ... -"--'---'--'---'-1 -1.-.1 ..... .1 .... 1. ... 1.. ..... 1--,---,-' ..... 1---,--, ..... 1.. J ..... _L -'---'--''--'---'--'---'-

... .L ... L..l-L .. J I I I ! -L.....U. __ L_ • .1-1-L....!-L 1 I I I 1 ....... L .... t ... 1. .•.• L......l.. • ....l...-l I I I L.L.l ... .1 ...... .L...L~ __ L....1......! .... J ... L_L._1...J.. 

Correction lines are to follow line 2 in the source program. Line 4 redefines the correction indicator to an asterisk (*). Lines 
11, 12, and 13 are replaced with correction lines. Line 8 redefines the identifier to +++. Correction lines follow line 22 of the 
source program. 

9.5.2. PARTIAL LINE CORRECTIONS 

In addition to inserting entire symbolic correction lines, partial line corrections are also permitted. This is accomplished by 
using a range correction statement to define the number of code lines to be partially corrected followed by change correction 
statements which define the correction to be made. 

In the formats given in 9.5.2.1 and 9.5.2.2 the slash (/) is used as a separator character. The separator character may be any 
character other than a digit, a comma if the change statement is type 2 or 3 (see 9.5.2.2), a blank, or a correction indicator. 
The first separator may be preceded by any number of blanks. The character chosen as a separator must not appear as a 
character in the old-data and new-data parameters of the change correction statement (see 9.5.2.2). 

R5.2.1. RANGE CORRECTION STATEMENT 

The range correction statement format· is: 

-x,y-



".'" 

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 9-9 

UP.NUMBER PA GE RE VISION PAGE 

The minus character immediately following the y is an edit indicator which must always be coded as a minus character. (The 
minus character that immediately precedes the x is a correction indicator that may be redefined by the user - see 9.5.1.1). 
The range correction statement must be followed by one or more change correction statements and there must be one change 
correction statement for each statement in the range -x,y-. For example, if the range correction statement is 

-2,7-

then there must be six change correction statements immediately following the range correction statement. If the number of 
change correction statements following the range correction statement does not equal the number given on the range 
correction statement, a diagnostic is given. 

The number specified in the x parameter must be greater than that given on any previous range, delete, or insert correction 
statement. The number specified in the y parameter must be equal to or greater than the x parameter. 

9.5.2.2. CHANGE CORRECTION STATEMENTS 

The change correction statements may be specified in anyone of the following four formats. 

Format 1 : c/new-data 

Format 2: c,d/new-data/ 

Format 3: /old-data/new-data 

Format 4: /old-data/new-data/ 

Format 1 is used to replace the characters of an image from a specified column to the end of the image. The column number 
is specified in parameter c. Parameter new-data must contain the replacement characters. All of the data following the 
separator (except trailing blanks) is taken to be replacement characters. 

Format 2 is used to replace a specified number of characters in an image. The column numbers entered in the c,d parameters 
specify the range of characters to be replaced. Parameter new-data contains the replacement characters. If the number of 
characters in the new-data parameter is greater than the range specified in the c,d parameters, then the characters following 
the column number specified in the d parameter are right shifted to make room; if it is less, the image is left shifted to close 
the image. 

Format 3 operates similarly to format 1 except that the old-data parameter specifies one or more characters to be replaced. 
The coding line is scanned and when a find is made, the characters specified by the old·data parameter are replaced by the 
characters specified in the new-data parameter. 

Format 4 operates similarly to format 2 except that the old-data parameter specifies one or more characters that are to be 
replaced by the characters specified in the new-data parameter . 

. Examples: 

LABEL ,\ 
10 

OPERA TlON i\ 
20 

OPERAND ,\ 
40 

COMMEtHS 
50 

... L ... L .... l_LL_L_L.. .. L . ..L ... .L .. .L ...... L .... l ... _L._L .... L .. L .... i. ..... ..l ... J .. L .. L.....L_L ... 1 ..... L .. L ... .1 

...... 1... ..... L ..... 1. .... 1.. ..... L. .. LJ. .... _L_LJ ....... .L .. 1. ..... 1.. .... .1 .. ...l ..... .L ..... L..L...L .. .L .... .i ..... L .... L ... L ... J ..... L ..... L .... L...L...1 ....... L .... L .... J .... .1 .... .1 . ..l_.1 ..... 1. ... .1 .... .1 ...... I ..... .1 ..... l 

-l........l...-L....I.! ... ...l ...... L ..... L .... L .. L.L .. ! ......LI ...L....L......l.L ...... L ... .l J ...... L.1. I Ii! I J_L.L .. L . .l ... L .. l-L..L.....L.l ...... L L .. .1 ...... J-'--.....I..-............ I ..... .1 .... .1 

..... L .... L .. L ... L..l __ L ...... L....L ... .L ... L ... L ... i ... J ...... L.L.J........L_L.L......L....J. ..... J ...... .J ...... L_L.J ..J.........J.........J'--...I._.L .. J ..... L .... L . ...L.......L......'L--l.! , .... .1 ... L .. L . ...l 

I ! lit I ! I I ! ! ! I I 

..... I.....J........!...... -.l.--'--.J..-jl'-.~......L ..... L .... L. ..... ! --'--'-...L.1• -L ..... l ....... 1 ...... L...L.....L.......l.J.. .... l ....... l 

I I ! 1 .... L . .1 .m.L .. J m.L .... L .... LJ.~.L..J.....J.. mL.mL .. L....L_L.J........L_L ... J ..... 1.. ... L .... L....I 

...l.......L.L ... L ..... L.L .... L....L......L....1 ..J.1...-l........L........l1-.l...! -L' ....l.1 . ... L .... 1.. ..... I....J. I I I ! I L...L . .l .... _L_L ! I I I ! ! I I 1 ....... L_.LmL! I I I.. L.1 ... 1m ..... L 1 I ! ! ! .. J 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 9-10 
PAGE REVISION PAGE 

The U option on the @ASM control statement specifies an update to symbolic element WINDUP. Lines 30 through 33 are to 
be partially corrected. The characters in columns 73-80 in line 30 are replaced by SUBTOT6. The characters in columns 
42-48 in line 31 are replaced by SUBTOT7. The characters OVHEAD in line 32 are replaced by CHARG7. The characters 
REFUND3 in line 33 are replaced by RETURND. Encountering the @MAP control statement indicates that there are no 
more corrections to the symbolic element. 

9.5.2.3. PARTIAL LINE CORRECTION DIAGNOSTICS· 

When an error occurs, a diagnostic message is placed in the print file. The format of the diagnostic message is: 

SIREDITERRcre 

where: 

c Indicates the cause of the error. Table 9-4 lists the possible errors. 

First four words of the range correction statement under whose control the error occurred. 

e Specifies the change correction statement that caused the error. 

c Contains the Words Description 

SEPARATOR The separator used in the change correction statement is invalid or nonexistent. 

COLUMN The column number specified in a format 1 or 2 change correction statement is 
out of range; or c > d for a format 2 change correction statement. 

NO FIND The characters given in the old·data parameter of a format 3 or 4 change correction 
statement could not be found in the line being corrected. 

NOTE: Whenever one of the above errors occurs, the change correction statement is 
I ignored and the line remains unchanged. 

ASCII MODE Indicates that symbolic input or output is in ASCII code, or that the user 
requested ASCII code. Since the source input routine cannot correct ASCII code, 
all range and change correction statements are ignored. 

CARD COUNT < Not enough change correction statements were provided. Those lines for which no 
change correction statement was provided remain unchanged. 

CARD COUNT> Too many change correction statements were provided. The excess change correction 
statements are ignored. 

Table 9-4. Partial Coding Line Correction Diagnostics 

9.6. PROCESSOR INTERFACE ROUTINES 

A set of routines which are available in the system relocatable library file (SYS$,*:R LlB$) provides standard interfaces with 
the operating system for all language processors. These routines simplify the task of incorporating additional processors into 
the operating systEi!m. 

In general, processors assign input and output files, obtain source and correction input, and generate source and relocatable 
output. When using the processor interface routines, the processor need only be concerned with requesting the next input 
image and outputting a relocatable word. 



. , .... 

" ..... -., .. 

4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 
PAGE REVISION 

9-11 
PAGE 

The various processor routines are described briefly in the following paragraphs. For a more detailed explanation see the 
UNIVAC 1108 Operating System Technical Documentation. 

c Preprocessor Routine 

The preprocessor routine is designed to read the processor control statement, put it into standard format, dynamically 
assign the necessary files, obtain the options, obtain the next write location (for program files), and, if a tape is used, 
verify that the element read was the one called for. 

The PR EPRO routine is designed for use by processors which require source input, source output, and relocatable 
output parameters on the processor control statement. The PREPRM routine is designed for use by processor which 
require only source input and source output parameters. 

[J Source Input Routine 

The source input routine (SI R) is used by a processor to obtain the source language images from the run stream or from 
a symbolic element in a program or data file. The routine can automatically merge corrections, list' the corrections, and 
produce an updated symbolic element. The symbolic element which contains the source input may be cycled; the 
desired cycle is specified in the processor control statement. The source input routine automatically passes to the 
processor only those images that pertain to the cycle requested. 

o Source Output Routine 

Certain processors produce symbolic text as output rather than relocatable text. For these processors, the eltname·2 
parameter of the processor control statement specifies the symbolic output element. The element produced by the 
symbolic output routine (DOR) is generated by the processor and may be distinctly different from the input or updated 
symbolic element. 

The element produced (always cycle 0) is in SDF format and is entirely suitable for input to another processor by the 
source input routine. 

[J Relocatable Output Routine 

The relocatable output routine (ROR) is used to output into a program file a relocatable element that contains the 
relocatable text and preamble information produced by a processor in standard block and item sizes acceptable to the 
collector. The eltname·2 parameter of the processor control statement is used to specify the name of the relocatable 
element to be produced and the name of the program file into which it is placed. 

o Postprocessor Routine 

The function of the postprocessor routine is to remove all changes in the assignment status of a program file which were 
made by a preprocessor routine. A processor working on a program file may require exclusive use of the file, and when 
finished, it should return the file to its original status. Because the preprocessor set up the file for the processor itself, 
the processor should call the postprocessing routine to restore the file to its original status. 

o INFOR Table Interface Routines 

If a program is called for execution as a processor rather than by means of an @XQT control statement, its first R EAD$ 
request returns information from the operand fields of the processor control statement in a format called internal 
format (lNFOR). 

NOTE: When using the preprocessor routines, they must perform the first R EAD$ request and they must process the 
information from the processor control statement. 

The INFOR table interface routine: 

(1) Reads the INFOR table . 

(2) Searches for a parameter subfield. 

(3) Retrieves a complete parameter. 

(4) Performs a dynamic @USE (see 3.7.5), 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 9-12 
PAGE REVISION PAGE 

9.7. PROCEDURE DEFINITION PROCESSOR (PDP) 

The procedure definition processor (PDP) accepts symbolic input defining assembler, FORTRAN, or COBOL procedures and 
builds an element in the user·defined program file. These procedures may subsequently be referenced in an assembly or 
compilation without definition. 

One table is generated for each type of procedure in a program file. This table contains any labels that are defined externally 
to the procedure. For FORTRAN and COBOL procedures, these are labels on the procedure line. For assembler procedures, 
these are the labels defined externally (trailing asterisk after label) on the procedure and name lines of a first levelprocedure. 
For every label entered in a table, the location of the procedure or name line is noted. When a call is made for a procedure in 
a source program, the system automatically retrieves the procedure. If more than one procedure of the same type has the 
same label, an entry is made in the table for each procedure, but a call on that label will produce the last procedure entered 
for that label. 

The PDP is called by the @PDP control statement. 

All parameters in the @PDP control statement are optional except @, PDP, and eltname·1. 

Format: . 

@label:PDP,options eltname-1,eltname-2 

Pa ra mete rs: 

options See Table 9-5. 

eltname-1 Normally specifies the input element. However, when the I option is specified, eltname-1 
specifies the new program file element. 

eltname-2 Specifies the output element. 

. 
Option Character Description 

A Accept the results as correct even if errors are detected. 

C Indicates a COBOL procedure element. 

F Indicates a FORTRAN procedure element. 

I Insert a symbolic element into program file from the control stream. 

L Produce a complete listing of the output element with line numbers. 

N Suppress all listings. 

S Generate a single-spaced listing of the output element. 

U Generate a new cycle of the symbolic element. 

W List correction lines if corrections are provided. 

X Abort remainder of run if any errors are detected. 
j 

Note: The source input routine options (see Table 4-3) also apply. 

Table 9-5. @PDP Control Statement, Options 



4144 Rev. 2 
UP-NUMBER 

Description: 

UNIVAC 1100 SERIES SYSTEMS 9-13 
PA GE RE VISION PA G E 

When the F option is specified, PDP assumes that it is inserting or updating a FORTRAN procedure element. When the C 
option is specified, PDP assumes that it is inserting or updating a COBOL procedure element. When neither option is 
specified, PDP assumes that it is inserting or updating an assembler procedure element. 

The I option is used only to introduce symbolic card images into a program file. When applying corrections to an element, the 
I option is not permitted. 

PDP permits the processing of procedural elements from a tape file that is in element file format (see 24.2.2). Furthermore, 
corrections to this element are permitted if a symbolic element is produced in a program file. PDP does not attempt to 
interpret the names on a control statement, that is, it makes no effort to ensure uniqueness or avoid possible duplication of 
names in the eltname-1 and eltname-2 parameters. 

Cycling of procedures is permitted. The cycle number may be increased if the U option is specified, only one cycle is 
retained, and when the procedure is collected, the latest cycle is supplied. 

If PDP is processing elements from a tape file, the file must be positioned so that the label block is read in. If the name in the 
label block does not agree with eltname-1, PDP takes the error exit. 

Examples: 

LASEL ,\ 
10 

OPERATION :\ 
20 30 

OPERAND /\ 
40 

COMMENTS 
50 

)-'--.L-.-L.--,-I . .J.-.J .. J ...... L. ..... L ... J .. _..L . .....J1'--l-i --L-.-'--'_L ..... l ...... .L __ l . .....L.J....... .. .-.L...L.....L._L ...... l ...... .l_._l...-..I..-L.L..l. ..... .l ....... 1 ..... 1 ..... .J_--L...L...l ..... _l ....... 1 ..... 1 ........ 1 . 

..... 1... ... .1 .... 1... ...... L .. L-1-.L.......l.. .... .L ... L .... L.J ...... J ........ J... ..... L._L-L-.J. ..... L ... L .... L ..... 1... ... L . ...L 1_ •. 1.-.J ......... L... ..... I.. .... .1 ....... L 

Iii '--... .L.J.... . ..l. ...... Ll.. I I I I 1 ....l. __ ' ....... L.L._l... .... l--'--'--..J...1 _1'-.1. ..... .1 .... l. ....... l.._ •. L.L..L..LJ ...... J. ....... l. 

~..;:...J...-=,-,---,-I _.L_L .. t ... .I. ...... L..J_ .. J._L.L.L..L.Ll ....... .1.. ..... LJ.......J I I 1 ....... 1 .... L. ..... L._U-L..1--L .. .l ........ J.. ...... L....l 

I I I J..-L ..... LJ.......J---L-L-.l..J.. ..... l I I I I .... 1.. ...... 1. 

t--'-.L.-L--'--"'--'--'-_L.L .... L .... l... ..... l... ... LLLI I I I ... L ... L. ... J..._J.. ......... I -J1L...-L..--,,--,--,,-1 ....... 1--'-1 ...... L . .1.. ...... 1... ... 1 .. I ..... _L 1 I I I I I I 1.. ...... 1. .. _L 1 I I I L_l ...... L ... LJ.......J. 

1. Generates a procedure element from file A, element B and places the new element in TPF$. Generates a complete 
listing. 

2. Generates a procedure element from program file A, element B, calls it element C, and places it in program file A. 
Generates a complete listing. Eltname-2 must not name a tape file. PDP takes the error exit but does not abort (PDP 
will abort the run if the X option is specified). 

3. Generates a complete listing of element B from file A. 

4. Procedure definitions following this @PDP control statement are placed in file AF I LE as element PROS, version AB, 
cycle O. 

5. Corrections are made to element PAT, version DE, latest cycle of file BFILE to generate an updated cycle of the same 
element in the same file. 

6. Corrections following the @PDP control statement are merged with the most recent cycle of element PR 1 in file AF to 
generate cycle 0 of element PR2 in file BF. 





4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 10-1 
PAGE REVISION PAGE 

10. PROGRAM CONSTRUCTION 
AND EXECUTION 

10.1. INTRODUCTION 

The 1100 operating system provides the ability to combine the relocatable elements generated by a language processor into 
an executable (absolute) element. This combination or collection of relocatable elements is done by a system processor, the 
collector. The absolute element produced by the collector is structured such that the executive program loader can place it in 
execution. Once the absolute program has been created (that is, collected), it may be saved and reexecuted many times. The 
program need only be recollected when a modification to it is desired. 

An absolute element (program) may be placed in execution through use of a program execution control statement (@XOT) 
within the control stream. When an @XOT control statement is encountered by the executive, the program is retrieved from 
i~s mass storage file, loaded into main storage, and executed. For a special class of programs (processors), the processor 
control statement initiates execution. 

During exectuion, a program can determine which parts of the absolute elements are in main storage by requesting the 
executive to load previously-defined program overlay segments. In addition, the program has the capability of attaching to or 
linking to other previously defined absolute elements. The program has the ability during execution to dynamically determine 
the execution of other semi-independent absolute elements. 

10.2. THE COLLECTOR 

The collector is called by the @MAP control statement (See 10.2.1). It provides a straightforward means of collecting and 
interconnecting relocatable elements to produce a program in an executable form. This form is called an absolute element. 
Optionally, the collector can be used to create a single relocatable element from a collection of several relocatable elements. 
The three basic inputs to the collector are: 

iii The parameters supplied on the @MAP control statement 

iii The information supplied by the collector directives 

III Relocatable elements taken from various sources, such as: 

the temporary program file (TPF$) 

user-created program files 

the system's relocatable library (SYS$*RLlB$) 

The three basic outputs of the collector are: 

iii An absolute or relocatable element 

II A symbolic element 

iii A program listing 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 10-2 
PAGE REVISION PAGE 

The primary output of the collector is the relocatable or absolute element which results from the collecting and linking of the 
various relocatable elements. This element is given a name and placed within a program file for subsequent use. Both the 
element name and the file in which the element is placed may be dictated by the user. 

Usually the collector includes within an absolute element a set of tables for use by the diagnostic system. This output can be 
suppressed by the user (see Table 10·1). 

10.2.1. COLLECTOR INITIATION (@MAP) 

Purpose: 

Specifies that the collector is to combine a set of relocatable elements into one absolute or relocatable element. 

All parameters in the @MAP control statement are optional. 

Format: 

@Iabel: MAP ,options eltname·1, eltname-2, eltname-3 

Parameters: 

options 

eltname-1 

eltname-2 

eltname-3 

See Table 10-1 and source input routine options (see Table 9-3). 

Specifies the input symbolic element which contains the source language (see 9.4.1). 

Specifies the absolute output element. When the R option is specified, eltname-2 names the relocatable 
output element (see 9.4.1). 

Specifies the output source language element (see 9.4.1). 



4144 Rev. 2 
UP-NUMBER 

Option 
Character* 

A 

B 

D 

E 

F 

L 

UN I V A ell 0 0 S E R I E S S Y S T EMS 10-3 
PAGE REVISION PAGE 

Description 

Under no circumstance is the error exit (ERR$) to be taken during the collection, even if the collection 
is destroyed. 

Mark the absolute element so that the program area is not cleared to zero prior to loading the program 
and any indirectly loaded segments (see 10.2.4.5.2). 

Print a diagnostic message for all possible addresses over 65K (1777778). Check for certain possible 
instruction format violations. 

Allow program addresses to exceed 65K (1777778). If this option is omitted and the program's 0 bank 
exceeds 65K, the 0 bank starting address is moved downward so that all (or as many as possible) of the 
over-65K addresses are forced below 65K. 

Mark the output absolute or relocatable element as quarter-word sensitive. 

Produce a complete listing which contains the following information concerning the program area: 

main storage allocated to each element and segment 
program address of all external definitions 
the symbol '7' following any undefined entry point 
the scale drawing of program segmentation 
the external references of each element 

N Produce the most abbreviated print listing available. 

R Generate a relocatable element instead of an absolute element. 

S Produce a summary listing which includes a scale drawing of program segmentation. This option is 
assumed if neither the L nor N options are specified. 

T Do not mark the output element as quarter word sensitive. If neither the T nor F options are specified, 
the program sensitivity is determined as follows: 
- if only third-word sensitive elements are present, T is used 
- if only quarter-word sensitive elements are present, F is used 
- if both third- and quarter-word sensitive elements are present, the sensitivity of the element 

containing the program starting address is used. 

V Assign all addresses but strip off the D bank code (can be used to create a reentrant processor-see 
10.2.3.4). 

X If an error is detected, terminate the collection and exit ERR$. When the X option is omitted, the 
results of the collection are accepted, even though there may be minor errors, as long as an absolute 
element is produced. 

Y Assign all addresses but strip off I bank code. Compare with V option. 

Z Suppress generation of diagnostic tables in the absolute element which are used by the PMD or other 
dump editors. 

* Also see source input routine (SIR) options, Table 9-3. 

Table 10-1. @MAP Control Statement, Options 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 10-4 
PAGE REVISION PAGE 

Examples: 

r-~-··--~··'''·-·----"''·-· ·-_____ ·. ______ .. __ ._. __ ._. ____ .. __ , __ ~w~·_· __ M_". __ ~~-----.~----.--.---.--.--."~.,.-.-.. ~.---

! LABEL :\ OPEfU.TIOH OPERAND /\ COMMEHTS 
i1 10 20 30 40 50 
r;:7::,:c:::;""":::.':::c~;:::O'C":c;:::.c,.c,c":;.~:"':;'."'~.""';;';:::::;;::;;;::::;;;;;;;:=:::-..:;:;:c:=;;;""':;:;:,;::::::~c:::;.==;:::;:.:=""';~~':::c:c:~".,:,:::;:::::::::c:::.::~:;':::;;;;.;~::;:.~::::;=::=:::...::;:~:;;::c""'~"'::::==.::=..;;;:==:c:::;;:=.%-=_::.:::::.;.:::.":'.:..~::;::;;:::.::;:;=== 

I.~MA;P; .1. .• ,.,.. i 

2. ~.MAPi' ,dLD1F!rJ~~j~~O:~;DiE~,EMJ~l{·C,A:, IN:E:WEIJ.,l;l "NJ::W/lt;;L;EjM~lN;C j: 

3. ~M8PJLL,$iYJ~111:M LCL'BAb;KU.it"~;!4;y3:$dJJJ~., .. Lj .. , ..• L .. L,." .. L .. , . .L ,.1 

4. ~J1A P"':[' _J3.8,<::~l<;jllE '~~MdjU~J, :~ JA"B,Scr,UJ:"", .. ...• . . . ' 
5. i' .t1A£.".J 1d: .. ,._i.$.J),:J1,IJ~1{.L31_L,.-,8 'B:~~JJJ:;.LJs.~.Y:.lS"EDL".L .. _;,,_.;.,_.;,..~ ... ",;.~._L~;" ..• L_.:.. __ "L_-l.w.w~.,_.L_}_.J.. __ "Lj_"L_,j_ . .L_.i"W_, ,,," •. _L,,"L._J ..•. 

6. ~MAEL'L1R;Xi~l;iDl L.AB 131,A :RBi 
! 
t 

1. This @MAP control statement produces the same results as the @MAP,I control statement. The names for the symbolic 
and absolute elements are automatically assigned by the collector. The printed output and internal table entries would 
appear as if the control statement had been: @MAP,I ,TPF$.NAME$. If no directives follow, the directive IN TPF$. is 
assumed. 

2. Element OLDELEMENT is updated by any source language statements following the @MAP control statement. The 
output source language goes into file NEWFI LE, element NEWE LEMENT. The absolute element A goes into TPF$. 

3. Version C (latest cycle) of element SYMIN from TPF$ is the input symbolic element. The absolute output element 
ABSOUT is written in file BACKUP. No source language output is produced; any successive correction lines are applied 
but not saved. 

4. The source language statements (collector directives) following the @MAP control statement are inserted as the 
symbolic output element SYMOUT in file BACKUP. The absolute element ABSOUT is also put into file BACKUP. 

5. Cycle 4 of element SYMIN located in TPF$ is produced. Any correction lines are saved. Version REVISED of absolute 
output element ABSOUT is also put in TPF$. 

6. The source language statements following the control statement become the symbolic element ARB in the TPF$ file. 
The output element goes into TPF$ as relocatable element ARB. If errors are encountered during the collection, the 
run is terminated. A full listing is produced. D bank addresses are allowed to exceed 65K. Diagnostics are printed for 
addresses over 65K. 

10.2.2. COLLECTOR DIRECTIVES 

The collector directives enable the programmer to control the collection of his program. These directives: 

II are free-form, hence, they may begin in any column of the source language image. 

II may contain comments preceded by the blank·period·blank construction. 

a follow the standard dropout rules (see 3.2.7) pertaining to filenames, element names, and so forth. 

For the collection of complex programs which require relocatable input from many sources, construction of overlay 
segments, or the use of multiple libraries, the user must prepare a set of collector directives. These statements may follow the 
@MAP control statement or be contained in an element in a program file. The user has the same access and updating facilities 
for the (@MAP) symbolic element as for any other type of symbolic element. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 10-5 
PAGE REVISION PAGE 

10.2.2.1. ELEMENT INCLUSION (IN) 

Purpose: 

Allows the user to specifically include an element or an entire file in the collection of a program. An element may be 
preceded by a filename. The elements indicated on an IN directive are placed in the segment named by the preceding SEG 
directive (see 10.2.2.13). 

All parameters in the IN directive are optional. If all parameters are omitted, IN TPF$ is assumed. 

Format: 

IN name-1,name-2,name-3, ... ,name-n 

Parameters: 

name Specifies the element or entire file to be included in the collection. See 2.6 for standard 
fi Ie and element notation. 

Deseri ptions: 

By starting 'filename' without a following element name, the user can specify the inclusion of all elements in a program. If 
some elements of a file have been explicitly named, these are included as specified and the 'IN filename' serves to bring in 
only the remaining elements in the file. When specifying an entire file for inclusion, a period must follow the filename. 

Elements named but not directly associated with a filename are searched for first in TPF$, then in any files named on LIB 
directives (see 10.2.2.3) and finally in the system relocatable library. 

An element name may appear on only one IN directive and only once during a collection. A version name may be present, 
but the element name itself still may appear only once. 

Common blocks may be named on IN directives but must not have an associated filename because they are embedded within 
other elements. When filename is present or implied by a period, the parameter is assumed to specify an element name. For 
inclusion of a common block in the collection see 10.2.4.6. 

For the order of elements explicitly and implicitly included in the collection, see 10.2.3.2. 

Examples: 

" '" ~ .. , .. ~A."" ~~.YW~~,· ... ~Y'_ ""_.....,.v., ........... "_·.~,.~ ...... "''', ..... '''' ....................... _,_.»".,,M.''' ........ ~~ ... __ ..... A _____ .'''~~~_> .... __ ~, ..... " ........ ~.A~.'~< _-.......,,,,,., _~_'-'-"",",","''''' __ 'A'·'''''Y''''''''''"''''' __ '''''''''''_~"''''''''''''''''~''''''''<'''''''''''''''''·_·.'''"''''"Vh'''''''. ___ <.,. .. ___ .",,,.,..~~,.....«<_ ......... _ .... ~ W"""""'W~ __ ""' ___ """''''''''''''''.",,_--=--'h''''._''''W._ 

k"_.~~~~~_~~~RA~~"22 ____ ~____:~ OPERAND._ 4L_ _ C5~MM""TS 
f y m~. ~A"'''_' h" .... "'"'"""'" ,~,,,<~,,v"_h-...WW...,"" 'A"'~""""'~ No""" ~.,.._""_''''''''' .. ,., V' y' "''''~~'<~'v-',"",",_''' .......... ~ ,_ ....... , ..... ~ .......... ~ ;"::~~~::"';""":,:::-"';,"",, __ ,",~-::-=: .. :=:,,\:,.,..,V~y~:::::::;':'=-.,:;:;""·;.~~:w· __ "::='=:':':::.":::::_-=_,,v~ .;,::::~:::.;;:":::;;,;:",,.........,,_:;:::,:.~::..::::;:;;_:-:.:... .. :::::::..":'::. . ..;:::~=..;=::;;:.:.::~:::: ..... ,';:;:;;'-;:=~,A;:;:";:;:~.;,:::;:::';:;;:-_ 

I·IJJJ; ... 1 .J .~., . FjJJ~,E;Al~j,F;+L~J:;'8L~J,; 
2.1$,E1G: i J. AiP:AY,I .. l;.j. L. 

IIJt ... ; jF!:t:jb;f;IBL·jBJ~;'J!I<::l<::::L,;PJ:::> ;"J 

3·1$~!q .. i >, l:BP/\y:gL~L.IIL .. L. L :. l.L. 

IJ:N.,.i,"'.L .. ~,-.L.." '.".L'N.'l:1hlbECIX~'1.R~E!8~CJLt.~:I1.~;IIljR,G,':1<m.~,~ .. L.1 .... -1 .. _, : ... l .. _,.l .. _:...._.L..L_:~, L .. J_J'0L.L_.L-.L_L";.",,,i...J._ 

} .... I L .1. 

1. All relocatable elements in FI LEA and FI LEB are included in the collection. 

2. Elements BB and CC from file FI LEB and element DO, whose filename is not indicated, are included in the collection 
of segment ADAY1. 

3. The relocatable element INIT version REV in file COLLECTOR*F8 F-cycle 1 is included in the collection of segment 
BDAY2. 



4144 Rev. 2 
UP-NUMBER 

U N I V A C 11 00 S E R I E S S Y S T EMS 10-6 
PAGE REVISION PAGE 

10.2.2.2. ELEMENT EXCLUSION (NOT) 

Purpose: 

Names the elements which are to be exclused from the collection. 

All parameters in the NOT directive are optional. If all parameters are omitted, NOT TPF$ is assumed. 

Format: 

NOT name-1 ,name-2, ... ,name-n 

Parameters: 

names Specifies the elements, with or without filename, and files to be excluded from the 
collection. If the version name or filename is omitted, all elements of the specified name 
are bypassed. 

Description: 

When all elements of a file are to be excluded, the entire file may be designated for exclusion with a NOT directive. A period 
must follow the filename to ensure that it is not interpreted as an element name. 

If a filename with no following element names appears in a NOT directive, elements within the named file cannot be 
implicitly or explicitly included during the collection. The exception to this is TPF$ which even though designated for 
exclusion, individual elements may be explicitly included. 

Examples: 

,\ OPERATION 
10 20 

.\ OPERAND !\ 
40 

COMMENTS 
50 

I. . .. M.~J!..11 J . .1 .... l.i~~.ll jAl .... 1 ....... L-L .. .....l.---L.-L .... L..! ... 1 ... 1 .... i ....... l ....... .L. ... Ll.. ........ L......L.....L.L.J .... L ... .L .•. .L.....l._ .• L...l ..... ...L.1. .. J ... 1 .. J .... J ........ L .... L .... LL1 ..... L ..... L.J........J........L...1 ....... L ..... 1. ..... 1.. .. 

2. 

Lt. 

l(%Tl ........ I.. ....... t... .. .lC1WJ"fL, J~ R"Rl ...... J ....... J.. ..... 1. ...... 1.. ..... L .... ..! ... l. .. 1.....J ....... 1.. ...... J ..... ..1 ...... 1 ........ 1 ........ i ...... L ..... i ..... L ... L..L...L .... L. .... L. ..... l ........ L .... L .. ...l ..... l... .... .L ...... ..l .• ....L...L .... L .... L ...... l .... 1 ..... J ...... l_ .. l_ .. l ...... J ......... t.. .... l ...... .l .... . 

........ AEI .. , ... 1.I .. l ....... .l ......... A.l/.AL..l ...... ....L......L... ......... l .... 1 ....... 1 .•......... 1 ...... J ....... J ..... ....l--L....i......J ..• _l ........ ..l ...... l ..... l_ .... 1. ........ L.LJ ........ L..L. . .1 ...... LL_1 ... i. ..... .J ...... 1-L....l....... . ....J ..... 1 ....... 1 ........ l ...... 1.....J. .... ....L...L.J. ........ 1. ... . 

iNL ... L.L .• lbI..1L..LE.81..: ... L .... L...L ... L .... L .... L. .... L_L.L .... L.L .. L.L.L .. i ..... 1. .... .1 . ...J .... 1...1.......L.1 ........ .1._I. ... .1 ... .J ... J. ..• L.J .... ...l.........L...-.L..1......L .. .1 ........ l ...... L_L.......! ........ l ........ L .... .1 ..... L.L 

I L . C· , II! I ! I I iii I I , , I ! , 1 1 , I I 1 I 1 

--L.-.I..........L........I-...L ... L ... .J .... L .. L..i.-L....L .... ..L....L.......L....L.J. . ...1 .... J ..• J._ . ..l........L.....1-.l..... ................................. ! ...L . .J.. .... l ..... ..!._ •• l.~1 ~·..........l ....... L .... l .. L .. l......J....-'---'--.J....1 ..... 1... .•. 1... ... 

I I I L ... L. ..... L. .... J.~_Ll........L...L1 --1.....1 ...L........LI ...1 ....... .1 ....... L ...... l .... L ..... L .. L .... Ll. .... L.....LJ......J.. .... l ....... L.L ... L.L...l....J. ........ .L .. J ....... 1. ..... L.J .... .....l. .... 

..1 ...... 1 ...... ..l ...... L..J.........LJ_ 

.....L.......j...1 -.1.....' ...... 1..........1.._.1... ... .1 ..... L ...... L....J........L.J...........1.......l-

J........L....J ...... J .... I . .1B EI$l .. :.L......L ..... L...J. .. ......L....J. ........ L. .... L._L ..... l ....... .J. ..... J ....... l ..... l-LL...L...l-Ll ........ l ...... 1 ........ 1 .... .l ......• J • ....l ..... .J..........l......t........LJ ....... l ........ l ...... L_''--'-' ..................... I-L.....L ...... l ..... .J ........ l ....... .J_ ..• l .... _ 

L.J ....... L...J. ...... ..! ........ L. ... .l .... .1._1._..l. ..... 1 I I ! I ..L.....LJ ...... L .... L ..... .L ...• J ........ L.....L........L~L .... L ... L .. L. .... L .... .l ....... L_I I I I ! II! L .... l .... l .. ........u.........L...J........l. ...... l. ...... J .... 1. .... 1 

1. Elements CWW and LRR are excluded from the collection; all other relocatable elements in TPF$ are included. 

2. Elements CL and AB are excluded from the collection; all other relocatable elements in the file FILEA are included. 

3. Elements XXX and XX2 from file FL 1 and elements CAT and CAT2 from file FL2 are excluded from the collection; 
all other relocatable elements from files F L 1 and F L2 are included. 

4. Relocatable elements from SYS$*RLlB$ and TPF$ are excluded from the collection. All elements from FIL 1 are 
included. 



. ~" -

\'''''0-•• ' 

4144 Rev. 2 
UP-NUMBER 

UN IVAC 1100 SE RI ES SYSTEMS 10-7 
PAGE REVISION PAGE 

10.2.2.3. FILE SEARCH SEQUENCING (LIB) 

Purpose: 

Specifies which files (libraries) are to be searched by the collector prior to searching the system relocatable library 
SYS$* R L I B$. 

All parameters in the LIB directive are optional except filename-1. 

Format: 

LIB filename-1,filename-2,filename-3, ... ,filename-n 

Parameters: 

filenames Specifies the files to be searched; named in the order in which they are to be searched. 
These files must have been @PREPed (see 8.2.11) prior to being specified on the LIB 
directive or the file is bypassed in the search sequence. 

Description: 

The specified files are searched for entry points which satisfy external references and for specified elements without 
filenames. TPF$. is always the first and SYS$*R LI B$. the last file searched unless they are named on a NOT directive. 

The files are searched in the order in which they appear in the directive; a file may be searched more than once if the filename 
appears more than once on a LIB directive. A file is searched only once for each time it is specified on a LIB directive. 

When several LI B directives are given, they have a cumulative effect. Thus, if file A has external references satisfied by 
elements in file B which in turn have external references satisfied by elements in file A and none of these elements are 
explicitly included by I N directives, the following directive is necessary to ensure the inclusion of all referenced elements: 

LIB A,B,A 

Examples: 

r-----------------------------------.--------
LABEL ,\ OPERATION 

10 20 
OPERAND 

30 
,,\ 

40 
COMMENTS 
50 

/. L IB.L .. L_J.. ... J.C..ltI:BJ.LL .. L .... L .. L-l __ L....LJ ___ L_.L . .l ..... L .. L .. _L.L_L_L....L.-L...Ll .... 1 .... L.. ... .L . .J_-l ___ L....L._L...L_.J..._ .. J ..... L ..... L.L-l-L..1 .. 1 .. .. 1 ..... 1. ... L.-1.....-1 ___ L. .L .. L 

2. llIBL .. J ........ L.J!J.jSJ .~. Ll.l_bt~J;.l2LfJJ.eS'IEL~LJ .. JJJSE..J.I .. L ._L ..... l ..... L ..... 1 .... i ... J_L. ... LL_..L ... L ..... L ... .1 ..... L .... L ...... L .L .. L . ...L.. .. L ..... L_ ... L .. I. ..... L ... L L .. 1_ ... .J ........ L ..... 1..L 

,-L.1. .... .J ...... I ........ I ........ L._L ... L.L._L.l .. --L....L-L._L __ .L ..... L .. _L .. L ...... L. ... J.L_.L.....l...-..L .. L._1 . ..1 ...... L_.L-L..L ... LL.-1.... ... ..L_L.l_.l ... L .. L:L.....LL . ..L-1 ..... L .... L .... L ...... L.L_L...L..L 

1. File CHR 1 is searched after TPF$. and before the system relocatable library. 

2. Files USE1, USE2, USE3, and USE1 (a second time) are searched in that order after TPF$. and before the system 
relocatable library is searched. 

10.2.2.4. EXTERNAL DEFINITION RETENTION (DE F) 

Purpose: 

Creates the ENTRY$ table. This table contains all the locations and names of the external definitions retained after the 
collection of the absolute or relocatable element . 

NOTE: 
The DEF and REF (see 10.2.2.5) directives are primarily useful in the collection of reentrant processors and with 
R-option collections. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 10-8 
PAGE REVISION PAGE 

All parameters in the DEF directive are optional. 

Format: 

DEF def-1,def-2,def-3, ... ,def-n 

Parameters: 

defs Specifies the external definitions to be retained. 

Description: 

The DEF (and REF) directive cause the collector to build the COMMN$ table which defines the common blocks in a 
program. The user can address the two tables by the collector-defined names ENTRY$ and COMMN$, respectively (see 
10.2.4.8). 

If the R option was given on the @MAP control statement, the DEF directive must be used to specify those externalized 
labels which are to remain externalized in the merged relocatable output. 

If no element explicitly named in an IN directive contains the named external definition, a search of the LIB files is made to 
find an element in which the symbol is defined. 

Example: 

LABEL ,\ OPERATION ,\ OPERAND ,,\ COMMEI'HS 
10 30 40 

. ..J ... , ... L .. L_L...J.... ... l... ..• l ..... L. .. L ., 

..... L. ..... L., ... L .... .1., .. , .... L ... L. •. L. .. L_LJ __ L_ . .L ... L .. L, ... J ....... .L .... ,.L.., ... L .... ..1 ... ...1 ... L .. L. .. L .. "L.L .. L .. L, .. L ..... L ..... 1... .... .1 .. L.L_L ... 1.. .... 1.. .... 1. .... 1... ..... 1... .. ...l ..... .1 .... , . .I ..•..• I.......1_.l ...... 1.. .... L ..... l ' .. .i ... .1 .. 1 ....... 1 ....... L ...... 1 .. i .... .1 ... 1. 

The listed external definitions, SIN, COS, and SORT and their locations are retained after the collection in the ENTRY$ 
table of the resultant element. 

10.2.2.5. EXTERNAL REFERENCE RETENTION (REF) 

Purpose: 

Creates a list of external references to be retained by the reSUlting absolute or relocatable element. No attempt is made to 
satisfy any references made to names indicated on REF directives. The table of retained external references is program 
addressable by the collector-defined symbol XREF$. 

All parameters in the REF directive are optional. 

Format: 

REF ref-1,ref-2,ref-3, ... ,ref-n 

Parameters: 

refs Specifies the external references to be retained. 

Description: 

If an external definition that is identical to a REF name is encountered, a diagnostic is printed and the external definition is 
ignored. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 10-9 

Example: 

LABEL ,\ OPERATION \ 
10 20 

OPERAND 
30 

.\ 
40 

PAGE REVISION PAGE 

COMMENTS 
50 

...... 1. .. L. .•.. .L_L . ..i._J-1... 1.... j ..... 1._L1.....i ... .l .. J ... l .L .. 

...... 1. ..... L. ..... l... ...• 1.. ...... l... .... L . ..t ..... L..J .. J .. 1_.L..l •.. L ... J.. ....... l... .... .I ....... l... ... ..i ... L ... L.L •• L.J ... L ..• L ..... L .... L. ... L . .l ..... .1 ... L..J...... L. .... 1... .... 1.. ...... 1.. ..... 1.. ... 1 .. ..l ..... t.. .... L.L.L.J ........ L .... L ... l... .... .l .... .l. .. I. ... 1 ..... .1 ....... L ... 1... 1. I .. 

The listed external references (ZIP, ZAP, and DOD) are retained after the collection in XREF$ table of the resultant element. 
Any references to these symbols are satisfied with the address of the appropriate entry in the XREF$ table (see 10.2.4.8). 

10.2.2.6. STARTING ADDRESS REDEFINITION (ENT) 

Purpose: 

Provides the user with the capability of overriding any start addresses provided by relocatable elements. Upon program 
initialization, control is transferred to the absolute address of the named symbol. 

Format: 

ENT name 

Parameter: 

name Must be an externally defined symbol which is the newly defined starting point. 

Description: 

In the absence of an ENT directive, the first start address encountered in processing the relocatable elements becomes the 
program start address. The start address must be contained in the main segment as it is the only segment initially loaded at 
execution time. 

Example: 

LABEL ,\ OPERATION 
10 20 

.\ OPERAND 
30 

.. \ 
40 

COMMENTS 
SO 

E ~...LTL.i .. l. ..... J~ig;Y.J?1. ... .l ........ l... ..... .L_..L-L . .....L .• L .. L .. .J ... .1.... . .... 1 ....... l... • ...L..L-L..l.---L-L..L ... 1. .. L .. L._L_L .. L .. .J..._L.1 .. : ... L. 1 ..... 1.. .•.. ; .. _.1. . .L..l... .... .1. L ... 1.. .. 1 .. .L_L_L.1 .... .1 ..... 1. ... 1 ... .1 

.1. ..... 1. ..... 1.. ..... 1.. .... L..L..1 .... J _.LJ. .. L .. .1._L . .J.. ..... J ....... L ..... L ..... 1. ..... .L ... 1. .! ._L .• L.J. _J .... L ..... L ..... 1.. .. .1 ....... 1.. .... 1. .. .1.. .1_L.L .... L. ..... L ..... L ... L . ...1 .... L ... .I ..•...• L . .L ... L .... L ..... 1.. ..... 1.. . .. L...1 ... 1 .... .J ...•... 1. ..... 1. .. i .... j .... i 

Control is passed to the absolute address of the symbol GGYP in the main segment. 

10.2.2.7. EXTERNAL REFERENCE DEFINITION (EOU) 

Purpose: 

Provides the means to assign, during the collection, a value to an undefined symbol or to change the value of an external 
definition. 

All parameters in the EOU directive are optional except name-1 /value-1. 

Format: 

EOU name-1 /value-1 ,name-2/value-2, ... ,name-n/value-n 



4144 Rev. 2 
UP.NUMBER 

U N I V A C 1100 S E R I E S S Y S T EMS 10-10 
PAGE REVISION PAGE 

Parameters: 

names Specifies the symbols to be defined. 

values The values to be assigned to the preceding name parameters. 

The assigned values may be: 

• octal integers (indicated by a leading zero) 

• decimal integers 

• a symbol 

• a symbol with an offset (for example, 808+4) 

Description: 

Any symbol used in the value parameter must be externally defined in one of the elements included in the collection. If an 
external definition which duplicates an EQU name is found, the external definition is ignored and a diagnostic is printed. 

Examples: 

LABEL .\ OPERATION ,\ 
10 20 

OPERAND 
30 

;\ 
40 

COMMENTS 
SO 

I. EOU1-L .... .1..J.l:2JEl.tQ1Z.JQjQi .. ..l.-LL..-L._L_.J ....... .1 ........ .i ..... ! ....... i .. --l.-L..L_.L.l---L_L ..... l ...... L ... .l.-.l.....-.L.... ... ....1.......l.......l •.•. L .... 1 ..... 1 •. -LJ-L . ....L..L .... 1 ....... .J ........ L .... .J.---L....l......_._1 ...... .1... • 

2. EQJJ.J ...... J ....... A..kJ/~Oj6J:tLj-l._l ..... .J .•..... l ........ 1 ..... .l ......... I. ....... .I ..... J._.L_L..,J-1_L ..... L ...... l ..•.... 1 ....... i ........ l .... ..L..L .. _, ~! .•.. 1... ... .1 ..... L... ... L .. .1..., ... .J ..... L . .J......l-. .L .... L ... .l ..... L .... L ... J... ... ..L_L..l ...... L .... l ....... .1 ....... 1... .. . 

3. Q1J.L.. .. 1.. .. JJ.l~E1LQI2~~'B.LI,;L.JSl8M:tl..J~-L_.1-_.l._L.l.. ..... L...L I I I I. 1.......L_L.1-.. .I ....... .1 : I I _1.....1 .... .L. .... L..LL..L_L.L .. 

..... ..1 ...•... J .... J. ..... L . ..J .. ....l.-1-L....l~_l •.... l .•...• l ..... ..l ..•..• L ..•. L ..... L .. LJ.-L....L.....L .. L_.L ... L .... .1 ... _l ...... L . ...l....-L.L_L_L_L.l .... J ....•. J ...... LJ ' , I 1... .... 1 ..... 1.. .... J. I , ! I L. .. 1 ........ L. .... J.._. 

1. The external reference JOE is defined as 2008 , 

2. The external reference A L is defined as the value BO 8+4 1 o. 

3. The external references JOE and ABE are defined as 2008 and SAM+101 0, respectively. 

10.2.2.8. ELEMENT SELECTION DETERMINATION (CLASS) 

Purpose: 

Uniquely specifies one element version in a program file when more than one element has the same basic name but different 
version names. In the collection this occurs when: 

• The version of the element was not specified on an I N directive and more than one relocatable element has that name; 

• More than one relocatable element defines an external reference. 

• A filename was not specified with the element on an IN directive and the element with different version names is 
present in more than one file. 

Format: 

CLASS string 

Parameter: 

string Consists of 12 alphanu~eric characters, asterisks, and blanks representing the versions of 
the elements. The string begins with the first nonblank character following the CLASS 
directive. 



4144 Rev. 2 
UP.NUMBER 

Description: 

UNIVAC 11 0 0 SERIES SYSTEMS 10-11 
PAGE REVISION PAGE 

Successive CLASS directives have a cumulative effect and different ordering of CLASS directives may give different results. 

Asterisks in a string represent characters in the version name to be ignored. Blanks in a string are valid. 

When several elements qualify to be included in the collection, the collector compares the string parameter in the CLASS 
directive with the version narr;es of the available elements. If the element version name is not identical to the string 
parameter, it is not included in the collection. 

If, after the first comparison, more than one element qualifies, the string in the next CLASS directive is used in eliminating 
the remaining versions. 

If all the CLASS directives have been used and there still remains more than one qualifying element, none of the remaining 
elements is used in the collection; a diagnostic message is given. 

Examples: 

LABEL ,\ OPERATION 
10 

.\ 
30 

OPERAND COMMENTS 
50 

... L ..... L..L._L...J .... L_L ..... L ..... L .... .l ..... 1. ....... 1 ... L-L,L .. L .... L .... 1 ...... L ..... L .. ..J ..... L ..... L ... L~!~L ..... L .... .l ........ l I .1-1 __ 1._..: .. _ ... L ......... 1... ..... 1 .. 

lJ$..lltZJEL_J.._ L_LJ.-L.L-1....J._L._L .... L .... L .... L .. J .. _j_~ __ J_._L .l. ..... .l........l. .. -Ll.........L......L .. L .. .L. .. Ll ...... L .. -L .. L..L..LJ.-.L..LJ ..... L ..... L..L--L.L..l... .... L .. 

~.ik:.Al;g2JJ)1D~~~~I~~~/:~~L ... 1 I! L.L .. L ... L.l .... .!. ..... _L.._L-LL_L-l-LL.l ... .L .... ..l .... J __ L ..... LL.L .. L.L .. ..l ..... 1.. .... .J. ' ..... 1. ..... J ....... L 

* 
?{~1~ .. 1~..L4f'< ~ f I~ (' I~.L .... L .. J .. _...L.J.--L.L.. . ...LI -.i.......l-..l... .... L .. L ..... J.---L.....l 

2. Ni 1ft 0,1 1._1. ...... L J ........ L ..... L ..... J .. _LL_L.L_LJ.._ .. L .... .L .. L. ... J. __ L.....l-1. 

LAS15 ...... Dl~J~~''"''I)l-I~.J.~~1.~ ... L .... L., I 1 1 1 1 1....1 ..... L ... L._I'--1.-l--!L .... L 

I--'---'---'--.J-...J..._L....L ... L .... L. .... L.J , i 1 ! I I ...... L.L1. .... .1 ..... L ... l... . ....L ..... LJ .... .....L.....l.......L.L .... Ll ... .1.._L-L_..;....! --'---'----11--,--1 -1.1 ... J ..... .L .... J. __ 1.--1--...I..-l_L..l ..... 1. ..... L .. J. ,L' .....L-...L1 .......J.....1 

1. The IN directive does not specify which version of the element SIZE is to be used In the collection. The three CLASS 
directives specify that the version DCOB14 be used in the collection. Graphically this can be shown as follows: 

The IN SIZE 
directive selects 
the following 
elements: 

SIZE/BCON21 
SIZE/BCON22 
SIZE/DCON12 
SIZE/DCON13 
SIZE/COB23 
SIZE/COB24 
SIZE/DCOB14 
SIZE/DCOB15 

The CLASS D********** * 
directive selects the 
following elements: 

The CLASS ***B******** 
directive selects the 
following elements: 

THE CLASS *****4******* 
directive makes the 
final element 
selection: 

SIZE/DCON13 SIZE/DCOB14) • SIZE/DCOB14 
SIZE/DCON12)-

SIZE/DCOB14 SIZE/DCOB15 >-----~ 
SIZE/DCOB15 

2. The CLASS D*LA******** STATEMENT SPECIFIES THAT VERSION D2LARGE of EL T1 element be used in the 
collection. Graphically this can be shown as follows: 

The IN E L Tl directive 
selects the following 
elements: 

The CLASS D*LA******** 
directives makes the 
final element selection: 

EL Tl/B3LARGE EL Tl/D2LARGE 
EL Tl/A2SMALL>-

EL T1/D3SMALL 
EL T1/D2LARGE 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 10-12 
PAGE REVISION PAGE 

10.2.2.9. CORRECTIONS FOR A RELOCATABLE ELEMENT (COR) 

Purpose: 

Specifies that a correction to a relocatable element is to be incorporated into the final absolute element with the original 
relocatable remaining unchanged. A COR statement may correct the following: 

• an instruction word 

• a data word 

• a data word containing up to two symbols or values representing the upper and lower halves of the word. 

Format: 

COR eltname 

The correction data images which follow the COR directive may be in anyone of the following formats: 

address,loccounter -1 f j a x h i u,loccounter-2,eltname-1 

address,loccounter -1 dataword 

address,loccounter -1 data,loccounter-2 data,loccounter-3 

Parameters for the COR directive: 

eltname Specifies the element to which the corrections are to be made. 

Parameters for the correction data images: 

address,loccounter-1 

fjaxhiu 

dataword 

data 

loccounter-2 

eltname-1 

Description: 

Specifies the relative address and location counter of the relocatable element to which the 
corrections are being made 

Specifies field values in an instruction word that are to be inserted. The u field may be a: 

• symbol 
a symbol and offset 
• octal number (a zero must precede the number) 
• decimal number (no preceding zero) 

Specifies a numeric correction 

Specifies a symbol, symbol and offset, octal, or decimal correction 

Specifies that the u and data fields are relative to the value of location counter LC2 

Specifies element in which loccounter-2 belongs if it is other than the element being 
corrected 

The corrections contained in a COR directive are ignored if the R option was specified on the @MAP control statement. 

Any number of correction statements may follow the COR directive. 

COR statements cannot contain instructions which are jumps to any indirectly loaded segment. 

A symbol must be an externalized entry point. 



4144 Rev. 2 
UP.NUMBER 

Examples: 

LABEL .\ 
10 

UNIVAC 1100 SERIES SYSTEMS 

OPERATION OPERAND 
20 30 

.:\ 
40 

PAGE REVISION PAGE 

COMMENT5 
50 

10-13 

I. c;.l~BL .... _l .... ~EJ.bIJILL ... L .... J ... L .... L .. L.L. ... .L .. l. .... ...l .... ..J ..... L .... .L. ... L •.. L.J.-L....L ... l.............l ...... LJ ... L. .. L .... L ....... L. ... L .. ....L-L .. l.. .. l .... J .. L.i.. ....... L.-L ... L.l.. .... i ... .L ... J ... J._L . .L.....l .... L . ..L ... 1. .. J 

2. QLQI.QQIPtJ.LJ JQ ... L ... L.LQ-Sl .. L. JQQL .. IQ.lO! .!O...lQL_J.o.J:_la .. Q;QQjQLLLL.I-iQLL1/JEJ~JTI2LL.l_...l..L.L ..... t .. L. !. ...... Ll ..... L ... L. L .... l .. l .. 1 

3. OQ.LQQQt.+.L}JQLL_L ... ;Q~Q19 ....... 1~:?d . ..J,5.LJQiQ....... OL...1Q_p.AJ~Mr \+ ,I , .L .... L.Ll ....... i ..... J ....... L ... l-L.......L..... ... L ....... L .... 1. .. L .... L .... LJ. .... L .... L ....... L . .1 ...... L. 

4-.. .... ,QjQ.Q:Qj2.p O..l...I, I 'O'Q1QjQl.QtQQlQlQlQJ...J.L'1LL ... L.L. ... L ...... L.J ...... L ... J ..... L.L . ..l ........ L .. L ... 1 m LJ. ....... J -Ll-1 ........ Ll ....... L ..... L .. 1... ... LL .... L .... ..1. ....... L ... 1 .. L. .... L . ...L 

5. 0' 00000 I I I..LJPPN\M Y\+ 1 \ L ..... ' ____ I ....... 1--...' ...... '--1..' .... ''--'", ___ , ..... ,--,-~ ..... ' ........ ' .... '--'-, ...1.' ____ ' ..... 1---1..' --1--'--.... 1 ..... '--,-1 ....,,'--1..' --,-' --1...-..... 1 ........ ' 

6. 00 Q1C1Q.lbll .102.L L...l)...10....tO..Q...L1.2L/.1Qd.J_.L .... L~...LQ~QlQlLJ~L .... L . ...L.....l.-1 ... i 1 1 ....... L .. L ..... ..L ......... L...L_L ........ L ....... L .. .1 .... L .. 1........L ..... L. ....... L...Ll ......... l. ....... L 

7. OJ:2D ,01 I ,I ') J...02..L .. L .... J)JJ.~ Y \+ 2, I L ... L ... L .... LL .... L ... J .......... L .... L......Li....... .... L ..... L ..... L .... I... .... L ....... L .. L.L.LL........L-L.......l... .... L .... L. ...... L ..... LL ... L .. J .......... L .... L ... L .... .1 .. L .. J. . ........l ... 

8.01...QQIQd ... l:tt/ .. .J9~......LJ....... p\21j ,O,2LL ... D.AJ.l~~MYi+,21 , 'I .. 1.... .... 1..._L" I , I' I I ..... L_.L...1. ......... LJ .......... L.......l.......L.J ....... l ..... L J I ..1. .. . 

9. 000 I I ~..lQ;;!..L.J._1Q2:J1 iOlo, ..... ~J..Jll....lQl.~ 0, ,0 LL ..... L.l ....... LJ. I I I L.L .. .1 ..... L .. L I , 

I I I I ! J 

1. Corrections to the relocatable element EL T1 are to be applied to the final absolute element. 

2. The word being collected under element EL T1 at relative address 18, location counter 1, is modified to set function 
code to 51 8, and the j, a, x, h, and i fields to zero. The u field is given the value of 118 relative to location counter 1 
of element E L T2. 

3. The word, appearing at relative address 48 under location counter 1 of EL T1, is modified to set function code to 68, 
arithmetic register to 158; and u field to DUMMY+1. The j, x, h, and i fields are set to zero. 

4. The word appearing at relative address 078 under location counter 1 is being changed to contain 1148' 

5. The word at relative address 118 under location counter 1 is changed to 1118 in H 1 and DUMMY+1 in H2. 

6. The data at relative address 68 under location counter 2 contains 1128, relative to location counter 1 of ELT1, in H1, 
and 138 in H2. 

7. The data at relative address 118 under location counter 2 receives the value of symbol and offset ,DUMMY+2. 

8. The data at relative address 148 under location counter 2 receives the data 28 relative to location counter 2 in H 1, and 
the value of symbol DUMMY+2 in H2. 

9. The instruction word appearing at relative address 168 under location counter 3 receives the function code 278; the A 
register 178; and a u field of 11768, relative to location counter 2 of E L T1. The j, x, h, and i fields are set to zero. 

10.2.2.10. ADDING SNAPSHOT DUMPS (SNAP) 

Purpose: 

Specifies the elements in which a snapshot dump is to be taken. The snap data images immediately following the SNAP 
directive specify the address within the element where the SNAP is to be taken, length of the dump, and the frequency of the 
dump. 

All parameters are optional except eltname. 

SNAP Directive Format: 

SNAP eltname 



4144 Rev. 2 
UP-NUMBER 

Parameters: 

eltname 

SNAP Data Image Format: 

UNIVAC 1100 SERIES SYSTEMS 

Specifies the element name where the dump is taken. 

address-1,lc-1 address-2 length,reg times/frequency 

All parameters are optional except address-1 and Ic-1. 

Parameters: 

10-14 
PAGE REVISION PAGE 

address-1,lc-1 Specifies the address and the location counter within the relocatable element of the 
instruction to be replaced with the dump request. This field may not contain a symbol. 

address-2 

length 

reg 

times 

frequency 

Description: 

Specifies the starting address of the program area to be dumped. This field may be in the 
form (all parameters optional) address,location-counter,element-name or symbol + offset. 

Specifies the length is words of the program area to be dumped. 

Specifies which registers are to be dumped. The following codes are used: 

08 - No registers dumped 
18 - Only R registers dumped 
28 - Only A registers dumped 
38 - Both A and R registers dumped 
48 - Only X registers dumped 
58 - Both X and R registers dumped 
68 - Both X and A registers dumped 
78 - A, X, and R registers dumped 

Specifies the maximum number of times the snapshot dump is to be taken. If omitted, 
the value 10010 is assumed. 

Specifies at what frequency of reference the dump is to be taken. If omitted, the value 1 
(which dumps every time the SNAP is encountered) is assumed. 

No more than 16 snapshot dumps may be requested in anyone collection. If more than one snapshot of the same element is 
to be taken, mUltiple specification statements may follow the SNAP directive. 

When the dump request instruction SLJ SNAP$ is inserted at a specified address, the instruction appearing there is placed in 
a table in element SNAP$. After the dump is taken, the saved instruction is executed from within SNAP$ as if it had not been 
moved. If the saved instruction is a jump instruction, control transfers immediately to the location specified in the jump 
instruction; otherwise, control is transferred to the location following the location from which snap was called. Because the 
replaced instruction is executed from within SNAP$, the replaced instruction: 

• Must not be altered during program execution. 

• Must not be referenced as data or by indirect addressing. 

• Must not be an SLJ instruction which specifies indirect addressing or indexing. 

• Must not be an LMJ instruction which specifies indirect addressing or indexing. 

• Must not be an EX instruction which references an LMJ or SLJ instruction. 

• Must not be a test and skip instruction. 

• Must not be used in reentrant code. 



4144 Rev. 2 
UP.NUMBER 

Example 1: 

LABEL ,\ 
10 

UNIVAC 1100 SERIES SYSTEMS 

OPERA TlOH .\ OPERAND 
20 30 

:\ 
40 

PAGE REVISION PAGE 

COMMENTS 
50 

10-15 

I. ~i~PLJ. .... lb.J~lBl~L .. L .. l .... L._L .. .L ..... L .. .L...l. ...... L ... ..l ...... L ..... 1. .. 1.. .... 1 .. .....J.._1-...L.J_1 .... .1. .... L ..... L .... L ... L_..l ...... ..1 .. .....L.....LJ... .. J ...... ..1 ..... L .... L .... J .. _...i_L .. L .... L . L ..... L .. .1 .. J... .... L ... 1 .. j ... ..1 .... 1. 

2 Q,I.lQL,..l.lL ... LL. L .. iQ..!..!.4 .. 1 t.J LL..l..lQl~lQJ+JQl !J ..... L_J ... 1Ql.41QiQLt lQ.JL..a....-L.LL ... L.L .. L .... L .... .J..L .. L .. L.....l ....... L ..... L ...... L .... .L.J ... _L.l ....... L .... .J ..... .1 ... l ..... L 

L_L..L .. L..L ... L.L_L_ .. L._L_L..l.--L...LJ.. .. _L .... L .... L .... L.l ... LJ .... .l .. _L .... L .... LJ .. J ........ LJ ..... L .. .L--1..-L.L....L.L...l_L_L .. L_L ..... L. .. L...l-L .. L .... L .. l.1 ..... L ... LL_LL .... L ... 1. 

A snapshot dump is taken in element LARK. Line 2 gives the parameters for the dump. The instruction at address 108 , under 
location counter 1 is the location where the snapshot request is placed. The address 128, under location counter 1 is the 
starting address of the dump. Sixteen locations in main storage are dumped along with the contents of the A, X, and R 
registers. The dump is to be taken 128 times at every eighth reference. 

Example 2: 

LABEL ,\ OPERA TlOH 
10 20 

.\ OPERAND 
30 

;\ 
40 

COMMEl'HS 
50 

\. S,N.8I~.L .. l.. .. J.J.A..C.lKL .. .J ... J. ...... L_L.L-LJ.._...J. .. _.L ... J ..... L .... 1 ...... L.. .... L-LL .. ..1 ......... L.L .... L .... L. .L_ . .L . .....L-LJ ___ L-L..L...l ... J ...... L . ...l. ....... L....L...l..._L ..... L ... L .... I. ...... l.. ....... L .... LJ ........ L .... l ..... 1 

2. QLLL321. ~10 .. 12.J ...... j_ .. .L .. jt:hA..1::{1±12L ... L.. .... L.L. .. iQJ41.0.J.QL,-JC2t~h ...... L ..... 1. ... L . ...! ...... L ... L...L....L...l... ..... l ..... L .. L .... L . ...l ..... L ...... L .. L_L..L ..... L ..... L ... 1 ..... 1 ... 1 .... ....1_..1 ...... I .. _ ... L ...... 1...I ...... 1 ... 

.....LL.L .. L. ..... l. ...... L ..... LJ ... _L .. L_ .. L .. L_L .... L_L . ..J. ........ L .l ..... L .. 1. .. ..L.J .. ......1--L-.L ..... L_L .... L_L..l ..... J_L I I I I ..L...l_L.L_L._L. .... L .. l iii 1 ........ 1 ... L.. ... .l.. ..... L .. L...L..L.....L ..... l.. 

A snapshot is to be taken in element JACK. Line 2 specifies that the instruction at location 1328 under location counter 2 is 
the location where the snapshot request is placed. The address HAH+2 (where HAH must be externally defined) is the 

" starting address of the dump. 256 or 4008 main storage locations and the contents of the X registers are to be dumped. If the 
times and frequency parameters are not specified the system assumes a value of 100 for times and 1 for frequency. 

10.2.2.11. END OF INPUT (END) 

Purpose: 

Specifies the end of the source language input for the collector. The END directive must precede any data statements which 
are unrelated to the @MAP control statement. 

Format: 

END 

Example: 

LABEL ,\ OPERA TlOH 
10 

\ 
20 30 

OPERAND :\ 
40 

COMMENTS 
50 

..... EL/ .. I . .LbL .... 1 ..... t .. J .... 1 ... .l. .. J ...... L...L...L...J..._.L ...... J...J, ....... L .. ..LL~!~; .J.........L ... L ..... 1 .... L. ... L_L_ .... LJ ..... ..L_L.J.. ..... .L ... L. ..... L-i •. L....L...l........l_ .. L J ...... J ..... l.._l.........LJ_ .... l.. .... L .... 1. 

-~1;:~:-:~~t:tL.i~~:~~:~:~~~~:~:~~=~-:-~::~ :~:: __ ~~~:=:~~_~~~~:-'_L!_L::~_:~:_:_:_._ . .L:::: 
... .l.EJ'J..DL .. .J ... ...J ........ L.J.........l-L .. L ... L .... L . .i ..... 1... ..... 1 ........ 1. ... 1. ...... L.....L_; _, ..... ..L ..... L .. L .... .l.. ... 1 ..... ..1 ...... L ..... L .. .L ..... J ........ 1 ........ L .... L .... L. .... J ..... ..J ...... I... . ..J .. _J.. .... ...L.....L....L...L.L .. .1 ..... L ....... L_~ .... J ...... L.j ..... J .. 

I I I ! t I , I I I , ! I ! ! I I ! I ! I 



4144 Rev. 2 
U P·NUMBER 

UNIVAC 1100 SERIES SYSTEMS 

10.2.2.12. ABSOLUTE ELEMENT OPTIMIZATION (MINGAP, MINSIZ) 

Purpose: 

10-16 
PAGE REVISION PAGE 

Enables the user to modify the resultant absolute element so as to minimize the I/O transfer time when the program is 
loaded for execution. 

Format: 

MINGAP value 

MINSIZ value 

Parameter: 

value Specifies any positive integer 

Description: 

The program areas created by an assembler RES directive are unique in that at collection these areas do not contain meaningful 
data or instructions. The collector then has two alternatives when defining these RES areas within the generated absolute 
element: 

(1) The area could be zero filled. This has the effect of increasing the size of the absolute element which affects the mass 
storage space requirements of the element as well as the number of words which must be transferred when the element 
is brought into main storage for execution. 

(2) The area could be left void. This alternative decreases the size of the absolute element at the expense of increasing the 
number of access control words (ACW's) and hence the number of I/O operations needed to transfer the element to 
main storage for execution. 

The collector uses a combination of these two alternatives depending upon the size of the RES area. Any area within the 
absolute element greater than or equal to M I NGAP words is left void wh ile those less than M I NGAP words are zero filled. 
Each individual ACW required to transfer the element to main storage also controls a minimum of MINSIZ words. Both 
MINGAP and MINSIZ are initially set equal to 10. 

While the value 10 is felt to be optimum in most cases and it generally does not need to be changed, there may be instances, 
depending upon type of mass storage and program application, where it is desirable to modify the parameters. For instance, 
increasing the number of words controlled by each ACW, and decreasing the number of I/O operations needed to transfer the 
program to main storage may reduce the time required to load the program. 

Stressing the fact that the initial value of 10 should not be changed arbitrarily, the judicious modification of M INGAP and 
MI NSIZ can produce an absolute element optimized for the particular situation. 

10.2.2.13. PROGRAM SEGMENTATION (SEG) 

Purpose: 

Informs the collector of the beginning of a new program segment. 

All parameters in the SEG directive are optional. 

Format: 

SEG name-1,name-2 

Parameters: 

name-1 

name-2 

Specifies the name of the segment 

Specifies the address relationship between the segment named in name-1 and the other 
program segments. 

,,, .. 



\. 

4144 Rev. 2 
UP-NUMBER 

Description: 

UNIVAC 1100 SERIES SYSTEMS 
10-17 

PAGE REVISION PAGE 

When name-1 is followed by an asterisk (*) the named segment is automatically loaded when referenced. The asterisk is 
allowed on all SEG directives, but is ignored if the directive defines the MAIN segment. 

The name-2 parameter has several formats wh ich determine the location of the segment named in name-1 as follows: 

name-1 

name-1,name-2 

name-1,(name-2) 

name-1,(name-2, 
name-3, ... 
,name·n) 

When name-2 is void, the starting address of the name-1 segment immediately follows the 
last address of the segment named on last preceding SEG directive. 

Specifies that the starting address of the name-1 segment is the same as the starting 
address of the name-2 segment. These two segments can never exist in main storage at the 
same time. 

Specifies that the starting address of the name-1 segment immediately follows the last 
address of the name-2 segment specified. 

Specifies that the starting address of the name-1 segment immediately follows the highest 
last address of the segments specified in name-2, name·3, name-4, and so forth. 

Note that the highest last I bank address may be contained in a segment different than the one containing the highest last D 
bank address. 

name-1,( ) Specifies that the starting address of name-1 segment immediately follows the last address 
of the longest of all segments previously named. 

For additional information on the SEG directive, see 10.2.4.3. 

10.2.2.14. RELOCATABLE SEGMENTS (RSEG) 

Purpose: 

Specifies the named segment as a relocatable segment. A relocatable segment (RSEG) is one whose location within the 
program is determined dynamically by the program during execution rather than at collection time. An RSEG may reference 
entry points within the program, but the RSEG itself may not contain definitions for references elsewhere in the program as 
the internal RSEG addressing is relocated at load time. 

Format: 

RSEG name 

Parameter: 

name Specifies the relocatable segment. 

Description: 

For further information on relocatable segments, see 10.2.4.4. 

10.2.2.15. DYNAMIC SEGMENT DEFINITION (DSEG) 

Purpose: 

To provide a mechanism by which the program area occupied by a segment will not be included in the initial program 
requirement. 



4144 Rev. 2 
UP-NUMBER 

Format: 

DSEG name-1,name-2 

Parameters: 

name-1 

UNIVAC 1100 SERIES SYSTEMS 

Specifies the name of the segment 

PAGE REVISION 
10-18 

PAGE 

name-2 Specifies the address relationship between the segment named in name-1 and the other 
program segments. 

Description: 

Dynamic segments are identical to normal overlay segments (defined by the SEG directives-see 10.2.2.13) in all aspects 
except one; the program area assigned exclusively to dynamic segments is not included when determining initial program size. 
It is the programmer's responsibility to guarantee that the program area is available by using the MCORE$ request (see 4.7.1) 
prior to requesting segment loading. 

10.2.3. FUNCTIONAL ASPECTS OF THE COLLECTOR 

After the collector has interpreted the parameters of the @MAP contro·I statement (see 10.2.1) and the parameters of the 
collector directives (see 10.2.2), there remains the combining of the relocatable elements into a relocatable or absolute 
element and the insertion of the final element into the program file to complete the collection process. 

10.2.3.1. COLLECTOR-PRODUCED RELOCATABLE ELEMENTS 

Although the collector is generally used to produce an absolute element, a relocatable element can be produced by specifying 
the R option. All indicated relocatable elements are merged into a single element and only the external definitions specified 
in the DEF directive are retained. All other external definitions are submerged in the new relocatable element. 

The R option is used most often when the user wants to include a relocatable element more than once in an absolute element. 
Initially, an R-option collection is performed. This combines the desired element with a specified set of relocatable elements. 
As long as no external definitions within the element are specified on the DEF directive, the desired element is submerged 
into the newly created relocatable element. The original relocatable element and the newly created relocatable element in 
which it has been submerged can both be collected in a single absolute element. Relocatable elements in SYS$* R LI B$ are not 
implicitly included in an R-option collection. 

Only the following directives may be specified with the R option. All others produce a diagnostic message, and the collection 
continues. 

DEF 
ENT 
IN 
LIB 
NOT 
REF 
CLASS 
END 

10.2.3.2. ELEMENT INCLUSION 

Adding file elements to a collection is a two-part process: 

(1) finding the files that were specified in the collector directives (see 10.2.2); 

(2) finding within these files the elements that have been specifically named on IN directives (see 10.2.3.1) or that contain 
entry points which satisfy the undefined symbols. 



4144 Rev. 2 
UP-NUMBER 

UN IVAC 11 00 SE RI ES SYST EMS 
PA GE RE VISION 

10-19 
PA GE 

Elements to be included in the collection may have been specified on IN directives (10.2.2.1) either with or without the 
filename in which those elements appear. For those elements with a filename present on the IN directive, the collector 
immediately references that file, finds the element, and processes the preamble of the element. After the preamble of a 
relocatable element has been processed, the text (instructions and data) of the relocatable element becomes part of the final 
output element. 

After the elements with specified filenames are processed, the elements in TPF$. are processed. 

If a @PREP (see 8.2.11) of TPF$. has not occurred, all relocatable elements in TPF$. are tentatively included in the 
collection unless specifically excluded (see NOT directive, (10.2.2.2). After all elements for a collection have been found, any 
nonreferenced element that was tentatively included from TPF$ is eliminated from the collection. 

If a @PREP of TPF$. did occur, an element from TPF$. is included only if it is named on an IN directive or if one of its 
external definitions satisfies an undefined reference from another element included in the collection. When a @PREP of 
TPF$. has occurred, TPF$. is always the first file searched when attempting to locate elements named without a filename and 
elements with external definitions satisfying undefined references. 

The situation may arise where the user wants to implicitly include elements from a file other than TPF$. which have entry 
point names or element names which duplicate entry point or element names in TPF$. Since TPF$. is searched prior to 
searching other files, the elements from TPF$. are included instead of the desired elements which are in other files. 

Therefore, if duplicates of element names and external definitions are present and those in TPF$. are not wanted in the 
collection, a @PREP of TPF$. is needed to prevent automatic inclusion of the TPF$. elements. It is also necessary to 
specifically IN by filename and element name any elements from other files which have element names or external definitions 
duplicated by TPF$. elements. 

For those elements without a file name on the IN directive, the collector searches files for these elements in the following 
order: 

(1) The temporary program file (TPF$) 

(2) User-defined files that were indicated by the LIB directive (see 10.2.2.3) 

(3) The system relocatable library (SYS$* R LI B$) 

In an attempt to satisfy all undefined references in the collection, the collector searches the specified files for elements that 
have entry point names that correspond to the symbol names appearing in the collector created UNDE table (see 10.2.3.5). 
The UNDE table contains all the symbols that are present in the undefined symbol tables of the processed element preambles. 
When an element is found with an entry point name corresponding to a symbol name in the UNDE table, the preamble of 
that element is processed and the now defined symbol is removed from the UNDE table. The order of search for undefined 
symbols is: 

(1) The temporary program file (TPF$) 

(2) User-defined files defined by the LIB directive (see 10.2.2.3) and previously prepared by the @PREP control statement 
(see 8.2. 11 ) . 

(3) The system relocatable library (SYS$* R LI B$). 

The included elements are placed in the instruction and data areas of the final absolute element. Odd numbered location 
counters of an element are assigned to the instruction area. Even numbered location counters and common blocks are 
assigned to the data area. See 10.2.2.1 and 10.2.4.6 for information on specific placement of common blocks. 

The most efficient collection results when every element desired in the collection is explicitly named, including filenames; 
this eliminates @PREP requirements and library searches. 

( 
'-. 10.2.3.3. SEGMENTED VERSUS NONSEGMENTED PROGRAMS 

The absolute element resulting from collecting of various relocatable elements mayor may not be segmented (see 10.2.4). 
However, a nonsegmented program can be functionally considered a segmented program with only a main segment. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 

10.2.3.4. COLLECTING REENTRANT PROCESSORS 

10-20 
PAGE REVISION PAGE 

In creating reentrant processors it is not only more efficient to explicitly name all elements including their filenames but it is 
also extremely advisable. The nature of reentrant processors dictates that from one collection to another all elements be 
located in the same relative position within the absolute element. This can only be ensured by explictly incuding all elements 
in every collection of the absolute element. (See 10.5 for reentrant processor preparation.) 

10.2.3.5. PROCESSING ELEMENT PREAMBLES 

. An element preamble is attached to every relocatable element created by the language processors and the collector. The 
element preamble provides information which is needed when collecting relocatable elements together to form an absolute or 
single relocatable element. 

• The definition and location of each externalized entry point in the element. 

• The length in words, under each location counter in the element. 

• A table of the undefined symbols appearing in the element. 

• Common blocks in the element. 

When the preamble is processed: 

• The entry points in the element are added to the collector entry point table (EP table). 

• Undefined symbols appearing in the element which have no corresponding entry in the EP table are listed in the UNDE 
table. 

• Undefined symbols in the element which have a corresponding name to an entry point in another element are linked to 
the EP table. 

Symbols are removed from the UNDE table as corresponding entry point names are found. Newly encountered undefined 
symbol names are added at the end of the UNDE table. 

10.2.4. PROGRAM SEGMENTATION 

When an absolute program is being executed, it must reside in main storage. There may not be, however, enough available 
area in main storage to contain the complete program. Therefore, the program may be segmented so that the various segments 
can be loaded into main storage as the program is being executed. 

Even when the total program size may fit into main storage, many times it is advantageous to subdivide the program into 
functionally independent units (segments) which are loaded into main storage only when needed. This reduction in the 
program's main storage requirements reduces main storage impact while allowing increased storage utilization. 

A segmented program consists of: 

• one main segment which resides in main storage throughout the execution of the program 

• subordinate segments which are loaded into main storage as they are needed 

As each subordinate segment is loaded into main storage, it may overlay all or part of a previously loaded overlay segment. 
The area overlayed is equal in size to the size of the new overlay segment. The main segment is never allowed to be overlayed 
except by a relocatable segment (RS EG). 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 10-21 
PAGE REVISION PAGE 

10.2.4.1. SEGMENTATION DIRECTIVES 

The directives needed to specify program segmentation are as follows: 

c SEG - Informs the collector of the beginning of a segment (see 10.2.2.13). 

c RSEG- Informs the collector of the beginning of a relocatable segment (see 10.2.2.14). 

c DSEG- Informs the collector of the beginning of a dynamic segment (see 10.2.2.15). 

IN Specifies the elements to be included in the segment (see 10.2.2.1). 

a NOT - Specifies which elements are to be excluded (see 10.2.2.2). 

Segments may be loaded and executed independently; however, elements common to several segments must be in main 
storage when the referencing segments are executed. 

Since each segment has a path leading back to the main segment, elements which are implicitly included and which are 
referenced by two or more segments are attached to the segment which is located at the common point in the paths to the 
main segment of all referencing segments. Elements specified on I N directives are never moved from the segment in which 
they were specifically placed. 

10.2.4.2. INSTRUCTION AND DATA AREAS 

Every program containing segments in addition to the main segment always has a D bank. If there is no program data in the D 
bank, then it contains at least a segment load table. The segment load table contains an entry with information about every 
segment of the program. It is located preceding the user's main segment D bank. Since the segment load table has no main 
storage protection, special care has to be taken not to destroy its information. 

The program's data, when it exists, is located after the segment load table and any other collector-produced tables, such as 
the ENTRY$, COMMN$, XREF$, and indirect load table. 

The first address of the I bank (instruction area) is assigned 10008 , The starting address of the D bank (data area) is 
dependent upon the size of the I bank, the possible use of the assembler SETM I N directive, the total program size, and the 
options specified on the @MAP control statement. The first address of the D bank, however, is always a multiple of 10008 

and is usually given the value 400008 , 

Odd numbered location counters are assigned to the I bank; even numbered location counters and common blocks are 
assigned to the D bank. 

The user program can reference the first and last I bank and the first and last D bank addresses by the symbols: F RSTI$, 
LASTI$, FRSTD$, and LASTD$, respectively. The collector replaces these symbols with the actual assigned address values. 

An unnamed blank common block, if required in the program, is attached to the main segment under the name 
BLANK$COMMON. It may be positioned in another segment by an IN BLANK$COMMON directive. 

Named common blocks are attached to the segment (if not named in an I N directive) which is located at the common point 
in the paths to the main segment of all segments referencing it. 

10.2.4.3. SEG DI RECTIVE CONSI DE RATIONS 

The IN directive specifies the files and elements to be included in a segment. If no SEG directive is encountered prior to 
the first I N directive following the @MAP control statement, a SEG MAIN directive is assumed by the collector and it applies 
to all following directives until a SEG directive is encountered. 

The segment name is 1 to 12 alphanumeric characters (with the $ and - allowed) in length. The segment name must not be 
the same as any entry point name in the collection, and must contain at least one alpha character. 

Within a segment, any elements included to satisfy undefined symbols are located at the beginning of the segment in the 
inverse order of their inclusion, that is, the last included element is the first element in the segment. Following any implicitly 
included elements are those named on IN directives in the exact order they were named. When all elements within a file are 
included in a segment by specifying only the filename on the IN directive, the ordering of the file's elements is random. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 
PAGE REVISION 

10-22 
PAGE 

Example 1: 

LABEL ,\ OPERATION 
10 20 

.\ OPERAND COMMENTS 
50 

.....•...... <.. . ...J ..... .1 ....... .1 ..... L. ..... L. ... L . .LJ_ ... L.l ... .1. ... 1.. ..... i. ..... J .... ....L...l....-..L_L..i_l. ...... L.. 1 .. L ... .L ....... L . .LJ .. ....L.....L . .LJ .... .1 ...... .1 ......... L ....... l .. ....1-...1..... .. L ... L ..... 1 .... .L ....... L....L-L..J ...... L .. 1 ..... 1... . 

.. L. .. LJ ... J... ..... .L..l...._L . .L ... J ..... 1. ...... 1... .... 1 ...... L. .. 1 ... 1... •• 1-..1 .. .-1 ... J.._1 .... L ..... L. ..... L ... J ..... L L . . L .. L..J. ....... L.. ... 1 ........ 1... ... L .... L .. 1 ..... L .. L_1-.1.. .. 1... •... 1. ...... 1.. .. 1. ..... L . ...L.-1 ...... L ... 1... ... L.i ....... !.. 

3. S ~J.. .... .& . .LI.l... .... L(AJ1_Ll--'-, -,-I ......l-..J- ..• 1 ..... 1 ... .1 ...... L .. ...L.J .. _.L ...... l ........ L .. LJ ... L_L.J .... LLJ.........l......J-L.L...1_L.l ..... L .. J ..... ...l ..... .J......J.......L .... L. . .L.l .... L .... L . .1 . .......;..1 --1-1 ......I........J..' ...... L . 

I· 
2. 

....... ! ...... J ....•. l ....... L . ...1 . ......l . .......L..L.....L .. L ... L.l.........l ....... l ......• 1 ..... I ...... .l ........ L_l ....... L ..... ...l. ...... L..l..........L •. L ... .l.... .... i ...... ..l .....•. l. ....• L-.L-L_L . ..L...1......l. ..•. .1 .... I ...... 1 ....... L.1.--1-L.J.......L.l ...... .l ........ l ........ 1. .. J-L.L....l_L ..... 1 ..... 1 ...... .1 ... 

The program is to be divided into three segments. 

1. Specifies segment A as the main segment. 

I MAIN SEG A I 
2. Specifies that the starting address of segment B is immediately after the last address of main segment A. 

SEG B 

MAIN SEG A 

3. Specifies that the starting address of segment C is immeidately after the last address of main segment A. Segments B 
and C can never exist in main storage at the same time. 

Example 2: 

LABEL 

SEG B 

I MAIN SEG A 

SEG C 

,\ OPERATION 
10 20 

.\ 
30 

OPERAND COMMEIHS 
50 

i ......... l ...... .l. ...... .I ........ 1 ....... 1 .. -L.L-L.1 ... _L.l ........ 1 ...... 1 ........ i ....... J. ..... ...L.....L...L...J..... • ..L...1 ..... 1. ..... 1 ..... L_.L.....L.J ....... l ...... L ..... L...l.. .. l ....... ! .... .L ....... L_L....L ...... L.....l ...... l ..... J ....... l ......... L .... .L ...... LJ .... l .... .1 ....... l .... . 

. ... 1.. ..... 1... .... 1 .... .1. ....... 1.. .. 1......l ....... LJ.......l. ...... 1 ..... L. ..... L. .... .l. ..... .l. ....... l .... L .. L....i ...... ..L. .. .1 ... 1 ..... 1... ... .1.. .... 1. ...... 1 .... .L_ . .L.L... . .L ... L. •... 1. .. 1. ...... L. .. J .... ...L ..... l ..... L.L .... .l .... .i ....... !. .. . 

. -L.-'---'--1 ....... L ... 1 .. L.J ...... L.J.. ,! 1 I ... 1-... L.l ........ 1._.L. 1 I; .. L .... LL.1. ... L .1.. .... .1 .. I i i I ... L .. 1. .... L ... J.......l.......L..L..J ...... L. .. . 

...• 1 ....... I .....• L. .... L .. L1-l ...... L. .. L..L ... 1.. .... .1 ........ i ....... ! ...... L. ...... L .... ..L.L....L.L.....l.......l ..... 1 ........ 1 ....... .1 ..... ..1 .... ...1 ...... ...l-L ... L .... L .. 1 ....... .1 ..... 1... .... 1 .... ..1......J.......l ....... .L ..... .l ..... 1.. ... J ... . 

I 1 I I ! 1 ! I I II! 1 I I ! I 1 1 I I I 

....I.-..L........L.......JL-..L..l...........L...1 .... J ..... L.....1.........1...-L-L---L-...L........LI L ...... L . ..J..1.......L.......J.......I..........LI ...... L .. L . .l .... .L . .......L......L......I........J........1... ..•. L .. 

........J...-.L.-....... I __ 1--L...1 ...... L .. J ...... J.. .... ...L ! 1 I 1 L .•.. L. .... L .. ..1 ... .L.J .... .L . ...J1L.....J.........J.........L.......L.....L ..... L.. .... L.-1-_IL.....J.I--I...I......L. L .... .1 ..... L . ..LJ.._ 

-...........l-....L-..1-............ L. ... L. .. L_LJ I I 1 I 1 . .......L.l ........ L ..... L . ........L1 --1....1 ......L.....J..........I.-..I...-.l...-l.........Jl...-L. L......J. . .......J.......I......-'--..1-LJ. ...... L.J . ........I.........I........L-'--''-... 

.---L......L.......J...-'-....I'---I..' --1-1 ... L ... 1 .... .1 ..... .J ....... L.L......L.J,---L.....L--1........L. ..... L.. .. .L.~! .....L-.J........J ....... 

IJI} 1 1 I...J... . .-l .... I I 1 I I I I 1 I.......L.. 

, 2.J=.L!'='--'-~.I-.1.. ... ..l(ll:tlT.J I, I JI ) I L .. L.J ....... L .. .1 I I I I 1 I 1 I .... L .... 1 ..... L.L.-1 .. .........1.........L.....!-...JL-...L.....L. ..... L ... L. •.. L ... ' I ' I ....... L .... 1......l ... ...1 ..... L ..... L.....l ...... 

)3. .tbj L ... t.. .... l..l.1._ .. .L..l . ........L1 -1...1 ......L....I.-.l...-J..... .. l.. ... I ........ 1.. ....... 1 ....... J. .... _J ...... ..l .. ......L..L...J....J...L ..... L..l ....... L .... l ....... 1. ........ L. .... 1...1 ......L.....J..........l.-.l...-I..........J.---I..I.-1. ... J ..... ..l ... .......L.....I.........L......L......L.......l. .. 1. ...... .1. ...... .1 ... _ 
I 

1 I , I I i .... .LJ ........ L..L . .L...l-J..--L........L.........L.-J........JI.........L .... L ... L .. 1 I 1 I. I I 1 : I ..l. ..... 1.. ..... 1... ..... 1.. .. .l...-L-L........l-..l.......L.......L' ....J11........l.......1 .... .L.-l....-'-......L.....I-..l.-l_L .... l ..... 



....... _ .... 

4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 10-23 
PAGE REVISION PAGE 

The program is to be divided into thirteen segments. 

SEG C 

SEG B 

MAIN SEG A SEG F 

SEG E 

SEG G 

SEG H 

SEG M 

SEG I I SEG L I 
SEG J 

1. Specifies segment A as the main segment. 

2. Specifies that the starting address of segment B is immediately after the last address of main segment A. 

3. Specifies that the starting address of segment C is immediately after the last address of segment B. 

4. Specifies that the starting address of segment D is immediately after the last address of segment C. 

5. Specifies that the starting address of segment E is the same as the starting address of segment C. 

6. Specifies that the starting address of segment F is immediately after the last address of segment E. 

7. Specifies that the starting address of segment G is the same as the starting address of segment F. 

8. Specifies that the starting address of segment M is the same as the starting address of segment B. 

9. Specifies that the starting address of segment H is immediately after the last address of segment M. 

10. Specifies that the starting address of segment I is the same as the starting address of segment H. 

11. Specifies that the starting address of segment J is the same as the starting address of segment H. 

12. Specifies that the starting address of segment K is immediately after the last address of either segment H, I, or J, 
whichever segment is longest. 

13. Specifies that the starting address of segment L is immediately after the last address of the longest segment in the set: 
A, B, C, D, E, F, G, M, H, I, J, and K. 

10.2.4.4. RSEG DIRECTIVE CONSIDERATIONS 

The elements included in the relocatable segment should be explicitly named on IN directives (see 10.2.2.1). When an 
element which is referenced by more than one segment is implicitly included it is placed in a segment other than the RSEG. 
Generally, it is advisable if an element is referenced by more than one segment (one of which is an RSEG), that the element 
be explicitly included in the main segment . 

Relocatable segments may not be indirectly loaded. See 10.2.4.5.2 for the direct method of loading segments. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 
PAGE REVISION 

10-24 
PAGE 

The starting address of a relocatable segment has no relationship to other segments in the collection. It may be loaded at 
whatever starting address within the program limits is given in register A2 during the LOAD$ calling sequence (see 
10.2.4.5.1). The LOAD$ request adds the value in register A2 to all relative address references internal to the named 
relocatable segment. Any references to RSEG labels from outside the relocatable segment must be user modified by the value 
in register A2. 

All instructions and data in a relocatable segment are collected together with all odd location counters followed by all even 
location counters. 

A relocatable segment may be loaded into either the I or D bank of the program. 

Example: 

LABEL ,\ OPERATION OPERAND 
10 20 

COMMENTS 
50 

I . IStLG~L,.L..l~lSC>.1NL .. J .. ,L_L.Ll . .L. .. .L_l ... .1 ... .1 ..... L ..... L..L..J........L ..... L ..... L .. .L .. L ... 1 .. ..L,.L_.L,..LJ ...... L ... L.l ... , .. L .... L ... L .. L .. L ..... l_L .• L ... 1 ..... L .... 1. .. L.1........1..._1 .... L .... L .... L. 

2 Ll~i ..... 1. ... ..1 ..... L .. IQB,JS.idlNl. . ..J._.L..l ... J. ....... L .. 1. ...• 1.. ..... 1. ... 1.. .. L.J. __ .L..J.._._l_L .... L .. L. ... L ..... L. ... ,.J .... .L....L....LJ. ....•..... 1. ..... 1. .... 1. .. ..J ..... L ... L .. l_.L..l . ! ••.. 1 .... 1.. L._L_l .... ..l. ..... l .•.. .1 ..... .1 .. " 

.1 ...... J ..... L. .• J ..... J. .. _Ll_1. ... LJ.. I I ! i L. ..... L. .. ,.L ..... L .... L.J ..... L_l-LL.L . .l_LJ ....... L.L-.L.! ...L1--,--,- .1 __ L_L.l.... ... L ... ..i ....... l ...... ' _;'--'---'--"'1.. .... 1 .... L ..... L. ..•. L"'-l -1.1--I-....L..1 .... .1. ... 

Element ORSON is specified for inclusion in the relocatable segment ORSON. 

10.2.4.5. LOADING PROGRAM SEGMENTS 

When a segmented program is called by a@XQT control statement (see 10.3.1), only the main segment is initially loaded. The 
subordinate segments are loaded by either: 

• the direct method, or 

• the indirect method. 

10.2.4.5.1. DIRECT METHOD (L$OAD AND LOAD$) 

When using the direct method of loading, use either: 

• the L$OAD procedure, or 

• the executive request LOAD$. 

Format of the L$OAD procedure: 

L$OAD 

Parameters: 

name 

jump 

clear 

name,jump,clear,rseg·addr 

Specifies the name of the segment to be loaded. 

Specifies the location where control is to be transferred after the segment is loaded; if 
omitted, control passes to the location following the LOAD$ request. 

If greater than zero, the program area containing the segment to be loaded is not zero 
filled prior to segment load. If zero, the area to be occupied by the segment is zero filled 
prior to segment load. /' 



4144 Rev. 2 
UP.NUMBER 

rseg-addr 

Description 

UNIVAC 1100 SERIES SYSTEMS 10-25 
PA GE RE VISION PA G E 

If the segment was specified on the @MAP control statement (see 10.2.1) as relocatable, 
this parameter specifies the starting address for the relocatable segment. If omitted when 
loading a relocatable segment, the address must be in register A2 before the call is made: 

L,U A2,rseg-address 

The address may be defined as an octal value or a tag not contained in the RSEG. 

The L$OAD procedure produces a sequence of code which loads: register AD with the segment name; register A 1 with return 
control address; and generates the LOAD$ request. The LOAD$ request takes the form: 

L,U AO,segname 
L,U A1,addr 
ER LOAD$ 

Segname is the same as the contents of the name·1 parameter in the SEG directive (see 10.2.2.13). 

When bit 35 of register AD is set, the segment loader does not clear the main storage area to be occupied by the segment. This 
decreases the time required to load the segment, but as a result, any areas within the segment created by RES cannot be 
assumed to be zero. 

Examples: 

LABEL OPERATION 
10 20 

OPERAND 
30 

,'\ 
40 

COMMENTS 
50 

I. L ,$1!~L ... l .. NEWLftdRl~LL.L..l._..l __ .L' . .J ..... ,L. .... L ..... L ... i ..l.-,.j, ............ -l--...... L .. l ... L. ... l .... ,L .. .L .. LJ.-L.J... .. ..1 ..... L. ... ..l ........ L .... L_L...L_ .. J ..•.... L ... J .. .! ... ..L. ,L .... l. .. J .... J. L. 

2. Ll~!CJADL .. LJ:A"PJ.t-ly£J=~..LLJ.I . .lQL/.'Oi I i3,5Q ...... ; ...... .1 ..... L.L..L _ 1. ... 1 ........ 1.., ... L ... 1.. ..... 1.. .. ...J ..... .1 .... .1 ... 1. ... J. .. , .. L .... l... ..... L ..... I .. > 1 .. J .. 1 .L ... t, i .1 .. 1 .. 

_L .. J ..... L,L.,J., .... L .. L.L-L.J-L.L....L .... Ll ....... L.. ... L ... L ... LJ ... LL..L.LL .. .L .. L.J .... L .. L...L-L.....L.L .. .L .. _L..L.1.. .. 1 .•.. L .. L....l.....L.. .. L...l .... L ... t ..... 1 ... L..L .... L ...... L ... .1 .... 1 ... 

1. After segment NEW is loaded, transfer control to location ORG 1. The area occupied by segment NEW is zero filled 
prior to loading. The L$OAD procedure produces the same effect as the code: 

r------------------------------------------------------------------------------------------------
LABEL OPERATION .\ 

10 20 
OPERAND 

30 
/\ 

40 
COMMENTS 
50 

F==========================================================----==~=-====. ~==-========= 

..L ... L.Jh.l., . .J.'=dL .i .. , .. 1., ... jAil ,IO:RG',L .. LJ. .. ~..l ..... l .... l ..... ..J .... _L_L ..... L..L......L..... .. .L .. ,1.L ... L..L-.l ... ...l .J.-1 ...... 1. .. ..1..J , . ..l, ....... .L .... L..l ...... L . .L L L .. .l. .... L .. l........l ....... L .. L, .. L .1. .. 

.. _l... ... L .... 1.. ... JLL, .. lUJ. .. J. ..... L, 'A.O, ;N~W .1.. .... ..:.~.L. .... 1 ..... .1 .... L....J ...... L_L .L .. L.1 .. 1 ..... L .. L..L..J...-L ....... i .... 1. ..... I.. ..... L ... J, .. L .... L .... L .... L. .. ..l. ...... .l i .•.•• 1 ... 1.. .L . ....l ..... l._...J ....... L.I ... 1 ....... 1. .. . 

_L.l ..... JEt11L. ... L .. J.... .. _LJL~._LL .... L .. L .. ,L ... L ... L .. J I 1 ..... 1.. .. ...l. J ..... l... .... L .... L ..... LJ_L ..... ,L.L..L...l .... L .... l. .... .-L .. l.........L....L. .. .l_..L..,.,.l ... L.L .... LJ......l........,L .. L .. . 

2. The area to be occupied by relocatable segment CAP is zero filled prior to loading. The starting address for segment 
CAP is 13508' After the segment is loaded, control is passed to YE LL. The L$OAD procedure produces the same effect 
as the code: 

~-----------------------------------------------------------------------------------------------
LABEL OPERATION \ 

10 20 
OPERAND 

30 
;'\ 

40 
COMMENTS 

SO 

.. L .... L ...... L.J., .. ~kt .... l ; .... L,JA2.l., .. JO, L35..0 ........... ,J j ....... L ... l ... J ...... .L .. .L.l ....... L . ...L....l. .... L .. .1 ..... L .... L .... ..L._L...l .L .. .J ..... L .... .1.. .. L ..... L .... J .. -1 ...... L .... L .. 1 ..... 1. .... .1 .... 1. ..... .L.......L...l.. ..... I ..... 1... ..... 1. .. L ... . 

.... t .. L.J~JI.UL.J, .. L. .. ..l ... AI..J+.;:(lE.LIl.I ..... 1.. .... ..1 . L . .L...L... ... J .... ...l. .. _l. ..... 1 .... i... ..... 1 . ..1 .... L .. ,L .. L .. i ...... L ..... i ..... 1.. ..... 1. .... 1.. ... J, .. .1 ...... L .. L...L......l. ....... L. ..... L ...... L .... ..l. L .. ....L ... l .. ....J ....... l .... .1 ..... I ...... L .. . 

JLIJJ.L..L ..... L.l_~Q..,J:.......A-.-B_l ... 1.. .... ,L ... 1 ... L.L.J I ! I I .... 1_1... J ...... L.L_.L......L..l... .... L_l.._L.L ... L .... L ...... LL.L ... LL...l ....... .l .-L .... l. ..... L.J.... .... LJ ......... L, I ... . 

....... L ... L ... £RJ,....J .. -L..L......1...JLllPD$.L.L ... i .... L..L .... L,i_,_~ ..L .... L .. L.L .... l ..... I... ...... L .... L .. .L..J.........l ....... L....J ....... L.. .1 ... L ... .l .... L .. L.l........L....l.........L_.l.. .... L ..... I ..... L ..... L . ..!........J ...... ..L_L .. .l. ... l ... L .. ... 

I ! I I 1 I 1 I I 1 i 1 I I 1 I II! 1 I 1 ! , , 1 



4144 Rev. 2 
U P.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 10-26 
PAGE REVISION PAGE 

10.2.4.5.2. INDIRECT METHOD 

Whenever a segment that is marked for indirect loading is referenced by any jump instruction that passes control to the 
segment's I bank area, the segment is automatically loaded if it is not already in main storage. Segments to be loaded by the 
indirect method must be so marked on the SEG directive. The mechanics for such loading are set up by the collector and 
carried out by the segment loader. The collector replaces the address portion of the jump command with the address of an 
indirect load table entry. The indirect load table performs an SLJ instruction to the indirect load routine which, in turn, 
performs an ER to the segment loader (if the segment is not already loaded) and jumps to the location of the externally 
defined symbol. All registers are preserved by the process. The indirect load table is assigned to the data area of the main 
segment. 

If indirect loading is used, the reference may not be made to an external symbol with an offset. 

If the B option was specified on the @MAP control statement, the indirect load routine indicates that the segment's main 
storage area need not be zero filled. 

Segments marked for indirect loading may also be loaded by the direct method. 

Example: 

LABEL ,\ OPERATION \ OPERAND 
10 30 

!\ 
40 

COMMENTS 

i G-..L_.L.L . ..lEJA1?.l~.L ..... L .. J.. .. l ....... L---L...L_L-L_l .. ..J ....... J ....... .; ..... L . .L..L...l-L_L_L.L . ..i .. _ .. L ... L_L_L...1 ... _L_.l . .......L ..... L .... l ... J.--1_._.L_'-...L_L .... 1 .... L.J .... ..L---L...L.L_1. .... ..l .... .1.. 

SlE..fr.L ... J ... L.I~LL~LE1~lt.l.L ERLllSX1)J .... L. L.L .. L.-.J •. ..l .. L .... L ... L ..... L .... L .... L •. L .LLL ... 1 .... 1. ... 1.. ..•.. L ..... 1. ... J .... L .. _l-L . .i .. L1 ...... L. ..... L .. J .. L_L_.L._J ...... .L .... L ..... L 

,E-L<iL .. Lm.L .. rSALl~Lt~ J'£IN1) L_L .. L .... LmL .. mL.Lj._LL . .l_L.1.._L..l ..... l I I I ..L._LU_._.L .. .l ....... ..l .1 i 1...1..1 ..... mL ... L_L_1... . ...1._L_.1 

... L ... J.. .... l_.L_L_L_LL.LJ.~_L.L .. LmL ... L .. L.J ...... ~._LL .. LL .. L .. J ..... L ... l_l. __ LL......L-L __ .. L ... .L ... .t_L_L_L_L.....L_..L_LLL.LJ_.L_L..l_Ll ... L .. J .. 

Segments EAP, NINE, and SAL are automatically loaded when any externalized I-bank entry point is referenced. 

10.2.4.5.3. RELOADING THE MAIN SEGMENT 

It may be desirable to reestablish the main segment of a program for either error recovery or reinitialization. This is done by 
the LOAD$ request. The LOAD$ request reloads the entire main segment including all collector produced tables. The main 
storage requirements remain unchanged. The calling sequence is: 

L AO,(CLEAR,0400000) 
L,U A 1 ,REENTRY'ADDR 
ER LOAD$ 

The first coding line loads register AO with the segment-id of 400000
8

, The CLEAR parameter functions as follows: 

• If clear is less than 0, the main segment area is not cleared before loading. 

• If clear is greater than or equal to 0, the main segment area is cleared. 

The second coding line loads register A 1 with the reentry-address according to the following: 

• If the reentry-addr is equal to 0, control is returned to the instruction following the LOAD$ request. 

• If the reentry-addr is not zero, control is passed to that address. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 

10.2.4.6. USE OF COMMON BLOCKS 

10-27 
PAGE REVISION PAGE 

The collector produces, in the absolute element, load control specifications for the LOAD$ routine. These specifications 
indicate which text words (data and instructions) are to be put at which locations in main storage when the segment is 
loaded. 

If a common block is given initial values (filled with text, rather than simply set aside as a reserved area), the collector 
produces specifications to put in these values when the segment containing the element which defines the initial values is 
loaded. 

For example, if five different elements define five different initial values for the same common block and each of these five 
elements was in a different segment, the same common block located in a segment common to all referencing segments would 
be reinitialized each time one of the five different segments was loaded. This occurs regardless of where the referenced 
common block is located within the user's program area. 

Any areas of the common blocks in which text is not loaded upon reinitialization are not changed as long as the 
reinitialization is caused by the loading of a segment other than the one in which the common block resides. 

On IN directives (see 10.2.2.1), common blocks are always specified without a file name. A common block name must not be 
identical to an element name. 

10.2.4.7. SEGMENTATION EXAMPLE 

The following is an example of a segmented program. The elements in file F I LEA and their required outside references are 
shown below: 

FILE A Elements in Which FILE A References are Defined 

MAIN FILE A . ALPHA 1, BETA 1, PHil 
ALPHA1/A 
ALPHA2/A LIB 1 .SIN/Xl 

ALPHA3/A LIB 2 . COS/X2 

BETA l/B LIB 1 . SORT/X 1 

BETA2/B 

BETA3/B 

CHI1/C LIB 1 . SORT/Xl 

CHI2/C 

CHI3/C 

DELTA1/D LIB 2 . CATIY5 

DELTA2/D 

EPS01/E LIB 2 . CAT/Y5 

EPS02/E 

PHil 

PHI2 

GAMMA1/G LIB 1 .SIN/Xl 

GAMMA2/G LIB 2 . COS/X2 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 10-28 
PAGE REVISION PAGE 

The following coding is used to produce the segmented program. 

r 
LABEL \ 

10 
OPERA nON .\ 

20 30 
OPERAND COMMENTS 

50 

.. L...L_L.L .... l ... L ..... L .... L .... L.J ........ L .. L..L ...... L......L ... L .... 1 ..... L .... L.J ........ L ..... L ... L_L. ... L ...... L ..... L ..... L ... .1 ... .i. .. -1 .... 1_ . .1 ....... L .... 1 .... L ...... L .. 

.. J ..... L .... .l ..... l ........ L..L.l----L-L.l_ ... L...L ... L ... L .. J ...... ..l_.L_i._ ... L.i_I ' .. J ........ l ..... L ... L-L...L....J ..... l .... . 

.. L .... L .. L ... .L--L.L..L_L ... .L .. .1. ... 1 .... LJ __ L.L-.L ... L_L .. L .... t.. .... L ... Lll--L.J_L.L.L.J._ 

. ..l-L-l1-L.' ....l-.L....J. 1... ... J ... L.-L.l.--,--,--,_L ... l ..... L .... .L 

. ..L..Jl-L.....I-.L....J.-L.1 ..L .... L .... 1.--'--1 -l.--'--JI-...LI --,-I 1.. .... L. 

1,2. Entry point tables are prepared for files LlBl and LlB2. 

3. Calls the collector. The I option specifies that symbolic element MAPSYM is introduced from the run stream. The L 
option specifies that a complete listing is to be produced. The absolute output element is called MAPABS. Both 
MAPSYM and MAPABS are placed in TPF$. 

4. Segment MAIN is the program's main segment. 

5. Element MAl N is found in F I LEA file. 

6. Segment ALPHA is marked for indirect loading. The starting address of ALPHA follows the last address of segment 
MAIN. 

7. Elements ALPHA1/A, ALPHA2/A, and ALPHA3/A are found in FILEA file and are included in the collection of 
ALPHA segment. 

8. Segment BETA is marked for indirect loading. The starting address of BETA follows the last address of segment 
ALPHA. 

9. Elements BETA1/B, BETA2/B, and BETA3/B are found in FILEA file and are included in the collection of BETA 
segment. 

10. Segment CHI is marked for indirect loading. The starting address of CHI segment is the same as the starting address of 
segment B ETA. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 
PA GE RE VISION 

11. Elements CH 11 /C and CH 12/C are in F I LEA and are included in the collection of the CH I segment. 

10-29 
PA GE 

12. Segment DELTA is marked for indirect loading. The starting address of DELTA segment follows the last address of 
either segment BETA or segment CHI, whichever is longer. 

13. Elements DELTA l/D and DEL TA2/D are in FI LEA file and are included in the collection of segment DELTA. 

14. Segment EPSO is marked for indirect loading. The starting address of EPSO segment is the same as the starting address 
of segment DELTA. 

15. Elements EPSO l/E and EPS02/E are in F I LEA file and are included in the collection for segment EPSO. 

16. Segment PHI is marked for indirect loading. The starting address of PHI segment follows the last address of either 
segment DELTA or segment GAMMA, whichever is longer. 

17. Elements PHIl and PHI2 in FILEA file are included in the collection of PHI segment. 

18. GAMMA segment is marked for indirect loading. The starting address of GAMMA segment follows the last address of 
segment MAIN. 

19. Elements GAMMA 1 /G and GAMMA2/G are in F I LEA file and are included in the collection of segment GAMMA. 

20. Files LlBl and LlB2 are searched prior to searching the system library for the collection elements. 

21. End of the collector directives. 

Figures 10-1 and 10-2 show the instruction and data areas of main storage for the preceding example. 

rhe first address of the I bank 

I mplicitly referenced elements and subroutines 

01000
8 

<! <! <! BETA 1/BIBET A21BIBET A3/BI - - -I-- I-- .... N ('f) 

0: <! <! <! <! d I I I U C/) a.. a.. c.... 
--I --I --I 

I I I z <{ <! <{ DELTA1/D DELTA2ID CJ) z 
0 U5 <! 
(,) 

~ 

I EPS01/E I EPS02/E I 
I CHll/C I CHI2/C I 

I PHIl I PHI2 I 

I GAMMA1/G I GAMMA2IG I 

Figure 10-1. Instruction Area (I Bank) Main Storage Map for the Segmented FILEA 



4144 Rev. 2 
UP-NUMBER 

U N I V A C 1100 S E R I E S S Y S T EMS 10-30 
PAGE REVISION PAGE 

The first address of the data area is always a mu Itiple of 1000
8 

Segment load table and indirect load table (generated by the collector) 

Indirect load routine (always resides in main segment) 

« « « BETA 1/BfBET A21B/ BETA3/B - - -l- I- .- N M 
0::: « « « « d :c :c :c u C/) a.. a.. a.. 

...J ...J ...J 

I I I « « « DELTA1/D DELTA2JD 

LOAD ~ C/) z 
0 z « 1 1 0 u en 2: EPS01/E EPS02/E 

TABLES 

J CHI1/C CHI2/C 

I PHI11 PHI21 

I GAMMA1/G I GAMMA2/G I 

Figure 10-2. Data Area (0 Bank) Main Storage Map for the Segmented FILEA 

10.2.4.8. COLLECTOR GENERATED TABLES 

Entry Point Table (ENTRY$): 

Word 0 000000 nbr-of-entries 

entry-point-name 
2 

3 value-of-entry-point-program-addr 

The value of the entry point is the address of the reference vector entry of the entry point if in a segment designated for 
indirect loading. 

Common Block Table (COMMN$): 

Word 0 000000 nbr-of-entries 

common-block-name BLANK$COMMON for-blank-common 

2 

3 length-of-common-block addr-of-common-block 

The entry point table includes only those entry points ~;p~·r.;-:;ied on the DEF ~tatement. When the DEF statement is present, 
the common block table is included in the absolute program. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 10-31 
PAGE REVISION PAGE 

External Reference Table (XREF$): 

Word o 000000 nbr-of-entries 

external-reference-name 

2 

3 ER ERR$ 

The external reference is assigned the address of the third word of its entry in the external reference table entry. 

NOTE: 
The first addresses of the entry point table, common block table, and external reference table, are assigned, 
respectively, to the following external definitions (which may be directly referenced in a user program): ENTRY$, 
COMMN$, and XREF$. If no table exists, this value is zero. 

10.3. PROGRAM EXECUTION 

10.3.1. INITIATING EXECUTION (@XQT) 

Purpose: 

Used to initiate the execution of an absolute program prepared by the collector. 

All parameters in the @XOT control statements are optional except @ and XOT. 

Format: 

@label:XOT,options eltname 

Parameters: 

options 

eltname 

Examples: 

LABEL 
10 

Options are user specified and are presented to the program initially in a register or may 
be retrieved by an OPTS request (see 4.8.2). 

Specifies the absolute element to be executed. If no filename is specified, TPF$ is 
assumed. If no eltname parameter is specified, the most recent absolute element placed in 
TPF$ is assumed. When no absolute element exists in TPF$, all relocatable elements in 
TPF$ are collected and the resultant absolute element is executed. The newly created 
absolute element is given the name NAME$ and placed in TPF$. 

OPERATION .\ 
20 30 

OPERAND :\ 
40 

COMMENTS 
50 

/. .l~QL_ ... J... ..... L_.L .... .1 ..... L .. j .... L .... J ...... 1.. I I I : _-"-_.i ... J ...... L. ..... 1... .. _1..... i I I L ... L. ... L_L......L-L......l. ... ..l_.L ..... L .... L. .L ..... L .. ! I I I 1_ ... 1.. .. L .. J .. .....L_l... .... .L_L_L .... l ..... 1 ... 

2 . ~ ... QJL ....... L_LEII~...L E18.L~~.;(..lz. ....... L ... L. .... L ...... j ..... L ..... L..L._L .... .L_.L_.L .... I.. ..... L .... .1 ... L ..... L .. L-L-L....L .... 1 ..... L .... 1.. .... L .... 1.. .. .L ...... L_l-L...L ..... L ... l ..... L ..... l ..... .L......l...._L_.J .. _J ...... Li ....... L .. 

3. L._Ll .. L ..... L--1.. I I ' I 1 I _L.L.L_l .... 1_ .. 1 i 1 !...l ...... L .... L ... ..L_L...L..L..L.....L .. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 
1 I

· 10-32 
PAGE REVISION _ PAGE 

1. Execute the most recent absolute element placed in TPF$. If no absolute element is present, the collector creates an 
absolute element (NAME$) from all relocatable elements in TPF$. 

2. Execute absolute element XYZ in file FILEA. 

3. Execute absolute element ABC in file TPF$. 

10.3.1.1. INITIAL EXECUTION STATUS 

When an absolute program is loaded into main storage for execution as the result of an @XOT control statement or processor 
call statement, only the main segment of that program is loaded. Other program segments, if they exist are loaded only at the 
request of the executing program by directly or indirectly referencing the LOAD$ request. 

The program begins execution at the collector-defined start address with one activity. This activity possesses the major 
register set. 

Certain of the initial activity's registers are preloaded by the executive with generally useful information. These registers and 
the contents are: 

Register Contents 

A4 program type: 
4 Demand 
5 Deadline batch 
6 Batch 

A5 Options from @XOTor processor call statement 
A Bit 25, B = bit 24, .... , Z = bit 0 

R1 Date (in Fieldata DATE$ format) 
Bits 35-24 Month (01 = Jan. 02 = Feb,etc.) 
Bits 23-12 Day of the month (01-31) 
Bits 11-0 Year (last two digits of the year) 

R2 Current time (TDATE$) format) 
Bits 35-30 Month 
Bits 29-24 Day 
Bits 23-16 Year (modulo 64) 
Bits 17-0 Time in seconds from midnight 

R3 Accumulated CPU time for the run (in 200 microsecond increments) 

10.3.2. PROGRAM DATA SEPARATION (@EOF) 

Data images to be read by the program may follow the @XQT control statement. The program uses the system reference 
READ$ (or equivalent) in gaining access to all data images. When an executive control statement other than an @EOF is 
detected by READ$, further reading by the program is inhibited and an end-of-data return is given. Those data images not 
read by the program are bypassed when the program is finished (a message denoting this is placed in the run's print file). 

Purpose: 

Used as a file divider (general sentinel) within the data stream which follows the @XOT control statement (or processor 
control statement) that can be bypassed (read) by a user program. 

Format: 

@EOF s 



"" 
~ 

4144 Rev. 2 
UP-NUMBER 

Descri ption: 

UNIVAC 1100 SERIES SYSTEMS 10-33 
PAGE REVISION PAGE 

s is a one-character, user-defined sentinel in column six of the control statement. This sentinel is passed to the requesting 
activity when the @EOF control statement is encountered. When the @EOF control statement is detected by READ$ request 
(see 5.2.1) an abnormal return is made to the requesting activity and the s parameter is placed in bits 5-0 of the activity's AO 
register. A subsequent READ$ request causes the next image to be transmitted. The @EOF portion of the @EOF control 
statement is not transmitted to the user. 

For the additional information on using @EOF statments and detecting end-of-data (see 5.2.1). 

An example where the @EOF control statement is used is: 

@XOTPROGX 

data of part 1 

@EOFA 

data of part 2 

@XOTPROGY 

All data between the two @XOT statements are to be read by PROGX. The @EOF control statement serves as a marker 
between the two logical data sets. 

10.4 REENTRANT PROCESSOR EXECUTION 

10.4.1. GENERAL 

A reentrant processor (REP) is an executable reentrant routine referenced from a user's program by the LlNK$ or RLlNK$ 
executive requests. A reentrant processor consists of only I bank addresses and resides as an absolute element in the system 
library (SYS$* LlB$) or a user file. A REP may be referenced many times during a user run without being reloaded and may 
access the D bank of the calling program. For purposes of debugging, a reentrant processor may reside on mass storage in a 
user-specified file. There are two types of reentrant processors: 

• System standard reentrant processors listed at systems generation time. 

• User-specified reentrant processors listed by the RLlST$ executive request (see 10.4.3). 

10.4.2. SEARCHING THE REENTRANT PROCESSOR LISTS 

A reentrant processor may exist in one of three lists which are searched each time a reentrant processor is called. They are: 

• 

• 

• 

A permanent main storage list of SYS$* LI B$ reentrant processors created at systems generation time. 

A dynamic list of reentrant processors in SYS$* L I B$ not in the permanent list but created as the processors are 
referenced. 

A list of reentrant processors created by the R L1ST$ request (see 10.4.3). 



4144 Rev. 2 
UP-NUMBER 

U N I V A ell 00 S E R I E S S Y S T EMS 10-34 
PAGE REVISION PAGE 

When a reentrant processor is called by the LI N K$ or R LI N K$ request, the order of search is: 

(1) The I ist of reentrant processors created by the R LI ST$ request. 

(2) The dynamic list of reentrant processors in SYS$* LI 8$. 

(3) The permanent list of reentrant processors in SYS$* LI 8$. 

(4) The elements residing in SYS$*LlB$. 

10.4.3. ENTERING A LIST OF USER-CREATED REENTRANT PROCESSORS (RLlST$) 

Purpose: 

Enters a list of user-created reentrant processors (list is in a file assigned to the run). 

Format: 

L AO,(nbr-entries,pktaddr) 

ER RLlST$ 

Description: 

H2 of register AO is loaded with the address of the packet (pktaddr) containing the names of the reentrant processors. The 
packet format is: 

35 o 

Word 0 

filename 

2 reentrant-processor-name-1 

3 reentrant-processor-name-2 

4 reentrant-processor-name-3 

5 
.... 1---

,~ 

21 reentrant-processor-name-20 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 10-35 
PA GE RE VISION PA G E 

Hl of register AO is loaded with the number of reentrant processor names (nbr-entries) in the packet. 

The reentrant processor names are absolute element names consisting of six or less characters with a version name consisting 
of all blanks. 

Once a list has been entered by the R LlST$ request, the user may access any processor on the list for the remainder of the 
run. The R LlST$ request permits new reentrant processors to be tested before being placed in SYS$*LI B$. 

Each RLlST$ request replaces the current list, if any, with a new list. An RLlST$ request with the nbr-entries parameter 
equal to zero deletes all entries. 

A maximum of 20 reentrant processors can be named in a R LlST$ request. 

10.4.4. REFERENCING A REENTRANT PROCESSOR (LlNK$ AND RLlNK$) 

10.4.4.1. LlNK$ EXECUTIVE REQUEST 

Purpose: 

Transfers control to any reentrant processor in SYS$*LlB$ or the RLlST$ list. 

Format: 

L AO,('repname') 
ER LlNK$ 

Parameters: 

repname Specifies a six-character reentrant processor name. 

Descri ption: 

After the reentrant processor is loaded (see 10.4.7), control is returned to the starting address of the reentrant processor. 

All scheduling facilities, accounting, and other pertinent information of the calling activity including register contents are 
available to the reentrant processor during its execution. 

After a reentrant processor is loaded, the 0 bank of the main program and the I bank of the reentrant processor are used for 
determining the main storage address limits for the reentrant processor. 

10.4.4.2. RLlNK$ EXECUTIVE REQUEST 

Purpose: 

References any reentrant processor in the SYS$*LlB$ list or the RLlST$list. 

Format: 

L AO,.('repname') 

ER RLlNK$ 

Parameters: 

repname Specifies a six-character reentrant processor name. 



4144 Rev. 2 
U P.NUMBER 

Description: 

UNIVAC 1100 SERIES SYSTEMS 10-36 
PAGE REVISION PAGE 

This request is the same as LI NK$ (see 10.4.4.1) except that when it is used from within one reentrant processor to link to 
another reentrant processor, the return point saved is not back to the calling reentrant processor, but to the return point that 
the calling reentrant processor itself would return to. 

Example 1: 

A main program calls reentrant processor REPA by a LlNK$ request. REPA links to reentrant processor REPB by an ER 
RLlNK$. After linkage to REPB has been established, control passes to the starting address of reentrant processor REPB; 
REPA is not retained by the program. 

MAIN PROGRAM REPA r---~. REPB 

ER R LI N K$ U .---E-R-E-X-L-N-K-$.....,--.. 

ER LlNK$ -

Example 2: 

After linkage with R EPD is established, control returns to the instruction following the LIN K$ request in REPA; R EPB and 
REPC are not retained by the program. 

MAIN PROGRAM REPA REPB 

ER LlNK$ ER RLlNK$ 

1 REPC 

ER LlNK$ 

r---+" 

ER RLlNK$ 

1 REPD 

ER EXLNK$ 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 10-37 
PAGE REVISION PAGE 

10.4.5. REENTRANT PROCESSOR TERMINATION (EXLNK$, UNLNK$, AND EXIT$) 

To terminate the execution of a reentrant processor, three executive requests are available to the user: EXLlNK$, UNLlNK$, 
and EXIT$. 

10.4.5.1. EXLNK$ EXECUTIVE REQUEST 

Purpose: 

Returns control to the instruction immediately following the LlNK$ request. 

Format: 

ER EXLNK$ 

Description: 

The contents of any control registers are unchanged after execution of the EXLNK$ request and are passed to the main 
program or reentrant processor that receives control. 

10.4.5.2. UNLNK$ EXECUTIVE REQUEST 

Purpose: 

Returns control to a main program. 

Format: 

ER UNLNK$ 

Description: 

Although a nested complex of reentrant processors may have been created, control is passed directly back to the main 
program following the original LlNK$ or RLlNK$ request by an UNLNK$ request. 

10.4.5.3. EXIT$ EXECUTIVE REQUEST 

Purpose: 

Terminates the requesting activity wherever it is within a reentrant processor or nest of reentrant processors (see 4.3.2.1). 

Format: 

ER EXIT$ 

10.4.6. REENTRANT PROCESSOR FORKING 

FORK$ requests (see 4.3.1.1) within a reentrant processor are allowed and the mUltiple activities are executed in the normal 
manner. The requester (creator of the new activity) and the new activity are treated as equals; no record of which activity 
initially entered the reentrant processor is retained. The chain of reentrant processors is made available to the newly created 
activity. This allows the forked activity to assume the previous path of control when an EXLNK$ or UNLNK$ request is 
executed. 



4144 Rev. 2 
UP-NUMBER 

U N I V A ell 00 S E R I E S S Y S T EMS 10-38 
PAGE REVISION PAGE 

The following illustrates a simple link-fork complex. Activity A is the original activity. Ll ,L2 , ••• ,Ln represents reentrant 
processors. Activity B is a forked activity created in the reentrant processor L2 • 

MAIN PROGRAM REP L, A 

LlNK$ LINK$ A 
A A 

(1) If both A and B perform UNLNK$ requests, both A and B return to main program. 

(2) If A performs UNLNK$ and B performs EXLNK$, A returns to the main program and B returns to Ll . 

(3) If A performs UNLNK$ and B performs EXIT$, A returns to the main program and B is terminated. 

(4) If both A and B perform EXIT$ requests, A and B are terminated. 

(5) If A performs EXIT$ and B performs UNLNK$, A is terminated and B returns to the main program. 

10.4.7. REENTRANT PROCESSOR CONTROL AND RESTRICTIONS 

The LlNK$ or RLlNK$ requests (see 10.4.4) are used to request the executive to search the various reentrant processor lists 
for loading the requested reentrant processor. If the specified reentrant processor is presently in main storage, control can be 
given immediately without the actual loading of the reentrant processor. For the frequently used standard reentrant 
processors, the general case does not require the actual loading of the reentrant processor. Many activities may simultaneously 
execute one reentrant processor. 

The following restrictions are imposed by the executive's link mechanism: 

• There are no rules inhibiting the use of the LlNK$ and RLlNK$ requests within a set of reentrant processors. For 
example, the executive does not take action to inhibit a reentrant processor from requesting itself or another reentrant 
processor. 

• From a given program, simultaneous execution of more than one REP is not allowed. While this is of no consequence in 
a single activity program, care must be exercised in a multi-activity program to prevent attempting concurrent execution 
of two or more REPs. 

• An MCORE$I bank request (see 4.7.1) is not permitted from a reentrant processor. 

• Uniqueness of reentrant processor names is the responsibility of the user; the executive does not ensure uniqueness for 
names provided in SYS$* LI B$ or those names entered by an RlIST$ request. The executive assumes the first name 
found is the requested reentrant processor. 

When an error contingency occurs while executing a reentrant processor, the executive has three alternatives: 

(1) If the program or activity has registered a contingency with the executive and the contingency routine resides in the D 
bank of the main program, control is given at this location. 

(2) If the program or activity has registered a contingency with the executive and the contingency routine is in the I bank of 
the main program, the executive's standard action is taken (see 4.9.2.1 ). 

(3) If the program or activity has not registered a contingency, the executive standard action is taken (see 4.9.2.1). 

A list of error and contingency types (type 108 ) are provided in Appendix C. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 10-39 
PA GE RE VISION PA GE 

10.5. REENTRANT PROCESSOR PREPARATION 

The following paragraphs describe programming considerations for reentrant processors (REP). This is not a complete 
discussion but provides guidelines for reentrant processor generation. 

10.5.1. USAGE OF A REENTRANT PROCESSOR 

One function of reentrant processors (R EP) is to provide for the dynamic loading of additional code. This function is 
somewhat analogous to loading a segment but has a much higher overhead. Another use is to provide code which can be 
shared, through simultaneous use, by many independent runs. 

10.5.1.1. COMMON I BANKS 

Reentrant processors may provide considerable savings in total main storage requirements and thus increase throughput when 
commonly used system processors are written as REP's. Several items must be taken into consideration before deciding to 
write a processor as a REP. 

(1) Is the processor used frequently enough that the probabilities are that more than one run will use it each time it is 
loaded? The REP is not loaded as part of the initial program and the use by a single run results in more overhead than if 
the processor was collected as a conventional program. 

(2) Is the execution time long enough to justify the time spent in processing the L1NK$ and EXLNK$ requests? It is not 
justifiable to create a REP which is a collection of small standard library routines. 

(3) Does the processor have a large instruction (I) bank and is it frequently used? If so, then coding it as a REP should 
definitely be considered. 

10.5.1.2. ADDITIONAL INSTRUCTION SPACE 

Some programs run for long times and have only occasional need for additional instruction space. One such class of programs 
is real time programs which have periodic or data-dependent requirements for additional instruction space. A REP may be 
desirable in the following cases: 

(1) If the program has mUltiple activities but not all the activities wish to use the new space, a REP provides a means of 
dynamically allocating additional instruction space without affecting the D bank addressing range. If this condition is 
not met, the use of MCORE$, LOAD$, and LCORE$ requests provide a lower overhead mechanism for achieving the 
same results. 

(2) If the program is real time, expansion by MCORE$ requests cannot be guaranteed. Thus,'a REP provides a means of 
acquiring the space wherever it is available within main storage. This may also result in less fragmentation of main 
storage than having the real time program collected at its maximum size and then executing an LCOR E$ request 
immediately after loading. 

(3) For nonreal time programs, segmenting should always be used instead of REP's unless parallel processing can be 
achieved by having some activities use the REP while others use the main program I bank. 

(4) For this usage of REP's, data addresses must be passed in registers unless the main program's I and D bank code is in 
separate elements. 

10.5.2. STORAGE ALLOCATION AND REENTRANCY 

A REP is an absolute element consisting only of an I bank for which the executive dynamically allocates main storage upon 
request. The L1NK$, RLlNK$, and EXLNK$ requests result in a REP being loaded if it is not already in main storage. The 

\_ requesting activity'S PSR and storage limits are then changed to use the REP as the I bank. The requestor's D bank base and 
limits are not changed, which allows the REP to reference the D bank. 



4144 Rev. 2 
UP.NUMBER 

U N I V A C 1100 S E R I E S S Y S T EMS 10-40 
PAGE REVISION PAGE 

The executive system assumes that REP's never modify themselves. Thus, when time·sharing or other considerations dictate a 
swap out, the REP's space is simply released and a fresh copy is loaded at program reload time. General concepts of coding 
for multiple activity execution require that any such modification be protected with a Test and Set (TS) instruction. REP's 
may not modify themselves even with TS protection as the REP may be reloaded at any time. Thus, instruction modification, 
calling sequence modification and executive request packets which are modified in the REP as well as the use of a Store 
Location and Jump (SLJ) instructions to locations within the REP are prohibited. 

There is no reentrancy requirement imposed by the executive on the D banks of activities which link to REP's. If more than 
one activity of the same program links to the REP, data must be protected by TS instructions or by specifying separate data 
spaces for each activity. 

10.5.3. WRITE PROTECT MODE 

REP's which are included in SYS$*LI B$ for general use should be protected against being overwritten by unauthorized or 
accidental linkages from activities with the wrong format D bank. For this reason, system configuration statements allow such 
REP's to be placed in write protect mode when they are referenced. In this mode, any attempt to store into the REP results 
in a guard mode interrupt. In this mode of operation, however, print images, I/O images, and executive request packets 
cannot be located within the REP because they would fail the storage limits checks. 

10.5.4. D BANK ADDRESSING 

As stated previously, a REP may reference the D bank of the calling activity. However, some means must be provided for the 
REP to determine the addresses of the desired data and instructions. Several linkages are available which may be used 
independently or jointly to obtain the desired results. 

10.5.4.1. COLLECTION 

The collector V and Y options (see 10.2.1) are provided to aid in the formation of REP's. With these options, I and D bank 
code may be collected together so that all absolute addresses are assigned and then absolute elements can be generated 
consisting of only I bank or only D bank code. The D bank absolute element may then be called by an @XOT or processor 
control statement and may, in turn, call the I bank absolute element by an LIN K$ request. To generate a REP using the 
collector: 

(1) Collect all elements containing I bank and D bank code. 

(2) Use a @MAP, V control statement (see 10.2.1) to generate an absolute element containing only I bank code but with D 
bank addresses allocated. If necessary, use the ENT collector directive (see 10.2.2.6) to specify the starting address for 
the absolute element. This address receives control when a LlNK$ request is executed. 

(3) Use a @MAP, Y control statement to generate an absolute element containing only D bank code. If necessary, use the 
ENT collector directive to specify the starting address for the absolute element. This address receives control when a 
@XOT control statement is processed. 

Sometimes it is desirable for more than one REP to be collected with the same D bank. This allows direct referencing of the 
D bank within a nested or sequential complex of REP's. Several requirements must be observed in collecting REP's in this 
manner. 

(1) All D bank code must be in elements containing only even location counters or in elements for which copies of the I 
bank code are desired in all the REP's. 

(2) All elements containing D bank code must appear on IN collector directives, including SYS$* R LI B$. elements. These 
elements must appear in exactly the same order in all collections. This is the only way to ensure that the same addresses 
are assigned to all D bank code in each collection. 

(3) If the I banks are of varying sizes and anyone has a highest address greater than 377778 , use a SETMIN directive in the 
first D bank element included in the collection to force an identical starting D bank address for all collections. 

(4) Use a @MAP,V control statelT'ent with each collection to form the REP. Use the ENT collector directive where 
necessary. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 11 00 SE R I ES SYS T EMS 10-41 
PAGE REVISION PAGE 

(5) Use a @MAP, Y control statement with anyone of the collections to form the D bank element. 

10.5.4.2. REGISTER BASING 

A REP need not be collected with the D bank in order to reference it. In fact, a REP may be written so that it is independent 
of the overall structure and content of the D bank. In this case, all required D bank addresses must be loaded into registers by 
the calling activity. The REP must then reference the D bank through an index register plus offset. 

An extention of this technique is to have the calling activity pass one D bank address in a register with this address being the 
location of a table, calling sequence, of addresses and values. 

10.5.4.3. COllECTOR PRODUCED TABLES 

The collector produces tables of program information upon request. These tables, COMMN$, ENTRY$, and XREF$, equate 
program identifiers to absolute addresses. The addresses of these tables may be passed to the REP which uses them to locate 
data and code in the D bank. See 10.2.4.8 for the format of these tables. 

10.5.5. REP SIZE 

The highest address within a REP must be less than lowest address to be referenced in any D bank which attaches to the REP. 
The collector initially attempts to allocate D banks at 400008 or beyond the end of the I bank, whichever is larger. If the 
REP is mapped with the D bank, there should be no problem with addressing conflicts. If the D bank is not mapped with the 
REP and the highest REP address is greater than 377778 , the minimum D bank address must be increased. This may be 
accomplished by specifically listing all elements to be included on IN statements with an assembler SETMIN directive in the 
first element. 

10.5.6. EXECUTIVE REQUESTS WITHIN REENTRANT PROCESSORS 

In general, all executive requests permitted to any user program are permitted from within or while attached to REP$. 
However, the restrictions described in the following paragraphs do apply. 

10.5.6.1. MCORE$ AND lCORE$ USAGE 

The MCORE$ and lCORE$ requests may only be lJsed to change the size of the main program D bank. Changing the REP's 
size is not permitted. 

10.5.6.2. IAll$ USAGE 

Any contingency routine in effect at the time of the LlNK$ request remains in effect when the REP is given control. If 
desired, the REP may use the IAll$ request to establish a new activity or program contingency routine. At the time that a 
contingency interrupt occurs, however, the executive takes standard action if the activity is attached to a REP and the 
contingency routine address is in the I bank. 

10.5.6.3. CMS$ AND CPOOl$ USAGE 

A CMS$ request may be executed while attached to a REP but the main program base and limits are retrieved for use with all 
ESI completion activities. Thus, it is not possible to have ESt completion code within a REP. The CPOOl$ request also 
causes the retrieval of the main program base and limits for use with ESI completion activities. 

10.5.6.4. LOADS USAG E 

The LOADS request may be used only for segments which consist entirely of D bank code. This includes RSEG's for which a 
D bank load address is specified. Note that indirect loading cannot be done as this requires a jump to an I bank entry point in 
the segment. 



I. 

3. 

4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 10-42 
PAGE REVISION PAGE 

10.5.6.5. RLlNK$ USAGE 

The RLlNK$ request from one REP to another performs a function logically equivalent to the sequence: L1NK$, EXLNK$. 
However, a great deal of overhead is removed by using the RLlNK$ request. On each L1NK$ request, the executive obtains 
PCT space to save the return address and the name of the calling REP. In a complex or looped REP structure, this could add 
up to enough space to terminate a run with a PCT overflow. In addition, the result of an EXLNK$ request causes the previous 
REP to be loaded again so that control can be returned to it. If this REP then just performs an EX LN K$ request, the cost of 
loading the REP cannot be justified. Thus, the RLlNK$ request should be used instead of a L1NK$ request in all cases where 
inline return of control to the REP is not required. The RLlNK$ request may be used to link from the main program to a 
REP, but in this case the results are identical to LlNK$. 

10.5.7. DUMPING REENTRANT PROCESSORS 

The executive does not provide the capability to obtain postmortem dumps of REP's through the use of the PMD processor. 
The programmer must provide his own dumps by using SNAPS or the XDIAG$ library routines. The following example 
illustrates the use of a contingency routine and SNAPS to obtain a snapshot dump of the attached REP upon the occurrence 
of any error mode contingency. This example assumes the existence of several REP's any of which may be attached at the 
time of an error. 

LABEL ,\ OPERATION :\ 
10 20 

OPERAND 
30 

/\ 
40 

COMMENTS 
50 

..... i. .... _.L .... MAJl.1t-!. 1 I I ! ..1 ....... .1 ..... .l. ...... ..l ...... ...i. __ L......l.-l-L..L..l. __ L .... l. .. _ .. ,L_L_L_L_L....l.-..l-.L.. __ L .. l .... __ L.....l_.1.---L......L..1._ ... 1 .... .l ...... _l .... .....L..L.L_l __ .l ...... .l ....... l ... . 

_l.( ... I.J .. .l.} . .J., ... SIAR:Il .. .J..........1..1_ . .L._ ... .1. ....... 1. .. _ ... 1 ....... L .... J... ...... I. ... _.L..L......L....L...l..-i. ....... 1.. ...... l ....... .l ........ i... ... _J.._..L.....L.....i..........L._l_ .... l. ....... L .. _.J.... .... l_ ...... J ....... .l._.J.-L...J. .. __ l .. _ ... l ........ l. .... .L ....... J ...... ..L_l.._..l. __ J ........ l ....... l ....... J ... . 

--'--'---L.......J.--1, ... J ...... L ... A~.J I ( ,0 , IOl;)JX)lQ1j-JC ONI, Ill~L_..l_ .... _L .. l : I 1 _._L.J ...... L.L.L .. L_L....l..._.!._ 

... _L. .... .l--L..JLA: L 1"=~.L_.l. __ ... L.. .... L. .. _L..J........J.I--'-: -'-...L-.L-...L' ___ .1 ....... .1. .. _.1----'---'--1.--'--"--'_.1.._._1 ....... 1 ... _.1_.-1--'--'--'- L .. 1 ..... 1...._ . .1..-

X I NP K~'C I I 1 - I , I , I , ! 

.-'--....... 1 _,'--'---'--....... ' _._L .... .L...L....L.....L --,--,---,---,--,--,-'. _ ... L_..L_ ....... ' --'--'--""---1-1 _.l.. .. _L , 1 l.... __ .1..-

I ., , I L_L._LL_...L--'--'-...1...-.L........J'--'-I--1-1 ..... L_..J .... __ L .. L .. L..l __ l '" I 1... .... 1.........1--'---'-' ....L.1--L.-I.I __ L_.l .... 1.._ .. L..L 

-'--'--..1.....-1.--1--1---1--1.' • .1... ... 1.. ...... L_L.....l 1 1 , .. ..L.....l.. 1 I I' 1 1 I ~LL...L--'--'-....I..- L.J ..... _1... 1-1 ..J,I..-J..-'-....I..-..I-

--'--L-..J.--'--'--'-' ..... L..1..~"'ljll I REP II l~h......L.L ..... , ........... --'--'-'--'-.J..-J-...I.I .. _.1-1.--'--'--'---'--.l_ .... L ..... L . ....L--'-, -'---1..-'-

1 1 I 1 I I ! 1 , I I ! I I ! I I , I I 

'-

--'---'-....J1L-L'--L_LL .. ..L ... 

........... -"---'-, ....1.. .. _L._L._L .. ..l_L_L.....L..L ...... ! --,---,---,--._L .. .L...1--,---,-~-,--'--J.--'-... L .. _1 .... L...l-L..L 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 11 00 SE RI ES SYSTEMS 10-43 
PAGE REVISION PAGE 

5. 
..L.-JL--L--'--'--'---'--I-I ...... 1 .. -1.. .. _L_L • .1.. 

1 1 1 1 , 1 L._L..L...L . ...L..1 .-'--..l.......JI--L-'---'-...I-..L...L...LIL.....l.'--'--'--'--.L..1 -l.1.. .L ... L.L_1.._.1. 

, IE ND, ...L...LLL .. L .. L.l~~J.._ .. Lu_L.L'L..-.L--'---'--'--'--'--'--'-_iLL-.LL ... J-1 -,---,-............ ' ..... L .. L .. L.L.. . .l. ..•. L 

.. ..l.-L..l 1 I I I I L.L.LL .. L.L .. L .. .l 1 , I I I I 1 L...L ... L .... L .. l .... ...l... I 1 , 1 1 LL..LL..L ... LJ ... .J_L...L.. ..... I .... 1--'-1 -,--,-,--,I. .L...l ....... J. .....• L ... L ... 1-

The code in each group performs the following functions: 

(1) Establish ER R$ contingency and load dedicated register X 1 with the address of the SNAP$ packet. 

(2) Attach to R EPl through the LlNK$ request. 

(3) Define the contingency routine in the D bank. Take a snapshot dump of the attached REP. 

(4) SNAP$ packet also in D bank. 

(5) Store REP name in first word of SNAP$ packet. Set REP starting address, length, and register mask in second word of 
SNAP$ packet. 

(6) Define length of REP. 





I 
',,--

UNIVAC 1100 SERIES SYSTEMS 11-1 

UP.NUMBER 

11.1. INTRODUCTION 

PA GE RE VISION PAGE 

II. POSTMORTEM AND 

DYNAMIC DUMPING 

The operating system provides a comprehensive set of diagnostic routines to aid in the checkout and debugging of user 
programs. The routines provided are: 

• Postmortem Dump (PMD) Processor 

II Dynamic Dump Routines 

• Program Trace Routine (SNOOPY) 

Another diagnostic capability, which produces snapshot dumps, is provided by the SNAPS request (see 4.8.5) and the 
collector's SNAP directive (see 10.2.2.10). Snapshot dump output, like program trace (SNOOPY) output, is placed in the 
user's print file at the point at which the request was made. The output of the dynamic dump routines is handled by the PMD 
processor; the output of the PMD processor is listed after the print output generated by the user's program. 

A diagnostic file (D IAG$), which is used for recording diagnostic information for the PMD processor, is automatically 
assigned to each run by the system. This file is divided into two functional parts: a dynamic dump portion and a PMD 
portion. The dynamic dump portion always starts at the beginning of the diagnostic file and it is followed by the PMD 
portion. 

The dynamic dumps consist of dumps of main storage, control registers, magnetic tape files, and items written or read by the 
I/O handlers. The postmortem dumps consist of dumps of the final contents of main storage taken at program termination. 

11.2. POSTMORTEM DUMP PROCESSOR (PMD) 

The postmortem dump processor (PMD) is called by the @PMD control statement. At program termination, the system writes 
the final contents of the program's main storage area into the diagnostic file. The information can then be edited and printed 
by the PMD processor. Postmortem dumps may be taken of overlay segments, elements, or any portion of the terminated 
program as long as those segments, elements, and portions are in main storage when the program terminates. 

11.2.1. @PMD CONTROL STATEMENT 

Purpose: 

Calls the PMD processor to dump all or specified portions of a program that resides in main storage at program termination. 

There are two types of options: general and special. The type of @PMD control statement used depends on the type of option 
specified. If no options are specified or if no special options are specified, use format 1. When any of the special options are 

I 
/'" specified, use format 2. 

If no parameters are specified in the operand fields, all elements residing in main storage at program termination are dumped 
in accordance with the specified options (applicable to both formats). 



UNIVAC 1100 SERIES SYSTEMS 
UP-NUMBER PAGE REVISION PAGE 

All parameters in the @PMD control statement are optional except @ and PMD. 

Format 1: 

@label:PMD,options eltname-1 ,addr /loc,length, format 

Format 2: 

@label:PMD,options name-1,name-2, ... ,name-n 

Parameters: 

options 

eltname 

names 

addr 

loc 

length 

format 

Option 

Character 

C 

E 

P 

The general options are described in Table 11-1 and the special options are described in 
Table 11-2. The special options may be used alone or in conjunction with the general 
options. 

Specifies the element to be dumped. The names of labeled common blocks or 
BLANK$COMMON may also be used. Common blocks can be considered to have one 
location counter. 

Specifies the element or segment to be dumped. 

The address, relative to the beginning of the location counter (loc), at which the dump 
should begin. 

Specifies the location counter of the element to be dumped. 

Specifies the number of words to be dumped. If omitted, the word length is the value in 
the location counter of the specified element. 

Specifies a single letter enclosed in quotation marks which references one of the standard 
editing formats (see 11.3.1.8.1) or a user-defined (see 11.3.1.8.2) editing format. Note 
that D and S standard formats and user-defined formats are not applicable for changed 
word dumps. If this parameter is omitted, an octal dump is produced. If none of the 
standard formats are desired, this field may be coded with a FORTRAN format stat~ment 
enclosed in parenthesis. 

Description 

Dumps the words which were changed during the execution of the allocated program area of main 
storage specified in the @PMD control statement. 

Processes @PMD control statement only if the previous routine terminates in error. 

Causes an octal dump of the PCT blocks used by the run to be printed preceding the dump of the 
program. Also the segment load tables, if any, are dumped in octal. 

Table 11-1. @PMD Control Statement, General Options 

" '-



/' 

4144 Rev. 2 

UP-NUMBER 

Option 
Character 

A 

D 

L 

x 

Description: 

UNIVAC 1100 SERIES SYSTEMS 11-3 
PAGE REVISION PAGE 

Description 

Produces a dump of the specified main storage area of each named element or segment. 

Produces a dump of the D-bank portion of each named element or segment. 

Produces a dump of the I-bank portion of each named element or segment. 

Dumps the active library elements. When used with the A, I, or D options, dumps any active system 
library elements. 

Used in conjunction with the A, I, or D options. Dump all active elements except those named in the 
control statement and those belonging to the segments named in the control statement. 

Table 11-2. @PMD Control Statement, Special Options 

For the A, I, D, and X options, the names of labeled common blocks or BLANK$COMMON may be used as element names. 

See 3.4.1 for the effect of the @RUN control statement on postmortem dumps. 

If no information was saved by the system when the previous execution terminated, no dumps are possible. This condition is 
caused by a Z option given to the collector by the @MAP control statement. If no dump is available, a message is produced. 

In order to be honored, the @PMD control statement must follow the @XOT control statement. Only data, @EOF control 
statement, and the conditional control statements, @SETC, @JUMP, anc~ @TEST may intervene. For example: 

LABEL OPERATIOH 
10 20 

OPERAND 
30 

COMMENTS 
50 

-' .. .L~-1 ...... .l ..... 1 .... 1 ... .1 ..... L .. L __ L . ..L--L-L--L--L.. L .. l ...... L .. J .. ..l----l_-L_L..L_L .... LL.l .1 .. L.L_L---L-.l....l..-L..l.-LL_LL .. J_ I I! . ..L .... .L J .... L_L ... .J........l-L_L .. l 

.-L I d,a fa i I .. L-1 .... L ... L ... L .... L ...... L __ L_L......LL.J.......L_L .. L.J .... L .. J ........ L..L---L..l-L.L-L ... 1. .. _ .. L ..... L .... L ..... 1. ... L . ..LJ~-L..L.J _1 .... L .... L_J_L-LL.L.L_.L ..... L .... LJ 

aI~SJ.L.L ... _J .... _L .. L.lTIE!/!6, !S.e:tmJm ... J ....... J .... .l...-L..L....l._L.L_ . .l----l._.l ..... L .... .t .. _L ••• L ... L_LL~._L.L .... l_.L......L...L...L.L_L...J .. J ...... 1 .. _.L.L.L .... L . ..L 

J.U~2...L_L.J_l ... 1 ... 13L1 i , J ! L--L_L.L.L . .f .. L.J~ ... ..L_j_L_.L..1. .... L._L...L ..... ' ---'---'--.Li .L_L.L_L .. J._J.--'---'---'--J. .... J ..... 1 ..... L ... .l ....... .L.....L.L...L 

~lr lb, ~th ~.~1~!~1~1~;~'~~1,~1~!~~~~!~!~~~~~1~!~I ~!~!~!.~I ~I~~.~~J~!~-L' ~'~I~I_!~'~1 
~--'-.u:;:;IE=--L ........ ,Et...t1.~x.;Ll}-L~M5~lLbm.i mL .. L .... .l ... --L1-L..-J--L-..L.1. -1_.1...1 m .. L ... LL I ! ! .... L ... L .... .L_L..L.....L----l_L.l.. 

.... L.reR,~'G 1 I-L .. L_L ... L .... L.L..J--'-L ..... I--'----'--'-...lI ....... L .1 ...... L._L....1._L---L..LJ.-L_l_.L ... ..L ... .J ...... L __ ~L_L.J .. _L ... 1 ........ L.J. __ L 

........ --'---'--'---1......1. ..... L .... .1 .. L . ..1 __ L.L ..L-L_L.L_LJ._ . .LJ ..... .1 . m L ..... 1.. ...•. 1.....1I---l.1-L1 --,---,--,---,-I .-1... .... L .. L .... L ..... L ..... L .. _1. 1 I I I I 1 1 ._.L ..... L ... J ... ~---L-l.._L.LL ... L 

If PROGX terminates before processing all of the data statements that follow the first @XOT control statements, and S3 of 
the condition word has a value of 6, S4 of the condition word is set to 6, and the @PMD and @XOT PROGY control 
statement are processed. 

Any @PMD control statement following the execution of a program from SYS$*RLlB (that is, @FOR, @COB, @MAP, and so 
forth) is honored only if the Y option appeared on the @RUN control statement. 



4144 Rev. 2 
UP·NUMBER 

Examples: 

LABEL ,\ 
10 

UNIVAC 1100 SERI ES SYSTEMS 11-4 

OPERATION ,\ OPERAND 

PAGE REVISION PAGE 

COMMENTS 
SO 

{. " .. :B,MDL .. L .. .1. ..... J ; .... L .... 1. .1 ..... .1 ... J ...... L... .. L .... L..l ... -'-... _.L. .. ...J ... 1. ..... 1 ...... L .. _L....LJ. ....... L...L ... .L.L .... L. .... L .... l .. _L ..... L. ... L.J..........L.. .. LJ .. .1 ..... L .. .J ....... L. .. .l. ....... L .... L .... l .... L ..... L .. .i ...... L .. L_.l ..... 1.. .... 1 ' 

2. ...tl.~J·1D., l~AXj~.LL _LJ1?lEJT.J:;RL'13i~B_J ...... LJ._l_L ... LL.j .. ...1 ...... L .. L .. LL....L ..... L. .... .1 .. L ... L.JJ ....... L .... J._,~.l.. ...... L ..... L .... .L .... 1 .... .L ..... L .. l ...... L .... L. L. .L ... J ...... . 

~: ~~~~~~~~~J~ __ ~_~~~~_:=::~:~~~_:_~_~~_j _~=:~~:-'J~_:~~_:~:~~~= 
5. ~ ,LP !lPig~/~!3~~~'S~,=6~,~A_hi~! ~I_t~. ~!~!~I~~!~!~~!~!~!~~~~~I~!~I ~I~!~I~~ 

........L..L .... l .. _.l ....... l ..... 1 ...... .1 .... L ..... LJ .... ......L...1........L....L..1.-.L.._L ..... l ....... t_...1-L...L-L...1........l..-..L_l. ..... l. ..... 1. ....... L...L.....L..... .......J.......-'--'--'-.. L ..... L ..... L .... L..l.........L...L._L .. L ... J ..... L....J..I--L-L....-L' _L.. ... L. ... . 

1. An octal dump of all active (allocated in main storage and loaded) segments of a user's program results. 

2. An octal dump of all active elements except PETER, BOB, and system library element results. The dump occurs only if 
the previous routine terminated because of an error. 

3. Results in an octal dump of the D bank of segment FLYBY (if active). 

4. Causes an octal dump of changed words in the D-bank portion of element REPORT (if active). The dump occurs only if 
the previous routines terminated because of an error. 

5. The result of this @PMD control statement is a 56-word dump of element ALPHA in the standard alphanumeric editing 
format. The dump begins with relative address 100 under location counter 3. 

11.3. DYNAMIC DUMPS 

The dynamic dumps are discussed from the viewpoint of 1100 series assembler user. There is no inherent restriction on the 
employment of this facility with any other processor. All that is needed is that the proper information be written to the 
diagnostic file. Library routines are provided to assist in this process. The use of the dynamic dump facility by a high level 
language processor falls outside the scope of this manual. 

Dynamic diagnostic requests are generated by procedure calls from within the user program. These procedure calls collect the 
dynamic diagnostic library subroutines into the user object program. The requested dynamic diagnostic information is written 
into the diagnostic file by the library subroutines while the object program is being executed. When called on during program 
execution, these subroutines preserve the comp!ete program environment and perform the requested dynamic diagnostic 
request. 

The amount of information which can be written into the dynamic diagnostic portion of the diagnostic file during each 
program execution is limited by a parameter set at systems generation time. 

When the dynamic diagnostic portion of diagnostic file is filled, a message is supplied indicating that no more dynamic 
diagnostics can be transferred to the diagnostic file. All subsequent dynamic diagnostic requests for this program are ignored. 
After program termination, the dump information is retrieved from the diagnostic file, edited, and printed. 

There are 18 different library subroutines associated with the dynamic diagnostic procedures. These routines can be divided 
into three functional classifications: 

(1) Dump Procedures: X$MESG, X$CW, X$CORE, X$DUMP, X$TAPE, X$DRUM, X$FILE, and X$CREG which are used 
to record data in the diagnostic file. 

(2) Conditional Control Procedures: X$IF, X$AND, X$OR, and X$TAL Y which are used to determine when a given dump 
or series of dumps should occur. 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 
ll-b 

UP-NUMBER PAGE REVISION PAGE 

(3) Specification Procedures: X$FRMT, X$BUF, X$MARK, X$BACK, X$ON, and X$OFF which are used to specify 
arbitrary print-line formats, storage space for drum and tape file dumps, deletion of recorded dumps, and control for 
nullifying activation of diagnostic procedures. 

11.3.1. DUMP CALLING PROCEDURES 

The procedures available for obtaining dynamic dumps are: 

X$CORE (see 11.3.1.1) 

X$DUMP (see 11.3.1.2) 

X$CW (see 11.3.1.3) 

X$TAPE (see 11.3.1.4) 

X$DRUM (see 11.3.1.5) 

X$FI LE (see 11.3.1.6) 

X$CREG (see 11.3.1.7) 

All dynamic dump procedures are executed only if the conditional dump switch is on. 

Each diagnostic routine that is part of the user's program must be processed serially. 

The dynamic dump procedures save and restore all control registers as well as the carry and overflow conditions. 

( The dynamic dump routines are not reentrant. Not more than one activity of a program should concurrently reference these 
procedures. 

11.3.1.1. MAIN STORAGE DUMP (X$CORE) 

Purpose: 

Produces a dump of the specified main storage area. 

Format: 

SLJ X$CORE 
N$ FORM 4,14,18 

N$ index-reg,word-count,starting-addr 
+ 'format',O 

This linkage may be generated by the procedure call: 

X$CO R E starti ng-addr, word-cou nt, 'format' ,i ndex -reg 

Parameters: 

starting-addr 

word-count 

'format' 

Specifies the main storage starting location of the dump 

Specifies the number of locations to be dumped (37777
8 

maximum) 

Specifies a single letter, enclosed in quotes, which references either a standard (see 
11.3.1.8.1) or a user-defined (see 11.3.1.8.2) editing format. If omitted, an octal dump is 
produced. 



UNIVAC 1100 SERIES SYSTEMS 
11-6 

UP-NUMBER PA GE RE VISION PAGE 

I. 

index-reg 

Description: 

Specifies the index register used to modify the address specified by the starting-addr 
parameter. This parameter, which may be omitted or left zero, can be set to values from 1 
to 15 to specify an index register from X 1 through A3. The value in the index register is 
added to the starting-addr value to get the actual dump starting address. 

The main storage dump printout is preceded by the heading: **CORE DUMP**. 

Examples: 

LABEL ,\ OPERA TlON 
10 

OPERAND ;\ 
40 

COMMENTS 
50 

... Xl$J:'~L&-L_L_L_.JJjA;BJ:~Lt;,~-L,J-LQQ1,.~.i(~;t'..i ,X:5 Li .. J ..... .l ... L..J .. _..l.-LJ_L ... .L .. L ... L . ..l_L..l.. __ L .. l .... 1 I 

~.. ::~~_:~:~::_:~~~~~~~-:~;i~~5=:~: __ :~~~-~:~=~::~~~~.-:-~~-~:~:~~:~-~-~ .. :~: 
Ni$L_.L.J.._J......J_L . .J...-1E~M ... l ... 1 .... L. ... L..L_ll:b_.)_~.L').L.ll18L_L. .. .L...L...J._L-L..J..._.Ll .. L.L.L-, , _L .... L ..... I ..... LL....l-.L.L.J.. .... l .... I. ... J. 

110, \ ,2,50" i \ WlW3Xl j I ! ! I I 'I I I ! ! ! I 

.-'-..1....' ...... 1--1-' --1....' ....1.--,-1 .J... ... _1.~.JA~L'jQ_ .. J. ..1_1._L..1 ..... L.J-L.J.........l ! ..L ... .L ... L.. •. J_..J..._.l..-L....l ...... L .. .1 .... L..1_.......L....L.....l-LL .. ~. 
, ! I I I L._.L ..... L ... L .... L. .. ...l.. ! I I I ! I 1... .... L.._1.! I I I ,_.1.._.1.. ..... 1.. .... 1........l 

1. The main storage dump begins at address TABLEX as modified by index register X5. The dump is 100 words in length 
and is presented in standard octal format. 

2. The main storage dump begins at address TABLEY, has a word length of 150, and is presented in standard octal format. 

3. The main storage dump begins at address WW3X as modified by index register X10. The dump is 250 words in length 
and is presented in alphanumeric format. 

11.3.1.2. CONTROL REGISTER AND MAIN STORAGE DUMP (X$DUMP) 

Purpose: 

Produces a dump of the program environment, A, X, and R registers, and main storage. 

Format: 

SLJ XDUMP$ 
N$ FORM 4,14,18 

N$ index-reg,word-count,starting-addr 
+ 'format' ,register-code 

This linkage may be generated by the procedure call: 

X$D U M P starti ng-addr ,word-count, 'format',' AX R', index -reg 

Parameters: 

sta rti ng-a,dd r 

word-count 

Specifies the main storage starting location. If omitted, a starting location of zero is 
assumed. 

Specifies the number of locations to be dumped (37777
8 

maximum). If omitted, a length 
of zero is assumed and no main storage dump is produced. 



\ ...... 

( .. 

',---" 

4144 Rev. 2 
UP-NUMBER 

'format' 

'AXR' 

index-reg 

register-code 

Description: 

UNIVAC 1100 SERIES SYSTEMS 11-7 
PAGE REVISION PAGE 

Specifies a single letter, enclosed in quotes, which references either a standard (see 
11.3.1.8.1) or a user-defined (see 11.3.1.8.2) editing format. If omitted, an octal dump is 
produced. 

Specifies, enclosed in quotes, one or more letters representing the A, X, and R registers. 
The contents of these registers are printed in octal. 

Specifies the index register used to modify the address specified by the starting-addr 
parameter. This parameter, which may be omitted or left zero, can be set to values from 1 
to 15 to specify an index register from Xl through A3. The value in the index register is 
added to the starting-addr value to get the actual dump starting address. 

Register codes for XDUMP$ are: 

No registers 
R only 
Aonly 
R and A 
X only 
X and R 
X and A 
A, X, and R 

0
8 

200401
8 

200202
8 

400603
8 

200104
8 

400505
8 

400306
8 

600707
8 

The printout resulting from X$DUMP is preceded by the heading: **DUMP** 

The following additional information is provided following the **DUMP** heading: 

element name 

C location counter 

C'I relative program address 

IJ hardware fault indicators 

Example: 

LABEL ,\ OPERATION .\ 
10 20 

---- ------==== 
30 

----------------------.-
OPERAND ,\ 

40 
COMMENTS 
50 

I. _L..l._ . ..l .. _L .... L ... .L ..... 1 .. i. :Xl$:ttUMEl._L...L..l .. _jIiAB.L.,eYl.,.12.0Ql) .. L~iIL'L'J.'_IKlft .. ~ ):)(:1;0 _LL..1-_1. .... L. 1 .... L ... L .. _L_L._L .. .1 .. L .. L. 

2. _ .... L ..... L .... .L ...... L ..... L ... 1 . .J ... J .. _1X.lt$lUY.l11?LL 1 .LIjA:BJ~~jI;J~' .5QQL'L'A~J.').L~.:R'J. .. L .... L.J .1 J ...... L...L .... L .... L ..... L ...... I.. 1 L ... 1.....1 ....... L ..... 1 .... .lL .1 

3. _L.L .. 1 ...... JLL .. J..._l~l~tgYMEL .. L_J .. L.J."J'L' J'.':&!_L-l_l .... J ..... .L .. ..!. ... L.J._LJ_i L.L_L.L.l .. 1 .. J ........ LL~i _i~_Ll .. 1 ..... LL .. L_L...L...Ll. ... L 

If...L.,L .. L.L._.J ._L_L..L...l~l~ .. _L.l ... L .1 .... 1.L_IX1DJ.Ut1-.P~L..LL! .... L. ... L_LJ._.LLJ..._L ....... L. ... J .t.j .. L_.L.......i_L...L_1 .. J ..... 1 .. LL-L-.L..l. __ .L ... J ... J. L 

,$1 I i I I I ! ,F=~iM i ! I 1 I ,41 ') 1 1 ( 1:h~.L_JJ3j ! I , i I I ! ! ! I ! I I I ! ! ! ! I 

.. _L .. L_1.L.L .... L .. 1. .... l~J_L..L......L-.L. .. Ll .... !XCJ", ,5,OiO,L iBSS.b, J! L.L_L. L.L.J--L.....L...... __ L., .... 1..._.1 ! _L ... l. 

_..l . ......LLL_L......L .. LL .. CtL 1 ... j .... J ... LL.L..L--LJ.~..l~~L'J.L_L.LOI210Q l.,.Lq'.t . J ..... 1 .... L ... L_.L_Ll_L..LLl. _LL .. L_L.l.._L..L __ LL .. L .. t ..... LL 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 11 0 0 SERIES SYSTEMS 11-8 
PAGE REVISION PAGE 

1. The main storage dump begins at address TAB LEY as modified by index register X 1 O. The dump is 200 words in length 
The contents of all X and A control registers are also dumped. The dump is presented in the standard integer format. 

2. The main storage dump begins at address TABLEZ and has a length of 500 words. The contents of all R control 
registers (except RO) are also dumped. The dump is presented in the standard alphanumeric format. 

3. The contents of all R control registers (except RO) are dumped in octal format. 

4. The main storage dump begins at address BSS6 as modified by index register X9. The dump is 500 words in length; the 
contents of the X registers are also dumped. The dump is presented in octal format. 

11.3.1.3. CHANGED WORD DUMP (X$CW) 

Purpose: 

Produces a changed word dump of specific locations within main storage. On the first X$CW call referencing a given main 
storage area, a complete dump of that area is produced. On subsequent X$CW calls to the same area, only those words which 
were changed since the last X$CW procedure call are dumped showing the previous contents and the current contents. 

Format: 

SLJ XCW$ 
+ word·length,starting·addr 
+ 'format' ,0 

This linkage may be generated by the procedure call: 

X$CW starting·addr ,word·length, 'format' 

Parameters: 

starti ng-addr Specifies the main storage starting location of the dump. 

word-length Specifies the number of locations to be dumped (37777
8 

maximum). 

'format' Specifies a single letter, enclosed in quotes, which references one of the following standard 
editi ng formats: A, E, F, I, or a (see 11.3.1.8.1). Standard formats D and S and user-defined 
formats can not be specified. If omitted, an octal dump is produced. 

Description: 

The number of calls on X$CW is not limited, but only five separate areas may be dumped. 

Changed word dumps, whether or not actually taken, are preceded by the following heading plus the appropriate 
changed-word status word message: 

**CHANGED WORD CORE DUMP ** 

Examples: 

LABEL ,\ 
10 

OPERATION \ OPERAND COMMENTS 
50 

f. _ .. LJ._L._i .. 1... .... L ..... 1. ..... L .. Xl$!CJ~~.t . .J. . .....J __ L....J. ...... LJ11N$E;R.IJ,.J...J.9..L,.J.~1:tL~L._L ... .L . ...L...l __ L_..L __ L . .L . 1 .. LL_L_L.L.L .. 1 . .1 .L .1.._J......J .. _L .... L ..... 1.. . L 

2 ......... L.1. ..... L .... .1 ... LL_J.LJXJ${;}.!:i_L.LLL.L ... ]i£:;lW<5::RDL'SQL ..... l.. .L .. L_Ll_.L ..... L .. l.L.LJ .... .1 ... .1 ....• L_L.L .... L ... i ...... l ..... l . 1 .. LJ._._ .. L .... L ...... L .... I.. ... .1 .... . 

3. J ........ L .... J ...... L_1Slb.~_....L .... .L .. L_L ._.1 ... .1 ....... JXiCIW$ ___ L_L.LJ ..... .L ... L. . .. L .. L ... L.....l_L .... L_L_L.L._LL .. l .... Ll.......L...L.L.l ... 1. ..... L ... J ....... LJ._L_' .. 1. .. 1. ... . 

..... L._.L. .. _J_.J--L_L .... itLL...L...J. __ i . _1. .. [ ....•.. LJ1lSJ.Q-t.L .. JtCR51 .. J ..... L_L_l_L.L_L_L ... .l ... L ... J .... L.J.....J .... ..J.....J._ .... L_.LJ ....... 1 .. L.LL .... L ..... L.J.. ..... L. 1 ..... L. 

\,r=1 Q 
I ! 1 rt i " i -LJ.... .... , -l.-...Jl........;.' --i.,'_ ...JI--l..! --L..' -'-..l..-:'~l -l-' ...J!......J..! --L..' ..J.I......J..! ~11..-l.1--L....L.....1...! -1-' ...:.'-...1...' ....J'I..-I.! --Ll ...)1_ 

.. L ..... L ... .L .. L_L...L_LJ.......L...L..J........L.L .... L .. L .. L....i_...L.....l... .. ...L! .......L...J.'-.L.' , . .J ... 1 ..... .J_ ... L .. L.l--L .... L...L....L.J ....... L.L .. L .. L •. L....L.....J.._...L. ... .1 ... 1..._J.--'--'--.............. '----'.. ..... L ... 

/ 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 11-9 
UP-NUMBER PAGE REVISION PAGE 

1. The changed word dump begins at address INSERT. The dump is 10 words in length and is presented in standard 
integer format. 

2. The changed word dump begins at address REWORD. The dump is 50 words in length and is presented in standard 
octal format. 

3. The changed word dump begins at address HTR5. The dump is 750 words in length and is presented in fixed-point 
decimal format. 

11.3.1.4. TAPE BLOCK DUMP (X$TAPE) 

Purpose: 

Dumps the block of magnetic tape data located just prior to the current tape position by making temporary use of a 
previously defined buffer initialized by the X$BUFR procedure (see 11.3.3.1). The magnetic tape is moved backward one 
block; the block is read; and, the number of words specified in the X$BUFR procedure are dumped. 

Format: 

SLJ XTAPE$ 
+ word-count,buffer-addr 
+ 'format',I/O-pktaddr 

This linkage may be generated by the procedure call: 

X$TAPE I/O-pktaddr,'format' 

Parameters: 

I/O-pktaddr 

'format' 

Descri pti on: 

Specifies the address of the I/O request packet (see 6.2) for the device handler. This 
parameter may be the address of a file control table (FCT) as is used by block buffering 
and other routines, since the first six words of an FCT (13.5.1) is an I/O packet. 

Specifies a single letter, enclosed in quotes, which references either a standard (see 
11.3.1.8.1) or user-defined (see 11.3.1.8.2) editing format. If omitted, an octal dump is 
produced. 

Interrecord gaps separate the blocks that are recorded on magnetic tape each time an I/O write of any size word count is 
done. These interrecord gaps, which serve as block separators, are not to be confused with end-of-file (EOF) marks, which are 
a special kind of block surrounded by interrecord gaps. The X$TAPE procedure causes a move backward to the preceding 
interrecord gap, then a read of everything which follows (could be one word or tens of thousands of words) into the buffer 
initialized by an X$BUFR procedure (see 11.3.3.1) until the next interrecord gap is encountered. When the buffer is filled, 
the remaining words are lost. 

The X$TAPE procedure is useful for dumping a block that was just read or written. No dump occurs if the magnetic tape is 
positioned at the load point (beginning-of-tape marker) or at the interrecord gap following an EOF mark. 

No magnetic tape dump occurs if a main storage buffer is not reserved and initialized for the X$TAPE procedure. 

The same buffer area can be used for both X$D R UM (see 11.3.1.5) and X$TAPE procedure calls. 

The word count and buffer address are returned by the X$TAPE procedure to the first parameter word. 

(~./ The tape dump printout is preceded by the heading: 

* TAPE DUMP 

** FI LE filename 



4144 Rev. 2 UNIVAC 1100 SERIES SY,STEMS 11-10 
UP-NUMBER PAGE REVISION PAGE 

Example: 

LABEL ,\ OPERA TlOH \ OPERAHD!\ COMMEHTS 
10 20 30 40 50 

I. --l._LJ..._L.L..L. .. iXi$;eJ~J:~1 I : __ LJAbP.kt~i , I' is '~Lm.L._._L..LL-L_L -L..J._LJ .... L. ... L_LL_LL_L . .l .... L ... .J._Ll.........L._L.L ... Lmm.L 

.mLm .. .1. ..... L .... L ... L, .. L.,1_LXI~;rIAP..l5 ..... L .. L .. L ... iEIIJ~~,~_l.~ .. ~L. ... l. ..... L ... _L_-L.J~! ~; _ .. L.. .L .... L._L..J ..... .J ....... L....L-L........l ....• l ...... .l ...... .l. .... 1.. .... 1.. . ...1_..1 ... _.1-• .1.... ... 1... ..... 1. ..... 1.. 

2. . .... L .... L ... .1 ....... .L.J .. _.l~L;J;---Ll. __ L.Ll.._L ... .JX1TL8~iE!$ I L._L.J. ..... J ...... L....J.. I L.L_L_L_L ... 1 Ii! L .. LJ ..... J ...... .LJ.~._.J. 
.... L. ..... ! ... L. ... L......J8iOq, ,~AtEjaL .. ..L I 1.. •. J ...... J ...... 1......LJ I: .1.. .... L .... .l. .. _ .. LJ---L-L..J--L._J ..... L. ... .J .. . 

NFl,£::, 

I I I ! -1 ....... .1 .... .J-'-.l.---L-LJ.. I I ! , _ .. l. ..... LJ--...i.-LJ. --l--L-L-' ....L! --I--L! .•... 1..._ I I I 1 I I ' I I I .. 1. 

1. The block of data prior to the present magnetic tape position is read into the main storage location ALPHA (previously 
initialized by the X$BUFR procedure call) and is printed in standard octal format. FI LEA specifies the I/O packet 
address. 

2. The block of data prior to the present magnetic tape position is read into the main storage location BUF8 and is printed 
in standard octal format. NP16 specifies the I/O packet address. 

11.3.1.5. MASS STORAGE DUMP (X$DRUM) 

Purpose: 

Dumps portions of FASTRAND-formatted mass storage by making temporary use of a previously defined buffer initialized 
by the X$BUFR procedure (see 11.3.3.1). Portions of mass storage to be dumped are read into the buffer, then the contents 
of the buffer are written into the diagnostic file. 

Format: 

SLJ XDRUM$ 
+ word-count,location-word-addr 
+ 'format',I/O-pktaddr 

This linkage may be generated by the procedure call: 

X$D R UM I/O-pktaddr,location-word-addr,word-count, 'format' 

Parameters: 

I/O-pktaddr 

location-word-addr 

word-count 

'format' 

Description: 

Specifies the address of the I/O packet containing the internal filename (see 6.2). 

Specifies the address of a word which contains the relative starting sector address of the 
file to be dumped. (In some cases, this address may be 1/0-pktaddr+5, which contains a 
sector address.) 

Specifies the number of locations to be dumped. 

Specifies a single letter, enclosed in quotes, which references either a standard (see 
11.3.1.8.1) or a user-defined (see 11.3.1.8.2) editing format. If omitted, an octal dump is 
produced. 

The mass storage dump printout is preceded by the heading: 

**DRUM DUMP** FILE filename AT RELATIVE SECTOR sector-number 



'_._r' 

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 
UP.NUMBER PAGE REVISION 

I 11-11 
PAGE 

J. 

Use of the X$DRUM procedure requires a main storage buffer into which the mass storage dump can be read. The mass 
storage area to be dumped is read into the buffer; when it is filled, the contents of the buffer are written into the diagnostic 
file. For FASTRAND·formatted files, it is recommended that the buffer be some multiple of 28, the length of a FASTRAND 
mass storage sector. While a portion of mass storage that is larger than the size of the buffer may be dumped, greater 
efficiency results by providing a buffer that is sufficiently large to hold all the mass storage to be dumped at one time. 

If a main storage buffer is not reserved and initialized for the X$DRUM procedure, no mass storage dump occurs. 

The same buffer area can be used for both X$DRUM and X$TAPE (see 13.3.1.4) procedure calls. 

Example: 

LABEL ,\ OPERATION.\ OPERAND ,\ COMMEI'HS 
lO 20 30 40 50 

".L ..... lmJ .. i ... )(j$J31Yl~"R .. .L .. LL .. L_.J)M.:M.P.lt~1.~LLL.L. .. L.LL-L.J ... _.L....L-L .. 1 .. 1.. ... .1 ! 1 I I I .... 1 ..... 1. .... 1... I I I 1 .... J ... _.1.. .... 1. 
.. I. ... .! .L_j _ . ..J~$;D.:R1tJl1 ...... L .. L. ... J .. ..JEJJ; jk.-"gJ1.tln:RDiw.J~1PL,.JJ..b, .. L~ ... i\ .. ' ... 1.. .... L .. L.L .. L .. L .. L ..... L. ..... L ... ! ...... L .. ..1 .... __ 1-1.. .. .1._ .. 3. .... 1.1 ...... .! 

2. .. _LL .... L ...... L .. mL.m.1.. .. _LJ}(4ltu FE I ...l ...... L .... jt.\IF.?~ I "th5_QL_L.L ..... LJ.. I I i I L_L.L.L .. L.L ... ...l_LL...L_L .. L . ...l .. J ...... L I I I 1 '._1.. 

. .. ! ...... J ...... l ....... l .. _1 ... ...J .. _...l._ .. L~lb..J:......J. ..... l .... 1 ........ l ... .l ....... LlXi1:JB iU .J1$L_.J_ ..... i ........ l ......... l ....... L . ..L...l-LL.J...-L .. L ... J ........ LJ .... J.......L..L...l......J._.1. ...... 1 ..... I ......... L_LL..J. __ LL_.1 ..... 1 ...... J .. 

H 50!" ,LW,AJ i , I I I ! i I I ! I I I 1 I 1 I 

.-'--..L-L--'--'--.L .. 1.. ..... .l.~..J"'D..l~ll......AD....DB.ll ...... 1 ....... .l ...... j---L.L...l--'-, ..... 1--1........1-1 .. L_L .. l ...... .L..L......L...l....... __ l.. ...... l ..... J __ L.-L......i...-L...LL .•. l. 

,-,---,1--,-1 ...L_L_L .... L .... L_L J I I , I 1..._L_1. .... 1.. ..... 1.... ... 1 ...... 1 ....... .1.. I I I I I....L ...J. ....... 1.... .. .1.. 1 I I I '_LL ... 1 .. ....J.......J.. 

1. Beginning at the relative address value specified by DRDUMP, 112 words of data from mass storage are read into the 
buffer starting at main storage location DUMPB that was initialized by the X$BUFR procedure call. The data is edited 
in standard alphanumeric format. FI LED specifies the I/O packet address. 

2. Beginning at the relative address value specified by LWA 1,450 words of data from mass storage are read into the buffer 
starting at main storage location AR EA 1. The data is edited in double-precision, floating-point format. ADDR 1 
specifies the I/O packet address. 

11.3.1.6. FI LE DUMP (X$FI LE) 

Purpose: 

Provides for dumps in connection with the item handler package (see 13.4). Dynamic dumps of items can be taken whenever 
an item is read from or written into a particular file. 

Format: 

X$FI LE fct,option,'format' 

Parameters: 

fct 

option 

'format' 

Specifies the address of the file control table (see 13.5.1). 

The available options are: 

ON - Causes subsequent items read from or written into the file to be dumped. 

OFF - Terminates dumping of items from the file. 

Specifies a single letter, enclosed in quotes, which references either a standard (see 
11.3.1.8.1) or a user-defined (see 11.3.1.8.2) editing format. This parameter can be 
specified only when the ON option is specified. If omitted, an octal dump is produced. 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 11-12 

UP.NUMBER PAGE REVISION PAGE 

I. 

Description: 

This procedure cannot be used for an item that spans mUltiple blocks. 

Examples: 

LABEL ,\ OPERATION:\ OPERAND:\ 
10 20 30 40 

COMMENTS 
50 

..L .• L .... l ....... l ... .l......J .. -L...L...LJ.-L-L..L".-i....J ..... l ... J." ..... L .... L.L .. ! I ! I L.LLJ ....... .L_L I I ! ! I !. I l __ L_L .... L .. L-L..L..1. ...... L . ...l .. J ....... L .... LL.LJ._L.L .. 

1. The file whose file control table is located at BETA is conditioned to record in the diagnostic file all subsequent activity 
at the item level. That is, every time a request is made to an item, the item to which the item handler points is recorded 
in the diagnostic file and is printed in standard octal format. 

2. The file whose file control block is located at BETA is conditioned not to dump any subsequent activity at the item 
level. 

11.3.1.7. CONTROL REGISTER (USER SET) DUMP (X$CREG) 

Purpose: 

Dumps specified user control registers. (The A, X, and R registers and the unassigned registers at addresses 348 and 35
8

,) 

Format: 

SLJ XCREG$ 
+ register-count,starting-reg 
+ 'format',O 

This linkage may be generated by the procedure call: 

X$CR EG starting-reg,reg-count, 'format' 

Parameters: 

starting-reg Specifies the address of the first control register to be dumped. 

reg-count Specifies the number of control registers to be dumped. 

'format" Specifies a single letter, enclosed in quotes, which references either a standard (see 
11.3.1.8.1) or a user-defined (see 11.3.1.8.2) editing format. If omitted, an octal dump is 
produced. 

Description: 

The register dump printout is preceded by the heading: **CREG DUMP** 

Examples: 

LABEL ,\ OPERATION .\ OPERAND 
10 20 30 

:\ 
40 

COMMENTS 
50 

I. .:x.J.$.lCJRIE,gLL"L..i .XLIL,JJ .. l~_,l.~:q:.1 . .1 .. L .. L....L_.l....J....-L....l ... .L......L.J.. .... "L. . .l ... L . .L..l........L..L....Ll ..... L ..... L .. L .. l-L...l • .....1 ... _.1 .... 1... .. . 

2. --.l .... 1... ..... L .... L .. LL_Lj~l$C 1'R1E..lGl ...... L .... L .. 1 .)( L I JJ,'LLO" i\. Ai.~ . ...... i ... l ... L...L.L-L .. " ... L .... L .... L .. LJ ........ 1 .... .J .. _ ... L. ..... L.l. ..... L ... 1 .. L .... L.l.......L...L.L.Ll ... L ... L .. . 

3. ..Ll .... ..l ..... L. .... l.......l...lXl~"R16GI 1-1... .. ..l .. AI!t'ltQL'J~lO.~l .J._L..l.. I I i I ...l.......l........L.J.._ . ..L._L ... l 1._ • .1 .... J ....... LLJ---L.L.L .• 1... ... . 

.. _L. ... L ... L. .. l.....J........l-....L...L.LJ-L..LJ ..... L ... ..L ..... l... ... "LL_.l.....L-L..-L_LLL ... L ..... L ...• l.....l.. . ..J_!_L..L-LJ ...... L.J ........ l . ..J......J..--l.-1 -11---1.--1.-."1... .. .1 ..... 1.. ..... .l I I 1 I I .•. 1. ...... .1. ... J._. 



""'-/ 

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 11-13 
UP.NUMBER PAGE REVISION PAGE 

1. Registers X1 through X 11 and AO are dumped into the diagnostic file to be edited and printed in standard octal format. 

2. Control registers X11, and AO through A8 are dumped into the diagnostic file to be edited and printed as a string of 60 
alphanumeric (Fieldata) characters. 

3. Control registers A 14, A 15, RO through R5, and the unassigned registers 348 and 358 are dumped into the diagnostic 
file to be edited and printed in standard octal format. 

11.3.1.8. EDITING FORMATS FOR DYNAMIC DUMPS 

Each procedure for calling dynamic dumps specifies an editing format for printing the dump. Standard editing formats (see 
11.3.1.8.1) are available to the user for this purpose. If, however, the user desires to define his own editing format, he must 
use the X$F RMT procedure (see 11.3.1.8.2). 

11.3.1.8.1. STANDARD EDITING FORMATS FOR DUMPS 

A number of standard editing formats are available to the user when specifying dump procedures. These formats provide the 
majority of printing formats desired. Table 11-3 lists the standard formats, which are specified by a single letter enclosed in 
quotation marks in the dump procedure calls (see 11.3.1.1 through 11.3.1.7). Figure 11-1 is an example of printouts of 
integer and octal dumps in standard editing format. 

INSTRUCTION: 

X$DUMP 81,32,'1' 

PRINTOUT: 

**DUMP** 
CALLING ELEMENT NAME$ $( 00) RELATIVE LOCATION OF CALL 000011 
PANEL CARRY OFF OVERFLOW OFF 

REGISTERS 

DUMP OF ELEHENT NAME$ 
000035 040620 3 

521 
131089 

33554457 

000045 040630 
000055 040640 
000065 040650 

(a) Integer Format Dump 

INSTRUCTION: 

X$DUMP 81,32,'0' 

PRINTOUT: 

**DUMP** 

$( 00) AT HAP ADDRESS 
6 11 

1034 2059 
262162 524307 

67108890 134217755 

040620 
20 

4108 
1048596 

268435484 

CALLING ELEMENT NAME$ $( 00) RELATIVE LOCATION OF CALL 000021 
PANEL CARRY OFF OVERFLOW OFF 

REGISTERS 

CREATED ON: 20 JUL 70 AT 13:53:29 
37 70 

8205 16398 
2097173 4194326 

536870941 1073741854 

135 
32783 

8388631 
2147483679 

DUHP OF ELEHENT NAMES $( 00) AT HAP ADDRESS 040620 CREATED ON: 20 JUL 70 at 13:53:29 

264 
65552 

16777240 
4294967328 

000035 040620 000000000003 000000000006 000000000013 000000000024 000000000045 000000000106 000000000207 000000000410 
000045 040630 000000001011 000000002012 000000004013 000000010014 000000020015 000000040016 000000100017 000000200020 
000055 040640 000000400021 000001000022 000002000023 000004000024 000010000025 000020000026 000040000027 000100000030 
000065 040650 000200000031 000400000032 001000000033 002000000034 004000000035 010000000036 020000000037 040000000040 

(b) Octal Format Dump 

Figure 11-1. Standard Editing Format for Integer and Octal Dumps, Sample Printout 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 11-14 
UP·NUMBER PAGE REVISION PAGE 

Format Definition Number of Number of Number of 
Parameter Items per Print Positions Decimal 

Line Per Item Places 

'A' Alphanumeric 16 6 -
'0' Double precision floating point 4 24 18 

'E' Floating decimal 8 13 8 

'F' Fixed decimal 8 12 8 

'I' Integer 8 12 --

'0' Octal 8 12 --

'S' Instruction 4 20 --

Table 11-3. Standard Editing Formats for Dump Printouts 

11.3.1.8.2. USER·DEFI NED EDITI NG FORMATS (X$FRMT) 

Purpose: 

Specifies a nonstandard editing format for use by the diagnostic dump procedure calls as an alternative to the standard editing 
formats described in 11.3.1.8.1, or redefines the standard editing formats. New format labels (such as 'U', 'V', or 'W', for 
example) may be specified, or existing standard format labels may be redefined. 

Format: 

SLJ XFRMT$ 
+ format-specification-word-Iength,'format·label' 
'format - specification' 

This linkage may be generated by the procedure call: 

X$FRMT format-specification-word~length,'format-label' 

'(format - specification)' 

Parameters: 

format-specification
word-length 

'format-label' 

'(format· 
specification) , 

Specifies the number of words comprising the format string. word-length 

Specifies a single letter enclosed in quotation marks and references one of the following 
standard editing formats: A, 0, E, I, 0, or S (see 11.3.1.8.1). This action is used to 
redefine the standard editing formats. To specify a user-defined editing format, any letter 
(enclosed in quotes) except A, 0, E, 1,0, or S may be used. 

Specifies a string of alphanumeric characters which represent an encoding of the format 
to be applied to the information printed. The string of alphanumeric characters 
may not contain intervening blanks. The first nonblank character of the string must be a 
left parenthesis (preceded by a quotation mark); the last nonblank· character must be a 
right parenthesis (followed by a quotation mark). 



I 
~ 

l 

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 11-15 
UP.NUMBER PAGE REVISION PAGE 

I. 

Description: 

The format of the string of characters that comprise this parameter are specified exactly 
as in FORTRAN V FORMAT statements; for example, specifying '(10FB.3)' indicates 
that the dump information printed on one line consists of 10 words of fixed·point 
decimal data and that each word is eight characters long with the decimal point at the left 
of the third least significant character. 

Any standard or used-specified editing format may be redefined; the most recent definition prevails. 

Multiple line formats are allowable. 

Except for the 'G' conversion code, any format that can be given in a FORTRAN V FORMAT statement can be specified. 
See UNIVAC Fundamentals of FORTRAN, UP·7536 (current version). 

Examples: 

LABEL ,\ OPERATIOH 
10 

\ 
20 

OPERAND COMMENTS 
50 

.J._ .. L._L ..... L ... L. ... J .... L X$,ERctM't .. .J .. _L . .JJ.J'L~ ... i~.~.J........LL-.L .. .L.L.L ...... L_L-L ..... .LJ .. ...J_L...L.l ..... .l .... L......l.--1 .. _...L..J..... .... L .... L .. J .. L...l.-LLL .. J ..... L ... L 

... L ..... L ..... L ...... L ... L.J. _.1... .• 1 ,_L(lQl~'11Lbl L'..L .... L. ..... .L .. L. 1_..l ...... L.....l--.l ... ':" ... L ..... L ..... 1 .... 1 ..... 1. ... L....L-L_.L .. L. ..... L .... L ..... L .. ...J ..... .l ........ L .... L ..... L .. ..L ... l ....... L ...... 1. .. L .. L . .....l_I_ .. ..L .. L .... .1 .... 1 ....... 1.. 

2. L.. .. L. ... J. ....... L .... .L ...... L .. .l .. _~l~~ML_L_L .. J .... JJ.J.,.~.J6_ I Iii 1 ...... .1..... ..... L .t .. L ...... L...........L.......l.--.-..LL_L.l... ..... l ...... L .. J .... Ll-.l......-L...l_l ..... L..1 .... L .. j I ...... 1.. 

.L ..... .L .. J.._L. •. L..L.1. ._J~ CJ...LQ1E81.~.1~llL~_L.L ........... LL ..... ...L._LJ. ... L. ... ..i ......... L. . .L .. .L......LL.L ..... L ...... L.1 ... ..1 ....... 1... .1.. ... .1 ..... L._ . .L. ' ..... 1 ..... 1. .... J .. 

3. , I ~b~, lit IIX0£~~~~1~1~1~,~!~!_'~I_i~'~~~~~~~~~!~I~~~~i~!~_ 
.... L ... .lrtL . .....L! I I I \ .LL .. 1ZI-'.j __ L~_.1~...1...........1_Ll .... L . ..l............L.. ......L-.LJ.._L .. L.L.J. .. _J..........J....' -,----,--,--,-I ..... L .. J..._.L 1.. ..... 1 . 

..............-..L..........l-............... "'--1.... ... 1. " (J2A;l.b) I .. L ..... L.l ..... L.._L . ...L..J.--'-....L-.JI'--j~.J ....... L ..... 1. ...... 1 ..... l... ... L..L......lI.-L.........L......J...! ---L.! ......L L .... 1... I ! ! I ! I ..... .1._.1 ..... L .. L.J... 

1. 

2. 

3. 

_L ..... L .. L ... .i ..... L .. L ..... L. ...... L....1_.L .... .L...n..L ..... L ..... .L ...... L.....1 ....... L ... L .1.. . .1. I ! ! 1 I I ._LJ .......... L._L.--1......1 .......l1-L_ll.........LI--I......' ..........J11.........................J... ........ '-_L...l--L-1-.L....L........L.J.. .... 1 ..... L.! I I I ! 

The standard octal editing format is redefined to print six octal words per line instead of eight. The appropriate data is 
written into the diagnostic file so that the redefined format is effective when the diagnostic editor processes the 
recorded dynamic data. 

The standard fixed decimal format is redefined to print 10 fixed decimal words instead of eight. The number of 
characters per word is changed to eight instead of 14, and the number of decimal places is three instead of eight. 

The standard alphanumeric editing format is redefined to 12 words per line instead of 16 and four 
characters per word instead of six. 

11.3.2. CONDITIONAL CONTROL PROCEDURES 

The dynamic dumps can be controlled by an internal conditional dump switch. When the switch is turned off by a 
conditional control procedure, all dynamic dump procedures which follow are ignored until the conditional dump switch is 
turned on again. Note that all dump procedures are executed except when preceding conditional dump procedures cause 
them to be overridden. A number of miscellaneous control procedures are available to the user in addition to the conditional 
control procedures. 

The available conditional control procedures are: 

X$IF 
X$OR 
X$AND 
X$TALY 

(see 11.3.2.1) 
(see 11.3.2.2) 
(see 11.3.2.3) 
(see 11.3.2.4) 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 11-16 
UP-NUMBER PAGE REVISION PAGE 

11.3.2.1. INITIATING A STRING OF CALLS (X$IF) 

Purpose: 

Initiates a string of dynamic dump calls. The conditional dump switch is turned on or off depending on the value of the 
relational expression. 

Format: 

X$I F addr[,index-reg] [,j-desig] 'rei' addr[,index-reg] [,j-desig] 

Parameters: 

addr 

index-reg 

j-desig 

'rei' 

Examples: 

LABEL ,\ 
10 

Specifies a main storage location or a control register; indirect addressing and literals are 
allowed. 

Specifies an index register (Xl through Xl1, AD through A3); index register 
incrementation is not allowed. 

Specifies any desired partial word. 

Specifies the relation between the parameters specified before and after 'rei'. Allowable 
codes for 'rei' are as follows: 

Code Meaning 

'EO' Equal to 

'GE' Greater than or equal to 

'GT' Greater than 

'LE' Less than or equal to 

'LT' Less than 

'NE' Not equal to 

If the relation between the tested parameters is true, the conditional dump switch is 
turned on; if the relation is false, the conditional dump switch is turned off. 

OPERAT ION ,\ 
20 30 

OPERAND :\ 
40 

COMMENTS 
50 

,. ..:Xi$J~l .. E-l .. _..L.Ll_...L...JAlb1?HJ~~ i E,Q " ..iIl~&L .. ....L_L.l_L.L....L ... l ...... L ..... L .. .L_L..L..l........_ .. L ... J ..... L .. _L .. L.J .... _L_L_ .. L. .... L. .. 

2. . .... L .. J ...... .L. .. Ll_Ll<AjI, FL .. L .. .1 ...... 1. ... L. ..... L. ...... A.Jb:PM,b~LL.,JLli ....... L~ .. !.~L~L ... J:A~L,J}(j.1L,1::LL ...... L .... LL. .. l .. L .. L .... L .. LL .. 1 ....... I ... L. 

3. .l. ..... J. ........ L ..... L. ..... L...L1XliJJb-LL ...... L_L_L .... .lAl.b.P.J:J,A1 " ')i\ .. t ,..J_~ .. .1~j~~LXA6L,1.,rtlL_L ... 1 ..I iI' ..l ... 1 .... 1. .... 1 I .... J. .... . 

' ....... 1. .. L. ...... L......L......l..........L-l .1 ....... .l ....... L .. 



4144 Rev. 2 
U P-NUME3ER 

UNIVAC 1100 SERIES SYSTEMS 11-17 
PAGE REVISION PAGE 

1. If the contents of ALPHA equal ('EO') the contents of TAG, the conditional dump switch is turned on. If the contents 
of ALPHA do not equal the contents of TAG, the conditional dump switch is turned off. 

2. If the contents of Hl of ALPHA, as modified by index register Xl, are less than ('L T'), the contents of the Hl of TAG, 
as modified by index register Xl, the dump switch is turned on. If the modified contents of TAG are equal to or greater 
than the modified contents of ALPHA, the dump switch is turned off. 

3. If the relationship of the contents of the Hl portions of ALPHA and TAG is not equal ('NE'), the dump switch is 
turned on; if the contents of the Hl portions of ALPHA and TAG are equal, the dump switch is turned off. 

11.3.2.2. LOGICAL [ffi) CONTROL OF DUMPS (X$OR) 

Purpose: 

Turns on the conditional dump switch if it is already on or the current value of the realtional expression is true. 

Format: 

X$OR addr[,index-reg] [,j-desig] 'rei' addr[,index-reg] [,j-desig] 

Parameters: 

Same as X$I F procedure (see 11.3.2.1). 

Examples: 

LABEL ,\ OPERATION \ OPERAND:\ 
10 20 30 40 

COMMENTS 
50 

~=-=-=--'--"'-

/. _L.J,_J.. __ L-=-_L,';---')<:$J<tR.-1 ~.~_L~J"'_LJALJ?LH'&_l~t;..J.~l_iI,Al.~~i -1..-1_,_1 .-i_,L.l".",J.""LJ""j,_L_L-i .. L .. 1 . j, .L ... L."l1.,.,_L_L,,,.l , . .1., L." 

2. .J.,.,. L ... ,.].,.,,,L . L .... !; Xl$-1~:R .. ",.1 .. ""j, .. ,.",.(."."L .. , .. I., "A:J~J.?J:Jl\I.,)(5(,H;~L.J .. ~~-LTL~.J.I.AJi,J"lH2'1 .. ,_L.J.".i .... " .. L .... .! .,., 1 .. _L .1 .... 1._ .. .1 .. ,.1.. I, 1.,., 

_1.".1.. ,,,J.,,.,.l.,, ... LL.J ."J .. ,_LJ._L.L_Ll._L ... l ".,L."L" .. Lj .. ,.L~J,_L .. L,.J .... " .. L.,_L_LJ_--'---L...L ... .1_.L.J_, ... L, ... L.,L.l......L...L.J., __ L"".L,L, L ... ,J---L-LL..1 .. ,_.L, .. 

1. In this example, the conditional dump switch is set on or remains on if it is already on when 

[J the contents of ALPHA equals ('EO') the contents of TAG and the conditional dump switch is on; or 

D the contents of ALPHA equals the contents of TAG and the conditional dump switch is off. 

2. The conditions for setting the conditional dump switch on are similar to those described in example 1; the condition 
being tested is greater than ('GT') and to turn the switch on; H2 of ALPHA as modified by index register X5 must be 
greater than H2 of TAG. 

11.3.2.3. LOGICAL rJIDl CONTROL OF DUMPS (X$AND) 

Purpose: 

Causes the conditional dump switch to remain on if, and only if, it is already on, and the current value of the relational 
expression is true. 

Format: 

X$AND addr[,index-reg] [,j-desig] 'rei' addr[,index-reg] [,j-desig] 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 11-18 

UP.NUMBER 

Parameters: 

Same as X$I F procedure (see 11.3.2.1). 

Examples: 

LABEL ,\ OPERATION J\ OPERAND /\ 
10 20 30 40 

-----

PAGE REVISION PAGE 

COMMENTS 
50 

f. ,_.J_.L. .. L .. l.. ...... L ... J. .... L ... Xl$tI.~iN:QL.L..L ... L .. .l • ...AlbJ?Jj.8.L.J~ : E ~~L.Lf~L-1_-LJ .... ...i.-L .. ..J.. ..... L .... L .... l .. ..J._L-L ..... LJ ...... .l .... 1. .... L ... .L ...... LJ.-1 ....... L ... .l ....... L 

2. . .. ..1 ........ 1 ..... 1. .... .L .1.. .... L L .. j ...... jX~A~ It .. J..LL.l .. Aibl?J::tAJ.'.l,.IJL.j.~ . .!~.jf;1_'..LJ"It.1§j'.JX.l.JJQL,IJ.L..L .... L ..... L .. J ..... L .... J. ...... LL ... ..l._ ... L .... 1L ... l. 

1. The conditional dump switch remains on if it is already on and the contents of ALPHA equal the contents of TAG. 

2. The conditions for the conditional dump switch remaining on are similar to those described in example 1; the 
difference is that to remain on, T1 of ALPHA must be less than or equal to ('LE') T1 of TAG as modified by index 
register Xl O. 

11.3.2.4. CONTROLLING THE CONDITIONAL DUMP SWITCH (X$TAL Y) 

Purpose: 

Allows a dynamic dump procedure that is embedded in a loop to be executed only when conditions specified by the user are 
met. The conditional dump switch remains on when these conditions are met (if it is already on), and turned off when they 
are not met. 

Format: 

X$TAL Y start,until,every 

Parameters: 

start 

until 

every 

Description: 

Specifies the initial or starting value of the loop. 

Specifies the maximum number of times the loop is to be executed. 

Specifies a value which indicates the number of times the loop is to be executed before 
the conditional dump switch is turned on. For example, if the user specifies a value of 
100, the conditional dump switch remains on everyone-hundredth time through the 
loop; all subsequent dynamic dump procedures in the loop are executed. 

The X$TAL Y procedure is used to set the conditional dump switch by testing a counter. The counter is set to the value of 
the start parameter the first time the X$TAL Y procedure is executed; thereafter, each time the procedure is entered for 
execution, the counter is incremented by one following all tests by the procedure. The tests performed on the counter 
(represented by the symbol Z are: 

Ia if start ~(Z)<until; 

II if (Z) - start yields a zero remainder; and 
every 

• If the conditional dump switch is already on; 

the conditional dump switch remains on. If any of the tests fail, the switch is turned off. 



L 

4144 Hev. "L UNIVAC 1100 SERIES SYSTEMS 
UP-NUMBER PAGE REVISION PA GE 

The user should ensure that the conditional dump switch is on when an X$TAL Y procedure is entered; otherwise, the 
counter is not incremented and control is returned to the user program. 

Example: 

LABEL OPERATION 
1 10 20 30 

OPERidW ,\ 
40 

COMMEtHS 
50 

--=,~=:"-=-"";:':::'~;;:;::;-;:=--=;'::::::;:=.=:';::~:::;:;~:'!~:;'::':'==-=:::':--==-";:""':=~;:::;:;'"''-::'--:::::':=.~ .. === , __ . :==,==,::;;::;:;;::.c-:::-":,,-·-'-:==:::=:::;:=:.c==-..:::::==c.-:;:,~;;;,,,;;::,_,~=,;;:::: 

L,.L.L_l L ..... l .. iX$IALbYL.L_:.,.l ... .JQL);~lOQQ,.,J.~QQ ,i, 
... ,.1, .. 1. ..... 1.. ... ,.1.. L ..... L.. . .•. J .L_1_ . ..1_L.,1 .. , ... 1..., .... 1... .. ,.1.,.,1..., .. ,:..1 ... L . .J, .... LJ.._,i.,.L ..•.. L.,.,.L .. .l, .!, ... 1 "..L .L_l ... L .... L ..... l .... ,.L ..... L .. ,] .. ,1.. ,L, .. ,l".L . .i .... ,.L .. ,.l "l . ,0. L __ 1... 1 .. ,.,;', ... L.,.J ! ,.1, 

In this example, 0 indicates the start of the loop, which is to be executed 4000 times. Every one-hundreth time through the 
loop, up to 3999, the conditional dump switch remains on, provided it is on prior to execution of the X$TAL Y procedure. 
A" other times the dump switch is turned off. Thus, we obtain any specified dumps each 100th time through the loop. 

11.3.3. SPECIFICATION PROCEDURES 

A number of procedures in addition to conditional control procedures (see 11.3.2) are available to allow user control of 
dumps. These procedures are: 

X$BUFR (see 11.3.3.1) 

X$ON and X$OFF (see 11.3.3.2) 

X$MARK and X$BACK (see 11.3.3.3) 

X$MESG (see 11.3.3.4) 

11.3.3.1. INITIALIZING A BUFFER (X$BUFR) 

Purpose: 

Initializes an area of main storage for use as a buffer by the X$T APE or X$D R UM procedures (see 11.3.1.4 and 11.3.1.5, 
respectively) . 

Format: 

SLJ XBUFR$ 
+ word-count,starting-addr 

This linkage may be generated by the procedure ca": 

X$BUFR starting-addr,word-count 

Parameters: 

starting-addr Specifies the starting main storage address of the buffer. 

word-count Specifies the number of locations in the buffer to be initialized. 

Description: 

X$BUF R does not reserve a buffer area in main storage; it only initializes the area. The buffer must be defined and initialized 
prior to executing any X$TAPE or X$DRUM procedure. 



UNIVAC 1100 SERIES SYSTEMS 11-20 
UP·NUMBER PA GE RE VISION PA GE 

For dumps of FASTRAND·formatted files, it is recommended that the buffer be some multiple of 28, the length of a 
FASTRAND mass storage sector. 

Example: 

LABEL ,\ OPERA TlON :\ 
10 20 

OPERAND 
30 

:\ 
40 

COMMENTS 
50 

1. ....... 1. ....... 1. ..... -1 •..... .1... •.. 1 ..... 1._J_L-l_L.J._l .. _.1. .... J. ....... l ........ 1 ...... J ......... L. ..... I. ........ L...l_...L...J_J...._L ... L ....... L ..... l ...... .l ...... _J ...•. .l.-LJ---L. .... l ...... .l. ...... L.J ....... .J ......... J ........ L .. L_.L-l ..... l ........ l ........ 1 ....... 1 .... j .... J_1_..1 ... _1 ....... 1 ........ 1 ........ 1 ....... . 

TDUMP is the main storage buffer area, 56 words in length, which is initialized for use by an X$TAPE or X$DRUM 
procedure. 

11.3.3.2. ALLOWING AND IGNORING DUMP PROCEDURE CALLS (X$ON and X$OFF) 

Purpose: 

Allows overall control of the execution of dynamic dump procedure calls. 

Format 1: 

S AO,XSTAT$ 
TNZ XSTAT$ 
SN,H2 AO,XSTAT$ 

This linkage may be generated by the procedure call: 

X$ON 

Format 2: 

SZ XSTAT$ 

This linkage may be generated by the procedure call: 

X$OFF 

Description: 

The word XSTAT$, which is in the XCOMN$ data area, is initially set to nonzero. If it should become desirable for all 
dynamic dump subroutines to return control immediately without processing any dumps, XSTAT$ may be cleared to zero by 
either the X$OFF procedure or the SZ instruction. To return XSTAT$ to its original nonzero status, the X$ON procedure or 
the equivalent three instructions may be used. 

The X$OFF procedure turns off the conditional dump switch until an X$ON procedure is executed. When the X$OFF 
procedure is executed, the setting of the conditional dump switch cannot be changed' until the X$ON procedure is 
encountered. Thus the X$OFF procedure causes dynamic dump and conditional procedure calls to be ignored, and the X$ON 
procedure allows the calls to be executed. 

Care must be taken if dynamic dump procedures are used in programs consisting of independent activities and when used in 
I/O completion routines. 

A series of dynamic dump procedure calls will not be interrupted by one of the other subprograms. 



4144 Hev. "L UNIVAC 1100 SERIES SYSTEMS 
UP.NUMBER PAGE REVISION PAGE 

Examples: 

.-----------------------------
LABEL ,\ OPERATIOH.\ OPERAHD '\ COMMEIH5 

10 20 30 40 50 
1========::..-=--=:-=-=:-:.=-=-=-=--=-=-==-=-=- ---------. ----.----.------.--. -= 

I. ._.L_L . .L ..... L .... L .... L ..... L .... :Xl$g~J.El.ELL...LJ_J ... L.L ... L.L .. i. __ L-L-l_.-l . ......L.L.L .. 1.. L_.L _-I.. _J_ .. J .. J. _LJ.L.! J ...... L_L-L-l.. .L . .. 1 . j .J .. _L_L.-1 .... .1 .. j . .1 , 

2. ..L.",.,\. .. ",L .. ",L .. ,.L,.L .. J. _ .. J_1X1~t.'tJ:'LL_.Ll. L .... t .. , Alb P1:J.8 . .L .1~.~J;~L~j,.lIt\l.G-..L L. .. L ".L ... ,l ... ,.LL,.]1 , ,L L.L_L ... ' "L.",I .,' l i. _1....1 j I I,., j 

3. .-L.L .. J.""",.l., .... ,J""",L,.L ... IXl~&i~.~ __ LL ... .l .. AjkBH&~QL'-l~.Jf,;.~.L_L1_; L.L_LL.1._.i I ..... LL....L..L..l,J"l ,. LL.L_L_L...L.-L 1 

4 ...... L .. L_L.L_j---1---L_L_i<~~ __ L.,_lm.L .. _L ... L_l I ; ! I .Ju __ ,L .. L,.Lm.L ... L.L.L.L_L.L . .J.---1 .. ,,'J".m'J,L,J ..... J _ .. 1-.-1_L_..l __ .1.,.l \.,.,' L_L---1---1 .... _~ .. , . .1 . j ,J_ 

5. XI$C!~R,E I I I ;TIAGi,,1 ,50" 'jIill I ! I : I ; I I I I I ! ! I I ! I I I I ! I ! i I I I. 

The X$OFF procedure indicates that all diagnostic system dump procedures which follow, except the X$ON procedure, are 
to be ignored; therefore, the X$I F and X$COR E procedures (line 3) are not executed. The X$ON procedure indicates that all 
subsequent diagnostic system dump procedures are allowed; therefore, the X$COR E procedure (line 5) which follows is 
executed. 

11.3.3.3. SAVING AND DELETING DYNAMIC DUMPS (X$MARK AND X$BACK) 

Purpose: 

Marks the points in program execution between which dynamic dumps are saved and then deleted at the user's discretion. 
The X$MARK and X$BACK procedures permit a user program under checkout to include dynamic dump procedures which 
the user may want to execute only when a routine does not terminate normally. 

Format 1: 

SLJ XMARK$ 

This instruction may be generated by the procedure call: 

X$MARK 

Format 2: 

SLJ XBACK$ 

This instruction may be generated by the procedure call: 

X$BACK 

Description: 

The X$MARK and X$BACK procedures behave much as left and right parentheses surrounding portions of a program which 
are to be dumped only if termination occurs between them. 

X$MARK and X$BACK pairs may be nested to a depth of five. The total number of occurrences of X$MARK and X$BACK 
is unrestricted. . 

Examples: 

LABEL ,\ OPERATION 
10 

\ 
20 30 

OPERAHD .\ 
40 

COMMENTS 
50 

_..L..J_ .. .l" ... L_L"",L. .. ,,:xliMJ\&~ . ..l __ L._ .. L,L ... L,,,L. ... _L_ .. L_L_L __ L,....L...L.L,..L_.L_L_LJ .. _J.J_L .. L .1 ."L_.L_L-l...-L..1 .. 1 .... L .. L .. ..L _.L_L"_I. .. _.L. ,1 ... 1. 

... j ...... L., .. L ..... L .. ,.L .. L.LL...l~L~_~lR1J;;.LL,L,.:A:b:pJ.HA.,AQQ"j~ .. lAJ,~L._L..i.....LL1 ..... Lj ....... L. 1 ... L . .J.-L.L ...... L_ .. .1 ..... L . .1J .. _L .. 1" .... 1 ....... L ..... 1 i j. 

LLJ. .... L.Lj ... J._..1\I5Jl.~_LL .. "L"LL .. LJ_l.....LJ..-LJL..lJ .. L_L~,L_L.L_LL.l __ L ... ..1L.L_' _'_J._.l ... 1 ..... L.L ..... .L ... LJ--L-L."J ... 



UNIVAC 1100 SERIES SYSTEMS 
UP-NUMBER PAGE REVISION PAGE 

X$MARK saves the current location where the next write is to be made in the diagnostic file (by X$CORE). X$BACK resets 
the current location pointer to the value saved by the most recent X$MARK reference. The result is that all intervening dump 
information is overwritten by the next dump that is taken; that is, the data recorded by X$CORE is deleted. 

11.3.3.4. PLACING A MESSAGE IN THE DUMP (X$MESG) 

Purpose: 

Permits the user to place any message he desires into the dynamic dump. 

Format: 

SLJ XMESG$ 
+ word-Iength-of-msg,' A' 
'diagnostic-msg' 

This linkage may be generated by the procedure call: 

X$MESG 
'diagnostic-msg' 

Parameters: 

word-Iength-of-msg 

'diagnostic-msg' 

'A' 

Description: 

word-I ength-of-msg 

Specifies a number equal to the number of computer words in the message (one computer 
word holds six characters). 

Any string of alphanumeric characters enclosed in quotes and printed exactly as 
assembled. 

Generated by the procedure call. It is of no significance to the user, but it must be coded 
when the instruction form of the format is used. 

The X$MESG procedure produces a line on the output listing of up to 120 alphanumeric characters. The printed line 
immediately follows the procedure reference. 

The X$MESG procedure is executed only when the conditional dump switch is on. 

Example: 

LABEL ,.\ OPERATION . .\ OPERAND 
10 20 30 

;\ 
40 

COMMEIHS 
50 

.. ){~MI.;1c;tq~L....l.. ..... ,._.l51 .. _...L_L .. _L_ .. .L.Ll.._.L..L..LL .... L ..... L.l-L ..... L..L .. .....! .. _L ...... L.L .. l ... J ... _l __ L.......l...-L-1 ..... 1 .... L ... L.J-L ...... L .. .....!_ ..... L .... 1 ..... 1 

.. L ... J .... L ..... LLj-l_\ .. .iBE.L§JjN.Il~$;IL .. I~EL..-l"'P~iB§'J~t~S.;J.J:~lS' ~L .. L ... L ... L .... L ..... 1 .... .J. __ L .. L ..... L ..... L ..... L .... I ..... L ... L.-L...J_ ... L ...... L .... .1 .... L ..... J 

11.3.4. EXAMPLES OF DVNAMIC DUMPING 

The following example indicates the effect of conditional control procedures upon dump procedures. Note that if dump 
procedures are interspersed with conditional control procedures,they are effective only if the conditional dump switch is set 
on at the time they are entered. Dump procedures have no effect on the setting of the conditional dump switch. 

Assume that a program contains the variables X, V, and Z (which have values of 78, 80, and 88, respectively), and the 
constants A, B, and C (which have values of Fieldata character A, 180, and 40

8
, respectively). Also assume that the 

procedures in the following example are executed sequentially, and that they are the first group of procedures encountered. 



~~/ 

,/',;.- ..... ~' 

: 
'"-----,, 

4144 Rev. 2 
UP.NUMBER 

U N I V A C 11 00 S E R I E S S Y S T EMS 11-23 
PAGE REVISION PAGE 

Example: 

Coding 

(1) $(1) 
X$HLSG 7 
'BEGIN TEST OF DIAGNOSTIC' 
X$IF X 'EQ' A 

(2) X$HESG 4 
'TEST DATA GROUP A' 
X$IF X 'EQ' A 
X$OR X 'LT' Z 
X$BUFR DUHPB, 150 . INITIALIZE BUFFER 

(3) X$CORE TABLEX, 100,'0' 
(4 ) X$DUHP TABLEY,200,'I','XA' 
(5) X$TAPE FILEA,' 0' 

X$IF Y 'GT' B 
(6) X$TAPE FILEB,'O' 

X$OR Y 'NE' Z 
X$BUFR ALPHA,200 . INITIALIZE BUFFER 

( 7) X$TAPE FILEC,'O' 
X!j)BUFR ALPHA,112 . INITIALIZE BUFFER 

(8) X$DRUH FILED, DlillUHP, 112, 'A' 
(9) X$FILE BETA,'OFF' 

Conditional 
Dump Switch 

ON 

OFF 
OFF 

OFF 
ON 

ON 
ON 
ON 
OFF 
OFF 
ON 

ON 

ON 
ON 

Dump Taken 

YES 
YES 
YES 

NO 

YES 

(10) X$FILE BETA,'OFF' ON 

YES 
YES 
NO 
YES (11 ) X$CllliG 1,12, '0' ON 

$ (2) 
DRDUNP 
ALPHA 
BETA 
TAB LEY 
TABLEX 

DUHPB 

+ 0 
RES 

(FILE 
RES 
RES 

RES 

FILEA (EXEC 
FILEB (EXEC 
FILEC (EXEC 
FILED (EXEC 

VALUE SET DYNANICALLY BY USER 
200 • 
CONTROL BLOCK - READ HODE) 
200 
100 
150. BUFFER FOR DUHPINC FROH 

TAPE AND DRill! 
I/O PACKET) 
I/O PACKET) 
I/O PACKET) 
I/O PACKET) 

Explanation: 

(1 ) 

(2) 

(3) 

(4) 

The mesS<lge BEGIN TEST OF DIAGNOSTICS is recorded in the diagnostic file bec(}use the conditional .-iump '.i'I'.dtch is 
on. 

The message TEST OATf-.. GROUP A is not recorded in the diagnostic file because the conditional dump switch i3 off. 

Starting with location TAE3 LEX, 100 words of main storage are dumped in the diagnostic file. I f printed, the standard 
octal format is presented. 

The environment data, control registers X and A, and main storage locations starting with TABLEY through TABLEY 
+ 199 are recorded in the diagnostic file. If printed, the environment data is printed as to status, control registers are 
printed always in octal format, and the 200 words of main storage, as specified by 'I', are printed in integer format. 



UNIVAC 1100 5ERIE5 5Y5TEM5 
UP.NUMBER PAGE REVISION PAGE 

(5) The block of data just prior to the present magnetic tape position and having an internal filename of F I LEA is read into 
buffer DUMPB (initialized in (2) by the X$BUFR procedure), and is then recorded in the diagnostic file. If printed, the 
standard octal format as specified by '0' is presented. 

(6) No dump is recorded; the conditional dump switch is turned off 

(7) The magnetic tape data block, whose internal filename is FILEC, is moved backward one block, and then read forward 
one block. The block of data is read into the main storage location ALPHA, that is initialized by the X$BUFR 
procedure in (6). The data is then recorded in the diagnostic file and edited in standard octal format. 

(8) Assume that the current content of DR DUMP has a value of 500. Beginning at relative word address 500 of mass 
storage file FI LED, 112 words of data are read into the main storage location ALPHA (initialized by the X$BUFR 
procedure). 

(9) The file, whose file control block is at BETA, is conditioned to record all subsequent activity at the item level in the 
diagnostic file. That is, every time a request is made to read an item, the item to which the item handler points is 
recorded in the diagnostic file. 

(10) The file control block BETA is conditioned not to record any subsequent activity at the item level. 

(11) Registers X1 through X11 and AD are recorded in the diagnostic file and are edited in standard octal format for printing. 

11.4. PROGRAM TRACE ROUTINE (SNOOPY) 

SNOOPY is a program trace routine which is designed for use primarily with assembly-language programs. In batch mode, 
SNOOPY provides a straightforward account of every instruction executed and its effect. In the demand mode, SNOOPY acts 
as a powerful diagnostic routine affording user control over the trace operation. 

Two formats are available for calling SNOOPY: 

SLJ SNOOPY 
+ mode-bits,termination-addr. mode-word 

and 

SLJ TON$ 

When the first format is employed, tracing begins with the instruction following the mode-word. Tracing continues until the 
termination address (termination-addr) is reached or until another termination condition is encountered. 

If bit 18 of the mode word is set, quarter-word mode is simulated by SNOOPY for checkout of quarter-word sensitive 
programs on machines without quarter-word hardware. Otherwise, SNOOPY uses either third- or quarter-word mode 
depending on the mode set in the PSR on entry. Bit 19 of the mode word may be set to suppress the solicitation of 
commands at the beginning and end of a trace when SNOOPY is used in demand mode. 

When the second format is employed, tracing begins following the SLJ instruction and continues until a termination 
condition is encountered; quarter-word or third-word mode is determined by the mode set on entry. 

When operating in the batch mode; tracing may be terminated by: 

(1) Reaching the specified termination address (program execution continues). 

(2) Executing a SLJ TOFF$ instruction (program execution continues). If an SLJ TOFF$ instruction is executed outside 
of the trace routine, it has no effect. 

(3) Performing an EXIT$ request (see 4.3.2.1). This not only terminates SNOOPY but it also terminates the activity being 
traced. 

(4) Encountering a program contingency of types 18, 28, 78, or 128 for which standard system action has been specified 
(see 4.9). The activity being traced terminated by EXIT$. 



UNIVAC 1100 SERIES SYSTEMS 
UP.NUMBER PAGE REVISION PAGE 

When operating in the demand mode, tracing may be terminated by the following method in addition to those available for 
batch mode: 

(1) Using the TOFF$ command (see Table 11-4); program execution continues. 

(2) Using the EXIT$ command (see Table 11-4). This not only terminates SNOOPY but it also terminates the activity 
being traced. 

The following restrictions apply to SNOOPY: 

(1) SNOOPY must be part of the program's main segment (see 10.2.3.3). 

(2) Tracing terminates if the main segment is reloaded. 

(3) Only one activity may be traced at anyone time unless duplicate copies of SNOOPY are used. 

(4) The program cannot be running in real time mode. 

(5) No activity contingency routine may exist for the activity being traced. 

(6) The only I/O executive requests permitted are 10$ and 10W$. 

(7) Reentrant processor executive requests are not permitted. 

A program being traced functions the same as an untraced program except that: 

(1) execution time is slower 

(2) contingencies that would normally cause the activity being traced to terminate in error now result in EXIT$ 
termination 

When using SNOOPY, the u field of the instruction is edited in octal if it does not refer to main storage. When the u field falls 
within a certain range, it is possible to provide a symbol table to SNOOPY giving Fieldata characters instead of octal values. 
This is done by storing a value into the externally-defined location SYMTB$. The value in SYMTB$ may be changed at any 
time, even while a program is being traced. The value placed in SYMTB$ has the following form: 

H1 H2 

nbr-of-entries table-addr 

The symbol table at the specified address is a three-word entry in the form: 

H1 H2 

Word o high+1 low 

F ieldata-symbol-name 

2 o symbol-addr 

If the u field of an instruction satisfies low ~ u ~ high, the u field is edited as the symbol given by the second word of the entry" 
\'-. .. / plus or minus an offset calculated from the symbol address in the third word. If the nbr-of-entries parameter of SYMTAB$ is 

zero, as it is initially, all u fields outside main storage are edited in octal, except TOFF$ and a number of ER's. 



4144 Rev. 2 
UP-NUMBER 

UN IVAC 1100 SE RI ES SY ST EMS 11-26 
PAGE REVISION PAGE 

For batch users, operation is as just described. Users are cautioned that large quantities of printout may be produced when 
using SNOOPY. 

Demand users are given a great deal of control over the behavior of SNOOPY. When entered, SNOOPY examines the program 
control table (PCT) to compute storage limits and the contingency routine address. At this time, the program type is checked; 
if it is in demand, conversational control facilities are enabled. 

When tracing a demand program, the amount of output produced by SNOOPY is reduced because of the low speed devices 
used for output. In particular, header and tailer messages are brief, registers are dumped only on request, and line length is 
restricted to 72 characters. Further control over printing may be obtained through the use of commands as described in Table 
11-4. 

For demand programs, SNOOPY operates in two modes: trace mode, in which instructions are being traced, and command 
mode, in which commands are accepted that direct SNOOPY's operation. SNOOPY enters command mode under these 
circumstances: 

(1) On entrance, before tracing any instructions; except if mode bit 19 was set. 

(2) When the RBK contingency occurs (BREAK key and carriage return). 

(3) On completion of the number of instructions specified by a SKIP or a numeric command. 

(4) When a breakpoint specified by the BREAK command is reached. 

(5) At trace termination, except if mode bit 19 was set. 

In command mode, commands are solicited by the typeout "C--"; parameter fields required by the commands are solicited by 
a typeout indicating the nature of the parameter required. More than one command may be given on any line solicited in 
command mode (including parameter lines). The commands and parameters are separated by delimiters, where a delimiter is 
any character not in the set (A-Z, 0-9, $, or -). Excess blanks are ignored; if any other consecutive delimiters are 
encountered, the effect is the same as the STEP command; that is, if "C--" is answered with a line consisting of "1111", it has 
the same effect as four STEP commands. In certain cases, specific delimiters are required. To omit a parameter entirely, the 
delimiter which terminated the command must be followed by another (nonblank) delimiter (For example: "PR INT I")' 
Trace mode is suspended, the next instruction is printed, and a soliciting message is made under the following circumstances: 

(1) trace termination 

(2) the break sequence is used to interrupt the trace 

(3) an invalid command is encountered 

(4) the CHANGE command is used 

In each of these cases, all commands on the line after the last one performed are ignored and can be reentered (if so desired). 

A blank line (carriage return) in reply to the "C--" typeout has the same effect as the STEP command; a blank line response 
to a parameter request may be erroneous or may have a special meaning depending on the nature of the command. 

When command mode is entered at trace termination, the trace may be completed only through use of the GO or STEP 
commands or a command with an equivalent effect. Once such a command is given, no further commands are executed, and 
the trace terminates. The activity then continues execution or exits, depending on the type of trace termination. 

In all cases where a number is called for, octal notation is assumed, unless otherwise indicated; a leading zero is not required. 
In general, SNOOPY uses octal notation everywhere except in register designations, and in the instruction cycle count printed 
at the end of a trace. 

All commands listed may be abbreviated to the first three characters; all commands except TON$, RBK, and STEP may 
further be abbreviated to the first character only. 

Table 11-4 lists the SNOOPY commands and their functions. 



4144 Rev. 2 

UP-NUMBER 

Command 

ABSAD 

BREAK 

CHANGE 

. /.-..... 

UNIVAC 1100 SERIES SYSTEMS 11-27 
PAGE REVISION PAGE 

Description 

Convert relative program addresses to absolute addresses. The three parameters are: 

eltname,loc-counter,location. 

If the program is segmented and the specified element is in a segment not in main storage, a message 
is printed. 

This command is useful in conjunction with the CHANGE, DUMP, and JUMP commands. 

Automatically return to command mode when control reaches a specified point in the program. Only one 
breakpoint may exist at a time. The three parameters are: 

eltname,loc-cou nter ,rel-addr 

The slash is used as a delimiter to indicate that the following parameters are deleted. For example: 

BREAK 
BREAK 
BREAK 

TEST/ 
TEST,1/ 
/ 

If no parameters are given, any previously set breakpoint is deleted and no breakpoints exist. 

If only eltname is specified, the break occurs whenever control passes to any location in that element. 

If only eltname and loc-counter are given, the break occurs whenever control passes to any location is 
the specified element under the specified location counter. 

If all three parameters are specified, the break occurs 'only when control passes to the exact location. 

A break at an absolute program address is specified by preceding the relative address with the master 
space (@). A break at a different address within the same element and location counter as the currently 
executing instruction is specified by preceding the relative ~ddress with an asterisk. In neither of 
these cases is more than one parameter required. For example: 

BREAK 
BREAK 

@1435 
*45 

When a break is to occur, the command mode is entered before the instruction at the breakpoint is 
executed. 

Allows the user to change the contents of control registers or main storage. The single parameter gives 
the location to be changed. After reading the location parameter, the current contents of the specified 
location are displayed as if the location parameter had been given to a DUMP command; then the new 
value is solicited. The new value is stored and the new contents displayed. A void new value results in no 
change to the indicated main storage element. 

If the parameter is a register name, a number, or a number preceded by an H, the new number is to be 
entered as a single octal number. 

If the parameter is a number preceded by an I, the new value to be entered consists of six numbers 
representing the f, j, a, x, hi, and u fields of an instruction word . 
:.\ 

Table 11-4. Demand Mode Commands (Part 1 of 3) 



4144 Rev. 2 

UP-NUMBER 

Command 

DUMP 

EXIT$ 

GO 

HELP 

JUMP 

number 

UNIVAC 1100 SERIES SYSTEMS 11-28 
PAGE REVISION PAGE 

Description 

Display the program status. Each parameter must be separated by a comma. If no parameter or an empty 
parameter (that is, two consecutive commas) is given, all registers and the carry and overflow 
designators are dumped. The parameters are: 

A,X, or R - Dumps the indicated group of registers. To dump the contents of a single register, 
use the register mnemonic or the octal address. 

T - Dumps the carry and overflow designators. 

If a specification number is neither the address of a register, nor within the storage limits of the 
program, an error message is displayed. 

The contents of the main storage area are printed in octal. 

The letter I preceding a number produces an instruction-format dump. 

The letter H preceding a number produces a Fieldata - character dump. 

NOTE: The combination, HAD is invalid; use H14. 

Terminates the traced activity by means of an EXIT$ request. Trace mode is terminated and the last 
instruction is printed. 

Return to trace mode from command mode. 

Prints a brief set of directions for use in command mode. This printout may be interrupted by the 
BREAK key. The first time an invalid command is encountered by SNOOPY, the HELP printout is given. 

Transfers control to a specified absolute address. The current absolute and relative P register 
count is displayed. If the new value is within the program storage limits, that value is set into 
the P register. The new value is printed in relative form and the next command is executed. 

This command is the only way to get out of EXIT$ mode and do further tracing by means of the TON$ 
command. If TON$ is used in the EXIT$ mode without a JUMP command, the TON$ command is 
rejected and a message is displayed. 

If a JUMP command is used in EXIT$ mode termination, the termination mode becomes a TOFF$ 
termination; a TON$ command is required if tracing is to continue. 

Has the same effect as a SKIP n GO command (where n is the number). See SKIP command. 

Table 11-4. Demand Mode Commands (Part 2 of 3) 

',- .. 



4144 Rev. 2 

UP.NUMBER 

Command 
., ..... --/ 

PRINT 

RBK 

RELAD 

SKIP n 

STEP 

TOFF$ 

TON$ 

U N I VA C 11 00 5 E R I E 5 5 Y 5 T EMS 1 1-L~ 
PAGE REVISION PAGE 

Description 

Allows modification of the amount of printing. The PRINT command recognizes only one parameter at 
anyone time. If an invalid parameter, or no parameter is specified, the F parameter is assumed. The 
parameters are: 

C - Produce a printout omitting extraneous spaces us~d for formatting. 

E - Produce an expanded printout (formatting spaces are included). The E mode is effective 
until a PRINT C is encountered. 

F - Produce a full printout consisting of each instruction, its location, and the contents of 
main storage and registers (in before/after form if the value changed). For certain 
executive requests, the contents of the associated packet is also dumped. 

N - Suppresses printout. This provides a means of skipping long sections of irrelevant code. 

P - Produce printout of the instructions but not referenced main storage or executive 
request packets. If SNOOPY is in the N mode, the P mode is set automatically upon the 
occurrence of an RBK contingency or encountering a BREAK specified break 
condition. 

Allows the user to simulate an RBK contingency for the executing program; the actual RBK contingency 
is intercepted by SNOOPY and directs a return to command mode. This command provides the means for 
tracing a contingency routine. If the user program does not expect the contingency, an appropriate 
message is displayed. 

Convert absolute program addresses to relative addresses. The only parameter is: location. 

Ambiguities are resolved in favor of elements residing in main storage. 

Return to command mode after executing n number of instruction cycles. If n is omitted, any previously 
existing skip count is deleted and no skip interrupt occurs. Otherwise, an octal number is used to set 
the interrupt point. If the count is exceeded during an indirect addressing or execute remote cascade, 
the command mode is reentered when the instruction is completed. 

Execute one instruction in trace mode a~d return to command mode. 

Leave the trace mode and continue execution as if an SLJ TOF F$ command had been executed. Trace 
made is terminated and last instruction is printed. 

Restart a trace that was to be terminated and execute one instruction. To compute the number of 
instruction cycles performed, use the TOF F$ command followed by the TON$ command. The TON$ 
command is not effected if the activity is about to terminate by means of an EXIT$ request; if it is 
desired to continue tracing from that point, a JUMP command must first establish a point from which 
execution will continue. 

Table 11-4. Demand Mode Commands (Part 3 of 3) 





4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 12-1 
PAGE REVISION PAGE 

12. DEMAND PROCESSING 

12.1. INTRODUCTION 

Demand processing is defined as a mode of operation in which run processing is dependent on manual interface with the 
executive during processing. Basically, it is a conversational mode of operation requiring a demand and response type of 
activity. Conversational operation via a remote terminal causes the executive, a demand processor, or an active program to 
immediately react and respond. Demand processing terminals are generally thought of as being remote from the computer site 
and to have a printer or a cathode ray tube and a keyboard. An example of a demand terminal is the teletypewriter keyboard 
and printer. 

The distinction between batch-mode processing and demand processing lies in the frequent interaction with the user that 
occurs during demand processing. The terminal user is considered to be in conversation with the executive, special demand 
function, user programs, or the batch functions of the executive on a unit basis. 

Tasks executed by the demand terminal user normally have frequent but short bursts of computation. Progress is always 
insisted upon; however, to receive a substantial amount of computation may require a long period of time. Access to 
computation is a percentage of the total computing facility and is scheduled in small increments of time at frequent intervals 
to provide immediate responses. This action gives the appearance of total system control to the user and the impression that 
he is the only user currently running. The more a user is required to interact with a demand program, the shorter the bursts of 
computation required to service a given request. The bursts of computation are time-shared within the executive to provide 
an apparent immediate response, with the program placed in a dormant mode during idle periods awaiting response from the 
user. 

While a demand program is in a dormant mode, it may be necessary to swap the program from main storage. Normally, thi~ 
happens only when main storage is full and another program, which is currently on mass storage, has work to do. 

The executive supports the use of the following terminals to access the system in the demand mode: 

III UNISCOPE 100 Display Terminal 

Ell UN ISCOPE 300 Visual Communications Terminal 

II UNIVAC DCT 1000 Data Communication Terminal 

.. UN IVAC DCT 500 Data Communications Terminal (Teletypewriter and Semi-Automatic Mode) 

II Teletypewriter Models 33 and 35 (KSR and ASR) 

II Friden 7100 

12.1.1. GENERAL DEMAND TERMINAL OPERATIONAL PROCEDURES 

The following is a brief discussion of the operational procedures for initialization of a demand terminal, submission of 
a demand run, termination of the demand run, and deactivation of the demand terminal. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 12-2 
PAGE REVISION PAGE 

12.1.1.1. INITIALIZATION 

Before the demand terminal can be initialized, the user must turn it on, set the various switches to the proper position, and 
establish the proper line connection if operation is on a switched line network. A discussion of the hardware characteristics of 
the various terminals can be found in the appropriate programmer/operator reference manuals. The manuals describing the 
operational procedures for Univac equipment are: 

• UNIVAC UNISCOPE 100 Display Terminal Operator Reference Manual, UP-7788 (current version) 

• UNIVAC UNISCOPE 300 Visual Communications Terminal Operator Reference Manual, UP-7615 (current version) 

• UNIVAC DCT 500 Data Communications Terminal Operator Reference Manual, UP-7832 (current version) 

• UNIVAC DCT 1000 Data Communications Terminal Operator Reference Manual, UP-7827 (current version) 

Once the connection is made and the terminal is initialized, the demand user must send a six-character remote site-id to the 
operating system. Each term inal is assigned a site-id, and the executive maintains a list of all valid site-id's. The site-id 
submitted by the demand user is compared to this list and if the system responds with the message 

UNIVAC 1100 TIME-SHARING EXEC VER xx.xx.xx 

the demand user can assume that the initialization operation is completed (xx.xx.xx is the version of the 1100 operating 
system operational at the central site). If the site-id is invalid or already in use, the site attempting to establish communica
tions is not recognized. If the message is not received within approximately one minute, the demand user should retransmit 
the site-id (the previous transmission may have been received in error by the executive). 

12.1.1.2. DEMAND RUN STR EAM SUBM ISSION 

After the initialization is completed, the terminal user must submit a @RUN control statement (see 3.4.1) from the primary 
input device, that is, the keyboard. All run stream data must follow the submission of a @RUN control statement. The 
submitted data must observe the rules and formats for run streams. There are three conditions during which the system will 
not accept data: 

(1) After submission of a @RUN control statement and before receipt of the date and time message from the operating 
system. 

(2) After submission of a @FIN control statement (see 3.4.2) and before receipt of the accounting information from the 
operating system. 

(3) During those times that input is backed up because of other processing in the system. This condition is indicated by the 
message ****WAIT**** on the output device. When the wait condition is removed, the message READY is displayed. 
The number of messages which can be backed up before the wait condition depends on the size of the message 
transm itted. 

A terminal user normally terminates his run stream with a @FIN control statement, and it is advisable that he do so. The 
symbiont generates a @FIN control statement for the system under the following conditions: 

(1) Transmission by the terminal user of an end-of-transmission sequence from a terminal while a run is active. 

(2) Transmission of a new @RUN control statement without a preceding @FIN control statement being submitted for the 
previous run. 

(3) When a lack of activity timeout occurs during an active run. 

If no input has been received by the symbiont from a terminal in a prescribed interval (unique to the specific demand 
symbiont), the warning message TIMEOUT is sent to the terminal device. The terminal user is then allowed an additional time 
interval to submit input. If he fails to do so, the run is terminated and the message TIMEOUT TERMINATION is sent to the 
terminal. The terminal is then considered to be in the inactive state. 



4144 Rev. 2 
UP.NUMBER 

12.1.1.3. TERMINATION 

UNIVAC 1100 SERIES SYSTEMS 12-3 
PAGE REVISION PAGE 

The standard term ination procedure is performed when a @FIN control statement is received by the system. The symbiont 
retains control of the line terminal until all output destined for the site has been sent. 

The symbiont then returns to the command mode. Either another @RUN control statement or an end-of-transmission 
sequence should follow. The telephone connection is available for further communication until the end-of-transmission 
sequence is transmitted from the terminal. An end of transmission sequence leaves the telephone connection available on the 
UNISCOPE 100, DCT-l000, UNISCOPE 300, and semi-automatic DCT-500. 

When the demand run is terminated with the end-of-transmission or by the onsite operator, the terminal is immediately 
released. The run is terminated with no indication of term ination being sent to the terminal. Any information previously 
received by the symbiont and not processed is discarded. Likewise, any accumulation of output by the symbiont is also lost. 
If the console operator downs the subsystem and unit for a terminal, the symbiont treats the site as though it timed out. 

12.1.1.4. DEMAND TERMINAL/SYSTEM INTERFACE MESSAGES 

Table 12-1 lists the messages and their meanings used as aids in communicating between the system and the user. 

Message Interpretation 

NO RUN ACTIVE This message is sent to the terminal whenever an image is received from it and no 
run has been initiated. A @RUN control statement must then be submitted to properly 
initiate the demand mode. 

TIMEOUT No activity has occurred on the line for a predefined interval. If another time 
interval elapses without activity, the terminal is terminated and the message TI ME-OUT 
TERMINATION is displayed at the terminal. 

READY Informs user that the symbiont is conditioned to receive input. This message is only 
transmitted if a ***WAIT*** had previously been sent to the terminal. The READY message 
is not sent to the terminal if output from the run is available. In either case, the 
wait condition is terminated. 

***WAIT*** This message is sent to the terminal when: 

(1 ) An attempt is made to input from the terminal before the @RUN control statement 
has been completely processed (no input is accepted until the @RUN control 
statement is processed). The ***WAIT*** message is displayed following each 
character the user attempts to input. 

(2) An attempt is made to input from the terminal before the @FIN control statement 
has been completely processed (same conditions as for (1)). 

(3) The executive is executing programs of higher priority. 

(4) Both 28-word input buffers are full. The user is notified that additional input 
can be accepted by the READY message (no output is available) or the 
symbiont output to the terminal. 

A line image can be considered as accepted if the CR input character results in a LF/CR 
sequence and no ***WAIT*** is displayed. 

Table 12-1. Demand Terminal Interface Messages 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 12-4 
PAGE REVISION PAGE 

12.1.2. DEMAND SYMBIONT/USER INTERFACE 

Several executive requests are available to a user program which desires to use the demand symbiont for two-way 
communications with a remote demand terminal. A comprehensive discussion of the specific requests and their format is 
given in Section 5. The following is a brief discussion of the standard symbiont interface. 

• Input 

The user program requests input from the demand terminal by executing a R EAD$ request (see 5.2.1). The standard 
image length from a demand terminal is 72 characters. The image usually contains text data unless the user program 
specifically requests otherwise. 

• Output 

The user program initiates data transfer to the demand terminal by executing a PRINT$ request (see 5.3.1). The spacing 
specifications for this request may vary depending directly on which demand symbiont performs the data transfer. 

• Output/Input 

The TREAD$ request (see 5.2.5) enables the requestor to output an image and select the input with a single executive 
request. 

• Print and Screen Control 

Special executive requests are available for print and screen control. These requests are used with the UN ISCOPE 100, 
OCT 500 (semi-automatic), and OCT 1000. 

12.1.3. EXECUTIVE LANGUAGE INTERFACE 

The demand user communicates with the system through the standard executive control statements. There are a few 
exceptions to the interpretation and use of some control statements when operating in the demand mode. These exceptions 
are: 

• @BRKPT Control Statement (see 3.6.2) - The @BRKPT control statement is used in the same manner as it is used for a 
batch run. @BRKPT PRINT$/filename puts the normal print file into an SDF-formatted file. @BRKPT PRINT$ may 
not be submitted from the UN ISCOPE 100, UN ISCOPE 300, DCT-1000, and the OCT 500 (semi-automatic) terminals. 

a @CKPT and @RSTRT Control Statements (see Section 17) - Full @CKPT and @RSTRT control statements are 
intended for batch mode use only. 

• @HDG Control Statement (see 3.6.1) - This control statement is ignored when submitted through a demand terminal 
except when the output is directed elsewhere by a @BRKPT control statement. 

• @START Control Statement (see 3.4.3) - Any run scheduled by a @START control statement submitted through a 
demand terminal is scheduled as a batch run. All output generated by the run is queued to the outout device associated 
with the primary on site card reader. 

• @SYM Control Statement (see 3.6.3) - This control statement can be used to direct output to an onsite device or 
remote batch terminal, but not to a demand terminal. 



4144 Rev. 2 
U P-NUM BER 

UNIVAC 1100 SERIES SYSTEMS 12-5 
PAGE REVISION PAGE 

12.2. GENERAL OPERATION OF THE DEMAND SYMBIONTS 

Each demand terminal supported by the operating system is controlled by a specific demand symbiont. There are four 
demand symbionts contained in the system and they are listed below: 

• Teletypewriter Demand Symbiont (see 12.2.1) 

Ii!J DCT 500 (Semi-Automatic) Demand Symbiont (see 12.2.2.) 

• UNISCOPE 100/DCT 1000 Demand Symbiont (see 12.2.3) 

• UNISCOPE 300 Demand Symbiont (see 12.2.4) 

The DCT 500 (teletypewriter model) and the Friden 7100 are described as extensions of the teletypewriter symbiont. 

12.2.1. TELETYPEWRITER DEMAND SYMBIONT 

The teletypewriter demand symbiont provides support for Models 33 and 35 (KSR/ASR), the DCT 500 operating in the 
teletypewriter mode, and the Friden 7100. 

12.2.1.1. OPERATIONAL CONSIDERATIONS 

Initialization, run stream submission, termination, and remote system messages are as described in 12.1.1 except: 

(1) Control statements entered by a teletypewriter may use either the @ or # as the lead character to indicate that the 
image is a control statement. 

(2) The symbiont accepts two forms of paper tape input (see 12.2.1.2). 

(3) Several characters are recognized by the symbiont as control sequences (see 12.2.1.3). 

(4) If a timeout occurs when a user program has a registered contingency activity, the contingency is activated and the 
activity is passed as a error type 2 and contingency type 10

8
. The site's timeout process is again initialized. If no 

contingency is registered, the site is t~rminated as described in 12.1.1. 

(5) If a ***PARITY ERROR*** message is displayed at the terminal, the symbiont has detected a parity error on at least 
one character and the entire input image is discarded. 

(6) The @TABSET control statement is available to teletypewriter users as an aid in formatting input data at the 
teletypewriter terminal (see 12.2.1.5). 

(7) A special routine for communications between the central site operators console and the teletypewriter terminal (see 
12.2.1.6). 

12.2.1.2. PAPER TAPE INPUT 

Two forms of paper tape input are permitted; they are: 

• Form I - I nteractive Mode 

• Form II - Continuous Mode 



4144 Rev. 2 
UP.NUMBER 

UN IV.AC 11 00 SE R I ES SYST EMS 12-6 
PAGE REVISION PAGE 

12.2.1.2.1. FORM I PAPER TAPE INPUT 

Images on paper tape consist of a string of up to BO characters followed by the character sequence: 

LF X-OFF CR DEL 

where: 

LF is line feed 

CR is carriage return 

DEL is delete (or rub out) 

The DEL may not be required depending upon the teletypewriter model (experimentation may be required). 

In the tape mode, all images must be in this format, or the results are unpredictable. 

The paper tape mode is initiated by inserting a tape in the reader, sending the character X-ON (control Q) and on the 
ASR-35 models, switching from keyboard to tape mode. This causes the symbiont to send an X-ON back to the 
teletypewriter which then reads one image. After the end-of-image sequence is received, any available output is sent. When 
the symbiont is ready to accept another image, an X-ON is sent to the teletypewriter. At no time should the teletypewriter 
operator manually initiate paper tape motion except by the X-ON key. 

The paper tape mode is terminated by a series of two X-OFF characters in a row followed by a DEL and this causes the 
message 'END OF TAPE' to be displayed. The~e may be on the tape or entered manually. 

Several of the special characters are treated differently for form I paper tape input. 

BREAK - Terminates paper tape mode (no more X-ON characters are sent to the teletypewriter). The normal rules 
for manual input after the BREAK key input apply. Paper tape mode may be reinitiated by pressing the 
X-ON key. The BREAK key should not be used while the tape is in motion. 

? - Causes the image in which it occurs to be ignored; however, the image must still end with the LF X-OFF 
CR DEL sequence. 

- Causes a one-character backspace. 

LF - Needed in the end-of-image sequence to produce a readable copy on the teletypewriter printer. The LF is 
never considered part of the image text and is treated like a DEL. 

If a tape is improperly formatted, or if characters are typed in manually while in the tape mode and the symbiont is not ready 
for more input, the tape mode is terminated and the message ***WAIT*** is sent to the teletypewriter. The tape mode may 
be reinitiated with X-ON. 

If, for any reason, no input or output occurs for more than five minutes, the tape mode is terminated and the message 
TIMEOUT is displayed. If no further action occurs within another five minutes, the site is terminated. A tape which ends 
without the end-o'f-tape sequence can cause this since the symbiont will have sent a request for input (X-ON) and cannot do 
output until the request is satisfied. This problem may be cured by inserting three X-OF F's manually. 

The control statements @RUN, @FILE, and @FIN (see 3.4.1, 3.B.1, and 3.4.2, respectively) should never appear on a paper 
tape, except that a @RUN control statement may occur while in the@DATA mode (see 1B.3). 

The model 33 teletypewriter must have the option which allows the teletypewriter to initiate tape motion by sending an 
X-ON to the teletypewriter. This feature also includes the ability to have the tape stop when an X-OFF is read. 



,. 
! 

\ 
\, 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 12-7 
PAGE REVISION PAGE 

12.2.1.2.2. FORM II PAPER TAPE INPUT 

Form II provides for continuous paper tape input with no interaction until the end-of-tape signal is received. The images are 
buffered on mass storage. At end-of-tape, the buffered input is internally added to the input stream. 

The only requirement as to the image format is that a CR character mark the end-of-image. A LF, however, is useful for 
monitoring the tape as it is read. Without a LF, overprinting of each image will result. No X-ON or X-OFF characters are 
needed or desirable on the tape. 

The following procedure is used for form II paper tape: 

(a) The user must have an active run. If an attempt is made to read form II without a run active, the following message is 
printed at the terminal: 

NO RUN ACTIVE 

(b) To start the tape input, the terminal operator must press keys CNTL and TAPE. The message. 

**TAPE START** 

is printed at the terminal. If the tape is in the reader and the reader MODE switch is set to AUTO, the tape is read 
automatically. If the tape is not in the reader, the operator must place it there and set the reader MODE switch to 
MANUAL READ. 

(c) When the tape read is completed, the terminal operator then must press keys CNTL and TAPE with LINE. The message 

END OF TAPE 

is printed at the terminal. Tape input images are now added to the input stream. 

The @RUN and @FIN control statements are disregarded if they are on the input tape. It is suggested that neither should be 
used, except when using @DATA or @ELT,D control statements (see 18.3 and 18.2, respectively). 

The EOT character is recognized in the form II mode. The terminal run is terminated as in manual mode. 

The rub-out character may be used to rub out errors during preparation of the tape. The rub-out is ignored by the handler as 
are nulls. 

The question mark and double quote are not recognizable as delete characters. 

12.2.1.3. SPECIAL CONTROL SEQUENCES 

Table 12-2 lists the teletypewriter control characters and their functions. These control characters are used to control image 
formats, image input, and so forth. 



4144 Rev. 2 
UP-NUMBER 

Keyboard Key 

? 

RETURN 

EOT 

" 

ESC 

BREAK or RTS 

12.2.1.4. BREAK KEY 

UNIVAC 1100 SERIES SYSTEMS 12-8 
PAGE REVISION PAGE 

Function Description 

Delete When received from the terminal, the current image is 
discarded. The symbiont responds to delete function with a 
CR/LF sequence. 

End of Image Used to indicate the end of the input image. Maximum input 
image length is 72 characters. The symbiont responds with 
a LF. 

End of Transmission Terminates and disconnects the teletypewriter terminal. 

Erase One preceding character is deleted each time the key is 
pressed. Characters are deleted right to left. When the 
character count is reduced to zero, the symbiont responds 
with a CR/LF sequence. 

Escape When the key is pressed, the next character and only the 
next character is inputted in the escape mode. This 
control character allows the user to input the ?, #, and 
" characters as data. 

Interrupt Causes the symbiont to suspend its current operation and 
accept an input image immediately. The message INTERRUPT 
LAST LINE is sent to the terminal. When the user keys in 
the CR following his input image, the line of output that 
was interrupted is immediately resumed. (See 12.2.1.4.) 

Table 12-2. Teletypewriter Control Characters 

The BREAK key character is represented on the keyboard as BREAK or RTS. The BREAK key may be used at any time 
other than within an input image; that is, once an input image has been started. A CR or a ? (line delete) must be sent before 
the BREAK key can be used. If used within an input image, the BREAK key is inserted in the image as an unknown 
character. 

Upon receiving the BREAK key, the symbiont suspends its current operation and sends the following message to the 
terminal: 

INTERRUPT LAST LINE 

Teletypewriter models 33 and 35 require that the BRK/RLS key be pressed before any character can be sent from the 
terminal after a BREAK key. 

The symbiont is now ready to receive one of three possible commands. 

(1) Terminate user execution. This is accomplished by the character X followed by a CR. If the X is received while in the 
@ADD mode, all @ADD files and backed-up input are discarded. The next input is then expected from the terminal. 

(2) Contingency interrupt. The contingency routine specified for the user's run is given control with the error code of Os in 
the contingency status word when any character other than an XCR (for example, just a CR is received by the 
symbiont). If a contingency routine has not been specified, the execution is terminated as if the BREAK key was 
followed by an XCR. 



....... 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 12-9 
PAGE REVISION PAGE 

(3) Remove a run from a facilities-held status. From a terminal, the BREAK key followed by the keyin of an X may be 
used to take a demand run out of the hold status due to its facility requirements. All backed-up input including the 
facilities request is discarded. 

If the terminal operator should decide not to enter a command or if he decides he has made an error after pressing the 
BREAK key, he may use the question mark (?) character to signal the symbiont to disregard the BREAK key interrupt. 

12.2.1.5. TAB CONTROL STATEMENT (@TABSET) 

The demand terminal user can define horizontal tab columns for the input by use of the @TABSET control statement. The 
only optional parameter is the label parameter. The format of the @TABSET control statement is 

@Iabel :TABSET Xl ,X2, ... ,X 18 

where Xl is tthe numeric specification of the tab column ranging from 1 through 80, specified in ascending order. A 
maximum of 18 tab positions may be specified. The following is an example of a @TABSET control statement: 

@TABSET 3,20,30,57,60 

Once the @TABSET control statement has been introduced from the terminal, it is in effect until either another @TABSET 
control statement or a @FIN control statement is received by the symbiont. 

If the @TABSET control statement is accepted (no error message), the tab character (press the CNTL and I keys on the 
keyboard) spaces the next character of input to the next position specified by the @TABSET control statement. 

Should the symbiont encounter the tab character when a @TABSET defin ition has not been specified or when the last 
defined position has been exceeded, the character is placed in the input image as a Fieldata O. 

If the @TABSET control statement is in error. The message 

TAB STATEMENT ERROR 

is displayed on the terminal and any previous tab definition is ineffective. 

12.2.1.6. CENTRAL SITE TO REMOTE SITE OPERATOR COMMUNICATION 

Two unsolicited keyins are available which enable the central site operator to initiate remote site communications. 

The teletypewriter broadcast keyin can be used to display the specified text at all active teletypewriter terminals. The format 
of the keyin is 

TB text 

where text is a maximun of 50 characters including imbedded blanks. 

The teletypewriter message keyin can be used to display the message at the active terminal specified in the keyin. The format 
of the keyin is 

TM site-id/options text 

where the site-id/options and text parameters cannot exceed 50 characters including imbedded blanks. The only option 
available is the I option which specifies that the text be immediately displayed on the terminal. If the specified site is inactive, 
the following message is displayed on the operator's console: 

SITEID NOT ACTIVE 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 
PA GE REVISION 

I 12-10 
PAGE 

There can be only one teletypewriter message to a specific terminal outstanding at any time. If the operator attempts to 
display a message on a teletypewriter which already has an outstanding message, then the following message is displayed on 
the operator's console: 

TM OUTSTANDING 

Except when the I option is specified, the broadcast or teletypewriter message is not displayed until after execution of the 
current task or when the system encounters a @RUN control statement. 

12.2.1.7. FRIDEN 7100 

The Friden 7100 is supported as a demand terminal by the executive. All the operating procedures for tl:1e teletypewriter 
apply (see 12.2.1.1 through 12.2.1.6) to the Friden 7100 with the following exceptions: 

(1) The at symbol @ is accepted as the Fieldata master space by the teletypewriter input symbiont. The Friden does not 
have an @ sign on its normal keyboard (only as a control key character). 

(2) The teletypewriter output symbiont converts the Fieldata master space @ to an # sign for the Friden terminals. 

(3) All Friden site-ids have the character F as the second character. This allows the teletypewriter symbiont to recognize 
the terminal as a Friden. 

(4) For the teletypewriter, a line can be considered accepted by the symbiont if the input character, CR sequence gives a 
LF/CR sequence without causing a WAIT message. This is not true on the Friden, however, due to its giving a hardware 
LF when the CR key is pressed. Therefore, there is no positive means of knowing if the line was accepted from the 
Friden. 

12.2.1.8. DCT 500 IN TELETYPEWRITER MODE 

A DCT 500 operating in teletypewriter mode is very similar to teletypewriter operation. There are, however, some minor 
considerations: 

(1) The DCT 500 must be strapped to appear to the system as if it were a teletypewriter. Specifically, the DCT 500 
hardware must have the following: 

(a) The RID, SID, and STX feature must be inhibited. 

(b) The parity select feature must be set to ignore parity on data received from the system. 

(c) The DCT 500 must be in the master mode. 

(d) The DCT 500 full/half-duplex option must be set to the half-duplex mode. 

Once the terminal has established a line connection with the central site, the terminal operator must depress the 
PROCEED key to establish clear-to-send at the DCT 500. The CLEAR TO SEND indicator lights if the data. set is in 
data mode when the PROCEED key is pressed. Once this sequence is performed, the terminal operator can send a site-id 
to the system. 

(2) The DCT 500 has the capability of generating the full ASCII character set; however, the teletypewriter symbiont does 
not handle the full ASCII set. Lower case characters are translated as upper case characters, that is, a lower case a and 
an upper case A will produce a Fieldata A after translation by the teletypewriter symbiont. It should be noted that the 
idle line logic does not recognize lower case ASCII; therefore, the terminal operator must key-in the alphabetic 
characters of the site-id in upper case. There is no upper case for the ASCII numerics. The second character of site-id 
must be a D to signify that the terminal is a DCT 500. The teletypewriter symbiont allows the DCT 500 to receive up 
to 132 characters of output per line. 

(3) Whenever the terminal operator desires to utilize the break (interrupt last line) feature, press the INTRPT key. This key 
is analogous to the BREA~_~ey on the teletypewriter. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 12-11 
PAGE REVISION PAGE 

(4) When submitting form II paper tape from the OCT 500: 

(a) The teletypewriter CNTL·TAPE character is a CTL·R on the OCT 500 and the CNTL·TAPE·LlNE character is a 
CTL·T. 

(b) The teletypewriter rub·out character is the shift with underline on the OCT 500. 

12.2.2. OCT 500 DEMAND SYMBIONT (SEMI·AUTOMATIC) 

The OCT 500 demand symbiont provides support of the OCT 500 operating in the semi·automatic mode, that is, a OCT 500 
operating on a multidropped, polled network. 

12.2.2.1. OPERATIONAL CONSIDERATIONS 

Initialization, run stream submission, termination, and remote system messages are as described in 12.1.1 with the following 
additional considerations: 

(1) A brief description of the switches, indicators, and general operation of the device is given here to facilitate demand use 
of the OCT 500. It should be noted that not all OCT 500 configurations have all these switches, and thus, not all the 
capabilities. 

MASTER/SLAVE 

XMIT OFF/REC MON 

BAUD RATE 

ON LINE/OFF LINE 

KEYB'D/OFF 

PRINTER/OFF 

READER/OFF 

PUNCH/OFF 

- Permits the OCT 500 to be the initiating station if in MASTER position. To operate within 
the symboint, this switch must be in the SLAVE position. 

- This switch is effective only when the OCT 500 is in full·duplex mode. Since the OCT 
500 must be in half-duplex mode to operate with the symbiont, the setting of this switch 
has no function. 

- This switch is used to set the clock in the OCT 500 to the same rate as clock in the 
communications terminal at the central site to which the OCT 500 is connected. The 
operator must know the rate of the line he is using and set this switch accordingly. 

- This switch must be set to ON LI NE in order to make connection with the computer. 

- Since the primary input device is the keyboard, this switch must be in the KEYB'D 
position. 

- This switch should be in the PRINTER position to allow the printer to be selected. 

- This switch should be in the OFF position if paper tape is not to be read. It must be in 
the READER position before paper tape can be read. 

- This switch should be in the OFF position if paper tape is not to be punched. It must be 
in the PUNCH position before paper tape can be punched. 

The keyboard indicators are also important to the user. The INTRPT indicator, when lit, indicates a break signal was 
received. This normally happens when the line is dropped. It can be cleared by placing the OCT 500 in the offline mode 
and pressing the PROCEED key. The CLEAR TO SEND indicator, when lit, indicates the keyboard is selected for 
input. This is the only time the terminal operator will be able to enter data from the keybaord. The PARITY CHECK 
indicator, when lit, indicates a character was received which had bad parity. The character with the bad parity is printed 
or punched as an asterisk and the indicator extingushes when the output device is deselected. The FO RMS OUT 
indicator on the printer lights when the forms are depleted and stops normal operation of the terminal. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 12-12 
PAGE REVISION PAGE 

After the line connection is made, the terminal operator should watch the CLEAR TO SEND indicator to know when 
he has been polled and is able to enter the site-id for his terminal. Any letters in the site-id must be entered in upper 
case by striking the SH I FT key along with the letter key. Two time restrictions are placed on the operator in the 
entering of the site-id. He has only a few seconds from the time the CLEAR TO SEND indicator lights to enter a 
character. If this time passes without a character being sent, the indicator extingushes indicating he has been deselected 
and he must then wait to be polled again. After the first character has been struck, he has 15 seconds to enter a valid 
site-id. The terminal is deselected if this time elapses and the operator must again wait to be polled. When the valid 
site-id is received, the standard initialization message is sent to the terminal printer. The terminal is now considered an 
active terminal, and the keyboard is selected so that the user can start his input. 

(2) Input images to the computer must be 72 characters or less. If this limit is exceeded, the message MESSAGE TOO 
LONG is sent to the printer and the image is lost. An input image consists of one or more characters with the last 
character being a CR. The response of the symbiont is a CR/LF to the printer. The tab control statement feature can be 
used to give the terminal user flexibility in entering images (see 12.2.1.5). 

The primary input device is the keyboard and the @RUN control statement should be the first input from the keyboard 
following terminal activation. After the @RUN control statement has been entered, the input device can be changed by 
the terminal operator to the paper tape reader if he desires to do so and he has one attached to his OCT 500. The input 
device can subsequently be changed back to the keyboard. This switching of input devices is done from the terminal by 
a CTL-R being entered from the selected input device. 

(3) Paper tape input from the OCT 500 paper tape reader is handled the same as form II paper tape input from the 
teletypewriter. A complete description of form II paper tape is given in 12.2.1.2.2. The following additional 
considerations apply when form II is inputted from a OCT 500 paper tape reader: 

(a) To start the tape input from the OCT 500, the terminal operator must press the CTL-R keys. If the tape is in the 
reader and the READER switch is set to on (up), the tape is automatically read. If the tape is not in the reader, 
the operator has about five seconds to ready the tape and reader before the keyboard is selected and made the 
input device. 

From the user program the tape is started by giving the system the control image D,RD. through the PRTCN$ 
request (see 12.2.2.3). 

(b) The format of the paper tape is as follows: 

TEXT CR LF TEXT CR LF ..... TEXT CR LF CTL-R 

Paper tape mode is terminated when the CTL-R is read from the paper tape. The CTL-R cannot be entered from 
the keyboard as the input device currently selected is the paper tape reader until selection is switched by the 
CTL-R character being received. 

(c) Special Considerations: 

The CTL-EOT character is recognized in the form II mode. The terminal and run are terminated as in manual 
mode. It is recommended that the tape mode not be terminated by the CTL-EOT. 

The shift with underline character may be used to rub out errors during preparation of the tape. The shift with 
underline is ignored by the handler as are nulls. 

The double quote is not recognized to delete characters. 

The question mark causes image deletion. 

The CR without preceding data characters does not pass a blank card to the system. 

The CTL-T causes the selection bit for the output devices to be switched; that is, the punch is the output device 
now instead of the printer or the printer is instead of the punch. 

The pound sign (#) is not recognized as a master space (@). 

If the CTL-R is not the last character on the tape, additional tapes may be read until a a tape is read which has a 
CTL-R on it. 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 12-13 
UP·NUMBER PAGE REVISION PAGE 

(4) No special action is required by the operator in handling output to the output device. He can control which output 
device is selected as the output device. The primary output device is the printer. A CTL-T being entered from the 
input device changes the output device selection. If the hardware is set up for it, the output can also be stopped by 
pressing the INTRPT key. 

While the punch is the output device, overprinting may result. Therefore, the operator must press the NEW LINE key 
and then the RETURN key when he ends an input image. 

The user should be aware that the OCT 500 hardware performs an automatic form feed every 60 lines. This might be 
useful if the user is formatting his output and desires to go to a new page. The user can count h is output lines and issue 
the appropriate number of blank lines to get to the top of the new page. 

(5) It is the responsibility of the terminal operator to remove his terminal from the active status when he is finished. The 
normal way to terminate the terminal is to enter a @FIN control statement and, when the message ***L1NE 
INACTIVE*** comes out on the printer, enter the DEOT sequence. This sequence is the OLE character followed by 
the EOT character. The OLE is the CTL-P key and the EOT is the CTL-D. The terminal now becomes inactive and the 
line connection is dropped on a dialed line with no other terminals on the line. 

12.2.2.2. SPECIAL CONTROL SEQUENCES 

Table 12-3 lists the OCT 500 control characters and their functions. These control characters are used to control image 
formats, image input, and so forth. 

Keyboard Keys Function Description 

? Delete When received from the terminal the current image is 
discarded. The symbiont responds to the delete function 
with a CR/LF sequence. 

RETURN End of Image Used to indicate the end of the input image. Maximum 
input image length is 132 characters. The symbiont 
responds with a LF. 

" or ~ Erase One preceding character is deleted each time the key 
is pressed. Characters are deleted right to left. When the 
character count is reduced to zero, the symbiont responds 
with a CR/LF sequence. 

INTRPT Interrupt Causes the symbiont to suspend its current operation and 
accept an input image immediately. The message INTERRUPT 
LAST LINE is sent to the terminal. When the user keys in 
his CR following his input image (the X keyin is the only 
keyin recognized by the symbiont), the line of output that 
was interrupted is immediately resumed. 

X CR Task Termination Terminates the last task submitted to the executive if 
the task is not already completed. This keyin can be 
submitted only after a break (I NTRPT). 

DLE EOT End of Transmission Terminates and disconnects the teletypewriter terminal. 

Table 12-3. DCT 500 Control Characters 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 12-14 
PAGE REVISION PAGE 

12.2.2.3. USER/PROGRAM INTERFACE 

The standard symbiont services requests as defined in Section 5, which enables the user program to interface with the DCT 
500. The print control functions (PRTCN$) have been expanded to facilitate the users control of DCT 500 terminal. The 
following character strings describe the control functions that are defined for DCT 500 symbiont: 

D,KB. - Causes the symbiont to make the keyboard the input device regardless of what is considered the 

input device. 

D,R D. - Causes the symbiont to make the paper tape reader the input device.and initialize form II. 

D,PU. - Causes the symbiont to make the paper tape punch the output device. 

D,PR. - Causes the symbiont to make the printer the output device. 

There can be two input and two output devices on a terminal; however, only one input and one output device is designated 
the input and the output device at a time. These functions from the user program and the CTL-R and CTL-T characters from 
the terminal are the methods the user has of controlling which devices are designated the input device and the output device. 
This causes the symbiont to send the proper device-id when it polls the terminals. 

12.2.3. UNISCOPE 100/DCT 1000 DEMAND SYMBIONT 

The UNISCOPE 100/DCT 1000 demand symbiont provides support for the following terminals: 

• Combination of single, multiplexed, and multidropped UNISCOPE 100's and associated communications output 
printer. 

• DCT 1000, keyboard, and printer 

12.2.3.1. OPERATIONAL CONSIDERATIONS FOR THE UNISCOPE 100 

Initialization, run stream submission, termination, and remote system messages are as described in 12.1.1 with the following 
considerations: 

(1) Before the UNISCOPE 100 becomes an active terminal, the operator must turn it on and establish the proper line 
connection. Data may be entered on the screen prior to establishing the line connection. Data entered in such a fashion 
is not destroyed by the symbiont as long as it initially does not exceed line 10. This is useful for preentering useful 
messages prior to accumulating telephone line charges. 

After the device has been turned on and the line connection is made, the device is polled at 30- second intervals (the 
inactive device polling interval which may be changed at system generation time). The first message transmitted from an 
inactive device must be the six-character configuration site-id for this device. The site-id may be transmitted from 
anywhere on the screen preceded by an SOE ( t» character. 

If the transmitted message is received properly, the initialization message is sent to the device and the SOE and cursor 
character are positioned at the standard insert point ready for the next operator input. If the message is not received 
properly, no response is sent to the device. If the operator is sure that everything is functioning properly and that the 
transmitted site-id is valid, then the following steps should be taken after a waiting period of approximately 60 seconds: 

(a) Press the WAIT switch (to unlock the keyboard) 

(b) Transmit the message again. 

The operator sees a positive action when the device is polled to pick up the transmitted message by the reappearance of 
the cursor character. The cursor disappears from the screen when the TRANSM IT key is pressed and reappears when 
the device is polled. 

(2) Input messages are restricted to 72 characters or less in length. If the operator desires to transmit information which 
exceeds the 72 character limit, it will have to be broken into smaller messages through the use of additional SOE ( t» 
characters. 



' .... , 

4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 12-15 
PAGE REVISION PAGE 

After the operator has pressed the TRANSMIT key, the cursor character disappears from the screen. When the device is 
polled to pick up the transmitted message, the cursor reappears. If the message is received properly by the computer, 
the symbiont generates and sends a keyboard unlock message, moves the screen up or down (depending on current 
setting - see 12.2.3.3) one line, and positions an SO E (!» character and the cursor in columns one and two of the 
insert line. If the inputted message produced a response, it is sent to the insert line and thus destroys any information 
the operator may be entering. If no immediate response is produced, the operator is free to enter a new line to be 
transmitted. 

All data transmitted by the remote operator must follow submission of an @RUN control statement except for special 
control sequences. (See 12.2.3.3.) 

(3) Operator input activity is timed to determine and prevent unnecessary communication facility in 2.5 minute intervals. 
The following symbiont action takes place at the successive increments of no activity. 

1 st Increment - The active poll interval is doubled. If the standard active poll rate is used, it is now eight 
seconds. 

2nd Increment - The active poll interval is tripled. For the standard active poll rate, it is now 12 seconds. A 
timeout message is sent to the device. Any break hold on output is removed. 

3rd Increment _ The active poll interval now becomes four times its original value. If standard value is used, it 
is now 16 seconds. 

4th Increment _ At this time, set by system generation option, one of the following will occur: 

(a) The device is terminated and reverts to an inactive state or 

(b) The timeout message is sent to the device again and repeated every increment time 
fol/owing. The poll interval is now set at five times the original value (20 seconds for 
standard poll interval). 

(4) No special action is required of the operator in handling output to the device. The user does have a control option to 
skip a certain number of successive output lines (see 12.2.3.3). He also has the option of putting a temporary hold on 
any output by use of the message waiting button (break mechanism - see 12.2.3.3). 

The symbiont controls the screen (unless a user program assumes control) with output messages (see 12.2.3.4)' The 
operator must use caution in entering new data if his previous input is expected to produce a response. The symbiont 
control could possibly cause an overwrite of the data being entered by the operator. 

(5) Normally the terminal operator need not be concerned with transmission error recovery. The symbiont controls all 
retry sequences. No retry sequences are performed on the initial activation message. If the retry attempts are 
unsuccessful, the device is automatically returned to the inactive state. The terminal operator has to perform the 
initialization procedure after the transmission problem has been corrected. Any uncompleted terminal activity must be 
redone after the device is reinitialized. 

Several messages can be returned to the terminal operator from the symbiont in response to an incorrect action. 

IMPROPER SYM CONTROL MSG 

The operator has submitted a symbiont control message which contains improper information. 

MESSAGE TOO LONG 

The operator has attempted to transmit a message which exceeds the input limit of 72 characters. 

(6) It is the terminal operator's responsibility to remove his device from the active status when he is finished. This is 
accomplished by transmitting the symbiont control message IllITE RM. 



4144 Rev. 2 
UP-NUMBER 

UNIV.AC 1100 SERIES SYSTEMS 12-16 
PAGE REVISION PAGE 

12.2.3.2. OPERATIONAL CONSIDERATIONS FOR THE DCT 1000 

The general operating procedures for the DCT 1000 are very much the same as those for the UN ISCOPE 100 (see 12.2.3.1) 
with the following additional considerations: 

(1) Initialization Procedure: 

(a) Establish line connection 

(b) Set switches to the following positions: 

• AUTO/MAN - AUTO 

• MONITOR ON/OFF - ON 

• ON LINE/OFF LINE - ON LINE 

• KEYB'D/OFF - KEYB'D 

• All other device switches - OFF 

(c) Press CLEAR key and set RUN/STOP switch to STOP position and then run. 

(d) Enter the six-character configuration site-id for this terminal from the keyboard. 

(e) Press the TRANSMIT key. 

If the transmitted site-id is valid for this particular terminal and is received properly, the standard initialization message 
is printed at the terminal. If the message is not received properly by the central site, no message is sent. The operator 
should then validate the site-id entered and repeat the initialization sequence. 

(2) I nput messages are limited to 80 characters. When this limit is exceeded, the/symbiont rejects the message and notifies 
the terminal operator with the message MESSAG E TOO LONG. After the operator has pressed the XM IT key, the 
KEYB'D READY indicator extinguishes and remains extinguished until the text is acknowledged by the symbiont. If 
no response is produced by the input, the operator is free to enter a new line for transmission. 

Unlocking of the keyboard after an input text transmission is not necessary with the DCT 1000. The acknowledgment 
to the text has the effect of releasing the keyboard for more input. Because of the hardware reactions input should not 
be attempted if output is pending. Once input is initiated, that is, the initialization procedure has been performed, the 
user must press the XM IT key as soon as possible; otherwise, the symbiont will disconnect the terminal. 

(3) No special action is required of the terminal operator in handling output, that is, no output device switch need be set. 
No interrupt key is available on the DCT 1000 and, therefore, output cannot be halted once it begins. The special 
control sequence to skip output and terminate can be used if it can be entered at a point when no output is expected, 
for example, prior to a statement which will create output. 

A CR control character is inserted in text messages to the DCT 1000 by the symbiont and, as such, user control of line 
spacing is not allowed. Control characters may be placed in the text if the user desires; the symbiont, however, inserts 
its own carriage control regardless of what the user does. 

(4) Termination of the DCT 1000 is identical to that of the UNISCOPE 100. 

12.2.3.3. SPECIAL CONTROL SEQUENCES 

Certain control messages and sequences are available for use by the device operator for controlling the symbiont's handling of 
the device. The messages are defined as starting with two double quote characters. The format of the control message is 

""xxxx yyyyyy 

where xxxx is the control type and yyyyyy is parameter information. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 12-17 
PAGE REVISION PAGE 

Table 12-4 lists the control messages and characters along with their functions for the UN ISCOPE 100 and the DCT 1000. 

Control Message 
or 

Action Function on UN ISCOPE 100 Function on DCT 1000 

'"'L1NE xnn Changes roll direction and insert point. Not applicable 

x - When U is specified, roll direction is 
changed to up; when D is specified, roll 
direction is changed to down. If neither 
U nor D is specified, no change in roll 
direction occurs. 

nn - Sets insert point to line nn. The range 
of nn is dependent upon the number of 
lines on the screen. For a 12 x 80 
screen, the range is 1-12. It is not 
advisable to set the insert point to 
line 12 because some output messages 
exceed one line. 

""PRNT Turns printer on or off (if one is attached Not applicable 
to UNISCOPE 100). The ""PRNT message 
always reverses the previous setting, that 
is, off to on or on to off. When printing 
is initiated, the symbiont attempts to 
select the printer. If successful, the 
printer's SE LECT indicator lights and all 
data to and from the UNISCOPE 100 is 
printed as well as displayed on the screen. 
If the selection cannot be made (printer out of 
forms, cover up, and so forth), the message 
PRINTER CANNOT BE SELECTED is displayed, 
the printer's SE LECT indicator does not light, 
and no printing occurs. When terminating 
printing, the UNISCOPE 100 deselects the 
printer and all subsequent data is displayed 
on the screen only. 

If the ''''PRNT message is sent from a 
UNISCOPE 100 that does not have the auxiliary 
interface needed for the printer, the message 
IMPROPER SYMBIONT CONTL MSG is sent to the 
terminal and no additional action occurs. 

""SKIP nnnn Skips nnnn number of output images. The Same as for UN ISCOPE 100 
range of nnnn is 1-2047. If nnn is omitted, 
then a maximum skip value of 2048 is assumed. 
The skip process is terminated either by 
skipping the specified number of output 
images or by transmitting another ""SKIP 
message with nnnn O. The skip option is 
normally used with the MESSAGE WAITING key 
(break mechanism) to put a hold on output. 

Table 12-4. UNISCOPE 100 and OCT 1000 Control Messages and Sequences (Part 1 of 2) 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 12-18 

Control Message 
or 

Action 

IIIITERM 

Function on UNISCOPE 100 

Removes terminal from the active list. If 
a run is active, a @FIN control statement 
is generated and accounting information is 
displayed. 

Delete Performed by using the editing control keys 
(see UNIVAC UNISCOPE 100 Display Terminal 
Operator Reference Manual, UP-7788 -
current version) 

End of Image Implemented by pressing the TRANSM IT key. 1d 

Erase Performed by using the editing control keys (see 
UNIVAC UNISCOPE 100 Display Terminal Operator 
Reference Manual, UP-7788-current version). 

Interrupt Press MESSAGE WAITING switch. It places a hold 
on the output unit the next input message is 
received from the terminal. The hold is timed 

X Keyin 

\ 
\ 

and is removed after five minutes even if no 
message is input. The hold interval can be 
changed at system generation time. 

The interrupt (or break) mechanism is normally 
used for: 

(a) used to input ''''SKIP control messages, 
or 

(b) used to input X keyins. 

When the interrupt is received by the symbiont, 
the message INTERRUPT LAST LINE is sent to the 
terminal. 

Terminates the last task submitted to the 
executive if that task has not already been 
completed. The X keyin can be submitted only 
after pressing the MESSAGE WAITING switch. 
The X must be placed immediately following 
the SOE character in order for it to be 
recognized. 

PAGE REVISION PAGE 

Function on OCT 1000 

Same as for UNISCOPE 100 

Line deletion is accomplished by pressing 
the CLEAR key. A CR should also be done to 
avoid the confusion of entering a new input 
line on the same line. 

Press XMIT key. 

To erase a character, press the -(backspace) 
key. This has the effect of erasing the previous 
character. Exercise care when doing this, however, 
because there is no visual way of determining what 
is actually in memory. 

Not applicable - no interrupt is possible with 
a OCT 1000 

Not applicable - OCT 1000 cannot be interrupted 

\ 
Table 12-4. UN/SCOPE 100 and DCT TOOO Control Messages and Sequences (Part 2 of 2) 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 12-19 
PAGE REVISION PAGE 

12.2.3.4. USER PROGRAM INTERFACE 

The standard symbiont executive requests as described in Section 5 enable the user program to interface with the UN ISCOPE 
100 or the DCT 1000 terminals. There are, however, the following exceptions to the standard use of the symbiont executive 
requests when interfacing with the UN ISCOPE 100 or the DCT 1000 terminals. 

• OUTPUT 

The spacing specifications of the PRINT$ request have no affect on UNISCOPE 100 or DCT 1000 image output. The 
output images may contain control information such as cursor to home, cursor address, line feed, form feed, and so 
forth. Be careful when using screen control information because the symbiont maintains control of the screen unless 
directed otherwise by a PRTCN$ request from the user program. 

• OUTPUT/INPUT 

The spacing specifications of the TREAD$ request have no affect on UNISCOPE 100 or DCT 1000 image output. On 
the UNISCOPE 100, the TREAD$ output image is handled differently by the symbiont in that the SOE character and 
cursor are left·positioned following the output image. For a PRINT$ image, the SOE and cursor are positioned at the 
start of the next line. 

• PRINT AND SCREEN CONTROL 

The print control functions (PRTCN$) have been expanded to facilitate the user' control of the UN ISCOPE 100 
terminal. These functions are not available to DCT 1000 user. 

The following control functions are defined for screen and print control: 

Insert Point Defines the insert point on the scrren to the line number nn. This causes the screen to roll up from 
this insert point unless a specific function is used to roll it down. 

Roll Direction·- Provides for changing the movement direction of the screen. UP causes the screen to roll up from the 
insert point (standard or L defined). DOWN causes it to roll down. 

Printing 

Control 

Provides printer control. START selects a printer provided one is configured and ready to be selected 
(that is, turned on and not out of forms). Text to the UNISCOPE 100 is printed as well as being 
displayed following the selection, provided a valid selection was made. If the selection is unsuccessful 
(for example, of forms, cover-up, printer turned off), the message PRINTER CANNOT BE 
SELECTED is displayed and no printing takes place. If the auxiliary interface is not present, the 
command is ignored. STOP deselects the printer and turns printing off. 

Allows the user to take over complete control of the terminal screen and to switch it back to the 
symbiont. If the control message is X,USER, then the following action takes place: 

(1) The symbiont will not embed screen control sequences in the message. The user assumes full 
responsibility for screen formatting and display. 

(2) The symbiont will not print output on the communications output printer even though a 
printer has been selected and is available for use. 

(3) The address of the SOE is included in all input messages. This SOE address is not included in 
the 72-character count limit for input messages. 

(4) The user remains in control of the screen until one of two things happens; the sending of a 
X.SYM message through a PRTCN$ request or the execution of the user program terminates. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 12-20 
PAGE REVISION PAGE 

To summarize the options available to the user program by a PRTCN$ request, the following are the legal image formats: 

X,nn. 

X,UP. 

X,DOWN. 

X,START. 

X,STOP 

X,USER. 

X,SYM. 

To change insert point nn 

Change roll direction to up 

Change roll direction to down 

Start printing 

Stop printing 

Switch screen control and printing to user 

Switch screen control and printing to symbiont 

12.2.4. UNISCOPE 300 DEMAND SYMBIONT 

The UNISCOPE 300 demand symbiont provides support for single station or multistation UNISCOPE 300 display terminals. 

12.2.4.1. OPERATIONAL CONSIDERATIONS 

Initialization, run stream submission, termination, and remote terminal messages are as described in 12.1.1 with the following 
additional considerations: 

(1) After the operator has dialed the line with which his UNISCOPE 300 is configured, he initializes the station with the 
following procedure: 

(a) Setup message on screen: SOM, (site-id), cursor 

For example: /:l SCOP11 

(b) Press TRANSMIT key. 

(c) Wait for the standard initialization message. 

(d) Submit a @RUN control statement (using normal executive system format except that # is used in place of @. 

If the site-id is not the assigned value for that station, it is ignored and no response is received from the symbiont. This 
results in a keyboard lock (WAIT indicator lights) which requires a manual turn off, turn on by the operator to recover. 
The operator may then submit the correct site-id as described above. 

(2) I nput images use the format: 

(a) Start-of-message (SJM) character 

(b) Text (maximum of 72 characters) 

(c) Cursor 

For example: /:l t ext ...... 1 

The input is initiated by the operator pressing the TRANSMIT key. This action also lights the WAIT indicator. Image 
acceptance by the symbiont is indicated at the station by the extinguishing of the WAIT indicator and the appearance 
of an SOM character in the line following the one containing the input image. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 12-21 
PAGE REVISION PAGE 

Several system messages are associated with input, they are: 

Message 

NO RUN ACTIVE 

MESSAGE TO LONG 

IMPROPER SYM CNTRL MSG 

BAD INPUT SEQUENCE 

WAIT 

Description 

The last input was an invalid #RUN control statement. 

I nput image contained more than 72 characters. 

I nput message was an invalid control message. 

The input control message was rejected because it conflicts with the current 
status of the run. 

Symbiont interface is not ready to accept additional input. Station must wait 
for output to occur or until the message does not reappear. Any input causing 
this message must be resubmitted. 

(3) When the user is finished, the station may be deactivated by the control message ""XMY". If this is the last station on 
the line, the line is also deactivated and returned to the idle line monitor mode. In either case, the system message 
STATION I NACTIVE is sent to the station prior to deactivation. 

12.2.4.2. SPECIAL CONTROL SEQUENCES 

The MESSAGE WAITING key provides the interrupt capability. An input image or control sequence can be sent to the 
central site when the output has been interrupted. Output is restarted when the MESSAGE WAITING key is pressed a second 
time. This key can be pressed at any time on a multistation unit, but on a single station unit it must be pressed just after the 
line is polled and just prior to the subsequent acknowledge poll. 

Table 12-5 lists the control sequences which allow the user to control the UNISCOPE 300. The MESSAGE WAITING key 
. must be used to interrupt the symbiont prior to transmitting these control sequences. 

Control Sequence 

,,,, AB F" 

''''AFT'' 

""DPP" 

""H IS" 

""LOW" 

""MED" 

""ROL" 

""XMY" 

""XOX" 

Description 

If the ""AFT" control sequence is not transmitted, all output for the current run is discarded. No 
indication is returned to the terminal that the print file is being discarded unless a #FIN control 
statement was previously processed for the run. 

Any output generated after the submission of this control sequence is transmitted to the terminal. 

Delete one page of print output (64 images) 

The speed of output relative to the polling rate can be set to the fastest rate with this message. 
Initially the speed is set to high. (Output rates depend not only on the speed selected and the fixed 
polling interval, but will slow considerably if other stations on the same line are also outputting 
conti n uou sl y.) 

Set output speed to about 1/4 of the ""H IS" rate. 

Set output speed to about 1 /2 of the ""H I SIt rate. 

An upper roll limit for screen contents is defined on the screen by sending this message to the central 
site from a particular line (vertical position) on the screen. For subsequent output, that line plus all 
others below it are scrolled. The lines above it remain fixed on the display until altered by another 
""ROL" message. Initially all screen lines are scrolled. 

Places terminal in the inactive state. If this is the only active terminal on the line, the line is 
deactivated and placed in the idle line state. 

Terminates the currently executing run. 

Table 12-5. UNISCOPE 300 Symbiont, Control Sequences 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 12-22 
PAGE REVISION PAGE 

12.2.4.3. USER PROGRAM INTERFACE 

The standard symbiont executive requests (see Section 5) enable the user program to interface with the UNISCOPE 300. 

12.3. TERMINAL USER TECHNIQUES 

Although the demand user can use all the capabilities of the operating system, certain techniques more effectively utilize the 
system. The following techniques are given only as aids and are not mandatory: 

(1) Avoid sending program code directly to the language processors (except a conversational processor such as CFOR). 
An appropriate alternative is the ED, EL T, or DATA processors. 

(2) Avoid using the SNAPS request whenever possible. 

(3) Copy information stored on magnetic tape to mass storage as quickly as possible and then release the tape unit. 

(4) When using a processor that requires an end sentinel, input the end sentinel as quickly as possible. 

12.4 EXAMPLE OF A DEMAND RUN 

A simple example follows to demonstrate the use of the system is a demand processing mode from a teletypewriter. 

{lIt ORA ..... (--------------------------------- User enters site-id. 

UNIVAC 110R TIMEISHARING EXEC VERS 27.20.12A-MP ...... !o------Systemresponds 

~ RUf\!, B MARR I S, 489331, APL, 10,500 ..... 1----------------- User:@RUNimage 
DATE: 06017 1 TIME: 082429 • System responds 
@M5G n32? • User makes mistake and erases line. 
@MSG HARRIS, 489331, NEED TAPE 428C, NO RINT .. G~Usergetsmessagerightonsecondtry. 

Note deletion of character. 
@ASG,CPHARRIS1,F/5/P05/10 ..... (-----------User assigns files, system responds with READY 
READY 
(t)'FREE HARRIS! 
READY 
@ASG,CP HARRIS2,F/5/POS/IO 
READY 
@FREE HARRIS2 
READY 

$$$$ oJp l"1SG rIARRI S*ASi-lLA~~D ~vI .~i~ES TO CONTACT {aU ...... I---Systemoperatorandterminal 
@M 5G I S ASf-lLA.'J D DJ ~~N IIi ERE user converse. 

@A~G, f lA, T, 42d ~------------------------- Usera~ignstape 
WAI lING O~ FACILIlf ...... ~--------------------Notapeunitsavailable 
hEADf • Servo becomes available 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 12-23 
PAGE REVISION PAGE 

-I} * T" PF. ~ TART on (} ...... !----------U~er starts form II paper tape by entering tape-on control character. 
pen PIN TA., HA RR I S2 • System responds with message. 
PELT,IDL HARRIS2.BATCH2 
~ p tJ N , R H A R R IS, LI R 933 1 , A PL .. 1 0 , 500 
n.ASG,A HARRISI. 
flFPEE: TPF$ 
PASG,T TPF$ .. F/5/POS/I0 
~ASM,S HARRIS1.INP,HARRISl.REL 
(aHDG,P EXECUTION OF' APL: ·RETURN TO TJ HARRIS 
@HARRISl.XQT .. YZ ? ...... !-------------------------~Tapeinput 

@HARRIS? 
~X~T,Y7. HARRISl.ABS 
#STRING' 
, 5vJ ILL TOON' 
2 2 4 $R 'ABC' 
@ADD DATAPL 
@END 

END 0 F' TAPE .... t--------------------------End paper tape input. 
FURPUR 0021-06/01-08:34. FURPURprocesses@COPINcontrolstatement 

12 SYM 3 REL 5 ABS 
ELT PROCESSOR LEVEL 4 
000001 
000002 
000003 
o OOOO'~ 
000005 
000006 
000007 
OOOOOR 
000009 
000010 
000 01 1 
000012 
000013 

000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 

@RUN .. B HARRIS .. 489331 .. APL~10 .. 500 
@ASG .. A HARRISI. 
@FREE TPF$ 
@ASG .. T TPF$ .. F/5/POS/IO 
@ASM .. S HARRISl. INP~HARRISl.REL ' 
@HDG .. P EXECUTION OF APLI RETURN TO TJ HARRI"S 
@HARRISl.XQT .. YZ 
@HARRIS 
ftXQT,YZ HARRIS1.ABS 
'STRING# 
'SWILLTOON# 
2 2 4 $R #ABC# 
iADD DATAP!. 
...... t----------------Paper tape input is completely processed. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 12-24 
PAGE REVISION PAGE 

~ PHT, T HA RR I S2 ....... 1-------------------- User lists contents of a file element. 

A PL ~HARR I S2 
REL CRELAD$ 
REL SNOOPY 
ADS TDP 
ABS PCT 
DOC ED I TOO C ( 1 ) 
DOC TDPDOC (l ) 
DOC PCTDOC ( 1 , 
ABS EDIT 
ABS EDREP$ 
ELT BATCH1(l) 
ELT FIX(l) 
ELT ASMXQT(3) 
ELT ASMTTY(2) 
ASM ASMRUN(5) 
ELT EXEClJTE(3) 
ASM ASMTB(5) 
ASM INP(2) 
REL BEL 
MAP MAP( 1) 
ABS AB5 
EL T BAT CH2 ( 1 ) I 

@COPYHARRI52.,HAHRISI ........ ~------- User copies files and starts a batch run. 
@START HARRISl.BATCH2 
@MSG HARRIS STARTING A BATCH RUN 

89 BLOCKS COPt-ED 
@FIN ...... I--------------------Userterminates. 

RONID: HARRIS ACCOUNTS 489331 PROJECT I APL"""'-- Syst:m ~rints this . 
term !nation message. 

HARRIS*MSG: HARRIS, 489331, NEED TAPE 428C, NO RING 

HARRIS*MSG: IS ASHLAND DOWN THERE 

LOAD 4P.8 10/6 TA -1 HARRIS 

TIME: 00:00:01.605 IN: 55 OUT: 0 PAGESI 4 

INITIATION TIME: 

TERMINATION TIME: 

HARRIS*MSG: HARRIS STARTING A BATCH RUN 

............ LINE INACTIVE ............ ~ Terminal ready for submission 
of another @RUN' control statement 
or an end·of·transmission sequence 



'---

', ...... _. ' 

4144 Rev. 2 
UP-NUMBER 

UN IVAC 1100 SE RI ES SYS TEMS 13-1 
PA GE REVISION PAGE 

13. ITEM HANDLER AND BLOCK BUFFERING 

13.1. INTRODUCTION 

This section describes how the data handling routines are used for the internal manipulation of data files at both the item and 
block buffering levels. The user program/data handling routine interface requirements, system and data levels of file 
formatting, file organization, buffer pooling, and error processing are also discussed in this section. 

13.2. GENERAL INFORMATION 

. The data files are considered as either sequential or random, according to the way they are referenced. The items or blocks in 
a file are further identified as being either fixed or variable' in length. Files referenced randomly reside on 
FASTRAND-formatted mass storage and contain fixed-length items and blocks. Files referenced sequentially reside either on 
tape or FASTRAND-formatted mass storage and contain fixed: or variable-length items and blocks. 

Both sequential and random requests can be used interchangeably to access the same FASTRAND-formatted mass storage file 
if the file is organized with fixed-length items and blocks. It is therefore possible to process data sequentially up to a certain 
point and then process it randomly. Conversely, data may be processed randomly until some specific data occurs, and then 
processed sequentially. 

When access to a specific file is requested, the request may be interlocked since the same file may be in use by another 
activity which' is executing at the same time. A lockout feature called exclusive use is provided to perform this function. 
ExClusive use specifies lockout for a complete file or individual items or blocks in a file. A file being processed randomly is 
either locked out in its entirety or locked out by items or blocks. 

Locking out an entire file requires the appropriate option on the @ASG control statement for the file (see 3.7.1). If a run has 
a file assigned with the X option (exclusive use option) on the @ASG control statement, any other run which attempts to 
assign that file is held. Users should be aware that in order to free the exclusive use lockout the @FREE control statement 
(see 3.7.4) must be processed or the run must terminate. Locking out individual items or blocks of a file is accomplished by 
using the exclusive read random request (see 13.4.2.4). In this case, only the item or block currently being read is locked out. 
Refer~nces to the file by other activities are honored only if the reference is not for the locked out item or block. An activity 
referencing a locked out item or block is automatically placed in a wait state until the data is released. The next request to 
the file from the activity that initiated the lock releases the item or block previously held. 

A certain amount of independence from peripheral devices is achieved with the data handling routines; that is, files are 
written on mass storage or any tape type without program alterations simply by changing the @ASG control statement from 
tape to mass storage or vice versa. 

The only restrictions are that all files processed in the in/out mode or referenced randomly must reside on mass storage. 

13.3. HANDLING DATA FILES AT THE BLOCK BUFFERING LEVEL 

Data handling at the block level is accomplished by a set of reentrant subroutines contained in the block buffering package 
.(BBP). By calling these subroutines, the user can read data blocks from and write data blocks into the files residing on the 

... ·~xternal storage devices (tape and FASTRAND-fci'i-matted mass storage) assigned to the program. In addition, the user may 
,/request the initiation, closing, and manipulation of data files. 
, ;r 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERI ES SYSTEMS 13-2 

PAGE REVISION PAGE 

The BBP subroutines also control the buffer pool with which each file being processed is associated. The buffer pool is shared 
by all other files in the object program. The data blocks placed in these buffers may be read either sequentially or randomly 
by the BBP. Sequential read and write operations handle block sizes that are fixed or variable in length. Fixed-length data 
blocks are used in random read and write operations since the operation is restricted to FASTRAND-formatted mass storage 
files. References to fixed-length blocks require that their relative block numbers be specified. (Actual sector address of a 
block and partial filling of a sector are disregarded for random read and write operations.) For variable-length blocks on 
FASTRAND-formatted mass storage, the BBP precedes each block with a single word to specify the word size of the block. 

13.3.1. SUBROUTINES OF THE BLOCK BUFFERING PACKAGE 

The BBP consists of ten basic subroutines, two of which are used apart from the BBP. The functions performed by these 
subroutines are executed in three modes of operation: input, output, and in/out. Some functions are performed in any of the 
three operating modes while others are restricted to one or two modes only. The mode in which each file is manipulated or 
processed by the BBP subroutines is defined when the file control table (FCT) is initiated for the file. (See 13.5.1 for a 
description of the FCT.) Those files defined as input files are limited to read operations whereas output files are restricted to 
write operations. In/out files are capable of both read and write operations. The functions performed by the subroutines of 
BBP and the modes in which they are used are listed in the following table: 

Mode 
Function 

In Out In/out 

Initialize FCT To Open File V V V 
Initialize and Expand Buffer Pool V V V 
Sequential and Random Read V V 
Sequential and Random Write V V 
Write Hardware End-Of-File (EOF) Mark V V 
Closing Tape Reels and Files V V V 

13.3.2. DATA FILE MANIPULATION AT BLOCK LEVEL 

The manipulation of data files at the block level is accomplished by the initiation of the BBP subroutines. These subroutines 
are initiated by procedure calls coded within the object program or by requests coded within the user's program. Both 
methods are described in 13.3.2.1 through 13.3.2.9. 

13.3.2.1. INITIALIZING AN FCT FOR SUBSEQUENT BLOCK BUFFERING OPERATIONS (BOPEN$) 

Purpose: 

I nitiates an FCT (see 13.5.1) for subsequent block buffering operations for files processed in the input, output, and in/out 
modes. 

Format: 

L,U AO,pktaddr 

LMJ X11,BOPEN$ 



4144 Rev. 2 
UP-NUMBER 

UN I V A C 1100 5 E R I E 5 5 Y 5 T EMS 13-3 
PAGE REVISION PAGE 

This linkage and the packet may be generated by the procedure call: 

SOPEN 'file-mode-mnemonic' FCT-addr( 1) Loption] ... FCT-addr(n) [,option] 

Descrjption: 

Register AD is loaded with the address of the following one-word packet when the linkage is executed: 

S1 

[XR EAD-flag] 

where: 

XREAD-flag 

file-mode 

option 

FCT-addr 

S2 S3 H2 

file-mode [option] FCT-addr 

Applicable only to I/O mode files. Places an exclusive-use lock on entire file when set to 
nonzero value. 

Specifies processing mode of file. Entries for this field are: 

INPUT (2
8

) Input with forward motion (permits read 
operations only). 

I nput with backward motion (permits read 
operations only) 

Output (permits write operations only) 

IN/OUT or INOUT (41
8

) - Input/output (for FASTRAND-formatted mass 
storage file only; permits both read and 

The options are: 

write operations) 

- Applicable to I/O mode files. Specifies that 
writing in file starts beyond previous EOF 
location rather than within former limits 
of file. 

If a tape file, do not rewind tape. 

If the options are omitted, the file is rewound 
if it is a tape fi Ie. 

Address of FCT (see 13.5.1) to be initialized. 

The interpretation of the parameters in the procedure call is the same as that specified for the packet word. 

The EOF address for a mass storage file must be obtained from the master file directory item and stored in the FCT prior to a 
SSP ope~ input request for SSP files not created by the present execution. The EOF address is obtained by using a MSCON$ 
request specifying the DR EAD$ function (see 22.3.3). 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SE RI ES SYSTEMS 13-4 
PAGE REVISION PAGE 

13.3.2.2. SEQUENTIAL READING OF DATA BLOCKS (BREAD$) 

Purpose: 

Sequentially reads the next block of data from a file processed in the input or in/out mode. 

Format: 

L,U AD,pktaddr 

LMJ X11,BREAD$ 

Description: 

Register AD is loaded with the address of the following one-word packet when the linkage is executed: 

H1 H2 

D FCT-addr 

where: 

FCT-addr Address of the FCT (see 13.5.1) for the file being processed. 

The buffer area into which the block of data is read is selected by the BBP. Upon" completion of the subroutine, the block's 
length and location are returned in register AD. 

If the data block is to be moved into some specific area in the user's program, the following linkage must follow the calling 
sequence for the B R EAD$ subroutine: 

L,U AD,pktaddr 
LMJ X 11 ,B$MOVE 

Register AD is loaded with the address of the following one-word packet when the linkage is executed: 

H1 H2 

move-to-area-word-cou nt move-to-area-addr 

where: 

move-to-area-word-count Specifies the length of the user's area into which the block is placed. 

move-to-area-addr Location of user-defined area into which block is placed. 

The linkage and packet for BREAD$ and, if desired, the B$MOVE subroutines may be generated by the procedure call: 

BREAD FCT-addr[move-to-area-word-count,move-to-area-addrl 

13.3.2.3. RANDOM READING DATA BLOCKS (BRRED$) 

Purpose: 

Reads randomly a fixed-length block of data from a specific block location in a FASTRAND-formatted mass storage file 
processed in the input or in/out mode. 



4144 Rev. 2 
UP-NUMBER 

Format: 

L,U AD,pktaddr 

LMJ X11,BRRED$ 

UNIVAC 1100 SERIES SYSTEMS 13-5 
PAGE REVISION PAGE 

This linkage and the packet may be generated by the procedure call: 

BR RED block-nbr FCT-addr[move-to-area-word-count,move-to-area-addrl 

Description: 

Register AD is loaded with the following three-word packet when the linkage is executed: 

Word D 

2 

Word D 

exclusive-use-block-flag 

FCT-addr 

Word 1 

H1 H2 

exclusive-use-block-flag FCT-addr 

[move-to-area-word-countl [move-to-area-addr 1 

block-nbr 

Applicable to in/out files. If set to a nonzero value, it prevents the block from being 
accessed by any concurrent routines calling on BBP with a different FCT (see 13.5.1) 
pointing to the same file. A subsequent read unlocks (nullifies) exclusive use placed on 
previous block read. 

Address of FCT for the file being processed. 

The parameters of this word are the same as specified for the BREAD$ subroutine packet word (see 13.3.2.3). 

Word 2 

block-nbr Number of the specific block of data to be read from the file. 

If the exclusive use feature is required, substitute BXREAD for BRREAD in the procedure call; if you choose to code the 
instructions, substitute BXRED$ for BRRED$. 

13.3.2.4. SEQUENTIAL WRITING OF DATA BLOCKS (BWRIT$ and B$MOVE) 

Purpose: 

Sequentially writes a block of data (currently residing at the block location returned in register AD after execution of an open 
or write rp,quest) into an output or in/out file. 

L,U AD,pktaddr 

LMJ X11,BWRIT$ 



4144 Rev. 2 
UP.NUMBER 

Description: 

UNIVAC 1100 SERIES SYSTEMS 
PAGE REVISION PAGE 

Register AD is loaded with the address of the following one-word packet when the linkage is executed: 

H1 H2 

~ _______ D ________________ ~ _____________ F_C_T_.a_d_d_r ____________ ~ 
where: 

FCT-addr Address of the FCT (see 13.5.1) for the block being written. 

13-6 

If the block of data to be\written resides at some location other than the one returned to register AD, a block move operation 
is required. To initiate this\operation, the following linkage must be coded preceding the BWRIT$ calling sequence: 

L,U AD,pktaddr 

LMJ X11,B$MOVE 

Register AD is loaded with the address of the following one-word packet when the linkage is executed: 

H1 H2 

move-from-area-word-count move-from-area-addr 

where: 

move-from-area-word-count Specifies the length of the area into which block is written. 

move-from-area-addr Specifies the location of the area into which block is written. 

The linkages and packets for the BWR IT$ and, if required, the B$MOVE subroutines, may be generated by the procedure 
call: 

BWR IT FCT-addr [move-from-area-word-count,move-from-area-addr] 

13.3.2.5. RANDOM WRITING DATA BLOCKS (BRWRT$ and B$MOVE) 

Purpose: 

Writes randomly a fixed-length block of data (currently residing at the location returned to register AD after the execution of 
an open or write request) into a specific block position of an output or in/out mode FASTRAND-formatted mass storage file. 

Format: 

L,U AD,pktaddr 

LMJ X 11,B RWRT$ 

Description: 

Register AD is loaded with the address of the following two-word packet when the linkage is executed: 



/.~ . 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SE RI ES SYSTEMS 13-7 
PAGE REVISION, PAGE 

H1 H2 

Word o o FCT-addr 

block-nbr 

where: 

FCT-addr Address of the FCT (see 13.5.1) for the file being processed. 

block-nbr Block number position of file into which block of data is written. 

If the block of data to be written resides at some location other than the one returned in register AO, a move operation is 
required. To initiate this operation, the following linkage must be executed preceding the BRWRT$ calling sequence: 

L,U AO,pktaddr 

LMJ X 11 ,B$MOVE 

Register AO is loaded with the address of the following one-word packet when the linkage is executed: 

H1 H2 

move-from-area-word-count move-from-area-addr 

where: 

move-from-area-word-count Specifies the length of area into which the block of data is moved. 

move-from-area-addr Location of the area into which block of data is moved. 

The linkages and packets for the BRWRT$ and, if required, the B$MOVE subroutines, may be generated by the procedure 
call: 

BRWR IT FCT-addr block-nbr[move-from-area-word-count,move-from-area-addr] 

13.3.2.6. WRITING HARDWARE EOF MARKS (BMARK$) 

Purpose: 

Writes an EOF mark on an output tape file processed in the output mode. 

Format: 

L,U AO,pktaddr 

LMJ X11,BMARK$ 

This linkage and packet may be generated by the procedure call: 

BMAR K FCT-a9dr( 1) ... FCT-addr(n) 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SE RIES SYSTEMS 13-8 
PAGE REVISION PAGE 

Description: 

Register AD is loaded with the address of the following one-word packet when the linkage is executed: 

H1 H2 

D FCT-addr 

where: 

FCT-addr Address of the FCT (see 13.5.1) for the file being processed. 

13.3.2.7. CLOSING CURRENT TAPE REEL (BCLOR$) 

Purpose: 

Closes the current tape reel assigned to an input, output, or in/out mode file and to initiate a new tape reel for that file. 

Format: 

L,U AD,pktaddr 

LMJ X11,BCLOR$ 

This linkage and packet may be generated by the procedure call: 

BCLOSE 'REEL' FCT-addr[,option] 

Description: 

Register AD is loaded with the address of the following one-word packet when the linkage is executed: 

T1 

o 

where: 

option 

FCT-addr 

S3 H2 

[option] FCT-addr 

Applicable only to tape files. If the N option (23
8

) is specified, the tape is rewound; if 
omitted, do not rewind the tape. 

Address of the FCT (see 13.5.1) for the file being closed. 

13.3.2.8. CLOSING FILE CONTROL TABLES (BCLOF$ and BREL) 

Purpose: 

Closes the FCT for an input, output, or in/out file and releases its pool of buffers. 

Format: 

L,U AD,pktaddr 

LMJ X11,BCLOF$ 



"". 

4144 Rev. 2 
UP-NUMBER 

UN I VA C 11 00 S E R I E S S Y S T EMS 13-9 
PA GE RE VISION PA G E 

This linkage and packet may be generated by the procedure call: 

BCLOSE FILE FCT-addr[option] 

Descri ption: 

Register AO is loaded with the same one-word packet as used for the BCLOR$ subroutine (see 13.3.2.7). 

If the FCT (see 13.5.1) is for a tape file and the file is no longer needed for the run, the file should be freed dynamically with 
a CSF$ request (see 4.8.1). The code to set up linkage and packet for the BCLOF$ subroutine and to set up the instructions 
necessary to release the tape file, are generated by the following procedure call: 

BREL FCT-addr 

This procedure call also generates both test and jump instructions which prevent the calling of the BCLOF$ subroutine if the 
file is already closed. 

The BCLOF$ subroutine references the mass storage EOF address located in word 21 of the FCT and records this value in 
MBBI (word 12) of the respective file's master file directory main item. Execution of this request is allowed only for 
catalogued mass storage files. This feature is also available directly to the user through the BBEOF$ or MSCON$ requests (see 
13.3.2.9 and 22.3.10, respectively). 

13.3.2.9. CHANGING BLOCK BUFFERING EOF SECTOR ADDRESS (BBEOF$) 

Purpose: 

References the EOF address located in word 21 of the FCT (see 13.5.1) and records this value in MBBI (word 12) of the 
respective file's master file directory main item. 

Format: 

L,U AO,pktaddr 

ER BBEOF$ 

where: 

pktaddr is the address of the one-word packet: 

+O,FCT-addr 

Description: 

Excecution of this request is allowed only for catalogued mass storage files. An additional executive request (ER MSCON$) is 
available to not only change the EOF address but also block size and item size (see 22.3.10). 

13.3.3. LAYOUT FOR DATA BLOCKS 

The data blocks processed by the BBP are recorded on tape or FASTRAND-formatted mass storage and may be either fixed 
or variable in length. Blocks written on FASTRAND-formatted mass storage have a control to specify the size of 
variable-length blocks. The layout of fixed-and variable-length data blocks contained on tape, and FASTRAND-formatted 
mass storage are shown in Figure 13-1. 



4144 Rev. 2 
UP.NUMBER 

Fixed· or 

Variable· Length 

Data Blocks 

Tape File 

UN I V A C 1100 S E R I E S SYSTEMS 13-10 

Fixed·Length 

Data Blocks 

PAGE REVISION PAGE 

block· 
length 

Variable· Length 

Data Blocks 

-------------------~-----------------FASTRAND·formatted Mass Storage 

Figure 13·1. Data Block Layout 

13,3.4. TRANSFER OF CONTROL FROM BBP TO USER'S PROGRAM 

Control is returned to the user's program after a request for the initiation of a BBP subroutine has been executed, or if an 
abnormal or error condition has been detected (see 13.8 for error processing). When control is returned, related information 
is also returned to the user by means of an access word which is loaded into register AD. The nature of the information 
depends on the type of subroutine from which control was returned and the mode in which the subroutine performed its 
function. 

On return from each open or read function performed in the input or in/out mode, the following access word is loaded into 
register AD: 

H1 H2 

word·cou nt·of·block·read addr·of·block·read 

On return from each open, write, mark, or close reel function performed in the output or in/out mode, the following access 
word is loaded into register AD: 

H1 H2 

word·count·of·next·block·to·write addr·of·next·block·to·write 

The word count specified in H 1 of register AD is either a fixed·length block size as defined by the user or, as in the case of a 
variable·length file, the maximum area available in the buffer. When a file is opened in the in/out mode, the data block 
pointed to by the contents of register AD is the first block that is written out on the next write request processed. This 
permits the file's label block to be easily updated. 

When a BBP subroutine is used to close a catalogued file, the block size specified in register AD is saved in the master file 
directory if the size pertains to a fixed·length block. The complement of the block size is saved if block size is variable in 
length. This information is automatically retrieved and used by the executive when a subsequent opening is required and the 
block size is not specified. 



\'0---

, ..... 
( 
\"'~~ .. ' 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 11 00 S E R I E S SYSTEMS 13-11 
PAGE REVISION PAGE 

13.4. HANDLING DATA FILES AT THE ITEM LEVEL 

Data hanc~ling at the item level is accomplished by a set of reentrant subroutines contained in the item handler. Through the 
use of these subroutines, the user can write items into a data file residing on an external storage device, read items from an 
existing data file residing on an external storage device, or modify an existing data file residing on a mass storage device 
without the necessity of recreating the file. The modes of operations in which the subroutines perform these functions are 
output (write), input (read), and in/out (read/write), respectively. In addition to controlling the internal manipulation of data 
files, the item handler also performs functions such as 

II blocking and deblocking of data items; 

• referencing the format definitions required to create or validate items written into or read from a data file; 

• transferring items between the user-defined storage areas and the buffers assigned to the file; 

• maintaining those portions of the FCT required for item processing and error handling; 

• referencing the block buffering package when it is required to read in, write out, or swap buffer areas; and 

1.1 referencing the tape handler routines for processing end-of-reel and tape swapping functions. 

13.4.1. SUBROUTINES OF THE ITEM HANDLER 

The subroutines of the item handler are divided into two functional categories, output and input. These subroutines are called 
upon to perform data handling functions at the input, output, and in/out modes of operation. Some of the functions 
performed are common to all three modes while others are unique to a specific mode. For example, regardless of the mode in 
which a file is processed, it must be opened before the file can be processed. An exclusive read function, however, is unique 
to files processed in the in/out mode of operation. The functions performed by the input and output subroutines and the 
modes in which they are used are shown in the following table: 

Mode 
Function 

In Out In/Out 

Initialize FCT To Open File vi vi vi 
Sequential Read vi vi 
Random Read vi vi 
Exclusive Random Read vi 
Sequential Write vi vi 
Random Write vi V 
Buffer Read and Buffer Write vi vi 
Closing Tape Reel V vi 
Closing File vi vi vi 
Releasing File and Device vi vi vi 



4144 Rev. 2 
UP-NUMBER 

UNI VAC 1100 SE RI ES SYST EMS 13-12 
PAGE REVISION PAGE 

13.4.1.1. INPUT SUBROUTINES 

The input subroutines function in the input or in/out modes and provide for the reading of existing data tIles resldrng on an 
external storage medium. These subroutines are concerned only with the manipulation of the data requested by the object 
program. If a format definition is provided for the data being read (see 13.5.3), then the subroutine validates the format of 
the data prior to presenting the data to the object program. Otherwise, format validation does not take place. 

13.4.1.2. OUTPUT SUBROUTINES 

The output subroutines function in the output or in/out modes and provide for the creation (writing) of files on an external 
storage medium. These subroutines are concerned only with the manipulation of the data presented by the object program. 

Prior to writing this data into the output files, the subroutines reformat labels, blocks, end-of-reel, and end-of-file sentinels in 
accordance with their respective format definitions (see 13.5.3) if given. Otherwise, the data is processed as originally 
presented by the object program. 

13.4.2. DATA FILE MANIPULATION AT ITEM LEVEL 

The manipulation of data files at the item level is accomplished by the subroutines of the item handler. These subroutines are 
initiated by the execution of the appropriate I inkage coded into the object program or by the procedure call coded into the 
user's program. Both methods are described in 13.4.2.1 through 13.4.2.11. 

13.4.2.1. INITIALIZING AN FCT FOR SUBSEQUENT ITEM HANDLING 

Purpose: 

Initiates or opens the FCT (see 13.5.1) for the reading or writing of subsequent data items for data files processed in the 
input, output, and in/out modes of operation. 

Format: 

L,U AO,pktaddr 

LMJ X11,IHOPN 

Description: 

This linkage and the packet may be generated by the procedure call: 

[label] OPEN 'mode' FCT-addr(1) [,'option'] ... FCT-addr(n) [,'option'] 

Register AO is loaded with the address of the following one-word packet when the linkage is executed: 

S1 S2 S3 H2 

o mode option FCT-addr 



4144 Rev. 2 
UP.NUMBER 

where: 

mode 

option 

FCT·addr 

UNIVAC 11 00 S E R I E S SYSTEMS 13-13 
PAGE REVISION PAGE 

Specifies the mode of file processing. Entries are: 

28 - I nput mode file, forward operation (applicable to tape read operations) 

3
8 

-I nput mode file, reverse operation (applicable to tape read operations) 

408 -Output file mode (applicable to tape write operations) 

41
8
-ln/out file mode (applicable to read/write operation on FASTRAND·formatted 

mass stor,age files) 

Specifies conditions or constraints that must be considered for the particular mode of file 
processing performed. Entries are: 

E - Opens FASTRAND·formatted mass storage file for extension. Applicable to files 
processed in in/out mode. Permits user to write items after the specified EOF 
location of the file. (Applicable to FASTRAND·formatted files only.) 

N Inhibits tape files from being rewound prior to the initialization of the FCT. 
Applicable to files processed in the input or output modes. Not applicable to files 
processed in the input, reverse operation, or in/out modes of operation. 

If this option is omitted, the"tape files are rewound prior to the initialization of the 
FCT if the input or output modes of the file processing are specified. Opens 
FASTRAND·formatted mass storage file for updating if the in/out mode is 
specified. (Updating permits user to update each item in the file.) 

Address of the FCT to be intialized. 

Interpretation of the parameters specified in the procedure call is the same as that specified for the packet word. The manner 
for coding the mode parameter differs in that the procedure call uses a mnemonic rather than a numeric entry. The following 
list correlates the two; mnemonic entries are coded as shown. 

Packet entry Procedure Call 

28 INPUT 

38 REVRSE 

4°8 OUTPUT 

41
8 

IN/OUT 

There are no restrictions on the number of OPEN requests which may be coded to initialize FCT's for input, output, or 
in/out modes of operation. However, only one request may be selected by the program to perform the actual function. 

The manner in which label blocks are handled depends upon the mode of file processing and whether or not format 
definitions have been provided. See 13.6 for a discussion of label handling and 13.5.3 for format definitions. 

13.4.2.2. SEQUENTIAL READING OF DATA ITEMS 

Purpose: 

Reads from the input buffer the next consecutive item recorded in the data file being processed in the input or in/out modes 
of operation. 



4144 Rev. 2 
UP-NUMBER 

Format: 

L,U AO,pktaddr 

LMJ X11,IHRD 

UNIVAC 1100 SERIES SYSTEMS 13-14 
PAGE REVISION PAGE 

This linkage and its packet may be generated by the procedure calls: 

[label] READ FCT-addr EOF-exit 

or 

[label] READ FCT-addr move-Iength,move-addr EOF-exit 

Description: 

Register AO is loaded with the address of the following three-word packet when the linkage is executed: 

Word 0 

2 

Word 0 

FCT-addr 

Word 1 

move-length 

move-addr 

Word 2 

EOF-exit 

H1 H2 

0 FCT-addr 

move-length move-addr 

0 EOF-exit 

Address of the FCT (see 13.5.1) for the file being processed. 

Specifies the size of the item read. Must be specified for all spanned items; all fixed- or 
variable-length items move from the input buffer to the user's area for processing, or 
when the item is read from a file processing in the in/out mode of operation. Entries are: 

o 

nbr-of-words 

Causes the entire item to be moved from buffer area to user's area 
for processing. 

Specifies a specific number of words within the item to be moved 
from the buffer area to the user's area for processing. The move 
length parameter may be omitted only when the item does not 
need to be moved from the buffer to the user's area for 
processing. 

Specifies the address in the user program to which the item read is moved. This parameter 
is coded when the move-length parameter is specified. 

Specifies the address in the user's program to which control is returned when an EOF 
condition is detected. 

Interpretation of the parameters specified in the procedure calls is the same as that specified for "the packet w'ords. 



4144 Rev. 2 
UP-NUMBER 

UN IVAC 11 00 SE RI ES SYST EMS 13-15 
PAGE REVISION PAGE 

The first format shown for the procedure call cannot be used for reading items that are spanned (item which overlaps blocks) 
or which must be moved from the input buffer to the user's area for processing. If the next item requested by this call is not 
in the buffer, another block is read into the buffer and the first item is obtained from it. The user may then process this block 
without removing it from the buffer. 

The second format shown for the procedure call is used when reading spanned items as well as items of fixed- and 
variable-length. If the item is spanned, several requests to the input medium from the item handler are necessary to obtain the 
entire item. 

Before the item read is presented to the user, the item handler interrogates the format definitions for items (see 13.5.3) to 
validate the item. If a format definition has not been specified, the item is presented to the user unaltered. 

13.4.2.3. RANDOM READING OF DATA ITEMS 

Purpose: 

Reads a specific data item from a file residing on FASTRAND-formatted mass storage. File must consist of fixed-length items 
and blocks and is processed in the input and in/out modes of operation. 

Format: 

L,U AO,pktaddr 

LMJ X11,IHRDRN 

This linkage and the packet may be generated by the procedure call: 

[label] READRM FCT-addr move-Iength,move-addr item-nbr 

Description: 

Register AO is loaded with the address of the following three-word packet when the linkage is executed: 

Word 0 

2 

Word 0 

FCT-addr 

Word 1 

move-length 

move-addr 

H1 H2 

0 FCT-addr 

move-length move-addr 

0 item-nbr 

Address of the FCT (see 13.5.1) for the file being processed. 

Specifies the size of the item to be moved from the input buffer to the user's area for 
processing. Entries are: 

o 

nbr-of-words 

Causes the entire fixed-length item to be moved to the user's area 
for processing. 

Specifies a specific number of words within the item to be moved to the 
user's area. 

Specifies the address in the user's program to which the item is moved for processing. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 13-16 
PAGE REVISION PAGE 

Word 2 

item-nbr Specifies the position of the requested item in the file relative to the beginning of the file. 

Interpretation of the parameters specified in the procedure call is the same as that specified for the packet words. 

The block containing the requested item is read into the input buffer from the input medium. Before the item is moved to 
the user's area for processing, the item handler interrogates the format definition for items (see 13.5.3) to validate the item. If 
a format definition has not been specified, the item is presented to the user unaltered. 

EOF detection is not necessary since items residing in files being read randomly are read many times over in any order; these 
items therefore have no logical EOF. 

Those items read randomly and processed in the in/out mode are obtained with an exclusive read function (see 13.4.2.4). 

13.4.2.4. REQUESTING EXCLUSIVE RANDOM READING OF DATA ITEMS 

The exclusive reading of data items is a feature of the executive which permits the user to request exclusive use of a specific 
fixed-length item. The item must be contained in a FASTRAND-formatted mass storage file and must be processed in the 
in/out mode of operation. Once initiated, the item is interlocked from all references until it is released by the next reference 
to the file. 

The exclusive read feature is initiated by execution of the same linkage specified for a normal read random request (see 
13.4.2.3). The packet for this linkage remains basically the same except for H1 of word 0 which contains the numeric value 1, 
indicating that the packet pertains to an exclusive read request. 

If the user wishes to initialize the exclusive read random request by means of a procedure call, he does so by prefixing the 
request name of the normal read random procedure call (see 13.4.2.3) with the letters EX. All other parameters of the 
procedure call are the same. 

If the user holds an item for a long period of time, a timeout occurs and the file error exit specified in the FCT is taken. The 
error code and the reentry code that the user must use to return control to the item handler are available in register A 1. 

H1 H2 

error-code (1 Os ) EX-READ-addr 

Error processing is described in 13.8. 

13.4.2.5. SEQUENTIAL WRITING OF DATA ITEMS (lHWRT) 

Purpose: 

Writes into the output buffer the next consecutive item to be recorded in the file being processed in the output or in/out 
mode of operation. 

Format: 

L,U AO,pktaddr 

LMJ X11,IHWRT 



4144 Rev. 2 
UP-NUMBER 

UN IVAC 1100 SE RI ES SYSTEMS 13-17 
PAGE REVISION PAGE 

This linkage and the packet may be generated by the procedure call: 

[label] WR ITE FCT-addr [move-length] 

or 

[label] WR ITE FCT-addr move-Iength,move-addr 

Description: 

Register AO is loaded with the address of the following two-word packet when the linkage is executed: 

Word o 

Word 0 

FCT-addr 

Word 1 

move-length 

move-addr 

H1 H2 

o FCT-addr 

move-length move-addr 

Address of the FCT (see 13.5.1) for the file being processed. 

Specifies the size of the item to be written. Must be specified if file is processed in the 
in/out mode or if the item size differs from that defined in FCT. Entries are: 

o 

nbr-of-words 

Specifies that item size is the same as that previously defined in 
FCT. 

Specifies the speci'fic number·of-words (size) in the item to be 
written when it differs from that defined in FCT. If user has 
placed the item in a predefined area, this field specifies an item of 
less or greater size than defined in FCT. 

If this parameter is omitted, it specifies that the item to be 
written is the same as defined in FCT and that the user has 
already placed item in a predefined area. 

Specifies the address of the item to be written. Must be specified for in/out mode 
processing. May be omitted if user has placed item in a predefined area. 

The manner in which an item is written into the buffer depends on whether item size is defined as fixed or variable in the 
file's FCT. If item size is defined as being fixed, the balance of the item area is zero filled for items smaller than that specified 
in the FCT. If item size is defined as variable, then the number of words specified in the move-length parameter is written 
into the item area. If item length is greater than that defined for the item, the item is either spanned or written into the nex1 
item block; that is, if the block size for items is defined as fixed, the item is spanned between two blocks. If the block size i~ 
defined as variable, the current buffer is written and the entire item is placed in the next buffer. 

13.4.2.6. RANDOM WRITING OF DATA ITEMS 

Purpose: 

Writes a fixed-length item in a specific position within a file residing on mass storage. The file is processed in either the output 
or in/out modes of operation. 



4144 Rev. 2 
UP-NUMBER 

Format: 

L,U AO,pktaddr 

LMJ X11,IHWTRN 

UNIVAC 1100 SERIES SYSTEMS 13-18 
PAGE REVISION PAGE 

This linkage and the packet may be generated by the procedure call: 

[label] WR ITRM FCT-addr move-Iength,move-addr item-nbr 

Description: 

Register AO is loaded with the address of the following three-word packet when the linkage is executed: 

Word 0 

2 

Word 0 

FCT-addr 

Word 1 

move-length 

move-addr 

Word 2 

item-nbr 

H1 H2 

0 FCT-addr 

move-length move-addr 

0 item-nbr 

Address of the FCT (see 13.5.1) for the file being processed. 

Specifies the size of the item to be moved from the area specified by the move-addr 
parameter. The item moves into the buffer to be recorded as a random item in the file 
that is being processed. Entries are: 

o 

nbr-of-words 

Causes the entire item of the size previously defined in the FCT 
to be read into the buffer. 

Specifies a specific number of words within the item (less than 
the item size defined in FCT) to be read into the buffer. 

Address of the item to be written. 

Specifies the position that the item will occupy in the file relative to the beginning of the 
file (item number 0). 

Interpretation of the parameters specified in the procedure call is the same as that specified for the packet words. 

The block containing the item is located and retrieved from the output medium by means of the item address specified by the 
user. The item is then moved from the location specified by the move address to its position in the buffer. The buffer is 
rewritten to its original position in the file. Prior to writing the item in the buffer, the item handler structures the item 
according to the format definition for items (see 13.5.3). If a format definition has not been specified, the item is written 
into the file unaltered. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 13-19 
PA GE RE VISION PA G E 

In cases where the size of the item written is less than that defined for fixed·length items in the FCT, the unused portion of 
( the item is either zero filled or left undisturbed. If the file is processed in the output mode, the unused portion is zero filled. 
\~ . . The unused portion of the item is left undisturbed when the file is processed in the in/out mode. 

13.4.2.7. SEQUENTIAL AND RANDOM READ/WRITE REQUESTS 

Sequential and random read/write requests pertain to items contained in files residing on mass storage and processed in the 
in/out mode of operation. The item handler uses the same routines as those specified for the sequential reading and writing of 
data items (see 13.4.2.2 and 13.4.2.5, respectively) and the random reading and writing of data items (see 13.4.2.5 and 
13.4.2.6, respectively). The difference is in the logical sequence in which the requests for these subroutines are executed. For 
example, the following logic is implied when sequential read/write requests are executed: 

III A read request makes the next item available for processing. 

II A write request following a read request rewrites the item. 

c Consecutive read requests without intervening write requests make available consecutive items which are not rewritten. 

C Consecutive write requests without intervening read requests cause the writing of successive items. 

m A read request following several consecutive write requests obtains the item which sequentially follows the last item 
written into the file. 

13.4.2.8. READING AND WRITING THE CURRENT BUFFER CONTENT 

Purpose: 

Manipulates data into or out of the buffer currently assigned to the file being processed. The specific function performed is 
based upon the mode (input or output) in which the file is processed. 

Format: 

L,U AO,pktaddr 

LMJ X11,IHDRN 

This linkage and packet may be generated by the procedure call: 

[label] DRAI N FCT·addr( 1) ... FCT-addr(n) 

Description: 

Register AO is loaded with the address of the following one-word packet when the linkage is executed: 

H1 H2 

o FCT-addr 

where: 

FCT-addr Is the Address of the FCT (see 13.5.1) for the file being processed. 

When the IHDRN subroutine is executed in the input mode (read operation), the current buffer in use is relinquished and 
another block of data is acquired from the file and read into the buffer. Any unused items in the buffer are ignored. If the 
buffer has a spanned item, several buffers are bypassed to obtain the next valid item. The next read request for the file being 
processed is directed to the first valid item in the newly acquired buffer. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 13-20 
PA GE REVISION PAGE 

An IHORN subroutine executed in the output mode (write operation) causes the contents of the current buffer to be 
immediately written into the file being processed. A request to initiate the IHORN subroutine is ignored if the buffer is 
empty. The method in which the buffer is written is based on the following: 

• If the block size is specified as variable in the FCT, the buffer is truncated to the last valid item. 

• If the block size is specified as fixed, the buffer is not truncated. An end-of-data code (777777777777
8

) recorded 
following the last valid item. 

Regardless of which method is used, the format definition for blocks (see 13.5.3) is used to complete the block structure 
before it is written. If a format definition is not specified, the block is written unaltered. 

13.4.2.9. CLOSING A TAPE REEL 

Purpose: 

Terminates the reading of data items from an input tape reel or the writing of data items onto an output tape reel assigned to 
the file being processed. It also initiates, automatically, the reading or writing of subsequent tape reels assigned to the same 
file. 

Format: 

L,U AD,pktaddr 

LMJ X11,IHCLR 

The linkage and packet may be generated by the procedure call: 

[label) CLOSE 'REEL' FCT-addr(1) [,'option'] ... FCT-addr(n) [,'option'] 

Description: 

Register AD is loaded with the following one-word packet when the linkage is executed: 

S1 

D 

where: 

option 

FCT-addr 

S2 S3 H2 

D option FCT-addr 

Specifies conditions or constraints that must be considered when closing a tape reel. 
Entries are: 

L - Rewinds tape with interlock after closing is completed. 

N - Inhibits tape reel from being rewound after closing is completed. 

If these options are omitted, the tape file is rewound without interlock after closing 
is completed. 

Address of the FCT (see 13.5.1) for the file being processed. 

Interpretation of the parameters specified in the procedure call is the same as that specified for the packet word. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 13-21 
PAGE REVISION PAGE 

Closing an input tape reel releases all buffers to the buffer pool, initiates the tape rewind as specified by the option 
parameter, and initiates the reel swapping procedure. The user's label access word, if one was specified, is loaded into register 
AO when control is returned to the user's program. If a user's label was not specified, register AO is zero filled. 

When an output tape reel is closed, any unrecorded items in the buffer are constructed according to the format definition for 
.blocks (see 13.5.3) and recorded on tape. If a format definition has not been given for end-of-reel sentinels, a block is 
generated and written, and then the EOF mark is written. A final EOF mark is recorded before the rewind option is executed 
and before tape reel switching procedure is initiated. 

The location of the next item area in the buffer is loaded in control register AO upon return of control to the user's program. 
The handling of labels and sentinels is as specified in 13.6. 

13.4.2.10. CLOSING A DATA FILE 

Purpose: 

Terminates the reading or writing of data files processed in the input, output, or in/out modes of operations. 

Format: 

L,U AO,pktaddr 

LMJ X11,IHCLF 

This linkage and the packet may be generated by the procedure call: 

[label] CLOSE 'FI LE' FCT-addr( 1 )[,'option'] ... FCT-addr(n)[,'option'] 

Description: 

Register AO is loaded with the address of the following one-word packet when the linkage is executed. 

Sl 

o 

where: 

option 

FCT-addr 

S2 S3 H2 

o option FCT-addr 

Specifies the tape rewind procedure to be initiated when the data file resides on magnetic 
tape. The option field is ignored when the data file resides on mass storage. Entries are: 

L - Rewinds tape with interlock after closing is completed. 

N - Inhibits tape reel from being rewound after closing is completed. 

If the option is omitted, the tape file is rewound without interlock after closing is completed. 

Address of the FCT (see 13.5.1) for the file being processed. 

Interpretation of the parameters specified in the procedure call is the same as that specified for the packet word. 

/" There are no restrictions on the number of close requests coded to reference an individual input, output, or in/out file, but 
\ I only one request is selected by the program to perform the actual function. A single request can be used to close all files in 
\ ........ -~ .. ,/ 

the mode in which they are processed. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 13-22 
PAGE REVISION PAGE 

When an output file is being closed, the output buffer is constructed according to the format definition for blocks (see 
13.5.3) and written on the output recording device. If a format has not been given for EOF sentinels, the block is generated 
and written, and then an EOF mark is written. A final EOF mark is recorded on the output file before the rewind option is 
initiated. If the file resides on disc or FASTRAND-formatted mass storage, the rewind option is ignored and the next address 
to be written is saved in the item directory. 

If a close request for an in/out file is executed with a format definition for EOF sentinels specified, the sentinel is written 
according to the following rules: 

• The sentinel is not updated if the original sentinel was not overwritten and if recording in the file was not extended 
beyond the sentinel. 

• The orginal sentinel is erased and a new one is recorded after the last block in the file if the original sentinel was not 
overwritten but recording was extended beyond the sentinel. 

• A new sentinel is recorded after the last block in the file if the original sentinel was overwritten. 

13.4.2.11. RELINQUISHING USER PROGRAM ASSOCIATION WITH DATA FILE 

Purpose: 

This request is used to immediately relinquish a program's association with a data file that is processed in the input, output, 
or in/out mode of operation. The medium on which the file resides is also released by this request. 

Format: 

[label] RE LESE FCT-addr(1) [,option] ... FCT-addr(n) [,option] 

where: 

FCT-addr Address of the FCT (see 13.5.1) for the file being released. 

option The physical assignment for the file can be held by coding the letter S. 

Description: 

Disposition of released file is based upon the cataloguing options specified on the @ASG control statement (see 3.7.1) for 
devices assigned to the file and the option specified on the RE LESE request., Before disposition occurs, the item handler calls 
upon the close file subroutine (see 13.4.2.10) to close the file if the file is not already closed. If the file resides on tape, the 
tape reel is rewound with interlock when the close subroutine is initiated. The user, therefore, is not required to issue a 
separate close request to terminate the file if the file is to be terminated by the R ELESE request. Once closed, the file can 
only be reopened by the program if it is a catalogued file. 

,'3.4.3. LAYOUT FOR SINGLE AND BLOCKED ITEMS 

The items processed by the item handler are recorded on tape and FASTRAND-formatted mass storage files as single or 
blocked items. The layout for each type is determined by whether the items are defined as being fixed or variable in length 
and if the item has been given a format definition. The processing of a variable-length item requires that the user specify a 
control word which defines the length of the item. If a format definition (see 13.5.3) has been specified for the item, the 
control word is embedded within the definition. Fixed-length items are of a given size and therefore have no control 
information. 

The layout of single and block items are shown in Figures 13-2 and 13-3, respectively. These examples illustrate both 
formatted and unformatted layouts. 



-....... 

4144 Rev. 2 
UP·NUMBER 

UNIVAC 1100 SERIES SYSTEMS 13-23 

previous current 1 1 -item- -item-
Fixed-

length length 
Length 

Item 
Variable 

Length 

Item 

----------------~---------------Unformatted Single Item 

Prefix 
Information 

Variable 

or 

Fixed-Length 

Items 

Suffix 
Information 

Figure 13-2. Single Item Layout 

I 

PAGE REVISION PAGE 

Prefix 

Information 

Variable 

or 

Fixed-Length 

Item 

Suffix 

Information 

Formatted Single Item 

Variable 1 
or 

. Fixed.LengtJ 

Items 

Formatted Blocked Item Unformatted Blocked Item 

Figure 13-3. Blocked Item Layout 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 

13.4.4. TRANSFER OF CONTROL FROM ITEM HANDLER TO USER'S PROGRAM 

13-24 
PAGE REVISION PAGE 

Control is transferred from the item handler to the user's program after a request or procedure call for one of the item 
handler subroutines has been processed or when an end-of-reel or end-of-file condition is encountered. When control is 
returned to the user's program, information related to that return is provided to the user in the form of an access word which 
is loaded into registers AO or A 1. The nature or interpretation of the access word depends on the specific function being 
performed and the mode in which that function is processed. 

13.4.4.1. CONTROL TRANSFER DURING OUTPUT MODE PROCESSING 

The access word loaded into register AO after the processing of an open, write (sequential or random), or drain output 
subroutine request defines the buffer area into which the next item to be processed is placed. The size of the buffer area and 
its location are made available to the user program. The size of the area given depends on whether the user has defined items 
as being fixed or variable in length when he generated the FCT (see 13.5.1) for the file. For fixed-length items, the area given 
is equal to the item size. For variable-length items, the area given is equal to the current unused portion of the buffer. The 
format of the access word in register AO is: 

H1 H2 

nbr-of-words buffer-addr 

Control is also returned to the user's program when the tape device assigned to the file physically reaches the end of a reel. 
This only occurs, however, if the user has specified an end-of-reel exit code in the FCT for the file. Otherwise, close reel 
procedures are automatically initiated by the item handler. When the end-of-reel exit is taken, register A 1 is loaded with an 
access word which provides the location of the FCT and the address to which the user program returns control after initiating 
his close procedures in order to reenter the main execution sequence. Once control is returned to the user program, the FCT 
address in H 1 of register A 1 must be reset to O. The format of the access word in register A 1 is: 

H1 H2 

FCT-addr return-addr 

The location of the next item area in the buffer is given in register AO after the user program has initiated the close reel 
procedures. 

13.4.4.2. CONTROL TRANSFER DURING INPUT MODE PROCESSING 

When control returns to the user program after a read sequential or random request, register AO is loaded with the access 
word which defines the actual size and buffer location of the current item read. The format of register AO is: 

H1 H2 

nbr-of-words buffer-.addr 

The buffer address specified provides the user with the location at which the image of the current item resides. If the read 
function processed required a move function, then a second image of the current item is also made available to the user. This 
second image resides at the location specified by the address parameter of the procedure call requesting the read function. 
The item image in the specified buffer area, however, remains available to the user program until the next request for a read 
function is issued. 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 13-25 
UP-NUMBER PAGE REVISION PAGE 

The item image is not made available to the user if the read request issued pertained to a spanned item. The access word 
returned to register AD in this case contains only the size of the current item. The buffer address is zero filled. The format of 
register AD is: 

H1 H2 

nbr-of-words D 

Register A 1 is used when a read function returns control to the user program through an EOF or end-of-reel exit; that is, 
when an EOF block or end-of-reel block is read and validated, the routine returns control to the user program by using the 
appropriate EOF or end-of-reel exit address specified in the FCT (see 13.5.1) for the file. The address of the FCT in which 
the exit address exits is specified in H 1 of register A 1. This address is reset (zero filled) before the user returns control to the 
item handler. H2 of register A 1 contains the address to which the user returns control after he has initiated his close 
procedures in order to reenter the main sequence of execution_ If the user has not specified an end-of-record exit in the FCT, 
an automatic close reel procedure is performed and the tape is rewound with interlock. The length and location of the format 
block are loaded into register AD. 

The EOF exit is also taken when an EOF mark is detected and the format definitions for EOF and end-of-reel sentinels have 
not been specified. 

13.4.4_3. CONTROL TRANSFER DURING IN/OUT MODE PROCESSING 

Since the functions performed in the in/out mode are basically a combination of the functions performed in the input and 
output modes (see 13.4.4.1 and 13.4.4.2), registers AD and A 1 serve similar duties in returning control to the user program. 

For read/write functions, register AD always contains an access word for the largest size item that can be written. If the file is 
being updated, this size represents the actual size of the item just read. Otherwise, it represents the size of the next area of the 
buffer into which the next item is written. The maximum item size permitted-vvhen extending a file is the maximum item size 
defined by the user. 

13.5. INTERFACING THE DATA HANDLING ROUTINES WITH THE USER'S PROGRAM 

Prior to referencing a data file for processing, the user must establish a means of communications between his program and 
the executive data handling routines used to access and manipulate that file. He accomplishes this through the generation of a 
file control table (FCT) which specifies the information necessary for interfacing the user's program with the data handling 
routines and the data handling routines with one another. If the user program requires the handling of data files at the block 
buffering level, he is then responsible for setting up a pool of buffers for those files. He is also responsible for providing the 
format definition describing the physical organization of those files requiring label and sentinel processing to the executive. 

13.5.1. FILE CONTROL TABLES 

File control tables (FCT) provide the basic interface between the user's program and the data files located on the peripheral 
storage devices of the system. An FCT is generated and constructed within the user's program for each data file reference 
within that program. The FCT's provide the executive with user-specified information, such as the name and type of file 
requested, the mode in which the file is processed, the amount of I/O control required to access and manipulate the file, and 
all information pertinent to the physical organization of the file and the handling of error conditions which may be 
encountered. The data handling routines use the FCT's to communicate with the user's program. 



4144 Rev. 2 
U P.NUMBER 

UNIVAC 1100 SE RI ES SYSTEMS 13-26 
PAGE REVISION PAGE 

13.5.1.1. FILE CONTROL TABLE FORMAT 

The format as well as the length and complexity of an FCT is determined by the level at which the file maintained by this 
table is processed A file processed at the item level requires the highest level of interface and therefore must have an FCT 
containing all three functional areas: I/O control, block buffering, and item control. If the file is handled at the block level, 
then only the I/O control and the block buffering areas need to be generated. The I/O control area, however, is always 
generated regardless of the level of file processing. The format of a complete FCT is shown in Figure 13-4. 

The I/O control area comprises the first six words (O through 5) of an FCT. It contams the format of the appropriate request 
packet required for communicating with the executive I/O device handlers. The I/O request packets specified in this area are 
limited to those handlers associated with magnetic tape and FASTRAND·formatted mass storage devices. (I/O request 
packets are described in detail in Section 6.) 

The block buffering area occupies words 6 through 24 of the FCT. This area provides a general means of file communications 
for the user and is the lowest level of program interface for data handling. The information in this section primarily concerns 
the internal control required by the subroutines of the block buffering package (see 13.3) for handling data at the block level. 
The user, however, provides the block buffering package with sufficient information to assure proper handling of the data 
blocks requested. This is accomplished through the execution of the file procedure call used to generate the FCT (see 
13.5.1.2). 

The item control area also provides a general means of file communications for the user and is considered the highest level of 
program interface. The information presented in this area provides the interface required for the internal control and handling 
of data at the item level. The information is used by the subroutines of the item handler (see 13.4) to manipulate items and 
to build data blocks from these items. In addition, the contents of this area are used, when necessary, to interface the item 
handler with the format definitions specified for file organization (see 13.5.3) and the block buffering package (see 13.4) for 
handling the data blocks generated. 

Most of the fields in the FCT are zero filled prior to the opening or initializing of the FCT for a given file. The parameters 
enclosed in brackets are those specified by the user in the FI LE procedure call which generates the FCT (these parameters are 
optional). If the user attempts to generate an FCT without using the FILE procedure call he must make certain that these 
parameters are provided and specified in their proper location before any reference is made to the FCT. The initial value set 
for these parameters depends upon the level at which data is handled. See 13.4 for data handling at item level; see 13.3 for 
data handling at block level. The parameters shown in italics are used for internal control purposes by their respective 
handlers and therefore require no further attention by the user. 

Some of the data presented in the FCT iSTetained by the executive for future use when a "file is closed. At the block level, the 
executive places the block size entry and, if the file resides on FASTRAND·formatted mass storage, places the end-of·file 
sector address in the main item of the master file directory for the catalogued file. The complement of the block size is used 
if the block size is variable. The item size is also retained if the data is handled at the item level. This information is 
automatically retrieved by the executive if the user fails to specify the entry on a subsequent opening of the FCT. The 
location that the information occupies in the master file directory item depends on the specific type of file catalogued 
(magnetic tape or FASTRAND·formatted mass storage). In either case, the block size is expressed as a negative value if it is 
considered as a variable, and the item size is always stated as 0 when it is variable. See Section 22 for information concerning 
the master file directory. 



.'~-" 

( 
....... __ . 

4144 Rev. 2 
UP.NUMBER 

Word 0 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

G 

UNIVAC 1100 SERIES SYSTEMS 
PAGE REVISION 

Sl S2 S3 S4 S5 S6 

filename 

filename 

used·by·executive 
intetrupt-

interrupt-activity-start activity-id 

status function AFC substatus 

word-count buffer-addr 

0 drum-addr 

open-flag 
look-ahead-

file-mode current-buffer-held-by-IIO factor-{LAF) 

max-block-word-count fixed-block lock-flag FASTRAND-flag 

[I /O-error-ex it] [BBP-call-error-ex it] 

user-buffer-starting-addr [abnormal-error-exit] 

[sentinel-value] 

addr-of-buffer- packet activity-reentry-addr 

cumulative-block-count 

addr-of-Iast-queued-buffers addr-of-first-queued-buffers 

curren t-data-Ioca ted-in-buffer save-BBP-routine-return-addr 

word-Iength-of-data-block data-buffer-starting-addr 

item-flag frame-count 
checkpoin tl 

0 liD-flag queue-count restart 

exclusive-read-return relative-FCT-addr 

Figure 13-4. File Control TableFormat (Part 1 of 3) 

PAGE 

\ 

13-27 

I/O 
Control 
Area 

Block 
Buffering 
Area 



4144 Rev. 2 
UP-NUMBER 

Word 18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

UNIVAC 1100 SERIES SYSTEMS 13-28 
PAGE REVISION PAGE 

S1 S2 S3 S4 S5 S6 

sector-count 

activity-

0 tape-equipment I/O-read 0 abnormal-lock switch-
location 

highest-FA STRA ND-addr 

FASTRA ND-EOF-addr 

[ test-and-set] 
[sentinel-

read-option position] user-reentry-addr 

[mask-for-block-sentinel-check (all bits set if undefined)] 

[eight-word-register-save-ind icator] 

I/O-flag debug-flag do-I/O-flag [ format-entry-name] 

length-data-area-Ieft-in-block add-curren t-item-da ta-area 

: 

'. nbr-of-words-Ieft-to-process n6r-of-words-requested-for-mo ve 

r 

length-Ieft-in-block-pools-format add-current-item-prefix 

[end-of-reel-exit] length-current-item-pools-format 

[ fixed-item-size] nbr-of-items-in-block 

block- flag reel-flag write-flag read-flag lock-flag user-function 

T-S-flag span -flag EOF-flag exclusive-read-addr 

mark-flag label-format item-format block-format EOR-format EOF-format 

[user-label-words] 

[ user-free-words] 

Figure 13-4. File Control TableFormat (Part 2 of 3) 

Block 
Buffering 
Area 

Item 
Control 
Area 



I 

4144 Rev. 2 
UP-NUMBER 

S1 

UNIVAC 1100 SERIES SYSTEMS 

S2 S3 S4 

13-29 
PAGE REVISION PAGE 

S5 S6 

"' .. .-' Word 36 three-word-packet 1\ 

-....... -

37 for-block-buffering-requests 

38 from-item-hand ler 

39 user-device -error- ex it user-file-error-exit 

40 user-abnormal-ex it SDF-flag 

41 routine-return-Iocation routine-return-Iocation 

42 item-prefix-Iength item-suffix-Iength 

43 block-prefix-Iength block-suffix -length 

44 routi ne-retu rn-Iocat ion 

45 d iagnostic-du mp-routi ne-Jocation 

Figure 13-4. File Control Table Format (Part 3 of 3) 

13.5.1.2. GENERATING THE FCT 

Item 
Control 
Area 

The FCT is generated by coding the procedure call FI lE within the user program. Each parameter, with the exception of the 
first parameter ('filename', format), is identified to the executive by a title enclosed in quote marks. The order in which the 
parameter is specified, with the exception of the first parameter, is of no consequence. The subfields, however, must appear 
in the order shown. The format illustrated lists the parameters on separate coding lines only for clarity. 

Format 

[label] FilE 'filename', format; 

['SIZE'[,block] [,item] ] ; 

['POOl',link,laf] ; 

['ER ROR',file,device,abnormal] ; 

['SENT',value,mask,position] ; 

['lABEl',nbr-of-words,addr] ; 

['FREEWD',nbr-of-words,addr] ; 

['EOR',addrJ ; 

['REG',A] 



4144 Rev. 2 
UP-NUMBER 

Parameters: 

'filename' 

format 

'SIZE' 

UN I V A C 1100 S E R I E S SYSTEMS 13-30 
PA GE REVISION PAGE 

Specifies the external filename of the file for which the FCT is being built. The filename 
specified normally agrees with that specified in the @ASG control statement (see 3.7.1) 
or an internal filename equated to it by means of the @USE control statement (see 3.7.5). 

Specifies the name (label) of the format definition entry point required to use this file. 
(See 13.5.3.1 for format definition.) 

If no specific format is desired (file consists of items within blocks), the system-defined 
coding 'NULFOR' is specified in this subfield. 

For a file to be handled at the block buffering level (see 13.3), the system-defined coding 
'BBP' must be specified in this subfield. 

For a file to be handled at the item level (see 13.4), by use of the LION format, the 
coding *L10NA or *L10NB is specified in this subfield. The coding 'LION' refers to a 
format element related to the UN IVAC 1107 system. It is provided for those users 
wishing to convert to the 1100 system format at the item level. The asterisk preceding 
this entry informs the executive that additional storage area must be reserved for the 
counters used by the LION format subroutines. The asterisk also causes the assembler to 
place a 1 in the item flag (S1 of word 16) of the FCT (see 13.5.1.1), LION sentinel (1././.) 
in word 10 of the FCT, and a sentinel mask (777777777777

8
) in word 23 of the FCT 

when it processes the FI LE procedure. 

Describes the item/block relationship for the file specified. If this parameter is omitted, 
the SIZE parameter saved in the file's master file directory item during cataloguing is 
used. If the file is not catalogued and the SIZE parameter is omitted, the assembler 
substitutes the buffer size less 3 for the block size and expects variable-length items when 
processing at the item level. 

The SIZE parameter can be coded in any of the following formats: 

(1) 'SIZE',block,item 

(2) 'SIZE',*block,item 

(3) 'SIZE',block 

(4) 'SIZE',*block 

Format 1: 

Specifies fixed-length item processing in variable-length blocks. Items are recorded until 
the area remaining in a block is less than the size of the next item. The block is then 
written and a new buffer is acquired. The user may vary the size of the block by varying 
the number of fixed-length items in that block. This is accomplished by use of the drain 
request (see 13.4.2.8) which truncates the block before it is written. 

Format 2: 

Specifies fixed-length item processing in fixed-length blocks. Asterisk denotes that the 
value specified in block parameter is used for computation of block length in which an 
integral number of items are included. The computed block length constitutes the size for 
each block written into the file. The user may vary the number of items in the block by 
use of the drain request. Truncation of the block, however, does not occur for this 
format. This format must be specified when random file processing is used. 



'~ .... , - . 

4144 Rev. 2 
UP.NUMBER 

block 

item 

'POOL 

link 

laf 

'ERROR' 

file 

device 

abnormal 

'SENT' 

UNIVAC 1100 SERIES SYSTEMS 13-31 
PAGE REVISION PAGE 

Format 3: 

Specifies variable-length item processing in variable-length blocks. Items are recorded 
until the area remaining in block is less than the size of the next item. The block is then 
written and a new buffer is acquired. A 'BBP' specified in the format parameter results in 
the variable-length block processing for this format. 

Format 4: 

Specifies variable-length item processing in fixed-length blocks. Asterisk denotes that the 
value specified in block parameter is the actual size of the block. This format permits 
spanning (overlapping blocks with an item). The item handler spans blocks with an item 
when the item presented is larger than the block size specified or larger than the block 
size specified or larger than the area remaining in the block. This format specifies that 
fixed-length blocks are processed when the format parameter contains a 'BBP' entry. 

Specifies the maximum number of words in the format definition (see 13.5.3) for each 
item and for the block. 

Specifies the actual number of data words in each fixed-length item. 

Specifies the amount of buffering required for the file. 

Specifies the address of the buffer control word (see 13.5.2). 

Specifies an estimate of the number of blocks to be read ahead for input files. The value 
specified is set to, and may not exceed, one less than the number of buffers in the buffer 
pool. 

Permits the user to specify which error conditions are to be processed. If this parameter is 
omitted, the item handler takes an ERR$ exit and no error message is printed. The 
standard system error procedure results in program termination after the appropriate 
error code and the active reference is recorded in register A 1. 

Specifies an address in user's program to which control is returned when a contingency 
pertaining to the operation of user files arises. 

Specifies an addre~s in user's program to which control is returned when a contingency 
pertain ing to physical operation of a peripheral device occurs. 

Specifies an address in user's program to which control is returned when the following 
conditions are detected 

• sentinel found, 

• end-of-record information, 

• end-of-tape, or 

• end-of-mass-storage area 

If data is being handled at the item level, control is returned to the abnormal location when 
a format error is discovered by a format subroutine. 

Defines sentinel being looked for when reading a file at the block buffering level. (User 
writes his own sentinel blocks on output operations.) A sentinel check is not made if this 
parameter is omitted and the file is not catalogued. If this parameter is omitted and the 
LION format is specified, then standard LION sentinel values are generated as if the user 
had coded 'SENT', '/././.' into his program. 



4144 Rev. 2 
UP-NUMBER 

value 

mask 

Position 

'LABEL' 

nbr-of-words 

addr 

'FREEWD' 

nbr-of-words 

addr 

'EOR' 

addr 

'REG' 

A 

UNIVAC 1100 SERIES SYSTEMS 13-32 
PAGE REVISION PAGE 

Specifies up to six numeric or alphanumeric characters which the item handler uses in 
detecting a sentinel block. Alphanumeric entries are enclosed by quote marks. 

Specifies a mask against which the data word in the block is applied for determining a 
sentinel block. If this parameter is omitted or specified as zero, the item handler generates 
a mask of all 1 bits for full-word detection. When the mask is provided in the FCT, the 
block buffering package (BBP) does not check FASTRAND-formatted files for EOF to 
stop the input. The input is stopped only when a sentinel block is detected. When 
operating, strictly at the block buffering level, however, the sentinel block is determined 
by comparing the sentinel word in the FCT to the first word in each block in which the 
item flag (S1 of word 16 in FCT) is zero. 

Specifies the position of the data word within the block. This word is applied to the mask 
specified by the mask parameter for the purpose of determining the sentinel block. 

Defines the location and length of the user's label image. If this parameter is omitted, user 
label processing is not performed. This parameter is ignored by the block buffering 
package when processing is performed at the block buffering level, and at the item level if 
a format definition was not provided for a label block or if the definition of a label block 
did not provide for user label. 

Specifies the number of words contained in the user's label. 

Specifies the address of the user's label. 

Defines the 1107 LION label block area referred to as free words. If this parameter is 
omitted, free word processing is not performed. This operation can be used to extend the 
length of a label block to make the file compatible with EXEC II or EXEC I. 

Specifies the number of words comprising the free word information. 

Specifies the address of the free word information. 

Defines the end-of-reel exit. If this parameter is omitted, end-of-reel procedures are 
performed automatically. This parameter is ignored when processing is performed at the 
block buffering level. 

Specifies the address location in the user's program to which control is returned upon 
detection of an end-of-reel condition. 

Defines the manner in which the block buffering package handles the user's register set 
A 1 through A5 and R 1 through R3. If this parameter is omitted, the contents of the 
user's registers are saved in the eight-word buffer contained in the block buffering 
package. 

Specifies the coding which saves or destroys the contents of the user's registers. The 
contents of the user's registers are saved in an eight-word buffer in the block buffering 
package when a 0, +0, or blank entry is made in this subfield. The contents of these 
registers are also saved in a user-defined buffer area providing the address of that buffer is 
specified in this parameter. 

13.5.2. ESTABLISHING BUFFER POOLS (BPOOL$ AND BJOIN$) 

Prior to requesting a data file, the user must establish a pool of buffers for handling the data blocks being generated or being 
manipulated by the data handling routines. The buffer pool may be assigned to one particular file or to many files. In either 
case, it provides temporary storage for data and occupies a portion of the object program's storage area. Although the 
location and control of the buffer pool are m~ntained by the block buffering package, the size and number of buffers 
contained in the pool and the number of files assigned to the pool are specified by the user. For maximum efficiency, the 
number of buffers for each file should be one more than the look-ahead-factor (LAF) specified in the FCT (see 13.5.1) for 
the file. The block buffering package assumes that the number of buffers provided equals the LAF parameter plus 1. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 13-33 
PAGE REVISION PAGE 

The size of each buffer in the pool is equal to the maximum block size specified for the files plus an additional three words 
for control purposes. 

If the LAF entry cannot be satisfied due to insufficient buffers in the user buffer pool, the user-specified file-error-exit is 
taken with an error code of 118 and returned to the user. If the link control word is not specified or the buffer size and the 
control word are less than the maximum block size of the file, the file error exit is also taken by the executive. (See 13.8 for 
error processing.) 

The file supervisor supplies the routines the user needs to set up and, when needed, expand the buffer pool. A buffer pool is a 
portion of the user's main storage to be used as an I/O area for one or more files. A pool can contain any number of buffers. 

To establish a buffer pool, execute the following linkage: 

L,U AO,pktaddr 
LMJ X11,BPOOL$ 

Register AO is loaded with the address of a two-word packet having the following format: 

H1 H2 

Word 
o buffer-size addr-of-current-first-buffer-in-pool 

main-storage-Iength 

where: 

buffer-size Used to specify size (in words) of each buffer in the pool. This size must include the area 
needed for data plus two words for control information (first two words of buffer). 

addr-of-current-first-buffer-in-pool Starting address of the pool and, therefore, the first buffer in the pool. 

main-storage-Iength Total length (in words) of the main storage assigned to the buffer pool. 

The number of buffers set up in the pool can be determined by dividing buffer size into main storage length. The buffers set 
up by the BPOO L$ request have the following format: 

H1 H2 

Word 0 link-to-next-buffer-in- pool 

length-of-buffer -data- area data-area-addr 

2 .... ". 

.... '" data-area-of-buffer J T n 

Starting address of the next buffer in the pool or zero if this is the last buffer in the pool. 



4144 Rev. 2 
UP-NUMBER 

Word 1 

UNIVAC 1100 SERIES SYSTEMS 
PAGE REVISION 

An I/O access control word with the buffer size (minus two words) in H1 and the address of word 2 in H2. 

To expand a,previously established buffer pool, execute the following linkage: 

L,U AO,pktaddr 
LMJ X11,BJOIN$ 

13-34 
PAGE 

The two-word packet addressed by the contents of AO.contains the address of the initial control packet (BPOOL$ packet) in 
word 0, and the length and starting address of the main storage area to be added to the buffer in word 1. The format of the 
BJOIN$ packet is: 

H2 H2 

Word o addr-of-BPOOL$-control-packet 

length-of-additional-main-storage-area addr-of-additional-main-storage-area 

If the block buffering package is not being used, the user must handle the buffer control scheme. The procedure as follows: 
To remove a buffer from a buffer pool,replace H2 of word 0 of the BPOOL$ control packet with H2 of word 0 of the buffer 
removed from the pool. This procedure must be preceded by testing for zeros in H2 of word 0 of the buffer being removed. If 
the result of the test for zero is true, the buffer just requested is the last buffer, therefore, exhausting the pool. 

To return a buffer to the pool, replace H2 of word 0 of the BPOD L$ control packet with the address of the buffer being 
returned, and replace H2 of word 0 of the buffer being added with H2 of word 0 of the BPOOL$ control packet. 

Buffers are removed from and returned to the beginning of the buffer chain. 

If more than one activity is utilizing a single buffer pool, a test and set instruction must be used while the words are being 
updated to avoid timing problems. 

Buffer pools are set up at assembly time by using the procedure call B$GPUL. The B$GPUL procedure generates a single 
initial control word at the procedure line, followed immediately by the pool. The format of the B$GPUL procedure call is: 

B$G PUL nbr-of-buffers,buffer-size 

13.5.3. DEFINING PHYSICAL ORGANIZATION OF DATA FILES 

When handling data at the item and block levels, the user must describe the physical organization of a file to the item handler. 
This is accomplished by means of a procedure element set which the user calls upon from within his program. Through the 
use of these procedures, the user defines the type and contents of each data block that the format of a file contains. For 
example, block types are defined as label, data, end-of-record, and EOF; the contents of each type are defined as constants, 
flags, or an executive recognizable subroutine name which performs a specific action. All definitions given are controlled and 
manipulated automatically by the item handler and usually are not available to the user. Format definitions therefore are file 
independent. They are coded to describe a block, end-of-reel, or format for a family of files rather than a particular file. 

Formats are defined and processed within programs or are independent of programs. An independently processed format is 
stored as an element on mass storage and is recalled by an object program. Since more than one format is required for a given 
program, it is' advisable to independently define and store all formats used at a given installation. Individual users, therefore, 
need only call on the format desired, thus enabling the format to be used by several files. This does not preclude a user from 
defining his own format when necessary. Although format definitions are program independent, they occupy a portion of the 
object program's area since they interact with the item handler subroutines. 



( 
"'"--

4144 Rev. 2 
UP-NUMBER 

UN I VA C 11 00 S E R IE S S Y S T EMS 13-35 
PAGE REVISION PAGE 

13.5.3.1. FORMAT DEFINITION PROCEDURES 

Presently, five types of procedures are used to define a file format. They are: 

(] Format 

(] Record-type 

c Section-name 

c Subroutine-name 

(] End-format name 

13.5.3.1.1. FORMAT PROCEDURE 

The format procedure identifies a list of definitions to the item handler as being the format for a file. It also establishes the 
name by which the definition is referenced. 

The format procedure is coded as: 

label FORMAT 

where: 

label Identifies to the item handler the user-specified name by which a program references this format definition. 

FORMAT Specifies the name of the procedure call and is coded as shown. 

The format procedure call can only appear once in a list of definitions for a format and it must appear as the first entry in 
that list (see Figure 13-5). The name expressed by the label parameter is placed in the format entry name field of the file's 
FCT (see 13.5.1). 

13.5.3.1.2. RECORD-TYPE PROCEDURE 

This procedure defines the type and logical beginning of each record-type contained in a format definition. 

LABEL Identifies the name and logical beginning of a label record. 

ITEM Identifies the name and logical beginning of an item record. 

BLOCK Identifies the name and logical beginning on a block record. 

EOR Identifies the name and logical beginning of an end-of-reel record. 

EOF Identifies the name and logical beginning of an end-of-file record. 

Only one of each record-type may be specified in anyone format definition and it must be coded as shown (see Figure 
13-5). Once a record-type is specified, all definitions which follow in the listing, up to the next record-type specified, are 
included as part of this record. 

The record names are specified in any order. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 
PA GE RE VISION 

13-36 
PAGE 

13.5.3.1.3. SECTION-NAME PROCEDURE 

This procedure is called upon to subdivide the record-type procedure being defined into one of three logical areas, or to write 
an EOF mark on a tape at a position other than the end of a reel or a file. 

The section-name procedure is coded as: 

PREFIX [length] 

TEXT 

SUFFIX [length] 

EOFMRK 

Identifies the logical area immediately preceding a data item, dat block, or user's label into 
which the item handler controls the placement or extraction of information. The definitions 
that follow this section name describe the area to the item handler. The length parameter is 
used to specify the length of the prefix. If omitted, the prefix length is computed by the item 
handler. 

Identifies the definitions which describe the actual data item or block. 

Identifies the logical area immediately following a data item, block, or user's label into which 
the item handler controls the placement or extraction of information. The definitions that 
follow this section-name describe the area to the item handler. The length parameter is used to 
specify the length of the suffix. If omitted, the prefix length is computed by the item handler. 

Specifies that an EOF mark is to be written on tape at a position other than the end of reel or 
end of file. The use of this call is limited to the following file locations: 

• one EO F mark following a label block 

• one EOF mark preceding an end-of-file or end-of-reel format block 

If specified within an end-of-record or EO F record type (see 13.5.3.1.2), the EOF is coded as 
the first section-name. When specified within a label record, the EOFMRK call is coded as the 
last section-name. 

At least one section-name procedure must be given for each record-type procedure. The section-name procedures may appear, 
with the exception of the EOFMRK section-name, in any order within a record-type. The EOFMRK only appears as 
previously described (see Figure 13-5). 

13.5.3.1.4. SUBROUTINE-NAME PROCEDURE 

This procedure defines the disposition of the individual parameters in a section and directs the collector in the collection of 
those subroutines required to process the format. As many subroutine-name procedures as are necessary to completely define 
a section are used (see Figure 13-5). 

The call for the subroutine-name procedure is coded as: 

SENT location list 

or 

SUBR location list 

The first format is used for calling the subroutine which is used to specify the sentinel in each label and end-of-reel or EOF 
block in the file being processed. 

For input file mode processing, control is given to the specified SENT subroutine to check the type of block processed. If a 
comparison is made, control is immediately returned to the item handler for further processing. If a sentinel is found, control 
is given to other record subroutines which perform a further examination of the parameters within a record. 

The second format is used for calling all the other subroutines required for processing the parameters within a record or 
block. 



( 

\--

,,,,,, 

! 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 
PA GE RE VISION 

13-37 
PAGE 

The parameters are interpreted as follows: 

SENT Identifies the procedure call as that for a sentinel subroutine. 

SUBR Identifies the procedure call as that for collecting the subroutines required for processing the parameters of 
record or block. 

location Specifies the location of the subroutine to which the control is given for record or block processing. The 
subroutine processes each word (one at a time) and disposes the results in the parameter designated by the list 
parameter in the procedure call. 

list Specifies the parameters to be written or checked, depending upon the mode of file processing, by the 
requested subroutine. 

The parameters specified in the I ist field are specified in either of the following two formats: 

wd-nbr,j-designator,value 

or 

wd-nbr,CHAR (char-size,char-pos,nbr-char) ,value 

The first format is used when the referenced subroutine is processing at the block level. The second format is used when the 
referenced subroutine is processing at the character level. . 

The parameters of the list format are interpreted as follows: 

wd-nbr 

j-designator 

value 

CHAR 

char-size 

char-pos 

nbr-char 

Specifies the word number, relative to the start of the appropriate section-name specified (PREFIX, 
TEXT, SUFFIX), that is to be processed by the referenced subroutine. The calls need not be in 
sequence, and only those words or portions of words necessary to define the format are used. An 
exception to this is when the prefix or suffix length parameter is not specified on the section-name 
procedure call. In this case, the last word in the section must be called. The first word in each section 
is word number O. 

Numeric value from 0
8 

to 15
8 

specifying the portion of the word to be processed. 

Specifies the value to be placed in the portion (j-designator) of the word specified by the wd-nbr 
parameter for output file mode processing, or checked for input·file mode processing. 

Specifies that the word being processed is character oriented. 

Specifies the number of bits in a character. 

Specifies the position of the leftmost character to be processed. Character numbering starts with the 
leftmost character of the word number as character 1. 

Specifies the number of characters (as defined by char-size) to be processed by the subroutine. 

The following examples illustrate the coding and interpretation of the SENT and SUBR procedure calls: 

LABEL OPERATION 
10 20 

OPERAND 
30 40 

COMMENTS 
50 

SJJHR . .....L._.1flb.lk1CL'lJ._ ... i I I 3t) ,O...L-l ... J ...... t... .. _L .. J_..L-L.1 I I I I .... L ... L . .L--L.....LJ._L-LJ....-1 ..... L ... L_L_L.-L_...L-L_.1 .... .1 ..... ...1 ... _L1...-1-_L_L_.L .... .1. .. . 

. .... I.~M.r:...._LJ.~~ 7i 11.{ LLJ. ..... 1Q1I.Lt.L~ .. J ... '..JL...!.../~~_L .... l ...... d...l;..!ZJ)...t.O_&L ..... LL.l ..... L_L.J ...... l ....... L...L...L...L ... L ... l .. _m.L .. J. ..•.. L......L....1 ..... L .. L .... .1. mi_L ... 

U..1fJJRL .... t... .... lWN.J.n . .....LJ. I I ,2 I J lCJltllJJB..t!.J.4J) '21) 12,1.rt(2L ... J_l I I I I L.L.L_L ... 1 i I l.. ... L .. L.! ,! . ...J ..••.. 

.. _L . .J_L..L......!-1.......L I I I I ~ __ L.L._ .. L ... L.L.J.. I I ! I I .. LL ... L ... J ........ LL I I 1 .. _l ... _ ... L._.L.L.j. I 1 ..... 1 .... L..L I I I .1 ........ L ... J.. __ 



4144 Rev. 2 
UP.NUMBER 

UN I VA C 11 00 S E R IE S S Y S T EMS 13-38 
PAGE REVISION PAGE 

1. The subroutine named BLKCT generates and checks a block count in the complete fourth word of a section. 

2. Calls for the sentinel routine SENTNL to place the sentinel 1,/. in H2 of the first word and the sentinel 06 into H1 of 
the second word of a record. These two words are used to find a specific record input. 

3. The subroutine CNT is to generate and check the third word of a record. The word is a four·bit character·oriented 
word, and the count is maintained in two characters starting with the third character. 

13.5.3.1.5. END·FORMAT PROCEDURE 

This procedure defines the end of a complete format definition and appears as the last procedure in the definition (see Figure 
13-5). 

The end·format procedure is coded as: 

FOREND Specifies to the item handler that no more definitions are given for this format. 

13.5.3.2. EXAMPLE OF A COMPLETED FORMAT DEFINITION 

The complete format definition shown in Figure 13-5 describes the LION format to the item handler data handling routines. 
The coding for the format, record·type, section·name, subroutine·name, and end·format procedures are illustrated and called 
out. 

13.5.3.3. RULES FOR CODING FORMAT SUBROUTINES 

When a specific format must be generated or checked on a file, control is given to the appropriate subroutine by the item 
handler. To determine whether to generate or check a format, control is given with register AO positive for output files and 
negative for input files. 

The following registers are set as indicated when the subroutine receives control and must not be destroyed by the 
;ubroutine. 

A 1 H 1 - Return to item from format 
H2 - Return to format from subroutine 

A2 

A3 

H2 

H1 
H2 

Format name 
Return type 
Section name 

Subroutine name 

Section name 

Subroutine name 

Item request packet location 

Return to user from item 
File control table location 

LION FORMAT 
LABEL 
PREFIX 

{

SENT 
SUBR 
SUBR 
SUBR 
SUBR 
SUB 
SUFFIX 
SUBR 
SUBR 
SUBR 
SUBR 
SUBR 
SUBR 
SUBR 
SUBR 

LLABST 
LBLKCT 
LBLKLT 
LlTEMS 
LFWDS 
LFREE 

LLSRWD 
LVERSN 
LlTMCT 
LCKSUM 
LBLKLT 
LlTEMS 
LBLKCT 
LLABST 

0,0,' 1././.' 
1,0 
2,2 
2,1 
3,2 
3,1 

0,1 
0,2,4 
1,0 
2,0 
3,2 
3,1 
4,0 
4,13,060 

Figure 13·5. Example of Complete Format Definition (Part 1 of 2) 

1,13,060 

5,0,'1././.' 



I 
\ 
"-. 

4144 Rev. 2 
UP-NUMBER 

Record type 
Section name 
Subroutine name 

Section name 

Subroutine name 

Record type 
Section name 

Subroutine name 

Section name 

Subroutine name 

Record type 
Section name 

Subroutine name 

Section name 

Subroutine name 

End format 

UN IVAC 11 00 SE RI ES SYST EMS 13-39 
PA GE RE VISION PA GE 

BLOCK 
PREFIX 

{ SUBR LNRITM 0,2 
SUBR LNRWDS 0,1 
SUFFIX 

~ SUBR 
LDSRWD 0,1 

SUBR LBCKSM 1,0 
SUBR LNRITM 2,2 
SUBR LNRWDS 2,1 
EOR 
PREFIX 
SENT LEORST 0,0,' /././.' 1,13,020 
SUBR LERBCT 1,0 
SUBR LERBLT 2,2 
SUBR LERITS 2,1 
SUBR LZEROW 3,0,0 4,0,0 
SUBR LVERSN 5,2,4 
SUBR LZEROW 6,0,0 
SUBR LSUFLC 7,0,0 
SUFFIX 
SUBR LVERSN 0,2,4 
SUBR LERICT 1,0 
SUBR LERCKM 2,0 
SUBR LERBLT 3,2 
SUBR LERITS 3,1 
SUBR LERBCT 4,0 
SUBR LEORST 4,13,020 5,0,'/././.' 
EOF 
PREFIX 
SENT LEOFST 0,0,'/././.' 1,13,0 
SUBR LEFBCT 1,0 
SUBR LEFBLT 2,2 
SUBR LEFITS 2,1 
SUBR LZEROW 3,0,0 4,0,0 
SUBR LVERSN 5,2,4 
SUBR LZEROW 6,0,0 
SUBR LSUFLC 7,0,0 
SUFFIX 
SUBR LVERSN 0,2,4 
SUBR LEFICT 1,0 
SUBR LEFCKM 2,0 
SUBR LEFBLT 3,2 
SUBR LEFITS 3,1 
SUBR LEFBCT 4,0 
SUBR LEOFST 4,13,0 5,0,'/././.' 
FOREND 

Figure 13-5. Example of Complete Format Definition (Part 2 of 2) 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 13-40 
PA GE REVISION PAGE 

Register AD is set as follows on entry to the subroutine. The contents in S1 must not be destroyed; the remaining portion of 
the register may be destroyed. 

AD S1 - Positive for output files 

Negative for input files 

H2 - Location of packet containing parameters from subroutine call line. The packet format appears as 
follows: 

S1 S2 S3 S4 S5 S6 

Word 0 value 

wd-nbr j-designator code char-size char-pos nbr-char 

The parameters are as explained in 13.5.3.1.4 and the values for the code parameter are: 

code = 08 for prefix section 

'8 for text section 

28 for suffix section 

H2 08 if the first subroutine form is used 

Registers X 11, A4, A5, R 1, R2, and R3 are used freely. All others are saved and restored before exiting from the subroutine. 
Because the item handler is reentrant, all subroutines are treated as such; therefore, they are coded with this in mind. 

The exits from the subroutines for normal conditions are taken on 0, word 0 of register A 1. Exits for abnormal conditions are 
taken to IHABFR with one of the following codes set in register AD, S6: 

18 - Exit from label sentinel routine with no find 

28 - Exit from label routine with abnormal label 

3
8 

- Exit from block routine with abnormal block 

48 - Exit from item routine with abnormal item 

58 - Exit from EOR sentinel routine with no find 

68 - Exit from EOR routine with abnormal end-of-record block 

78 - Exit from EOF sentinel routine with no find 

108- Exit from routine with abnormal EOF block 

Registers AD, S4, and S5 are used to transfer any data pertinent to the user. After interpreting the code in S6, the item 
handler takes the user's abnormal exit with registers AD and A 1 set as follows: 

AD Length and location of current l1Iock or item 

A1 Hl Code pertinent to user 

H2 Address of request that found error 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 13-41 
PAGE REVISION PAGE 

13.5.3.3.1. LABEL RECORD SUBROUTINES 

Only three of the four section-names may be used with the label record. These are PREFIX, SUFFIX, and EOFMRK. A list 
may be specified on the PREFIX and SUFFIX calls to designate the length of the respective section. If not set, the length is 
computed from the parameters on the subroutine calls. The total length of these sections is the total length of the label block. 
It must be less than or equal to the maximum data block size allowed for the file. 

If the label or FREEWDS (LION format) is specified by the user in the FCT (see 13.5.1), a move routine must be included as 
a subroutine to move this area into the label block. The location of the start of the prefix within the buffer is specified in 
word 28,H2 of the FCT. The location of the start of the suffix is specified in word 26,H2 of the FCT. 

If EOFM R K is specified as a label section-name, an EOF is written for output files or expected on input files immediately 
following a label block. No subroutine calls may follow an EOFMRK. 

Label output subroutines place data in the label prefix and suffix as specified by the subroutine lists. A subroutine called by 
the procedure call SENT, must be included as one of the subroutine calls in a label record. Return to format from each 
subroutine must be made on 0, to register A 1 if the label is generated properly and to IHABF R with S6 of register AO set to 2 
if not done properly. 

Label input subroutines must validate the label block. The sentinel routine first checks the sentinel. If it is found, the routine 
must return on O,A 1. If it is not found, return must be made to IHABF R with register AO,S6 set to 1. Since this routine is 
called on every READ request, make certain it is very concise. All other label input subroutines must check other parts of the 
label. If the label is accepted as valid, return must be made on O,A 1. If the subroutine wishes to discontinue processing, it 
must return to IHABFR with S6 of register AO set to 2. 

13.5.3.3.2. BLOCK RECORD SUBROUTINES 

Within a block record, PREFIX, TEXT and SUFFIX section-names are used. The length of the prefix and suffix can be 
computed from the subroutine call. Format subroutines specified as a list on the appropriate section call, or the length for 
output files, receive control for generating block formats after all items have been moved into the block. Input subroutines 
receive control before any items have been moved from the block. The location of the first word of the prefix is contained in 
word 28,H2 of the FCT (see 13.5.1), the text in word 28,H1 of the FCT, and the suffix in word 26,H2 of the FCT. 

Return from each subroutine is made on O,A 1 for normal conditions. When further processing of the file is no longer desired 
or the block was generated incorrectly, the subroutine exits to IHABFR with S6 of register AO set to 3. 

13.5.3.3.3. ITEM RECORD SUBROUTINES 

Within an item record, PREFIX, TEXT, and SUFFIX section-names are used. The length of the prefix and suffix is specified 
as a list on the appropriate section call, or the length can be computed by the subroutines. The location of the beginning of 
the prefix is specified in word 28,H2 of the FCT (see 13.5.1), the text in word 26,H2 of the FCT, and the suffix in word 
26,H2 of the FCT. Control is given at different times. 

For output files, contrQI is given to the PREFIX subroutines before the item is moved, unless the user has already moved it 
himself. Control is then given to the TEXT and SUFFIX subroutines after the item is moved. 

For input items processed in the forward mode, control is given to the PREFIX and TEXT subroutines before the item is 
moved, and to the SUFFIX subroutines after it is moved. 

For input files processed in the reverse mode, control is given to the SUFFIX and TEXT subroutines before the item is 
moved, and to the PREFIX subroutines after it is moved. 

If i"tem size is variable, a subroutine is included under both the prefix and suffix. Therefore, if a variable-size item has a prefix, 
it must have a suffix and vice versa. This subroutine must, on output files, insert the length of the item and formats within 
the PREFIX and SUFFIX. This length is specified in word 29,H2 of the FCT. On input files, the subroutine retrieves this 

........... -, length and places it in word 29,H2 of the FCT. If neither PREFIX nor SUFFIX is specified, a one-word control word is 
placed before and after each item. If items are fixed, the lengths need not be saved. If the file is not processed in the reverse 
mode, the suffix is not needed. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 13-42 
PAGE REVISION PAGE 

Return from each subroutine is made on O,A 1 except when further processing of the item is no longer desired. Then the 
subroutine exits to IHABFR with S6 of register AD set to 4. 

13.5.3.3.4. END-OF-REEL SUBROUTINES 

End-of-reel processing is similar to processing of label blocks. Three section names, PREFIX, SUFFIX, and EOFMRK, are 
used. EOFMRK indicates that an EOF mark is to be written on tape before the end-of-reel block. The prefix and suffix 
lengths are determined from the list on the call line or from the parameters in the subroutine packet. The total length is equal 
to or less than the maximum block length specified in the FCT (see 13.5.1). The location of the first word of the prefix is 
contained in word 28,H2 of the FCT, and the suffix in word 26,H2 of the FCT. 

For output files, an end-of-reel block is written when an end of tape is encountered. One SENT subroutine is included and 
the exit is made on O,A 1. 

For input files, the SENT subroutine is given control to check for an end-of-reel sentinel. If not found, an exit should be 
made to IHABFR with register AD set to 5. If it is found, the exit is made on O,A 1. Control is then given to other end-of-reel 
subroutines for further checking. If an abnormal end-of-reel block is found and processing is discontinued, an exit is made to 
I HAB F R with S6 of register AD set to 6. The normal return is made on O,A 1. 

13.5.3.3.5. END-OF-FI LE SUBROUTINES 

EOF processing is similar to the processing of label blocks. Three section names, PREFIX, SUFFIX, and EOFMRK, are used. 
EOFMRK indicates that an EOF mark is to be written on tape before the EOF block. The prefix and suffix lengths are 
determined from the list on the call line or from the parameters in the subroutine packet. The total length is equal to or less 
than the maximum block length specified in the FCT. The location of the first word of the prefix is contained in word 28,H2 
of the FCT (see 13.5.1) and the suffix in word 26,H2 of the FCT. 

For output files, an EOF block is written when the file is closed. One SENT subroutine is included and the exit is made on 
O,Al. 

For input file, the SENT subroutine is given control to check for an end-of-file sentinel. If it is not found, an exit is made to 
I HABF R with register AD set to 7. If it is found, exit is made on O,A 1. Control then goes to other end-of-fi Ie subroutines for 
further checking. If an abnormal end-of-file block is found and processing is discontinued, an exit is made to IHABFR with 
control register AD, S6 set to 1 Os) 

13.6. HANDLING OF LABELS AND SENTINELS 

The item handler utilizes a set of procedures to govern the handling of label and sentinel blocks for the input and output files 
processed. These procedures are directly related to the format definitions given for the file (see 13.5.3) and the type of device 
on which the file resides. 

13.6.1. LABEL AND SENTINEL HANDLING FOR OUTPUT FILES 

The item handler generates and records those label and sentinel blocks for which a format definition has been specified. If a 
format definition has not been specified, the corresponding block is not produced. The manner in which label and sentinel 
blocks are written for FASTRAND-formatted mass storage and tape output files is described in the following paragraphs. 

• FASTRAND-formatted Mass Storage Files 

If specified, labels and EOF sentinels for FASTRAND-formatted mass storage files are recorded as the first and last 
blocks of the file, respectively. See Figure 13-10 for file organization. 



( 

I 

\ 
'-~ .. 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 13-43 
PAGE REVISION PAGE 

• Magnetic Tape Files 

Labels are written as the first block of each file recorded on a tape reel and at the beginning of each reel on a multireel 
file. An end-of-reel sentinel, in the case of a multireel file, is recorded at the end of each reel. The EOF sentinel is 
always recorded as the last block of a file in both a single or multireel file. 

If a label and an EOF definition are specified in a format, the processing of the file produces either a single reel file with 
a label and an EOF sentinel or a multireel file without end-of-reel sentinel or a multireel file without end-of-reel 
sentinels but with a label and an EOF sentinel. If label, end-of-reel, or EOF definitions are not specified, the single or 
multireel tape file will contain only data. 

If the format definition specifies the generation of EOF marks, then one mark is recorded before and two marks are 
recorded after each end-of-reel or EOF sentinel. In the absence of either sentinel, two EOF marks are written 
immediately after the last data block in the file. FiI~s recorded on a multifile reel are separated by a single EOF mark. 

See Figures 13-6 through 13-9 for tape file organization. The switching of tape files is accomplished by the item 
handler upon request from the CLOSE REEL subroutine. 

13.6.2. LABEL AND SENTINEL HANDLING FOR INPUT FI LES 

The existence of label and sentinel format definitions implies that label and sentinel blocks exist in the input files processed 
by the item handler. When these blocks are encountered, they are validated according to their respective definitions prior to 
processing. The absence of a definition implies that the corresponding label or sentinel block does not exist in the file. If this 
is not the case, an error condition could result. Any error condition detected causes the abnormal exit specified in the FCT to 
be taken. User label information, if any, is presented to the object program for checking. Register AD is loaded with the 
location of the user's label area in the form of the following access word: 

H1 H2 

nbr-wds .addr 

If there is no user label information, register AD is zero filled. 

When format definitions for labels have not been specified for a file, the item handler assumes the file to be unlabeled and 
processes the first block as data. 

Files opened in the reverse mode are processed as unlabeled files. 

When the input file exists on magnetic tape and an EOF mark is detected, the sentinel block is read before the appropriate 
exit is taken providing that format definitions have been specified for sentinels. If, however, a sentinel definition was not 
specified the EOF exit specified in the FCT (see 13.5.1) is always taken. The EOF exit is also taken when two successive EOF 
marks are detected. 

13.7. DATA FILE ORGANIZATION 

Data files are organized according to the level at which a file is processed and the device on which the file resides. Files 
handled at the item level are processed by the subroutines of the item handler and may reside on magnetic tape, or 
FASTRAND-formatted mass storage. When item level files reside on magnetic tape, they are orginized as shown in Figures 
13-6 through 1:3-9. The examples shown depict item level files as they are organized on single-file reels, multifile reels, and 
multireel files. The EOF marks shown in the examples are recorded automatically by the item handler. The placement of 
these marks is based upon the following: 

(1) Two EOF marks are recorded after an end-of-reel or EOF sentinel block. 

(2) If an end-of-reel or EOF sentinel is not written, two EOF marks follow the last valid data block of the file. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SE RIES SYSTEMS 13-44 
PAGE REVISION PAGE 

(3) When a reel contains more than one file, the second of the two EOF marks is overwritten, thereby separating files with 
one mark. 

(4) A special separator block is recorded by the item handler when a file is opened and closed on tape without recording 
any data and for which EOF sentinels have not been specified. This block denotes an empty (void) file which serves to 
separate the EOF marks. 

The organization of item level files residing on FASTRAND·formatted mass storage is shown in Figure 13-10. 

The files handled at the block level are processed by the block buffering package. Block level files also reside on magnetic 
tape or FASTRAND·formatted mass storage. However, these files are assumed to contain pure data. EOF marks, therefore, 
are not recorded automatically but are placed at the user's descretion. It is suggested that EOF marks be used to eliminate the 
input of invalid data when performing a read operation. 

Label 
Block 

File 

Area 

~ 
~ 

Mark 
Mark 

File 

Area 

Mark 
Mark 

File 

Area 

~ 
~ 

Mark 
Mark 

Figure 13·6. Item Level Tape File Organization, Single· File Reels 

Label 
Block 

File 

Area 

Mark 

Label 
Block 

File 

Area 

Mark 
Mark 

File 

Area 

Mark 

File 

Area 

Mark 
Mark 

File 

Area 

[;J Block 

File 

Area 

c;o Block 

Mark 
Mark 

Figure 13·7. Item Level Tape File Organization, Multifile Reels 



I 
\ 

I 
\ 
"- .. 

4144 Rev. 2 
UP.NUMBER 

Label 
Block 

File 

Area 

EOF 
Block 

Mark 

Label 
Block 

EOF 
Block 

Mark 
Mark 

UNIVAC 1100 SERIES SYSTEMS 13-45 

Label 
Block 

File 

Area 

Mark 

Label 
Block 

Mark 
Mark 

File 

Area 

Mark 

Separator 
Block 

Mark 
Mark 

Figure 13·8. Item Level Tape File Organization, Multifile Reels with Void File 

File 

Area 

Mark 

Mark 

PA GE RE VISION PA G E 

File 

Area 

EOF 
Block 

Mark 

EOF 
Block 

Mark 

Mark 

NOTE: Organization of first reel is illustrated; subsequent reel layout is the same. 

Figure 13·9. Item Level Tape File Organization, Multireel Files 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 13-46 

Label 
Block 

File 

Area 

EOF 
Block 

Void FASTRAND Files 

Label 
Block 

EOF 
Block 

Label 
Block 

File 

Area 

Label 
Block 

File 

Area 

PAGE REVISION PAGE 

File 

Area 

EOF 
Block 

EOF 
Block 

Figure 13·10. Item Level FASTRAND·Formatted Mass Storage File "Organization 

13.8. ERROR PROCESSING 

The executive returns control to the user program when a device, file, or abnormal error condition is detected. The return of 
control is accomplished through the appropriate error exit control word specified in the FCT for the file being processed. A 
description is provided for each catagory of error conditions and the respective codes that it returns to the user program. 

13.8.1. DEVICE ERROR HANDLING 

The oc;currence of a device error causes control to be returned to the user program by means of the device exit control word 
specified in the FCT (see 13.5.1). When control is returned, the status code for the particular device error is in H1 of register 
AO and the user's reentry location is in H2 of register AO. If the file is processed in the input mode, register A 1 contains the 
size and data location of the data block that was being read when the error occurred. See Table 13-1 for descriptions of the 
status codes for device error. 

13.8.2. FILE ERROR HANDLING 

File errors are the result of a user's request that has violated prescribed block buffering package procedures. For each 
occurrence of a file error, control is returned to the user program by means of the user's file error exit specified in the FCT 
(see 13.5.1) of the file being processed. An error code and the user reentry location are returned to the user in H 1 and H2, 
respectively, of register AO. Possible error codes and their descriptions are listed in Table 13-1. 



4144 Rev. 2 
UP-NUMBER 

Error Code (Octal,) 

1 

2 

3 

4 

5 

6 

7 

10 

11 

12 

13 

14 

15 

16 

17 

20 

21 

23 

24 

25 

26 

27 

64 

UN I VA C 11 00 S E R I E S S Y S T EM S 13-47 
PAGE REVISION PAGE 

Description 

Buffer pool link not provided. 

Request to close a file already closed. 

Request to open a file already opened. 

Request to read or write a closed file. 

Request to write a block greater than maximum block size specified in FCT or a request to 
rewrite a block in in/out mode and block size requested to write is greater than the block 
size read. 

FASTRAND variable block size specified on block read request larger than maximum block 
size, or reading variable blocks from fixed block file. 

Random request and file not assigned to FASTRAN D-formatted mass storage. 

Random request and block size not fixed. 

Insufficient buffers in pool to satisfy LAF for input or output request. 

I nvalid block number for random read request. 

Read request for a block greater than block size read. 

File not assigned to FASTRAND-formatted mass storage for in/out mode processing. 

Random write request for input file. 

Random read request for output file. 

Read request with move-length parameter specified but no move-address specified. 

Read request for output file. 

Buffer size less than specified block size. 

Location of link or buffer area outside of user's assigned area. 

Block size not fixed for reverse mode for FASTRAND-formatted mass storage file. 

No I/O facilities assigned or improper equipment type. 

Write request in input file. 

Mark request for input file. 

Invalid mode parameter for open request. 

Table 13-1. Device Error Status Codes (Part 1 of 2) 



4144 Rev. 2 
UP-NUMBER 

Error Code 
(Octal) 

UNIVAC 1100 SERIES SYSTEMS 13-48 
PAGE REVISION PAGE 

Description 

The following error codes occur only when processing at the item level: 

30 Move address not given on in/out read or write request. 

31 Move address not given on read or write request of spanned item. 

32 Address of item same as move address given on in/out read or write request. 

33 Address of item same as move address given on in/out read or write request. 

34 Address of item same as move address given on random read or write request. 

35 Random request made in file without fixed items and blocks. 

36 Operation attempted on a closed file. 

37 Label specified but not found on open input request. 

40 Update flag not set on in/out file read request. 

41 Highest address written not set on in/out file write extend request. 

42 Drain requested on in/out file. 

43 A request was made to write a spanned item after reading it. 

44 A request was made to write more than the size read on in/out file. 

45 Read backwards requested on a spanned item. 

46 Format not set in FCT. 

47 Tape positioned improperly on open request. 

50 Frame count error detected and user did not specify to accept this as normal. 

51 An EO F block was detected on a random read request. 

52 Fixed item larger than max block size. 

Table 13-1. Device Error Status Codes (Part 2 of 2) 



4144 Rev. 2 
UP.NUMBER 

UN I V A C 11 00 S E R I E S S Y S T EMS 13-49 
PAGE REVISION PAGE 

13.8.3. ABNORMAL ERROR HANDLING 

The occurrence of an abnormal condition causes control to be returned to the user's program by means of the abnormal exit 
control word in the FCT (see 13.5.1). When control is returned, the abnormal status code for the particular abnormal error is 
in H 1 of register A 1 and the user's reentry location is in H2 of this register. Register AO contains the size and data location of 
the block read or written when the abnormal condition occurred. The abnormal status codes returned to the user are: 

Abnormal Status 
Codes (Octal) 

2 

6 

10 

Description 

EOF mark or load point has been detected for input tape file; or FASTRAND highest 
address (EOF) has been detected. 

End-of-tape mark has been detected for output file. 

Sentinel block has been detected for file. 

Block previously read exclusively has been timed out by the executive for an in/out file. 

The abnormal exit in the FCT is also used to return control to the user when an error is detected in a sentinel block when 
using the LION format. 

The abnormal status codes and their description are: 

Abnormal Status 
Codes (Octal) 

4 

12 

13 

14 

Description 

Label word error has been detected in label block for an input file. 

Label block cannot be located, bad tape position. 

Block size specified in FCT is less than 14 words for an output file; or input file block size of 
sentinel is greater than block size specified in FC!. 

Item size specified in FCT not equal to item size in sentinel block for an input file. 

Recovery can be made for error codes 48, 138 and 148 by closing the file, modifying the respective fields in the FCT, and 
initiating the open procedure again. For error code 12

8
, the tape must be repositioned. 





"' ... 
( 
\ '_ .. ' 

. ,/'.~.- . 

.. '-........ / 

4144 Rev. 2 
UP-NUMBER 

14.1. INTRODUCTION 

UNIVAC 1100 SERIES SYSTEMS 14-1 
PAGE REVISION PAGE 

14. OUTPUT EDITING PACKAGES 

This section describes the two output editing packages: EDIT$ and EOUT$. EDIT$ is the newer of the two and it is more 
effici~nt and easier to use than EOUT$. It is recommended that EDIT$ be used; EOUT$ is documented solely as an aid to 
those users who are using EOUT$ in existing programs. 

14.2. EDIT$ (IMAGE COMPOSITION EDITING PACKAGE) 

EDIT$ is a set of reentrant subroutines used for composing strings of Fieldata characters in a user-specified area. It is 
particularly useful in preparing images for: 

II E R CSF$ (see 4.8.1 ) 

• ER PRINT$ (see 5.3.1) 

II ER PUNCH$ (see 5.3.5) 

19 ER PRTCN$ (see 5.4.1) 

Iii ER PCHCN$ (see 5.4.5) 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 14-2 
PAGE REVISION PAGE 

The EDIT$ routines work from the following packet where words six through nine are used only for editing floating-point 
numbers: 

S1 

Word 0 [ test-and-set] 

char-index 

2 FPS 

3 

4 

5 

6 [DPC] 

7 

8 

9 

Word 0 

test-and-set 

EMSG$-stop 

image-length 

image-addr 

S2 S3 S4 S5 S6 

EMSG$-stop image-length image-addr 

word-index EMSG$-char EMSG$-word (index) 

FPR 0 return-addr-for-char-store 

user's-return-addr sa ve-of-original-X 1-modifier 

save-of-original-X2-contents-or-save-of-character-pointer 

save-of-original-X3-contents-or-save-of-word-pointer 

[SPC] digits-before digits-after negative-sign not-normalized 

final-column-position characteristic's-power-of-ten 

save-are~-for-intermediate-floating-point-results 

User test and set flag. 

Signal character for EMSG$ and EMSGR$. Each time one or more signal characters are 
encountered in an EMSG$ or EMSG R$ input image, the routine stops transferring char
acters. This can serve not only as the final EMSG$ input image stop but also allows the 
user to insert new information at any predetermined point in the EMSG$ image. The 
ampersand (&) is often used as the EMSG$ signal character. 

The size of the output image buffer. When using the 132-column printer, 22 words are 
usually specified. 

Output image buffer address. When the image is fully formed, this buffer can be 
referenced directly on a call to ER CSF$, ER PRINT$, and so forth. 



( 
,-

c. 

4144 Rev. 2 
UP-NUMBER 

Word 1 

char-index 

word-index 

EMSG$-char 

EMSG$-word (index) 

Word 2 

FPS 

FPR 

return-addr
for-char-store 

Word 3 

user's-return-addr 

Word 6 

DPC' 

SPC 

digits-before 

digits-after 

negative-sign 

not-normalized 

UNIVAC 1100 SERIES SYSTEMS 14-3 
PAGE REVISION PAGE 

Used by the EDITX$ routine to save the character index for the EDITR$ routine. 

Used by the EDITX$ routine to save the relative word index for the EDITR$ routine. 

Used by EMSG$ and EMSER$ routines to save the character index of the input image. 

Used by the EMSG$ and EMSG R$ routines to save the input message word index. 

Used only with floating point. The scale or number of digits to be placed before the 
decimal point for scientific floating-point format editing. This is usually set to 1. 

Used only with floating point. Specifies floating-point rounding. When set to non
zero, five is added to the eighth significant digit for single-precision floating-point 
numbers or to the eighteenth significant bit for double-precision numbers. 

Used as the return point for the character store vector during calls to other EDIT$ 
routines. 

Used to save the return point for the user during calls to EDIT$ functions. 

Used for floating point only. If nonzero, specifies the character that separates 
the mantissa and characteristic when editing double-precision (Ioating-point 
numbers. 

Same as DPC except that it is used for single-precision floating-point numbers. 

Number of digits to be edited before the decimal point. 

Number of digits to be edited following the decimal point. 

If nonzero, specifies that the floating-point number to be edited is negative. 

If nonzero, specifies that the floating-point number to be edited was not normalized. 

14.2.1. GENERATING THE EDIT$ PACKET (E$PKT AND E$PKTF) 

The following procedure generates a six-word EDIT$ packet: the ampersand (&) is generated for the EMSG$-stop-character if 
the MSG parameter is omitted. 

E$PKT image-Iength,image-addr ['MSG','EMSG$-stop'] 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 14-4 
PAGE REVISION PAGE 

The following procedure call generates a ten-word EDIT$ packet. The following values are assumed whenever the following 
parameters are omitted: 

MSG=& 

FPS= 1 

FPR = 1 

DPC=O 

SPC= 0 

E$PKTF image-Iength,image-addr ['MSG','EMSG$-stop] ['FPS',FPS-nbr] ['FPR',FPR-nbr] 

['D PC', 'DPC-char'] ['SPC', 'SPC-char') 

14.2.2. INITIALIZATION AND TERMINATION OF EDITING MODE 

Table 14-1 presents the subroutine calling sequences used to initiate and terminate the editing mode. 

Routine Calling Sequence Description 

EDIT$ L,U AO,pktaddr Initiate editing mode. The contents of registers X1, X2, and 
LMJ X11,EDIT$ X3 ~re saved. The image is space filled and the column 

pointer is set to the start of the image. EDIT$ uses, but 
These instructions can be gen- does not save or restore registers X 11, R 1, and AO through 
erated by the procedure call: A3. 

E$DIT pkraddr 

EDITX$ LMJ X11,EDITX$ Terminate the editing mode. The column pointer is saved 
in the packet. Registers X1, X2, and X3 are restored to 

I nstruction can be gener- their original contents. The address of the packet is returned 
ated by the procedure call: to AO. 

E$DITX 

EDITR$ L,U AO,pktaddr Reestablish the editing mode to its previous status at the 
LMJ X11,EDITR$ time of the call to EDITX$. The column pointer saved by 

EDITX$ is restored. 
These instructions can be gen-
erated by the procedure call: 

E$DITR pktaddr 

Table 14-1. Editing Routines for Initiation and Termination of Editing Mode 

14.2.3. GENERAL PURPOSE EDITING ROUTINES 

Table 14-2 describes the nonfloating-point editing routines. These routines are used for such purposes as converting numbers 
into Fieldata format, inserting strings of characters into the image, and manipulation of the column pointer. Please note that 
in all cases where one or more characters are inserted into the image, they are inserted beginning at the current column 
pointer location. The column pointer location is initially set to column zero by the initiate editing mode subroutine and is 
always advanced to the column following the last inserted character. 



4144 Rev. 2 
UP-NUMBER 

Routine 

ECHAR$ 

ECOL$ 

ECOLN$ 

ECOPY$ 

UNIVAC 1100 SERIES SYSTEMS 14-5 

Calling Sequence 

Two calling sequences are provided: 

L,U 
LMJ 

AD,'char' 

X11,ECHAR$ 

These instructions can be generated 

by the procedure call: 

E$CHAR 'char' 

or 

L AD,addr-of-char 

LMJ X11,ECHAR$ 

These instructions can be generated 

by the procedure call: 

E$CHAR addr-of-char 

Where addr-of-char may contain any 
of the x,h,i,u,j instruction word 
fields in the standard *u, *x,j form. 

L,U 
LMJ 

AD,col-nbr 

X11,ECOL$ 

These instructions can be generated 

by the procedure call: 

E$CO L col-nbr 

LMJ X11,ECOLN$ 

This instruction can be generated 

by the procedure call: 

E$COLN 

L,U 
L,U 
LMJ 

A 1 ,char-count 

AD,addr-of-char 

X11,ECOPY$ 

These instructions can be generated 

by the procedure call: 

E$COPY char-count,addr-of-char 

PAGE REVISION PAGE 

Description 

Insert the character in S6 of register AD into the image. 

Position the column pointer to the column number in 

register AD. A previously inserted character or string 

can be backed-up to and overwritten. 

Obtain the current column in register AD. 

Insert into the image the number of characters specified 

in register A 1. The image starting address is in register AD 

and all characters are transferred including spaces. 

Table 4-2. General Purpose Editing Routines (Part 1 of 4) 



4144 Rev. 2 
UP-NUMBER 

Routine 

EDAY1$ 

EDAY2$ 

EDAY3$ 

EDECF$ 

'EDECV$ 

UNIVAC 1100 SERI ES SYSTEMS 14-6 
PAGE REVISION PAGE 

Calling Sequence Description 

L AD,TDATE$-addr Convert the date portion of the TDATE$ word format 

LMJ X11,EDAY1$ (see 4.5.2) in register AD to an eight-character Fieldata 
string in the form .of mm/dd/yy and insert this string 

These two instructions can be into the image. 

generated by the procedure call: 

E$DAY1 TDATE$-word-addr 

or for today's date: 

ER TDATE$ 

LMJ X11,EDAY1$ 

These instructions can be generated 

by the procedure call: 

E$DAT1 

Calling sequence formats are the same Convert the date portion of the TDATE$ word format 
as for EDAY1$. The corresponding (see 4.5.2) in register AD to a nine-character Fieldata 
procedure calls are: string in the form of dd mmm yy and insert this string into 

the image. 
E$DAY2 
E$DAT2 

Calling sequence formats are the same Convert the date portion of the TDATE$ word format 
as for EDAY1$. The corresponding (see 4.5.2) in register AD to a variable string length of 11 
procedure calls are: to 17 Fieldata characters in the form of: mmmmmmmmm 

dd yyyy and insert this string into the image. 
E$DAY3 
E$DAT3 

L,U A 1 ,char-count Convert the number in register AD to Fieldata decimal 
L AD,addr-of-nbr digits and insert it into the image. The result is set right-
LMJ X11,EDECF$ justified and space filled into the fixed-length field 

specified in register A 1. If the number of Fieldata digits 
These instructions can be generated (including the minus sign if the content of register AD 
by the procedure call: is a negative number) exceeds the specified field size, 

overflow to the next field. 
E$DECF cha~countadd~o~nbr 

L AD,nbr-addr Same as EDECF$ except that the field size is varied in 
LMJ X11,EDECV$ length according to the converted Fieldata decimal number. 

These instructions can be generated ( 
by the procedure call: 

E$DECV nbr-addr 

Table 4-2. General Purpose Editing Routines (Part 2 of 4) 



4144 Rev. 2 
U P.NUMBER 

Routine 

EFD1$ 

EFD2$ 

EMSG$ 

EMSGR$ 

EOCTF$ 

UNIVAC 1100 SERIES SYSTEMS 14-7 
PAGE REVISION PAGE 

Calling Sequence Description 

L AO, ('F ieldata-name') Insert the contents of register AO into the image excluding 
LMJ X11,EFD1$ any sixth-word whose value is zero, that is, the Fieldata 

master space (@)' or Fieldata space (' '). This command can 
These instructions can be generatea be used to insert a Fieldata name of one word or less where 
by the procedure call: a partial word fill of zeros is not desired in the image. 

E$FD1 'Fieldata-name' 

DL AO,('Fieldata·name') Same as EFD1$ except that it is for a Fieldata name of two 
LMJ X11,EFD2$ words or less which is contained in registers AO and A 1. 

These instructions can be generated 
by the procedure call: 

E$FD2 'Fieldata-name' 

L,U AO,input-string-addr Insert the characters starting at the address in register AO 
LMJ X11,EMSG$ into the image. This process stops when the character in S2 

of register AO of the EDIT$ packet is encountered in the 
These instructions can be generated EMSG$ input string. The EMSG$ input string pointer is 
by the procedure call: saved in the packet for further possible use with the EMSGR$ 

call. 
E$MSG input-string-addr 

LMJ X11,EMSGR$ Reenter the EMSG$ subroutine and begin copying from the 
EMSG$ input stream following the point of previous inter-

This instruction can be generated ruption. With the EMSG$ and EMSG R$ subroutine it is 
by the procedure call: possible to copy a string into the image and interrupt this 

action to perform other EDIT$ functions at selected points in 
E$MSGR the string. 

L,U A 1 ,char-count Convert the number in register AO to Fieldata octal digits, 
L AO,nbr-addr and set the result right-justified and zero filled into a fixed-
LMJ X11,EOCTF$ length field of the number of characters specified in register 

A 1. If the number of Fieldata octal digits (including a 
These instructions can be generated. leading 0, if the magnitude of the number is greater than 7) 
by the procedure call: exceeds the specified field size, truncate one or more low 

order digits. Insert this field into the image. 
E$OCTF char-cou nt,nbr-addr 

EOCTF$, unlike EDECF$, does not assume that the number 
in register AO is necessarily a representation of a single 
positive or negative qualtity, and therefore EOCTF$ does not 
take special action to complement the number and add a 
leading minus sign if the high order sign bit is set. If, for 
example, register AO had all bits set to 1 except bit 0, EOCT$ 
would convert this to the 13-character string 07777777777768, 
while EDECF$ would convert it to a two-character string 
of -1. 

Table 4-2. General Purpose Editing Routines (Part 3 of 4) 



4144 Rev. 2 
UP.NUMBER 

Routine 

EOCTV$ 

EPACK$ 

ESKIP$ 

ETIME$ 

UNIVAC 1100 SERIES SYSTEMS 14-8 
PAGE REVISION PAGE 

Calling Sequence Description 

L AO,nbr,addr This is the same as EOCTF$ except that the field size is 
LMJ X11,EOCTV$ variable and on Iy as large as is necessary to hold the converted 

octal number including the leading zero if the magnitude of the 
These instructions can be generated number is greater than seven. 
by the procedure call: 

E$OCTV nbr·addr 

L,U A 1 ,char-cou nt This is the same as ECOPY$ except that sixth word whose 
L,U AO,char-addr value is the Fieldata master space (@), although included in 
LMJ A11,EPACK$ the input character count, is not inserted into the image. 
These instructions can be generated 
by the procedure call: 

E$PACK cha~coun~cha~addr 

L,U AO,column-count Advance the column pointer by the column count given in 
LMJ X11,ESKIP$ register AO. To back up the count, register AO may be loaded 

with a negative number. 
These instructions can be generated 
by the procedure call: 

E$SKIP column-count 

L AO, TDATE$-word-addr CGnvert and insert into the image the time portion of the 
X11,ETIME$ 

~ . 
LMJ TDATE$ word format (see 4.5.2) to an eIght-character 

Fieldata string in the form hh:mm:ss 
These instructions can be generated 
by the procedure call: 

E$TIME TDATE$-word-addr 

or to obtain the real time clock time 

ER TDATE$ 
LMJ X11,ETIME$ 

These instructions can be generated by 
by the procedure call: 

E$TD 

Table 4-2. General Pu.-oose Editing Routines (Part 4 of 4) 



~ .. -. 

. /' 

4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 14-9 
PAGE REVISION PAGE 

14.2.4. FLOATING·POINT EDITING ROUTINES 

Table 14-3 contains the floating·point editing routines. Upon entering any of the floating-point routines, register AO must 
contain a number in the form x* /6+y where x is the desired field size and y is the desired number of significant digits. When 
the field size is larger than necessary, the edited floating-point result is right-justified and space filled. 

To avoid overflow to the right, the minimum necessary field size is y+4 plus 1 for each of the following cases: 

111 a separator character is used in the DPC and SPC packet fields; 

B the number is negative and requires a leading minus sign; or 

• the number is double precision and requires a three-digit characteristic. 

Routine Calling Sequence Description 

EFLF1$ L,U AO,x* /6+y Convert the floating-ppoint number in register A 1 to a fixed-
L A 1 ,nbr-addr point Fieldata string consisting of: a leading minus sign if the 
LMJ X11,EFLF1$ number is negative; a period to represent the decimal point; 

the number of digits specified by y; a separator character if 
These instructions can be generated one was specified in the SPC packet field; a plus or minus sign 
by the procedure call: indicating if the two-digit characteristic has a positive or negative 

exponent. The string is set into a field of x characters and insert 
E$FLF1 x* /6+Y,nbr-addr the field into the image . 

EFLG1 L,U AO,X*/6+y This is the same as EFLF1$ except that an attempt is made 
L A 1 ,nbr-addr to shift the decimal point among the significant digits so that 
LMJ X11,EFLG1$ the characteristic goes to zero, in which case the characteristic 

is set to blanks. If the attempt fails, the decimal point is 
These instructions can be generated placed following the number of significant digits specified in 
by the procedure call: the EDIT$ packet FPS field. 

E$FLG1 x* /6+Y,nbr-addr 

EFLS1$ L,U AO,x* /6+y This scientific floating-point format subroutine operates in 
L A 1 ,nbr-addr the same manner as the EFLF1$ routine, except that the 
LMJ X11,EFLS1$ the decimal point is always placed following the number of 

significant digits specified the EDIT$ packet FPS field. 
These instructions can be generated 
by the procedure call: 

E$FLS1 x* /6+y,nbr-addr 

EFLF2$ L,U AO,x* /6+y Same as EFLF1$, except the floating-point number is in 
LD A 1 ,nbr-addr registers A 1 and A2. 
LMJ X11,EFLF2$ 

These instructions can be generated 
by the procedure call: 

E$FLF2 x* /6+Y,nbr-addr 

Table 14-3. Floating-Point Editing Routines (Part 1 of 2) 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 14-10 
PA GE RE VISION PA c:; E 

Routine Calling Sequence Description 

EFLG2$ L,U AO,x*/6+y Same as EFLG1$ except that the floating-point number is 
DL A 1 ,nbr-addr in registers A 1 and A2. 
LMJ X11,EFLG2$ 

These instructions can be generated 
by the procedure call: 

EFLG2$ x* /6+y,nbr-addr 

EFLS2$ L,U AO,x*/6+y Same as EFLS1$ except that the floating-point number is in 
DL A 1 ,nbr-addr registers A 1 and A2. 
LMJ X11,EFLS2$ 

These instructions can be generated 
by the procedure call: 

E$FLS2 x* /6+y ,nbr-addr 

Table 14-3. Floating-Point Editing Routines (Part 2 of 2) 

14.3. EOUT$ (GENERALIZED OUTPUT EDITING ROUTINES) 

EOUT$ is an interpretive routine which performs editing functions for output produced on the line printer, the card punch, 
and the display console. The interpretive instructions performed by the routine are constructed along much the same lines as 
are machine language instructions: 

t d m 

where: 

f Function code 

t Type wheel (printer) or character position (display console) 

d Decimal point location 

x Specifies indirect address and use of the simulated index register 

m Address (main storage location of data) 

EOUT$ is called by: 

LMJ X11,EOUT$ 

,There are two entry points to this subroutine. The normal entry point is EOUT$. The other, EOUTR$, is the point for 
reentry after E$TERM (terminate) function and is discussed in 14.3.4. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 14-11 
PAGE REVISION PAGE 

The addressed word in the m field may be either in control register or main storage. Any word, even a volatile register, is 
permissible; but if register X11 is addressed, the location of the interpretive word which references X11 is put out. All 
registers, including volatile ones, are saved and restored. The x field is used to specify indirect addressing and the use of the 
single simulated index register. Its permissible values are: 

08 No action 

18 Use address indirectly 

28 Apply simulated index register 

38 Apply simulated index register then use address indirectly 

Indirect addressing is permitted to one level only, and the x, h, and i fields of the indirectly addressed word are ignored. It is 
possible, however, to indirectly address control storage. All modes may be used with indirect addressing. 

The various functions are described in the following paragraphs. They are all callable as procedures. Each of the procedure 
calls generates one word in the proper format. The parameters of these procedures are interpreted differently depending on 
the number written. A single parameter is taken as m; two parameters as m and x; three parameters as t, d, and m; and four 
parameters as t, d, m, and x. Any missing parameters are assumed to be zero. 

Entry to EOUT$ may be obtained by the procedure E$OUT or E$OUTR, depending on the entry point desired. No 
parameters are required. 

14.3.1. EDITI NG FUNCTIONS 

These functions actually convert the information to be outputted. In all cases, except E$A (alphanumeric words), the t field 
specifies the type wheel at which the rightmost digit, bit, or character is to be printed. The number given in parentheses 
following the procedure call is the octal function code. 

E$D(01) - Decimal: The address word is treated as if it were a signed decimal integer and is edited without a decimal point 
unless a set function (see E$PNT - 14.3.3) is in effect. Leading zeros to the left are suppressed and a minus sign, if any, is 
printed immediately to the left of the number (also see E$OVRP - 14.3.3). If the value is zero, a single zero is printed. If a 
set point is in effect, the decimal number is assumed to have the stated point specified by the set point, and the d field 
specifies the number of decimal digits to be printed to the right of the decimal point. If a set field function (see E$FLD -
14.3.3) with D=O is in effect, the specified field is treated as an unsigned decimal integer. 

E$O(02) - Octal: The d low·order bits of the addressed word are edited and printed as (d+2)/3 octal digits, unsigned. For a 
full octal, binary, or alphanumeric character word, d must always be given as 36. 

E$B(03) - Binary: The d low·order bits of the addressed word are edited as d binary digits unsigned. 

E$C(04) - Alphanumeric Characters: The d low·order bits of the addressed word are edited and printed as (d+5)/6 
alphanumeric characters in Fieldata code. 

E$A(05) - Alphanumeric Words: The d words beginning with the addressed word are edited as 6*d characters in Fieldata 
code. For this editing function only, the t field specifies the print position at which the left·most character is printed. 

E$E(06) - Floating Point (FORTRAN E): The addressed word is edited as a floating·point number with d significant digits. 
Normally these are all printed to the right of the decimal point (see E$SCL - 14.3.3). A decimal exponent consisting of a 
sign and two digits is inserted immediately to the right of the significant portion. If the floating·point number is negative, a 
minus sign is inserted immediately to the left of the number (see E$OVRP - 14.3.3). If the addressed word is minus zero, no 
effect will occur, and the field is left blank. 

E$F(07) - Floating to Fixed (FORTRAN F): The addressed word is assumed to be a floating·point number and is edited to 
fixed point with d places following the decimal point. Negative numbers, including minus zero, are treated as in E$E. 



4144 Rev. 2 
U~.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 14-12 
~AQE REVISION ~AQE 

E$DE(26) - Double-Precision Floating Point: This editing function is the same as E$E with the addressed word and the 
addressed word plus one edited as a double-precision floating-point number. A decimal exponent consisting of a sign and 
three digits are inserted immediately to the right of the significant portion. 

E$DR(27) - Double-Precision Floating to Fixed: This editing function is the same as E$F with the addressed word and the 
addressed word plus one edited as a double-precision floating-point number. 

14.3.2. OUTPUT FUNCTIONS 

The output functions serve to transmit the edited line to an output device; the printer, the card punch, or the display console. 
The device to be used is determined by the d field: 

Printer D=O 

Card Punch D=1 

Display Console D=2 

The word or character count is given in the t field~, This count must be given. (It is not assumed maximum if it is given as 
zero.) For the printer, the word count is normally 22; for the card punch, normally 14. For the display. console, the t field is 
a character count and cannot be more than 60. For the printer, the m field serves to specify the number of lines to be spaced. 
A value greater than the length of a logical page results in printing on the first line of the next page. For the punch and 
display console, the m field is ignored. The number given in parantheses following the procedure call is the octal function 
code. 

E$WT(10) - Write and Terminate: The edited image is transmitted to the specified device, and the routine returns control to 
the next instruction in machine language mode. The image is not reset to blanks. 

/' 
E$W(11) - Write: The edited image is transmitted to the specified device and the routine continues in the interpretive mode. (, 
The image is reset to blanks. 

E$WS(12) - Write and Save: The .edited image is transmitted to the specified device and the routine continues to the next 
instruction in the interpretive mode. The image is left available for use by further output functions or further editing. 

14.3.3. MODAL FUNCTIONS 

The modal functions serve to enter information which affects the interpretation of one or more of the instructions which 
follow. The number given in parentheses following the procedure call is the octal function code. 

E$SC L( 13) - Set Scale: The contents of the address field are treated as a signed power of 10 to be applied to any 
floating-point or floating-to-fixed function which follows the set scale function. For floating point, the scale is the number of 
digits to be printed to the left of the decimal point. The exponent field is reduced accordingly, so that the resulting value is 
the same as if no set scale function were in effect. Negative values of the address (the 16-bit ones complement) introduces 
leading zeros after the decimal point and increases the exponent field accordingly. 

For floating-to-fixed conversion, the actual value of the resulting number is altered by multiplying it by the power of 10 
indicated by the address. The set scale function remains in effect until it is countermanded by a new set scale. Upon initial 
entry to EOUT$, the scale is assumed to be O. 

E$PNT(14) - Set Point: The set point function specifies the position of the binary point for the next editing function to be 
encountered (presumably a decimal editing function). It remains in effect only for the single edit. The address of the set point 
gives the number of bits following the binary point. Negative values are permitted (see E$FLD - below). 

E$F LD( 15) - Set Field: The set field function is used to specify a subfield of the next word to occur (presumably a decimal, 
octal, binary, or alphanumeric characters function). The t field specifies the lefthand margin and the m field the righthand 
margin. The bits of the machine word are numbered, for the purposes of this function, from left (00) to right (35). The d 
field specifies extension of sign; if it is nonzero, the" field is treated as signed. A set field function with d=O and t=O may be 
used to treat fields, including the sign bit, as unsigned unless m=35 (that is, a whole word must always be signed in the event a 
sign is applied). 

/' 



I 

',--, 

4144 Rev. 2 
UP-NUMBER 

UN I VAC 1100 SE RI ES SYS T EMS 14-13 
PAGE REVISION PAGE 

The set field function remains in effect only for the next function encountered. If both a set field and a set point function are 
in effect when editing occurs, the set field function is applied first. In this case, the set point function specifies the binary 
point counting from the righthand end of the specified field. 

E$INDX(16) - Set Index: The set index function is used to address a quantity in main storage which is to be loaded into the 
single simulated index register. For any function which addresses storage (including this one), the presence of a 1 bit in the 
increment (h) portion of the address causes the simulated index to be added to the specified address before access is made. 
The left half of the index register word is ignored. If the d field is nonzero, the contents of the m field (with sign extension) 
are loaded into the simulated index register. The set index function remains in effect until it is countermanded by another set 
index function. 

E$OVRP(17) - Overpunch: The overpunch function specifies that any minus signs produced by the editing functions are to 
be removed from their positions in front of the edited numbers and placed as ll-punches over the low-order digits. In the 
case of floating-point editing, the sign of the mantissa is placed over the low-order digit of the mantissa and the sign of the 
exponent over its low-order digit. The space that would normally contain the sign of the exponent is omitted. 

The overpunch function is initiated by its occurrence with address 1. It is countermanded by its occurrence with address O. 
Upon initial entry to EOUT$, the overpunch mode is assumed to be off. 

14.4.4. CONTROL FUNCTIONS 

The control functions serve to introduce into the interpretive language some of the control operations available in machine 
language. The number given in parentheses following the procedure call is the octal function code. 

E$TERM(20) - Terminate: The terminate function causes the routine to return to the next instruction in machine language. 
Upon reentry at point EOUTR$, all counters, modes in effect, interpretive subroutines, and any partial image are left 
undisturbed; control is returned to the next instruction in machine code. If reentry is made at EOUT$, these are all cleared; 
control is returned to the interpretive mode. Entry at EOUTR$ is made by: 

LMJ Xll,EOUTR$ 

E$LlNK(21) - Link: The link function is used to form subroutines in the editing language. Its effective address specifies the 
location of the entry to a subroutine. Subroutines may be nested to a depth of 10. 

E$JUMP(22) - Jump: The jump function with a nonzero effective address causes an interpretive transfer of control to the 
designated location. If the address is zero, the jump function serves as a subroutine exit. Transfer is to the interpretive 
function following that link control most recently executed for which no exit has been performed. 

E$RPT(23) - Repeat: The repeat function causes the next single interpretive function to be repeated the number of times 
specified in the d field of the repeat word. A repeat function preceding E$LlNK is meaningless; for multiple execution of 
E$LlNK, the routine EOUT$ itself should be called within a machine language loop. The t and m fields contain increments to 
the t and m fields of the instruction to be repeated for each execution. Any modes set by the modal functions which would 
be in effect for the first execution of a repeated instruction remain in effect for all executions. 

E$CLR(24) - Clear: The clear function sets the image to blanks. 

14.3.5. EXAMPLES 

Several examples* of typical calling sequences to EOUT$ follow: 

Example 1: 

The FORTRAN instruction 

PRINT 100, A, I, N, B., C 

100 FORMAT (6X, E20.7, 120,020, lP.2F20.6) 

*The use of FORTRAN formats here is merely to indicate the format desired. The I/O functions in FORTRAN employ an 

editing scheme peculiar to themselves. 



4144 Rev, 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 14-14 

is equivalent to the interpretive sequence: 

E$OUT 

E$E 

E$D 

E$O 

E$SCL 

E$F 

E$F 

E$WT 

26,7,A 

46,0,1 

66,36,N 

86,6,8 

106,6,C 

22,0,1 

Next machine language instruction 

Example 2: 

PAGE REVISION PAGE 

If this line were to be put out also on the card punch, whose output code is 1, then the last interpretive instruction 
would be replaced by: 

E$WS 

E$WT 

14,1,0 

22,0,1 

Only the first 80 columns of the image would be punched. 

Example 3: 

The FORTRAN instruction 

PRINT 100 (J (I), K (I), L (I), M (I), 1=1',4) 

100 FORMAT (2016) 

is equivalent to the following interpretive sequences: 

E$RPT 30,4,1 

E$D 6,0,J,2 

E$RPT 30,4,1 

E$D 12,0,K,2 

E$RPT 30,4,1 

E$D 18,0,L,2 

E$RPT 30,4,1 

E$D 24,0,M,2 

E$WT 22,0,1 



( 

4144 Rev. 2 
UP-NUMBER 

UN IVAC 11 00 SE RI ES SYST EMS 15-1 
PAGE REVISION PAGE 

15. COMMUNICATIONS HANDLER 

15.1. INTRODUCTION 

The communications handler provides the interface between the multitude of available remote terminal devices and the user 
programs. The diversity of hardware dictates a general routine upon which the variances of each application can be built. 

Worker programs to which communication devices are assigned must be operated as real time programs, because of the high 
priority which must be given to communication interrupt processing. 

Each worker program to which communications devices are assigned should register an error routine with the executive so 
that the worker program may be properly notified concerning operating contingencies. The error routine is registered by 
means of an IALL$ request (see 4.9.3.1) for the error mode entry. If the error routine is omitted, a contingency causing entry 
into the error routine causes program termination. 

15.1.1. EQUIPMENT 

Communication devices may be connected to UNIVAC 1100 Series channels thrqugh three types of subsystems: 

II Communications Term inal Synchronous (CTS) 

II Word Terminal Synchronous (WTS) 

II Communications Terminal Module Controller (CTMC) 

15.1.1.1. THE CTS AND WTS 

The CTS and WTS operate in the internally-specified index (lSI) mode with only one remote terminal connected to an I/O 
channel at anyone time. 

15.1.1.2. THE CTMC 

The CTMC line terminals operate in the externally-specified index (ESI) mode. Each character transfer is accompanied by an 
address which identifies to the CPU the external line to or from which the transfer is directed, and each address has a distinct 
I/O access control word association. One CTMC is capable of multiplexing 64 line terminals: 32 for input and 32 for output. 

In order for the system to utilize the main storage overlap feature, the system base address for all ESI access control words is 
002100

8 
for main storage. A group of 64 consecutive addresses (one for each line terminal) is set aside for each CTMC 

defined at systems generation time. Any ESI channel may be configured to operate in either quarter- or half-word mode. The 
mode is selected by hardware modification of the CPU's or 10C's ESI channel. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 15-2 
PA GE RE VISION PA GE 

The communications handler assumes that the user program is written to interface with a particular type of hardware and 
that the buffers are organized accordingly, such as, packing characters into words for the WTS, setting up code conversion, 
providing start, end, and parity characters for the CTS, and so forth. The amount of time available to process characters 
dictates that executive action be kept to a minimum and thus disallows character manipulation. Other than for buffer format 
and time considerations, the user need not be aware of the hardware arrangement being employed. 

15.1.2. MODES OF OPERATION 

The real time user, while interfacing with the communication handler, may operate in the following modes: 

• Single Mode: 

Used when one message, with a known maximum length, is to be received or sent. 

Ell Pool Mode: 

Used primarily when multiple messages are to be received or sent, or when a message of variable and unknown 
maximum length is to be received. There are three types of pool mode operation: 

(1) Open Pool 

(2) Closed Pool 

(3) Dual Pool 

- A multiple number of buffers chained so that the chain can be exhausted. The last buffer in 
the chain indicates the end of the chain by a zero value in H2 of the link word. 

- For input operations only. Contains a mUltiple number of buffers chained in a continuous 
manner, where the last buffer is chained to the first; that is, the pool is never exhausted. The 
last buffer in the chain points back to the first by means of H2 of the link word. Use of closed 
pool mode requires extreme user care. 

- For input operations only. Contains an initial buffer pool for status checking, and an 
additional buffer pool (open or closed) for the receipt of data. 

The user must weigh many factors before choosing a mode of operation. Such factors are devices (CTSIWTS are limited to 
single mode), carrier speed, type of acknowledgement required or not required in operating the device, and the manner in 
which the data is to be processed. The mode of operation need not be the same for both input and output. 

15.2. ASSIGNING LINE TERMINAL (LT) DEVICES 

At system generation time, each channel must be completely defined. For communications devices, this includes specifying 
the subsystem type and characteristics of the L T to which the remote terminal is connected (bits per character, speed, fixed 
or common carrier line, unit type). At that time, various devices connected to a single line, and programmed as a unit (that is, 
one input and one output and/or one dialing unit), are given a line terminal group (LTG) identity. This identity can be used 
in assigning communications devices. The arbitrary subsystem and unit assignment for these devices can also be used as 
specified in the@ASG control statement (see 3.7.1). 

15.3. THE LINE TERMINAL TABLE 

The user program controls each LTG identified by means of the line terminal table (L TT) constructed in the user-program D 
bank. All user operations on an LTG must reference that group through a single L TT (in contrast to other I/O devices which 
may have any number of active packets). The L TT enables the user program to control each LTG from the execution of the 
initialize request to the execution of terminate request (see 15.4.1). 

The format .of the L TT is divided into four parts: internal filename (words 0 and 1), output area (words 2 through 5), input 
area (words 6 through 9), and dial area (words 10 and 11). The user can omit any part simply by not coding it; however, 
omission of a part must be accounted for by a zero-filled area. The format of the L TT is: 



4144 Rev. 2 
UP-NUMBER 

UN I VA C 11 00 S E R I E S S Y S T EM S 15-3 

Sl S2 S3 

Word 0 

internal-filename 

output-status quarter-word- output-usage 
indicator 2 

ou tput-character-cou nt 
(0 for pool mode) 3 

4 end-of-output-backup-queue-addr 

5 partial-buffer-character-count 

input-status 
end-of-

input-usage input-action 6 

input-character-count 
(0 for pool mode) 7 

8 end-of-input-backup-queue-addr 

9 partial-buffer-character-count-or-dual-pool-addr 

10 dial-status dial-usage 

PAGE REVISION PAGE 

H2 

output-completion-activity-addr 

output-buffer-or-pool-start-addr 

start-of-output-backup-queue-addr 

buffer-transfer-time 

input-completion-a6tivity-addr 

input-buffer-or-pool-start-addr 

start-of-input-backup-queue-addr 

buffer-transfer-time 

dial-com pletion-activ ity-addr 

output 
area 

input 
area 

dial 
area 

11 dial-access-contro I-word 

II Internal fi lename 

Words 0 and 1 

Contains the identity used to reference the LTG. If the internal filename is not the same as the external filename, the 
internal filename must be equivalenced by a @USE control statement (see 3.7.5). 



4144 Rev. 2 
UP-NUMBER 

• Output Area 

Word 2 

output-status 

quarter-word-indicator 

output-usage 

UNIVAC 1100 SERIES SYSTEMS 15-4 
PAGE REVISION PAGE 

An octal code denoting the completion status of the last buffer transferred to the 
remote terminal. For pool mode, this code is stored in S3 of word ° of each buffer. 
Values for this field are: 

08 - The number of characters specified in H 1 of word 3 has been trans
ferred to the remote terminal. For pool mode, T1 of the first buffer 
word has been transferred to the remote terminal. 

28 - The line has been declared down by the operator. H 1 of word 5 
contains the number of characters transmitted. No further action is 
taken on queued buffers. 

58 - Output was terminated before the specified number of characters was 
transferred. Termination is detected by the timeout of the 
communications handler's timer. The number of characters transferred 
is placed in H 1 of word 5 and the output has been turned off. This 
mode of operation can be used to avoid output monitor interrupts on 
the CTMC by specifying a full buffer, setting the EOT bit before the 
end of the buffer, and allowing the buffer to timeout. 

108 - An ESI activity associated with this line terminal is in a contingency 
state and as a result the line terminal is terminated. 

208 - Same as °8, except that the end of the buffer queue is reached and 
output is turned off. If a buffer is added to the queue after the 
communications handler makes the check, the worker program must 
restart the output. 

258 - Same as 208' except that the output buffer has timed out. 

For ESI activity processing, either quarter- or third-word execution is permitted. If 
quarter-word mode is desired, a 1 is placed in this field. A ° (or if the SGS for 
quarter-word states that quarter-word execution is not allowed) indicates 
third-word execution. I n either case, the mode is applicable to all ESI activities 
created with the initialization request. Once the mode is established by the real 
time program, the only method to alter the mode is to terminate the line (by means 
of a CMT$ request - see 15.4.1.10) and reinitialize (by means of a CMS$ request -
see 15.4.1.1) with the new mode. For each subsequent initialization request, the 
mode must be reestablished. This is required because the communications handler 
uses the field as a link to the program control table (PCT) item associated with the 
L TT after the initialization request. 

Denotes the condition required to start the output completion activity. Values for 
this field are: 

08 - No activity is to be initiated. 

18 - Give control to completion activity upon completion of each output 
buffer only if activity is not executing. The communications handler 
detects exiting from this activity after the check, and restarts it. 

28 -Give control to the output completion activity only if the output back
up queue is exhausted or a nonzero status is returned for a buffer. 



( 
....... -~. ,~ 

4144 Rev. 2 
UP-NUMBER 

UN IVAC 11 00 SE RI ES SYST EMS 15-5 
PAGE REVISION PAGE 

&\I 

output-completion-activity-addr Contains the starting address of the output completion activity, which is a routine 
to be given control upon completion of an output buffer transfer and within the 
conditions specified by the output usage field (S3). This activity is given control, 
with register AO containing the address of the L T, and register A 1 containing the 
buffer address. For pool mode operations, register A 1 contains the address of the 
first buffer transferred since more than one buffer may have been transferred prior 
to the activation of the completion activity. The activity specified must be within 
the bounds of the user program. 

Word 3 

This word defines the single output buffer or the output buffer pool. For the CTMC (half-word operation only), output 
characters are transmitted in ascending order within a word starting at the lowest portion of the word. For CTMC 
quarter-word transfers, see 15.4.2. For WTS, output characters are transmitted in descending order within a word 
starting at the highest portion of the word. CTS output characters are transmitted one character per word, 
right-justified. Both single mode and pool mode individual buffer sizes are limited to 4095 characters. 

output-character-cou nt 

output-buffer-or-pool-start-addr 

Word 4 

Contains the number of characters for single mode; contains zero for pool mode. 

Contains the single buffer address, or the address of the buffer pool control word 
which is the first word of the buffer control packet. 

For pool mode, this word contains the starting and ending address of the queue of buffers already filled for output to 
the terminal device. H 1 contains the ending address, and H2 contains the starting address. H 1 and H2 must specify a 
buffer currently removed from the output queue and not currently in another output queue. The communications 
handler updates only H2. The user program can detect the end of the output queue by finding a start field with a value 
of zero in his L TT, or by finding a start field (H2) which is equal to the end field (H 1). 

Word 5 

partial-buffer-character-count 

buffer-transfer-time 

Contains the number of characters transferred as output when the output transfer 
of a buffer is completed before the specified count is transferred. 

Contains the number of basic time intervals to be used as the maximum time 
between buffers. If a buffer does not transfer in this time interval, a fault is 
suspected unless the previous character denoted end of output. If a time value of 
zero is specified, no timing check is performed by the communications handler. It is 
not intended that the communications handler perform extensive buffer timing 
checks, but merely that it provide a means of detecting a stalled or inactive 
condition. Any extensive timing checks would be excessive overhead which reduces 
system throughput, and would be of no appreciable value to the communications 
handler users. 

The basic time interval used by the communications handler is 600 milliseconds for the CTMC and six seconds for the 
CTS/WTS to conform to lSI timing by the day clock because: 

(1) the dayclock interrupts at this time interval 

(2) the automatic calling unit dial time is approximately 600 milliseconds per digit 

(3) some medium speed modems require a certain amount of time between transmissions, which can be measured in 
600-millisecond increments. 

Input Area 

Word 6 

input-status Contains.a value which denotes the completion status of the last buffer transferred 
from the remote terminal. For pool mode, this value is stored in S3 of word 0 of 
each buffer. Values for this field are given in Table 15-1. 



4144 Rev. 2 
UP-NUMBER 

Octal 
Code 

o 

2 

3 

5 

6 

7 

10 

11 

12 

13 

20 

21 

23 

25 

27 

30 

31 

32 

33 

UNIVAC 1100 SERIES SYSTEMS I 15-6 
PAGE PA GE REVISION 

Description 

Normal acknowledgment was returned. For single mode, the number of characters transferred is in H 1 
of word 7; for pool mode, T1 of the first buffer word was transferred from the remote terminal. 

Input was terminated by an external interrupt, The number of characters transferred is in H1 of word 
9 or, for pool mode, in T1 of word O. 

The operator has declared the line to be down by using a ON keyin. H1 of word 9 or T1 of word 0 of 
the buffer contains the number of characters transmitted, if any. No further input is accepted. 

Input was terminated before the specified number of characters were transferred, due to an input 
request (ER CMI$) before the previous request was completed by the handler. This applies only to 
pool mode; T1 of word 0 contains the partial character count, if any. Further action is specified in 
the end-of-input-action field which provides the user with the capability of terminating pool mode 
input. 

A timeout was detected by the communications handler buffer timer. 

A ring indicator external interrupt was received. 

An external interrupt was received with a status word indicating either character or block parity 
error, or late input acknowledge. 

An ESI activity associated with this line terminal is in a contingency state and as a result the line 
terminal is terminated. 

A carrier off external interrupt was received. 

A timeout external interrupt was received. 

A space-to-mark transition external interrupt was received. 

Same as for 08 except that the end of the input buffer pool has been reached; input is terminated. 

Same as for 1 8 except that the end of the input buffer pool has been reached. 

Same as for 38 except that the end of the input buffer pool has been reached. 

Same as for 58 except that the end of the input buffer pool has been reached. 

Same as for 78 except that the end of the input buffer pool has been reached. 

Same as for 108 except that the end of the input buffer pool has been reached. 

Same as for 118 except that the end of the input buffer pool has been reached. 

Same as for 128 except that the end of the input buffer pool has been reached. 

Same as for 138 except that the end of the input buffer pool has been reached. 

NOTE: Ring indicator and carrier off interrupts may occur whether or not input is active. If either of these interrupts occurs 
and input is active, normal processing of the interrupt is performed with the buffer or data address corresponding to the 
interrupt passed in register A 1 to the ESI activity along with the appropriate status code. If either of the above 
interrupts occurs and input is not active, register A 1 is passed to the ESI input activity. Set to zero to indicate the 
abnormal condition. The appropriate status code is provided in the input status field of the corresponding L TT for the 
inactive input condition. 

Table 15-1. L TT Input-Status Codes 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SE RI ES SYST EMS 15-7 

end-of-input-action 

input-usage 

input-completion-activity-addr 

Word 7 

PAGE REVISION PAGE 

For pool mode, denotes action to be taken by the communications handler when 
an end-of-message characters or external interrupt received. Values for this field are: 

0
8 

- Turn input off 

18 - Reinitiate input using next buffer from pool. 

Contains a value which denotes the condition required to start the input 
completion activity. Values for this field are: 

0
8 

- No activity is to be initiated. 

18 - Give control to the completion activity only if the activity is not 
executing. (The communications handler detects exiting from this 
activity after the check and restarts it.) 

Contains the address of a routine to be given control upon completion of an input 
buffer transfer as indicated by the input usage field. Control is given to this routine 
with register AD containing the address of the L TT and register A 1 containing 
either the address of the first buffer transferred (pool mode) or the address of the 
user's data area (single mode). For pool mode, more than one buffer may have been 
transferred prior to giving control to the completion activity (see word 8). 

Defines the single input buffer or the input buffer pool. For CTMC half-word transfers, input characters are transmitted 
in ascending order within a word starting at the lowest portion of the word. For CTMC quarter-word transfers, see 
15.4.2. For WTS, input characters are transmitted in descending order within a word starting at the highest portion of 
the word. CTS input character are transmitted one character per word, right-justified. For both single mode and pool 
mode, individual buffer sizes are limited to 4095 characters. 

input-character-count 

input-buffer-or-pool-start-addr 

Word 8 

Contains the number of characters for single buffer mode; must not be a value that 
would cause the buffer to extend beyond the upper boundary of the user's D bank; 
must contain zero for pool mode. 

Contains the single buffer address (single mode), or the address of the buffer pool 
control word, which is the first word of the buffer mode). 

For pool mode, this word contains the starting and ending addresses of the queue of buffers already filled as input from 
the terminal device. This word is not used in single mode. H 1 contains the ending address, and H2 contains the starting 
address. After each buffer is processed, the user program is expected to update H2 with the link portion of that buffer. 
To accomplish this update, the user program can determine the end of the input backup queue by finding a start field 
with a value zero in his L TT, or by finding a start field (H2) which is equal to the end field (H 1). 

Word 9 

partial-buffer-character-count-or
dual-addr 

For single mode, H 1 contains the number of characters transferred as input when 
the input transfer of a buffer is completed before the specified count is transferred. 
For input pool mode, this field must be zero unless dual pool mode is desired; for 
dual pool mode, H 1 contains the dual pool address. Dual pool mode is used 
primarily for polling operations, whereby a small input buffer can be initially set up 
so that an immediate switch to a pool of larger buffers occurs when the poll 
response is received. Thus, larger buffer areas can be used for the input data stream 
initiated by the polling operation. 



4144 Rev. 2 
UP-NUMBER 

buffer-transfer-time 

• Dial Area 

Word 10 

dial status 

dial-usage 

UN I V A C 11 0 0 S E R I E S S Y STEMS 15-8 
PAGE REVISION PAGE 

Contains the number of basic time intervals to be used as the maximum time 
between buffers. If a buffer does not transfer in this time interval, a fault is 
suspected unless the previous character denoted end of input. If a time value of 
zero is specified, no timing check is performed by the communications handler (see 
word 5). 

Contains completion status of the last dial operation. Status codes are: 

18 - Successfu I 

28 - Unsuccessfu I 

38 - Leased line assigned 

1°8 - An ESI activity associated with this line terminal is in a contingency 
state and as a result the line terminal is terminated. 

408 - In progress 

Denotes action to be taken upon completion of the dial operation: 

°8 - No dial completion activity 

18 - Give control to dial completion activity When dial operation is completed 

dial-completion-activity-address Upon completion of the dial operation, control is passed to the address specified in 
this field. 

Word 11 

This word contains the count of characters in H 1, and in H2 the buffer address at which the number to be dialed is 
stored in BCD format. The CTMC dial characters are transmitted in ascending order within a word starting at the lowest 
portion of the word. The communications handler uses the buffer timer to verify that a connection has been 
established. This verification is contingent upon the user setting the EOT bit (29

) in the last dial digit. 

15.4. COMMUNICATIONS HANDLER OPERATIONS 

15.4.1. SUPPORT OPERATIONS 

The available operations are: 

Initialize ER CMS$ (see 15.4.1.1) 

Terminate ER CMT$ (see 15.4.1.10) 

Dial ER CMD$ (see 15.4.1.2) 

Input ER CMI$ (see 15.4.1.3) 

Output ER CMOS (see 15.4.1.4) 

Input and Output ER CMSA$ (see 15.4.1.5) 

Hangup ER CMH$ (see 15.4.1.9) 

The references to these operations are made with H2 of register AO loaded with the address of the L TT defining the LTG. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 11 0 0 SERIES SYSTEMS 15-9 
PAGE REVISION PAGE 

15.4.1.1. INITIALIZATION (CMS$) 

Purpose: 

To initialize one or more LTG's. 

Format: 

L AO,(lttcount,lttaddr) 
ER CMS$ 

Parameters: 

Ittcount The number of L TT's (see 15.3) 

Ittaddr The address of the first L TT 

Descri pti on: 

When the CMS$ request is executed, the user program must be in real time mode, and H 1 of register AD must contain the 
number of LTG's minus one; H2 must contain the location of the first L TT. The format of register AD is: 

H1 H2 

L TT-count·minus-one first-L TT-addr 

where: 

L TT-count-m inus-one 

first-L TT-addr 

15.4.1.2. DIALING (CMO$) 

Purpose: 

Specifies the number (minus one) of the oontiguously located L TT's which are to be 
initialized and which must not exceed the number of communications LTG's (minus one) 
currently assigned to the user. 

Specifies the address of the first of the contiguously located L TT's to be initialized. 

Each L TT in the user's 0 bank must be formatted for the initialize operation. Refer to 
15.3 for the format of the L TT. 

When a CMS$ request is made, the L TT's specified by the user are initialized, in turn, 
beginning with the L TTspecified in H2 of register AD. Thus, when an error condition is 
detected and control is returned to the user's error contingency routine, all of the L TT's 
preceding the one being initialized when the error condition is detected have been 
initialized. The user may elect to use the initialized L TT's or terminate them by executing 
a CMT$ request (see 15.4.1.1 D). 

Initiates a communications handler dialing operation. 

L,U AD,lttaddr 
ER CMOS 



4144 Rev. 2 
UP-NUMBER 

Description: 

UNIVAC 1100 SERIES SYSTEMS 
PAGE REVISION PAGE 

The user program must be in real time mode, and register AD must contain the location (lttaddr) of the L TT (see 15.3). 

The L TT in the user's D bank must be formatted for the dial operation (see 15.3). 

15-10 

The dial completion activity operates as a high priority interrupt routine and is allowed a limited time period to perform 
analysis of the interrupt. When this routine is entered, register AD contains the location of the appropriate L TT. 

The dial operation initiates the buffer specified in word 11 of the L TT addressed by register AD. The telephone number to be 
dialed must be in BCD. After the dial operation is completed, the user gets control at the dial completion activity starting 
point, with the dial status in S1 of word 1D of the L TT. If input or output was initiated before dialing, the character timing is 
not done before either the first character transfer or the dial times out. In the case of initiating output, the output terminal 
requires an 'ena.ble from the dial unit, so transfer starts immediately upon dial completion. A dial request on a leased line is 
given a unique status code and subsequent input or output is honored. The dial completion activity operates as an ESI 
completion activity. 

If an automatic calling unit does not exist for an LTG, the following message is displayed on the operator's console: 

run-id DIAL NUMBER .......... Sxxx/Uxxx Y OR N? 

where Sxxx/Uxxx is the subsystem and unit to be connected. The operator must respond with an Nor Y to indicate completion. 

15.4.1.3. INPUT (CMI$) 

Purpose: 

Initiates a communications handler input operation. 

Format: 

L,U AD,lttaddr 
ER CMI$ 

Descri ption: 

When a CM 1$ request is made, the user program must be in real. time mode, and register AD must contain the location 
(lttaddr) of the L TT (see 15.3). 

Input on line terminals can be initiated in one of the following modes: 

• Single buffer 

• Pool 

• Dual pool 

15.4.1.4. OUTPUT (CMO$) 

Purpose: 

Initiates a communications handler output operation. 

Format: 

L,U AD,lttaddr 
ER CMO$ 



4144 Rev. 2 
UP·NUMBER 

UNIVAC 11 00 S E R I E S S Y S T EMS 15-11 
PAGE REVISION PAGE 

Description: 

When a CMOS request is made, the user program must be in real time mode, and register AO must contain the location of the 
L TT (see 15.3). 

Output on line terminals can be initiated in one of the following modes: 

• Single buffer 

• Pool 

• Dual pool 

15.4.1.5. SEND AND ACKNOWLEDGE (CMSA$) 

Purpose: 

Initiates a communications handler input and output operation. 

Format: 

L,U AO,lttaddr 
ER CMSA$ 

Description: 

When a CMSA$ request is made, the user program must be in real time mode and register AO must contain the L TT (see 15.3) 
address (lttaddr). 

15.4.1.6. SINGLE BUFFER MODE FOR INPUT/OUTPUT OPERATIONS 

If a request to CM 1$ (see 15.4.1.3), CMOS (see 15.4.1.4), or CMSA$ (see 15.4.1.5) is for single buffer mode, the L TT (see 
15.3) must be currently initialized for either operation by setting up the appropriate word of the L TT. Word 7 is set up for 
input operations; word 3 is set up for output operations. If the L TT is initialized for single buffer mode input, the CM 1$ 
request must be for single buffer mode input. Similarly, if the L TT is initialized for single buffer mode output, the CMOS 
request must be for single buffer mode output. 

For single buffer mode input, a CMI$ request causes initiation of input according to the input access control word (lACW) in 
word 7 of the L TT; the IACW points to word 0 of the input buffer. 

For single buffer mode output, a CMOS request causes output according to the output access control word (OACW) in word 
3 of the L TT; the OACW points to word 0 of the output buffer. 

Completion of an I/O operation is indicated by an external interrupt for the CTS and WTS subsystems. For the CTMC, the 
completion of an I/O operation is indicated by a monitored or external interrupt or a timeout. The timeout method is also 
allowed for the CTS and WTS input operations. 

After the input interrupt is detected, the input line terminal is turned off. The completion status of the input buffer is stored 
in Sl of word 6 of the L TT. The number of characters accepted as input is stored in H 1 of word 9. For synchronous line 
terminal devices working on a CTMC, there may be extraneous characters in the buffer following the last data character, if 
the message received is shorter than the buffer. 

The number of output characters transferred in the single buffer mode is stored in H 1 of word 5 of the L TT before the 
output completion activity routine is activated. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 15-12 
PAGE REVISION PAGE 

The completion activity for either input or output operations is activated with register AO set to the starting address of the 
L TT controlling the buffer, and with register A 1 set to the address of the buffer just transferred. The address of the input 
completion activity is specified in H2 of word 6 of the L TT; H2 of word 2 of the L TT contains the address of the output 
completion activity routine. This routine is given control as an ESI completion activity. No output completion activities are 
given control for CTS and WTS subsystems. 

H1 of word 9 of the L TT contains the number of input characters before the input completion activity is activated. H1 of 
word 5 contains the number of characters transferred as output if the output of a buffer is completed before the specified 
count is transferred. 

H2 of word 9 of the L TT contains the number of basic time intervals to be used as the maximum time until the input buffer 
is filled. For output buffers, H2 of word 5 contains a similar value. The basic time interval used by the system is 600 
milliseconds for I/O buffer transfers. If a buffer is not filled in the time interval specified, a fault is suspected unless the 
previous character indicated end-of-message. The appropriate completion activity is activated. 

15.4.1.7. POOL MODE FOR I/O OPERATIONS 

If a request to CMI$ (see 15.4.1.3), CMO$ (see 15.4.1.4), or CMSA$ (see 15.4.1.5) is for pool mode input or output, 
respectively, the L TT (see 15.3) must be currently initialized for pool mode input or output operations. All CM 1$, 
CMO$, .or CMSA$ requests must be for pool mode, and there must be at least one buffer currently available in the pool. 

For input, pool mode is indicated by a zero value in H1 of word 7 of the L TT. H2 of word 7 of the L TT points to a pool 
control packet which locates the pool of chained buffers. The value specified in H2 of word 7 is the address of the pool 
control word returned in H2 of register AO upon return from a CPOOL$ request (see 15.4.2.1). 

For output operations, pool mode is indicated by a zero value in H 1 of word 3 of the L TT. H2 of word 3 points to a pool 
control packet which locates the pool of chained buffers. The value specified in H2 of word 3 is the address of the pool 
control word returned in register AO upon return from a CPOOL$ request (see 15.4.2.1). 

The output queue may contain any number of buffers between one and the total number in the pool. These buffers must be 
currently removed from the output pool and not currently in another queue. 

In the input pool mode, input is initiated with monitor. As each input buffer i~ filled, it is added to the backup queue 
specified in H 1 of word 8 of the L TT. The user program is expected to update H2 of word 8 with the link portion of each 
buffer after that buffer has been processed. The user program can determine the end of the input backup queue by updating 
H2 of word 8 until either a value of zero is encountered or it matches H 1 of word 8. The first word of the buffer that is 
added to the backup queue is loaded with the completion status in S3 of word 0 and the number of input characters trans
ferred in T1 of word O. Depending upon the input-usage field, S3 of word 6 of the L TT, the input completion activity is 
activated. A monitored interrupt causes buffer switching. Upon receiving an end-of-message indication, S2 of word 6 of the 
L TT is tested whether to set up input into another buffer (nonzero value) or to turn off the input operation until the next 
request by the user program. 

In the output pool mode, each buffer is transferred with monitor, and upon interrupt, the next buffer in the backup queue is 
initiated. As each buffer is removed from the queue, the communications handler updates the start of the 
output-backup-queue field (H2 of word 4 of the L TT). The user program adds to the queue by updating H 1 of word 4 of the 
L TT. As each output buffer is emptied, the communications handler stores the completion status in S3 of word 0 of the 
buffer and the number of characters transferred in T1 of word O. Depending upon the contents of the output-usage field (S3 
of word 2 of the L TT), the output completion activity is activated. The communications handler examines the start of the 
backup-queue field (H2 of word 5) when the output is first initiated, then works from the link field (H2 of word 0 of the 
buffer) to determine the end of the chain. The user program must add the completed buffers back to the available pool. When 
the end of the backup queue is reached, the communications handler turns off the output and returns a status code of 2~ij to 
denote the caught up condition. If the user program submits new buffers, the output must be reestablished by a CMO$ 
request (see 15.4.1.4) and the start of the backup queue must be reset. 

Both the input and output completion activities are activated with register AO set to the starting address of the associated 
L TT and register A 1 containing the address of the buffer or user's data area. The completion activity is given control as a high 
priority interrupt processing routine and is therefore allowed minimum time for analysis of the interrupt. Completion activity 
timing considerations are discussed in 15.5. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 

15.4.1.8. DUAL POOL MODE FOR INPUT OPERATIONS 

15-13 
PAGE REVISION PAGE 

When using dual pool mode for input operations, word 7 and H 1 of word 9 of the L TT (see 15.3) are used for dual pool 
mode input. Dual pool mode for input is specified when H 1 of word 7 is equal to zero and H 1 of word 9 points to a buffer 
pool control packet different from the buffer pool control packet specified in H2 of word 7. The first monitor interrupt 
causes buffer switching with input initiated using the next buffer in the pool, indicated by H2 of word 7 in L TT. From there 
on, the dual buffer pool mode works exactly like the normal buffer pool mode for input. 

15.4.1.9. HANGUP (CMH$) 

Purpose: 

Initiates a communications handler hangup operation. 

Format: 

L,U AO,lttaddr 
ER CMH$ 

Description: 

When a request is made to CMH$, the user must be in real time mode, and register AO must contain the address (Ittaddr) of 
the L TT (see 15.3). 

The CMH$ request releases the current remote connection. At the time the CMH$ request is made, the user program must 
have ensured that output operations are completed, and that any input operations that may occur are of no concern. The 
CMH$ request disregards the current line activity and issues a remote release to the dial and input line terminals. Any further 

.-,,- activity after the hangup must be preceded by a CMD$ request (see 15.4.1.2) to activate the terminal. 

If no automatic dialing-exists for an LTG, a CMH$ request displays the following message on the operator's console: 

HANGUP subsystem/unit 

No response is required by the operator for this message. 

15.4.1.10. TERMINATION (CMT$) 

Purpose: 

Deactivates the input and output line terminals and performs various housekeeping functions associated with an LTG. 

Format: 

L,U AO,lttaddr 
ER CMT$ 

Description: 

When a request is made to CMT$, the user must be in real time mode, and register AO must contain the address (Ittaddr) of 
the L TT (see 15.3). 

The CMT$ request terminates the line terminal associated with the L TT. The assignment for the device is not released from the 
user program; it can be reinitialized by CMS$ (see 15.4.1.1). A communications device is released either by a @FREE control 
statement (see 3.7.4) or when the program terminates. 



4144 Rev. 2 
UP_NUMBER 

UNIVAC 1100 SERIES SYSTEMS 15-14 
PAGE REVISION PAGE 

15.4.2. COMMUNICATION POOLS 

A pool for use with the communications handler may be established in any portion of the user's main storage area. The 
system furnishes the subroutines to: 

• establish a communications pool (CPOOL$ - see 15.4.2.1) 

• remove buffers from pool (CGET$ - see 15.4.2.2) 

• return buffers to pool (CADD$ - see 15.4.2.3) 

• expanding a communications pool (CJOIN$ - see 15.4.2.4) 

• release one pool or all pools (CREL$ - see 15.4.2.5) 

The format of each buffer in a pool is: 

Word 0 

...... 'r 

n T 
Word 0 

character-cou nt 

input-output-status 

next-buffer-addr 

T1 S3 H2 

character-cou nt input-output-status next-buffer-addr 

"",I'" 

data characters 

T 
Specifies the number of characters transferred to or from the buffer. For input buffers to 
be processed by the input completion activity routine, the character count for completely 
filled buffers is the value which is specified by the pool start information in H2 of word 8 
of the L TT (see 15.3). 

For partially filled input buffers, which may occur as a result of either a timeout or an 
external interrupt, this field contains the number of characters in the buffer when the 
timeout or external interrupt occurred. 

For output buffers, the character count represents the number of characters to be 
transmitted from this buffer. Character count for output buffers can be dynamically 
supplied by the user so that he may specify either partially or completely filled buffers in 
any order. 

Contains the status code for this buffer. Status codes in this field are identical to those 
described for Sl of word 6 (for input) and Sl of word 2 (for output) of the L TT (see 
15.3). 

Specifies the address of the first word of the next buffer in the chain of those currently 
linked together. A value of zero in H2 of the last buffer in an open chain is interpreted as 
the end of the chain. 



( 
\ 
'-. 

4144 Rev. 2 
UP-NUMBER 

UN IVAC 1100 SE RI ES SYST EMS 15-15 
PA GE RE VISION PA GE 

Words 1 to n 

Data characters start at word 1. The value in the character count field determines the value of n. 

The format for data received or transmitted for CTMC quarter-word mode is to or from successive quarters of the input or 
output data area as follows: 

01 02 03 04 

character-1 character-2 character-3 character-4 

character-5 character-6 character-7 character-8 

. _I.-
~ ...... 

character-(n-3) character-(n-2) character-(n-1 ) character-n 

The format for data received or transmitted for CTMC half-word mode is to or from successive halves of the data area as 
follows: 

H1 H2 

character-2 character-1 

character-4 character-3 

-"... 
. 

..... '" 

character-n character-(n-1 ) J 
15.4.2.1. ESTABLISHING A COMMUNICATIONS POOL (CPOOL$) 

Purpose: 

Establishes a pool of I/O buffers for communications usage. 

Format: 

L,U AO,pktaddr 
ER CPOOL$ 



4144 Rev. 2 
UP-NUMBER 

Description: 

UNIVAC 1100 SERIES SYSTEMS 
PAGE REVISION 

I 15-16 
PAGE 

When a CPOOL$ request is made, the user program must be in the real time mode. The format of the CPOOL$ packet is: 

S1 

Word 0 mode 

Word 0 

mode 

char-count 

addr-of-first-buffer 

Word 1 

not-used 

method 

S2 S3 H2 

char-count addr-of-first-buffer 

/ 

not-used method I en gth-of -area-to-be-u sed 

Word mode indicator. A value of 0 indicates half-word mode and a value of 1 indicates 
quarter-word mode. For half-word mode, the user's data area is established in individual 
buffers equal in length to the character count divided by two, plus one for the buffer 
control word. For quarter-word mode, the process is similar with the exception that the 
character count is divided by four. If any divisions yield a remainder, a value of one is 
added to the quotient. Quarter-word and half-word buffer formats differ only in the total 
length required to establish the individual buffers. 

The number of characters to be used for each buffer area to be established. The value 
specified in this field should be the optimum value for the application. The value 
specified may be either an odd or even number but it must not exceed the maximum 
communications buffer length defined at systems generation time. One main storage 
location is assigned to the individual buffer area for each group of two characters (half 
word) or four characters (quarter word). 

Specifies the starting main storage address of the area to be set up as an input/output 
buffer pool. 

Not used by any of the buffer pool control routines and is available to the user for any 
purpose. 

Defines the method of pool buffering for which'the established buffers are to be used. 
Two methods of pool buffering are permitted. 

The first method is similar to that employed by the block buffering package and is 
referred to as the open chain method. Each individual buffer is linked to the next buffer 
in the pool by the value in H2 of word 0 of each buffer except for the last buffer in the 
chain which has a value of zero in its link field. The zero in the link field causes the pool to be 
be open ended, hence the name, open chain method. 

The second method of pool buffering is referred to as the continuous chain method. Each 
individual buffer is linked to the next buffer in the pool in the same manner as employed 
by the open chain method except the last buffer in the sequence is linked back to the 
very beginning of the pool, thus forming a continuous chain. 

The open chain method is the preferred method because each buffer is removed from the 
pool by the communications handler as input data is received and is not used again until 
it has been returned to the pool by the user. I n the use of the continuous chain method, 
an individual buffer is never really removed from the pool but rather the buffers in the 
pool are used i(1 sequentially cyclic manner. This may result in the reuse of a buffer 
before all of its previous contents had been processed because either the buffer is of an 
insufficient size for the application or the real time program may be spending excessive 
time in its buffer processing. 



4144 Rev. 2 
UP-NUM BER 

I ength -of-a rea-to-be-u sed 

UNIVAC 1100 SERIES SYSTEMS 15-17 
PACE REVISION PAGE 

One of the more frequent uses of the continuous chain method is to employ two 
individual buffers chained to each other, thereby operating in an alternating toggeling 
manner. When the continuous chain method is employed, the user assumes all 
responsibility for processing individual buffer contents in the required time interval. For 
the preferred open chain method, the communications handler ensures that no buffer is 
reused until directed by the real time program. For either method, the optimum size 
buffer must be used for the application. 

Specifies the length of the main storage area to be used for the pool. The setup routine 
continues to establish individual buffers of the specified size in the desired method until 
this value is exhausted. 

Upon return from the CPOOL$ request, a pool-id is contained in H2 of register AD. The user is expected to place the pool-id 
in every L TT (see 15.3) sharing the pool. If the pool is used for output, the pool-id is placed in H2 of word 3 of the L TT. If 
the pool is used for input, the pool-id is placed in H2 of word 7 of the L TT. A pool may be used for both input and output 
by placing the pool-id in H2 of register AD in both word 3 and word 7 of the L TT. Please note that the pool-id returned in H2 
of register AD is an executive linking value to be used only for executive control of the buffer pool. The only circumstance 
under which the real time program can use this value is in providing it as information for an executive request such as CGET$. 

15.4.2.2. REMOVING BUFFERS FROM A POOL (CGET$) 

Purpose: 

Removes buffers from the pool only when the open chain method is employed. Any number of buffers can be removed from 
the pool for future exclusive use by the requestor. 

Format: 

ER CGET$ 

Description: 

The program must be in real time mode at the time of the CGET$ request. 

To remove buffers from the pool, register AD must contain the following: 

H1 H2 

nbr-of-buffers-to-be-removed linking-value-for-pool 

The return of control from the CG ET$ request is with the information provided in register AD. H 1 of AD is the actual number 
of buffers removed from the specified pool; this value is normally the number of buffers requested unless less than that 
specified number existed' in the pool at the time of the CGET$ request. H2 is the starting address of the buffers removed. 
Each buffer removed is linked to the others by the open chain method. 

15.4.2.3. RETURNING BUFFERS TO A POOL (CADD$) 

Purpose: 

Retljrns a number of buffers to the pool. 

Format: 

L,U AD,pktaddr 
ER CADD$ 



4144 Rev. 2 
UP-NUMBER 

UNI VAC 1100 SE RI ES SYS T EMS 15-18 
PAGE REVISION PAGE 

Description: 

The program must be in real time mode at the time of the CADD$ request and control register AD is loaded with the address 
of a packet containing the following information: 

H1 H2 

Word D nbr-of-buffers-returned linking-value-to-buffer-pool 

addr-of-first-buffer 

A buffer can be returned only to the same pool from which it had been previously removed so that buffer size consistency 
can be maintained within a pool. Each buffer returned to the pool is expected to be linked to the others by the open chain 
method. 

15.4.2.4. EXPANDING A POOL (CJOIN$) 

Purpose: 

Expands or adds to a previously established pool by joining it to an additional pool area. 

Format: 

L,U AD,pktaddr 
ER CJOIN$ 

Description: 

H2 of AD must be loaded with the address of a two-word packet whose format is: 

H1 

Word D name-of-pool-to-be-expanded 

H2 

starti ng-add r-of-added-poo I-area 

length-of-added-pool-area 

In addition to loading register AD with the packet address, the worker program must be in real time mode and should have an 
error contingency routine registered with the executive (see 4.2.9). 

15.4.2.5. RELEASING COMMUNICATIONS POOL (CREL$) 

Purpose: 

Enables symbionts or real time user programs to release buffer pools obtained through a CPOOL$ request (see 15.4.2.1), a ," . 
specified buffer pool, or all buffer pools associated with a real time program. 



\ 

4144 Rev. 2 
UP.NUMBER 

UNI VAC 11 00 SE R I ES SYS TEMS 15-19 

Format: 

Two formats are available for ER CREL$. 

To release all pools: 

LXI,U 
ER 

AD,1 
CREL$ 

To release one pool: 

L AD,pool·id 
ER CREL$ 

Description: 

The buffer pool·id is returned to register AD on a CPOOL$ request (see 15.4.2.1). 

A pool·id need not be specified for the release of all pools. 

15.4.3. ALTERING COMMUNICATIONS PATHS (ROUTE$) 

Purpose: 

Dynamically alters the primary paths of communications LTG's. 

Format: 

L AD,(mode,lttaddr) 

PAGE REVISION PAGE 

-',-,,-' L,U A 1 ,pointer 

\... 

-ER ROUTE$ 

Parameters: 

mode 

Ittaddr 

pointer 

Description: 

18 - Request alternate input LTG path 

28 - Request alternate output LTG path 

3
8 

- Request alternate LTG paths for both input and output 

The address of the L TT (see 15.3) 

Specifies a logical alternate of the primary LTG, such as 1,2,3, ... , n 

Each primary LTG is defined at system generation time and provides the necessary information for the communications 
handler and faci lity inventory to make assignments by means of the @ASG control statement (see 3.7.1). The primary LTG 
may define up to three terminals: input, output, and dial; therefore, an alternate LTG configuration may define one, two, or 
three terminals. 

An alternate LTG path may be another assignable LTG primary path or may be assignable only by the ROUTE$ request. If a 
primary LTG pat!1 is reassigned (altered) to another primary LTG path, both input and output line terminals should be 
altered; otherwise, the first primary LTG path remains in an assigned state and cannot be reassigned. Once a primary LTG 
path has been altered, all dial and hangup operations are initiated using the new LTG path. If, however, the primary LTG 
path was only partially altered (input or output, but not both), the communications handler provides dialing specified by the 
output line terminal alternate onlv. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 
PAGE REVISION 

15-20 
PAGE 

It is the responsibility of the user to perform manual dialing for a LTG not dialed by the communications handler. If both 
input and output line terminals of a primary LTG path are altered, the handler performs the hangup operation for the 
primary LTG path. 

15.4.3.1. ROUTING PROCEDURES 

Before a ROUTE$ request can be made to the communications handler, the user's L TT (see 15.3) must be initialized by using 
the CMS$ request (see 15.4.1.1). Once the L TT has been initialized, the ROUTE$ request may be referenced as frequently as 
desired. Once a primary LTG has been routed, the primary LTG is not available for this assignment. Either a @FREE control 
statement (see 3.7.4) must be initiated or the primary LTG may be an alternate of its alternates and the ROUTE$ request 
may be initiated to reestablish the original assignment. If the primary LTG being routed has an idle line monitor state and 
both input and output are routed, the primary LTG is reestablished in the idle line monitor state. 

15.5. COMPLETION ACTIVITIES 

Completion activities, called ESI activities, are given control at the occurrence of ESI interrupt for CTMC subsystems or lSI 
input interrupt for the CTS or WTS subsystems. Completion activities are initialized by the communications handler when 
given a CMS$ request (see 15.4.1.1). 

The user can request completion activities for input, output, and dialing line terminals by specifying a usage code and 
completion activity location in the L TT for each respective mode of operation. 

When control is given to an ESI activity, register AO contains the address of the respective L TT (see 15.3); register A 1 
contains the address of the first word of the user data area for single ·buffer mode; register A 1 contains the address of the 
user's buffer location for the buffer pool mode. The complete set of A, X, and R registers may be used in ESI activities, but 
their contents are not passed on or restored when the activity releases control. Also, the control registers are not passed on 
between real time and ESI activities. 

ESI activities are given control as high priority interrupt processing routines. These activities are interrupted only by the real 
time clock, the day clock, and by both ESI and lSI interrupts; therefore, it is necessary that these activities be timed to detect 
closed· loop situations and other excessive computation. The time quantum is variable and can be changed at systems 
generation. The quantum used should reflect that the ESI activity is interruptable as previously described and should account 
for the time lost in processing those interrupts. If the ESI activity execution time exceeds the specified amount, the activity is 
placed in a contingency state, as described in 4.9.5. 

The following requests may be used to allow an ESI activity to release control: 

• ER EXIT$ (see 4.3.2.1) 

• E R ACT$ (see 4.3.3.4) 

• E R CADD$ (see 15.4.2.3) 

• ER ADACT$ (see 15.5.1) 

Reference to any other request causes an ESI contingency condition. 

Release of control by an ESI activity should not be confused with activity termination. ESI activities are terminated only by 
a CMT$ request (see 15.4.1.10) or a @FREE (see 3.7.4) of the LTG. 

15.5.1. EXITING FROM AN ESI ACTIVITY (ADACT$) 

Purpose: 

Used to exit from an ESI activity, return specified buffers, and activate a previously named activity. 



I 
\ "- .. -

( -.... --~~~ 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 15-21 

Format: 

L A1,name 

L,U AD,pktaddr 

ER ADACT$ 

Description: 

PAGE REVISION PAGE 

The name parameter specifies the symbolic name contained in register AD as a result of a NAME$ request (see 4.3.3.2). 

For ADACT$ requests, register AD must contain the address of a two-word packet whose format is: 

H1 H2 

nbr-of-buffers-retu rned linking-value-to-parent-buffer-pool 

addr-of-first-buffer 

The format of this packet is identical to the format of a two-word packet used for the CADD$ request (see 15.4.2.3). 

15.6. IDLE LINE MONITOR 

At system generation, the input line terminal devices can be given an unassigned status of either off or standby. The standby 
status causes input to be enabled on the devices when not assigned to a program. Upon receipt of a particular identifying 
character string the appropriate symbiont is initiated. 

Some data sets, with the ring indicator feature, are designed not to release (hangup) after a ring indicator interrupt until a 
remote release function is received by the data set. If a terminal is initialized for idle line monitoring and after a ring indicator 
interrupt (no data is received or the received remote-id is invalid), a remote release lTlust be issued or a redial from the remote 
site is inhibited. If a terminal is configured with these data sets, the release function option bit must be provided in the option 
field of the CLASS system generation control statement. When this option is specified, the system times the terminal for the 
amount of time specified at systems generation time for dialing operations; timing is initiated at the receipt of the external 
interrupt for the ring indicator signal. If no input is received during this timing interval or the remote-id is invalid, the system 
issues a release function to the terminal which permits a redial from the remote site if desired. 

15.7. TIMING CONSIDERATIONS 

Within the realm of communications equipment handling, there are three levels of activity which must be considered to 
determine the communications activity which can be allowed in-conjunction with other I/O activity, real time clock activity, 
and processor usage. These levels are: 

• I nterru pt response 

• Buffer processing 

• Information analysis 



4144 Rev. 2 
UP-NUMBER 

15.7.1. INTERRUPT RESPONSE 

UNIVAC 1100 SERIES SYSTEMS 15-22 
PA GE RE VISION PAGE 

Interrupt response occurs within the communications handler and consists of setting up the next buffer for the interrupting 
line terminal, queueing the interrupt, and reinitiating the input or output mode. The necessary criteria to be met by the 
handler are: 

(1) Ensuring that the mode be reset within the character availability of the fastest devices on the channel (196 
microseconds for 40,800 cps at eight-bit characters) 

(2) Ensuring that each interrupt is processed in a time interval such that all active lines could be ready to interrupt at the 
same time and no information is lost on any line. 

If single buffer mode is employed, then the second case is of no concern for the given line (the interrupt terminates activity 
on that line) but must be considered for lower priority multiple buffer lines. The configuration should be arranged with the 
highest speed linoe terminals which may be used in pool mode in the highest priority interrupt position (lowest ESI channel 
number and highest priority multiplexer position). To ensure no loss of information for each line terminal, higher priority 
interrupts plus the single interru~ ~ for this line terminal must be handled within the character availability (CA) time of that 
line. 

The count of higher priority interrupts must include: 

• one for each ESI external interrupt which can occur in the character availability time 

• one for each half-duplex I/O line terminal pair of higher priority 

• one for each simplex line of higher priority 

I!! two for each higher priority full-duplex pair 

• one for the line of concern. 

If any buffer of a higher priority line can fill once or more within the character availability time, one must be added for each 
occurrence. The character availability divided by 40 microseconds should be greater than the number computed. This value 
takes into account the interrupt processing instructions plus data transfers. For instance, with the configuration of 

• 10 full-duplex UNIVAC 1004 subsystems at 4800 bps (CA = 1.25 milliseconds), and 

• 250 half-duplex KSR 35 teletypewriters at 100 words per minute (CA = 20 milliseconds), 

the interrupt count for the lowest priority UNIVAC 1004 subsystem is 19 (two for each of the nine higher priority 
full-duplex pairs plus one for the line of concern), and for the lowest priority teletypewriter is 270 which is less than the 
limits of 1250/40 = 31 and 20,000/40 = 500, respectively; hence, there would be no loss of information if the entire system 
was operated simultaneously, in a pool mode (remote UNIVAC 1004 subsystem operation under executive control is 
normally a single buffer operation). Note that CTS and WTS equipment is operated on lSI mode channels and hence are 
lower interrupt priority than all ESI channels. In addition, the WTS incorporates character assembly into full words and 
multiplies the character availability time. 

15.7.2. BUFFER PROCESSING 

Buffer processing is a user function performed from the input and output completion activities. The most critical buffer 
processing routines are expected to be those that handle pool mode line terminals. These routines must operate within the 
constraint that each buffer must be processed within the time it takes to fill the next buffer in the chain (unless the pool is of 
sufficient length to contain an entire message for each terminal concerned). Each buffer processing routine must share the 
CPU so that all routines have a chance to process their corresponding buffers. The need to share the CPU among the 
processing routines dictates that a time interval must be chosen such that switching from one completion activity to another 
is based on the real time clock. This time interval is set by a system generation parameter (if omitted, no maximum exists). ,/ 
The basis for determining this interval follows. 



I' 
1 
............ ,' 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 15-23 
PAGE REVISION PAGE 

Each buffer must be processed in the time interval (TO) to fill the largest (in terms of time) buffer (Tmax) divided by the 
number of buffers which can be filled in the maximum interval. A given buffer can fill Tmax/TI times, where TI is the time 
required to fill a buffer (number of characters times the character transfer rate). Tmax is the largest value of TI in the system. 
Hence, the time interval, TO, is determined by the formula: 

Tmax 
TO=--------------------------

Tmax + Tmax + Tmax Tmax + ... + 
T1 T2 T3 Tn 

= 1 1 1 
T1 + T2 + T3 + ... + Tn 

T1 T2 T3 T4 ... Tn 

T1 T3 ... Tn+T1 T2 T4 ... Tn+ ... +T2 T3 ... Tn 

The upper and lower limits of the time interval are determined by Tl = T2 = T3 = ... Tn = Tmin and TI = Tmin with all other 
T1 ... Tn considerably larger which gives: 

Tmin 
-- ~ TO < Tmin 

n 

It is reasonable to assume that all devices are buffered so that the time to fill each is nearly equal; hence, TO = Tmin/n can be 
used. The value n includes: 

C one buffer for each simplex input or output 

C one for each half-duplex pair 

m two buffers for each full-duplex pair where only mUltiple buffer mode lines are considered. 

The time interval can now be changed as buffers are lengthened or shortened. In the time interval during which the buffers 
must be processed, the only time which the completion activity does not have control is during cycles taken for data transfers 
and during time needed to queue interrupts. In the worst case, all active communications lines and all standard lines may 
interrupt. 

Consider the following: 

o TO = 10 milliseconds 

II 50 active lines at 2400 bps at 7 bits per character 

III 1 FH-432 Magnetic Orum Subsystem (240,000 words per second) 

Gil 1 FASTRANO mass storage unit channel (25,150 words per second) 

II 1 UNISERVO VIII-C Magnetic Tape Subsystem channel (16,000 words per second) 

In the TO (time interval) given above, there could be (240+25.15+16) (1000) (0.01) = 2811 data transfers at 0.75 
microseconds per transfer = 2.1 milliseconds. For high speed channels, 50 (10ms) (1.5 microseconds) /2.91 ms = 0.25 ms for 
communications line terminal data transfers and (53 interrupts) (25 microseconds per interrupt) = 1.33 milliseconds for 
interrupts, which leaves 10-(2.1+0.25+1.33) = 6.32 milliseconds as the minimum time the program can count on for 
executing instructions. Since only pool mode processing is critical, the communications handler enters interrupt completion 
activities into one of two queues controlled by the dispatcher: 

(1) Pool mode com pletion activ ities 

(2) Single buffer mode completion activities 

The nature of pool mode processing causes it to be more time critical than single buffer mode processing. As a resu It, single 
buffer mode activities are given control only when the pool mode activity queue has been exhausted. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 15-24 
PAGE REVISION PAGE 

15.8. INFORMATION ANALYSIS 

Information analysis is a level of communications activity which is also a user function. This activity is normally expected to 
be real time with a user-determined response time. This is handled by the executive through the standard dispatching 
algorithm. 

15.9. ERROR CODES FOR LT CONTINGENCIES 

Each user program to which communication devices are assigned is expected to have an error handling routine registered with 
the executive. This error handling routine notifies the user of system and LTG error conditions which do not apply to the 
transmissio'n or reception of a particular buffer. The user program is notified in the manner and format as defined under 
program contingency ERR mode condition. A complete list of the possible error codes and their meaning can be found in 
Appendix C. 



i ',,_.- .' 

4144 Rev. 2 
UP-NUMBER 

U N I V A C 11 00 S E R I E S S Y S T EM S 16-1 
PAGF REVISION PAGE 

16. REAL TIME PROCESSING 

16.1. INTRODUCTION 

A basic responsibility of the executive is to assist real time programs by providing interfaces that enable real time programs to 
appropriately influence the executive. Assistance is provided for real time programs in the following areas: 

(1) Activity registration 

(2) Activity priority manipulation 

(3) Program positioning in main storage 

(4) Lockout protection from simultaneous record access during program execution 

(5) Real time test and set contingency mechanism 

(6) I nterface with nonstandard peripherals at the hardware level (110 commands and interrupts). 

(7) Priority access to peripheral devices 

(8) Communications handler interface to remote devices 

The executive design is not oriented toward anyone particular type of real time application. Rather, a general environment 
capable of supporting all types of real time applications is provided. 

16.2. PROGRAM LOCATION 

The nature of a real time program causes its storage requirements to be handled differently than ordinary demand and batch 
applications. A real time program is never swapped out of main storage nor relocated within main storage, because it must be 
accessible at all times. For this reason, the executive system optimally positions all real time programs in main storage, if 
necessary, when they initially acquire real time status. The use of MCOR E$/LCOR E$ (see 4.7.1 and 4.7.2, respectively) by 
real time programs is especially complex due to the "locking in" of the program. A full discussion is beyond the scope of this 
document and is discussed in other Univac documentation; however, a basic rule may be stated: the program should expand 
to maximum size before it acquires real time status (see 16.3.2), and afterwards contract to the desired size. 

16.3. BUFFER OPERATIONS 

One of the most important considerations in a typical real time application is the structure and management of 
communications buffers. Section 15 provides the details of buffer control interfaces with the communications handler; this 
section discusses the general aspects of communications buffering in the system environment. Although the system provides 
both single and pool mode capabilities, the user should employ the method most advantageous for the application. The single 
mode of operation is the most efficient method, as there is no overhead involved with controls for a pool. Single mode uses 
less main storage per buffer because pool mode requires additional storage area in the real time program and within the 
executive for the pool control information. This amounts to three words for each buffer in the pool; one word is maintained 
with parameter information in the user's area, and two words in the user PCT are used for linking and queuing purposes by 
the communications handler. The type of transmission is perhaps the best guide as to which should be used. 



4144 Rev. 2 
UP-NUMBER 

16.3.1. TRANSMISSION TYPES 

UN I VA ell 00 S E R I E S S Y S T EMS 16-2 
PAGE REVISION PAGE 

Types of transmission may be classified as fixed length, variable length, or indeterminate length. An example of a fixed-length 
transmission is the use of a UNIVAC 1004 Card Processor as the remote terminal or a similar printing device which employs a 
print line image of 80 or 132 characters. Also the poll message (not to be confused with a poll response) for a polled network 
is generally fixed length. The single mode of operation should always be used for fixed-length transmissions. 

The maximum length of a variable-length message can be predicted. An example of a variable-length message is a transmission 
for a CRT operating as a remote inquiry and display device where the remote CRT user may enter any quantity of 
information up to the maximum size of the CRT screen. If the amount of main storage available for use as buffers for 
variable-length messages is extremely limited, it is better to use a pool of buffers since not all messages are in progress at once. 
Less buffer area is needed than if single mode is used and buffers are permanently assigned. Either single mode or pool mode 
could be used for a variable-length transmission with the most advantageous method being chosen as the application dictates. 

Indeterminate-length messages should always be processed using the pool mode of operation. A transmission of indeterminate 
length is most frequently encountered in message-switching applications where the length of an input message is under the 
jurisdiction of the remote station, and the system must use segmentation to accept, process, store, and forward the entire 
message. 

16.3.2. MAIN STORAGE AVAILABILITY 

Another factor which largely affects whether single or pool mode of buffering is to be used is the quantity of main storage 
available for buffer areas. The lack of adequate buffering areas dictates that the pool method should be used so that the 
buffer area may be shared by numerous line terminal (L T) groups. Sufficient buffer area may permit the use of single mode 
buffering or even the extreme case of a closed pool of buffers for each L T group. However, such an extreme case has an 
added restraint that each buffer of information must have sufficient staging area and adequate mass storage transfer time so 
that no data is lost during an overload situation. The open chain pool method ensures that a buffer is never reused by the 
system until so instructed by the user. If pool mode is chosen, consideration must be given to the size of the main storage 
area to be used for buffering. If adequate area is available, the desired size can be set aside for the pool. 

16.3.3. POOL SIZE 

The optimum pool size is determined by the application, but it is also influenced by the system's work load. If the 
applicattion is such that the loss of any data cannot be tolerated, there is no choice but to fix the size of the pool at some 
maximum value to adequately handle the peak load. Systems with such stringent requirements do exist, but the real time 
program has some degree of control over the remote stations. For example, the polling operations can be reduced if an excess 
work load is encountered, or the remote station can be instructed to retransmit if any portion of a transmission is lost just as 
though a parity error had occurred. 

16.3.4. BUFFER SIZE 

Very closely connected with the size of the pool is the consideration to be given to determining the proper size for the 
individual input and output communications buffer areas (not to be confused with mass storage buffering areas). The size of a 
communications buffer is normally fixed at a single adequate value and is not dynamically changed or influenced by changes 
in the system work load or time of day. The individual buffer size is again determined by the application, but it is greatly 
influenced by such things as the mass storage medium, staging area and working area size, actual line speeds of the 
communication network, number of circuits in the network, and data packing techniques. With all of these factors taken into 
account, typical buffer sizes for existing real time installations range from 10 to 100 characters. The mass storage medium is 
perhaps the largest influence in determining the size for individual buffers. Hardware characteristics such as access time and 
addressability, as well as software utilization of mass storage in areas such as the amount and method of segment and message 
linkage, real time directory contents and location, real time repacking principles, and so forth, must be considered. A mass 
storage device with a high access time dictates that a larger buffer size should be used, while smaller buffers may be 
successfully used if the mass storage device has a very fast access time and also a high data transfer rate. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 16-3 
PAGE REVISION PAGE 

Addressability of the mass storage medium determines staging area size which, in turn, controls the size of individual buffers. 
It is best to establish a buffer which is an integral fraction of the size of the staging area. For example, a mass storage device 
with either track or sector addressability would need the staging area to be a multiple of the track or sector size. The full 
range of software techniques for proper use of mass storage is beyond the scope of this manual. It is expected that the size of 
individual buffers must increase with the line speed (a larger buffer size is more successful for a 4800-baud line than the 
buffer size chosen for a 75-baud line). The size of buffers should also increase with the number of lines controlled by the 
system. Note the use of the term system; it is possible that several real time programs may operate concurrently. The work 
load would be divided among various programs, according to type of work, with common linkage between programs existing 
only in the form of queues, tables, files, and so forth. Multiple real time programs are not time shared or sliced by the 
executive but are expected to voluntarily share the system resources according to their combined requirements. 

Data packing techniques also influence individual buffer size, and cover both hardware characteristics and software methods. 
Hardware characteristics include such things as whole-word, half-word, or quarter-word communications buffering methods, 
partial-word addressing capabilities of the CPU, and peripheral subsystem operation such as the reading of bytes by way of 
the UNISERVO Vi-C/VIII-C Magnetic Tape Subsystems, which pack nine-bit bytes in double-word format. 

Software methods include use of a common internal code and related packing. Some internal code must be selected as the 
standard to be used internally by the real time program. The code which is most common throughout the communications 
network is generally selected although the decision may be influenced by line speed to avoid excessive character translation 
on high speed lines. This selection is generally not Fieldata (which is used internally in the 1100 series) but either Baudot or 
ASCII, since the majority of remote stations have hardware design characteristics employing one of these codes. 

Any input which is received and which does not conform to the standard internal code is translated before being processed by 
the real time program. For output, the data in internal code must be translated to the code desired by the remote station as 
the communications output buffer area is being filled. 

Once a particular code is selected as the internal standard for the real time program, various data packing methods by the 
software can be built around that code. For instance, the selection of ASCII permits only nine characters to be packed into a 
double word, while the use of Baudot allows 10 characters to be packed into a double word with the added advantage of two 
bits remaining for use as control information. The proper control techniques and the greater efficiency of packing using a 
smaller code such as Baudot can provide a larger system capacity when mass storage area is limited. The use of vertical 
packing rather than horizontal packing can eliminate the output staging area since the communications output buffer area can 
double as the staging area. Vertical packing may also be advantageous for certain unique hardware characteristics. 

16.3.5. DUAL POOL METHOD 

The dual pool method is available for accepting input. The primary use for the dual pool input mode is to provide a rapid 
software response for features otherwise provided by hardware options for polling operations. The response from a poll 
message may be either a short response or a lengthy transm ission of data from that particular remote station. It is most 
desirable for the real time program to have immediate notification when the first portion of the poll response is received so 
that the next poll message may be initiated if the response indicates NO BUSINESS. Rather than use a timer, the occurrence 
of an input monitor interrupt for a small buffer can be used to trigger the real time program's analysis of the poll response. 
However, if a lengthy transmission was initiated by the poll message, it is not advisable from a system standpoint to continue 
with small buffers for accepting input data. The dual pool input mode provides the ability to accept a transmission into a 
small buffer area when the input request (CM 1$ request see 15.4.1.3) is initiated, with an immediate switch to a pool of larger 
buffers for subsequent portions of the data transmission, if any should follow. 

16.4. PROGRAM EXECUTION CONSIDERATIONS 

The following discussions cover the areas of priorities, priority control, timing constraints, and the use of the Test And Set 
(TS) instruction to protect common data areas. 

16.4.1. PRIORITY CATEGORIES 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 S E R I E S SYSTEMS 16-4 
PA GE RE VISION PA G EO: 

16.4.1.1. I/O PRIORITY 

The executive assigns an I/O request into one of three categories, depending upon the nature of the activity which submits 
the request. 

(1) Real Time 

(2) Executive 

(3) Demand/Batch 

For each subsystem, all requests in a priority category are completed before any request for the next lower priority is 
honored. 

Look-ahead techniques are used within a priority category, when appropriate, so that average time for I/O operations may be 
reduced. Look-ahead techniques may cause I/O requests to be completed in a sequence different from the order of 
submission; therefore the program must provide its own protective measures and take the appropriate action if it is concerned 
with the completion sequence of I/O requests. 

16.4.1.2. DISPATCHING PRIORITY 

The executive provides several methods to be used by real time programs for changing CPU priority (switching) levels, 
registering activities, and dispersing the work load among the processors in a multiprocessor environment. The proper use of 
these executive functions should be understood so that they are not abused, but are properly utilized with minimum system 
overhead to achieve a desired goal. This discussion is concerned with the priority control executive requests RT$, N RT$, 
FORK$, EXIT$, and UNLCK$, as well as the priority levels imposed on all activities by the executive. The numerous priority 
levels should be understood in order to determine the proper use of the previously mentioned executive requests. Deadline 
and demand activities have a priority below that of real time and are considered to be grouped with batch for the purposes of 
this discussion. The main categories of CPU priorities have the following order: 

Category Description 

A 

B 

C 

D 

E 

F 

G 

All interrupt queueing at the time of interrupt occurence. 

Any ESI completion activity in order of interrupt occurrence. 

All high priority executive action. 

Any real time interrupt activity in order of occurrence (level 1) 

Real time activity levels 2 through 35. 

All low priority executive actions. 

All batch activities. 

The occurrence of any work in a higher priority category causes the lower category to be suspended until all higher priority 
work has been completed. All categories except A are controlled by the software, and therefore, are interruptable and subject 
to suspension. 

• Category A 

Interrupt queueing is the process performed at the occurrence of a hardware interrupt and requires approximately 45 
microseconds of instruction execution time for an ESI interrupt as discussed further in 16.6.2.1. 

• Category B 

Category B has the highest software imposed priority and is used for the processing of ESI completion activities. 

In order to detect program errors and excessive loops, the executive always times ESI completion activities. The 
amount of time permitted for these activities is fixed at system generation time. 



i 

\ 
'-... ... 

4144 Rev. 2 
UP-NUMBER 

UN I V A C 11 00 S E R I E S S Y S T EMS 16-5 
PA GE REVISION PAGE 

Cl Category C 

Used for all high priority operations that the executive must perform, such as I/O control, interrupt post processing, 
dispatching, and clock control. 

C Category D 

Used for real time I/O interrupt activities at level 1 (see Section 6). This category is always activated with a limited 
register set (X 11 ,AO-A5,R 1-R3). 

Ia Category E 

Used for real time priority levels 2 (highest) through 35 (lowest). All activities at a particular real time level are serviced 
before any service is given to lower level activities. There is a maximum of 34 real time levels available for use by all real 
time programs. The user is expected to assign the real time levels appropriately for the application. Either a limited set 
or a full set of registers may be used for real time levels 2 through 35. 

(i] Category F 

Used for low priority executive processing such as storage management, function control, symbiont processing, and so 
forth. 

eI Category G 

Batch activities are normally subject to suspension by the executive for purposes of swapping. Batch activities of a 
program having real-time status (see 16.4.2), however, are never suspended for swapping. This is the only preference 
given to batch activities of a real time program; all in-main-storage programs are treated equally as far as batch activity 
switching is concerned. This means that background batch programs which do a lot of computation might delay the 
completion of ba~ch activity execution within a real time program, especially if such activities also perform extensive 
computation (I/O-oriented batch activities are treated preferentially - see 25.5.6.2 for a full discussion of the 
switching algorithm). 

The implication of the preceding discussion is that care must be taken in assigning time-critical work to batch activities 
within a real time program. 

16.4.2. PRIORITY CONTROL 

The following executive requests can be used by the real time program to control the priorities and to distribute the work 
load in a multiprocessor environment: 

E R RT$ (see 4.3.4.1 ) 

ERN RT$ (see 4.3.4.2) 

ER FORK$ (see 4.3.1.1) 

ER UN LCK$ (see 6.3.8) 

ER EXIT$ (see 4.3.2.1) 

16.4.2.1. CHANGING ACTIVITY PRIORITIES (RT$ AND NRT$) 

The RT$ request (see 4.3.4.1) is provided for changing priority levels within the real time program. It can accomplish either 
of the following: 

change of priority level for a real time activity; or 

II allow a program to acquire real time status. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SE RIES SYSTEMS 16-6 
PAGE REVISION PAGE 

The RT$ request may be executed by any activity: batch, demand, or real time at levels 2 through 35. A check is performed 
by the executive to determine if the run's account number permits real time activities and the real time level specified is 
allowed for the account number. 

Closely associated with the RT$ request is the NRT$ request (see 4.3.4.2) which provides the ability for a real time activity 
to return to its original status (that is, batch or demand). The level for a nonreal time activity is determined by the executive 
and cannot be specified by the user. A program has real time status whenever it has one or more real time activities. 

16.4.2.2. APPLICATION OF MULTIPROGRAMMING TO REAL TIME 

Although the multiprogramming concept (use of multiple activities) is applicable to many types of processing, certain aspects 
are particularly pertinent to real time programs. Some important real time applications of multiple activities are: 

• Distribution of the work load among several CPUs (multiprocessing). 

D Use of real time interrupt activities to ensure top priority for turnaround of critical I/O operations. 

• Registering multiple activities at varying real time priority levels to perform tasks of varying criticality. (See FORK$ 
and TFORK$ requests - 4.3.1.1 and 4.3.1.2, respectively.) 

• Registering batch activities to perform noncritical tasks in the background. 

While the above techniques are useful and powerful, the real time programmer must take care not to overuse the activity 
concept. Important points to consider include: 

• Dispatching overhead. The time required to switch from one activity to another is not negligible and can become 
excessive if the work load is distributed among too many activities. In many cases, a single activity can perform several 
tasks in serial fashion more efficiently than several activities performing single tasks in parallel (the RT$ request -see 
4.3.4.1 - can be used to adjust activity priority according to the priority of the task to be done). 

• Forking overhead. Each new activity requires both time and space for registration. Time is also required for activity 
termination. Again, a single activity may do as well as several in certain cases. Note that activity control space is taken 
from the PCT and thus unlimited forking is not possible. 

• Register set. Extra time and space are required for saving. and restoring the major register set. Therefore, heavily 
executed activities should use the minor set if feasible. Note that an activ"ity cannot change its register set; however a 
FO R K$ request followed by a EX IT$ request has the effect of changing set (note that activity name and· id are not 
retained in this sequence). 

16.4.2.3. INTERRUPT ACTIVITY PRIORITY REDUCTION (UNLCK$) 

An interrupt activity is initiated with a limited register set at a priority level above all other activities for that type of 
program. If no other executive request is to be used by this activity, a UNLCK$ request should be added to return the 
activity to the real time priority level of the activity that issued the I/O request (see 6.3.8). 

16.4.2.4. ACTIVITY TERMINATION (EXIT$) 

Normally the EXIT$ request (see 4.3.2.1) causes termination and deletion of an activity. The EXIT$ request works 
differently, however, when executed by an activity that was originally initiated as an ESlcompletion activity. Rather than 
the activity being deleted, it is placed in a wait condition so that it is again eligible for execution as an ESI completion 
activity when a communications interrupt occurs. When the activity is in a wait condition, it can be given control almost 
immediately since the area used to hold information related to the activity is permanently maintained for the ESI completion 
activity. 



........ ~- . 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 11 00 S E R I E S SYSTEMS 16-7 
PAGE REVISION PAGE 

16.4.2.5. TIMED WAIT CONSIDERATIONS 

The real time programmer using timed wait requests (TFOR K$ - see 4.3.2.1; TWAIT$ - see 4.3.5) should understand that 
the wait time for real time acitivities is an elapsed time by the clock, during which the activity is suspended. When the 
specified time has elapsed, the activity becomes available for execution at its priority level; this means that execution does 
not actually resume until there are no higher (or possibly equal) priority activities requiring CPU time. 

It should also be noted that timed waits do requ ire time to process. A large number of activities in short wait loops may 
effectively lock out lower priority activities. 

16.4.2.6. CONSOLE INTERRUPT HANDLING 

Real time programs which accept unsolicited console input usually benefit from using 11$ requests (see 4.6.2) rather than the 
" contingency (see 4.9). The reason is that the 11$ request allows a particular activity to get control at a priority which can be 
programmer specified, whereas, for II contingency, the executive may select any activity to process the interrupt (this might 
be a low-priority real time or a batch activity which could be delayed for an undesirable period by high priority execution). 
In addition, the 11$ request receives some input, which may eliminate the need for a type and read sequence to find out what 
the operator wants. 

16.4.3. EXCEEDING MAXIMUM TIME LIMITATION 

CPU time used by real time activities is charged to the run. To reduce overhead, the check for exceeding maximum run time 
(from the @RUN control statement) is not made for real time activities. However, the check is made for any batch activities 
in a real time program, and the entire program is aborted if the limit is exceeded. 

This means that when debugging a real time program, a loop is not caught by the maximum time check unless batch activities 
are executed. Conversely, a fully operational real time program which uses batch activities may be mistakenly aborted during 
a long run unless a sufficiently large maximum is specified on the @RUN control statement (see 3.4.1) or unless system 
standard is not set to abort a run upon exceeding maximum time. 

16.4.4. TEST AND SET USAGE 

The Test And Set (TS) instruction is available in all systems (simulated by way of software if not part of the hardware) to 
protect common data in a user program. For batch and demand activities, the executive automatically resolves conflicts that 
may occur in a user program because of activities at different switching priority levels for these types of activities and 
automatically degrades by one level any activity that experiences a TS failure (TS interrupt). After level degradation, the 
executive forces the activity to the end of the list of activities operating at that level. 

For real time programs, the executive does not change the activity switching level on the TS interrupt, except for interrupt 
activities which are dropped to the level of the activity that issued the I/O request, (this means that for TS purposes, interrupt 
activities have an implied level equal to that of the issuing activity). Instead, the user activity is directed to a contingency 
routine if one is registered (see 4.9). If a contingency routine is not registered, the activity is placed at the end of the list of 
activities operating at the activity's current level. It is obvious that the real time program can hang the system if the situation 
does not automatically resolve itself at the original switching levels, or if the proper action is not taken in the contingency 
routine to change the switching level in relation to other activities that reference the data. The contingency routine enables 
the activity to change its level (by an RT$) if a potential lockup exists, or to perform lower priority work for some period of 
time. Note that a contingency notification on a TS interrupt does not occur unless the activity specifically requests such 
action, independer.lt of other types of contingencies. 

A real time program may have nonreal time activities. For activities other than real time, the TS contingency feature is not 
available. The real time program may be delayed indefinitely if activities both real time and nonreal time attempt to reference 
common data. The nonreal time activity should cause itself to be raised to real time status before executing a TS protecting 
the common data; the activity can revert to its original status after the need for the common data reference has ended. 

A real time activity should never have a TS cell set when calling an ER. Although this procedure may work in some cases, it is 
highly vulnerable to lockup (since ERs commonly require executive processing that runs at a CPU priority level below real 
time), and is strongly discouraged. Furthermore, this practice violates a basic system philosophy concerning TS usage, 
namely: that TS's are to be used to protect short critical sequences and not as a long term logical interlock. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SE RI ES SYST EMS 16-8 
PAGE REVISION PAGE 

It is illegal for ESI activities to reference common data that is also referenced under a TS condition by real time activities. No 
action, other than a return of control, is taken by the executive when a TS interrupt occurs in an ESI activity. 

Real time programmers working on unit·processor 1108's which lack TS hardware shou Id be aware of the extra time (about 
35 microseconds) required to software simulate TS (see 2.4.5). 

16.5. PROGRAMMER'S GENERAL RESPONSIBILITIES 

The programmer, prior to interfacing with the communications handler must: 

(1) Use options on the @RUN control statement to assure sufficient PCT size (see 3.4.1). (All control packets are built and 
maintained by the handler in the user's PCT). Once the program becomes real time, it is locked in main storage and 
incapable of being moved for dynamic expansion of the PCT. Note that PCT space is also required for activities created 
by a FO R K$ request (see 4.3.1.1). 

(2) Assign the line terminal group (LTG) to be controlled by an @ASG control statement (see 3.7.1) or dynamically using a 
CSF$ request (see 4.8.1). The assignment must be made using the arbitrary device format. 

(3) Declare the program as real time using an RT$ request (see 4.3.4.1). 

(4) Prepare the L TT (see 15.3) for each LTG, and the input and output buffers to be used for the data transfers. 

The user also should register, by an IALL$ request (see 4.9.3.1), a program contingency routine as well as an ESI contingency 
routine. By doing this, the user can obtain error information should an error occur during his interface with the 
communications handler. 

The communications handler/user interface, therefore, should include: 

• One or more real time activities which request, by means of the L TT and ER's, the communications handler to perform 
input and output. 

• ESI completion activities which are given control by the communications handler when the data transfer is 
accomplished. 

• A program contingency routine which is given control by the communications handler when invalid requests are made 
to the communications handler. 

• An ESI contingency routine which is given control by the communications handler when errors are detected during the 
execution of an ESI completion activity. 

16.6. ESI CONSIDERATIONS 

16.6.1. ESI ACTIVITY CONCEPT 

An ESI activity is generated when the real time activity makes a reference to CMS$ (see 15.4.1.1). A nonreal time activity is 
not permitted to make this reference. At this point in time, the executive establishes an entry point at which control is given 
upon occurrence of an interrupt for the line associated with the L T group. The ESI activity is never suspended, either 
voluntarily or involuntarily, and hence, no control register or CPU state preservation is required for ESI activities. An ESI 
activity is given top priority by the executive such that it is never interrupted except for interrupt queu ing. Executive 
operation can be interrupted at any time to allow ESI processing. The philosophy adopted for ESI activities is that of 
extending system interrupt processing to the user. For this reason, the amount of work done by an ESI activity is restricted 
to a minimum, allowing a nonESI activity to do the remaining work. This implies certain restrictions on programs using the 
communications handler: 

(1) Only real time activities can establish ESI activities. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 16-9 
PAGE REVISION PAGE 

(2) ESI activities are limited to four executive requests (EXIT$ - see 4.3.2.1; ACT$ - see 4.3.3.4; CADD$ - see 15.4.2.3; 
and ADACT$ - see 15.5.1) and may only use one request per activation. Violation causes an ESI contingency. 

(3) ESI activities must be completed within a limited time frame defined at system generation. 

(4) TS protected common data can exist among ESI activities but not between ESI and real time activities. In other words, 
a real time activity that blocks the path of an ESI activity is in error. 

Since the ESI activity is not allowed forking requests, any real time activity which is to process incoming data must already 
have been established with a 'name' (see 4.3.3.2). This name is then used by the ESI activity to initiate processing. When 
processing is complete, the real time activity must execute a DACT$ request (see 4.3.3.3). DACT$ differs from EXIT$ in 
that the activity is not terminated but rather put into an inactive state. 

16.6.2. ESI TIMING 

ESI interrupt processing and switching times under various conditions have been calculated for real time programs by 
counting the actual instructions involved. These counts must be considered as estimates because coding is subject to 
modification. 

16.6.2.1. ESIINTERRUPTS 

When an ESI interrupt occurs, various functions must be accomplished before interrupts can be enabled. The amount of time 
required before interrupts are allowed depends upon the type of interrupt (input monitor, output monitor or external) as 
well as the type of operation (single or pool mode). A maximum of 45 instructions are required before interrupts are enabled. 

(1) If an ESI activity has been interrupted, control is returned to the activity within the 45·instruction limit. 

(, (2) If control is to be given to a new ESI activity, approximately 120·130 instructions are required between the time the 
ESI interrupt occurred and the new activity receives control. The time required depends upon the number of control 
registers to be saved if an activity has been interrupted as well as the amount of postprocessing required for the activity 
in the communications handler. 

16.6.2.2. REAL TIME ACTIVITIES 

If a real time activity has been interrupted to process an interrupt, approximately 230 instructions are executed between the 
time the interrupt occurs and the real time activity receives control (the actual time depends upon the type of interrupt being 
processed). If a new I/O function is available for initiation before the real time activity receives control, approximately 800 
instruction executions are required between interrupt occurrence and return of control to the activity. 





4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 17-1 
PAGE REVISION PAGE 

17. CHECKPOINT/RESTART 

17.1. INTRODUCTION 

Checkpoint/restart provides the user with the ability to save the status of a run at a given point (checkpoint), and to restore 
the run to the previous state at some future time (restart). 

There are two basic types of checkpoints: complete and partial. 

The complete checkpoint saves the complete status of a run at a given point; a restart of this checkpoint acts like a start of a 
new run. The partial checkpoint saves only the status of a program at a given point; it saves only the user's program and 
activities. A partial restart initializes and executes the checkpointed program in the run requesting the restart. The partial 
checkpoint and restart is actually a program save and restore. 

17.2. COMPLETE CHECKPOINT/RESTART 

The checkpoint and restart operations may be initiated by three kinds of requests: 

(1) an executive request; 

(2) a control statement; or 

(3) an unsolicited console keyin. 

Any checkpoint dump is capable of being reestablished by any restart request regardless of the kind of checkpoint request 
used to generate the dump. For example, an internal (program) checkpoint request may be restarted by either an internal 
request, a control statement, or unsolicited console request. The dump may be recorded on magnetic tape or mass storage 
files. 

The complete checkpoint/restart feature cannot be used when operating in the demand mode. 

17.2.1. COMPLETE CHECKPOINT - RUN SAVE 

When a checkpoint request is encountered, the checkpoint routine suspends any current activities and saves all the pertinent 
data needed to restart the run. Checkpoints are not taken on runs with active ESI activities, from a keyin when a program 
within the run has acquired real time status, or when reentrant processors are active for the run. 

The checkpoint routine automatically provides all the information necessary for restart except for currently catalogued or to 
be catalogued mass storage files. Checkpoint copies all temporary' mass storage files, but it copies only those catalogued files 
on which the B option was specified on the @ASG control statement (see 3.7.1). If a file is dumped, the status of the original 
file remains unchanged. 



4144 Rev. 2 
U P.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 17-2 
PA GE RE VISION PA GE 

Some of the operations involved when a checkpoint is taken are as follows: 

• A checkpoint sentinel block is written. 

• The user main storage area is saved. 

• The program's registers are saved. 

• Executive control tables, switch lists, and so forth are saved. 

• The remaining portion of the run stream is saved. The current position within @ADD files (see 3.9.1) is also saved. 
These @ADD files must remain catalogued until the restart or be assigned with a B option at checkpoint time. 

• All temporary mass storage files are saved. If a temporary file does not need to be saved, it should be released before 
the checkpoint using a CSF$ request (see 4.8.1). 

• Catalogued mass storage files are saved if the B option was specified on the @ASG control statement. This also applies 
to files that are about to be catalogued. 

17.2.1.1. CONTROL STATEMENT (@CKPT) 

Format: 

@label;CKPT,options filename 

All parameters on the @CKPT control statement are required except label and options. 

Parameters: 

options 

filename 

17.2.1.2. EXECUTIVE REQUEST 

The options are: 

P - Displays completion and error messages on the operator's console; these messages are 
also entered in the master log. 

T - Terf1)inates run after the checkpoint is taken. 

Specifies the assigned magnetic tape or FASTRAND-formatted file into which the 
checkpoint information is to be dumped. The file which is to contain the checkpoint 
dump must be catalogued, public file. 

The CSF$ request (see 4.8.1) is used to request a checkpoint from within a user program. The user packet contains a 
character string identical in format to the @CKPT control statement (see 17.2.1.1). 

17.2.1.3. UNSOLICITED CONSOLE REQUEST 

Format: 

CK,options filename,run-id 

Options is the only optional parameter. 



(' 

4144 Rev. 2 
UP.NUMBER 

UN I V A C 11 00 S E R I E S S Y S T EMS 17-3 
PAGE REVISION PAGE 

Parameters: 

options 

filename 

run-id 

Description: 

Same as for the @CKPT control statement (see 17.2.1.1). 

Specifies a magnetic tape file which is assigned ~o the executive by checkpoint and 
catalogued so that it is available for restart. 

Specifies the run-id of the run to be checkpointed. 

The unsolicited I<eyins can be used to checkpoint any active batch run not having real time or ESI activities. The checkpoint 
must be taken on a magnetic tape file which will be assigned to the executive by checkpoint and catalogued so that it is 
available for a restart. The operator should ensure the availability of a tape unit prior to initiating an unsolicited keyin. 
Unsolicited keyins are not permitted for mass storage files or for any file assigned to the user. If successive checkpoint 
requests are keyed in for checkpoints on the same file, the tape remains assigned until all checkpoints are taken. 

When no additional checkpoint requests are queued for a particular file, the message SHOULD 'filename' BE RELEASED: 
ANS Y OR N is displayed on the operator's console. If the operator expects to take further checkpoints on this file, an N 
should be keyed in; if not, a Y response is required. 

NOTE: The Y response is essential following the final checkpoint on a file in order to free the tape unit and catalogue'the 
file. 

17.1.4. EXAMPLES OF CHECKPOINT 

> -.~- .. -*-.--------~------.----

k=-~~ 10' __ .~ O~~ER A :':'0 ~~=~~~ER ~D ___ 4_~ ____ .~=__=__=5~~M::~-=:= 
I. ~c:;KP;rLLL" . ,J X'O,lJM1', .. 1 ... >.L1. •.••• J ....... , ........ , ....... . 

2.~J<P:rLJPJ;o11VMBI 
3'@1 J~J~p.;rl'.1l.,J> ......... .l .... ~ .. - .. ,>~ QJ ........ l·UAJ.~~I~RHAJ~.iIL 

. .... L.L.L .. L . ..J .. J 

; ..... l. _ t. .... .i 

J. ... L ...... ' ......... L. .. ..L ...... ; ........ L. ..... , .. ~. J . L ..... 1.. 

! 

1. TDUMP is specified as the file into which the checkpoint information is to be recorded. TDUMP must be an assigned 
file, either magnetic tape ~r FASTRAND-formatted mass storage. Since no options are specified, messages are not 
displayed and run termination does not occur when the checkpoint is taken. 

2. Basically the same as for example 1, except that the P option specifies that error and completion messages are to be 
displayed when the checkpoint is taken. 

3. This example includes the features included in both example 1 and example 2. In addition, the T opt!on is used to 
terminate the run when the checkpoint is taken. 

17.2.2. CHECKPOINT FI LE FORMAT 

The technique by which the checkpoint routines perform a dump varies with the media on which the checkpoint is to be 
recorded (magnetic tape or mass storage). A checkpoint on mass storage is limited to one active dump per file in order not to 
strain storage capacity; only the last checkpoint taken is available as a restart point. Therefore checkpoints on mass storage 
should be called primarily for those runs where hardware malfunctions are the expected contingencies and where an 
immediate restart of the run is desirable. 

When checkpoint information is recorded on magnetic tape, it may be interspersed with data on a data output tape or may be 
recorded separately on a nondata tape. In either case, the tape may contain many checkpoints, of which any of them can be 
used as a restart point for the run. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SE RIES SYSTEMS 17-4 
PAGE REVISION PAGE 

The checkpoint routine writes two end-of-file (EOF) marks on the tape at the end of each checkpoint, and backs up one EOF 
mark. Thus checkpoints stacked on a tape are separated by an EOF mark; the last checkpoint is followed by two EOF marks. 

The checkpoint can be bypassed on a data tape by skipping the initial and final bypass blocks, one EOF mark, and all tape 
blocks in between. The 18-word bypass blocks take the form: 

S1 S2 S3 S4 S5 S6 

74 75 74 75 74 75 

~-. '''''' 
/ 

4°8 

74 75 74 75 74 75 

If an end-of-reel condition is encountered on the checkpoint tape while a dump is being recorded, the routine automatically 
writes an end-of-reel block and two hardware EOF marks, swaps reels, writes a sentinel block and then continues dumping on 
the alternate reel. The format of the 18-word end-of-reel block is as follows: 

S1 S2 S3 S4 S5 S6 

74 75 74 75 74 75 

;::t"' '-~ 

2°8 

74 75 74 75 74 75 

Control is not returned to the user until the checkpoint is complete. Because of this, a data file tape should not be designated 
as the checkpoint file if the user must handle end-of-reel processing at the end of every reel. 



4144 Rev. 2 
UF'·NUMBER 

UNIVAC 1100 SERIES SYSTEMS 17-5 
F'AGE REVISION F'AGE 

17.2.3. CHECKPOINT FI LE IDENTIFICATION MESSAGE 

The checkpoint routine produces a message to indicate that a checkpoint was completed successfully. This message is 
recorded in the master log. If the P option is used in the checkpoint request, however, it also appears on the operator's 
console. The format of the message is 

run-id ckpt-nbr fi lename,reel-nbr 

where: 

run-id Identity of the run. 

ckpt-nbr Number of the checkpoint which must be specified in the restart request. 

filename Specifies the file that contains the checkpoint dump. 

reel-nbr Number of the reel or reels of the file that contains the checkpoint if it is on tape. 

In addition, a list of all files assigned to the run at checkpoint time is placed in the master log along with the normal 
completion message just discussed. This list takes the forms 

Form 1: 

filename-1 - reel-nbr-l, *reel-nbr-2, ... , *reel-nbr-n 

filenqme-2 - reel-nbr-l, *reel-nbr-2, ... , *reel;nbr-n 

filemime-n - reel-nbr-l, *reel-nbr-2, ... , *reel=nbr-n 

Form 2: 

filen.ame-1 - equip;type 

filen'ame-n - equip:type 

where: 

filename 

reel-nbr 

equip-type 

Specifies the files currently assigned to the run. 

Reel numbers presently assigned. An asterisk before the reel-nbr indicates the reel that was actually in use at 
the time of the checkpoint dump. 

See Appendix E. 

If the checkpoint dump must be error terminated, a Fieldata status code is generated (see Table 17-1). 

17.2.4. COMPLETE RESTART - RUN RESTORE' 

When a restart request is received, the restart routine schedules a new run with the information specified on the restart 
request. When the run to be opened is selected for execution, the restart routine assigns the checkpoint file, finds the 
checkpoint, and restores the run to its original state at the time of the checkpoint. Some of the tasks performed by the restart 
are: 

• The program's registers and tables are restored. 

• The user's main storage is restored. 

• All facilities are reassigned at restart. Repositioning of arbitrary devices, however, is not done by restart but must be 
handled by a restart contingency routine.· 



4144 Rev. 2 
UP-NUMBER 

• All tape files are repositioned. 

U N I V A C 1100 S E R I E S S Y S T EMS 17-6 
PAGE REVISION PAGE 

• All temporary mass storage files are restored. 

• Those catalogued mass storage files which were saved because of the B option on the @ASG control statement (see 
3.7.1) are reloaded according to the other options (E, H, or M) specified on the @ASG control statement at checkpoint 
time. 

17.2.4.1. CONTROL STATEMENT (@RSTRT) 

Format: 

@Iabel: RST RT ,priority/options ru n-id,acct-id,fi lename,ckpt-nbr ,reel-nbr 

All parameters in the @RSTRT control statement are optional except run-id, filename, and ckpt-nbr. 

Parameters: 

priority 

options 

run-id 

acct-id 

filename 

ckpt-nbr 

reel-nbr 

17.2.4.2. EXECUTIVE REQUEST 

Specifies the priority under which the run is to be reestablished and restarted (see 3.4.1). 
If omitted, the priority of the initiating run is used. 

The options are: 

P - Error messages are displayed on the operator's console as well as in the master log. If 
omitted, the error messages appear only in the master log. 

T - Terminates the run requesting the restart. 

Specifies the run to be restarted. 

Specifies the account to which charges are made for reloading the run. Once the 
reestablished run receives control, charges revert to the original account for the run. If 
omitted, charges are made to the account specified for the initiating run. 

Specifies the catalogued file containing the dump. Entry must agree with that specified in 
the filename parameter of the appropriate @CKPT control statement (see 17.2.1.1). 

Specifies the checkpoint number at which the run is to be restarted. This is the last 
checkpoint taken for a dump recorded on mass storage. 

Identifies the specific reel of the file containing the dump. If omitted, each reel of the 
file, beginning with the first reel, is searched. All the information necessary to read the 
checkpoint file is taken from the master file directory. 

The CSF$ request (see 4.8.1) is used to restart a run from within a user program. The user packet contains a character string 
identical in format to the @RSTRT control statement (see 17.2.4.1). 

17.2.4.3. UNSOLICITED CONSOLE REQUEST 

Format: 

RS,priority/options run-id,acct-id,filename,ckpt-nbr,reel-nbr 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 17-7 
PAGE REVISION PAGE 

Parameters: 

Identical to @RSTRT control statement (see 17.2.4.1). 

Description: 

The checkpoint being restarted by a keyin may have been requested by either an unsolicited keyin, a @CKPT control 
statement, or an internal program request. Restarting a run, which was checkpointed, by using an unsolicited keyin results in 
the checkpoint file being assigned to the executive. At the end of a restart involving such a file, the operator is given the 
option of releasing the file by means of a Y response to the message SHOULD 'filename' BE RELEASED? ANS Y OR N. If 
the file is not released at this time, it remains assigned to the executive until another restart of a run which is contained on 
this file is attempted and the operator is again given the opportunity to release the file. 

When a run checkpointed by a control statement or an executive request is restarted by an unsolicited keyin, the checkpoint 
tape is assigned to the restarted run. 

17.2.4.4. EXAMPLES OF RESTART 

LABEL OPERATION .\ 
20 

OPERAND 
30 

COMMENTS 
50 

,- ~RSJ~RTt'j~;/;B .IDJ~1~.tM'JQ;31~J:2>'jD.[UtMPl'j4LLL. L~:jE,~,5JTJ~~ANQ£lil...,eJ 1., .. 3 ...••. 1. .L .. 

2 _ @;R~~C RT. j . I. .... : .. ;-rAIP!El, (,Tf :D,U;M B, ,&L,NA:31ZL L !... .. L.; .• ;J.lABE. .. 1EILL..;EJ I .... L .. ( L .... L ..... L ... 1 .. 1 1 ... L 

. L .... 1... 1.1 I .. L! ...... L ... LJ ............ L ... l .. L ... L .. L ' 

I Ll ... .1 I .. LJ J .• L. 

1. C priority is assigned to the reestablished run identified as DRUM. Charges for loading the run are made to account 
03212. The checkpoint at which the restart is to begin is checkpoint 4 on the catalogued file DDUMP. Since this file is 
not on tape, the reel-nbr parameter is not specified. Error messages, if they occur, are displayed on the operator's 
console (P options). 

2. The run identified as TAPE is to be reloaded and restarted at checkpoint 8 of the file TDUMP. The dump for this file is 
located on tape reel N432. Since no priority is specified, the restarted run uses the priority of the initiating run. Error 
messages which might occur are recorded only in the master log and are not displayed on the operator's console since 
the P option is omitted. Charges for loading the run are made to the account of the initiating run. 

17.2.5. RESTART CONTINGENCY ROUTINE 

A restart contingency routine may be specified by the user before a program requests either a complete or partial checkpoint. 
This routine will receive control upon completion of the load, when the run is activated at restart time, and may do whatever 
is necessary before giving control to the normal return. The request is: 

L 
ER 

ADRS + 
PKT+ 

+ 
START 

AO,ADRS 
IALL$ 

04000,PKT 
o 

.Start of contingency routine 



4144 Rev. 2 
UP-NUMBER 

UNI VAC 1100 SE RI ES SYSTEMS 17-8 
PAGE REVISION PAGE 

When the contingency routine receives control, the packet (pkt) is set up as follows: 

S3 S4 S5 S6 

contingency- return-addr type (6
8

) 

ckpt-type ckpt-nbr 

where: 

contingency-type Specifies the type of contingency (6
8

). 

return-addr Specifies address to which control is returned upon completion of the contingency routine. 

ckpt-type Specifies what initiated the checkpoint; where: 

0
8 

- Initiated by an executive request 

18 - Initiated by an unsolicited keyin 

ckpt-nbr Specifies checkpoint number and type; where: 

0
8 

- Partial checkpoint 

18 thru 778 - Complete checkpoint 

After the contingency routine is completed, the user should return control to the address placed in the packet by the restart 
routine. This address is either the instruction immediately following the point at which the internal checkpoint was taken or 
the return address for an externally caused checkpoint. 

17.3. PARTIAL CHECKPOINT/RESTART 

A partial checkpoint may be initiated by either an internal program request or by a control statement. The same is true of the 
partial restart feature. While useful in the batch mode, this program save and restore feature is most useful in saving and later 
executing a program wh ile operating in demand mode. 

17.3.1. PARTIAL CHECKPOINT - PROGRAM SAVE (@CKPAR) 

Purpose: 

The partial checkpoint is requested when 'only the current portion of the user's program is desired for checkpoint. This 
checkpoint saves only user's program, activities, and registers. The checkpointed program is recorded and named in a user 
program file in absolute format. 

The checkpoint is initiated by the @CKPAR control statement. 

All parameters in the @CKPAR control statement are required except label and options. 

Format: 

@label:CKPAR,options filename.element 



4144 Rev. 2 
UP.NUMBER 

~arameters: 

options 

filename 

element 

Description: 

UNIVAC 11 00 SE RIES SYSTEMS 17-9 
PAGE REVISION PAGE 

Same as for @CKPT control statement (see 17.2.1.1). 

Specifies the name of a program file currently assigned to the run. 

Specifies the name to be given to the element created by the checkpoint. Only one 
checkpoint per element name is permitted. 

The @CKPAR control statement has no meaning within a batch run stream because there is no program executing at the time 
the statement is encountered. 

A partial checkpoint can also be initiated from within a user program by a CSF$ request (see 4.8.1). The user packet contains 
a character string identical in format to the @CKPAR control statement. 

17.3.2. PARTIAL RESTART - PROGRAM RESTORE (@RSPAR) 

Purpose: 

A partial checkpoint may be initiated by either an internal program request or by a control statement. It is used to restart a 
program whose checkpoint was taken by a partial checkpoint control statement or executive request (see 17.3.1). The 
checkpoint may have been taken within the same run or earlier in another run. 

The partial restart is initiated by the @RSPAR control statement. 

All parameters in the @RSPAR control statement are required except label and options. 

Format: 

@Iabel: RSPAR,options filename.element 

Parameters: 

options 

filename 

element 

Descri ption: 

The only option is the P option. When specified, error messages are displayed on the 
operator's console in addition to being printed in the master log. 

Specifies the name of the assigned program file containing the checkpoint. 

Specifies the name of the element which contains the checkpoint. 

When an internal partial restart request is received, the present program and activities are terminated and the checkpointed 
program is executed as the next operation in the run requesting the restart. When the request is submitted in the run stream, 
the same is true with the exception that no program is currently in execution, thus there is no termination. In either case, no 
files are assigned, tapes are not positioned, and any facility manipulation which might be needed must be accomplished using 
a restart contingency routine (see 17.2.5). 

A partial restart can also be initiated from within a user program by a CSF$ request (see 4.8.1). The user packet contains a 
character string identical in format to the @RSPAR control statement. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 17-10 
PAGE REVISION PAGE 

17.4. CHECKPOINT/RESTART ERROR CODES 

Tables C-6 and C-7 (see Appendix C) list the checkpoint and restart error codes which are returned when a complete or 
partial checkpoint or restart is error terminated. The requesting run is not terminated as a result of the inability to take a 
checkpoint. The error code is stored in register AO on the return from a CSF$ request, and is listed in the master log. If the P 
option was specified, an error message is displayed on the operator's console. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SE RIES SYSTEMS 18-1 
PAGE REVISION PAGE 

lB. SYSTEM SYMBOLIC PROCESSORS 

18.1. INTRODUCTION 

This section describes various system symbolic processors that are available to the user. All of the processors can be called 
from within a user program by coding the appropriate control statement. 

The processors discussed are: 

II CON78 

• CULL 

II DATA 

• ED 

II ELT 

II LIST 

Accepts CUR-formatted symbolic elements and converts them to FURPUR-formatted symbolic elements. 
(See 18.7.) 

Generates a listing of symbols cross-referenced to the element and line in which they are found. (See 
18.5.) 

Inserts, updates, and corrects data files from within the run stream. (See 18.3.) 

Permits conversational editing of symbolic files and elements. (See 18.4.) 

Inserts and updates symbolic elements in a program file from within the run stream. (See 18.2.) 

Generates an edited listing of any type of element. (See 18.6.) 

In addition to the system symbolic processors, the @END control statement (see 18.2.1), which operates in conjunction with 
the DATA and EL T processors, is also described. 

18.2. EL T PROCESSOR 

Purpose: 

Introduces an element into a particular program file or makes corrections to a symbolic element in a program file from the 
run stream. The @ELT control statement is used to call the EL T processor and it must precede the element or correction 
images in the run stream. With the exception of the @ELT,D control statement, the EL T processor is terminated by the first 
control statement encountered in the run stream. EL T processor operation is terminated by an @END control statement (see 
18.2.1) whose sentinel matches the sentinel on the @ELT control statement. 

All parameters in the @ELT control statement are optional except @, EL T, and eltname-1. 



4144 Rev. 2 
UP-NUMBER 

Format 

UNIVAC 11 00 SE RI ES SYSTEMS 18-2 
PA GE RE VISION PA GE 

@label:ELT,options eltname-1,eltname-2,sentinel 

Parameters: 

options 

eltname-1 

eltname-2 

sentinel 

Option 
Character* 

A 

R 

S 

D 

L 

See Table 18-1. 

The A, R, and S options (element type options) identify the element type, while the I, L, 
and U options principally outline element (image handling) options. Those elements 
identified as type S are considered symbolic elements and may be corrected by using the 
processor control statements (see 9.4). The format of symbolic elements in a program file 
is that of a SDF-formatted file (see 24.2.3). 

The S option is assumed when the element type options are not specified. The L option is I 

assumed when the element handling options are omitted. 

Specifies the input element 

Specifies the new output element generated 

Specifies, when the @ELT,D control statement is used, the character code which 
terminates the flow of data images into the element being created. This parameter may 
consist of one to six characters and must agree exactly with the sentinel code appearing 
on the @END control statement (see 18.2.1) used to terminate the ELT processor. 

Description 

Element Type Options 

Identifies element as an absolute element; used only with the I option. 

Identifies element as a relocatable element; used only with the I option. 

Identifies element as a symbolic element. This option is assumed when no element type option is specified. 

Image Handling Options 

Indicates that the symbolic input images following the @ELT control statement may include control 
statements which are to be transferred as data. A" control statements are transferred until a @F I N or 
@END (with matching sentinel) control statement is encountered (see 3.4.1 and 18.2.1, respectively). 

Requests a listing of the complete symbolic element. Since this option cannot be specified for absolute or 
relocatable elements, it cannot be used with the A and R options. This option is assumed and eltname-1 is 
listed when the I, L, and U options are omitted. 

*Source input routine options (see Table 9-3), except the W option, also apply. 

Table 18-1. @EL T Control Statement, Options 

/' 



t,..-· ~ 

i 

.... ,._'" 

4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SE RI ES SYSTEMS 18-3 
PAGE REVISION PAGE 

Description: 

The EL T,D control statement allows insertion of control statements into a program file as elements which may represent 
@RUN and @ADD runs streams (see 3.4.1 and 3.9.1, respectively) that can be called later by the @ADD or @START control 
statements (see 3.9.1 and 3.4.3, respectively). 

When an element is punched by the FURPUR processor (see Section 8), the element is always preceded by an @ELT control 
statement. The filename punched into the @ELT control statement is the name of the file from which the element was 
punched. These decks can simply become part of the input to subsequent runs. If the element is to be added to a file other 
than the one from which it was punched, the filename punched must be changed. 

Examples: 

LABEL 
10 

OPERATION \ OPERAND ,\ COMMEHT5 
50 20 30 40 --,,--_._-----------, .-.- --:.:;:;--=-=._===== 

...... 1.. .. 1-_, _!_,L~..l.-1 ....... L . .J ..... 1... . .l.-1 I 1 ,_ ... ..1 ..... L" .. L,_~-.L_ .... L . .1 .... L....l. 

1 I 1 , I 

u--c,--,-' --l' __ L.L ..... L .. i ... .1 ..... _1.. . .J __ L . ..l_L-1---1_Ll ........ L ..... 1.-L. ....... 1 -,---,---,--->--,-' ., .... 1 ... L_ .. Ll-1....-L.J_, .. .1 ... .1 ...... .1 .. __ L 

..... L .... L,l,.-'-1 ..J..1 --,-I -1.-1-' ....... i --1-1 .• 1..._.1.. ... L ... L ..... L . .J __ L-l.--l--'--'--L...-.L .1 .... 1... ... 1..! 1 I I I •. 1.._.1 ..... L . ...L...J......J 

, ! ! ! -L-L..L...LJ __ L,.J......I J!--1...! _IL-.J..! -'--'--..1..-I..-..L.! .... L_L.....l-L.l-LL-L .. J ... 1 ...•. .1.--,-1 -1-.L..-L--L...' ..l. 

. .....L-..L.-I.---1-...L-L ... L._L ... L . ..l. 1 I I .. L .. J. ........ L ..... L' I I 

1. The correction images following this control statement update ELEMENT1 of program file PF 1. The updated element 
replaces the old ELEMENT1 in PF1. Since the element type is not specified, the S option is assumed, and the element 
is considered to be a symbolic element. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

The correction images following this control statement are applied to ELEMENT1 of program file PF1 to produce a 
new symbolic element (ELEMENT2) for program file PF2. 

The correction images following this control statement are applied to ELEMENT2 of program file PF1. The new 
symbolic element is listed but no new element is produced because the U option is omitted. 

This control statement lists ELEMENT2 of program file PF1. 

The images following this control statement are inserted as a new symbolic element (ELEMENT3) into program file 
PF1. 

The images following this control statement are inserted as a new absolute element (ELEMENT4) into program file 
PF1. 

The images following this control statement are inserted as a new relocatable element (ELEMENT5) into program file 
PF1. 

The images following this control statement are inserted as a new symbolic element (ELEMENT6) into program file 
PF1. 

The images following this control statement are inserted as a new data element (ELEMENT7) into program file PF1. 
The data stream is terminated when an @END control statement having the matching sentinel STOP is encountered. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 18-4 
PAGE REVISION PA GE 

18.2.1. INPUT TERMINATION SENTINEL (@END) 

Purpose: 

Marks the end of a data file or element. It follows the data images introduced by either an @ELT,D or @DATA control 
statement (see 18.2 and 18.3, respectively). 

For the @END control statement, only the sentinel parameter is optional; all other parameters are required. 
~ 

Format: 

@END sentinel 

Parameters: 

sentinel 

Description: 

A one- to six-character code corresponding exactly to the sentinel contained in the 
@DATA or @ELT,D control statement introducing the data images. The end of the file or 
element is determined when the character string in this parameter matches the character 
string of the sentinel parameter specified in the associated @DATA or @ELT,D control 
statement. 

@END control statements cannot have labels and cannot be continued. The @END control statement must be coded exactly 
as shown (punched into first four columns of the card). 

Examples: 

LABEL ,\ OPERATION :\ 
10 20 

..... 1. .... 1 ! ! I I ' .. -1 .. ...l ...... 1.. ...... 1.. .. _L I I i I 

OPERAND 
30 

;\ 
40 

COMMENTS 
50 

I ....... l ........ L ... L._L ... .LJ .... J---L...l.. .... ..L ...... l .... .l .... ..J........J-L......L..J... .... l ..... l. ....... l ..... ..L.L..J........J_ ... L .... l .... i ........ I . 

.......J ........ l ... .J ........ J ........ .L ... I ..... J....-J.........L-l . ...l.._.L_l_L ... J ..... 1. ...... 1.. ..... 1 ........ 1 ..... .I. ........ J-L ... L....L-L-L...l .... 1 ....... .1 .... I ......... l. ...... .l......-L..L.....L ..... l ....... .1 ........ L .. _l_.J ....... J ....... L . ....1.........L...l ....... 1 ........ 1 ........ 1 ..... 1 ....... 1 .. ....L_L.....l._.l.. ..... 1 ...... 1 ..... 1 ........ L. 

When the @END control statement is encountered, it ends the data file or element introduced by the @DATA or @ELT,D 
control statement that has its sentinel parameter coded FINISH. 

18.3. DATA PROCESSOR 

Purpose: 

Introduces, updates, and corrects data files from the control stream. DATA processor operation is terminated by an @END 
control statement (see 18.2.1) whose sentinel matches the sentinel in the @DATA control statement. The @DATA control 
statement is used to call the DATA processor and it must precede the data or correction images in the run stream. Any 
control statement, with the exception of the @FIN and @ADD,D control statement (see 3.4.2 and 3.9.1, respectively) 
appearing between the @DATA control statement and the @END control statement is treated as data. 

All parameters in the @DATA control statement are optional except @,DATA, and filename-1. 

Format: 

@label:DATA,options filename-1, filename-2,sentinel 



I 
~. 

4144 Rev. 2 
UP-NUMBER 

Parameters: 

options 

filename-1 

filename-2 

sentinel 

Option 
Character* 

L 

U 

UN I VA C 11 00 S E R I E S S Y S T EMS 18-5 
PAGE REVISION PAGE 

See Table 18-2. 

If the I option is omitted, but both filename-1 and filenalT!e-2 are specified, the data 
images following the @DATA control statement are interpreted as corrections to 
filename-1. A new updated file identified by filename-2 is generated. 

If the options and filename-2 parameters are omitted, the L option is assumed. 
Filename-1 is listed but no new file is generated. 

Specifies the file to which the data images and correction images in the run stream apply. 
If the file is to be catalogued it must have been previously assigned by an @ASG control 
statement (see 3.7.1). 

Specifies the updated file to be generated. If this file is to be catalogued, It must have 
been previously assigned by an @ASG control statement. 

Specifies a character code of one to six characters used for comparison purposes in 
determining the proper terminating @END control statement (see 18.2.1) for the data 
mode. 

Description 

Generates a complete listing of the file, including sequential item numbers which are used when making 
corrections to the file. If this option and filename-1 are the only parameters specified, filename-1 is listed. 

Use relative F-cycle -0 as input to produce relative F-cycle +1 of the file. 

* Source input routine options (see Table 9-3), except the U and W options, also apply. 

Table 18-2. @DA TA Control Statement, Options 

Description: 

The difference between the operation of the DATA processor and the ·@FI LE control statement (see 3.8.1) is that the DATA 
processor handles data as it is presented in the run stream at run time, whereas the @FI LE control statement builds the file as 
the data is being initially inputted into the system. In short, the DATA processor operates identically to a language processor 
control statement. The file built by the DATA processor is in SDF format (see 24.2.3). 

The DATA processor allows the user to build data files which are an entire or partial run stream. These files can then be 
called on by the @START control statement (see 3.4.3) to start an independent run or by the @ADD control statement (see 
3.9.1) for inclusion in a current or subsequent run. The DATA processor enables the user to make corrections to an 
independent run stream and then start it using the @START control statement, or make corrections to a partial run stream 
and add it to the run using the @ADD control statement. The DATA processor can also be used as a convenient means of 
generating and maintaining a user's data file rather than a control stream type file. 

All files referenced in the @DATA control statement must be assigned to the run before the @DATA control statement is 
executed. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 18-6 
PAGE REVISION PAGE 

/. 
2.. 
!. 

The U option is used only to update from relative F-cycle 0 to relative F-cycle +1, and only one filename can be specified. 
Relative F-cycle +1 of the file must be assigned prior to implicitly referencing it by means of the U option on the @DATA 
control statement (see 2.5.3). 

Examples: 

LABEL ,\ OPERATION i\ 
10 20 

OPERAND 
30 

A 
40 

COMMENTS 
50 

. .. t ...... l ...... J._ . ..L-, ...J,1~i ________ ........... I_L .... L. .... L_L....J.....-L.....L-L..L....L .. J. ..... _1 L; I I: ! .. .1 ....... J. .... .1..-1.. ... -L_L .. L-1 ....... 1.. ... 1.. .... .1 

. .. L-L-L...l._.J. ..... _"-..... 1 ..... i ....... .l ....... L.._.l .... ...L.....L...L...L. ..... i_ ..... .l. ....... L ...... l._ .. ..1 ........ 1. ... .J ___ L ... .L_.1... ..... 1... ..... 1 ..... l ........ 1 ....... J ... ......L..J. .. -1_.1 ....... .1 ........ I ........ 1. ........ l 

I ! I I _L .. L .. L._LJ 1 I ! I 1 I .U __ L .. _L. .... 1--'---'"--'-i ....... 1---'-......... I ...... 1... ... L ......... 1 -'.-........ 1 ..... ,--<--'1. .. 1 

'---l..--'--'--...L.......J<-. .l........l._L ..... l ..... 1 ......... l ... J..... . .....L.....L-L--'-_L_ .... .l ....... .1 ....... .L ... ..J. . ........L........l.-.l...-...l.--'-....J.1. __ .1. ....... L._ .. 1-1-.....I..-.L-.1... I .. .l ....... .I .... ..J._....l. 

1 I ! ! 1 ! 

.... L ..... L..J..........l .-,,-1 --,-I ....... 1 -'--'--J...... 

1. The images following this control statement provide the corrections for F I LEA. The updated version of this file is 
stored into the newly created file FILEX. 

2. The images following this control statement are inserted into FI LEB. 

3. The images following this control statement are applied as corrections to FILED. FILED is listed but a new file is not 
created. 

4. Because the options and filename-2 parameters are omitted, the L option is assumed, and a complete listing is provided 
for FILEY. 

5. The images following this control statement are inserted into F I LEZ and listed. 

18.4. ED PROCESSOR 

Purpose: 

The ED processor is a text editor which allows the user to coversationally edit a symbolic file or element. It allows insertion, 
deletion, and replacement of text. The ED processor is called by the @ED control statement. 

All parameters of the @ED control statement are optional except name-1. 

Format: 

@label:ED,options name-1,name-2 

Parameters: 

options See Table 18-3. 

names Specifies an input or output files or elements (see Table 18-3). 

Description: 

Table 18.-3 lists the available options, the input/output files as specified by name-1/name-2, and functions. Unless otherwise 
specified, name-1 and name-2 may be either files or elements. 



,
/ 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 11 00 S E R I E S S Y S T EMS 18-7 
PAGE REVISION PAGE 

Option 
Name-' Name-2 Description 

Character 

Not I, R, Input Output Input is taken from name-1 and the resultant text is placed in name-2. 
or U 

Not I, R, Input None R option assumed for symbolic element. 
or U U option assumed for data file. 

A Input Output Attempt auto recovery - see AUTO command (Table 18-4). 

B Input Output Batch mode when using a demand terminal - ED run will not solicit input 
from user. 

C Input Ignored Enter input mode if element does not exist. 

0 Input Output Demand mode when using a batch terminal - output listing of the ED run will 
contain solicitation messages. 

I Output Ignored Initial insertion of symbolic input from the run stream which causes the 
ED processor to enter the input mode. The images following the @ED control 
statement are inserted into the file named in name-1. The I option takes 
procedence over the R or U option. 

L Input Output Print all lines following the @ED control statement. The lines printed 
are indented and preceded by three asterisks. 

N Input Output Suppresses printing of changed or relocated lines. This option serves the 
same purpose as the ON BRIEF command. 

R Input Ignored Input is taken from name-1 of the @ED control statement; no output text 
is produced (read-only mode). 

U Input/ Ignored Update the symbolic element by applying corrections and create a new 
Output symbolic element cycle. The output element name is the same as name-' but 

with a cycle number one greater. For SDF-formatted files the original images 
will be replaced with the updated ones. 

X Input Output Take an E R R$ exit (see 4.3.2.2) upon a fatal or nonfatal error (batch mode 
only). 

Table 18-3. @ED Control Statement, Options 

The ED processor operates in two modes: input and edit. In input mode, all lines entered are directly inserted into the text. 
In edit mode, various commands may be used to modify existing text. Changing between modes is accomplished by entering a 
blank line. Most editing commands implicitly reference a particular part of the text. This is accomplished by an internal 
cursor maintained by the ED processor. This cursor may be positioned directly by some commands (number, +number, 
-number) and indirectly by others (LOCATE, FIND, CHANGE). 

18.4.1. EDIT MODE COMMANDS 

Table 18-4 lists alphabetically the commands available to the ED processor while in edit mode (permits manipulation of 
images in an element or file). Some of these commands may be abbreviated to one or two characters as specified. All may be 
abbreviated to three characters. 

-' When using CHANGE, INSERT, RETYPE, and the corresponding abbreviated commands, only one blank should be left 
between the command and the parameter image. In all other commands of more than one parameter, at least one blank must 
be left between each parameter. When errors are detected in a command, the command is not executed, an error message is 
given, and the next command in the run stream is executed, except in the case of the X option in batch mode. 



4144 Rev. 2 
UP-NUMBER 

ADD name 
or 

Command 

ADD name num1 num2 

APPEND 

AUTO <num1 

CCHAR char 

CHANGE/string-1/string-2/m G 
or 
C Istring1 Istring2/m G 

UNIVAC 1100 SERIES SYSTEMS 18-8 
PAGE REVISION PAGE 

Description 

This command is used to add all or portions of a file to the 
current file. The first form adds the whole file, and the second 
form adds lines 'nurn1' through 'num2' to the current file. The 
lines to be added are inserted at the end of the file unless a + 
immediately follows the command in which case the lines are 
inserted following the current position within the edit file. The 
'name' is the element or filename (see 2.6). 

Go to the end of the element or file and enter input mode 
thereby allowing new images to be inserted. 

This command specifies that an automatic save of the current file 
is to be performed in case of processor or system failure. The 
'num1' specifies that the auto save is to be performed for every 
'num1' input transaction. When the auto save is performed, the 
word 'AUTO' will be typed out. If a failure does occur, the user 
should type in the @ED control statement exactly as he did just 
before the failure occurred with the addition of the A option. 
When the file is recovered, the words 'AUTO RECOVERY' will 
be typed out, and the user may proceed. If the I option was used, 
the user must enter a carriage return to change to edit mode 
before the auto recovery will take place. 

Caution: 

This should be used sparingly as it involves a large amount of liD 
and computation. Some sites may choose to set a minimum for 
the line count for this reason. An AUTO 0 terminates the auto 
save mode. Entering the AUTO command with no operand causes 
an immediate auto to be performed without affecting the auto 
counter. 

This command sets the continuation character. When an input 
line to the editor has this character in it, the editor assumes that 
the next line or input is a continuation of this current line. This 
next line will be solicited in the normal manner except that a + 
will precede the solicitation. The character is initially set to a 
character which cannot be typed in. The character can be reset to 
this non-enterable character by using this command with no 
'char'. 

This command searches a specified number of text lines for 
'string1' (as with LOCATE command except that CHANGE starts 
with the current line and LOCATE starts with the following line). 
When and if the desired string, 'string1', is found, 'string2' is 
substituted for it. The number of lines to be scanned is indicated 
by 'm'. The global indicator, 'G', tells whether to change all 
occurrences of 'string1' in the range of lines or just the first 
occurrence in each line. A 'G' means all occurrences and any 
other character (or no character) means just the first. The' I' may 
be any character which does not occur in 'string1' or 'string2' 
except for a blank. 'm' may be omitted in which case 1 is 
assumed. Instead of using 'm' and 'G', a user may change all 
subsequent occurrences in the file by using the word I ALL' (abbr. 
A) where 'm' is usually specified. 

Table 18-4. ED Processor Commands (Part 1 of 7) 



.~-

1'---

4144 Rev. 2 
UP.NUMBER 

Command 

CLiMIT column number 

CSF executive control statement 

CPT 

CPUNCH num1 num2 
CPUNCH num1 
CPUNCH 

DELETE num1 num2 
D num1 num2 
DELETE num1 
D num1 

DITTO num1 
DITTO num1 num2 

EXCH char octal number 

EXIT 

FIND mask 

U N I VA C 11 00 S E R I E S S Y S T EMS 18-9 
PAGE REVISION PAGE 

Descri pti on 

This command allows the user to set a limit on the number of 
columns which will be searched during performance of the change 
command. This is useful for protecting areas of data in a file. The 
default value is 132. 

This command is used to submit a control statement via CSF$ 
(4.8.1). Only statements valid for CSF$ may be submitted. The 
control statement must start in column 5. 

This command prints out the CPU time used so far in the present 
run. The form of the message is (minutes)M (seconds)S. 

This command is used to punch parts or all of a file at an onsite 
card punch. The syntax has the same meaning as with the SITE 
command. After the command is entered, a message as follows 
will be typed out: 

MSG? 

The line typed in here will be sent to the system console before 
the cards are punched. 

This command is used to delete lines from the text. The first 
form deletes lines 'num1' through 'num2'. The second form 
deletes the next 'num l' lines starting with the current one. 

This command allows duplication of other lines in the file. 

The duplicated lines are inserted at the present position in the 
file. The first form resu Its in the one line at 'num1' being inserted 
in the present position. The second form results in all lines 
'num1' through 'num2' being duplicated at the present position. 
Care must be exercised to be sure the most current line numbers 
are used. At the completion of the DITTO, the pointer is 
positioned at the next line following the lines inserted. 

This command is used to allow input of characters not 
represented in the keyboard character set. 'char' is the character 
which is to be used to stand for the number whose internal 
representation is 'octal number'. When 'char' occurs anyplace in 
an input line it will be replaced by this character. An EXCH with 
no parameters disables this feature. 

This is the command used to take a normal exit from the ED 
processor. All the corrections will be applied to the designated 
file and a normal exit will be taken. 

FIND searches for an image which corresponds exactly column 
for column starting at column 1 with the 'mask'. Transparent 
characters may be in the mask which will test successfully with 
any character in the column. The normal transparent character is 
a blank, but alternate ones may be designated with the TCHAR 
command. The search begins with the line following the current 
one and proceeds until a match or end·of·file is detected. 

Table 18-4. ED Processor Commands (Part 2 of 7) 



4144 Rev. 2 
UP-NUMBER 

FC mask 

IB string 

Command 

INLINE number term-sub 

INSERT string 
I string 

INPUT 

LAST 

LNPRINT num1 num2 
LNPRINT num1 
LNPRINT! 

UNIVAC 1100 SERIES SYSTEMS 18-10 
PAGE REVISION PAGE 

Description 

The FC command behaves in the same way as the FIND 
command except that all occurrences are flagged in the remainder 
of the file. 

This command behaves exactly the same as the INSERT 
command except that the line is inserted before instead of after 
the current line. 

This command allows inline editing of a given line. If 'number' is 
blank, the current line is assumed to be the one to be edited. 
Otherwise the editor proceeds to line 'number'. The line will be 
printed out. The user can then enter editing information directly 
below the line to modify it. Following are the editing characters 
to be used. 

R 

D 

The string following this command is inserted 
following the character immediately above the I. The 
string is. delimited on the right by the termination 
character '!'. 

The characters following the R will replace the 
characters immediately above them. A ! is required to 
terminate replacement. 

The characters in the line above are deleted between 
the D and the !. 

If one wished ·to use another character instead of ! for 
termination (for example if one wished to insert a !) then an 
alternate symbol may be specified as 'term-sub'. This will remain 
in effect for this INLINE only. 

This command is used to insert a line following the line presently 
pointed at by the editor. This new line will then be the point at 
which the editor is positioned. The string to be inserted starts 
after the first blank following INSERT. 

If the command with no image is entered when not in EOF mode 
(see 'ON' command) the editor will switch to input mode. In 
EOF mode this simply results in the insertion of a blank line. 

This command directs the editor to enter a special input mode. In 
this mode everything which is typed in is inserted in the file until 
an exit from the mode is taken. This is especially useful when 
large volumes of input are to be entered. Exiting from this mode 
is accomplished by typing an @EOF when in EOF mode (see ON 
and OFF commands) or a carriage return when not. Tabs are 
recognized in this mode. 

This command directs the editor to move to the last line in the 
test and stay in edit mode. The last line may not be altered at this 
time. 

This command behaves like the PRINT command except that 
each line is preceded with its line number. Syntax is the same as 
the PR INT command. 

Table 18-4. ED Processor Commands (Part 3 of 7) 



4144 Rev. 2 
UP.NUMBER 

Command· 

LNQU ICK num 1 num2 
LNQU ICK num 1 
LNQUICK! 

LNSITE num1 num2 
LNSITE num1 
LNSITE! 

LOCATE string 

UNIVAC 11 0 0 SERIES SYSTEMS 18-11 
PA GE RE VISION PA G E 

Description 

This command behaves like the QUICK command except that 
each line is preceded with its line number. Syntax is the same as 
the QUICK command. 

This command behaves the same as the SITE command except 
that each line is preceded with its line number. 

LOCATE quote char string quote char 
This command is used to search the text for a given string of 
characters. The search begins at the line following the current line 
and proceeds sequentially through the text until a find is made or 
the end of file is encountered. The first form ignores multiple 
blanks in the images. The second form requires that the text 
image be exactly the same as the string within the two quote 
cha racters. 

LC string 
LC quote char string quote char 

LCHAR char 

MAIL userid 

MAX LINE number 

MOVE num1 
MOVE num1 num2 

MSCHAR char 

OMIT 

LC behaves as LOCATE except that all occurrences of the string 
in the remaining text are located. Just before each line containing 
an occurrence is typed out, the line number is typed out. 

This command sets the quote character for the LOCATE 
command. The default character is quote ('). A non·inputtable 
character will be assumed if 'char' is a blank. 

This allows the user to send messages to another user. The 'userid' 
is the original runid of the person to whom the message .is 
directed. The editor will then solicit 10 lines of input with: 

MAIL ** 

If the desired message is to be less than 10 lines the mode can be 
ended by entering an @EOF. After the message is received by the 
designated person it will be deleted. 

This sets the maximum length to which a line may increase. If it 
is exceeded, the line will be truncated. The default is 80. 

This command performs the same operation as the DITTO 
command except that the original lines are deleted after the 
duplication has taken place. The syntax is the same as for the 
DITTO command. Care must be exercised to be sure the most 
current line numbers are used. 

This command sets a character which will be translated to a 
masterspace when it is input in column one. If 'char' is a blank, 
no masterspace translation is available. 

This is the command to be used if the user' does not want his 
corrections to be applied to the file on exit. The input file will 
remain as it was at the beginning of the editing session, and the 
output file, if any, will not be produced. 

Table 18-4. ED Processor Commands (Part 4 of 7) 



4144 Rev. 2 
UP-NUMBER 

UNIV.AC 11 00 SE RI ES SYSTEMS 18-12 

Command 

ON special mode , ... , special mode 
OF F special mode , ... , special mode 

OPR string 
OPR* string 

PCN 

PLiMIT column number 

PRINT num1 num2 
PRINT num1 
PRINT! 

PAGE REVISION PAGE 

Description 

This com·mand is used to define some special modes within the 
editor. ON turns the mode on, and OFF turns it off. The special 
modes are: 

QUICK 

BRIEF 

NUMBER 

PCNTRL 
DSPLIT 
XBRIEF 

SEQ 
LOOK 
EOF 

MEMORY 

-

-

-

-
-
-

-
-
-

compress extra blanks out of all output to 
device. 
do not echo corrected images for CHANGE and 
DITTO. 
precede each line printed out with its line 
number. 
recognize and print print control images 
delete lines transferred by SPLIT command. 
do not echo lines transferred by SPLIT or ADD 
commands. 
print sequence numbers when soliciting input. 
look for mail after each command is executed. 
special mode where blank lines may be entered. 
INP command enters input mode and @EOF 
exits from input mode to edit mode. While in 
input mode blank lines may be entered. Also 
the INSERT command with no image following 
will enter a blank line. 

- remember modes on successive executions. 
All of the modes may be abbreviated to one 
letter. 

This command is used to send a message to the system console. 
The first form sends the message 'string'. The second form does 
the same, but also solicits an answer. The string may not be more 
than 50 characters or they will be truncated. 

This command is used to enter a print control image into the file 
being edited. When the command is entered, the editor will solicit 
the image with: 

CaNT RO L I MAG E-

This image can only be read when in a special mode set by the 
ON command. 

This command is used to set a limit on the number of colums 
which will be printed out by the PRINT command. 

This command is used to print out lines of text. The first form 
prints lines 'num l' through 'num2'. The second form prints the 
next 'num1' lines. If the command is immediately followed with 
a + the printing starts with the next line instead of the current 
one (example: PR I NT + 3). The third forms prints the entire file 
from the top. If no number or recognizable symbol follows the 
command, a 1 is assumed; that is, the present line will be printed 
out. This command may be abbreviated with a P. 

Table 18-4. ED Processor Commands (Part 5 of 7) 

/' 
I 



i 
I 

'~ 

4144 Rev. 2 
UP-NUMBER 

Command 

PU NCH num 1 num2 

PUNCH num1 
PUNCH 

QUICK num1 num2 
QUICK num1 
QUICK! 

RETYPE string 

RP number 

SCALE number 

SET tab 1 tab2 tab3 ... tabn 

UNIVAC 1100 SERIES SYSTEMS 

Description 

PA GE RE VI SION 
18-13 

PAGE 

This command is used to punch paper tape for form II paper tape 
input (see 12.2.1.2.2) at a terminal which has punch and read 
hardware. The syntax for this command is the same as that for 
the PRINT command. When the command is entered, the 
following response will be given: 

DEPRESS PUNCH ON 

The processor will then pause to allow the user to push the punch 
on button on the paper tape punch hardware. It is suggested that 
the user previously punch several rubouts on the tape to make a 
leader for later reading the tape. This is accomplished by 
switching the paper tape punch on and holding the repeat key 
(REPT) and the rub out key down simultaneously. This may be 
safely done even while executing a run at the terminal since 
rubouts are ignored by the operating system. After pausing the 
designated lines will be typed out which will cause the paper tape 
to be punched at the same time. When the typing is finsihed, the 
editor will again pause to allow the user to switch the punch off, 
rubouts should also be used at the end of the tape. The tape so 
produced can be used as normal form II input. 

This command prints lines with all nonsignificant blanks omitted. 
This provides a fast method of examining areas of the file. 'num l' 
and 'num2' are the same as on the PRINT command. Plus (+) 
may also be used on the second form with the same meaning. 
This command may be abbreviated with a Q. 

This command is used to completely replace the current line with 
the string following the first blank after the command. A + may 
be used after the command with the same meaning as with the 
INSERT command. 

This command is used to set a repeat counter for the I NSE RT 
command. Any insertion will be repeated 'number' times. 

This command causes a line to be printed out which can be used 
for column sensitive operations. The form of the line is: 

1234567890123456789012345678901234567890 ... 

starting in column 'number'. 

This command is used to set the tabs for the commands which 
allow them as explained above. As many tabs as desired may be 
designated. Each SET command redefines all previous tabs, and 
so a SET with no tabs clears the tabs. If no SET has been 
performed a default of 11,21,39,73 is assumed. 

Table 18-4. ED Processor Commands (Part 6 of 7) 



4144 Rev.2 
UP-NUMBER 

SITE num 1 num2 
SITE num1 
SITE! 

SPLIT name 

Command 

SPLIT name num 1 num2 

U N I V A C 11 00 S E R I E S S Y S T EMS 18-14 
PAGE REVISION PAGE 

Description 

This command is used to direct output to an onsite printer (PR). 
The meanings of 'num1' and 'num2' are the same as for PR INT 
except that if no numbers are given, the third form is assumed. 
After this command is entered, a message as follows will be typed 
out: 

HOG? 

The line typed in here will be used to head the onsite output. 
Periods must not be used in this header as anything beyond the 
period will not be printed. After the output is done, the following 
will be typed: 

MSG? 

The user should enter the information here necessary to indicate 
where and to whom the output should be returned. 

This command is used to build new elements or files from 
portions of a current file. The first form causes all the lines 
preceding the line currently pointed at to be reproduced as the 
designated file. The second form causes lines 'num l' through 
'num2' to be reproduced. An '!' immediately after the SPLIT 
command causes the whole file to be copied. 

STATUS special mode , ... , special mode This command is used to request the status of special modes set 
by the ON and OFF commands. If no special modes are specified, 
the status of all will be listed. 

TAB tab char 

TIME 

TYPE processor-mnemonic 

UP 

number 
+ number 
- number 

This command is used to specify which character is to be used as 
a tabulator character. This character is recognized on the 
INSERT, IB, and RETYPE strings and is recognized on all input 
when in the input mode. The character is not transmitted to the 
file and behaves just as a tab on a typewriter. If no character has 
been specified, a semicolon (; ) is the tab character. 

This command prints out the date, time, and cycle information. 

Sets the processor type for symbolic element output. The 
processor mnemonics are: ALG, ASM, COB, DOC, EL T, FOR, 
MAP, and SEC. 

This command is used to cause an element or file to be saved as if 
the U was specified on the CONTROL statement. This is used if 
the entry to the editor was made with an R option. 

These commands are used to position the editor at a desired line 
in the text. The first form directs the editor to line 'number'. The 
second form directs the editor to move to the position current 
line plus number. The third form directs the editor to move to 
the position current line minus 'number'. When the specified line 
is located, it is typed out if in V ER I FY mode, and modifications 
may be made to it. If it is desired to insert lines before line 1,0 
may be typed in. This will position the editor immediately before 
the first line. 

Table 18-4. ED Processor Commands (Part 7 of 7) 



I/' 

I 

4144 Rev.2 
U P.NUMBER 

UNIVAC 11 00 SE R I ES SYSTEMS 18-15 
PAGE REVISION PAGE 

18.4.2. USAGE CONSIDERATIONS 

The ED processor proceeds sequentially through the text. It is therefore more efficent to perform editing operations in a 
more or less sequential manner starting at the beginning of the text. Searching commands such as LOCATE and CHANGE 
require much computation and should be used sparingly. 

There are certain processes within the editor which if indiscreminately interrupted can cause the processor to fail. To protect 
against this, the processor is designed to break only at specified points when it is safe to do so. If the user wishes to interrupt 
the processor, he may depress the break key at any time. The system will respond with: 

INTRPT LAST LINE 

The user should answer with an X if he wishes the processor killed or a carriage return if he wishes only to escape the current 
command. In either case a few lines of backed-up printout may follow before the interrupt takes place. If for some reason the 
editor's escape method is not satisfactory the user may enter the break key and carriage return again. In this case the editor 
will return to edit mode, but integrity is not guaranteed. 

Files with names of the form E D$xx (where x is any character) should be avoided since the ED processor uses such files 
internally. 

18.5. CULL PROCESSOR 

Purpose: 

Scans a collection of symbolic elements and produces a cross-reference listing of the symbols found, the elements, and the 
lines on which they occur. A list of symbols which are either to be omitted from the sort or the only symbols to be included 
in the sort may be specified. The CULL processor is called by the @CULL control statement. 

All parameters in the @CULL control statement are optional except @ and CULL. 

Format: 

@label:CULL,options pro/scol(res),name-1, ... ,name-n 

Parameters: 

options 

pro 

scol 

res 

names 

Specifies available options for obtaining sorted symbolic listings (see Table 18-5). 

Specifies the symbolic element being scanned/sorted. The possible values are: 

ASM - 1100 series assembly code 

DATA - all symbolic elements 

EL T - symbolic data element 

If omitted, ASM is assumed. 

Specifies the column number where the scan automatically stops. If omitted, the 
following values are assumed: 

ASM - 40 

DATA/EL T· full card 

Specifies the number of mass storage positions reserved for scratch files. If omitted, 2 is 
assumed (approximately 70,000 references). 

Specifies elements or filenames in standard notation (see 2.6.6). 



4144 Rev.2 
UP-NUMBER 

Option 
Character 

C 

E 

L 

M 

N 

0 

P 

S 

U 

Z 

A 

D 

A 

D 

N 

I 

Q 

W 

X 

y 

UN I VA C 11 00 S E R I E S S Y S T EMS 18-16 
PAGE REVISION PAGE 

Description 

General Options 

Produces a 72-column listing (teletypewriter or page size) omits list of elements processed and summary 
information at end 

Does not eject the page. Otherwise, page eject for each time symbol begins with different character than 
previous symbol. 

Produces a full listing of each element scanned/sorted. 

Only symbols in data images are accepted. 

Marked symbols only are printed; otherwise only unmarked symbols printed. 

Symbolic elements are not sorted 

Procedures are not examined 

Symbols in data images are printed 

Causes used symbols to be marked (and hence not printed in absence of N option, thus giving listing of 
symbols defined as labels but not otherwise referenced). 

Accepts untyped symbolic images 

Special Options for Symbolic Data Elements 

Does not sort strings beginning with an alphabetic character 

Does not sort strings beginning with any character from the set: 0-9, $, and period (.) 

Special Options for Assembler Language Elements 

Does not sort identifiers 

Sorts numbers and the symbol $ 

Prints only marked symbols (otherwise, prints only unmarked symbols) 

Any symbol that appears in the special internal table is not sorted. This table contains all symbols that are 
commonly used as directives, mnemonics, register names, and j designators. If the M option is specified, the 
internal table is used as a supplement to the special symbol table. 

Sorts data items from the set A-Z, 0-9, $, and period (.) which are enclosed in quotes. These references 
are followed by a Q. 

Marks a symbol when it appears in the label field. 

Marks a symbol when it appears in the label field and is followed by an asterisk (*). 

Restricts the Wand X options to elements explicitly named in the @CULL control statement. 

Table 18-5. @CULL Control Statement, Options 



4144 Rev.2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 18-17 
PAGE REVISION PAGE 

Description: 

Each file must be assigned or catalogued. If no filename is given, TPF$ is assumed. All files are returned to their original 
status when the CULL processor terminates. If a file is not a FASTRAND·formatted program file, an error is noted, and the 
parameter is ignored. 

If read/write keys are necessary, they must be given in the first reference to the file. Keys appearing anywhere else are 
ignored. 

The set of elements to be scanned and sorted is formed in one of two ways: 

EI If an element name is a parameter, it is included in the scan/sort. 

[J If a filename is a parameter, the most recent cycle of each symbolic and procedure element is included in the scan/sort, 
unless the 0 and P options are specified. 

Standard system dropout rules apply to both file and element name formats (see 3.2.7). 

Data images, following the @CULL control statement, are scanned for strings of character separated by blanks; thesp strings 
are the special symbol table. If the M option is specified, only the symbols in this table are accepted; if omitted, the symbols 
in this table are ignored. If the S option is used, the special symbol table is printed. Processing does not begin until the end of 
the data is encountered (indicated by encountering a control statement. 

Certain options specify that a symbol which is found under special circumstances is to be marked. When a symbol is to be 
marked, then all occurrences of that symbol elsewhere are to be marked. If the N option is not specified, only unmarked 
symbols are printed. If the N option is specified, then only marked symbols are printed. 

The following special options are available: 

Special Options for Symbolic Data Elements 

The data scanner accepts strings of characters from the set A-Z, 0-9, $, and period (.) up to 12 characters in length. 
See Table 18-5 for the special options available only to the data scanner. 

C Special Options for Assembly Language Elements 

The assembler scanner accepts strings which are valid identifiers/numbers in the 1100 series assembly language. These 
strings may include up to 12 characters, and the symbol, $, is recognized. The assembler scanner recognizes an identifier 
when it is a label, directive, or operand; occurrences of labels and directives are followed by * and 0, respectively. 
Labels defined at another level are marked with a double asterisk. The special options available to the assembler scanner 
are given in Table 18-5. 

Examples: 



4144 Rev.2 
UP-NUM BER 

UN IVAC 11 00 SE RI ES SYST EMS 18-18 
PAGE REVISION PAGE 

1. Sorts all of the temporary program file (TPF$) using the assembler scanner. 

2. Used to obtain a complete scan and sort of the assembly language files EXEC1 through EXEC4 and to reserve 30 
positions of mass storage for use by the CULL processor. 

3. Data element PRM/R EV21 contains images for a document. This control statement is used to generate a glossary of 
words used. 

4. Used to sort elements A, B, C, and D in file Q*F. 

18.6. LIST PROCESSOR 

Purpose: 

Produces an edited listing of any type of element. The LIST processor is called by the @LlST control statement. 

All parameters in the @LlST control statement are optional except @, LIST, and eltname-1. 

Format: 

@label:LlST,options eltname-1, ... ,eltname-n 

Parameters: 

options 

eltnames 

Description: 

Only one of the A, R, and S options may be specified; if neither A, R, nor S is specified, 
S is assumed. 

A - Absolute elements 

R - Relocatable elements 

S - Symbolic elements 

The 0 option is used with A, R, or S to dump erroneously-formatted elements in octal. 
The dump is not edited. This option is generally used for dumpint erroneously-formatted 
elements. 

Specifies the elements 

The edited listing contains the following information for each type of element: 

• Symbolic elements 

- Every SDF-formatted image in the element, including control images, is printed with the length and relative word 
address of the image. 

-The line numbers of the symbolic images belonging to the most recent symbolic cycle are printed. The cycle 
information for all symbolic images is printed. 

-If the symbolic element is an assembler, COBOL, or FORTRAN procedure, the appropriate procedure name table is 
printed. 



',,-- . 

4144 Rev.2 
UP·NUMBER 

U N I V A ell 00 S E R I E S S Y S T EMS 18-19 
PAGE REVISION PAGE 

• Relocatable Elements 

- Each text word is printed as 12 octal digits. The j field (bits 29-26), a field (bits 25-22), x field (bits 21-18), and 
h, i fields (bits 17-16) are printed below the text word. 

- The following abbreviations are used when the relocation information is printed: 

LA - Left address (bits 33-18) 

LC - Location counter 

LH - Left half (bits 35-18) 

RA - Right address (bits 15-0) 

RH - Right half (bits 17-0) 

X R - External reference 

• Absolute Elements 

- Each text word is printed as 12 octal digits (see first entry under relocatable elements). 

- The following abbreviations are used when the relocation information for the relocatable segments is printed: 

L - Left half relocated 

R - Right half relocated 

18.7. CON78 PROCESSOR 

Purpose: 

The CON78 processor accepts CU R-formatted symbolic elements on magnetic tape and converts them to FU RPUR·formatted 
symbolic elements. The CON78 processor is called by the @CON78 control statement. 

The only optional parameter on the @CON78 control statement is the options parameter. 

Format: 

@label:CON78,options filename-1.,filename·2. 

Parameters: 

options The options specify the element types. The options are: 

C - COBOL library procedure 

P - procedure 

S - symbolic 

filename-1. Specifies the input tape file containing the CU R·formatted elements. 

/--""" filename-2. Specifies the output tape file to contain the FURPUR·formatted elements. 
I I 

"-",J 



4144 Rev.2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 18-20 
PAGE REVISION PAGE 

Description: 

Both the input (filename-l) and output (filename-2) files must be tape files and must be assigned to the run. 

Each call to the CON78 processor converts only one file. 

An EOF mark is written after each converted file; neither file is rewound. 

COBOL procedures begin with a PROC line and end with an END line. The label of the procedure line is the element name 
and is not external defined; the converted procedure must be converted by PDP (see 9.7) before it can be used. 

If the options parameter is omitted, all types of symbolic elements are converted. 

Examples: 

LABEL ,.\ ,\ 

.--'--'---'--1-1 ... 1 ...... L-1...1 ....... 1 

OPERAND COMMENTS 
50 

I ! I I I .. .1 .... .J ..... .J I 1 I I.......1 ....... 1... ..... L 

.1 ......... L.J . .......l-.L..-l . .......L .... .1 ....... I ........ J .. 

1 lit 1 I .l. ..... L . .l---L--L.....J..1 ........1...1 -'--..J..I .... L. .. .l 1 1 I L 

,---,--,---,--,--,---,'--'-.' .....L.. . .L.. ..• L .... L...J.....~' ~1_L..L.J.......J........L .... _.1 .... _1.--L-'-...\.-'--'---'--....... ,._ .... 1. ....... 1.. ...L.-J.........L-.L.......l1-Ll ....... L .. J .. 

The EXEC" CUR-formatted element in file INPUT is converted into an element file (named PFILE) suitable for use by the 
FURPUR processor. 



4144 Rev. 2 
UP-NUMBER 

19.1. INTRODUCTION 

U N I V A C 11 0.0 S E R I E S S Y S T EMS 19-1 
PAGE REVISION PAGE 

18. FILE ADIVIINISTRATION 

PROCESSOR (SECURE) 

The SECURE processor protects the physical security of catalogued files, which reside on mass storage, by producing tape 
backups. At periodic intervals, each file is examined to determine whether any write operations have occurred since its 
previous backup was saved, in which case a new backup must be made. 

The text of files on mass storage may be destroyed either inadvertently through system failure or user error, or purp!Jsely to 
reduce overcrowding of facilities or to remove certain mass storage units from the available facilities pool. In any case of 
purposeful destruction, the presence of a current backup must first have been assured. Because a file may be inadvertantly 
destroyed and the latest backup may not be current, a record must be kept of the files memory lapse. Memory lapse is 
defined as that time period that starts at the first updating after the latest backup was created and ends with the recovery of 
the file from the backup copy. This is the period of time during which any additions or deletions were not retained. 

When a file's text on mass storage has been destroyed and the backup is the only available copy, the file must be marked 
unloaded, so that an automatically initiated load of text back to mass storage occurs when the next attempted assignment of 
the file is made. The run which makes the @ASG request that forces this load is held in a wait status until the load is 
completed. 

The process of selecting files as potential candidates for unload, when n number of currently used tracks must be vacated and 
made available for new allocation, requires a best-guess algorithm to select those files which will probably be the last to be 
reassigned, in order that the files actually unloaded can be left dormant for as long as possible before they have to be 
reloaded. Furthermore, there must be sufficient flexibility in the formulation of the unload mechanism to permit qualified 
onsite personnel to make dynamic adjustments to the individual weight attached to each of the variables which go into this 
unload eligibility factor determination. 

An unload inhibit option is defined for use by certain files which cannot be removed from mass storage due to real time or 
other needs. There is also an even more restrictive guard option which prevents even the privileged read necessary to make 
backup copies. The guard option is required for certain special files which are internal to the system, highly transient, or 
highly classified. 

In addition to the basic SAVE, UNLOAD, and LOAD commands, there are supporting commands to register unknown files 
recorded on backup tapes made at another UNIVAC 1100 series systems site and to list the memory lapses that have occurred 
for a file. It is also possible to allow all commands to be selectively directed, when desired, towards only certain named files, 
projects, accounts, tapes, or mass storage units. 

Finally, it is possible for the SECURE processor to assist in a sophisticated catalogued file recovery process. This depends on 
a tape copy checkpoint of the master file directory (MFD) and the entire set of file backup tapes to restore the set of 
catalogued files to a state at least as current as the time the MFD checkpoint was made. A file is considered restored when 
MFD items can be retrieved from mass storage and its text can be retrieved from mass storage or tape. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SE RI ES SYSTEMS 19-2 
PAGE REVISION PAGE 

19.2. MAJOR FUNCTION DEFINITIONS 

Five major commands have been defined for use with the SECURE processor. 

These are as follows: 

(1) SAVE creates a duplicate copy on tape of both the MFD information and the text of a catalogued mass storage file, and 

then updates the M FD to record the reel numbers used and other pertinent information relating to the backup tape. 

SAVE, and all other actions of the SECURE processor, are not performed on files which were catalogued with a G 
(guard) option on the @ASG or @CAT control (see 3.7.1 and 3.7.3) statement. The purpose of the G option is to 
override the privileged mode capabilities of the SECURE processor for particular files. Several of the exeuctive's 
internal files, including the scheduling file, the accounting file, and the symboint files use the G option. 

(2) UNLOAD implies SAVE unless there already exists a tape backup copy of the file that was made by SAVE after the 
last write was done on the file. UN LOAD then releases the space occupied by the text of the file on mass storage and 
updates the MFD to mark the file unloaded. UNLOAD, or any other action dependent upon unloading the file, is not 
performed if it was catalogued with a V (unload inhibit) option. 

(3) REMOVE implies UNLOAD, unless the file is already unloaded. REMOVE then causes the file to be decatalogued from 
the MFD. 

(4) REGISTER scans the tape reels named in source language which contain SECURE-produced backup copies of mass 
storage files, and causes files that are not currently catalogued and whose complete backups reside on these reels to be 
catalogued as unloaded files. 

(5) LOAD operates only on currently catalogued files that are marked unloaded. LOAD copies the text of the file back to 
mass storage and turns off the unloaded indicator in the file's MFD entry. 

19.3. @SECURE CONTROL STATEMENT 

The name SECURE indicates that the purpose of the UNIVAC 1100 series systems file administration processor is to protect 
the physical security of data in permanent files. 

All parameters on the @SECU REcontrol statement are optional. 

The format of the @SECURE control statement is: 

@Iabel: SECU R E,options eltname-1,eltname-2 

The eltname-1 and eltname-2 parameters name the symbolic input and output elements, respectively; see 9.4.1 for rules 
governing their use. 

Table 19-1 describes the options that can be specified on a @SECURE control statement. In addition to these options, the 
source input routine options (see Table 9-3) may also be used. 



,,,,..' ", 

r 
\ ...... 

4144 Rev. 2 
UP.NUMBER 

OPTION 

UNIVAC 1100 SERIES SYSTEMS 
PAGE REVISION 

19-3 
PAGE 

CHARACTER DESCRIPTION 

A Do not take error exit even if errors are detected. 

C Enable the checksum feature in the SECU R E processor to compute and write to tape a checksum 
total for each text block written by a SAVE command and use this value as a check against 
random I/O errors which may be introduced when data is transferred from tape during a LOAD 
command. 

L Produce the most comprehensive printed listing. 

N Suppress all listing except error diagnostics. 

R Scan all files marked disabled and print summarized results. Do not process any source language. 
@SECURE,R is called for within the executive following a recovery bootstrap, and is not of 
interest to the normal user. The @SECURE,R controls statement may be used only from within a 
privileged run, that is, the SYS$*DLOC$ file is assigned to the run (see 22.3). 

S Produce a summary printed listing. 

X Take error exit if all specified tasks cannot be processed. 

Table 19-1. @SECURE Control Statement, Options 

19.4. INPUT AND OUTPUT BACKUP TAPE ASSIGNMENTS 

Users calling the SECUR E processor should normally first assign adequate tape units for input and output of backup tapes by 
means of control statements with the following format: 

@ASG,NT OBACKUPnn,T 

@ASG,NT IBACKUPnn,T 

The @ASG,NT control statement causes the tape unit to be assigned temporarily and with the initial tape load message 
suppressed. nn is an optional one· or two-digit number from 1 to 63 used to distinguish between multiple OBACKUP or 
I BACKUP names. If nn is omitted, 1 is assumed. 

All SECURE processor operations involving either tape reading or writing can be performed on tape units assigned as output 
backup (OBACKUP[nn]). As a safety feature to help protect the contents of existing backup tape reels, only reads are 
performed by the SECURE processor on tape units that are assigned as input backup (lBACKUP[nn] ). 

Some examples of these assignments as they might appear in a single run are as follows: 

[1 L:;;:--- 10 ,\ OPERATIOti .\ 
20 

OPERAtiD 
30 

/\ 
40 

COMMEtHS 
50 c-:: - === 

II,;.~A:SU~'J!A.·~Il .!' .........•.... ~ .•.. '~ .....•. _._l.:_ ... ·A'·.·.·.·.·.· .. lC.·.·.

J 
......•.. v_-\.·._····. ,·.L.!O.·.·.-.. ·.·.~2' ... ..J ... /.·.···,. :,···.·.·.·I~.·.··.··.··.··l! .. ··AI' ... '.' .... ···L.L .. .l .... , .. L ... ..l ...... 1. .. L_L.L ... I ... i • ' ..... i ..... 1_1 . ..L l .... L •. .! .. 1 ... , .. L ... L. i .. j .. L.Ll .. L .... L .. L . .l i 

~ . }..:.IL ' .. ,* _ "LO. C\.:.yr. .M. IJ.' . . .. L .... L .. L .. L ... L.L.L .... l.. .L.l. L. L ... I .. 1 ..... .1 .. L.J, ........ 1-... ,1 ..• L_Li .. L 1 jl .•.... 

~GL'iN.ILLJ:i6JLkKlU;p1'1.;L .. LL.i .U .. , LLj .. L.LLl .. , ..... '-..-"-.1 .. LL.l .. L.L.L.l .. L • .LJ .• 1 .... L.1...LL 1...1..1..1 .. 1..L 

\@ASGL""tL .. JXJ13iA.lC1KJJIPl8.L,a~Ll ..... L .. 1.L.iL .. LL.LL_L.J ..... l .1 ..• 1 ..... .1 ... L_.L.J...J ..... .l __ .LL .. L ...... LL ... t ... i ...... L.L.i ..... .L .... .l_.-L.J .. 1 . .1. 

If the operations to be processed do not require the predefinition of specific tape reel numbers that would otherwise be 
unknown to the SECURE processor, the user need not be concerned with identifYing them. For example, the SECURE 
processor dynamically requests as many new blank tape reels as necessary when creating new backups and records the reel 
numbers used in both the MFD item of the backed up file and in the user's printed output listing. As another example, the 
SECU RE processor automatically consults the M FD item to get the correct reels necessary to load the text of a file back to 
mass storage. 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 19-4 
UP.NUMBER PAGE REVISION PAGE 

There are instances, however, when a specific sequence of numbered reels should be associated with a particular OBACKUP 
or IBACKUP tape unit. These associations are specified by source language statements of the format IBACKUPnn = 
REELLIST or OBACKUPnn = REELLlST, as follows: 

LASEL ,\ OPERATION :\ 
10 20 

OPERAND 
30 

/\ 
40 

COMMENTS 
50 

S.,EJ;JJB..J.E:.L)..lllSl... ..... L . ..JT;:P I F ,$, . IE; ~.~t.1r.; . .J':~~jT! I, I I , I .L. .... L..._.L._.L.L-L ... .L I I 1 ..... 1...._1 ' 1 , , 1 ...... .1 ...• L ... ..I ...... L_L-LL...1 .... 1. .... 1... ... . 

.l ........ ! ........ l. ..... Jl .. ;E!A.J;;..j~UiP 171 EL . ..1'3 .. 1QL .. _l_ ..... ..I ......... I. .... _ .. 1 __ ..J._.L.......l.--L-L ... L ....... 1_ .... 1 ....... L ...... J ... _._L.....Ll.......L. .... J_ .... .l. __ .L. . ...1 .. _J ....... 1 ...... ..J. .... .....L...L......_.L. •... l ........ l ...... ..1 __ J ... _--L-l . .......l._L ... .l ..... 1 ...... 1 .... . 

..1 .... _1!J.?~£:~Ui~ 1:::1 Hl~~§LlL .. i:b.'tib,l;) I ,~Q.l2.L.J 'I I ..... L...1-L_L .... 1..... . ..1 i I I 1. •• .L ... L . ...L1--L-....I.........J--L1 ... L .. ; 

.... L .. J._L....@J3 __ 8~KUjP !214-l..._J.==-...1. ....... J..l.Q~ I ,7,02,) l.._.lZlQJ~LL. I 1 .•. _.1. , .L. ... J ...... J_ ... -' 

As an example, the SECURE processor allows a set of reels in backup format to be registered with the executive, so that any 
files previously saved to these reels, but which are not currently catalogued, are recatalogued as unloaded, mass storage files. 
Following a reel number association like that done above for IBACKUP8, the REGISTER command could be invoked by the 
single control statement: REGISTER FROM IBACKUP8. 

When a particular SECU R E operation involves the transfer of many text blocks to or from tape, and several tape units are 
assigned, the SECU R E processor initiates multiple concurrent I/O operations to optimize output. 

If no usable backup tape units are assigned at the time that the SECU RE processor determines that tape I/O must be done, 
the SECURE processor executes a single dynamic tape assign by supplying an @ASG,TN OBACKUP,C image using a CSF$ 
request (see 4.8.1). 

The most common cases where the SECU RE processor will need tapes are the periodic SAVE commands needed to generate a 
set of new backups and the LOAD of an unloaded file which some run is attempting to assign. It is not necessary for a site to 
keep a tape unit available at all times just to enable SECURE to handle these two common cases. The SECURE run is placed 
in a facility wait state until the tape unit becomes available. 

System-initiated UNLOAD's to relieve overcrowding of mass storage can sometimes be accomplished without creating new 
backups (or requiring tape unit assigns). However, if tape assigns are necessary and no tape units are available, the SECURE 
processor initiates a console message informing the operator that a tape unit must be made available. The operator may make 
a tape unit available by either restoring a tape unit that is in a reserved or downed state or by terminating another run (by 
using a checkpoint, E, or X keyin) that has a tape unit assigned. 

19.5. CATALOGUED FILE ASSIGNMENTS 

The SECU R E processor performs no actions on files which are actively assigned to another run at the time that SECU R E is 
executing, unless those files were catalogued as read only. Files to be operated on by the SECU R E processor are dynamically 
assigned with an exclusive-use option to prevent other runs from writing on current write-enabled files. Performing a sequence 
of reads on a file that is in the process of being changed may cause problems ranging from inaccurate information on a single 
file to an abort of the entire SECU R E execution. 

If the number of runs in the system is temporarily reduced at the time a SECURE processor SAVE run is called, the problem 
of files not getting backed up, due to use by other runs, is minimized. To further reduce this problem, SECURE normally 
attempts a second or third dynamic @ASG,AX of those files that were busy during the first pass. 

19.6. USE OF SYS$*DLOC$ 

SYS$*DLOC$ is the name given to a mass storage file of any size, which is catalogued with both read and write keys 
following the initial generation of a system. The keys to SYS$*DLOC$ are chosen at the site and should be known only by 
trusted personnel, since anyone knowing the keys can assign this file and thereby place his run into what is known as 
privileged mode. Once in privileged mode, the run may bypass keys to gain control of many other catalogued files. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 
PAGE REVISION 

19-5 
PAGE 

It is possible for functions within the executive which create and start runs, to call on the SECU RE processor to place these 
runs in privileged mode by using methods that are not available to user programs. All others must have prior knowledge of the 
keys to SYS$*DLOC$ to initiate a privileged run. The keys to SYS$*DLOC$ can be changed when desired by using the 
normal FURPUR @CHG control statement (see 8.2.15). 

A run in privileged mode indicates that a program within the run (such as the SECU RE processor) can access the text and full 
MFD information for all files catalogued in the system that do not have a G (guard) option inhibit on them, without 
supplying any of the keys and without regard to whether the file might be catalogued as read only or write only. This permits 
the SECURE processor to initiate I/O and other operations on a file that are necessary to create backups, or to delete or 
restore text. 

One of the executive interfaces which check to see if a run is privileged is the MSCON$ request (see 22.3). The MSCON$ 
request allow direct reading and altering of MFD items. The DGET$ request (see 22.3.1), which gets a copy of the entire 
MFD and writes it into a user-specified file, provides an example of the distinction between privileged and nonprivileged runs: 
if the run is privileged, the MFD is copied unchanged; if the run is not privileged, DGET$ obscures all project-id's, account 
numbers, (other than those of the calling run), and all keys. 

The SECURE processor operates. primarily in the privileged-run mode. The operations which a user can direct SECURE to 
perform when his run is not privileged are summarized in 19.9. 

19.7. SECURE SOURCE LANGUAGE 

SECURE employs a source language structure for input which gives the user a simple, but flexible, format for calling on the 
processor to perform any or all of the allowed functions. Basic source language components are ordered as follows: 

command ALL limiters name-list EXCEPT name-list; FROM, equipment-name TO equipment-name 

All parameters are optional except command. 

19.7.1. STANDARD COMMANDS 

The commands recognized for the SECURE processor are: 

SAVE 

UNLOAD 

REMOVE 

REGISTER 

LOAD 

LIST REELS 

UEF +nn namelist 

U E F -nn namel ist 

R EVE RT filename 

LIST LAPSES [namelist] 

CLEAR LAPSES namelist 

END 

Unless the word ALL is used, the SAVE command causes saves to be done only on those files which do not have a current 
backup. A backup is current depending on whether any write operations have been performed on the file since the time the 
last backup was made. However, when the word ALL is used, the SAVE command causes all files in the namelist to be saved, 
regardless of whether a current backup exists. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SE RI ES SYSTEMS 19-6 
PAGE REVISION PAGE 

A file's disabled status does not prevent a new backup copy from being made, if required. In the case of a disabled file, 
however, the SECURE processor must also guarantee to preserve a record of the previous backups in the file's MFD items. If 
more than one backup copy is recorded in the MFD, the user must determine which backup should be retained as the primary 
copy. Otherwise, by default, the most recent backup becomes the primary copy. 

Unless a namelist is given or the word ALL is used, the UNLOAD command does not cause more files to be unloaded than is 
necessary to free 3000 tracks on mass storage. The particular files chosen for unload, in this case, are selected using 
procedures explained in 19.8. To change the preset limit of 3000 tracks to some other value, the UNLOAD specification may 
be stated as: UNLOAD TRACKS = nnnnnn. If a namelist is given, all files so specified are unloaded, regardless of how much 
or how little space they occupy on mass storage. Finally, if the word ALL is used, all catalogued files are unloaded. 

The REMOVE command requires either a namelist or an explicit ALL to specify the set of files which will be removed from 
the system. This set of files is deleted from the MFD, after the presence of a current backup copy for each has been assured. 

The REGISTER command requires a 

FROM BACKUPnn equipment-name 

to which reel numbers have been associated. Unless a namelist is given, the REGISTER command operates on all files found 
on the reels associated with I BACKUPnn. Reel number associations are discussed in 19.4. 

The command LOAD ... FROM IBACKUPnn combines the REGISTER and LOAD actions in one operation. 

The LIST R EELS command produces a summary listing of the current set of backup tapes sorted in ascending order by reel 
number. This command must be in a separate SECURE execution with no other source language present. 

The UEF +nn or UEF -nn commands may be used to selectively add or subtract a number nn from the computed unload 
eligibility factor (UEF) for the named files, projects, or accounts. This factor determines the order in which files are unloaded 
when mass storage space becomes crowded .. The UEF bias remains in effect only for the current execution of SECURE. The 
larger the UEF is for a given file, the more eligible the file is for unloading. 

R EVE RT filename means revert to a previous backup copy of the named file. This can be used when a user accidentally 
overwrites the latest copy of the file on mass storage and wants the text in the_existing backup to retained instead of the 
more recent text now residing on mass storage. When the text of files on mass storage is inadvertently destroyed, the backup 
tape becomes the primary copy. If, however, the backup tape is not current, a record is kept of the time period during which 
any addition or deletions to the mass storage file were not retained. This record represents a file's memory lapse and any 
number of these may possibly occur over the life of the file. 

The LIST LAPSES command provides a printed listing of the memory lapse entries for all files or for the set of files specified 
by the namel ist. 

The CLEAR LAPSES command requires a namelist and erases the record of any existing lapse entries in the set of files 
specified by the namelist. 

END is an optional terminator to mark the end of source language statements. 

19.7.2. NAMELISTS AND LIMITERS 

Namelists are strings of file, project, or account names which designate particular file sets. They are preceded by an 
appropriate identifier as follows: 

FI LE(S) filename-namelist 

PROJECT(S) project-namelist 

ACCOUNT(S) account-namelist 

Names in the list are separated by commas. Actions specified in source language are limited to the set of files specified in a 
namelist. If no namelist is used with a particular command, a distinction must be made. If the run is privileged, it is assumed 
the action is to be applied to the entire set of catalogued files. If the run is not privielged, it is assumed that the action is to be 
applied only to those files under the user's project-id. Exceptions to this general rule are given in the description of each 
command (see 19.7.1). A limiter may be specified to restrict the file set described in the specified or implied namelist to files· 
within the named category. The limiters that may be used are: PUBLIC, PRIVATE, READ-ONLY, and WRITE-ONLY. 



\. 

\ 

" 

4144 Rev. 2 
UP-NUMBER 

19.7.3. EXCLUSIONS 

UNIVAC 1100 SERIES SYSTEMS 
PAGE REVISION 

19-7 
PAGE 

EXCEPT preceding a namelist, causes those files, projects, or accounts in the list to be excluded from the particular action. 

19.7.4. DIRECTION 

When an action is to be directed to or from particular units of equipment, a F ROM or TO designator is used from the 
following set, where ss/uu refers to mass storage subsystem/unit numbers: 

FROM IBACKUPnn 

FROM OBACKUPnn 

FROM unit(s) ss/uu-list 

TO OBACKUPnn 

TO unit(s) ss/uu-list 

The user is cautioned to use these FROM and TO designators only where specific examples on the use of the SECURE 
processor indicate their use is meaningful or desirable. An attempt to move files from one mass storage unit directly to 
another using F ROM and TO would not produce desirable results. 

19.7.5. EXAMPLES OF SOURCE LANGUAGE 

The following are examples of source language specifications: 

LABEL ,\ OPERATION ,\ 
10 20 

OPERAND 
30 

i\ 
40 

COMM·EtHS 
50 

_.L.lI~A&.l.K..J~iP.L .. J::;J.-.2 ,3 ,5 P-L-}L . .L2.13..i~jL.L)-l-l2 ,3 S lL.i .... L.l---L-LJ....--L-L-L~ ... .l ...... Lj.-1---.LL....l ..... L. J .... L . .L.L..LLL. .. L . .l . 

. J ..... L. ... .l ..... .J~~.l~Jl$JdlP-L.J.=l_J4.}±..l~LLL) .. L. . .L4::LY.~~.)-L1~::b4.i21.~L .. 1 ... .L._LL...L ... L .... .l. ..•.. L.L . .l.. ....... L .... L.J_L.L .. I... •... L ..... 1 ..... L .. J ... ....1-.1_..1 .. _.1.. ..... 1 .... I .. .I .. 

.L .. .l~A1Y.L~-t8lCC}dUNJ"i ~..l9.l9.Lt2.J5'! ,ExrC,~~T.L .... jELI,LEi MY,~.FJ.ljb.Jfl · i , 1. .... L ... Ll_L..l-L-L._1. 
... J.._L..l.S8,VE..L AJL,L, .-1P.Bl.~l~I,;&-J, ME~JJJ"B.;Y:l ..... _LI~, .~~~.W.;PL1-, " '-...... 1.. .... .1. ..... LL.L.-L.-1 __ Ll ..... L .. .J. 

NLe5 :T. A KS = !/,S,OP, ,F,R,eJM ,UN,I;Ti ,1.2,113, , I , , , I , 

-L-L' ,LP',A;D, lEl1.l~1§l~1 f,I,L,E,/L).L .. .lEJ,L,E,2,), fILL..l~J~L.J ........ L..L I I 

_L.LL.B..1~.£.?JJ....LSJIE;R, ,E,X .c,~J=.:>'IIL ... J.8,C,C,crPN,T, ,31~JLI.I ,216, f,R,O'M 
I--I-L-L-J.=.L ~r:t~1 ... _1Pl~a',J IE Ie J, ,'Lf~Jl$.J ... _.f:R ,e1M J BIA~J<1JP,. " 

F ILE j ,F;R,E1QUEN,T,L;),,-lt-,U,S,EJ) ! , I ! 1 I ( 

I , ,I L .... L._1.--L..L..J ~ L . ..1...-1._1 .... L._LJ. 

I I BAf:J<~;P I I.J .... 1 .... _L . .....I.'---L...L....L.-l. 

I 1 _L..J. .•.. _L..J..--I...-L-.J.........JI..-.L .... .l ..... I... ... J ... -l-..1...-L-L 

I ! ( I ( ( I I . 1 ! 

~~---1--1.,---L...( .. L..L .. L .• L..J.. 1 I 1 , , I I ( ._L. .. L ... L.J.-L..L..J...~L.l._L .. L.J......J..--I-! -J11..--...I---'---I...! .-1 ....... L ... LJ .. _l. 

~:L!-U.---.I....-'--.I..--..I.--L...--I.I .•..• L .. .1._-'-' --,--,---,1,--,-' --1..1 J ....... L ..... L 

.. L .. L ... L.L .. L. . ..!. •. ! ...... L ..... L..-.l. .... L . ..L_L ... L .1.... ... L.L ..... 1.. 

, I 

19.8. SELECTION OF FILES FOR UNLOAD 

If an UNLOAD command is given without naming any particular files, projects, accounts, or mass storage units, it is assumed 
that the SECURE processor has the responsibility to scan the entire set of catalogued files and to select the subset that must 
be unloaded to acquire the addition assignable mass storage space that is needed. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 19-8 
PAGE REVISION PAGE 

This differs from the action of the SECURE processor when particular files, projects, or accounts are named for unload, in 
which case all eligible candidates in the named set are unloaded. This is also in contrast to the action of UNLOAD ALL, 
where all eligible files in the system are unloaded. 

When the SECURE processor is called to do saves to backup tape, drum-to-tape I/O is unavoidable. When the SECURE 
processor is called to do only an unloading operation, however, it is sometimes possible to avoid tape I/O. This situation 
results when there exists an adequate reservoir of current backups of unload-eligible files already out on tape to meet the 
requirements of a general UN LOAD command. 

Often, at the same time that mass storage facilities become overcrowded, other system resources become inadequate, making 
it necessary to temporarily postpone saves. For this reason, those files with current backups are considered first in computing 
unload eligibility. Note that a SAVE command can be included, prior to the UNLOAD command, if it is intended that all 
backups be immediately current, prior to unload eligibility factor determination. 

The criterion should then be to select a set of files for unload which satisfies the request for space to ensure a maximum 
amount of time before anyone of the files selected is referenced again. 

19.9. OWN-PROJECT APPLICATIONS 

Although the SECUR E processor is designed primarily for privileged-mode runs to guarantee the security and availability of 
catalogued files, it is recognized that the user does have individual control over those files under his own project-id and for 
which he has the necessary keys. Since the user can access these files anyway, he should be allowed to use that set of 
SECURE commands that lend themselves most logically to use by individuals. These commands are: SAVE, REGISTER, 
REVERT, LIST LAPSES, and CLEAR LAPSES. 

Runs that call on the SECURE processor and do not have the SYS$*DLOC$ file assigned automatically fall within this 
OWN-PROJECT category. The only restrictions placed on the user in referencing SECURE commands from the previously 
described set are: 

(1) files named in source language namelists must be catalogued under the user's own project-id; and 

(2) both the read key and the write key, if they exist, must be included with the filename in source language statements. 

The SAVE command, when referenced from within an OWN-PROJECT run, produces a backup tape. The reel numbers 
however, are not recorded in the file's MFD item. Th is is necessary to maintain control over SECURE backup tapes created 
by a privileged-run, system-wide SAVE. With the modified or unrecorded SAVE, a user can produce backup tapes at will 
without destroying the record of the current backup tapes under the site manager's control. 

Own-project users of the SECURE processor can also REGISTER any files on backup tape which are under the user's 
project-id; that is, any user can transfer h is own files from one UN IV AC 1100 series systems site to another by doing a SAVE 
at the old site and a REGISTER at the new site. 

Logically, the REVERT command is called by the individual user after he has inadvertently destroyed the text of his file on 
mass storage. The SECURE processor immediately marks the file as unloaded so that an automatically initiated LOAD of a 
previous backup copy occurs when the file is next assigned. 

The LIST LAPSES command is normally used by the individual user, following the assignment of a file, to see if any new 
lapses have occurred. The CLEAR LAPSES command may be used when the user is satisfied with the current state of his file 
and no longer cares to keep information about the file's previous history. 

19.10. CATALOGUED FILE RECOVERY APPLICATIONS 

No catalogued file should be considered disabled or destroyed as long as a SECUR E-produced backup copy exists on tape. 
With this in mind, three modes of file recovery are possible under SECU RE: 

(1) REVERT to the backup copy 

(2) REGISTER individual files from tape 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 19-9 
PAGE REVISION PAGE 

(3) REGISTER the directory tape 

The REVERT command may be called by any user after he has destroyed the text of his file on mass storage to make a 
previous backup become the primary copy. An automatically initiated LOAD of the primary backup copy text to mass 
storage occurs when the file is next assigned. 

The user is responsible for verifying the present status of a file and its backup tapes. However, the necessary tools are at his 
disposal to warn him when an interrogation of his file should be made and to give him the complete picture of the alternatives 
available in terms of the status of the mass storage copy, if one exists, and all presently recorded backups. 

For example, warning messages at assignment time signal when a file has been marked disabled. The user can then call 
@PRT,F (see 8.2.5) to get the status of the mass storage copy and all recorded backups. The Q option or. an @ENABLE 
control statement (see 8.2.17) allows him to probe the mass storage copy and determine whether a R EVERT to a previous 
copy is required. Until the user makes the decision of which copy of the file to retain as the primary copy, the SECURE 
processor guarantees to preserve all the information it can to give him the greatest possible choice of alternatives. 

The third and most important mode of catalogued file recovery under SECURE involves using the MFD tape to recover all 
catalogued files, including tape files, into an essentially empty system. To initiate this process, perform a special REGISTER 
of the MFD tape. The SECURE processor copies this tape into a temporary mass storage file, catalogues all files not already 
catalogued, and remakes MFD items to mark files as unloaded to backup tape. As a result, the system is restored to a 
condition at least as current as the time the MFD tape was created. This avoids doing REGISTER's of the separate backup 
tapes. As users attempt to assign files, an executive function initiates an automatic LOAD of text back to mass storage. 

19.11. SUMMARY OF SECURE PROCESSOR COMMANDS 

Table 19-2 lists the name and function of each SECU RE processor command. 

Command 

CLEAR LAPSES 

LIST LAPSES 

LIST REELS 

LOAD 

LOAD ... FROM IBACKUP 

REGISTER DIRECTORY TAPE 
IBACKUP 

REGISTER FROM IBACKUP 

Description 

This command erases existing memory lapse entries for the set of files specified by the 
namelist. 

This command produces a listing of the memory lapse entries for all files or for the files 
specified by a namelist. 

Reserved for privileged runs, this command produces a summary listing of the current set 
of backups sorted in ascending reel number order. 

This command is reserved for privileged runs and causes the text of unload files given in a 
namelist to be retrieved from backup tape and written on mass storage. 

This command is reserved for privileged runs and allows the user to REGISTER files (see 
REGISTER commands) and to LOAD their text from tape all in one operation. 

Reserved for privileged runs, this command allows the user to REGISTER an 
entire system set of catalogued files using only the 'MFD tape' snapshot of the MFD. 

This command scans the set of backup tapes associated via source language with the 
particular IBACKUP unit and restores the MFDitems of files found there which are not 
currently catalogued and whose complete backup copies reside on this reel set. Since only 
the items are restored with this command, files must be marked as unloaded to the 
backup tape. 

This command can also be used to restore the MF D items and granule tables for all files 
on a removable disc pack following an initial boot or when transferring the disc file 
information to a new site. 

Table 19·2. Summary of SECURE Processor Commands (Part 1 of 2) 



4144 Rev. 2 
UP.NUMBER 

REMOVE 

Command 

REMOVE ALL 

REVERT 

SAVE 

SAVE ALL 

UNLOAD 

UN LOAD TRACKS = nnnn 

UN LOAD specific files, 
projects, or accounts 

UN I V A C 11 00 S E R I E S S Y S T EMS 19-10 
PAGE REVISION PAGE 

Description 

This command is reserved for privileged runs and causes all files specified in a namelist to 
be deleted from the system after first ensuring that a current backup exists. 

This command is identical to the REMOVE command except that a new backup copy is 
produced for each file to be deleted, whether one already existed or not. 

This command causes a file's backup copy on tape to become the primary copy by 
releasing its granules on mass storage and marking the file as unloaded. 

Without further qualification, this command applies to all files in the system not 
catalogued with a G option if the run is privileged, or to only those files with a project-id 
matching that of the calling run if the run is not privileged. With the above noted, the 
SAVE command causes new backups to made only for those files which do not have a 
current backup. Whether or not a backup is current depends on whether any write 
operations have been performed on the file since the time the last backup was made. In 
the case of privileged runs, the location of the new backup copy is recorded in the file's 
MFD items. 

This is identical to the SAVE command except that a new backup copy is made regardless 
of whether a current backup exists. This allows the user to merge all his backup copies on 
a new, self-contained set of backup tapes. In the case of an unloaded file, SAVE ALL 
retrieves the text of the file from tape instead of mass storage. 

This command is reserved for privileged runs and without further qualification will not 
cause more files to be unloaded than is necessary to free up to 3000 tracks on mass 
storage. Files are chosen for unloading on the basis of their UEF (unload eligibility 
factor), which is computed by the SECU R E processor. Files catalogued with a V option 
are not unloaded in any case. The UNLOAD command automatically implies SAVE; that 
is, a new backup copy is automatically produced, if required, before a file is marked as 
unloaded and its granules on mass storage are released. 

This command is identical to UNLOAD except that the preset limit of 3000 tracks is 
changed to some other value. 

This command differs from the previous unload commands in that all files, 
projects, or accounts specified in the name list are unloaded regardless of the UEF. 

Table 19-2. Summary of SECURE Processor Commands (Part 2 of 2) 

19.12. EXAMPLES OF THE USE OF THE SECURE PROCESSOR 

Example 1: 

To make the set of backup tapes current (privileged): 

LABEL :\ OPERATION :\ 
10 20 

;R ,Ulh._ . ..L.J ... _.L .. L. ..... 1. ...... L .... .L_J... ..... t I I , : _LJ ........ L ..... L. .... L .. ..1 , ! I ! I 

OPERAND 
30 

i\ 
40 

COMMEtnS 
50 

I .... L. .... i .. _ . ..L_.L.-L.....L. . ..1-L....1..J. • .J. .... .l ....... I-L-L....L.....L.... •.. l. .... 1 ........ ! .... ...L....L....J....l._ .. l ..... 1 ....... ! .... . 

....... Is.:@.J..l& .. ···1_.L .. Ll. . ....sli.15J$1~.:D.1L .. l~&:J$ £R~EXL.l~Kle:!Y.l.~...l-L.L....L .... L.. .... L ... L ... ..l .. _J ...... 1. ..... I._ .. L....L.L ... 1 ..... 1... .... .1 ..... 1. .. .1 ... _1-.. 1 __ L ..... I. ..... .I ... .i ..... 1. .. . 

~J..~LJIINL .. L..LJ-L~AIC ,K lLB.t.j~L .. ..L.J. i 1 ; ! LL..l ..... L .... L...L ! ! ' I 1 L_l........L_L.. ... 1... ...• .L .. .1....1 .....l.-...I....-I.-../.. ... .1 ....• 1 .. ..l .. _ .. l........L...L ... .L....L .... l ..... . 

.... IS.J~~JdB~f ,I I L I I T,P f.J>.l .. ~.1?.J.J.M~JY....L...L..L...L .. LL .. l ........ L .... J ... L....L...L...L..L..-L.l ... J .... L ... L.J I ! I .1 .•..... 1 ........ 1 .. _ ... 1--'---"--L...-l .... J ........ I. ..... 1... .. 

S Y , I I ! ! ! , I I ! I ! I ! I f 1 ! 

I ' L . .L . ...J.!.........L-l..-...J. _.l..-..L--i...-l.....' L..... ... L ........ ! .....;',--,---,-' ...... ' ............. 1 ..... 1... .. -1........J''--'-_' ............ , --L.....LJ ••••• 1.._ 

.-'--'--'---1..1 _1'---Ll_L_l_ ... LL . .....J1 ........... .......I-.....l.-..L-L.......I..1--I...1 ....... I.. .... L .... 1... ..... 1.. .... L ... L .. ...L I I I , 1 '_1.. ..... L..1.. 1 I I ! I ._L_.1 .... .L.L ..... L 

,.' 



'-... -

4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 19-11 

Example 2: 

To produce backups of user's own files (nonprivileged): 

LABEL .\ OPERA TlOH 
10 20 

OPERAND 
30 

i\ 
40 

PAGE REVISION PAGE 

COMMENTS 
50 

... 1... ...... 1.. .... 1 .. ..,L . ..J ....... .L.' I I I ... L_I.. ..... L ... 1.. ...... L. ... J. , I I! I L .... L.L-.l._ I I I I I I L .. 1 ..... J._LJ--L.L..L .. 1. .... L.. .... L.....L...L.....L-1_L .... L.., .. I.. .. 

~l~l.S.lG.l...) .. JJ~L ..... L.Ll. .... LJdB..i:\G.)S .. !JE .. .LJ .. l~L..l ....... L...L....LL.. .. L ... L...l ....... L. ... .l......L...L....i-L .. L ..... L .... ,L......1. ... J ........ L.. . ..L .. .1-L.....L ...... L ... L ... L ..... L.J ..... LL......l ....... L ... 1. ... 1.. .... 1. .. 

~..&lUJR1~1..~L.~.~'_lJ;p IF 1$ I • ;:QIW.~Y.J.. ' I , I I . ...LJ......L.l-L1 I I I I I I LL .... L.J I I I L.L.. ... L...L ... L_LJ_LL 

.... J ... _ .. L. .... L.i~AV IE .J.......,AIL ,L, IEJ.J".lE.l.S.L..MY'~1 F, L!=.l.eJJ...l:)' .. .l ....... MY~ f I I ! L l~gL .. J.. ... ..L I I I I 

IN 

.1 ....... .1 ....... 1 .... _L-1---'-....1.........I...-'--'--'--'- I ' 

Example 3: 

To merge all backup copies on a single set of tapes (privileged): 

LABEL .\ OPERATIOH :.\ 
10 20 

OPERAND 
30 

!\ 
40 

COMMENTS 
50 

~.J.U..1~ .... L . ...L ..... .J ..... L ...... l .... ..l .. ..,L..,_L ...... L I 1 I : ...l • .....J ...... .L .... ..,1... ..... L .. J ........ ..l...-L....l.._.l. ....... L .... .l ... J ........ l... •.. L .... L .... .L. 1 ! I I 1...1 ..... .l ...... L.L ... L .. .J ..... ...L....1.... .. ..l. ....... L .... L I I I 1 ... .....l ....... 1... ..... 1... 

........ ISj~.1 .. .8.1 ...... L ... j_ ... L_L.L...1.S1y...LS.l$.1!f..tl~lb.J~C.l$.JLR~;t..L~K.!.I;:.ly~..L....l-L ..... L .... L ... L • ...J ........ L ...... l ........ 1 .. _..L....L....L ..... L ..... L .... L ... .1 ...... J ... .....L......l.....l._.l.. ..... l ..... 1 ....... .1 .... 

S...G.1.1 . ..lltN.L.J ...... L .... L...L..lI B,A C KUPL).iCLL I , ! ! I_LLJ ........ L I ..LJ........Ll.....-L .... L ... l J I I L ... L...L I I I L 

. ~J.s.1~i~I..l~..L....L.~81~.1~.I~P I} iC'-LL_LLJ ...... .L .. L ..... L..L I I .1 ...... .J ........ LL_1 I , .l ....... l.. ...... L .. Li....J........L ....... L.l ........ L..,J.... 

E RE L Pf U V 

..1 ........ 1 ..... 1._1 .'--'--'--"II........J..I_L. ... L... .. L ... L...L..L I 

........... --'-............... L. ... L .. l... .•. L . ...L I I I I I I 1.....1 .. _.1... .... L .. ..1. ! I ! ! I I 

Example 4: 

To revert to the backup copy (nonprivileged): 

LABEL .\ OPERA TlOH .\ 
10 20 

I I I I I.L 

I I I 1 ....... L .... .l. ..... L .... L....J ... .....L....1....1 ....J.-..L-.L...! ....J1-..L.1 ..... L. .... l... . ....L ! I 

OPERAND 
30 

I ...J ...... .J ... _1 I I ! I I 

COMMENTS 
50 

U~_ . ..L_.L_.L ... .J .. _ ..... L. ..... L .. _ .. l" .... ..J ... _ .. l. ! I I J _....L-1 ..... ...1 ... _ .. .1 ... _ ... 1 ..... _~L. ! I i I t L_ .. l ..... ...L.... . .l.--L-L.J. ... -L-L-.L_L ... 1. ... __ L_..L..l-L-LJ.._ .. l ..... L._.1. ...... l-.L-.LJ_J ... _ .. l ..... ..i ..... . 

S.lE.J~JJB.I'E1J-.jLL.L~;B.EJ.$.1 .. ~ .... bUJ..~Y..L-L...J........L....-1.. ..... l ..... L ..... L. .. J ........ J ...... L...LL....L .... J ..... .l._ ... L. . ...J ..... .L ..... l ........ 1 ........ 1._...L..1. •.•• 1. ....... 1 ..... 1... ..... 1 ...... 1 ... ....l_1.....l._ . ..1.. ...... 1 ........ I ........ 1 ...... . 

.L .. .R1EMJEJ1TI~.IILIEI AEl~.J~JX.l)j.2! ! I I. l.......J.. ..... L ... L.L I .L.....LLl_L_L .. .J I I 1.....J.. .... .i.. .... L....1 !! I L. 

l........I-.L.........L.....L........I.........J..' _J........L ... 1... ..... I ....... L... . ...L_.J....! .....l.........1.........I...-J.........LI. _.J ...... .J ...... l . ..-L_J..........L-'--L.........I.........LI ..... ..L ........ l ... _ . .l.->-->--J.........J. 1... ... .1 ....... 1 ....... 1..._ 

I I I ! I f I I ! I I I I f I I 



4144 Rev. 2 
UP.NUMBER 

Example 5: 

UNIVAC 1100 SERIES SYSTEMS 19-12 
PAGE REVISION PAGE 

To load the text of certain files (privileged): 

LABEL ,:\ OPERATION .:\ 
10 20 

OPERAND 
30 

:\ 
40 

COMMENTS 
50 

~UJ~~L . .L_L ... l ....... L .... 1 ...... L. ..... l .... ..J ...... ..J. I I I I ... ..J.-1 ....... J ......... l ........ l ....... .l... ..... 1-L..L-L...l-L..L ..... l ..... ..l-L......L...l.... ... ...l.-l.-LJ. ..... ..1 ........ Ll---L....L-L . ..l ....... l ..... 1 ....... .l ..... ..l .. ......l-L....1 ...... 1.. ...... 1 ........ 1 ..... . 

...... 1.. ...... 1.. ..... 1. .... 

I I ! ! ! I 

I 1 1 , L..L .... l... .... L...L-"I--J..-L-...I.-..L.-J.--'-1 .J.. .. _.1.. ...... L .... l.. .... L ... L-1-...1.-."---'--'-1 --1-1 ....... 1 _L..1.... . .....L 1 I I 1 1 .J..._L .... L....1...-1-

'_'''--1.1........1-.1 -,',--,-I -,,-I -'--...1--1.1 ..... ...1 ..... J... .... L.J. 1 I 1 , 1 l. I 1 1 I , I I. J 1 , , I 1-1-.. J ..... ...L_.J. , 1 1 , I 

Example 6: 

To register a number of files from a particular backup tape set (nonprivileged): 

LABEL ,:\ OPERA TlON ,\ 
10 20 

OPERAND 
30 

!\ 
40 

COMMENTS 
50 

..... L ... .L ..... J ..... J ........ ..l. ' , 1 ; '-1 ........ L ...... l.. ...... L ...... L...L...l-.l---L-L-L .. L ... L .. L .... L-L-1 __ L .... L...L......L-.l. ... .l ........ L-1.......J.-L....L .. L .. 1. ... .1 ... .L ....... L......l-L....1 ..... ..l .... 1. .... 1.. .... 

.... L....J ..... ,J ........ 1.. ...... L . ...1.........l-.l. ...... 1 ...... L ..... l ..... 1 .. ..... 1 ..... _1.._.1 ..... ..1 ...... .1 ........ 1 ..... 1 ....... ! ..... . 

, , I 1-L ... 1 ....... L ..... L ..... L I ! I I ! ..... l ........ I.. ..... L_ 

! I --'--'--............. --'--', ........ 1... ... I I , I I 

1--'--'--'--'---'--'--'---'-._L .. .1 ......... J ........ l._.l .. --I-.....l-.L..-..I.1--1...1 -l,1_L.L.-L. ... l--L-L-..J...-L--L--I.....1 -1.1--,-1 -1.1 .. _L ... L.L .... L....L-1--'--"---'I'--I...1 --1-1 ....... 1 ......l... ..... L..L 1 1 I I ......L_.L .... .l.. ..... L .... L_J 

Example 7: 

To register an entire system set of files from the 'directory tape' following an initial boot (privileged): 

LABEL i:\ OPERATION .:\ 
10 20 

OPERAND 
30 

:\ 
40 

COMMENTS 
50 

I I I , , I L ... L. .... .L ..... L..L....L....1._LJ_L .. J.. ... L ..... L.._L-1_J_L. .... L ... L ... I.. .... J. . ..l.....J.........J ..... ..J... .... l .... 1.. .... .1 .. 

.... L ...... L . ...1.........l-..L ...... L. ..... L. .... 1.. ..... L .. ..J. ... ....l_ .. l.._!... ... .l.. .... L .. 1 ...... ! ........ L 

1 I ! .... 1..... ... 1.. 

, ..... 1 ........ 1.. .... .J._......L 

i I I .L ..... L ... ..l.. 

t=-'-'--'--"'--' ...................................... _L ..... L .. ..J ........ L .... L-1 I 1 1 I , L....1 ........ LJ 1 I I I I I ! I L .. L .. L...1 ..... .l.. .... LL..l I I I 1 1.. _1 ....... 1.... ... L 1 I I 1 1. __ .1 .... L.-L.-L-1-.. 



, ... -- . 
i 

'\.. ... 

4144 Rev. 2 
UP.NUMBER 

Example 8: 

UNIVAC 1100 SERIES SYSTEMS 
PAGE REVISION 

19-13 
PAGE 

To register and load the text for a number of files from a particular backup tape set (privileged): 

LABEL .\ OPERA TlON 
10 20 

;\ OPERAND 
30 

A 
40 

COMMENTS 
50 

1 1 I 1 I I 1 ..... 1.. ... L ... .1...--1 II! , , I I .. 1..--'--1 I I I I I J ... I , ! I I I .L .• L._L I I 1 1-1 ... _1 ...... 1... .. 

L-J...:~..I...-~I • ..L...Ll-J ..... _L-L.....L...L...L .• L.J.._J ...... J_.L.....J.-1......-L_..1 ........ I ........ J ...•.•. 

I II! .l-l.-l.-L-L.....J..! -...1...1 .....J1L-.J...1 . II! I L . 

. ...I..-.L-J.--L-LI-LJ ...... ..l .... ..J .. _ 

1 I I 1 .1.._ 

~--'--L....L......LL . ...L 1 1 I I 1 1 .L.J. . ...J 1 I ! I 1 I ! 1 II! ! 

Example 9: 

To restore all files on a removable disc pack following an initial boot (privileged): 

LABEL .\ OPERATION ,\ OPERAND 
10 20 30 

-l. .. _I ..... ..1 .. _ .. 1...-.L .. L.J .. -1 I I I I I ... L ..... L. .. _.L. . ..J I 1 I I I I L .. J..-L_.L...LL..L 

. ...l-.l...-J11........L.1......J..., -1'--1-' _I~--L.....I-..J...I ...... 1-1 -'--'--f-.-L--L..-.J-...L--J.-..l.--I..-'- L'" I I 

A 
40 

I I I -'-..l 

COMMENTS 
50 

---'---'-.-J........I...-J....I .•• L .. .LJ.. I I 1 1-1 .. _L .. L ... 

I I I 1 1 __ 

I I I I......L-I I 1 I I I 





" 

'--" 

4144 Rev. 2 
UP.NUMBER 

UN I VA C 1100 S E R I E S S Y S T EMS 20-1 
PAGE REVISION PAGE 

20. SYMBOLIC STREAM GENERATOR (SSG) 

20.1. INTRODUCTION 

The SSG processor generates any variety of symbolic streams, from a file of data to a run stream that configures an executive 
system. Directions and models for building the desired stream are conveyed to the SSG processor through a skeleton written 
in SYMSTREAM, an extensive manipulative language. Backus normal form notation is used throughout this section. 

20.2. INPUT STREAMS 

Five types of input streams are recognized by the SSG processor: 

(1) permanent 

(2) temporary 

(3) stream generation statement 

(4) skeleton 

(5) corrections to skeleton streams 

The permanent, temporary, and stream generation statement types can have any number of streams. All input streams except 
the skeleton stream, are optional. When an asterisk is in the first character position, a period terminates the scan of that 
image; a semicolon continues the scan to the first non blank character of the next image. 

[J Permanent stream 

Any number of element/version entries and the corresponding images can be in the permament stream. An asterisk in 
the first character position and an alphabetic in the second character position defines an element/version entry; all 
images that follow, until the next entry, are attached to that element/version entry. The format of the element/version 
entry is as follows: 

* < element name> [f< version name >1 

[-J 
where element and version names are 12 characters each. The images attached to an entry can be referenced in a 
SYMSTREAM program by the CORRECT directive (SYMSTREAM). Each element/version entry must be unique and 
may be accessed by using the stream generation statement (SGS) reference mechanism (see 20.7.1.4). P is a reserved 
label for the permanent stream: 



4144 Rev. 2 
UP-NUMBER 

UN I V A C 1100 S E R I E S S Y S T E MS 20-2 
PA GE REVISION PAGE 

[P] 

[P,n] 

[P,n,f] 

[P,n,1,1] 

[P,n,2,1 ] 

Represents number of element/version entries. 

1 if element name only is present; 2 if element and version name are present. 

o 

Represents element name 

Represents version name 

,. Temporary stream 

Similar to permanent streams, except that the reserved label is T. The permanent and temporary images may have a 
common entry name between them. 

• Stream generation statement (SGS) stream 

Stream generation statements are free form and may contain anything needed by a given skeleton. Any number of 
SGS's with a given label or any number of different labeled SGS's may exist. The label need not start in column 1. A 
period terminates the scan; a semicolon continues the scan to the first nonblank character of the next card image. The 
SGS scan ignores leading blanks, but interprets the first trailing comma as a subfield separator and the first trailing 
blank as a field separator. 

• Skeleton stream 

The skeleton stream, written in SYMSTREAM, contains the directions and models for building the desired output 
stream images. The directives which cause SSG to perform the operations needed for generating the desired stream have 
the following format: 

* < directive name> -0 < remaining image> 

Skeleton images without an asterisk (*) in the first character position are nondirective images and are sent to the output 
stream. All references in nondirective images must be bracketed. The string that satisfies the reference (up to the first 
blank character of the string) is substituted for that reference. 

• Corrections to skeleton stream 

Corrections may be applied to the skeleton stream. The signal character for the line correction numbers is a plus sign 
(+). 

20.3. OUTPUT STREAMS 

Three types of output streams are generated by the SSG processor: revised temporary, revised skeleton, and the desired 
output stream. Only one revised temporary and one revised skeleton stream can be generated, but any number of desired 
output streams may be generated. All output streams are optional. 

II Revised temporary stream 

By merging the permanent, temporary, and skeleton input streams, a revised temporary stream is generated, correction 
numbers revised according to the permanent and skeleton stream images. 

• Revised skeleton stream 

By merging the skeleton stream and the corrections to skeleton stream, a revised skeleton stream is generated. 

• Desired output stream 

Any number of output streams may be gen'erated. 



I 

,~ .. -

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 20-3 
PAGE REVISION PAGE 

20.4. @SSG CONTROL STATEMENT 

Format: 

@SSG,options param-1 ,param-2,param-3,param-4,param-5,param-6,param-7 ,param-8, ... ,param-n 

All parameters are optional. 

Parameters: 

options 

param-1 

param-2 

See Table 20-1. 

Specifies the skeleton stream. 

Specifies the SGS stream; or program file to have its element entries placed under the 
SGS label. Format of param-2 is then: < filename>'!< label name> 

Reference to element information is as follows: 

[SGS label,n,1, 1] element name 

[SGS label,n,2,1 ] version name 

[SGS label,n,3,1] element type 

[SGS label,n,3,2] symbolic type if element type is symbolic 

SGS integer references to element SGS's are allowed. 

"'--' 
param-3 Specifies the destination of desired output stream (must be a data file if any B R KPT 

directives are used). 

param-4 

param-5 

param-6 

param-7 

Specifies the destination of revised temporary stream. 

Specifies the destination of revised skeleton stream. 

Specifies the corrections to skeleton stream. 

The first of a variable number of input streams; specifies the type and number of the 
input stream. The following parameters contain the sources of these streams. This can be 
repeated any number of times. The format is as follows (must always start at param-7): 

{ 
PCF} {PCF} TCF I<number>, name-', ... ,name-n. TCF I<number>, name-', ... ,name-n 
SGS ' SGS 



4144 Rev. 2 
UP-NUMBER 

Option 

A 

B 

C 

E 

F 

G 

H 

I 

K 

M 

N 

UN I VA L 11 U 0 5 E R I E S S Y S T EMS 20-4 
PAGE REVISION PAGE 

Description 

Generates desired output stream regardless of no-find references. 

Does not @ADD (see 3.9.1) the final output stream to the main run stream. 

Double spaces a" printing. 

Prints revised skeleton stream. 

Prints permanent streams. 

Prints temporary streams. 

Prints revised temporary stream. 

Prints stream generation statement str~ams. 

Prints desired output stream. 

Debugs print - account of images in the skeleton being processed. 

Debugs print - account of information on the directives being processed. 

Table 20-1. @SSG Control Statement, Options 

20.5. FILE IDENTIFICATION STATEMENTS 

The input streams may be defined by file identification statements which are from card input and have the following format: 

SGS 

SKEL 

PERM COR [ < filename> ] 

TEMP COR 

SKEL COR 

where ·filename represents the internal name of a data file. 

The file-id statements can be used in conjunction with the parameters on the @SSG control statement. If the skeleton and 
corrections to skeleton streams are needed, each must be defined one way or the other, but not both. If the filename is not 
present, the input stream is from cards and must be terminated by an @EOF control statement (see 10.3.3). Any number of 
file-id statements are allowed and can be in any order. A period on a file-id statement terminates the scan of that image. 

20.6. SUPPLEMENTARY INFORMATION 

The debugging aids may be set initially on the @SSG control statement (M and N options) and turned on or off by setting or 
clearing their respective SSG defined global variables - MFLAG for M option and NFLAG for N option. 

A" input and output streams defined in the @SSG control statements are symbolic elements in program files or data files, 
unless otherwise noted. 



4144 Rev. 2 
UP-NUMBER 

UN I V A C 11 00 S E R I E S S Y S T EMS 20-5 
PAGE REVISION PAGE 

Any number of desired output streams can be generated. However, only the last generated desired stream can be dynamically 
@ADDed (see 3.9.1) to the main run stream. When there is more than one desired stream, they must be data files. 

20.7. FUNDAMENTALS OF SYMSTREAM 

A skeleton, written in SYMSTR EAM, instructs the SSG processor to produce the desired stream images. Two classes of 
images exist in the skeleton: directive and nondirective. Directive images perform all operations needed to generate the 
output stream. Nondirective images are sent to the output stream. The image determines the processor's mode of operation. 
Directive images are analyzed and executed in the processing mode; nondirective images are passed to the output stream in 
the output mode. An asterisk (*) in the first character position defines a directive image. The SSG processor dynamically 
moves between both modes. 

20.7.1. ELEMENTS OF SYMSTREAM 

The images and referencing techniques of SYMSTR EAM are described in the following paragraphs. Unless otherwise stated, 
all referencing techniques use the left and right brackets to delimit the reference call. 

20.7.1.1. VARIABLES 

Two types of variables exist: local (increment index) and global. Local variables are created by the *INCREMENT directive 
and exist as long as the increment-loop block exists for that variable. Global variables are created by the *SET and *CLEAR 
directives and exist for the remaining processing of the skeleton. A variable must be created before it can be referenced. A 
reference to the variable, EXAM, would be [*EXAM] ~ For certain directives, a numeric satisfaction of a variable is expected. 
The reference then may be EXAM. The priority for satisfying the variable is: take the last created local variable of that name 
(regardless of the presence of other local variables of the same name); if none exists, try to satisfy from global variables; if no 
global variable exists with that name, a no-find message is printed and generation is terminated (unless the A option is on). 

20.7.1.2. PROCESS PARAMETERS 

Process parameters are created on the call line to a named predefined sequence of images in the skeleton. A reference to the 
third parameter on the last call line would be [#3]. A reference to an upper nested call needs the name of the called 
sequence of images. The reference [#3,DEFS] would pick up the third parameter of the last call on DEFS (any number of 
nested calls on the same sequence is allowed). If such a parameter does not exist, a no-find message is printed and generation 
is terminated (unless the A option is on). 

20.7.1.3. INTEGER EXPRESSIONS 

Integer expressions include explicit numbers, variables (either bracket or nonbracket references), and process parameters 
(with satisfaction being either a number or variable name). 

Example: 

23+[*EXAM] -CUR+[1t 3,DEFS]. 

20.7.1.4. STREAM GENERATION STATEMENTS 

External parameters, switches for alternate processing paths and models, lists or tables of data to be operated upon, and so 
forth, are provided to the skeleton through stream generation statements (SGS). The SGS's are defined at the processor call 
level or dynamically created or removed during skeleton processing. 

Format: 

label param-11 [,param-12, ... ,param-1 n] [param-21,param-22, ... ,param-2n]. .. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 20-6 
PAGE REVISION PAGE 

An SGS may contain any number of subfields in any number of fields. The label field cannot be referenced as a subfield. ,/ 
Fields are separated by blanks; subfields are separated by commas. Any number of SGS images with the same label and any 
number of different labeled SGS's may exist. 

The following types of references to SGS's are allowed: 

[lab] Represents the number of SGS's with the label LAB. 

[Iab,n] Represents the number of fields on the nth SGS with the label LAB. 

[Iab,n,f] Represents the number of subfields in the fth field of the nth SGS with the label LAB. 

[Iab,n,f,s) Represents the contents of the sth subfield of the fth field of the nth SGS with the label LAB. 

20.7.1.5. NUMERIC EXPRESSIONS 

Combinations of integer expressions and SGS references form numeric expressions. These combinations include both 
elemental references used in integer expressions and SGS references (with satisfaction being either a number or a variable 
name). 

Example: 

23+[*EXAM] -[ 1I3,DEFS] +[LAB] -[LAB,[ 11 1] ,3]. 

20.7.1.6. SUPPLEMENTARY BASICS 

Any character (including blanks) is allowed in a given string by using quotation marks (" ..... ") which designate a Fieldata /'~' 
string including all characters, excluding the quotation marks. Single quote marks (' .... .') designate a Fieldata string which 
includes all the characters and quotation marks. 

NOTE: For SGS's, the sixth, twelfth, and eighteenth characters cannot be blanks. 

Reserved SSG words are either explicitly stated or process parameters. All programmer-supplied words or values are explicitly 
stated, process parameters, variable references, or SGS references. Referencing in the output mode for nondirective images 
must be bracketed references. 

If either # or Xl are explicit in the first character position of a nondirective image, the output stream contains either @ or *, 
respectively, in the first character position. 

20.7.2. SYNTAX OF SYMSTREAM 

An asterisk (*) in the first character position of the skeleton image places the SSG processor in the processing mode. In this 
mode, the directive image is both analyzed and executed. The directives are: 

*BRKPT *DEFINE *END *MULTIPLY 

*CLEAR *DIVIDE *IF *PROCESS 

*CORRECT *EDIT *INCREMENT *REMOVE 

*CREATE *ELSE *LOOP *SET 

The following conventions are used in the syntax descriptions of the directives: 

(1) 1) signifies one or more mandatory blanks. 

(2) Items enclosed in brackets ([ ] ) are optional (not to be confused with bracketed references). 



i ',,---- . 

I 
''--- . 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SE RIES SYSTEMS 20-7 
PAGE REVISION PAGE 

(3) Capitalized parameters are reserved SSG words. 

(4) Lowercase parameters are filled in by the programmer. 

(5) Braces (~ ~) designate a choice of terms. 

20.7.2.1. GENERATING OUTPUT STREAMS (*BRKPT) 

Purpose: 

Generates any number of output streams. 

Format: 

[{

<SGS-reference> }] 
*BRKPT [,K] 0 <pr~cess-parameter> 

<string> 

Description: 

The K option prints the new output stream. If the external stream is specified on the *B R KPT directive, it must be the name 
of a data file. The previous output stream is handled according to its initial options. The B option on the @SSG control 
statement (see 20.4) affects only the last output stream; the other output streams cannot be dynamically executed. 

Example: 

LABEL ,\ OPERATION ;\ 
10 20 

OPERAND 
30 

/\ 
40 

COMMENTS 
50 

::.l!?~~e:::L) .. J~J ..... L ... L .. L ... JE.I! LIE,A. _LJ .... 1 ...... 1. ... 1 ... j .. _ . .L...L...L.....L....L...L.L .... L ... l.._ . .l~...L_L.L_L .. J ... Ll_..l .. -1-.L_L ... .1 .. ..-L ..... L .. ...LJ.....-L_L ... L_.L ..... 1 

._l ........ L ... .J ....... L ..... L ... L_ ..L_L....J_L .. L..J._l __ L. .. J ........ L ..... L ..... L ... ...i ...... 1.. .... J _J . .......L..J • .....J.. __ L ..... I. ....... L ...... L .... L ...... L . ...L....L-.~, _, _._L. .... L ..... L. .. LJ ........ .l ..... l.._._L ...... L .... .L ..... L ... L ..... L. .. L .. .L .. .....L.-l. __ L ....... L ..... l ........ L .... .l 

This directive generates and prints an external stream of the data file named F I LEA. 

20.7.2.2. ZEROING EXISTING AND CREATED VARIABLES (*CLEAR) 

Purpose: 

Zeros the value of an existing variable or creates a new variable, if none exists by that name, with the value of zero. 

Format: 

*CLEAR "b<process-parameter> { 
t <SGS-reference> } 

o <String> 

Description: 

The last 10caLvariabie of the given name is set to zero. If no local variables exist, the global variable of the given name is set to 
zero. If the global variable does not exist, a global variable of the given name is created with the value of-zero. This global 
variable exists for the remainder of the skeleton processing. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 20-8 

Example: 

LABEL .. \ OPERATION 
10 20 

OPERAND 
30 

!\ 
40 

PAGE REVISION PAGE 

COMMENTS 
50 

t-*.....1C--L-L-..l.--o..::...::L. _.L •.. L._L .... 1_ ... _.LJ~AR,A! I I L. .... L.._.L._ .. L._...J .. -...i....-L--J1'---'.I--l.....-"I--I-1 .... LL-L....L-L...L-L...L.L-L ..... L .. .1 ! I I , 1 ... 1 ..... 1... ... .1.._, I , '._ .. 1... •. .1 .... 1.. .... .1 

.. -l .. -l ...... L. . ..L_L....LJ---L~l_..L .. L .. 1. ..•... l... •. L..L ... L ... JI--L-, -11--,----, L_l ..... 1 ... L .. L. .... L..L.....l-~i _, ... 1 ...... L .. L.L .. L ..... I ...... J~ ..... L. .. L .... .1 ...... ...i ...... .1. .. ....I.-1.-1 .... ...1. ...... I ........ I ........ I ........ L 

If VARA is a previously defined local or global variable, this directive zeros the existing value. If VARA did not exist, it is 
created in the form of a global variable with the value of zero. 

20.7.2.3. MERGING INPUT AND SKELETON STREAMS (*CORRECT AND *END) 

Purpose: 

Selectively merges input streams with the skeleton stream and passes the resultant merge to the output stream. 

Format: 

*CORRECT 1) <pr~cess-parameter> / <pr~cess-parameter> 0 ~~~~ 
{ 

<SGS-reference> } [ {<SGS-reference> }] [ ] 

<String> <String> 

*END 

Description: 

The given element/version has its specified input stream merged with the following nondirective skeleton images. If no input 
stream is specified, both the PERM and TEMP streams are merged with the skeleton images. If the given element/version is 
not present in a stream to be in the merge, the merge consists of the remaining streams. Any number of merges can be 
performed for the given element/version. Conflicts in line numbers are flagged, and the stream images are sent to the output 
stream or bypassed according to the following priority: TEMP images override PERM images which override skeleton images. 

Example: 

LABEL ,\ 
10 

OPERATION .\ 
20 

...l ........ 1 .... L. • ..J. I 1 I I 

OPERAND 
30 

,\ 
40 

COMMENTS 
50 

1 L ... l ....... L .. .l.-L----.LJ--L....1.....J..-L ...... l ....... !_..L...L._L_L.L . ...i ..... J ..... J ... -L-L.....L.....l .••. L .. _.l ...... .l ....... J 

..... l ..... l ....... J ...... I. ..... 1 . ....J..-L...J._---.L...l ....... l .... 1 ........ 1 ....... 1 ....... L.L-L..l-L ... .l ....... L .... L. .. .1 ..... .l ........ 1 ....... .l .. _ .. .l-L...l. ..... l ....... 1 ..... L. ... l. .... l .... ...L ... i _...! .. _ . .1 ... .1 ........ I ....... I ......... L 

1---'--J..--'-.l.. ... .L . ...l ... ...Ll-Ll-LJ I !! L...l ... _L .. L..L.J .. _.! I ! I ' .. -L. .. L.L . .l ! ! Ii' I '-L.J._ .. L .... L. .... 1 _, I i I ! .... ...i ...... t .. L.' , ! I _LL . .l 

These directives merge all correction images for MAl N and place them in the output streams following the last record. 

/-

'~" . 



( 
/ 

~/ 

........... / 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 20-9 
PAGE REVISION PAGE 

20.7.2.4. DYNAMIC EXPANSION OF SGS's OR PERM AND TEMP CHAINS (*CREATE) 

Purpose: 

Dynamically expands SGS's or PERM and TEMP chains of element/version names for given input streams. 

Format 1: 

*CREATE -0 SGS:o i< any-number-of-strings-and-bracket-references > 

Format 2: 

{ 

PE R M } { <SGS-reference> } [ { <SGS-reference> } ] 
*CREATE lJ TERM ;1r <pr~cess-parameter> / <pr~cess-parameter> 

TEMP <stnng> <stnng> 

Description: 

If the edit mode is on, it is turned off. After the colon, any number of strings and bracketed references can be used to create 
the secondary image. The original and secondary images can be no longer than one card image each. For the *CREATE SGS, 
the secondary image is a complete SGS and can be referenced as such (with label, image number, fields, and subfields as 
placed in the secondary image). For the *CREATE PERM or TEMP, an element/version name entry is made in the chain for 
the given input stream. The IF directive's test for input stream produces a Boolean false for such an entry, since no input 
stream image is attached to it. 

Examples: 

LABEL .. \ OPERATION .:\ 
10 20 

..L .... l ...... L ..... L ..... Ll._LL.....LJ.. I I I I l...._L .. _L .. L.L.J. ! I ! 

OPERAND 
30 

:\ 
40 

1. Generates an SGS with a label of LAB. The first field has subfield one as HAR and subfield two as 3. 

2. The element, ELEM/[#l,VERSN], is added to the PERM stream. 

20.7.2.5. DEFINING SKELETON IMAGE SEQUENCES (*DEFINE AND *END) 

Purpose: 

COMMENTS 
50 

Defines a sequence of skeleton images which later may be called upon (*PROCESS) and provided parameters. 

Format: 

{ 

<SGS-reference> } 
* D E FIN ED <process-parameter> 

<string> 

[- ] 
*END 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 20-10 
PAGE REVISION PAGE 

Description: 

A sequence of skeleton images must be defined before it is called. The parameters generated by the call are referenced within 
the sequence of images by: [#<number>]; parameter of higher nested calls are referenced by: [#<number>,<name>]. 
Nested calls on other predefined sequences and recursive calls upon itself is allowed to any depth. 

Example: 

See the example given for the *PROCESS directive (see 20.7.2.11). 

20.7.2.6. VARIABLE DIVISION (*DIVIDE) 

Purpose: 

Divides variables. 

Format: 

*DIVIDEo<numeric-expression>oBYo<numeric-expression>o 

{ 

<SGS-reference> } [{ <SGS-reference> }] 
GIVING ""b <pr~cess-parameter> , : < pr~cess-parameter> 

<Strmg> <String> 

Description: 

The quotient may be either a global or local variable. The remainder, if desired, is a different variable. 

Example: 

LABEL ,\ 
10 

OPERATION :\ 
20 

OPERAND t\ 
40 

COMMENTS 
50 

J-L--1-....L-JL.-.• L..L . .J._ .. L_ .. LJ.-1 __ 1 I I I I I I I J._ ..... L_ .. L .. _L..L....l..I--'-....!-L--.L--I.-...L1 .....JI--LI ....... I._._L._L.._L I I I I I 1_ .. .J._.--1.,--,-~-,--,I---,-1 ...... 1 ......... ..1-.. _L_1_1.. 

If [ * 1] equals 10 and [P] equals 10, then A equals 12 and B equals O. 

20.7.2.7. OUTPUTTING NONDIRECTIVE SKELETON IMAGES AS ONE IMAGE (*EDIT) 

Purpose: 

Outputs any number of nondirective skeleton images as one image. 

Format: 

"EDIT -0 { g~F } 
[ { 

<SGS-reference> } ] 
D' <pr~cess-parameter> 

<string> 

Description: 

An ampersand (&) is assumed as the edit symbol if none is specified. When edit mode is on, all output images which are 
terminated by the edit symbol are joined together (a semicolon is inserted if the image needs to continue on the next 
card. Edit mode is terminated by being specified or after the occurrence of the first nondirective skeleton image which 
has no edit symbol (when the edit mode is on). 



( 
\~. 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 20-11 

Example: 

LABEL .\ OPERATIOH :\ 
10 20 

OPERAHD 
30 

/\ 
40 

PA GE RE VISION PA GE 

COMMEHTS 
50 

.......L--L-...L.-l1--L' ..... 1. .. .1 ..... L. ..... L .. J. I I I I I I .... L .. ..l.-L.L-L....L . .-Ll.-L._L .. l. ..... L.l I I I I •... L .... 1.. ..... L I I I L 1 ... _.1.. .. .1 .. 

.... 1.. .. 1.. ..... &1. ... L...L...L-.L....L.L...1 ..... 1 ..... 1 .... ...J ..... I ... ...l.-1-.L....L ... L .. L.L...J. .... J ........ L .... .L_L.L._L. .• L ... L .. I ........ L . .1. . .....l-1 ...... .L • ..J.. ..... ..1 ..... 1. ..... 1. 

....1.-.l-..J.'........L-' -I.I.....1-...L .. 1 ... _1 I I , , I I ! Ll_...L._L ... l , I I _L.1.. ... 1 I I ! 

........L--L-.L-...l! _L .. L .L .. J. 

These lines in the skeleton generate the following image if [#1] is A1 and [#2] is A2: 

--HAR--SAR--A 1----PAR--LAR--A2--

20.7.2.8. SKIPPING SKELETON IMAGES (*IF, *ELSE, AND *END) 

Purpose: 

Conditionally tests and skips a sequence of skeleton images. 

Format: 

*1 Fe <Boolean-expression> 

[-] 
[*ELSEJ 

[-I] 
*END 

Description: 

Table 20-2 gives the conditional paths available. 

BOOLEAN EXPRESSION 

TRUE FALSE 

*ELSE . Processes images between Skips images between * I F 
PRESENT *1 F and *ELSE; skips and *ELSE; processes images 

images between *ELSE and between *ELSE and *END. 
*END 

NO Processes images between Skips images between 
*ELSE *1 F and *END. * I F and *END. 

Table 20-2. IF Directive, Conditional Paths 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 S E R I E S SYSTEMS 20-12 
PAGE REVISION PAGE 

The operands allowed to form Boolean expressions are explained in the following paragraphs. 

Either global or local variables may be tested for zero (*CLEAR) or nonzero (*SETL The format is: 

{ 
<SGS-reference>} {SET} 
<pr~cess-parameter> 1) IS 0 CLEAR 0 
<Stnng> 

The value of a numeric expression (a plus or minus sign causes evaluation of a numeric expression) may be used in relational 
tests. The format is: 

VALUE oOF 0 numeric-expression 

~ + ~ numeric-expression 

~ 
< SGS-reference > ([ ~ < process-parameter> 
< va~iable (bracketed) > <relation> 
< strmg >-0 
value-of-numeric-expression 

< SGS-reference > 
< process-parameter> 
< variable (bracketed) > 
< string> 
value-of-numeric-expression (] 

SGS's are two-dimensional tables. A row or column search starting from a given label at a given row (a particular image of 
that label) and a column (a particular field and subfield of that label) attempts to search to the end of that row or column, 
respectively. A find, on a row search, gives the column of the find. The SSG-defined global variables, FLO and SFLD, then 
contain the field and subfield (column) of the find. A find, on a column search, gives the row of the find. The SSG-defined 
global variable, CARD, then contains the image number of that label (row) of the find. If a starting value is not specified, one 
(1) is assumed. The format for specifying starting values is: LABEL,ROW (image number), COLUMN (field, subfield). 

The search format is: 

{
ROW } COLUMN ~ SEARCH [ • <numeric-expression> 

{ 

<SGS-reference> } 
FROM 0 <process-parameter> 

<String> 

1 
<SGS-reference> ( 
<process-parameter> 

[<numeric-expreSSion> [.<numeric-expreSSion> ] ] J 0 FORb ~:;;~:~ (brac_ketedl> . 

value-of-numenc-expresslon 

Two input streams (permanent and temporary) can be merged. A search is performed for the given element/version in either 
the PERM or TEMP stream. If neither stream is specified, both are searched. The format is: 

{ ~~~o~:::~:r~~~er>} [/ { ~;~;::'~:r::~er>} J 1) HASo [{ PERM lJi5 CORRECTIONS 
<string> <Stnng> TEMP ) 

Examples: 

LABEL ,\ OPERATION i\ 
10 20 

OPERAND 
30 

/\ 
40 

COMMENTS 
SO 

* I F :B.1...J..l~L. .... §.l;J.L .. _ .. ~S IV A,~~J~l... ... .l~.F1 Ai i= I !~L!L . ..L.L.L..L._L ..... L.L .. .L_LJ .. J ... ....L.L-L.L_L .. 1 ..... L .. ...l .... ..L.......L...L......l. ....... J... •.. I.. .... J 

........ I ....... J ..... ...L __ .L ... L .... J._J.........L..l ..... l........J.....l ..... J..._ .. .l ....... l ........ 1. ..... ..L .... J ......... l .... _l I I I t 1.. ...... l .... i ..... ...l ....... l ......... l ...... l.........l-1.. ...... L .. .l ....... .1 ........ L ... ...1 ....... I ......... 1 .... .I .. _....l.......L...L_ .. l ........ l ........ 1 ..... 1 ....... J ..... -1......1. ....... L . ..1.. ...... 1 ........ I ....... .I ......... l i-

If B is nonzero (SET) and/or A is -1, this expression is true. 

~I:~~~H: :~.8~i.~): :,:,~:)~+:T~1tHkl~:~-~1 
L...1 I 1 I I I 1 1 1 1 1 l_.L . ...L 1 J 1 1 I I I 1 1. ...... 1.. 1 1 1 I 1 I I I I 1 1 .1--1. .......... --'-............ "'--1 ..... 1 ... _ .. 1 ........ L.. . .J .. --l--L-.J.........JL.........I.. 



"--.. 

4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 20-13 
PAGE REVISION PAGE 

If the following SGS exists: 

SGSL LAR,SAR HAR 1 ,HAR2 

and A=l and B=l, then this expression is true and the reserved variable F LD equals 2, and the variable SF LD equals 1. These 
variables represent the field and subfield where the word HAR 1 was found. 

20.7.2.9. SKELETON IMAGE LOOPS (*INCREMENT AND *LOOP) 

Purpose: 

Increments and loops through a sequence of skeleton images. 

Format: 

{ 

<SGS-reference> } [ j [ 
*INCREMENTo <pr~cess-parameter> 0 FROM 0 <numeric-expressiorl> 0 TO 0 

<stnng> . 

<numeric-expreSSion>] 0 [Byo<numeric-expreSSion>]D [WHILED { 
<SGS-reference> } 
<process-parameter> 0 IS 0 > 
<string> 

{~~~AR }] D 

{ } 
*LOOP 

Description: 

Local variables (increment index) are created by the I NCR EMENT directive and exist as long as incrementing is neeced. Any 
number of local variables and a global variable may have the same name. The FROM, TO, BY, and WHI LE phrases may be in 
any order or absent. When absent, the BY, TO, and FROM values are assumed to be one (1). The WHI LE phrase tests the 
given variable (global or local) for zero (CLEAR) or nonzero (SET). If the phrase is true, the index is incremented (except the 
first time). The following algorithm is performed: (TO value - present index) (BY value). If the result is negative or if the 
WHILE phrase is false, the INCREMENT-LOOP block and its increment index are destroyed. If positive, processing continues 
until the TO value is satisfied. 

Example: 

LABEL ,\ 
10 

OPERATION A OPERAND 
20 30 

;\ 
40 

COMMEtHS 
50 

...• L-1.~ ... L . .l ..... L .. J .... ...l._.L..J..._L .. L ... L .. 1... .... 1 

..... L .. .L_L_..L .... L .... L ..... 1 .... L .. .L--.L....L ..... L_L ..... 1 .... L ..... L ..... t 

I i I '-_L-1 ... ...1 ... _ .. 1......l ; ! I 1 ...... .L ..... L .. L._1 ... L.L....L......LJ.......L.....l ...... L.. ... L...L.l 1 I .L ... I 

,---,---"--,--",---,---,-' ...... L_L1 .... L ... _L.L...l--<--L-....1.-.L........L! .... L .... 1.. .•.. L .. 1-_ j I I I 1 ...... L ..... L ..... L_~_Lj .. L.J._.....l 

l ... _. This produces the ordered pairs: 

-10,0 -5,0 5,0 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 20-14 

20.7.2.10. VARIABLE MULTIPLICATION (*MULTIPL Y) 

Purpose: 

Multiplies variables. 

Format: 

*MUL TIPL YO <numeric-expression> 0 BYo <numeric-expression>o 

{ 

<SGS-reference> } 
GIVING 0 <process-parameter> 

<String> 

Description: 

The product can be either a global or local variable. 

Example: 

LABEL ;\ OPERATION ;\ OPERAND 
10 20 30 

l\ 
40 

PAGE REVISION PAGE 

COMMENTS 
50 

1..",-LI--4--'-..... 1 -,'----,-I -..,.;IL--LI 

.-..--'-.....I..--'--''--'---'--.,L."L.J , I I ! , I I ! I 1 I , , I I ! ! I I I I ".",L..".L_L--'--'--'---'---L-I ....... '_L...LJ.."._l.,--'--'--L-..J.'.....JIL-..J.--I-....... 1 ..... L.l-L-l 

If[ 11 1] equals 1, VARA equals 20. 

20.7.2.11. CALLING A PREDEFINED SEQUENCE OF SKELETON IMAGES (*PROCESS) 

Purpose: 

Calls a predefined sequence of skeleton images and provides parameters to that sequence. 

Format: 

{ 

<SGS-reference> } [ ] 
*PROCESS 0 <pr~cess-parameter>o defenition-of-process-parameters 

<String> 

Description: 

An extensive repertoire of parameter generation is available to the PROCESS directive. The following syntax is allowed for 
each parameter, each of which is separated by at least one blank: 

<SGS-reference> 
<process-parameter> 
<variable(bracketed» 
<string> 
* * <numeric-expression> 0 
{± }<numeric-expression> 

{ 
<SGS-reference > } 

* <process-parameter> 



I 
\,-----"' 

4144 Rev. 2 
UP.NUMBER 

UN I VA C 11 00 S E R I E S S Y S T EMS 20-15 
PAGE REVISION PAGE 

The presence of a double asterisk (**), plus, or minus sign, triggers the evaluation of a numeric expression. A single asterisk 
followed by an SGS or process parameter reference directs the evaulation of that string that satisfied the reference. This string 
can contain any of the features for parameter generation allowed in the PROCESS directive. For indirect parameter 
generation, the string must be defined by double quotation marks if it contains a space, period, semicolon, comma, left 
bracket, slash, plus, minus, or right bracket. 

Example: 

LABEL .\ OPERA T ION .\ 
10 20 

OPERAND 
30 

,\ 
40 

COMMENTS 
50 

... 1 ..... _.1 .. ..I ..... _L __ L-L-l.......l_._.L ... L .... L __ L ..... L. ...... L ..... L .. _L--L..L .. _L_ ... .i. ....... .l .... L.J_._...J_L ..... L...L ..... 1 ....... 1... .... 1.... 

ill _L..1-..1 ... _.1..-1- 1 1 I 1 I ..J.. ..... L.L_L .. _1 . ...l-L-L.L..L...L~_L_L .. L I I _L 

.1.........1.--'----'--....................... 1._ .. 1..... ... 1.. .. .l .... _L .... J..... . ..L.....L.L ....... L ..... L.J._ .. _.l ...... J. ..... J. ... ....L....J1--l..---C-.J..........I.... 

This skeleton generates the following image in the output stream: 

1_._L ... .1_ I I I I I I .. L_l. I I I _.1... I 

L . ...L_..L .. L..L I I I -1 ...... 1. I I 

I I I I I I I ....... L . ...L .... L..l--L1 ....J1L.......1.1-.l...---L-..L.-.L.......1--L......L L I I I I I I I _L-.l.-l I I J ..... L_i 

20.7.2.12. DELETING SGS'S, AND PERM AND TEMP ELEMENT/VERSION NAMES (*REMOVE) 

Purpose: 

Removes SGS's and PERM and TEMP element/version name entries for a given input stream. 

Format 1: 

*R EMOVE 1> SGS 1> { ~~~;:s~;:r~~er>} [ ,<numeric-expression> [<numeric-expression>] ] 
<string> 

Format 2: 

*REMO'VE -t.. {PERM}1> {<SGS-reference> }[ { <SGS-reference> }] 
u TEMP <pr~cess-parameter> / <pr~cess-parameter> 

<String> <string> 

Description: 

, .L .... 1..._J._ 

1 I I I I 

1 • .....1. .. _..1 .. _...L-L 

I I I I I 

For SGS removal, any number of given labels may be removed. The format specifying the starting image is: label, image 
number, and number of images to be removed. If the numbers are not specified, 1 is assumed. For the PERM and TEMP 
removal, the element/version name entry is removed from the chain for the given input stream. For the test of input streams 
on the I F directive, a removed element/version entry gives a Boolean value of false. 



4144 Rev. 2 
UP-NUMBER 

Example: 

LABEL 

UNIVAC 1100 SERIES SYSTEMS 20-16 
PAGE REVISION PAGE 

/\ OPERA TlON:.\ OPERAND i\ COMMENTS 
10 20 30 40 50 

.. l~fi!J$.LJ ,~XAt1!.!.L~~LJ . .L~....L...L.L..L .. L. ... ..l.-L.LJ.-.l---L.L....L_L.J .... 1 I I I I I .. .l ..... L .. 1......L_L .. LJ. ...... L .... l .... i.. ..... .J 

I I I I .L_L .. ..l. ....... 1.. .... 1 ..... L ..... L .... L_l I I I I L_L ... L._L ... I... ...... 1.. ! I I I ... l... .•. L .. L_LJ ........ l ....... L . ...L......L-...._L ... L .... .l. ..... LJ .. ....l_l-1 ...... J. ....... L ..... I ........ I ........ 1 

If [*B] equals 3, three SGS's with the common name EXAM are removed from the input stream. 

20.7.2.13. CHANGING EXISTING OR CREATED VARIABLES (*SET) 

Purpose: 

Changes the value of an existing variable or creates a new variable if none exists by that name. 

Format: 

{ 

<SGS-reference> } [ ] 
*SET 0 <pr~cess-parameter> 0 TO 0 <numeric-expression> 

<strang> 

Description: 

If the TO phrase is omitted, 1 is assumed. The last local variable of the given name is changed. If it does not exist, the global 
variable of the given name is changed. If it does not exist, a global variable of the given name is created with the given (or 
assumed) value. This global variable exists for the remaining processing of the skeleton. 

Examples: 

SSG looks for an increment index named A. If none exists, it looks for a global variable named A. If non exists, a global 
variable named A is created. 

This variable is set to 1. 

If A equals 1 and [#1] is Q which equals -4, then B is sought as in the previous example and set equal to 14. 



4144 Rev. 2 
UP.NUMBER 

UN I V A C 11 00 S E R I E S S Y S T EMS 20-17 
PAGE REVISION PAGE 

20.B. EXAMPLES OF SSG STREAM GENERATION 

The following examples clarify the use of the SSG processor. 

(1) On the @SSG control statement (see 20.4), the first specification field (param·7) for the variable parameter fields is 
divided into two parts. The first part must be either PCF, TCF, or SGS; the second part must be a number n O. The 
following n parameter fields designate the source of the input streams. 

Example 1: 

TCF/4, TFL 1.,TFL2.,TFL3.,TFL4. 

TF L 1, TF L2, TF L3, TF L4 are four data files, containing temporary corrections, assigned to the runs on either tape or 
mass storage. 

Example 2: 

PCF/2, PF.ELT1,PF.ELT2 

PF.EL T1 and PF.ELT2 are elements containing permanent corrections within the program file PF. 

Example 3: 

SGS/1, CONFD.,PCF/2,FILE1.,FILE2. 

There is one file of SGS's called CONFD and two data files containing permanent corrections (FILE1, FILE2). 

(2) Assume that an SSG run has SGS on cards and two sets of permanent corrections (EL T1 and EL T2), both in program 
/ file PF. Further assume that temporary corrections are on cards, and the skeleton is in a file called SKELF in SDF 

\ format. The following run stream could be used to execute SSG: ',--

LABEL ,\ OPERATION OPERAND 
10 20 30 

,\ 
40 

COMMENTS 
50 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 20-18 
PAGE REVISION PAGE 

The following run stream could also be used: 

LABEL .:\ OPERATION OPERAND :'\ 
40 

COMMENTS 
50 10 20 30 

m.l ..... _L I '·1 1 , I I _.L .. L_L.....L..L-L-LLL ..... L._LJ 1 " '._ . ..1 .... L .. J.m 1 I , ' __ 1 ... 1 ... J ...... ..1 . 

.... 1 ... J.--L..1......l ..... ..L ...... .1 ........ I ..... 1 ......... 1 

I I ..1..._1... ... L_ I I I 1. ..... 1 

---1..--,---,---,--,-1 ..... .1 ..... L.L~..1_L.l .m.1 ....• J_...l 

, , I 1 I , 

... L ... L .. L_LI I I I I I _1.. ... .1 ...... LJ.--'-' --,-I ...J1L--I--'---'---'-....J.I......Ll_L_,-1 ...J1'--11-.L1--'--'--!--L.--'---I-1 _l_L_l--,-I --'--L.--L-.L.l ..... L_L...J1'---'--I..-'---'--L 

~~.l..-.J......L_LL ... 1 ..... JS:I<J;L,F: 
IC~,R I! 

l-L_Ll_ .. L_L_..1i---l.--'---'---L-!--L.--'--.LJ. .... ..L...L_L.:..' --L-L--L--I..-.L......J.I-1. .. _L..1......J---'--'--L.-.L.L .... L..l.--J--L-.J...-1L-.i.' 

I I 1 , I ! I I 1 I 1 I I , 

(3) This sample skeleton changes the sequence numbers existing in columns 73-80 of a FORTRAN source element to a new 
sequence set. The program is compiled and uses the special correction feature of the source input routine (see 9.6) to 
apply corrections. 

The desired run stream is: 

LABEL ,\ OPERATION 
10 

OPERAND 
20 30 

:'\ 
40 

COMMENTS 
50 

.. ..1 ...... L .... L ... .1..--'---'-...1.I--I..1 --'--'-L ... L .. ...t.......l.....L..L_L_L.LLi._m.L. I 1 I 1 I 1 .... 1 ..... L .. 1.. I I 1 1.....J. ... _1 ....... L .... J 

...... 1... .. _1 ! 1 1. .... _.1 ..... 1 ...... .L ..... l ........ t ... ..L...L...l_.L ... l ..... 1_ .... L.l._ .. J ......... 1. ..... J_~._ .. L_ ... l ..... I ....... l .... 1..--L..1......l. __ 1 ... l ....... I ........ 1 ......... 1 

.--L--'---'--'--L-..L-.L1 _1'--1.1. L . ..1._ . .J. 1 1 1 ...l .... L .. l ..I.-..I-..-I-..J.! --1..1 ._.L .... .1 

1 ...... _L .•. L . ..L...Ll-L...l......l .... .l ..... 1. ...•.. 1 . ...L...J--'---'---'---'--LI ...... L ..... L .. L-1 -'---'--'---' 1._.1... .... .1 .... L...l 

I 1 I I I 1 1 1 I 1 I 1 I I I I I I 1 I , ! ! I 

t--'--'---'--'--'--..L-.L-..L. .. _.l ....• .L .... .l .....•. l ....... .L--'--'---'--J.--l1--L,_L...l ...... L..1 .... I ! ! 1 I ! I I L .. L .... L._L ... L .... L..l._..1 I I , I I _L . .L .... 1. ! I I ....L_L ... ..1 .. .....L..L...1 

The skeleton must generate these sequence numbers. 

Only one SGS is required and contains the number to be inserted for the sequence numbers. The output image (the 
referenced process parameters are substituted) is defined for later use. The skeleton images 

Ii FOR,U A,B 

-1,1000-

are passed to the run stream with @ substituted for 1/ • 

/' 



I ,_ .. --

4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 20-19 

The following run stream could be used to accomplish this: 

..--"---------, ... _-_._._-_ ...... _---_._---- . 

LABEL '\ OPERATIOH 
10 20 30 

OPERAND ,\ 
40 

PAGE REVISION PAGE 

COMMENTS 
50 

1?J.~1~:L.,1. ... L,,,,.L,.,,,L,, L .. All.:P.>.Lt--L(;-L-L .... L_,,--.L, ,1""",1 ",L_.L_Ll_...l_....L-1 .. ,L""l .. , .. LL_L...l_ .... L....L.J.....J ... ..1 ,.1 .. ,L...J .. _L ... L-L .. J. .. , .. .1 .. .J ... 1 .. ...1_1-L_L .. .1 ... L ... L .. 1 

,.Ai?If!J., .... L .. ,1., .... L,.j, •. _J. IF:"l~1?.l$lyM)lIL ..... ,L., ! .. 1 ... L. L_L~.L .. :rAJ?j§.I~~~~~J.~"tg,.J?lyt1~~~jGL .. .1 ... L._1-.1 ..... L .... L .... 1 1 .. 1 ..... 1 

~J.?jl.J~,I.t.,L .. L_LJ[~R,g,Y~t_L .. LLJ .1.. ... L .... .L....L.J-LL .. J.._L.J ..... LL I , , , L .... LLL .. L..l ... ,.LLJ ... .....L.L. • .L ..... L ... L ... .L .•. L....L...J..-L .. L._J ... L 

gt~(7,~I~_L-LL1-L-" __ 1 .L .. l . "L'-~ :~:-~~~t~:~~1b:w.~-~~ ~~_l~~_~._l ... L:_~ 
-I_ .... Q ...... L ... .11.L.L .. 2..l.....L~, I ,41 L.l5.:. ..... LJ~J-L....L..2..L_L.J9.LJ~ ," I ! I ...L . ....1 .. _ ... L_.L .... L.L.-L....l_L .. L ... L_l , 'I J .... L.1. 

~E~J:: I , .L....L .. L .... L ..... L .... J. .... L .. LJ-I-L..L.....1._L. .... L., .... L .. ,L..1_· .. -L ,E:NO ~,t ....... .S.i~~L~_l~J.-1 I , I 1 I .... L .... L_1.. I I I I '_.1 ...... .1 .... L..1 .......... L .... 1. 

g~€~gIT~J~L . ..Ll 1 1 I LLLL.JJ ... LI I I I" 1 ,g,K'~~1.~lTldN 1F;~,Lb~IWgL_l~~A"'RJ~.S.:._L I 1 -L 

DF,F.I,N~ ..... l~J.l~E; j , 1 1 .... L.LLl. ... L.J .... L' 1 1 I I I I Ll ...... L.LJ .... ' 1 I , 1,......l ... _L.L .... L_L....1......LJ....... ... L ... L .... ,L ... J, . ..I-....J ............ --L.. ........ 

/ o[ J J (i#2IJ,['"tt,.3,J,[;#,4IJ,O,Q ! I , ! , 1 I , ! I ,I !, I I ! 1 ! 1 ! , II! I ! ! ; I ! , ! I 

--'--'''--'--.L....L...L_L.LL.L .. I .. LL . ...1 ... 1 . .....L..Ll.......L....L..L~1~J~~~~jTL !~~RIT:&~.N ... ~YMB46.!"l~l~L WI, 1:1-\ I L 

.1 .. L .. l ..... J.~~HE...L....lE1~l~.~.~~IJ~IG I I M!~lk~~L '-I ~HW l~J.~I~..1_L..J. 
L ..... L.. .... L I 151 I,G,N J-tAS: .. i~p'~CIIIALi ,~I!Gi~Jl.~IIC,ANCs_ .. L .. l .......... L 

. .I.....-J--'---'-......L.......!.'--l....I ... J.:' .. L ,T,~ ,SI I;g " I 

L........l--'---'-...J.-..L-.1L......L! -.1....1 ....... '_.L. 1 I ! I ! ... 1.._.J. 

.;;....L,..............I..}-'-.L..:...J--'-![--'-INL}.l.~,1>I)! f), I -L .... L-L-L 

1 1 ,I!!!,!!!, 

F--'---'--:-'--:l--'--,L .. L ... .L .. L.I -'--'-..1........J'--'---'---'-...I..1 ....J ....... L .. ..L....LI--L.......1.........l-..l.-J.........J. 

............. ..L-J........J. ......................... I ..... 1'--'---'--1.1. .L.L .... L. L-! -l.-.1-I-....LI ............. 1 ....... 1_ 

. ..I.-............. I..-..L--'--'--'--"'--J'--'- L..1 ..... 1.. ..• 1. 1 1 I I ! .L...l 

1 i 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 20-20 
PAGE REVISION PAGE 

Another way of accomplishing the same result would be: 

LABEL /\ 
10 

OPERATIOH 
20 

OPERAND 
30 

A 
40 

COMMEHTS 
SO 

....• 1.. ... .1 ..... ..J. I 1 I !! I ... L.L-LJ_......L_L . ..J_..l_1.. ..... L .. L ... l-1.. I ! ! L .. 1.. ... ..1 ..... /......l-.L..l.....1 ....... L .... L .... L ..... .J 

.. L~ .... L. ISIYM~~l~LIJ(;.L .... I~Jff..L .... L ..... L . . L. .. l .... L .... LJ... .... L .. 1 ..... 1.. . ..! ....... L .... l 

.... 1 -,-I ...J1'--I,'--,---,-1 J ....... Ll. _____ ........... ....c.'......J-! ...Ll_ .. LL .. L ... 1.. .... ..l--L--L.....l.i--L1 --1-1 .•. L .. .L ... L . .LI ...../.-' -,'--L--L' .... 1... ..... 1 

.J..........L.......J.--i..--'--'--'-, .. -.1. ..... 1 ...... .1.. ... L ... _L. .. L.....J1--.J..--L-.L.........L. ...... ' ...... L .. .J.. ...... Li..J,--'--l........L--L-..l ..... 1.. ... L ... L I I 1-1... ... 1 .... .1 ..... L...l. 

.J--L.......J-->.-.1... ................ '--L.1 .. ...1 ...... .! 

, , 
--L-L.......L.-'--'--'--..J......-.L.....,l-L . .L .... L_L..J--L-.1...-.L...--'--'--'--LI ..... L ... L . ..J..I-.L.--L.-'-...L-.L-I..-J.-.l........I.-. .. LJ . ......L.-L....-'---'--I..-J.--LI ..... 1 

-'--.L->--.J--'---'-.......I...-'--'-..J..'-L __ .L .. .l-1 ... -L..I ..... '---,---,---,--,---,--,,--,,---,,' _ ... l ....... L..J....~......\.--'--'---'--"'---'-. .J .. _L-"--'-1 .......... --'-...1-.J.-L......L,., ...... L.J 

If leading zeros are not required, the following could be written: 

LABEL ;\ 
10 

OPERA TlOH :\ 
20 30 

OPERAND :'\ 
40 

COMMENTS 
50 

' .. _.1 ..... 1 ...... 1 ........ 1 ... j.-1-1.-1..........L...L._L .... l ...... ..L...L . ......L......L.._L_L._L.1. ..... 1 ....... I .. ....J-1.-L_L....L ... .l ..... 1 ....... 1 .... ...l.-L....L..J. ..... ...1 ....... 1 .... .1 ........ 1 

..... L ..... L. ... J ..... .L ...... L .... J.......L..J-1. ...... L .. _L ...... L.. ... j ...... .l.. .... _L • ..L....L.....L...L ...... l .... L .... L .... L .... L ..... L.. ... J._._L . ...l-..L ..... l ....... .L ...... l ..... L ... L . ...l..... .... l ...... L .. l .... 1.. ... 1 ...... 1 ..... 1 

I 1 1 I ...... L .... L.J ...... l_L I ! ill ....J ...... 1......L ... 1.. ..... 1.. ..... 1 1 ! "-. ...1 . .1 ....... [,_.1 , I 1 ... _L .... .1 . 

........... --'--'--'--.L_.L .... 1 ....... L .... 1 ...... _1._.L.-Ll ....... L...L....l..... ...... 1 .... .J ....... LL--'-.......L......J......-L .1. .... 1.. .. L .... L~-1... ... .1 .. ..1 ...... L...l. 

, 1 I , ! ! ! 1 , ! I I , 1 I ! 1 , 

-'--'--"'---'---''--'---'---'-......l. .L ... L..LJ ....... L.l......J--'---'--...... , ...L...t.. ...... L_l . ...J......-1.......J.,........JL.......L..1 .... l.. .... l .. 1-1 -L........L-.l.--J..........L' .... 1.._ .. 1. 

:-'--'--................................................ ' -.......,' ....... 1... ..... .1 ..... L .. .1 ..... I... • ..J.. ...l.-....>--.J........J..-.L.' ......L.' ....J..' ....1 .... LL 1 I 1 1 ....L .... J. ... L . ..l-L......l. 

1.. .... L .. J..-1-1 --'---'-..L.-LJ ..... 1 .... _J--L1 .......I.........1.........l-.L-.1 

1 ... ....L .... L.L....l.I---L.-l.---'--..J..........J.....! ..l-L.J-1......J.-...................... -'-.l ....... l ........ J ..... J ......................... -'--'-' .......... ' 

...... 1 .....JIL....-L'''''''''''''! ........... 1 --'--'-' ....... 1 1 ! 1 I III 

-'--.J....-.J.........I--l..-.L.......L.. LL .. J...-1-' -1....' -,'--1..-.L.-,--,--,--...... 1 .....J11....._.L._l ........ L.--'---'-.....J.--'--'---'--L....L....1 ....... L...l.......L..--'--....J...........-L....-LI .. -1 .. _L ..... !......J_1.......l.. 

f-J'---"--'-.......L-......L.....J. .... J_J ...... L.l.. ...... L.L-.L...1 -'--'--'--.L..-1..........JII.....J._ .... l ........ J._ ... L...l....._.1....' -1-...L....-J.,........J,--,---,-1 .....L......L-.L._1.. ..... l.. ...... L I 1 I 1 1 1 .... 1 ..... J .. --'--'-....L-...L'.......J...1 ......\.-1 ...... 1 ........ I.. ..... 1_ .... L 

(4) The following example manipulates the permanent (PCF) and temporary (TCF) correction files. The PCF is contained 
on mass storage; the TCF is from card images. In the example, the basic problem is to correct existing images and insert 
new ones; 



4144 Rev. 2 
UP.NUMBER 

The three files are: 

PCF 

UNIVAC 1100 SERIES SYSTEMS 20-21 
PA GE RE VISION PA GE 

TCF SGS 

* A@ . Lowest possible name INSERT COMPO 

*COMPA *COMPA 

-0,0/2,2 . replace 2nd image 

* ____ . with the following 

*COMPB *COMPO 

*Z . Highest possible name 

The PCF contains data, identically formatted, on each company in a city. 

Assume that company A (COMPA) has an address change and a new company (COMPO) is to be inserted in the PCF 
from the TCF. An SGS is required for the insert to take place. Each new company has its name on a separate INSERT 
SGS card (INSERT COMPO). 

An insert process, to insert new companies into the run stream (the new permanent correction data file), is defined. If any 
INSERT SGS's are present, a loop determines which of the new companies is to be inserted at this point (the data file is in 
alphabetical order). If a company is to be inserted, it is inserted at this point. The skeleton images which determine the find 
and insertion are lines 16 through 25. in the following run stream. 

To generate the new data file, a loop is made through the present companies, and each company is corrected. A 
determination of new companies to be inserted is performed after each present company is updated. The skeleton images are 
lines 26 through 34 in the following run stream. 

LABEL ,\ 
10 

OP ERA TlON ,\ 
20 30 

OPERAND :\ 
40 

COMMENTS 
50 

L .L.. ..... 1 ... _.,_ ... .L.....1-.L.l __ L .. L LJ .... .L. .. L...J_LJ_...L.....l..... ..... L .... l... .... LJ . ..-1-L..L_L .... L . J ..... L._J .. _LJ. .... L .. L ... 1 .... 1. ... J 

.. 1 ...... t. _.L_L.....l ...... l.. ...... 1. .1.. ... 1 ...... L 

---'---'--'---1I ...... J. .. L._L.,--1 -,---,---,--,-I . 1... .... .1 . 

.. . .L ..... l ... .J_ ... L...l_L..L.....J....J .... .1 ... L .. _ .. L .. .l. .. L-1_L_L .. L.L ..... L ... ..l ..... 1-1.'--'---'--...... L.l ..... L .... L . .....L 

1 I I I 1 II! ! ! ! I ! 

---'---'--'-• ....L.--'---'---''---'-I ...... .L .... LJ-L..LJ. -'--'---'--IL.... . ..l.......L ... L. .. _L .. L......L.....L---L .... l .. .L_LL_L...l.-.L.L ... L ... l . 

..... 1. __ L_J __ L.L...L.L_l ....... L ..... l .... J. __ ..L-LI........L.-'----'--L.! ..J..I-LI _.1. ...... .1 .... L..1.. L_L 1 

....l-.L-.J--L--L....J.' L.L .... l .... .l.. ..• l... .•. J.-L-l-~..J-' --1-1 -1-..... 1 ...l........1 .... J...-1---L...J.'--L--'--'--'---L.1 ..... ...L..1. .. _.L..J.--'---'---'--L-.L . .1 ..... L...J. ... -'--'--.L.-J--.i. 

I 1 I I I I 1 1 I I , I I j ! 

~ 
1-............. ...:....' ..L.....I_L...J. ••. .L_L .... LJ._l __ .L...1--'--"-~...I.--'--L.....l_ ... J ....... .J ..... _l __ L.l--L--'--'--'---'----'---'L....-I._iL_L. .. L..._.l ....L......L.-1.-..J''--J.I-L-L..-I--L.1 . ...l ... ....l ... --L-'---'--'---'--'---' ... L ..... l_L 

! II L .. t.. 



4144 Rev. 2 
UP~NUMBER 

UNIVAC 1100 SERIES SYSTEMS 20-22 
PAGE REVISION PAGE 

---1--.....1--'..1..' _.L-L....J .... J ......... L.. ... .L..J. ! 1 ! ! 1 1 I ... 1...-'-.1 1 J 1 1 1 I I. L1 ! 1 I J 1 ..l ....... .J .... .J_~--L .. _l ...... .l ........ l. 

... 1 ........ 1 ...... 1 ....... J. ........ I ....... J-L-L-l....J...-...L. ..... L ... I ...... .J ........ ! ...... _L.......L-L-l .. -L ..... L ...... L ... L. .... l_l ...... l ...... ..L....L-L..L._I ........ l ..... 1 ....... 1 ....... t.-L..l._..l_.L. ... ..1 ....... 1 ........ 1 ......... t .. 

! 1 .1 I I I .. L .. L . ....1 1 ! I I '....l ... _L .. L 1 , I I 1.-1 ....... 1.. 

. ..l--L-J.._'I-. ..L.J ....... LJ--L-L...1 I I . 1 

..1.........1........../.1_. -,--,--,---,-' .....;11..--11_1..._.1... .... 1.... ... 1 ... L...L.....L..-L-.L......JL-..J..I ---1-1 -1-' .-1 ....... L....l. ,I 

, I 

1 ! 1 , , 

20.9. MERGE OF INPUT STREAMS 

The *CORRECT directive merges input streams (permanent, temporary, skeleton) under a given element/version name. All 
line correction numbers for a given element/version are relative to a base level symbolic stream. The input streams contain 
images that are merged directly with' other input streams. The temporary stream also contains images that modify the 
permanent stream. Both the direct and modifying images can be intermixed for a given entry in the temporary stream. 

If an entry set consists of the line correction numbers with their respective corrections, then a subs~t is a line correction 
number optionally followed by corrections. To modify or delete a subset in the permanent stream, the modifying temporary 
image has the following form~t: 

-N,M/a,b 

To create a subset within an entry set in the permanent stream, the modifying temporary image has the following format: 

-N,M/a,b/N',M' 

The image containing the line correction number is referenced as line number 0 within the subset. Any number of references 
can be made to a subset. 

Any conflicts in the merging of the input streams are handled by the following priority: temporary stream overrides 
permanent stream; permanent stream overrides skeleton stream. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 20-23 
PAGE REVISION PAGE 

Example: 

An element is to be corrected with the following subset of permanent corrections: 

-10,12 

P COR LINE 1 

P COR LINE 2 

P COR LINE 3 

P COR LINE 4 

P COR LINE 5 

(1) The following is applied to this element within the temporary corrections: 

-10,12/1,2 

T COR LINE 1 

The following is sent to the output stream: 

-10,12 

T COR LINE 1 

P COR LINE 3 

P COR LINE 4 

P COR LINE 5 

(2) The following is applied to the element within the temporary corrections: 

-10,12/0,2 

T COR LINE 1 

-10,12/4 

T COR LINE 2 

T COR LINE 3 

The output stream then contains: 

T COR LINE 1 

P COR LINE 3 

P COR LINE 4 

T COR LINE 2 

T COR LINE 3 

P COR LINE 5 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 20-24 

(3) The temporary correction applied to the element contains: 

-10,12/0,0/10,15 

T COR LINE 1 

T COR LINE 2 

-10,12/2,4 

-10,12/4/17,17 

The following is sent to the output stream: 

-10,15 

T COR LINE 1 

T COR LINE 2 

P COR LINE 1 

-17,17 

P COR LINE 5 

(4) The temporary correction applied to the element contains: 

-10,12//14,14 

-10,12/2,4 

-10,12/4/16 

The output stream then is: 

-10,12 

-14,14 

P COR LINE 1 

-16 

P COR LINE 5 

PAGE REVISION PAGE 



"'-

"'--" 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 20-25 
PA GE RE VISION PA G E 

20.10. BACKUS NORMAL FORM OF SYMSTREAM ELEMENTS 

The following is the structure in Backus normal form of the basic elements in SYMSTR EAM: 

1. <number> 

2. <alphabetic> 

3. <special-character> 

4. <character> 

5. <name> 

6. <string> 

7. <SGS-field> 

8. <SGS> 

9. <global-variable> 

10. <i ncrement -index> 

11. <variable> 

12. <process-parameter> 

13. <simple-expression> 

14. <integer-expression> 

15. <label> 

16. <SGS-integer-reference> 

17. <SGS-reference> 

18. <numeric-expression> 

19. <relation> 

20. <Boolean-operator> 

21. <Boolean-operand> 

22. <Boolean-expression> 

:=±999991±999981..,1±110111...1999999 

:=AIBlcl..,IYlz 

:=#~I) 1& $1* I( 1%1: 11 I! 1\1' Illl!k§l'I[ I] I 
-1+ 1< 1='1> I, 1.1 1=1= I; 

: = <alphabetic>l<special-character> I<number> 

:= <alphabetic>l<name><character> 

: = <character> I<string><character> 

: = <string (see NOTE A»I<SGS-field>, 
<string (see NOTE A» 

:=<name (see NOTE B»I<SGS><SGS-field> 

:= [*<name (see NOTE C»J I<name (see NOTE C» 

:= [*<name (see NOTE C»J I<name (see NOTE C» 

:=<increment-index>l<global-variable> 

:= [#<number>,<name (see NOTE B»J I [#<number>J 

:= <number>l<variable>l<process-parameter> 

:=<simple expression>l<integer-expression> 
+<simple-expression>l<integer-expression> 
<simple-expression> 

:= <process-parameter>l<name (see NOTE B» 

.- [<label>] I[ <Iabel>,<integer-expression>] I 
[ <Iabe 1>, <i nteger-ex pression>, <i nteger-ex pression> J 

: = <SGS-integer-reference> I [<label>, <integer-expression> 
<integer-expression>, <integer-expression>] 

: = <integer-expression> I<numeric-expression> 
±<i nteger-ex pression> I<nu meric-ex pression> 
±<SGS-reference> 

:=>1=1< 

:= AND lOR IXOR 

: = Any of a number of a series of operations that gives a 
TRUE or FALSE result I<Boolean-operator>O<Boolean-operand> 

: = <Boolean-operand>kBoolean-expression> 
<Boolean'='operator> <Boolean-operand> 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 20-26 
PA GE RE VISION 

NOTE A: String of 18 or fewer characters not containing a space, period, semicolon, comma, left bracket, or slash (unless 
enclosed in quotes). 

NOTE B: Name of 18 or fewer characters not containing a space, period, semicolon, comma, left bracket, slash, plus, 
minus, or right bracket. 

NOTE C: Name of six or fewer characters not containing a space, period, semicolon, comma, left-bracket, slash, plus, 
minus, or right bracket. 

20.11. DIRECTIVES STRUCTURE 

The following is the structure of the directives in terms of satisfied field definitions. The conventions used for the syntax 
description of the directives will be used. 

IF - ELSE - END Directives: 

* IF 0 < Boolean expression> 

[ J 
[*ELSE ] 

[ J 
[*END ] 

where the Boolean expression consists of Boolean operands which may be: 

{
SET } <variable-name (6-char»o ISo '., 0 

CLEAR 

VALUEoOFo<number> 

{ ± }<number> 

{
<number (digital» } [< I t' > { <number (digital»}] 0 
<string (18-char» re a Ion <string (18-char» 

{ ~g~u M N } oSEARCHo F ROMIi<name (label of 1 B char) > [<number (giving-start-image» 

[<number (giving start field) >1. <num ber (giving-start-subfield» I ] ] 0 FORo {~~t~~~('l ~~~!~:g-} 0 

<name (12-char-giving-element) > [I<name (12-char-giving-version>1 oHAS 0 [{ ~~~~ }] oCO R R ECT I ONSo 
"'" 



( 
\"--..-

(' 
\" 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 20-27 
PAGE REVISION PAGE 

INCREMENT - LOOP Directives: 

*INCREM ENTo<increment-index-name (6-char»o [F ROMo<number> 10 [TOo<number>l 0 [BYo<number>l 0; 

WHI LED<variable-name (6-char»oISo {~i~AR} ] 0 

[ J 
*LOOP 

PROCESS Directive: 

*P R OCESSo<name (18-char»o[ <defin ition-of-parameters> 1 

SET Directive: 

*SETo<variable-name (6-char»o [TOo<number>l 

CLEAR Directive: 

*CLEARo<variable-name (6-char» 

EDIT Directive: 

*EDITo {g~F } o[<char (1-char-for-edit-symbol» 1 

CREATE Directive: 

*CR EATEoSGS:o<any-number of strings and bracketed references to create the secondary image which is the created 
SGS> 

*CREATEo {~~~~} :o<name (12-char-giving-element»[!<name (12-char-giving-version»] 

REMOVE Directive: 

* R EMOV EDSGSo<name (Iabel-of-18-char» [, <number (giving-start-image» L<number (giving-number-to-be-removed» 1] 

* R EMOV Eo { ~~~~} o<name (12-char-giving-element»[/ <name (12-char-giving-version»] 

CORRECT - END Directives: 

*COR R ECTo<name (12-char-giving-element»[!<name (12-char-giving-version) >10 {~~~~} 

[-J 
*END 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 20-28 
PAGE REVISION PAGE 

DEFINE - END Directives: 

* D EF I N Eo<name (18-char-name-of-sequence» 

[ J 
*END 

BRKPT Directive: 

*BR KPT[,K] o[<name (12-char-name-of-external-file»] 

MULTIPLY Directive: 

*MUL TIPL Yo<number>oBYo<number>oGIVINGo<variable-name (6-char» 

DIVIDE Directive: 

*DIVIDEo<number>oBYo<number>oGIVINGo<variable-name (6-char-for-quotient» 

L<variable-name (6-char-for-remainder»] 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 
PAGE REVISION 

21-1 
PAGE 

21. DOCUMENTATION PROCESSORS 

21.1. INTRODUCTION 

This section describes two documentation processors: F LUSH (flowcharting language for ~ser's ~implified !:!andling) and 
DOC. 

The F LUSH processor (see 21.2) can be used to generate flowcharts from assembler·format input. It can: 

(a) be directed through the use of option parameters coded in the comments field of the instruction; or 

(b) perform an analysis of the assembler instruction statements. 

The DOC processor (see 21.3) is used to produce properly formatted printed listings of a document and to update a 
document. The document is simply a symbolic element in standard format and it may be manipulated by the FURPUR 
processor (see Section 8) just like any other symbolic element. 

Control of the document is provided in the following ways: 

m @DOC control statement options 

13 Control commands within the text that provide: 

- listing control 

- text control 

• Editing commands that permit: 

- input line image editing 

- character string editing 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 21-2 
U P.NUM8ER PAGE REVISION PAGE 

21.2. FLOWCHART GENERATOR (FLUSH) 

The F LUSH processor accepts assembler·formatted input and produces a flowchart. The F LUSH processor is called by the 
@F LUSH control statement. 

All parameters in the @FLUSH control statement are required except the label and options parameters which are optional. 

The format of the @FLUSH control statement is: 

@label:FLUSH,options eltname 

where: 

options 

eltname 

The options are: 

F Specifies that the symbolic element is a FORTRAN element. 

Specifies that the symbolic element immediately follows the @FLUSH 
control statement. 

U - Specifies that the symbolic element is to be updated by the images that 
immediately follow the @FLUSH control statement. 

Names a symbolic element located in the temporary program file (TPF$). 

The following are restrictions which apply only to FORTRAN elements. All other descriptions of FLUSH apply to assembler 
as well as FORTRAN elements. 

(1) The 8, C, 0, L, R, and S directive options may not be used with FORTRAN elements. 

(2) FLUSH code in FORTRAN elements can only be used on FORTRAN comment lines (indicated by a C in column 1). 

(3) Labels, when used, must immediately follow the C in column 1 (Clabel:); C is not considered part of the label, but must 
appear. If there is no label, there must be a space after the C and before the period to mark the beginning of the FLUSH 
comment. 

(4) Characters in columns 72·80 of a comment line containing FLUSH code may interfere with the box text editing unless 
the box text begins in or before column 11. 

(5) The F option must always appear in the @FLUSH control statement to indicate FORTRAN symbolic elements. 

21.2.1. GENERAL OUTPUT 

F LUSH searches for labels and F LUSH directives, and then produces the following: 

(1) a listing of the source input; 

(2) a listing of all jumps sorted by source; 

(3) a listing of all jumps sorted by destination; 

(4) a listing of all labels encountered either in the label field or as destinations of jumps, along with their boxes of 
definitions; and 

(5) box numbers included on the printed flowchart to be used as a reference in conjunction with the listings of labels and 
jumps. 



I 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 21-3 
PAGE REVISION PAGE 

"-.-~ .. 

21.2.2. OPERATION MODES 

FLUSH operates in two modes (instruction or comment) which are determined by FLUSH directive options. FLUSH 
directives are found in the comment field. The format of FLUSH directives is: 

$<options> <content> 

where: 

options 

content 

A string of alphanumeric characters, terminated by one or more blanks, which are the primary means of 
directing the processor. Each available option is discussed in 21.2.3. 

A string of up to 60 characters to be inserted into the box generated in the flowchart. 

The following restrictions apply to F LUSH directives: 

m There must be exactly one blank between the period and dollar sign. 

1'1 A semicolon (;) specifies continuation and may be used where necessary within the content string (see 21.2.4). 

The FLUSH processor operates in the comment mode when analyzing an element. Under comment mode (assumed initially 
or set by the D option), the F LUSH processor scans only for the label field, F LUSH directives, and location counter 
declarations. Comment mode continues until the F LUSH processor encounters a statement containing an R or C option 
which activates full or limited instruction analysis, respectively. A return to comment mode requires a directive containing 
the 0 option. 

In either mode, location counter declarations are interpreted so that the coding is flowcharted starting with location counter 
1, followed by all the odd location counters, location counter 0, and all the even location counters. If no location counter is 
specified at the beginning of an element, location counter 0 is assumed when beginning analysis. 

The instruction mode begins with a directive containing the R option and continues until the FLUSH processor encounters 
the b option (resets comment mode). In the instruction analysis mode, the FLUSH processor produces the following: 

(1) a processing box for each processing instruction including loads, stores, and arithmetic instructions; 

(2) a decision box for each test instruction; 

(3) a decision box followed by a change of sequence for each conditional jump; 

(4) a change of sequence for each jump instruction; and 

(5) a subroutine box for each Load Modifier And Jump (LMJ), Store Location And Jump (SLJ), and Execute Remote 
(EX) instruction. 

The FLUSH processor ignores the DO statement, turning coding off and on with DO/PROC combinations flowcharted as two 
sets of coding. Upon encountering a PROC or FUNC, the F LUSH processor increments a counter and disregards all coding. 
When a corresponding END statement is found, the counter is decremented and, if it is zero, interpretation of coding 
resumes. 

The F LUSH processor produces the following symbols and abbreviations when interpreting source language codes: 

[] contents of 

<= is replaced by 

INO indirect addressing 

(+) floating-point add 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 21-4 
PAGE REVISION PAGE 

(/) floating-point divide 

(*) floating-point multiplication 

(-) floating-point add negative 

H+H add halves 

H-H add negative ha Ives 

T+T add thirds 

T-T add negative thirds 

absolute value (a field between two colons) 

EVEN parity 

ODD parity 

Partial words are indicated by standard mnemonics after the referenced field. 

21.2.3. FLUSH 01 RECTIVE OPTIONS 

Table 21-1 lists the FLUSH directive options, types, and interpretations. 

Option 
Type Purpose of Option Type 

I Indicates the type of box to 
be generated 

II Supplies additional information 
to influence previous options 

III Generates certain boxes but does 
use the content parameter of 
the directive 

IV Controls instruction analysis 

V Analyzes specific assembler 
instructions 

*Does not apply to FOR TRAN elements. 

**See 21.2.5 for box formats. 

Option 
Character Option Description 

I Produces an I/O box* * 
J Produces a connector (change of sequence)** 
P Produces a processing box** 
T Produces a decision box** 
W Produces a subroutine box** 

A Specifies alternatives for a test 

E Produces an exit box** 
H Produces a header box * * 

B Disregards location counter* 
C Ignores operation and operand fields except for 

INSTAB flags* 
D Sets comment mode * 
N Applies options to the following statement 
R Negates previous C and D options* 

L I nterprets the LMJ instruction as a change 
of sequence rather than as a subroutine call * 

S Interprets the SLJ instruction as a change of 
sequence rather than as a subroutine call* 

Table 21-1. Summary of FLUSH Directive Options 

'~"" . 



\'--. .. / 

4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 21-5 
PAGE REVISION PAGE 

21.2.3.1. TYPE I OPTIONS (I, J, P, T, W) 

Produces an I/O box 

J Produces a connector (change of sequence) 

P Produces a processing box 

T Produces a decision box 

W Produces a subroutine box 

In the instruction mode, these options prohibit the interpretatio:"! of operation and operand fields for the directives in which 
they appear. Options I, P, T, and W always produce a box containing up to 60 characters scanned from the content 
parameter. If more than 30 characters are in the content parameter, the box contains up to three lines. 

Only one type I option may be specified, but it may be specified in combination with option types III and IV. 

Unless otherwise specified, there are two alternative test results: NO for test fails, and YES for test passes. The normal test 
fails destination is the next box in sequence. Example 1 shows the output of the F LUSH processor when no A option is 
applied (see type II option). 

Example 1: 

LABEL ,\ OPERATIOH 
10 20 

;\ OPERAND 
30 

,\ 
40 

COMMENTS 
SO 

t--'---'--J.--L.... .. L ... L_.L.. .... L .. L~ ... L .. I~L :T,\-t I !~J.J$..Lm-1~ ;T,ES:Tt .... 1 .. _.l-LL .... L.L-L..l.......L.J..._ ... l ..... -1......L...L.--L...l._L .. .l .... 1 ........ !_....l........L....LJ ... J ....... l ....... 1 ..... . 

.... 1 .... L..L_L.L..J~$;P,--,-~~)5.J.-L._J~~@.'1l<1 ,H ,E.;R j;L ... L . .l .J ..... 1... I I I , .. .L ...• .l._ .. L . .i._L ..... L .. _LJ.....J....-L.. ... L .... L ..... L ..• L.L_L .... L . .L.l. .... 1.. ..... I ....... L .. . 

I--'--'--J-...L_LLL..LLJ~-Pi ! FleJ!LIb-~~A.:t~ i ;B,~!X ...LL1 ... ! , ! 1 I I .J.. .... L.1 ...L-..L....JI'---l.! -L....l.J .... L . ...l.!~1 -l1--L.......l........L1 ...• 

. _L.J.-i. i , , ! I I I I 1 1 __ L_L •.• L. .... L 1 1 I ! ! ! I .....L..l.......L ... L-L.L . ....J1L.-L--L-L-.....I-...l.! .L_LLJ--L' --,-I ..... 1-.1........1........1.1 ...... 1... .... 1. . 1 I 1 I 1.......L....l ...• L ... J. __ 

Produces: 

? 

V 

???????????????????????????? 

THIS IS A TEST ?->: 
YES 

???????????????????????????? 
: NO 

2 v 
******************************** 
* 
* 
* 

NEXT BOX HERE 
* 
* 
* 

******************************** 

3 
: <.----
v 

******************************** 
* * 
* 
* 

FOLLO\vI~G BOX * 
* 

******************************** 

v 

The numbers above the left corner of each box are the box-numbers. 

v 

A decision box having more than two branches is generated by a one-digit numeric character, specifying the number of 
alternatives, directly after the T. All n alternatives and at least n-2 destinations must be specified by the A option. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 21-6 
PAGE REVISION PAGE 

21.2.3.2. TYPE II OPTION (A) 

A - Specifies alternatives of a test 

The A option must immediately follow the test to which it applies. Alternatives are placed in the comment field and are 
separated by blanks. The number of alternatives must match that number specified for the test. If a test has two alternatives, 
the A option is optional; if it has more than two, the A option must be used. 

The A option may also be used to change the sequence as applied to a test. The format of the comment field is: 

<alternative> [,<destination> ] ... < alternative> [, <destination> ] 

The first alternative, without a specified destination, applies to the next box in sequence. The second alternative applies to 
the box following the next box in sequence, and so on. 

Example 2: 

LABEL i\ OPERATIOH 
10 

OPERAND 
20 30 

/\ 
40 

COMMEHTS 
50 

_.l.-Ll....J..._.L .. J... .•.. l.~.L ... l~J' , ,TIE;STI ... _ .. L.._ .. l... ..... L...J. ' I I I , , I . ..1 ...... ...L.1 I I , I , I ..... L I , I I I I .1 ....... L .. 1...._L ... L..L_L ... L1 ..... .1 • 

. _ .. .l ....... .l. ..... .L ... LL.l_J 1-' '$'AL.L...J3.1A.l?L.~.l~~"'D, L . .1.. ..... L . .L ... L..1 ........... --'--'--..... ,. _J. .... ...L . ...J...J-' ...... 1._J.--'---L-L ... l ..... 1 ..... l ..... ...L.J .. .....L-.L..l.-L .. ...1 .•.... L .•..••• ..1 .• 

f---!--L-..L.....L.J ...... L ... ~~ "PI I ;BISXt.....J_L.L I I 1 I ....l.....J....J.--<-1 -'--'---'--.l...-'-...LI --<-' ....... 1--,-_1-1. , I , ' .... Ll 

, ' . .....L.l... •• L....l . ......L--'I--'--'--'--...L.-Ji..--L1 ... .L....l---L.-l-I -I.'--'---'-......I.-..LI ...... Ll. , I I 

I I , I I. 

, , I I I 1 I I I 1 1-'.-L ...... l.........L.I I , , , 

Produces: 

Example 3: 

LABEL .\ OPERATION 
10 20 

1 
1 

1 

4 v 
???????????1?????1???????1?11 

? 
TEST 

GOOD 
?1?1??????????1???1??11???111 

: BAD 

5 v 
******************************** 
* 
* 
* 

BOX 
* 
* 
* 

******************************** 

1->: 

v 
V <---------------

OPERAND 
30 

!\ 
40 

COMMEHTS 
50 

t--'---'--'-.....L........l...J..._.L.L.. •.. l.~...l .... _~L I IT, E1SiL ..... .J ...... L .. L._L I I I I I • I .. ..l....-l.-L . .L-L....l I I I ' .•... 1... . ..1 , , I J I . ...1 ...... .l ....... L_L .... L_LL_Ll ... 1... 

._ • .l ..••.. L...L .... .L._L.j_L_LL....£A-L . ..§.-1etc.tDj., ... l.6!..L...L-l..lt~j)...l..,JL.~.l ...... _l._...L..L...L...L ... l •... l. ...... LLJ_ ..... .l ...... J_..L.....L...J.. .•• l .... L .. 1... ..... L .. .l .. ....L.L.....!_L.l._ .... L._ ... .l ... . 

.L.L..1._..l. .... _L--L....Ll---L.l 1 I I 1 I. L . ....L._L.L.l ! I I 1 I I I ..1 __ .1 I I I I I 1 1 I I .L.....L... I I I I I I ...l ... _L ... L I I I I I I . 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 21-7 

". Produces: 

Example 4: 

LABEL ,\ OPE RATIOI'{ 
10 

6 v 
111111????1???11????1111111?? 

1 1 
1 TEST 1->: 

1 BM 
?11111?11111?1?1???111111111? 

GOOD 

v 
1 **** 

* Ll " **** 

: < 
V 

8 **** 
* L2 " **** 

OPERAND 
20 30 

V 

A 
40 

PAGE REVISION PAGE 

COMMENTS 
50 

__ L..LJ. __ L .. l..._.J.... __ i .... _ .. l.~ .. J. ..... ~jTl. I ,T,E,~L._ .. ..J. ........ L.._L. __ L : I j I ! L_L.L....LL....L....L...l..-l...-L-L ... l. ... _ I I I I I I .. 1 ... .. L __ Ll.........l-L..l __ L_L .. ..i .. 

1 .... _.I_ ..... .l .... _J ..... _.L __ l __ .J_.j-.l .... ..1.A~Ll.....JfJ.1KL ... _L...:P.~~~Il ..... L .... _1 ....... ! .. _ ... _I __ ...J..1---L....J..-J....! _..l __ ._.l._.L.l._L __ l .. _ .. _l_-L-L...L...._L .. L .. L .... .l __ J. . ........I.-.L...L..l ...... _I ...... _1.. 

_L.._L .. l._ .. _l.. .. L_LL.1.~J'P1 I l31~.~ .... _L.._LL1_ I I 

__ L._.L......L.J .. -I . .......l. I I I LL-Ll __ L..l. .. _ ... L._L I I I I i 

Produces: 

9 V 
1?????1??11???1111???11111111 

1 1 
1 

1 
TEST 

OK 
11111111111?11111111?111?1??1 

10 POOR 

v 
**** 

* EXT * 
**** 

: < 
11 V 

******************************* 
* 
* 
* 

BOX 
* 
* 
* 

******************************* 

v 

I I 1.-l .. _L I I I I L 

I _._L.l---l..1 -J1L.-..L--J....-I.1. -L-L_L.L 

1->: 

V 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 21-8 
PAGE REVISION PAGE 

To generate multiple branch decisions, the decision box must be generated with a T option. The alternatives and destinations 
must then be specified on the following by using the A option. 

Example 5: 

LABEL ,\ OPERATION 
10 

OPERAND 
20 30 

i\ 
40 

COMMENTS 
50 

f--'--L-1-..J.........l.-1.. __ .J ........ L ..... .l.: ... 1. ....... j$..1I!~~~lHI ..... L . ..1 • ....L..L...1 , I ! L ... i._ . .L..L.......!............L . ..L..1......... . .-L ..... .l ...... l .. -L..l._-L...L..1._.1 ..... L ...... I ..... .J.......LJ_l._._L ..... .l ...... 1 ... . 

L ... L.L.1_L..L~L..1 .... 1J. . .l' ... !b.A.;B.JJ.l 2! ,31 '_L~i~B.a.!. ..... _L':l" ,LA l3.1~.1. •... S.1,Jb.i\.~.L .. _L •.. l .... L. .... LJ.J_L_L .. .L .... L. ..... L ..... L .. . 

f--'--'--.'-_J. ..... ...I._-1 ...... .L1_L_L.&1?1 I ,~,1.E~T . ..L ..... IB~~, 1 I I I , 1 .. 1. ..... 1 I I ! , I ...L . .J. ..... .1 I I L..1 ... .1 ....... 1.. .... 1 I I 1.... 

-1. __ 1.. ... .1.....J.-1...J I I I I I I ... LL.._L .. l1. ..... J... I I I ! I ! _L.l..-1 ...... l... ..... L.L.l........II--L-L--'--..L.....I.! ._...l._ .... J .... .1... I I I I 

Produces: 

Example 6: 

LABEL ;\ OPERATION 
10 

1 v 
???????????????????????????? 

? ? 
? BRANCH ? 

? ? 
???????????????????????????? 

**** 
---> * LAB 1 * 

**** 3 **** 
* LAR3 *<---

**** 4 **** 
--->* T..AB4 * 

**** S **** 
* LABS *<---

**** 
2 

6 V 
******************************** 
* * * NEXT BOX * 
* * 
******************************** 

V 

i\ OPERAND 
20 30 

i\ 
40 

L .. ..l ........ L._ ... U-L.L.l---L_l ..... L ... L. 

COMMENTS 
50 

.L.L...L..L_.L.. .. ..l ......... l.~ ... L ... j~.t5 I Jl.-&~N~.IH. .... ..1-L I I ! I I I ..... L. •.• L-L..J.-1 ...... L....L....L.L_l ...... l. ....... L.L...l ... J_L ... L ... l ..... L ..... L . ...L.L.L...l .... ..1 .... 1.. ..... 1... ... . 

L .. .l ....... .l ...... ..L ...... L.LJ_.L...L..L.j~L.L .... l ... _ .. Ll.L1 .. 1.bJ~r:a.l..L .... ~....J.~L'.L~ .. i~.:e.!3..L1h...~1b.A.J3..5.L ..... .l ....... L .. L.LJ.. ... __ L •.. .1 ..... ! ... L ... L.J_.LL ... L. ... L.L .... .1 

.l.....L .• L . .J. ..... .L~~"1 1 I ,N,~K;rL ... ~~_.L..L.L...l_L .. L ... J..-1 .. I I I , .. 1......L.1...J._ . .1... .. .1 .... _ . .1.... .. 1. I I I 1._ .. ..L ...•. L .... L. ... l-1....L..L .. Ll. ...... 

.... _L . .J-L . .J.-1...J I I ,- I r$;PI __ L ... L ... .I.E&1.tblL~!W.:I!N.&L_..L~.~._.l... . ...L...L..L..J_LL1 ..... _J ....... 1. ... L...I I I , I .... L. ... 1. ....... I... ...... l....L.L..L...1---L_l ....... L .... L_ 

/' 



I 

\ ..... 

4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 

Produces: 

21.2.3.3. TYPE III OPTIONS (E, H) 

E Produces exit box 

H Produces header box 

1 
1 

1 

1 v 
11111111111111111111111111111 

1 
BRANCH 

1 
??11711111111111111??11111111 

**** 
-->* LABl * 

**** 3 **** 
* LAR3 *<--

**** S **** 
-->* LABS * 

') "**** 
.: 

5 V 
******************************** 
* 
* 
* 

NEXT BOX 
* 
* 
* 

******************************** 

6 v 
******************************** 
* * * FOLLOWING ROX * 
* * 
******************************** 

V 

PAGE REVISION 
I 21-9 

PAGE 

1>: 

v 

The E option indicates that this box (or the last box generated if the E option does not appear in the directive which 
generates a box) is the end of a chain of coding and should not be connected to the next box in sequence. A triangle 
containing the word EXIT is generated to terminate the chain. When applied to a decision box, an exit triangle occupies the 
position for the test fails condition, and is considered to be the next box in sequence. 

The H option indicates that this box is the head of a chain (the box at the top of a new column). Preceding this box is a 
triangular box designating the entrance to the chain of coding. If a label is specified, it appears in the triangle. The word 
ENTRY always appears in the triangle. 

Example 7: 

LABEL ,j. OPERATION A 
10 20 

OPERAND 
30 

1\ 
40 

COMMENTS 
50 

_ .. ..LL_l..-L .. _L.. ... l... ..... l ..... .JTlgJ..'J.WI I I I 1-1 ..... .8.19..l .. '-J Ii' " ,I ... l..-L_.L-L..L . .L...L.-L·....LJ~h~ I I I i I _..1 ........ 1... ..... 1... I I I I ...1. .. _.1.. ..... L ... .. 

.... _L_,J .. : ..... L ... L.L ... ..l-'--!..-L~l-L ... ...l .... 1.. .... ,L .... L .. L .. ll\lO, , ,L ,fJ,CL ..... l. ... I ....... .l..._1... ...... L ! _.l ........ L .. L_ .. LJ ........ l ...... ,J-L..l...-L. .... l ....... L ... l ...... .J_ .. l......L..L..l-1 .. _ .. J. ........ l ....... l .... _ 

, I I I I I ~ ... ...J I I j I I I..._L. .. L .. I I I ! I-L ... 



4144 Rev. 2 
UP·NUMBER 

Produces: 

Example 8: 

LABEL .\ 
10 

UNIVAC 1100 SERIES SYSTEMS 

OPERATION 

1 v 
?????????????????????????????? 

? ? 
? 1-AO ?->: 

20 

? RS 
?????????????????????????????? 

NO 

v 
********* 
* EXIT * 
* * 
* * 
* * 
* v 
: <----------------

2 V 

******************************* 
* * * AO<=[AO]+[LOC] * 
* * 
******************************* 

v 

OPERAND 
30 

/\ 
40 

PAGE REVISION 

COMMENTS 
50 

21-10 
PAGE 

.-......--L.--'--'--.l.-1.. __ .J... .... l. ....... l...lI~_ I ! , I I ! L. .. ...J.A19L.! ! , ! ! ! ! I ._ .. L-L..! !!" I _1... ...... 1--'---'---1-' -"'--II_..L._1. . I , I , '-1._L.-1 .. . 

IA, 1 l---L_....I.. __ ... LLLL ... IAP I , ,L I~!C LJ.._._LL . ..l. ... __ l.-L..-'--J.-....J..I_L .... L .. L~l....J~J.I;;"'-.......... --'-, . ....L_L-L ..... Ll........L..L..l---L_L .. _I--.l .... 

_LL-1_._J._ .. _l.--L._LL.L.1 I I I I ' ....... 1..._L_L_Ll.. I I I I ,.........LL.J. .. __ .L1 --'---1---'--'-'-' __ ''---1'--1..'--1...' --1....' _'L--'--'--..o..' --1-' _I,--,'-...&..I .J ! 1 I I , I I 

Produces: 

3 v 
??????????????????????????? 

? ? 
? [AO]=O ?->: 

? YES 
??????????????????????????? 

NO 

4 v 
********************************* 
* 
* 
* 

AO<=[AO]+[l.OC] 
* : 
* 
* 

********************************* 

v 
********* 
* EXIT * 
* * 
* * 
* * 
* : <-----
V 

NEXT BOX 

v 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 21-11 

Example 9: 

LABEL ,\ OPERATION 
10 20 

i\ OPERAND 
30 

/\ 
40 

PAGE REVISION PAGE 

COMMENTS 
50 

... L. ... LJbJ.,_J.~~tJ.._..L.L-LJ-l .. JA.IQL'_J...LL.J. I ! _L.L._ . ..L...L....J-L...J._--'---...L':...LJ.$l.~........J. ! I I L ... .l ........ l.. ...... L . .J.-L.....J..--_-L ..... l ....... l... 

....... .I ....... .J ...... L ...... L ... l .. _J. __ J... __ L .. ~Ll __ L .. L .... L ..... L ... .l ... _ ... L. ...... 1.I1A..:B~...J.&.LL._L ... L._.L ... L ..... L I ; _.L ... .l._ .. L~_.L ... l$;P..l_~Tl..._.l~I~LAi&~~LJ:;;R ..... .l .. 
. .L .. _J ...... L ...... L ... LJ._.Lls.b~ I ! I L __ l .... _L. .. ..l$.».J-:B~ I I I I ...LL.J ....... .L I '! I t I '_L-L .. ...l I I -1..-1. __ 1. .. _1.....J. I I I I L 

Produces: 

********* 
* LABEL * 

*ENTRY* 
* * 
* * 
* 

v 
******************** 
* 
* 

AO<=1 * 
* 

******************** 

2 V 

******************** 
* GET CHARACTER 
* 

* 
* 

******************** 

3 V 
******************** 

* * 

21.2.3.4. TYPE IV OPTIONS (8, C, D, N, R) 

8 Disregards location counter 

* 
* 

SUER 

******************** 

4 V 
**** 

* RETN * 
**** 

C Ignores operation and operand fields 

D Sets comment field 

N Applies options to following card 

R Negates previous C and D options 

* 
* 

. ..L-L-.L--L-LI-L._L .... l.. .. _L 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 21-12 
PAGE REVISION PAGE 

The B option overrides location counter specifications in the directive in which it appears and all following directives and 
interprets coding in the order of input. 

The C option discontinues instruction analysis except for certain instructions which include tests, jumps, SLJ, LMJ, and ER 
instructions. Full instruction analysis is continued when an R option is encountered. 

The 0 option is similar to the C option except that it applies to all following directives regardless of the instruction. The 
comment mode continues until an R option (instruction mode) is encountered. 

The N GpdOn applies all following options to the next directive and not to the current directive. 

The R option resumes interpretation of operation and operand fields of the current and subsequent directives and negates 
previous C and 0 options. 

21.2.3.5. TYPE V OPTIONS (L, S) 

L I nterprets the LMJ instruction as a change of sequence rather than as a subroutine call 

S Interprets the SLJ instruction as a change of sequence rather than as a subroutine call 

These options apply only in the instruction mode and produce a connector rather than a subroutine box. The connector 
contains the six-character label found in the address field of the LMJ or SLJ instruction. 

21.2.4. CONTINUATION REQUIREMENTS 

When it is necessary to continue FLUSH documentation on a second card, the continued line is differentiated from program 
documentation by the characters, period-blank-dollar-blank (. $ ). This character string is followed by the rest of the 
comment from the previous statement. The required string (. $ ) may start in any column, but only one blank may appear " 
between the dollar and the cohtinued text. 

The semicolon (;) identifies a comment to be continued and may appear in one of two positions. 

(1) Immediately after the last character in a statement if that word is continued on the next statement. 

Example: 

LABEL ,\ OPERATION .\ 
10 20 

OPERAHD 
30 

;\ 
40 

COMMEHTS 
50 60 

_.L..l_L.LJ __ Ll. ... LJ$I-1J$,2, I I ,..J-.J .... .JA&ttJO"X:2., ,I .J . ..J.'-L-.l-.J.......II---L-I ..J..1·..J.I_r$.lJlI S,E~, S.2..LJ;1~~ML;.J ... LJ......L..l . 

•... I .... _J.......L ... L_L..L....J.........L.l..l......LJ.........J. ..... .l .... .I ..•• .l ... _.J_ ..... l. ..... I.......J....I ~-'--''-.L .. ..I. ...... l .•.. ..L....L_L_..J..I--'-J........J_l-L~$J. . ..I.~~'&._1~~~ .. t.;~ly.~J_ . .l . 
• L..L .. ..L..L I I I I I I I I I I .1 I ..... L_L . .L.J.-l.-.l..-I.-...I..-I ..J...I ....l.......J.....LI....J....1 -L1-..L.....l-...L-J-..L.--L_...L....JL.......J..-L. . ...1-~-L.....L:.....L.I . ..L..LLI ...L.....L......L-L.....l..-I.I. __ .. 1_.1....1 ...J........~-l-

(2) One blank after the last character in a statement if that word is complete, but more words follow in the next statement. 

Example: 

LABEL ,\ 
10 

OPERATION .\ 
20 

OPERAHD 
30 

COMMENTS 
50 60 

.............. ..J--L--'--. .J........L ...... L.. .. LLJ'PJ~L.l I I , 1 , ,_JAQ..l1.JS:P,L;fW:D, I J.-L-Ll........L..L I I- I ';PI ,$,HLF,T~.~JP.b;rW~_.l~.U~,~.lJb......t.U 
--L....l-L..J._.l-L.....1._ .. 1_._L.L..l. .. _.l ...... LI ..L....J-L....l.-.L . ...I .... I_ .• .LJ_....L..LI .....I.-.L...L......I-..L .. L~I ,"P,RO',EJ;~L_~a.U ,w L._..I.AP.JE1~~.L_..I._ 

t--J-..J.-.L.....l._.l.....L I t I I I I ! t I I 1.....1.. . ...Li....t J I I J 1 1 I I I I I I I I I 1 I I I 1 I 1 I I 1 I I 1 I I 1 I I , 1 L .1-1 I I 1 1 

This f.ormat also applies to statement with the A option which may require continuation~ 



\ 
"--' 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 21-13 
PAGE REVISION PAGE 

21.2.5. SUMMARY OF BOX TYPES 

**** 
Connector: * * 

**** 

??1????????????????? 
? 1 

Decision: ? ? 
? ? 

????????11????1??1?1 

********* 
* * 
* * 
* * Entry and Exit: 

* * 
* 

******************** 
* * 

liD: * * 
* * 
************ 

******************** 
* * 
* * Processing: 

******************** 

******************** 
* * 

Subroutine: * * 
* * 
******************** 

21.3. DOCUMENT PROCESSOR (DOC) 

The DOC processor can be used to produce a properly formatted printed listing of a document or to update a document. The 
DOC processor is called by the @DOC control statement. 

All parameters in the @DOCcontrol statement are optional except @, DOC, eltname-1, and eltname-2. 

The format of the @DOC control statement is: 

@label:DOC,options eltname-1,eltname-2"FASTRAND-pos 

where: 

options 

eltname-1 

eltname-2 

FASTRAND-pos 

See Table 21-2 

Specifies the symbolic input element (see I option - Table 21-2) 

Specifies the symbolic output element 

A one- to three-digit integer which specifies the number of FASTRAND positions to be 
used. If omitted, a maximum of 10 positions is assumed. Two consecutive commas must 
precede this parameter when it is coded. 



4144 Rev. 2 
UP-NUMBER 

Option 

A 

D 

F 

H 

L 

M 

N 

S 

W 

x 

UNIVAC 1100 SERIES SYSTEMS 21-14 
PAGE REVISION PAGE 

Description 

Prevents ERR$ termination in case of an internal error. 

Inserts the current date in columns 51 through 59 of the title on each page (but not in the output element) in 
format dd mmm yy. 

Allows insertion of paragraph titles in the table of contents. 

Turns off automatic hyphenator. 

Accepts input element from run stream. When the I option is used (input from run stream), eltname-1 is not used 
and eltname-2 must be preceded by a comma. 

Lists information from internal control as flags in the right-hand margin. 

Moves line numbers within the margin guides and appends an asterisk (*) if the line was newly inserted or altered. 

Produces no listing. t 

Produces single-spaced listing (otherwise, assume double spacing).t 

Lists correction directives. 

Aborts run if table of contents overflows or input element is empty. 

tMay also be requested by internal control directives. 

Table 21-2. @DOCControl Statement, Options 

21.3.1. OUTPUT LISTINGS 

The first image in a document is the title. It may begin in column 1 and extend to column 59 (column 49 if D option is used 
- see Table 21-2). The title of the document is printed at the top of each page, with the current date suffixed if the D option 
is used. The chapter and page number follow; a hyphen separates the two numbers. The maximum number of characters 
allowed in this field (numbers and hyphen) is six. Two identical lines, each containing two periods, are printed below the 
title. The periods indicate where to trim the standard printer form to 8 1/2-inch width. The M option controls the horizontal 
position of the periods on the page. 

The text (up to 50 lines) appears below the title and page guides. The line numbers of the output element are printed in the 
left margin. To the right of the text, *NEW is printed if the line was inserted or altered. If the L option is specified, the first 
letter of the directive on each internal control directive is printed in the far right margin. The letter may be followed by a 
number if the control directive uses such a specification. 

Hyphenation at the end of a line is automatic,except when directed by the H option or the HYPHEN control directive. When 
a document is modified, hyphenated words are joined together when necessary. However, when constructing tables, a SPACE 
a directive must be used where required to prevent text composition from occurring; text can not extend beyond column 66. 

21.3.2. INTERNAL CONTROL DIRECTIVES 

Internal control directives are distinguished from text by a nonblank character in column 1. The types of control directives 
available are described in the following paragraphs. 



4144 Rev. 2 
UP.NUMBER 

21.3.2.1. TITLE CONTROL 

UNIVAC 1100 SERIES SYSTEMS 
PAGE REVISION 

21-15 
PAGE 

Title control directives have one of the digits, 1, 2, 3, or 4, in column 1, followed by text, which is the title for that portion 
of the document. This title has nothing to do with the title of the document (the first input image). Four counters are 
maintained by the DOC processor: chapter, section, subsection, and paragraph, in that order of precedence. Table 21·3 
describes the functions of these counters and respective control directives. 

Digit In 
Counter Description Column 1 

4 Chapter The chapter counter is increased by one; 
the other three counters contain zeros. 
The chapter number is edited, followed 
by a period, followed by the line of 
text. The line is printed and inserted 
in the table of contents, followed by 
the page number. A page eject always 
occurs before the line is printed. 

3 Section If the chapter counter is zero, it is set 
to one, and the other two counters contain 
zeros. The chapter and section numbers 
are edited; the line is printed and 
inserted in the table of contents. 

2 Subsection If the chapter or section counter is zero, 
it is set to one; the paragraph 
counter is set to zero. The three 
counters are edited; the line is 
printed and inserted in the table 
of contents. 

1 Paragraph Similar to subsection control except that 
the F option must be used to insert 
the paragraph title in the table of 
contents. 

Table 21-3. DOC Processor, Title Control Directives 

A page eject always occurs when the chapter number is changed. Appropriate spacing is performed before and after printing. 
The image inserted in the output element is the original image with a digit in column 1, not the edited image as it appears on 
the listing. In the table of contents (printed at the end of the listing), the section, subsection, and paragraph titles are 
indented to the right. Since the numbers are inserted at the left and the title is right-shifted, chapter, section, and other titles 
must not extend too far to the right. If a maximum of approximately 45 characters is exceeded, the image on the listing is 
truncated (the line image in the output element is unaffected). 

21.3.2.2. LISTING CONTROL 

Listing control directives specify the appearance of the listing. The format is a directive word, beginning in column 1, 
extending no further than column 6. Table 21-4 lists the directives and their functions. 



4144 Rev. 2 
UP-NUMBER 

Directive 

DOUBLE 

EJECT 

INSERT 

LIST 

REMAIN n 

SINGLE 

SPACE n 

UNLIST 

UNIVAC 1100 SERIES SYSTEMS 21-16 
PA GE REVISION PAGE 

Description 

Cancels the SINGLE directive or the S option on the @DOC control statement. 

Ejects paper to begin printing new page. * 

Inserts up to 66 characters, beginning in column 13, into the table of contents. 

Turns on the listing. Cancels the UN LIST directive or the N option on the @DOC control statement. 

Ejects paper if fewer than n lines (an unsigned integer in columns 8-9) remain on the page. If n is omitted or 
is zero, the paper is not ejected. * 

Same as the S option on the @DOC control statement. 

Spaces paper down n lines, where n is an unsigned integer in columns 7-8. A page eject occurs if fewer than 
n lines remain on the page. If n is omitted, 1 is assumed. If a blank image is in the input, it is converted to a 
space directive with n omitted. If n is 0, no spacing is performed (SPACE 0 has a special function - see 
21.3.2.3). * 

Turns off the listing. (Same as the N option on the @DOC control statement.) 

*When in the UNLIST mode, the EJECT, REMAIN, and SPACE control directives are ignored. 

Table 21-4. DOC Processor, Listing Control Directives 

21.3.2.3. TEXT CONTROL 

The DOC processor assigns proper margins to the text that appears on the listing (and in the output element). This is 
accomplished by moving words (strings of consecutive nonblank characters) and strings of blanks from the input line to an 
output area until it is filled. The output line is then printed and sent to the output element. Control over this process is 
available by using the COLUMN, HYPHEN, and SPACE 0 directives and an input line with a 0 in column 1. 

The text movement and line composition are terminated under the following conditions: 

ill start of a new paragraph, 

• recognition of a control directive 

A new paragraph is recognized by a text line (not a control directive) on which the first nonblank character is not in the 
previously specified column n. This includes both indention to the right and extension to the left. For this reason, all lines to 
be moved must begin in column n. The COLUMN directive is used when text is indented. 

The format of the COLUMN directive is: 

COLUMN n 

where n is an unsigned integer in columns 8-9 designating the column used as the left margin for the text. The integer must be 
greater than 1 and less than 61. If n is omitted, 2 is assumed. Column 2 is in effect until the first COLUMN directive appears. 
When the movement of text to form complete lines is halted, any partial line already created is printed and a new line begins. 

The HYPHEN directive suppresses/activates the automatic hyphenator as needed. The format of the HYPHEN directive is: 

HYPHEN mode 

where mode begins in column 8 and is either ON or OFF; it designates that the automatic hyphenator is to be turned on or 
off, respectively. 



". ...... . 

L 

4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 21-17 
PAGE REVISION PAGE 

Two special directives are available to halt text movement. A SPACE 0 directive stops text composition and begins a new line. 
The identical effect is obtained by placing a 0 in column 1 of a line, the text of which is to begin a new line. On the output, 
the 0 is replaced by a blank and the line is preceded by a SPACE 0 directive. A SPACE 0 directive or a 0 in column 1 of a text 
line is deleted if it appears where text movement is stopped because of another control directive or the start of a new 
paragraph. 

21.3.2.4. EDITING CONTROL 

Line image editing is provided by standard correction lines.in the format common to all processors (see 9.5). 

Character string editing is the manipulation of character strings on a particular line image of the input (text or control 
directive) in the run stream or input element. Character editing directives have an ampersand (&) in column 1, but are 
otherwise free form. They immediately follow the line to be altered. 

Examples: 

• To correct line 18 of the input element: 

-18 
& ... 

• To correct an image in the run stream: 

<BAD line> 
& ... 

The character correction lines have four formats. In the following format descriptions, the slash (/) is used as a character 
string delimiter; however, any nonblank character which does not appear in the text on the line may be used. Only one 
character may be used as the delimiter on a card. The first nonblank character on the card (after the ampersand in column 1) 
is the delimiter character for that line and any number of blanks may precede it. 

Format 1: 

&I<oldtext> l<newtext>1 

The line being corrected is searched for the first occurrence of old text which is replaced by new text. 

Format 2: 

&I<oldtext> I<newtext>/* 

Similar to format 1, except that every occurrence of old text is replaced by new text. The asterisk must immediately follow 
the third delimiter. If a character other than asterisk is used, format 1 is assumed. However, this does not preclude the use of 
the asterisk as the delimiter. 

Format 3: 

&1 I<column-nbr> l<newtext>1 

The newtext string is inserted in the line to be modified beginning at the column specified by column-nbr. 

The insert overlays any previously existing characters. The first two characters after the ampersand are consecutive delimiters; 
no characters may separate them. The column-nbr may be stated or omitted. If it is omitted or contains a nonblank or 
nondigit character, the value assumed is the value on the most recent COLUMN directive. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 21-18 
PAGE REVISION PAGE 

Format 4: 

& II<column-nbr>1 

The first nonblank character, after column 1, on the line being altered is placed in the column specified by column-nbr. The 
entire character string is shifted to satisfy this specification. This format is similar to format 3, except that there must be 
exactly three delimiters on the card. 

Character correction directives may alter the length of the line image. If it is shortened, the unused area is filled with blanks. 
If it is lengthened, the excess is checked to see if it is entirely blank. If so, it is ignored. Otherwise, the line is continued in 
such a way that a word is not broken between line images. This means that each line image ends with a string of blanks and 
the first word of each continuation line begins in column n, with columns 1 through n-1 containing blanks. The length of a 
word must not exceed 67-n characters, where n is the column number on the currently effective COLUMN n directive. A 
line may expand to a maximum length of 600 characters by using more than one character correction directive. The line to be 
changed is followed with as many character insertion directives as necessary with the changes made in the order of the 
directive encountered. 

Examples: 

• The following is a portion of a document: 

43 ... UNARMED AND UNPREPARED TO BEET THEM BACK. 'TIS 

44 SAID THAT RICHMOND IS THEIR ADMIRAL. AND THERE THEY 

45 HULL, AWAITING BUT EHT AID OF BUCKINGHAM TO 

46 WELCOME THME ASHOR .... 

There are several typographical errors in the document which can be corrected as follows: 

LABEL /\ OPERA TlOH L\ 
10 20 

OPERAHD 
30 

,\ 
40 

COMMEHTS 
50 

L.....L 

I I I I 

~ 
I 

\ 



4144 Rev. 2 
UP-NUMBER 

UNI VAC 1100 SE RI ES SYSTEMS 21-19 
PAGE REVISION PAGE 

Resulting in the following output, assuming no line number changes: 

43* ... UNARMED AND UNPREPARED TO BEAT THEM BACK. 'TIS 

44 SAID THAT RICHMOND IS THEIR ADMIRAL. AND THERE THEY 

45* HULL, AWAITING BUT THE AID OF BUCKINGHAM TO WELCOME 

46* THEM ASHORE .... 

47 (WM. SHAKESPEARE) 

• The following illustrates an appropriate use of the COLUMN directive to produce a blocked, left-justified description 
following each item in a list. 

The input for a portion of a document is: 

LABEL OPERATION 
10 20 30 

OPEIUND COMMENTS 
50 60 70 80 

d'P:iI~~J$L.Al'lJ~I!LA;a,L,E! ,A1R£',:, ""! I L_L_l......L..l....L_J ..... _L..L_LL' , , , 1 , L-L....l_l.~~ ........ LL ..... LL.L.J._LJ......L.LLLL_L ..... L.LL 1 L ... LJ . .......l ....... Ll .. L.L 

~.L...lYJ1N..l ... lilL. 1 _L..L..I........l ....... L..l ....... LJ.. ... .l.. ... L_, ! ! , , .L_L.L.J......L ... LL...l.......l-L....L ... J. ...... L....i.......l. ... L . ..l ........ .L ...... L.....L. . ...J.......l ........ L.J.. .. J . ....1......J.......l........ .. _L.L .. L ... ' ... J.J . .....L_L_..L ... L ... I ... ..l ..... l ... .!._..l_ L .L ... .! ..... J .... J..~...J __ 1_. 

~LL_L...l$L...l~lli'I$, ,eJjP:r,~~$, o ,S,E,t> , IT~ , , , , , , , I , , , , , , , , L_L, , , , , , , 1 , I , I , , , .LL.L......L....l.L...LL_i-'--' ............... -i 

_LL...l ... .J. ..... U.......J. ... ..L , II,tJ,U,I...l..C...l.~T..lE, ,TI~A;T, :r,H,E.J.L~,I,S, -;r~ ,'BE, ,~,E,N;T,-;reJ, 1'\ S~,F,tcl ;o,eN~~...L...l.......LL..L.' , , , , I. 

~:1l AC,E. I I I I I I I I 

f.---'--L1...J.......jl~J=~ED, ,FAA ,AI :R,EM~,T,E, P~C,H, ELL,E.., I , , , ' , ...I. I ' , , 1. ..... LJ I , , , , L...l . .....L.....J......L.........l.......'--'-~~~ 

The output generated is: 

C1 C10 C20 
I I I 

14 OPTIONS AVAILABLE ARE: 

C30 
I 

, -1.-1. I ! , I I 

C40 
I 

C50 
I 

C60 C66 
I I 

16 
17 

S - THIS OPTION IS USED TO INDICATE THAT THE FI LE IS TO BE 
SENT TO A SPECIFIC DEVICE. 

19 C - USED FOR A REMOTE PUNCH FILE. 

The proper use of COLUMN control statements cannot be overemphasized. 

C11 

S1 





4144 Rev. 2 
UP-NUMBER 

UNIV.AC 1100 SERIES SYSTEMS 22-1 
PAGE REVISION PAGE 

22. MASTER FILE DIRECTORY 

22.1. INTRODUCTION 

This section describes the master file directory (MFD) structure. It also describes the functions used to retrieve and update 
entries in the MFD. 

"'-..... 22.2. MASTER FILE DIRECTORY STRUCTURE 

For catalogued files, entries are constructed containing the identification and characteristics of each file and these entires are 
maintained by the system in a MFD. The MFD consists of look-up table entries and directory items. A look-up table is used 
to link to the catalogued files. The filename and qualifier of a file are folded to provide an index to the look-Up table. The 
length of the look-up table is a system generation parameter. Directory items are 28-word areas lused to store information 
needed to maintain a file's identity and description. Directory items are defined as: 

• 
• 

• 

Search Item 

Lead Item 

Main Item 

Used to locate pointers to lead items which have the same index into the look-up table. 

Used to provide the link between the qualifier/filename combination and the F-cycle of the file. The 
lead item contains pointers to the main items. 

Used to store information pertaining to an F-cycle of a file. There is one main item for each F-cycle 
of the file. The main item contains pointers to the granule item. 

II Granule Item - Used to define a file. A granule item is comprised of granule entries which define the absolute 
description of a file (for example, physical mass storage addresses or reel numbers). Since temporary 
files are not used by more than one run, only granule items are needed to describe them in the MFD. 

A word in the look-up table contains one of the following types of entries: 

• 
• 

1:1 

Zero 

Pointer to Lead Item 

A look-up table word is zero if no file has an index equal to the word number. 

If only one file has an index equal to the word number, the look-up table word points to the 
file's lead item. 

Pointer to Search Item - If more than one file has an index equal to the word number, the look-Up table word points 
to the search item. 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 22-2 
UP-NUMBER PAGE REVISION PAGE 

Figure 22-1 illustrates a MFD entry. 

See 22.5 for detailed layout of the various directory items. 

look·Up 
Entry 

----~ 
Search 

Item 

Section 0 

lead Item 

Main Main Main Main 
Section 1 Item Item Item Item 

F-Cycle F-Cycle F-Cycle F-Cycle 

-0 -1 -2 -3 

Pointers to the _ 
granu Ie items 

Section 2 
Granule Granule Granule Granule 

Item Item Item Item 

Figure 22-1. Example of a MFD Entry 

22.3. MASTER FILE DIRECTORY MANIPULATION (MSCON$) 

Pointers to relative F-cycles 
catalogued for the file 

/' 

Main 
Item 

F-Cycle 

-4 

Granule 

Item 

Main 
Item 

F·Cycie 

-5 

Granule 

Item 

The MSCON$ executive request (ER) enables the user to obtain information from the MFD. It enables the user to obtain 
either the entire MFD or entries pertaining to a particular file. In addition, the MSCON$ request provides the means of 
altering indicators in the directory items. 

Several of the MSCON$ functions can be performed only by privileged runs. Classified file information is revealed only to 
privileged runs. A privileged run is one that has the SYS$*DLOC$ file assigned to the run with the correct read/write keys 
specified at assign time. The SYS$*D LOC$ file is a system file which is created at system start-up time and its primary use is 
to identify privileged runs. 

The general format of the MSCON$ request is: 

L, U AO,pktaddr 
ER MSCON$ 

"' ..... 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 22-3 
PAGE REVISION PAGE 

The pktaddr loaded into register AO references a packet having the following general format: 

S6 

Word o all-O-bits function-code 

j 
TL----' ___ -----It L parameter-area J 

The function code in S6 of word 0 indicates the particular control routine desired. The parameter area is a communications 
area used to pass information from the user to the ER. 

The function codes are as follows: 

158 
DGET$ 

16
8 

DGETP$ 

20
8 

DREAD$ 

30
8 

DBITS$ 

31
8 

DBACK$ 

32
8 

DLAP$ 

33
8 

DUNLD$ 

34
8 

DCYC$ 

35
8 

DKEY$ 

36
8 

DBB$ 

37
8 

DREG$ 

40
8 

DLlNK$ 

41
8 

DADD$ 

60
8 

MSALL$ 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 22-4 
UP-NUMBER PAGE REVISION PAGE 

22.3.1. ITEM RETRIEVAL FOR ALL FILES (DGET$) 

This function creates a file containing the directory items. This file effectively acts as a checkpoint of the MFD. The format 
of the packet in the MSCON$ request (see 22.3) is: 

Word 0 

2 

3 

4 

Words 1 and 2 

output-fi lename 

Word 3 

initial-reserve-in-tracks 

Word 4 

Addr-of-first-user
specified-buffer 

Addr-of-second-user
specified-buffer 

S6 

158 

output-filename 

initial-reserve-in-tracks 

addr-of-first- add r-of-second-
user-su pp lied-buffer user-su pp lied-buffer 

Specifies the file to be created. 

Specifies the number of tracks initially reserved for the DGET$ output file. 

Specifies starting address of a track-size (1792 words), user-supplied buffer. 

Specifies starting address of a track-size (1792 words), user-supplied buffer. 

If the output file is sufficient in length to accomplish the DGET$ request, word 4 is used to set up double-buffered I/O for 
transferring MFD information to the output file. If, however, the output file is insufficient to contain the current total of 
directory items, a value is returned in word 3 that represents the number of tracks needed to perform the DGET$ request. As 
discussed in 22.4, this request is rejected and the appropriate error status is returned in register AO. 

If the SYS$*DLOC$ file is not assigned to the referencing run, the read/write keys for files having keys and the project-id for 
files with a project-ids different from the project-id of the calling run are set to 1/1///. Blank readlwrite keys are left as blanks 
and not set to /////1. 

If the SYS$*DLOC$ file is assigned to the referencing run, only files catalogued with a G option have the read/write keys and 
the project-id altered in this way. 

The output from the DGET$ request consists of a table of contents (starting at sector 0), look-up table (starting at sector 1), 
and directory items (lead, main, granule, and search items starting at sector 0 of the track following the look-up table). The 
output is written into the user file named in the input packet. The output track formats are as follows: 

• Track 0 



/",,--

( 
\. 

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 22-5 
UP.NUMBER PAGE REVISION PA GE 

H1 H2 

Word 0 time-and-da te-o f-crea tion 

length-o f-Iook -up-table 

Table 
2 track-nbr-of-first-MFD-track nbr-of-tracks-written 

of 

Contents 

3 

I ~~ ~~ 

27 

28 0 zero 

29 0 lead-item-addr 

30 1 search-item-addr 
Look-Up 

Table 
31 

~r'- Up to 1761 additional look-up table entries 
~\ 

n 

Word 0 

The date and time when the DGET$ request created this file, where: 

S1 -Month 

S2 -Day 

S3 -Year (modulo 1964) 

H2- Time in seconds from midnight 

Word 1 

length-of-Iook-up-table This table starts in sector 1 of the first track. If the look-up table is greater than 63 sectors, 
the remainder is written in successive tracks. 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 22-6 
UP-NUMBER PAGE REVISION PAGE 

Word 2 

track-nbr-of-first-MFD-track If the look-up table is located in the first two tracks, the number in this word is 3. 

number-of-tracks-written The number of tracks written by the DGET$ request in the user's file. 

Word 28 

This word is the start of the look-up table. (The length of the look-up table is equal to the DCLUTS tag in the executive, 
which has a value supplied by the DGET$ request in H2, word 1 of the output file.) The first 63 sectors (1764 decimal 
words) of the look-up table are written in track O. If there are more than 1764 entries in the look-up table, the remaining 
entries are written in the following tracks as needed. 

The formats of look-up table entries are illustrated in words 28 through 30; the entry is zero if no file has a look-up index 
equal to the word number. This type of format is shown in word 28. If only one filename has this index, the file's lead item 
address is stored in this word, as shown in word 29. If more than one file has this index, the entry contains the address of a 
search item, as shown in word 30. 

• Track 1 

Word 0 

T look-up table entries 1 
n,-----, __ ----' 



4144 Rev. 2 UNIVAC 1100 SE RI ES SYSTEMS 22-7 
UP-NUMBER PAGE REVISION PAGE 

• MFD Track 

Start of the MFD tracks. The first MFD track written for each unit contains a directory allocation sector (DAS) as 
sector 0 of that track. Tracks for the unit are written to the user's file in the same order as listed in the allocation 
sector. The format of the DAS and MFD track is as follows: 

35 34 o 

Word 0 MFD-track-addr 

allocation-bits-for-first-32-sectors 

2 allocation-bits-for-last-32-sectors 

3 MFD-track-addr 
S 

4 allocation-bits-for-first-32-sectors 

5 allocation-bits-for-last-32-sectors 

6 

J 
~~ Up to seven three-word entries as in words 0-2 ~I' 

26 

27 link-to-next-DAS 
S 

28 

...... 
MFD items (see Fi ures 22-2 throu h 22-10 for MFD item formats) '" 

n II----_
g

_

g 

__ I 
Word 0 

Address of th is M F 0 track. 

Word 1 

Allocation bits for the first 32 sectors of this track. Bit 35 corresponds to sector 0, bit 34 to sector 1, and so on. The bit is set 
if this sector is allocated. 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 22-8 
UP-NUMBER PAGE REVISION PAGE 

Word 2 

Allocation bits for the last 32 sectors of this track. Bit 35 corresponds to sector 32, bit 34 to sector 33, and so on. The bit is 
set if this sector is allocated. 

Word 3 

Address of the next MFD track. If this word is negative (S = 1), then a MFD track does not exist for this entry. This track 
does not contain a DAS in sector O. 

Word 4 

Same as word 1. 

Word 5 

Same as word 2. 

Word 27 

Address of the next MFD track with a DAS in sector O. If this word is negative, there are no more MFD tracks for this unit. 

• Tracks t+2 through m-1 : 

The value of m is found in the table of contents (track 0, sector 0) in H2 of word 2. 

22.3.2. ITEM RETRIEVAL FOR DISC PACKS (DGETP$) 

This function creates a file in the same manner as DG ET$ (see 22.3.1). The only difference is that the directory items from a 
specified pack are inserted into the output file. The format of the packet used in the MSCON$ request (see 22.3) is: 

S6 

Word 0 
168 

output-filename 

2 

3 

4 addr-of-first-user-supplied-buffer addr-of-second-user-supplied-buffer 

5 pack-id 

Words 1 through 4 

Same as for DGET$ function (see 22.3.1). 

Word 5 

A one- to six-character alphanumeric that specifies the disc pack. 

('~ 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 22-9 
PAGE REVISION PAGE 

22.3.3. ITEM RETRIEVAL FOR AN INDIVIDUAL FI LE (DREAD$) 

This function provides a full complement of MFD information for a single file. The format of the packet used in the 
MSCON$ request (see 22.3) is: 

35 

Word 0 

2 

3 

4 

Words 1 and 2 

filename 

Word 3 

buffer-length 

start-item 

buffer·addr 

Word 4 

starti ng-sector 

sector-count 

23 17 11 

filename 

buffer-length start-item buffer-addr 

starting-sector sector-count 

Specifies the file for which the MFD information is to be retained. 

Length of the buffer into which the directory items are to be 
written (in words). 

Specifies the MFD items desired, where the value of starting item can 
be: 

Start with the lead item, and then continue with the 
main and granule items (in ascending order) until the 

5 

end of the MFD for this file or the buffer limit is reached. 

Same as above, but start with main item. 

Same as above, but start with granule item. 

Address of buffer into which the directory items are to be written. 

If nonzero, start at indicated higher sector number within starting 
item (for example, start at sector 26 of granule item). 

Number of sectors written in user buffer (supplied by DREAD$ request). 

o 

208 

The MFD information supplied by the DREAD$ request appears in the output buffer in the order specified in the user 
packet. If file SYS$*DLOC$ is assigned to the calling run, any read/write keys and project-id is passed as is. If SYS$*DLOC$ 
is not assigned to the calling run, then any project-id different from the user project-id is obscured by slashes. The read/write 
keys are also slashed except when the corresponding program control table (PCT) read/write inhibit bits are clear or the 
read/write keys are blank. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS· 22-10 
PAGE REVISION PAGE 

22.3.4. ALTERING MAIN ITEM (DBIT$) 

This function allows the user to change certain bit settings in word 11, sector 0 of the main item (see Figures 22-5 and 
22-8). The format of the packet used in the MSCON$ request (see 22.3) is: 

35 17 5 o 

Word 0 308 

filename 
2 

3 setting-bits control-bits 

Words 1 and 2 

Specifies the file whose entry is being changed. 

Word 3 

If 217 is set, use the contents of 235 for the disabled status. 

If 216 is set, use the contents of 234 for the facility reject status. 

If 215 is set, use the contents of 233 for the facility warning status. 

If 214 is set, use the contents of 232 for the SE CU R E reject status. 

If 213 is set, use the contents of 231 for bad main item extension sector status, main item word 12, bit 231 . 

If 27 is set, use the contents of 225 for the write-only status. 

If 26 is set, use the contents of 224 for the read-only status. 

If any of the bits 234 , 233 , or 232 in main item sector 0, word 11 is set, then bit 235 is set. Conversely, if bit 235 is cleared, 
then bits 234 , 233 , and 232 are cleared. 

22.3.5. ALTERING BACKUP FILE ENTRIES (DBACK$) 

This function allows the user to change certain fields pertaining to backup files. In performing this function, the DBACK$ 
request clears word 10 (time stamp of first write after backup) of main item sector 0, makes certain that the BKUP bit is set 
in the main item descriptor, and clears the file-changed bit is PCF I D 1 of the PCT facilities item. 

If the number of backup reels in word 3 of the packet is zero, the function will undo a previous DBACK$ by clearing the 
BKUP bit in the main item descriptor and setting the backup reel count to 0 in main item sector 1. For example, this allows a 
@SECURE,R control statement to reset a file's backup status when vital backup information has been lost on a recovery 
boot. 



""~' .. ~. , 

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 22-11 
UP-NUMBER PAGE REVISION PAGE 

The format of the packet used in the MSCON$ request (see 22.3) is: 

35 29 23 17 11 5 o 

Word 0 31 8 

filename 
2 

3 nbr-of-backu p-reels 

4 time-of-backup-creation 

media-codes 
tape-mode-

reel-break total-nbr-of-1800-word-text-blocks codes 5 

tape-noise-constant starting-file-position- nbr-of-words-
of-first-backup-reel written-in-Iast-block 6 

7 first-backup-reel-nbr 

8 

.J, Any number of additional reel number words may follow, subject to length of packet 
" 

Words 1 and 2 

Specifies the file whose entry is being changed. 

Words 3-7 

These words replace equivalent words in section 1 of the main item (see Figure 22-6 for additional information on these 
words). 

Word n 

Packet length = 7 + nbr of backup reels 

22.3.6. ALTERING LAPSE ENTRIES (DLAPS$) 

This function allows the user to enter new lapse entries or to alter information pertaining to lapse entries (see Figures 22-6 
and 22-7). 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 22-12 
UP-NUMBER PAGE REVISION PAGE 

If words 3 and 4 of the input packet are both nonzero, the D LAPS$ request enters the new lapse entry in the next available 
location, adds 1 to the lapse entry count in sector 1 of the main item, and sets the has-lapse-entries bit in the main item 
descriptor. 

If word 3 of the input packet is zero, the D LAPS$ request zeros out the lapse entry count and all existing lapse entries, and 
clears the has-lapse-entries bit in the main item descriptor. 

If word 4 of the input packet is zero and word 3 is nonzero, the D LAPS$ request uses the value in word 3 to change the lapse 
entry count in sector 1 of the main entry. This, for example, allows a @SECURE,R control statement to update the lapse 
entry count after examining the main item extension sectors on a recovery boot. 

The format of the packet used in the MSCON$ request (see 22.3) is: 

S6 

Word 0 328 

filename 

2 

3 

" new-Ia se-entr -or-zero '" p y 

41'-----______ T 

Words 1 and 2 

Specifies the file whose entry is being changed. 

Words 3 and 4 

The lapse entry. 



4144 Rev. 2 UN IVAC 1100 SE RI ES SYSTEMS 22-13 
U P.NUMBER PAGE REVISION PAGE 

22.3.7. CHANGING UNLOAD TIME (DUNLD$) 

This function stores the unload time (nonzero for unload, zero for load) in sector 0 of the main item (word 10). When unload 
time is nonzero, the DUNLD$) request ensures that the unload bit is set. When unload time is zero, the DUNLD$ request 
ensures that the unload bit is cleared and that the this-file-has-been-changed bit in the PCT is cleared. This function is 
primarily for use by the SECURE processor (see Section 19). 

Filename is used to specify the file whose entry is being changed. 

The format of the packet used in the MSCON$ request (see 22.3) is: 

S6 

Word 0 338 

filename 

2 

3 unload·time 

1\ 22.3.8. CHANGING MAXIMUM CYCLE RANGE (DCYC$) 

This function stores the new maximum range in sector 0 of the lead item (S3 of word 9 - see Figure 22-3), and deletes any 
F-cycles which no longer fall within the new maximum range. Filename is used to specify the file whose entry is being 
changed. The format of the packet used in the MSCON$ request (see 22.3) is: 

S6 

Word 0 348 

filename 

2 

3 max-range 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 22-14 
UP-NUMBER PAGE REVISION PAGE 

22.3.9. CHANGING READ/WRITE KEYS (DKEY$) 

This function allows the user to change file read and write keys. To do this, the old read and write keys must be furnished in 
the packet along with either or both of the new keys. If either key is not to be changed, a word of slashes (words 5 or 6 of 
the packet) is used to indicate this. To remove a key altogether, blanks are used. If either old key is incorrect, the DKEY$ 
request is rejected, a ABORT$ exit is taken, and control is not returned to the calling program. Filename is used to specify 
the file whose entry is being changed. The format of the packet used in the MSCON$ request (see 22.3) is: 

S6 

Word 0 358 

filename 
2 

3 old-read-key (blanks if none) 

4 old-write-key (blanks if none) 

5 new-read-key-or-blanks (slashes if no change) 

6 new-write-key-or-blanks (slashes if no change) 

22.3.10. CHANGING BLOCK BUFFERING EOF SECTOR ADDRESS (DBB$) 

This function allows the user to change the block buffering EOF sector address (word 12, Figure 22-5) and the block and 
item size information (word 9, Figure 22-5) entries in sector 0 of the main item. Filename is used to specify the file whose 
entry is being changed. The format of the packet used in the MSCON$ request (see 22.3) is: 

35 23 17 5 o 

Word 0 368 

filename 

2 

3 block-buffering-EOF-sector-addr 

4 block-size item-size 



/ ..... _. 

,. /' 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 11 00 SE RI ES SYS TEMS 22-15 
PAGE REVISION PAGE 

22".3.11. MODIFYING FILE IDENTITY (DREG$) 

This function was designed for use by the SECUR E processor (see Section 19). It allows the user to change certain fields in 
the lead and main items of catalogued files. The DREG$ request sets descriptor bit 33 in word 13 of the main item sector 0 
(see Figure 22-5) signifying that this item was created by a SECURE REGISTER function. 

If the SYS$*DLOC$ file js assigned to the calling run, the DREG$ request uses the information found in the caller packet to 
alter certain other fields. The time of catalogueing is stored into main item word 19 (see Figure 22-5). If the time of last 
reference (word 9) equals a nonzero value, it is stored into word 18 of the main item. If the account-nbr field (words 5 and 6) 
contains anything other than binary zeros or Fieldata blanks (05

8
), it is used to overlay the main item account number. If the 

project-id (words 3 and 4) contains anything other than binary zeros, it replaces the project-id in both the lead and main 
items of this field. If the nbr-of-times-assigned (word 7, H2) contains anything other than binary zero, it replaces the 
total-nbr-of-times-file-has-been-assigned field in the main item. The format of the packet used in MSCON$ request 
(see 22.3) is: 

35 17 5 o 

Word 0 378 

filename 

2 

3 

project-id 

4 

5 

account-nbr 

6 

7 0 n br-of-ti mes-assigned 

8 time-of-cataloguing 

9 
time-of-Iast-reference 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 22-16 
UP-NUMBER PA GE RE VISION PA G E 

22.3.12. LINK INSERTION FOR REMOVABLE DISC PACKS (DLlNK$) 

This function allows a privileged requestor to insert the links from the fixed mass storage MFD items to the removable disc 
packs associated with the file. This function is utilized by the SECURE processor (see Section 19) during the restore process 
of removable disc packs. 

Filename is used to specify the file whose entry is being changed. 

The format of the packet used in the MSCON$ request (see 22.3) is: 

35 17 5 o 

Word 
o 408 

filename 

2 

3 initial-reserve nbr-of-FASTRAND-granules 

4 nbr-of-pack-id-I inks-or-zero 

5 h ighest-granu Ie-assigned nbr-of-F H -432-granu les 

6 link-to-MFD-for-first-pack 

7 link-to-MFD-for-second-pack 

8 
,~ ,~ 

! l~ _____ 'ink __ tO_M_FD_-for-n_th_p_aCk ____ ---I.l 

22.3.13. ADDING GRANULE ITEMS (DADD$) 

This function allows a privileged requestor to add sectors to a chain of granule items on fixed mass storage for a file. 

Filename is used to specify the file whose entry is being changed. 

The format of the packet used in the MSCON$ request (see 22.3) is: 

/' 

'" 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 22-17 
UP-NUMBER PAGE REVISION PAGE 

35 17 5 o 

Word 0 41 8 

filename 

2 

3 nbr-of-granules-for-this-request 

4 S main-storage-addr-of-first-granule-table-for-this-request 

5 

~ ~~ 

n ma in-storage·add r-of-Iast-granu le-table-for-th is-request 

Word 4-n 

Address of a 28-word buffer within the calling program contains a granule table (see Figure 22-9) that is to be added to the 
granule table chain. The correct links (words 0 and 1 of the granule table) will be added by the MSCON function. If the sign 
bit is set (235 set to 1) no new M F D sector will be allocated by MSCON but the last sector in the chain will be overwritten 
with the information supplied. This allows for the fact that mass storage files always have the first granule table allocated 
whether or not the file has been written into. 

22.3.14_ MONITORING MASS STORAGE AVAILABILITY (MSALL$) 

This function enables a user program to monitor the availability of mass storage by transferring an image of the current 
FASTRAND-formatted availability table (FATBL) into a user-supplied buffer, followed by (for those sites with 
nonremovable disc storage) an image of the executive pack-id table (XPKID). 

Upon successful completion of this function, packet word 2, H1 contains the length in words of FATBL, and packet word 2, 
H2 contains the total number of image words transferred; that is, the combined lengths of FATBL and XPKID. 

The format of the packet used in the MSCON$ request (see 22.3) is: 

35 17 5 o 

Word 0 608 

buffer-Iength-of-buffer-into-which- addr-of-buffer-into-wh ich-
current-FAST RAN D-formatted-availability- current-FASTRAN D-formatted-availability-

tables-are-written tab les-are-written 

2 length-of-FA TBL to tal-nbr-of-words-transferred 



4144 Rev. 2 
UP-NUM BER 

UNIVAC 1100 SERIES SYSTEMS 22-18 
PA GE REVISION PA GE 

The format for FATBL is as follows: 

H1 H2 

Word 0 starting-addr-of-FASTRAND-Il-or-III- starting-addr-of-FASTRAND-Il-or-III-
mass-storage-un it-tables mass-storage-Iogical-subsystem-table 

2 starting-addr-of-F H-432-drum- starting-addr-of-FH-432-drum-
storage-un it-tables logical-subsystem-table 

3 starting-addr-of-FH-880-drum- starting-addr-o f-F H-880-drum-
storage-un it-tables logical-subsystem-table 

4 
starting-addr-of-FH-1782-drum- starting-addr-of-F H-1782-drum-

storage-unit-tables logical-subsystem-table 

5 
starting-addr-of-8414-disc- starting-addr-of-8414-disc-

storage-un it-tables logical-subsystem-table 

6 
starting-addr-of-8440-disc- starting-addr-of-8440-disc-

storage-unit-tables logical-subsystem-table 

7 
starting-addr-of-unitized-channel- starting-addr-of-unitized-channel-

storage-un it-tables storage-Iogical-subsystem-table 

Start of logical subsystem table for FH-432 drum: 

H1 S4 T3 

A nbr-of-Iogical-subsystems-
con taining-F H-432-drums 

nbr-of-units-
A+1 tracks-available in-first- positions-available 

subsystem 

nbr-of-units-
A+2 tracks-available in-second- positions-available 

subsystem 

A+3 

~~ ~~ 

nbr-of-units-
A+n tracks-available in-nth- positions-available 

subsystem 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 22-19 
PAGE REVISION PAGE 

Start of logical subsystem table for FH-880, FH-1782, 8414, FASTRAND and U.C.S. have the same format as the logical 
subsystem table for FH-432 drum. 

The FH-880 and FH-1782 drum, FAST RAND mass storage, 8414 disc, and unitized channel storage logical subsystem tables 
have the same format as the F H-432 drum logical subsystem table. 

Start of unit tables for FH-432 drum: 

35 23 17 o 

Word B total-nbr-FH-432-drums maximum-tracks-obtainable 

B+1 remaining-nbr-of-tracks-available 

B+2 maximum-positions-obtainable remaining-positions-available 

Start of unit table 1: 

S1 S2 S3 S4 T3 

B+3 M F D-track -addr 

ph ysical-subsystem-nbr- physical-
for-first-FH-432-drum unit-nbr B+4 

remaining-tracks-available 
logical-

remaining-positions-available subsystem-nbr B+5 

B+6 addr-of-master-bit-table 

Start of unit table 2: 

S1 S2 S3 S4 T3 

B+7 MFD-track-addr 

B+8 physical-subsystem-nbr- physical-
for-second-F H-432-drum unit-nbr 

B+9 remaining-tracks-available logical- remaining-positions-available 
subsystem-nbr 

B+10 addr-of-master-bit-table 

~, " 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 22-20 
UP-NUMBER PAGE REVIS ION PAGE 

Start of unit table n: 

S1 S2 S3 -54 T3 

MFD-track-addr 

ph ysical-subsystem-nbr- physical-

of-nth-F H-432-drum unit-nbr 

remaining-tracks-available 
logical-

remaining-positions-available 
subsystem-nbr 

addr-of-master-bit-table 

Start of unit tables for the 8414 disc: 

S1 S2 S3 S4 T3 

Word 0 MFD-track-addr 

ph ysical-subsystem-addr 
physical- curren t-assign-coun t-for-this-unit * 
unit-nbr 

2 remaining-tracks-available 
logical-

remaining-positions-available 
subsystem-nbr 

complete-un it- declared-fix ed-
assign-flag mass-storage addr-of-master-bit-table 3 

4 pack-id 

* Applicable only to removable discs. 

The FH-880 and FH-1782 drum, FASTRAND mass storage, and unitized channel storage unit tables have the same format as 
the FH-432 drum unit table. 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 22-21 
UP-NUMBER 

The format of XPKI D is as follows: 

Word 0 

2 

3 

r--.... 

H1 

subsystemlunit-of-first-fixed-
disc-pack-on-system 

subsystemlunit-of-second-fixed-
disc-pack -on-system 

-

subsystemlunit-of-nth-fixed
disc-pack -on-system 

PAGE REVISION PAGE 

H2 

maximum-nbr-of-fixed-
disc-packs-on- the-system 

reserved 

reserved 

- -
- -

reserved 

XPKI D will contain the subsystem/unit numbers of disc packs which the executive will consider as permanent mass storage 
(nonremovable). 

22.4 MSCON$ STATUS CONDITIONS 

When MSCON$ returns control to the user, register AO contains the original packet address in H2, possible error status codes 
in bits 229 - 218 and an exec-indicator in bits 234 - 230 . 

35 34 3029 2423 18 17 o 

S exec-indicator 
IIO-error- error-status-

packet-addr indicator code 

The value of the exec-indicator is supplied by MSCON$ for use by the SECURE processor. 

If bit 235 = 0 and bits 229 - 218 
= 0, this signifies normal completion of the requested function. 

If bit 235 = 0 and bits 223 - 218 contain 01, the 01 is a special status code returned by the DR EAD$ function (see 22.3.3), 
signifying that the end of the user buffer has been encountered and there are more directory items to be 
returned. 

If bit 235 = 1 and the error status code is 24
8

, the value in bits 229 - 224 is the I/O status code received by MSCON$. 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 22-22 
UP.NUMBER PAGE REVISION PAGE 

If bit 235 = 1 and the error status code is other than 248 the possible status codes are: 

208 - Wrong MSCON$ function code is user packet. 

218 - User packet not within program limits. 

228 - Referenced file is not assigned to this user. 

238 - User is referencing a temporary file. 

258 - User buffer not within program limits. 

268 - User is referencing a nonexistent start item (returned by the DREAD$ function, see 22.3.3). 

278 - User buffer area not large enough (returned by functions DUNK$, see 22.3.12; DADD$, see 22.3.13; and 
MSA L L$, see 22.3.14). 

308 - The function requires a main item extension sector which is not in existence for this file (returned by functions 
DLAPS$, see 22.3.6, and DUNK$, see 22.3.12). 

318 - The referenced disc unit has been marked down or reserved (returned by the DGETP$ function, see 22.3.2). 

328 - The requested pack·id cannot be found in the FASTRAND·formatted availability table (returned by the 
DGETP$ function, see 22.3.2). 

338 - The output file initial reserve is too small to contain the current total of system directory items (returned by the 
DG ET$ function, see 22.3.1 ). 

348 - The cumulative total of system directory items has dynamically expanded beyond the capacity of the output file (" 
(returned by the DG ET$ function, see 22.3.1). This situation differs from that described for status code 338, in 
that, in this instance DGET$ has been in process and directory items have been output to the file. 

22.5. DIRECTORY ITEM FORMATS 

The MFD contains directory items for each catalogued file in the system. The content and format of the MFD are subject to 
change without prior notice. Directory item description is as follows: 

Bits 235 through 232 in word zero of each directory item have the following significance: 

Bit Description 

35 When set to 0, indicates that word 0 of this sector contains a link address to the next 
sector. 

34-32 001
2 

- Search item 

010
2 

- Lead item 

100
2 

- Main item 

000
2 

- Granule tables, or sectors 1-n of main item, or sector 1 of lead item. 

Figures 22-2 through 22-10 illustrate the format of the various items and their sectors 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 22-23 
UP-NUMBER PAGE REVISION PAGE 

I 3534333231 0 
\ .. ----/ 

Word 0 U 0 0 1 link-to-next-sector-if-U = 0 

qualifier 

2 

3 

filename 

4 

5 link-to-Iead-item 

6 

( 
\ 

"~ Up to four more five-word entries (identical format to words 1 throu h 5 ,,~ ) g 

1 J 27 

Figure 22-2. Search Item 

\ 
',- , 



4144 Rev. 2 
UP-NUMBER 

Word 0 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

I 
26 

27 

3534333231 

vO 1 0 

medium 

~~ 

UNIVAC 1100 SERIES SYSTEMS 

S2 S3 S4 

Iink-to-sector-1-of-lead-item-if-U = 0 

qualifier 

filename 

project-id 

read-key 

write-key 

PAGE REVISION 

T3 

22-24 
PAGE 

count max imum-range current-range current-absolute-F-cycle 

link-to-main-item-for-next-F-cycle-to-be-catalogued 

link-to-main-item-of-catalogued-file-or-O 

link-to-main-item-of-catalogued-file-or-O 

'I'-

link-to-main-item-of-catalogued-file-or-O 

Figure 22-3. Lead Item - Sector a 
/ 



...... 

4144 Rev. 2 
UP-NUMBER 

Word 9 

medium 

count 

maximum-range 

current-range 

current-absolute-F-cycle 

Word 11 

UNIVAC 1100 SERIES SYSTEMS 22-25 

Type of device which F-cycles describe: 

18 - 178 - Magnetic tape 

308 - 378 - Mass storage 

758 - 8414 removable disc 

Current number of F-cycles in the lead item 

Maximum number of F-cycles permitted for the file 

PAGE REVISION PAGE 

Range of absolute F-cycles currently in this lead item; (current-absolute-F-cycle) 
(lowest-absolute-F-cycle) +1 

The absolute F-cycle number whose link is in word 11 or would be in word 11 if it 
existed. 

Link to the main item which describes the current-absolute-F-cycle. If this absolute cycle does not exist, the entry is O. 

Word 12 

Link to the main item which describes a file whose absolute F-cycle is one less than the current-absolute-F-cycle. If this 
absolute F-cycle does not exist, the entry is O. 

Word 27 

Link to the main item which describes a file whose absolute F-cycle is 16 less than the current-absolute-F-cycle. If this 
absolute F-cycle does not exist, the entry is O. 

3534333231 o 

Word 0 1 o 0 0 0 

link-to-main -item-of-catalogued- file-or-O 

2 

I ~~ ~~ 

14 

15 link-to-main-item-of-catalogued- file-or-O 

16 
... 'V 

JTL----_____ ~T 
Figure 22-4. Lead Item - Sector 1 

Word 1 

Link to the main item which describes a file whose absolute F-cycle is 17 less than the current-absolute-F-cycle. If this 
absolute F-cycle does not exist, the entry is O. 

Word 2 

Link to the main item which describes a file whose absolute F-cycle is 31 less than the current-absolute-F-cycle. If this 
absolute F-cycle does not exist, the entry is O. 



4144 Rev. 2 UN IVAC 11 00 SE RI ES SYST EMS 22-26 
UP-NUMBER PAGE REVISION PAGE 

35 29 23 17 o 

Word 0 U 1 0 0 link-to-granule-item-if-U = 0 

qualifier 

2 

3 

filename 

4 

5 

project-id 

6 

7 

account-nbr 

8 

9 block-size (negative if variable) item-size (zero if item is variable in length) 

10 time-of-first-write-following-unload-or-backup-time (TDA TE$ format - see 4.5.2) 

11 disable-flag link-to-Iead-item 

12 descriptor-flag block-buffering-EOF-sector-addr 

13 PCHAR-flag link-to-sector-l-of-main-item 

14 symbiont-link-to-initial-SMOOUE-entry 

15 symbion t-save-area-addr total-nbr-of-times-this-file-has-been-assigned 

16 run-id-or-EXPOOL-addr 

Figure 22-5. Mass Storage File Main Item - Sector 0 (Part 1 of 2) 



! 
\ 

" 

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 22-27 
UP-NUMBER PAGE REVISION PAGE 

35 29 23 17 11 o 

17 media-codes inhibit-flags 
nbr-of-runs-currently-

absolute-F-cycle-nbr 
assigned-to-this-F-cycle 

18 date-and-time-current-assignment-started-or-Iast-assignment-ended (TDA TE$ format - see 4.5.2) 

19 date-and-time-of-cataloguing (TDA TE$ format - see 4.5.2) 

initial-nbr-of-granules-reserved-for-this-assignment nbr-of-granules-of-FASTRAND-mass-
storage-curren tly-con tai n ing-file 

20 

21 

22 

23 

24 

25 

26 

27 

Word 9 

block-size 

item-size 

Word 10 

time-of-first-write 
following-unload-or
backup-time 

Word 11 

disable-flag 

max imum-nbr-o f-granules reserved-for-expansion 

highest-granule-nbr-assigned nbr-of-granules-of-F H-432-
storage-currently-containing-file 

highest-granule-nbr-written 
nbr-of-granules-of-F H-880-

storage-currently-containing-file 

nbr-of-granules-of-F H-1782-
storage-currently-containing-file 

nbr-of-granules-of-8414-disc-
curren tly-con taining-file 

nbr-of-granules-of-8440-disc-
storage-curren tly -con tai n ing-fi Ie 

nbr-of-granules-of-unitized-channel-
storage-currently-containing-file 

Figure 22-5. Mass Storage File Main Item - Sector 0 (Part 2 of 2) 

Used by block buffering package 

Used by item handler 

If word 12, bit 35 = 1, then word 10 contains unload time. If word 
12, bit 35 = 0, then word 10 contains time of first write after backup 
fi Ie was created or all zeros. 

1100
2 

- Facilities reject (file disabled because it was destroyed) 

1010
2 

- Facilities warning (file disabled because it was an incomplete write) 

1001
2 

- SECURE processor reject (file disabled because it was rejected 
by the SECURE processor) 



4144 Rev. 2 

UP-NUMBER 

Word 12 

descriptor-flag 

Word 13 

PCHAR-flag 

Word 17 

media-codes 

inhibit-flags 

UNIVAC 1100 SERIES SYSTEMS 22-28 
PAGE REVISION PAGE 

These bits, when set, indicate: 

Bit 35 - Unloaded 

34 - Backed up 

33 - File created by means of the SECURE processor REGISTER command 

32 - Has lapse entries 

31 - Bad main item sector 1 

30 - Set if new item format (created on or after level 26 of the executive) 

29 - Unused 

28 - Communication between recovery and MFD maintenance routines for 
removable disc files. Extension sectors of the main item have 
been changed on permanent storage. This allows the update of 
extension sectors on the disc packs. 

27 - Removable disc file 

26 - Unused 

25 - File created by @CAT control statement 

24 - File is to be dropped 

These bits, when set, indicate: 

Bit 35 - Position granularity 

34 - Disc pack granularity 

33 - Word addressable 

32 - Prefers high speed drum 

Indicate type of peripheral containing file. Same as equipment codes, 
see Appendix E. 

These bits, when set, indicate inhibit options on @ASG control statements 
as follows: 

Bit 29 - @ASG,G Guarded file 

28 - @ASG,V Unload inhibit 

27 - Not @ASG,P Private file 

26 - @ASG,X Exclusive use 

25 - @ASG,W Write-only 

24 - @ASG;R Read-only 

Figure 22-5. Mass Storage File Main Item - Sector 0 (Part 3 of 3) 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 22-29 
UP-NUMBER PAGE REVISION PAGE 

35 34 33 32 31 29 23 17 11 o 

Word 0 U 0 0 0 Iink-to-sector-2-of-main-item-if-U = 0 

qualifier 

2 

3 

filename 

4 

5 '*NO.1* ' 

6 link-to-sector-O-of-main-item 

7 nbr-of-backup-reels nbr-of-two-word-Iapse-entries absolute-F-cycle-nbr-of-this-file 

,~- 8 
I 
l date-and-time-of-backup-file-creation (TDA TE$ format - see 4.5.2) 
\ 
'- ... / 

9 media-codes tape-mode-codes reel-break total-nbr-of-1800-word-text-blocks 

10 tape-noise-constant 
starting-file-position- nbr-of-words-
of-first-backup-reel written-in-Iast-block 

11 reel-nbr-of-first-reel-of-backup-file 

12 reel-nbr-of-second-reel-of-backup-file 

13 

first-lapse-en try-or-all-zeros 

14 

15 

second-Iapse-entry-or-all-zeros 

16 

Figure 22-6. Mass Storage File Main Item - Sector 1 (Part 1 of 2) 



4144 Rev. 2 
UP-NUMBER 

Word 9 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

media-codes 

tape-made-codes 

UNIVAC 1100 SERIES SYSTEMS 22-30 
PAGE REVISION PAGE 

disc-pack-entries-contro/-word 

first-disc-pack -en try 

second-disc-pack-entry 

third-disc-pack-entry 

fourth-disc-pack -en try 

fifth-disc-pack-entry 

Figure 22-6. Mass Storage File Main Item - Sector 1 (Part 2 of 2) 

Indicates type of peripheral containing file. Same as equipment codes, 
see Appendix E. 

These codes are: 

18 - User to recover 

28 - Software translate 

48 - Hardware translate 

108 - Low density 

208 - Medium density 

30g - High density 

408 - Even parity 



,..--
( 
\. 

4144 Rev. 2 
UP-NUMBER 

reel-break 

Words 13 - 14 

first-Iapse-entry
or-all-zeros 

Word 17 

disc-pack-entries
control-word 

Word 18 -19 

first-disc-pack
entry 

Word 0 

2 

3 

4 

5 

6 

7 

8 

3534333231 

U o 0 0 

P B L 

I ~~ 
27 

UNIVAC 1100 SERIES SYSTEMS 22-31 
PA GE RE VISION PA G E 

A constant which indicates the number of reels per group if file was backed 
up onto multiple tape reel groupings because of the enormous size of the file. 

Word 13: Time of first write following backup file creation 
Word 14: Time of recovery when backup copy becomes primary copy 

Date and time is given in TDATE$ format (see 4.5.2). 

Bits 35 - 12: Reserved 
11 - 0: Number of disc pack entries 

Word 18: Pack-id of the disc pack (six characters in Fieldata) 
Word 19: Link to main item on disc pack 

11 

link-to-next-sector-of-main-item-if-U = 0 

qualifier 

filename 

'*NO.N*' 

link-to-previous-main-item-sector 

absolute-F-cYcle-nbr 

If P bit is set, up to 10 disc pack entries 

If B bit is set, up to 20 backup file reel numbers 

If L bit is set, up to 10 lapse entries 

Figure 22-7. Main Item - Sectors 2-n 

o 

~r' 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 22-32 
U P.NUMBER PAGE REVISION PAGE 

35 34 33 32 31 29 23 17 o 

Word o U 1 0 a link-to-granule-item-if-U = a 

qualifier 

2 

3 

filename 

4 

5 

project-id 

6 

7 

account-nbr 

~ 

8 

9 
reserved 

10 

11 disable-flag link-to-Iead-item 

12 descriptor-flag 

13 link-to-sector-1-of-main-item 

14 

15 to tal-n br -0 f- times-th is-fi le-has-been-assigned 

16 run-id-or~EXPOOL-addr 

Figure 22-8. Tape File Main Item - Sector 0 (Part 1 of 2) 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 22-33 
UP-NUMBER PAGE REVISION PAGE 

51 52 53 54 T3 

17 media-codes inhibi t-flags 
nbr-of-runs-curren tly-

absolute-F-cycle assigned-to-this-F-cycle 

date-and-time-current-assignment-started-or-Iast-assignment-ended 
(TDA TE$ format - see 4.5.2) 

18 

19 date-and-time-of-cataloguing (TDA TE$ format - see 4.5.2) 

curren t-reel-index -0 f- tapes-
nbr-of-reels-catalogued 

labeled-and-checked 
20 

21 12116-tape-modes 0 tape-mode-codes noise-constant 

22 

23 
reserved 

24 

(-~--

25 
\..J-

26 reel-nbr-of-first-reel-catalogued 

27 reel-nbr-of-second-reel-catalogued 

Figure 22-8. Tape File Main Item - Sector 0 (Part 2 of 2) 



4144 Rev. 2 
UP-NUMBER 

Word 11 

disable-flag 

Word 12 

descriptor-flag 

Word 13 

link-to-sector-1-
of-main-item 

Word 17 

media-codes 

inhibit-flags 

UNIVAC 1100 SERIES SYSTEMS 22-34 
PAGE REVISION PAGE 

1100
2 

- Facilities reject (file disabled because it has been destroyed) 

1010
2 

- Facilities warning (file disabled because of an incomplete write) 

1001
2 

- SECURE processor reject (file disabled because it was rejected by the 
SECURE processor. 

These bits, when set, indicate: 

Bit 35 - Unused 

34 - Backed up 

33 - Backup file cannot be read 

32 - Unused 

31 - Bad main item sector 1 

30 - New item format (created on or after level 26 of executive) 

29 - 26 - Unused 

25 - File created by @CAT control statement 

24 - File is to be dropped 

Sector 1 of main item for tape files is identical in format to that for 
mass storage files (see Figure 22-6) except there are no disc pack entries. 

Indicates type of peripheral containing file. Same as equipment codes, 
see Appendix E. 

These bits, when set, indicate inhibit options on @ASG control statements as 
follows: 

Bit 29 - ASG,G Guarded file 

28 - Unused 

27 - Not @ASG,P Private file 

26 - Unused 

25 -@ASG,W Write only 

24 -@ASG,R Read only 



4144 Rev. 2 
UP-NUMBER 

Word 21 

12/16-tape-modes 

tape-mode-codes 

35 34333231 

Word 0 U o 0 0 

2 

UNIVAC 1100 SERIES SYSTEMS 22-35 
PAGE REVISION PA GE 

This field contains 0 if tape units are not UNISERVO 12 or 16 tape units. Mode is indicated 
by the following bit settings: 

Bit 35 - High density 

34 - Dual-density unit 

33 - Eight-bit packed 

32 - Six-bit packed 

31 - Quarter-word 

30 - Unit translate, BCD/EBCDIC 

29 - XS3/ASCII in MSA 

28 - XS3/EBCDIC in MSA 

27 - Fieldata/ASCII in MSA 

26 - Fieldata/EBCDIC in MSA 

25 - Unused 

24 - Unit translate data converter 

Applicable to tape units other than UNISERVO 12 or 16 tape units (field contains 0 if tape 
units are UNISERVO 12 or 16 tape units). The modes are: 

408 - Even parity 

308 - High density 

208 - Medium density 

108 - Low density 

48 - Hardware translate 

28 - Software translate 

link-to-next-sector-if-U = a 

link-to-main-section-or-preceding-granule-sector 

o 

,~ ,r. 

17 'l'L _________________________ u __ P_t_o_2_6 __ on_e __ w_O_~_d_g_ra_n_u_l_e_a_d_d_re_s_se_s __________________________ ~~ 
Word 1 

There is the possibility that there are more than 26 granule addresses; therefore, there can be more than one granule item. 
Each granule item lists 26 granule addresses. When there is more than one granule item, the second, third, and so forth, 
granule items are linked back to the preceding granule, and the first granule item provides the link back to the main item. 

Figure 22-9, Mass Storage File Granule Item 



4144 Rev. 2 
UP-NUMBER 

3534333231 

UNIVAC 1100 SERIES SYSTEMS 22-36 
PAGE REVISION PAGE 

o 

Word 0 U 0 0 0 link-to-next-sector-if-U = 0 

link-to-main-section-or-preceding-granule-sector 

2 

'-"" f', er. ,--" j Up to 25 eel numb • 1 
27 TL..--_____ ---1_ 

Word 1 

There is the possibility that there are more than 25 reel numbers; therefore, there can be more than one granule item. Each 
granule item lists 25 reel numbers. When there is more than one granule item, the second, third, and so forth, granule items 
are linked back to the preceding granule item, and the first granule item provides the link back to the main item. 

Figure 22-10. Tape File Granule Item 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 23-1 
PAGE REVISION PAGE 

23. LOGGING AND ACCOUNTING 

23.1. INTRODUCTION 

Extensive logging and accounting capabilities are incorporated into the executive system to collect information pertaining to 
each run and to certain general executive actions, such as I/O error logging. The information can be used for accounting and 
general postprocessing purposes. A summary accounting file containing information about each account is maintained and 
updated automatically by the system at the termination of each run. In addition, a master log of all logging and accounting 
information is produced. 

Two utility routines are provided: BI LLER (see 23.7) is used to process the summary account file; LOGFED (see 23.8) is 
used to process the master log file. Both routines are provided only as examples to the installation manager to aid him in 
writing routines unique to his installation. The BILLER routine serves as a minimum provision to inserting account numbers 
and their associated site-manager specified parameters. The LOGFED routine serves only to list the contents of one or more 
master log files. 

Figure 23-1 is a block diagram of the logging and accounting process. 

23.2. LOG ENTRY INITIATION AND CONTROL 

Log entries are initiated by the executive at various significant points throughout a run in order to obtain and preserve in the 
master log a chronological record of the activities of the system. In addition, the user run can enter messages into the master 
log. Console messages are also entered. The total information gathered is of value not only for accounting (billing) purposes, 
but also to capture the unique actions of a particular run and to evaluate system performance. 

The information generated and placed in the temporary and later the master log fall into the following categories: 

• Run initiation 

• User-specified log control statement (@LOG) from either a run stream or submitted via a CSF$ request. 

• Program termination 

• I/O errors 

• Console activity 

• Tape labeling information 

• Checkpoint/restart information 

• Facility usage 

• Run termination 

• Catalogued mass storage file usage 

The log control routine controls the flow of all logging information that is generated to the temporary log file. As each 
logging request is made, the log control routine chains the new log entry information by run in the temporary log file. 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 23-2 
UP.NUMBER 

Temporary 
Log Entry ~ Log Control f-+- Log File 
Initiation 

I I 
By the User I I orthe 

I I Executive 

L _______ J 

Run Termination 
Accounting 

Print File Summary Account 
for Run File 

I 
I I 
I Printer I 
I I L _______ .-J 

Processed by I 
BILLER I 

I I L _______ -1 

Figure 23-1. Logging and Accounting Process, Block Diagram 

23.3. PRINT FILE OUTPUT 

I 
I 
I 

PAGE REVISION PAGE 

\ 

Master Log 
File 

Processed by 
LOGFED 

I 

I I L _______ -.J 

At each run termination, information which pertains to the run is placed at the end of the PRINT$ .file by the run 
termination accounting routine. The information presented is as follows: 

• Run identity 

• Control language log statements 

• Console messages pertaining to the run 

• Executive request log statements 

• Project identity 

• Account number 

• Total run time 

• Pages of printing applicable to run 

• Number of cards read in and punched out 

• Time and date of run initiation 

• Time and date of run termination 



l 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 23-3 
PAGE REVISION PAGE 

23.4. SUMMARY ACCOUNT FILE CREATION AND UPDATING 

A second function of the run termination accounting routine is to update the totals in the summary account file for the given 
account. This is done in the course of creating the master log file, since each log entry is moved from the temporary log file to 
the master log file. 

The summary account file, called ACCOUNT$, is a FASTRAND-formatted mass storage file which is set up at system 
initialization and permanently assigned to the executive system. Totals are kept until cleared by a unique BILLER or a 
user-supplied billing routine, or until the file is replaced during initial system loading. Procedures for executing a billing 
routine are usually established by the installation manager. See 23.7 for a discussion of BI LLER routine provided. For each 
allowable account number, a 56-word block exists in the summary account file, which is described in detail in 23.6.3. 

23.5. MASTER LOG FILE CREATION AND CONTROL 

The run termination accounting routine inserts entries into the master log file (SYSTEM$LOG$). This file may be catalogued 
either on tape or on FASTRAN D-formatted mass storage (specified at system generation time). The file is made up of a 
number of 224-word blocks each containing up to a maximum of eight log entries. The number of these blocks depends upon 
the length of the file set at system generation time. The blocks have the following format: 

224 
Words 

Eight Log 
Entries 
(MAX.) 

nbr.-of-entries-in-block 

This file is initially catalogued by the executive during the initial boot from tape. Log entries are written on the file until the 
preset maximum length of the file is encountered. Then the current F-cycle of the file is released and a new one is started. 
This switch enables the user to assign and read the file just released. An operator keyin also causes the executive to switch 
files. In case of I/O errors on either tape or mass storage, the executive performs an automatic switch to obtain a new file. 
When the F-cycle limit is reached, the system drops the oldest cycle to make room for the newest F-cycle. If the file is on 
tape and an end-of-tape is encountered, TSWAP$ (see 7.2.7) is called for a new reel of tape and an F-cycle change does not 
occur. 

At system initialization time, the file is catalogued with a (-0) relative F-cycle. If the file (-0) is on Fastrand-formatted mass 
storage, the user should use caution in assigning and reading this file since the executive will be writing on it at the same time. 
However, if the file is on tape, the user is not able to assign and read this F-cycle until the executive releases it. When a switch 
occurs, the executive frees the current (-0) F-cycle and catalogues a new (-0) F-cycle. The former (-0) F-cycle becomes 
relative (-1) and is available to the user. The end-of-file (EOF) sentinel is one word of all 7's (octal) at the beginning of the 
block. If the file is on tape, an end-of-tape sentinel is one word of all 6's (octal) at the beginning of the block. 

The particular log entries found in the master log are described in detail in 23.6. The LOG FED routine is described in 23.8 .. 

23.6. FILE FORMATS 

23.6.1. BASIC NOTATION 

All values in the summary account and master log file entries are binary unless it is obviously a symbolic name such as 
program name, version name, run-id, qualifier, filename, project-id, or account number, in which case it is in Fieldata that is 
left-justified and space filled. Several items in all entries have a common format and are described here to facilitate easier 
understanding of the following entry formats. The common items are as follows: 

II date and time of xxx This is the format of time and date as received from a call to TDATE$ (see 4.5.2) 

message Refers to a string of Fieldata characters, the maximum length of which is specified in the entry. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 23-4 
PAGE REVISION PAGE 

23.6.2. SUMMARY ACCOUNT FILE STRUCTURE 

The structure of the summary account file is illustrated in Figure 23·2. The relationship between the 56·word table of 
contents and the corresponding 56-word account number entries is shown. For more detailed knowledge of the manipulation 
of this file, study must be made of portions of the executive accounting routine (see 23.2 through 23.6) and the routine 
BI LLER (see 23.7). 

Sector 08 

Sect r 28 

Sector 48 

Sector 708 

Sector 728 

Sector 748 

I 

__ ACCOUNl _ 
_ _ NUMBER.L _ 
__ ACCOUNL_ 
__ NUMBER2_ 

1 

E-------4 -------

r 

Etc. 

56 Words 
28 Account Numbers 

Maximum 

56 Word Summary 
Account Blocks 

Figure 23-2. Summary Account File Format 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 23-5 
U P.NUMBER PAGE REVISION PAGE 

23.6.3. SUMMARY ACCOUNTING FILE ENTRY FORMAT 

The format of the summary accounting file entry is: 

S1 S2 S3 S4 S5 S6 

Word 0 
accoun t·number 

highest- priority to be- nonzero-if- nonzero-if- nonzero-if-

2 allowable- used-when-none- deadline- real-time- entry-added-
priority is specified allowed allowed by-operator 

~~ ~~ 

10 
first-en try-time (DA TE$ format) * 

11 

12 

last-en try-time (DA TE$ format) * 

13 

14 

entry-last-cleared (DA TE$ format) * 
15 

16 total-number-of-runs 

17 total-compute-time-used 

18 to tal-elapsed-time-of-runs 

19 total-cards/images-in 

20 total-cards-out 

21 total-lines-out 

,I.-
.... ~ 

* See 4.5. 1 for DA TE$ format 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 23-6 
UP-NUMBER PAGE REVISION PAGE 

22 

23 not used 

24 

25 track-seconds-of-FH-432-usage 

26 track-seconds-of-F H-BBO-usage 

27 track-minutes-of-FASTRAND-usage 

.... 
"i" 

"I' 

28 

29 total-seconds-UN ISE RVO-16-tape-assigned 

30 total-seconds-UN ISE RVO-12-tape-assigned 

31 total-seconds-UN ISERVO-VIII-C-tape-assigned 

32 total-seconds-UN ISERVO-VI-C-tape-assigned 

33 total-seconds-UN ISERVO-IV-C-tape-assigned 

34 total-seconds-UN ISE RVO-III-A-tape-assigned 

35 total-seconds-UN ISE RVO-II-A-tape-assigned 

36 
tota I-seconds-F H -432-assigned 

37 
total-seconds-FH-880-assigned 

38 total-seconds-FH-1782-assigned 



,r" •• 

( ' .. , 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 23-7 
PAGE REVISION PAGE 

""r" ""'I' 
39 

40 total-seconds-card-subsystem-assigned 

41 total-seconds-paper-tape-subsystem-assigned 

42 total-seconds-printer-assigned 

43 
total-seconds-UN I VAC-1 004-card-processor-assigned 

44 
total-seconds-CTS-assigned 

45 
total-seconds-WTS-assigned 

46 
total-seconds-CTMC-assigned 

47 

~, 
~~ 

55 

23.6.4. MASTER LOG ENTRY FORMATS 

The different types of log entries which may appear in the master log are described in paragraphs 23.6.4.1 through 23.6.4.13. 

Eqch of the entry formats contains a word that provides either the date and time of the log entry or the date and time of 
some program action. The format of this word is: 

m m/dd/yy /seconds-after-m idn ight 

where the year (yy) is module 64. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 23-8 
PAGE REVISION PAGE 

23.6.4.1. CONTROL STATEMENT LOG ENTRIES 

Log entries specified by the @LOG control statement are placed in the master log file in the order in which they occur. The 
entry format is: 

S1 S2 S6 

nbr-of-Iog-
Word 0 entry-type (1) message-length entries-in-

224-word-block 

~~ message ~1' 
(22-word maximum) 

25 date-and-time-of-Iog-entry 

26 

27 run-id* 

* Run-id word is zero if the entry (and the block) pertains to the executive rather than a specific run. 

'" .. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 23-9 
PAGE REVISION PAGE 

23.6.4.2. FACILITY USAGE LOG ENTRIES 

Whenever the configuration of a run is changed by assigning or freeing a tape or arbitrary device file, an entry is made in the 
master log file. The entry format is: 

S1 S2 S3 S4 

nbr-of-wds-
Word 0 entry-type (2) tha t-all-en tries-

occupy 

subsystem-nbr unit-nbr 

2 date-and-time-of-@ASG-or-@FREE 

3 

4 

::::-~ 

25 date-and-time-of-Iog-entry 

26 

27 run-id 

* See Appendix E for equipment codes. 

S5 S6 

nbr-of-entries-in-
a-224-word-

block 

equipment-code * 

~~ 

Entry 
1 

Entry 
2 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 23-10 
UP-NUMBER PA GE RE VISION PA GE 

23.6.4.3. CATALOGUED MASS STORAGE FILE USAGE ENTRY 

Whenever a catalogued mass storage file is freed (using a @FREE control statement or at run termination), an entry is made in 
the master log. The entry format is: 

Word o 

2 

3 

4 

5 

6 

7 

8 

S1 

entry-type (3) 

S2 

nbr-of-wds
needed-by

entry 

S3 

qualifier 

filename 

project-id 

account-nbr 

S4 S5 S6 

nbr-of-entries
in-224-word

block 

9 equipment-code flag-2 current-assigns absolute-F-cycle 

10 

11 

12 

13 

14 

15 

date-and-time-of-@FREE 

date-and-time-of-cataloguing 

Final count of file granules on 
mass storage devices having 
equipment codes 308 through 
378 , Count taken at @FREE. 
See Appendix E for equipment 
codes. 

date-and- time-assigned 

Original count of file granules on 
mass storage devices having 
equipment codes 308 through 
378 , Count taken at @ASG. See 
Appendix E for equipment codes. 

v 



j 
\ 

.' 

4144 Rev. 2 

UP.NUMBER 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

where: 

current assigns 

flag·2 

UNIVAC 1100 SERIES SYSTEMS 23-11 
PAGE REVISION PAGE 

IIV 

date-and-time-of-Iog-entry 

run·id 

The number of file assignments during the run (other users excluded). 

Position granularity 

208 Private file 

1°8 File is being dropped 

48 File was assigned with exclusive use 

28 Write-only file 

Read-only file 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 23-12 
UP.NUMBER PAGE REVISION PAGE 

23.6.4.4. PROGRAM TERMINATION LOG ENTRY 

For each program in the run, termination information is entered in the master log. The entry format is: 

S1 S2 S3 S4 S5 S6 

nbr-of-entries-
Word 0 entry-type (4) nbr-of-wds- in-224-word-

in-entry block 

program-name 

2 

3 

version-name 

4 

5 date-and-time-of-program-initiation 

6 date-and-time-of-program-termination 

7 run-time (200-psec-increments) 

8 I·bank-Iength D-bank-Iength 

9 program-type last-reentry-addr 

10 cond ition-word 

11 nbr-of-I/O-references 

12 data-words-transferred 

13 

"', "' ... 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 23-13 
PAGE REVISION PAGE 

25 date-and-time-of-Iog-entry 

26 

27 run-id 

23.6.4.5. RUN TERMINATION LOG ENTRY 

At the completion of each run, termination information is entered in the master log. The entry format is: 

Sl S2 S6 

Word 0 
nbr-of-wds-

nbr-of-entries· 
entry-type (5) in-224-word 

in-entry blocks 

account-nbr 

2 

3 

project-id 
4 

5 date-and-time-of-program-initiation 

6 date-and-time-of-program-termination 

7 cards-in cards-out 

8 priority print-line-count 

9 estimated-run-time (millisecs) 

10 actual-run-time (millisecs) 



4144 Rev. 2 

UP-NUMBER 

11 I"V 

12 

13 

14 

15 

16 

17 

18 

19 

20 

25 

26 

27 

where: 

granule-table-r/w 

total-directory-control-calls 

UNIVAC 1100 SERIES SYSTEMS 23-14 
PAGE REVISION PAGE 

Track seconds count for mass storage devices having equipment codes 308 
through 378 (see Appendix E for equipment codes). 

Track-seconds = (nbr-of-tracksl x (nbr-of-secs-used) 

Applicable to temporary files and expansion of catalogued files assigned to 
this run. 

total-nbr-sectors-allocated/released tota I-nbr-allocation/ release-ca lis 

granule-table-r/w total-master-fi le-d irectory-control-calls 

date-and-time-of-Iog-entry 

run-id 

A count of the read/write operations used to maintain the granule table. 

The total count of references to the executive cataloguing routines to support all 
catalogued files in the run. 

23.6.4.6. I/O ERROR LOG ENTRY 

A record of all I/O errors is kept in the master log. A count of valid references to a unit is maintained in main storage and 
when an error occurs, this information along with the error information is placed in the master log. The reference count is 
cleared to zero at that time. Note that after a predetermined number of retries (number of retries is device dependent), all of 
which fail, th.e operator is notified and operator intervention is required. The entry format is: 



4144 Rev. 2 
UP-NUMBER 

Word 0 

2 

3 

4 

5 

6 

7 

8 

9 

20 

24 

25 

26 

27 

where: 

~~ 

" 

MSA-device-flag 

equipment-code 

S1 

entry-type (6) 

MSA-device-
flag 

UN IV AC 1100 SE RI ES SY ST EMS 23-15 
PAGE REVISION PAGE 

S2 S3 S4 S5 S6 

nbr-of-words-
in-entry 

equipment-code unit-nbr su bsystem-nbr 

E I-statu s-word (1) 

EI-status-word (2)-or-zero 

E I-status-word (3) -or-zero 

nbr-of-refs-since-Iast-error 

IOC-or-MSA- IOC-or-MSA- CPU-channel-
nbr channel-nbr nbr 

EF-word (1) 

EF-word (2) 

~:::: 
Up to 12 additional EF words 

-r 

reel-nbr (tape-only) 

date-and-time-of-Iog-entry 

run-id 

A zero indicates a nonMSA device. A nonzero indicates a MSA device. 

See Appendix E 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 23-16 
UP-NUMBER PAGE REVISION PAGE 

23.6.4.7. CONSOLE LOG ENTRIES 

Each console message is placed in the master log. At run termination, every message pertaining to the run is printed at the end 
of the program listing. The entry format is: 

S1 S2 S5 S6 

Word 0 
nbr-of-wds- nbr-of-entries-

entry-type (7) in-msg (+1) in-224-word-
block 

2 msg-nbr 

message 

v (22-word maximum) 
..... " .v 

25 date-and-time-of-Iog-entry 

26 

27 run-id 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 23-17 
UP-NUMBER PAGE REVISION PAGE 

23.6.4.8. CHECKPOINT LOG ENTRY 

When a checkpoint is used in a run, an entry is made in the master log with pertinent information concerning the 
checkpointed run. The entry format is: 

S1 S2 S6 

Word 0 
nbr-of-wds- nbr-of-entries-

entry-type (8) 
in-msg in-224-word-

block 

message 
:;~ 

(24-word maximum) 
~~ 

25 date-and-time-of-Iog-entry 

26 

27 run-id 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 23-18 
UP.NUMBER PAGE REVISION PAGE 

23.6.4.9. RUN INITIATION LOG ENTRY 

When a run is opened, an entry is made in the master log with the pertinent information concerning the run. The entry 
format is: 

Word 0 

2 

3 

4 

5 

6 

7 

8 

9 

10 

I 
25 

26 

27 

Word 1 

A 

S1 S2 S3 S4 S5 S6 

nbr-of- 1 nb,·of·en";,,· 
entry-type (9) wds-in- in-224-word-

entry block 

A priority 
start-time 

I 
deadline-time 

(in minutes) (in minutes) 

est i mated -pages-ou t I est i mated-card s-ou t 

run-id (new) 

run-id (old) 

project-id 

account-nbr 

device-association I estimated-run-time-(secs) 

date-and-time-of-Iog-entry 

run-id 

The possible values are: 

108 - T option is specified on @RUN control statement 

48 - P option is specified on @RUN control statement 

28 - C option is specified on @RUN control statement 

18 - S option is specified on @RUN control statement 

~ 



4144 Rev. 2 
UP-NUMBER 

UN IVAC 1100 SE R I ES SY STEMS 23-19 
PAGE REVISION PAGE 

This entry is always the first one in the first block of a series of contiguous blocks in the master log file for a given run. The 
run-id field (new) contains the same identity as word 27 of each entry for the subject run. 

23.6.4.10. CONSOLE R EPLI ES LOG ENTRY 

Replies to console type and read messages are placed in the master log. The replies as well as the type and read messages are 
printed at the end of the program listing. The entry format is: 

S1 S2 S5 S6 

nbr-of-words- nbr-of-entries-
Word 0 entry-type (10) in-msg in-224-word 

(+1) block 

msg-nbr 

~~ message 
(11-word maximum) 

~~ 

25 date-and-time-of-Iog-entry 

26 

27 run-id 

23.6.4.11. LOG KEYIN ENTRY 

The entry format is: 
S1 S2 S6 

Word 0 
nbr-of-wds-

nbr-of-entries-
entry-type (11) in-msg 

in-224-word 
block 

~~ 
message 

~~ (9-word maximum) 

25 date-and-time-of-Iog-entry 

26 

27 run-id 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 23-20 
UP.NUMBER PAGE REVISION PAGE 

23.6.4.12. UNSOLICITED KEYIN LOG ENTRY 

The entry format is: 

S1 S2 S3 S4 S5 S6 

nbr-of-wds- nbr-of-entries-

Word 0 entry-type-( 12) in-msg in-224-word-
(+1 ) block 

actual-keyin-in-Fieldata-format 
(Ieft-ju stified) 

~r\ message 
\:~ (23-word maximum) 

25 date-and-time-of-Iog-entry 

26 

27 run-id 

23.6.4.13. TAPE LABELING LOG ENTRY 

When the tape labeling feature of the executive is used, log entries are made in the master log. These entries contain pertinent 
information concerning allocation and release of tape reels, and errors encountered during tape labeling. The entry format is: 

S1 S2 

Word 0 entry-type (13) nbr-of-wds-
in-msg 

message 

~K (24-word maximum) ~~ 

25 date-and-time-of-Iog-entry 

26 

27 run-id 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 23-21 
UP.NUMBER PAGE REVISION PAGE 

23.7. BILLING ROUTINE (BILLER) 

23.7.1. GENERAL DESCRIPTION 

The billing routine accesses the summary account file (SYS$*ACCOUNT$) which is generated by the executive accounting 
routine. For each account number, it performs various updating functions as well as generates a listing of some of the 
information found in the file. 

The billing routine (BI LLER) is executed in the following manner: 

~U~~·E~.. . ." :~lL~lP.~ R :~I,~",20.':'-L1 ... J "'L'l3~=; "'="J=_O==L=P=,E =~=AH=jD=._.1=' = ...... =L.== . .l=4.0=~ = ... =L'="'l= ... _=L_= .. J= .. =, ="=.L ='-J~-~.~-.~-5~-I:-'~-'~-:'-T-~·-L_-'~-:-~~ ;,Q;t " . :B.:r.LJ.. ,I':,'R .. J. L 1 .. 1. .L I ....... i. .. Ll .. '.'., . LJ ... , .. 1. •. ,." .... L .. L .. 1..J .... L .. ~. j .............. 1 ., ..•. I.J , .j .... , .j, .. , 

rE~/ltj . .1.' .i. .. L1 .. LJ .. L .. J .1 .. LL.l ... LL.!. .. U ...... l .. L.i .L.' .. L.L..i i .... L __ 1._J .... 1 ...... _1.-1 .... .1 .".l._¥.~! ........ l .. ", L.. l_L.~..1 .... L ... n.L_L ...... l .... l __ l.¥ ..... .l ..... 1... .... .1 ..... _1_ 

i .... ' ... L._~ __ l .. 1... '-. I Lj.L L. L .. _L .. .1 .. .1 L .. I . .1 . L ... -1._1 ' ... L .. 1.. . I . L .. _L.I .. L .L .. .J 1. L ... ' .J 1 ... L .. i ..... , .... __ .. .1 .L.LJ .. J " L .... L ...... L . .l. ... I . .l 

The routine is self·contained in that it assigns the ACCOUNT$ file internally, and it requires no library routines for 
allocation. 

The billing routine performs the following basic functions: 

• Reads each entry in the account file 

• Resets each item to the cleared state (while the file is locked out from summary accounting) 

.. Prints each total for the various facilities used by the account 

II Flags entries added by the operator 

II Totals each entry type for all accounts 

• Prints a summary for the entire system since the previous billing 

• Inserts new entries into the file 

• Deletes entries from the file 

23.7.2. CONSTRAINTS FOR USER-IMPLEMENTED BILLING ROUTINES 

It is most important that the implementor of a user billing routine understand the certain portions of the sample billing 
routine. This is necessary to ensure that t.he user routine does not cause destructive action. 

The code for BILLER has three parts to its organization: 

(1) Card Read and Card Editor Element 

(2) ACCOUNT$ Interface Element 

(3) Output Editor Routine 

The user is fairly free concerning modifications to the output editor. Modifications can be made to the card editor, but the 
user should be aware of what is acceptable input to the interface element. Improper modification of either the card editor or 
the interface routine will destroy ACCOUNT$ or lock the file against executive access. 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 23-22 
UP-NUMBER PAGE REVISION PAGE 

23.7.3. INITIALIZING AND CHAINING OF ACCOUNT ENTRIES 

BI LLER accomplishes many different tasks such as inserting account numbers and parameters into ACCOUNT$, purging 
information about all or any account numbers, reading information about account numbers between purges, and removing 
account numbers from the file. 

The four basic commands (card inputs) available with BILLER are INSERT, REMOVE, PURGE, and READ, 

23.7.3.1. INSERT COMMAND 

The INSERT command is used to enter new information. The format of the INSERT command is: 

I NSE RT acct-id,param-1 param-2 param-3 param-4 

Where acct-id is the account number and param indicates the location of parameters. 

The word INSERT may begin in any column, but at least one blank must follow it. If the account number is more than 12 
characters long or is omitted, the command is rejected. A comma must separate the account number from all following fields. 
The number of blanks before or after the commas is completely arbitrary. 

Four parameters are allowed. These parameters can be listed in any order, but for the purpose of description, are presented in 
the following order: 

param-1 

param-2 

param-3 

param-4 

Example: 

If deadline times are permitted for the specified account number, code the following. 

DL 

If deadline times are not permitted, omit this parameter and the routine assumes a 'no'. 
The message DEADLINE ALLOWED or DEADLINE NOT ALLOWED is printed after 
the INSERT card is interpreted. 

This parameter specifies the highest allowable priority (A-Z) for a run using this account 
number. If omitted, M is assumed. The priority is specified as follows 

MP=z 

where z is the priority letter. A message is printed noting which priority level. 

This parameter specifies the priority to be used if none is specified on the @RUN control 
statement. If omitted, M is assumed. The priority is specified as follows 

BP= z 

where z is a priority letter. 

This parameter specifies what level of real time, if any, is allowed for programs in a run 
using this account number. The allowable levels are 2 through 35 and the means of 
specifying a real time level is as follows 

RTL= y 

where y is a value from 2 to 35. If omitted, programs running with this account number 
are not allowed to go real time. 

OPERATION .\ 
20 30 

==== 

OPERAHD ,\ 
40 

COMMENTS 
50 

'-. ... L ..... i .. _L .. L. .... 1.. ... 1 ... 1. .. 1.. .. 1 .. L ... L ...... l .... J ....•. L ..... L ..... l .. ..l .... 1.. 1 ... 1 ...... 1.. .. 1 ....... 1. ... 1. ..... : ........ 1. .... 1 .... L ..... L .. J .... L .. L ..... l. ....... L .. J .. L ...... L.1 .... J .... L . ...L .. J ....... J .... , ,! ! L .. ..L ... I ... .1. .. L ... 1 .. L .. 1.. .. . 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 23-23 
PAGE REVISION PAGE 

l. 

Insert account number 399103, with highest priority C, run - blank, priority M, deadline permitted, and real time-highest 
level 25. 

BI LLER prints this command and the following messages: 

MAXIMUM PRIORITY = C 

BLANK PRIORITY = M 

REAL-TIME LEVEL = 25 

DEADLINE ALLOWED 

If the account number already exists in the file, a message is printed noting this and an I automatic PURGE (see 23.7.3.2) 
is performed~ The new parameters are inserted into the file. 

23.7.3.2. REMOVE, PURGE, and READ COMMANDS 

The format for each command is identical: 

READ acct-id-1, ... ,acct-id-n 

The command identifying word READ, PURGE, or REMOVE may start in any column. It must be followed by at least one 
blank before the first (acct-id). Separate all following account numbers with commas. Again any number of blanks can 
precede or follow the commas. 

The function of each command is as follows: 

Command 

REMOVE 

PURGE 

READ 

Examples: 

LABEL ,\ 
10 

Description 

This command instructs BILLER to delete the indicated account numbers and perform 
an automatic purge of information associated wi~h those accounts. 

This command instructs the routine to purge ACCOUNT$ of information concerning the 
specified accounts. After the purge, the information is set to zero and accumulation is 
started over. The absence of account numbers purges the entire file. 

This command is identical to the PURGE command except that the information is not 
cleared to zero. This is a read-out of the file for given account numbers or of the entire 
file if no account numbers are specified. 

OPERJ,TION .\ 
20 30 

OPERAND ;\ 
40 

COMMENTS 
50 

==== -------
I 

L ..... .J ....... J, ..... L .. J ... .1 ..... ! ....... L . .l .. 1. ... 

] 1.;1 .. .I ..... L ...... L .. ! ....... L. .... 1.. ..... 1 .... 1 ..... L. ... ! .J ... L ... 1. ..... 1 .l ... i. .. 1 l . .;. ..... 1.. .... .1 .. L . .1 ......... L. .. l. . .l ....... L .. L.J ..... 1. ... .1- ... .1 ... :... ... 1.. .L .. ! . L ... J .. .1- ... J .... , ...... 1...1 .. l. ..... L .. 

.. i .... 13J9B1LPr9L .. l_L.J ... L.L ... 1 ... L .L.i .... , ... J ..... .!. ...... .! .... J ..... L ........ L .... L .... J .... L.L.1 .. L ... L .. Lj ..... LJ ........ 1 .... L_-'-_L .. .1 ... L .. LL ... L .. L. .. L_L .. L. ..... L ... L 

J .... L.) ..... 1.. ..... 1.. ... .I .... I.. ..... J ....... L_L.1 .... .l ..... L .. L ... L.i ........ L .. J .... L .... L..i..L .i .... LL.] .... L .... [ ... .1.L .. L.J .. ..1 ..... L .. 1-_.1 ... .,] ..... L ... .L .. ..1 ..... 1. .. L_L .. J .. , .... .1 ...... L.L.1 .... ..J .. 

3. ,l.!:RG:J;L..L.J3'&CWJ?..L1,3,QFll iOI8......LL.L.....J_L_L..L..L~i 1 __ !.....J.-l.....J_..L-L-l-•. L .... Ll...L..L I ! ! I ! I ! 

.... 1. L .... L .... L.L .... L .. J ..... L_L.J ........ L ... L ..... L .. L .... L ... L_L.L ... l ... L ... L .. J ... 1 ... J ..... i ....... L .. 1.. ... L .... .l ...... L ... L ..... l. .... ....L_L.L .1. J ... --1.. ........ 1 .... I. .. L. .. _L .... L. . ... L .... L .. l. 

l... ~ . ..l J ... L...L .. 1 ...... L ... LJ .. L.J .. L ... i..l ... .1- .. 1. ..... 1 .1.. 1... .. 1 ... L ..... L ........ L.L .. ..! .... L ..... L..! .. 1. .... L.J ....... L. ..... L .... LL ..... L .... .J ...... ,LJ .... 1. ...... 1 .L .. .l ......... 1. .. ..1 .... 

i. ... L .. L .. L ..... L ..... l ..... ..l. i .L ... 1. l.. ..... J ....... L .. L ... J ........ L .. .L .L ..... L ...... L. .. L ... l ... L ... .1....1 .... L ..... L .. I ... L .... J. .... L .. .l ... L. .... L ... 1 ... 1.. .... L_1. i .. L ..... LJ ..... L .. L ... .L ...... L .. L .... J. .... .L.L ... J ..... L ... ....L_.1 .1. ..... L ... 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 23-24 
PAGE REVISION PAGE 

1. All information (already accumulated and being accumulated) for accounts 399104 and 399105 is deleted. 

2. All information being accumulated for account 399106 is listed. 

3. All information being accumulated for accounts 399107 and 399108 is deleted and the accumulation of these accounts 
is restarted. 

4. All information in the ACCOUNT$ file is deleted. 

23.7.3.3. NO INPUT SPECIFIED TO BILLER 

If no card input is provided for BI LLER, it purges all account numbers in the same manner as if a PURGE command with no 
account numbers specified was executed. 

23.7.4. PRINTER OUTPUT 

In addition to the printer output already described, the following information is output for each account number: 

(1) TIME/DATE OF FIRST ENTRY 

The time and date when ACCNTG encountered the first run initiation type of log entry for this account number; in 
other words, the time the first run started. 

(2) TIME/DATE OF LAST ENTRY 

The time and date when ACCNTG last encountered a run termination type of log entry for this account number. 

(3) TIME/DATE ENTRY LAST CLEARED 

The time and date when a billing routine last cleared the information in the summary account block for this account 
number. 

(4) TOTAL RUNS PROCESSED 

(5) TOTAL COMPUTE TIME OF RUNS 

(6) TOTAL CARDS READ 

(7) TOTAL CARDS PUNCHED 

(8) TOTAL PAGES GENERATED 

(9) SUBSYSTEM USAGE 

The elapsed time that an I/O facility was assigned to this account. 



'-

4144 Rev. 2 
U P.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 23-25 
PA GE RE VISION PA GE 

An example of the output of this routine is: 

*** 399101 **** 

TIME/DATE OF FIRST ENTRY 11 :58:84 OCT 17, 1968 

TIME/DATE OF LAST ENTRY 14:54:45 OCT 17, 1968 

TIME/DATE ENTRY LAST CLEARED 14:57:72 OCT 17, 1968 

TOTAL RUNS PROCESSED 8 

TOTAL COMPUTE TIME OF RUNS 00:03:16.617 

TOTAL CARDS READ 3323 

TOTAL CARDS PUNCHED 0 

TOTAL PAGES GENERATED 252 

SUBSYSTEM USAGE: 8C 02:29:59 

23.8. LOG FILE EDITOR (LOGFED) 

LOGFED is a routine designed to extract and edit master log entries created by the executive accounting routine. Any 
number of entries may be extracted, depending on the parameter statement used. LOGFED may be called as either a 
processor or a user program. The general calling sequence is given below: 

~~_""~"___ "'-_: """"0"" ____ ._.~~ OPERAHD 40~ C5~MMEHTS 60 

~'Ru ,N. : " . . .. !. i 1. : , .. • J , • • , , • " , , • 1 i. : • , ;. c J ,:, t 

70 80 

@ASG. .. I . .'.' I . .cAss.i .9" :the, :p.ro'!J,..-:om Jfli.1 e. t:h.~itj .c~ln:t,ali .nS .L.e'GF:ED." 
~Le'pFED:,o.p:t i.onsl ; .. 1 ~ . Cdr @XQJiL~GFEU"o.p.ti .o.nIS1Ji 1 , 1.[ , l..L.I l. 1 U. 1 • , ~ , ,_I.. •. i ~ Li t • l..l 1 ... _. . 

~a~.ame:te.~.st~t e,menT, J .(.co.nta,in s. masTer, J ]0;.9' i"yp.e:s.and, F-.c..y.c.1 e:sJj . 1 _ J 1 i.1-1.1 , ,._, 1 j i., 

rl~~~-:~~~.~~--:-:~.~~--.~ -l·~~-.·-j-~·~-~·--j·-~-:~--~---:-I ~. ~~~~ .. ~~: -. :~~~-~-~'-:~~--.;--:-~-~~~:~: ~.~~~_j' , , 

Available options are: 

A Extract log entries for a specific account number. 

R Extract log entries for a specific run-id. 

If no options are present, entries are extracted with no regard to account number or run-id. 

The parameter statement takes on three general forms depending on the presence or absence of options. The following 
examples best explain the parameter statement. Assume a run-id of JONES and an account number of 399126. Log entry 
types 2, 5, 7, 9, and 10 are to be extracted from relative F-cycles -1, -2, and absolute F-cycles 6 and 10. Assume that the 
absolute element LOG F ED is part of a program file on tape numbered 555. 



4144 Rev. 2 UN I VA C 1100 S E R IE S S Y STEM S 23-26 
UP-NUMBER PAGE REVISION PAGE 

Example 1: Extract log entries for RUNID only (R option). The run deck would appear as follows: 

OPERATION .\ 
30 

OPERAND /\ 
40 

COMMEHTS 
50 b L:B~L _ __ 10' 

;'AtJ~'-'-~ ..... 1.J ..... ~ ... ~ ..... ~ ..... ~ ........ L ..... L5-:·····L ....... L.L .. J ... L .. .J_ . .1 ..... L .... L . ..J ...... i .. L ... .l ..... L ... ! ! ! ! .. 1...1........1. • ..1 ..... L .... L . .-l. ... J .... L.l-. .J .. 1. ...... L .. L .. .L .. .L .. _l ... L .... LJ ... ..1 .. ..... ~L' I .. J .. .JAP,E,.,., ....... , .. ,J55 .. ~ ... ...1 ... 1... .. 1 1 ..... 1 ..... 1... ..... 1 ... J .... L ..... 1... .... L . .> ....... 1.. .. .1 ...... LJ .... I ...... Ll ....... L .... J ..... L .. .J .... L. ... l._ .. L ..... L .. 1... ..... ; ...... .1.. ... 1. ..... 1... .. 1....1 .. _.1 ....... 1 ..... L.-L ... t ..... .1 ... 

. ;.l~ll~L .. JIA1?lE; .. ~l ...... L .. ..l ...... J ... .J._l ....... L ... LJ_ .. L ..... 1 ... ..L. .. L.! .... L_L_J. ... L .. J ... _L.L ... l ... L .. L ... L ... L...l ..... J. ..... L . ...L.....L .. l .... L . .L . .L_J ... L_L~ ... ..l ..... L ... L .. L .... ..l .. .l.._L 

.E'R .. l;J;.l ...... jLAPiE: .... L ... L .. J ..... L ..... L .... L .. J ... 1. ... L ... I. ..... J .... L ..... L .. ..i ..... L ..... LL . ...I .... i ... LL .. l ..... L ...... L ... L ... L. ..... LJ. .... ...l ...... L ..... l_1 ..... L ..... L ..... L .. 1 ... .1 ...... L.l._l .......... L_L .... .l ..... L. .... .L 

J!!~E~J'-L'.&.J-l9.Jt:~k.QL..Jb.~F~~R...LJ~l-L.J-i.-L.L-l._L.J ! ! I -l_l-L! • ! ! ! ! ! ! I 

J:dMES .:2L,/5,J11 ,.31,) ..LQ .. .l=.i..L,J::JZ., 16L,LI..;0 .. L..J._L .... l... ..... L .. LJ ....... i ..... LL .. L .... ..: ... 1.. .. 1 .... L ..... L..J_L ... .! .. ..L...l.-. .L .. J ... L. .... L-J ...... L ..... LL ..... ..L. 

itIJN ........ L ... L .... L .. L ... ..l.J.L ..... L .................. L ...... L ..... Je ...... L. .. 

The parameter statement must be coded as shown; that is, the run-id must begin in column 1, be followed by a blank 
followed immediately by the log entry types separated by commas with no intervening blanks, followed by one blank and the 
F-cycles. 

Example 2: 

Lt;CEL 

Extract log entries created under the account number (A option). The run deck appears as follows: 

10 
OPERATION 2d .\ OPERAND 

30 
.\ 

40 

j1S:l)J~t ... L . .L_l. .... 1 ... 1 ... L .. L ... l..... .. L. .... .1.. .... ..LJ ...... .J ........ L_L ... L. ..... L...L ... .1 .... 1. .•.. 1.. .. 1.. .. 1. .. L .... Ll-.... L .. ! ! • .., ... L . ..L .... ..l ..... L .... L .... L ..... L. ..... l .... L .... L .. .J ..... 1. .. L .. L ... 1 ..... 1.... 1.. ..... 1.....1 i 

lAS0;,I ;LAP1EL,L,S1515L .. 1.. .... i .... I .... 1 .... L ..... .1 .. .1 ..... , ..... , ....... , ...... "-... L ...... 1... .... LL.J ... I..~ ... .L. .. .L . .i .... 1.....1 ..l ..... .1......J.. .. J ..... ;.. ...... 1 .... L ... L .... J ...... 1... ..l .... ..J ..... .1 .... .J .... L .. L .. L .... L 

;Cc:tBl.~ .... IAE.FL!.L .. LL.L .. l __ L .. .l .... LJ ......... L ..... L . .l. ..... j ....... ! ..... .LL ... L . .L . .1 __ 1-L ..... i .... L ... 1-..1 ... ..1 ..... 1._J .... L.l_.L .. .l .... L ..... L...LJ ... J ....... LJ...l .... L....L......L ... 1 .... L ... 1.. 

lE8J;;e; .. .i ... IAPiE:; ..... L .... L ... J ...... J ....... L.l ....... L ... 1. .. L ... 1. ..... L ..... L ... L ..... L ...... L ... L .... .L .... L .... i .... L.I... ..... L ... 1 .... J ..... L .L._L_LJ ..... L.J.......J. ..... 1. .... L..L ..... L .... i. .... LL ... ..1 ... .1 ..• L_L .. 1 ..... 1.. ..... 1. 

I~~~J~~::!::.::,~~~~,::~;:~~=~:~-_:~::~~:-:-:~i==~--~:~:_~_~:~~L_~~~:~ 
Note the deck remains the same except the R option was replaced with an A option, and the run-id was replaced with the 
account number. 

Example 3: 

LABEL 

Extract log entries regardless of runid or account number (no option). The run deck appears as follows: 

,\ OPERATION .\ 
10 

OPERAHD 
30 

:\ 
40 

iRU..J.N .... L .... L_L ..... L .... LJ ... L ..... L ... L ... L ..... L . .l . ..J ..... .J ..... .1 .... L...J .... .J ..... .l.. .. ....L .. l ..... i .. .1._.L .. .. 1 ..... L ... L..J. ..... l !., .... l._Lj ... .1 ........ L .... L ... ..! ' ..... L . ...I ... ..i ..... L ... L .. 1.j ..... .1 ... 1. . ..J.. ... 1. .... .I .. . 

. ilSS; ,II~:BE. ,I,J~~5L .. 1 . .J ..... 1 ..... J ..•... 1 ..... L ... L .. J .... .1 ' ... i ....... 1.. ..... 1.. ..... .I . .L..! ....... 1. .. , .... " •.. .1 ....... 1. ... 1 ...l ...... 1... .. .L ..... J ...... ... .1 .... L. .. .L ... .1 ...... L .. L . .1. 1 ... ..1 .. L .. 1 .. L. 

L .... ~l:.l~t. ;IABt;!.J.....J. ... t.. ... L.J._ ... L ... 1 ... L .. L .... L ..... L ... LJ. ...... i ..... L ... L.J.., .. I.J .. -L .... l ., .... L . ..!_L . L .. ..L.lJ ..... LL.I ... .L.-.1...._L.l ... L ... L..l .... ..l .... 1-1. ..... 1... ... 1 ..... 1.. .. .1.... 

... ..1 .... 1 ...... 1.. 1 .... L..J.J ... L . .1. ...... .1 .... ..J ..... L . .L .... 1 .... .1 ..... LJ. .... J .......... L ..... L .. J ..... L. .... L. 

L~~tt_L....J.~X·L.L@X-~~·FEtt-L.L.~-'--L.l . .L...l1~, 
J2j , 51,.7... , ~ L,.I 01 I-II L~ 2: '.161, II Q.....L 1 1 .. L .. l L.J. .. 1 J .1 .. j ... L . .L .... L .. 1 . LJ. ....... i .... 1... ..... 1-L .. L.l ..... L .. L ..... 1 JL.....Ll i .. .L_L...1 .. 

,EI~ l.I .. 1 J L: .. 1 1 _ .... 1 J L.J 1 : L L..I . L. I ~. -' • L .... ,. . _ .... _ L ..... L ..... L.L. .... L ..... LJ .... l ...... L...L.l.. .. L .. J ... LJ .L. .. .L..J ..... L. ... L .... L .... L 

The parameter statement has changed in that as no run-id or account number is given, it begins with a blank in column 1 
followed immediately by the log entry types to be extracted, followed by a blank and the desired F-cycles. 

LOG FED is capable of processing F-cycles in any order they may be given on the parameter statement. However, it would be 
logical to arrange the F-cycles in chronological order; that is, the oldest F-cycle appearing first in the parameter statement. 
The examples given for the parameter statements show F- cycles given in a more or less random order. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 23-27 
PAGE REVISION PAGE 

The error messages produced by LOGFED are as follows: 

• FILE CANNOT BE ASSIGNED AO = (facility-status-bits) 

The specified F-cycle could not be assigned. 

II rNCORRECT PARAMETER CARD 

The user's parameter card is mispunched. LOGFED exits through ERR$. 

• END OF CYCLE 

The end of an F-cycle has been reached. 

• I/O STATUS CODE = xxx - SWITCHING TO NEXT F-CYCLE 

where xxx is: 

18 An E R to 10W$ has retu rned a status code of 18. 

48 An ER to 10W$ has returned a status code of 48. 

118 An ER to 10W$ has returned a status code of 11 8. 

128 An ER to 10W$ has returned a status code of 128. 

13
8 

An ER to 10W$ has returned a status code of 13
8

. 

See Appendix C for I/O status codes. 

Sample of Output from LOGFED: 

An example of LOGFED output for one master log entry of type 9 is as follows: 

Run Card (Type 9) 

OPTIONS 

PRIORITY M 

START TIME 0000 

DEADLINE 0000 

EST RUN TIME 600 

EST PRINT OUT 100 

EST CARDS OUT 100 

NEW RUN-ID SYS 

OLD RUN-ID SYS 

PROJECT EXEC8$ 

ACCOUNT NO INSTALLATION 

DEVICE ASSOC. 75 octal 

TIME OF LOG ENTRY 07/09/71 - 12:24:06 





4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 24-1 
PAGE REVISION PAGE 

24. FILE STRUCTURE AND MAINTENANCE 

24.1. INTRODUCTION 

This section describes the file formats and file maintenance software, both of which are normally transparent to the user. The 
information is provided: 

!l To give insight into the file structure used by the FU RPU R processor, the language and system processors, and the 
symbiont complex; 

III To enable the user to write additional software to build, insert, and retrieve from the files. 

The operating system generates three major types of files: 

II Program File 

II Element File 

~ System Data File (SDF) 

The format of each of these files and the manner in which they are manipulated are described in the following paragraphs. 

24.2. FILE FORMATS 

24.2.1. PROGRAM FILE FORMAT 

A program file can be defined as a random access file consisting of a group of elements residing on FASTRAND-formatted 
mass storage. A program file may contain symbolic, relocatable, or absolute elements or a combination of elements. It may be 
either a temporary or a catalogued file. Since the elements are named, they may be manipulated on an individual basis. Thus, 
the elements needed to produce an executable program may be collected from one program file or from several program files. 

It must be emphasized that while the program file is logically structured as shown in Figure 24-1, physically the elements that 
make up the file are not necessarily contiguous. Linkages are automatically generated by the executive to logically structure 
the file as a separate continuous entity. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 24-2 
PAGE REVISION PAGE 

The program file (see Figure 24-1) has three major sections: 

• File Table Index 

• Tables of Contents 

• Text 

Provides the key to where the tables (in the file) appear relative to the beginning of 
the file. 

Provides the pointers to the elements and procedures in the text section, and entry 
points for relocatable binary elements. 

The elements. 

The file table index contains pointers and links to the tables which comprise the file's table of contents. The table of contents 
consist of an element table, procedure tables, and an entry point table. These tables are described in the following paragraphs. 

The element table contains the Fieldata element and version name of each element, its type (symbolic, relocatable, or 
absolute), and pointers to its text within the program file. It also provides information concerning: 

• the size of the element, 

• the time and date the element was created, 

II the sequence number of the element in the file which is used for linking entries within the element table (the sequence 
number specifies the order in which the element texts are entered in the file), and 

III the address of the text. 

Relative Sector 

17008 

21008 

23008 

25008 

34008 

n --

File Table Index 

Element Table 

Assembler Procedure Table 

COBOL Procedure Table 

FORTRAN Procedure Table 

Entry Point Table 

Element Texts 

Figure 24-1. Program File Format 

- --

} 
File Table 

Index 

Tables of 
Contents 

\ Text 



\ 
\ 
'-.-

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 24-3 
PAGE REVISION PAGE 

The assembler procedure table has an entry for each assembler procedure (entered in the file by the @PDP control statement 
- see 9.7). Each entry consists of: 

• the procedure name, 

II a link to the element in which it appears, and 

II the procedure's relative location within the element. 

The COBOL and FORTRAN procedure tables contain essentially the same type of entries as the assembler procedure table 
except that they pertain to COBO L and FORTRAN procedures. 

The entry point table is the set of all entry point names and the link from each name to the relocatable element in which it 
occurs. The user must request the generation of this information using the @PR EP control statement (see 8.2.11); it is not 
done automatically by the executive. 

Images in symbolic elements within a program file are in SDF format (see 24.2.3). Relocatable and absolute elements have 
different formats. 

For more detailed information concerning the table of contents and element formats, see the UNIVAC 1108 Operating 
System Technical Documentation (current version). 

24.2.2. ELEMENT FILE FORMAT 

An element file is produced from a program file by using a @COPOUT control statement (see 8.2.3). It is a sequential file, 
found only on magnetic tape, and it may consist of a series of symbolic, relocatable, and absolute elements. It may be a 
temporary or a catalogued file. 

I The elements (see Figure 24-2) are written in sequential order on the tape. Each ~Iement (see Figure 24-3) contains a 28-word 
"'--- - element label block and the element text. The element label block is created from information contained in the program file 

element table item. The element label block contains the following information: 

g element file identifier, 

B element name, version, type, and size, and 

rI the time and date the element was added to the system. 

The remainder of the element consists of 224-word blocks of the text of the element. This information is identical to the 
element text in the program file from which the element file was created. The only difference is that the element text is 
blocked into 224-word blocks; the last block is padded to force a 224-word block if the text does not occupy an exact 
multiple of 224 words. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 24-4 
PAGE REVISION PAGE 

Element Label Block 1 

Any Number of Element Text Blocks 

Element Label Block 2 

Any Number of Element Text Blocks 

Any Number of Elements 

Element Label Block n 

Any Number of Element Text Blocks 

End-of.:File (EOF) Mark 

Figure 24-2. Element File Format 

24.2.3. SYSTEM DATA FILE (SDF) FORMAT 

SDF provides the system with a basic format for data handling between the various system components, and between the 
system and the user. Data in an SDF-formatted file is recorded in either Fieldata or ASCII. SDF format is also used for 
symbolic elements within a program file. 

Data in an SDF-formatted file is recorded in variable-length images, with each image being preceded by a control word which 
specifies image length and type. Images are of tw~ general types: 

(1) Control Images 

(2) Data Images 



---I' 

\ --' 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 24-5 
PAGE REVISION PAGE 

Element Label Block 

Element Text Block 1 

Element Text Block 2 

,~ ,,,, 
Any Number of Element Text Blocks ,,,, 

Element Text Block n 

- - - - - - - - - - - - - - - - - --

Padding To 224-Word Boundary 

Figure 24-3. Element in Element File Format 

Control images provide various file control information as is needed by the individual component processing the file. A 
control image is indicated by bit 235 being set in the control word preceding it. The initial image of every SDF-formatted file 
must be a label image which is defined by a 508 in bits 35-30 of the control word. The control word for SDF control images 
has the format: 

S1 S2 S3 S4 S5 S6 

c ft p ct 

Where: 

c A unique code indicating what information is contained in the control image. The possible values of care: 

408 Bypass this image 
418 Unique READ$ file label image 
428 ASCII/Fieldata switch 
438 Special FORTRAN backup 
508 Label image 
518 Continuation of previous image 
548 End-of-reel 
568 Start of accounting information in print file 
578 Output symbiont position marker 
608 Print control image 
708 Punch control image 
768 Demand breakpoint EOF 
778 End-of-file 



4144 Rev. 2 
UP·NUMBER 

UN I V A C 11 00 S E R I E S S Y S T EMS 24-6 
PAGE REVISION PAGE 

The length in words of the following image. 

ft Used only in label blocks and it is the file type as follows: 

C Symbiont card file 
F FORTRAN library data file 
I Symbiont input file (created by @FI LE control statement) 
P Symbiont print file 

p Used only in the label block of symbiont files and is the part number of the file (that is, a count of the breakpoints 
performed on the file). 

ct The code type of the following images where: 

o 
1 

Fieldata 
ASCII 

Any image is an SOF·formatted file whose control word does not have bit 235 set is a data image. The control word for an 
SOF data image has the format: 

n ct 

where: 

The length in words of the following image. 

n Used by each component to contain special information (that is, symbolic elements use this field for cycle numbers and 
the symbionts use bits 23-12 for spacing increments). 

ct The code type of the following image where: 

o 
1 

Fieldata 
ASCII 

SO F-formatted files residing on magnetic tape are recorded in 224-word blocks. Images are allowed to span two consecutive 
blocks, however, a 518 control word is inserted preceding the second portion of the image to indicate that the image is 
continued. The end-of-file (EOF) sentinel control image terminates file processing. A single tape mark is used to separate files 
residing on magnetic tape, and two consecutive tape marks specify end-of-recording. Mass storage files use a software-defined 
EOF mark for file operations at the block level. This is defined as a block which has as its first word the Fieldata sentinel 
'$@EOF'. The block buffering package interprets this sentinel as it would a tape mark. 

SOF maintains integrated FASTRANO-formatted mass storage and magnetic tape compatibility by: 

(1) Adhering to block lengths of FASTRANO sector multiples. 

(2) Imbedding file labels in the data as the initial image of the file. 

(3) Writing the file as a continuous set of data without block control words. 

(4) Incorporating the block buffering package's facility of sequential file processing. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 24-7 
PAGE REVISION PAGE 

24.3. FILE MAINTENANCE 

Within the operating system are contained various library routines, executive service functions, and processors that may be 
used to create and manipulate files. The file utility processor, FURPUR, (see Section 8) may be used to process, in various 
ways, files of the previously discussed formats. In fact, element files are created and processed only by the FURPUR 
processor. 

SDF-formatted files and elements are produced and processed by the FURPUR, DATA, ED, ELT, and other processors. In 
addition, the symbiont and @ADD control statement (see 3.9.1) as well as the various symbiont interface executive functions 
(see Section 5) are used to create and process SDF-formatted files. 

Program files are created and processed by the language processors, FURPUR, EL T, LIST, CULL and other processors. In 
addition, there are several executive service functions (see 24.3.1) and relocatable library routines (see 24.3.2) available for 
processing program files. 

Paragraphs 24.3.1 and 24.3.2 describe the mechanism for updating a program file by a user program. Both features were 
designed primarily for use by the Univac language and system processors. The program file maintenance executive requests 
(see 24.3.1) provide a limited capability in that only selected functions are available. The program file basic service package 
(see 24.3.2) is a library routine that can be included with a user program to provide more capability with less overhead if 
many operations are to be done. 

The executive requests are also used by the executive in its normal operations, such as finding an absolute program to 
execute. 

24.3.1. PROGRAM FILE MAINTENANCE EXECUTIVE REQUESTS 

The executive requests described in the following paragraphs are used to maintain the table of contents entries for a program 
file. As a group, the requests are called the program file package (PFP). The formats of the program file table of contents 
entries can be found in the UNIVAC 1108 Operating System Technical Documentation (current version). 

For each of the requests described, upon return from the requests, register A2 contains the status of the operation performed 
(see 24.3.1.6). 

24.3.1.1. UPDATING THE ELEMENT TABLE (PFI$) 

Purpose: 

Inserts an entry in the program file's element table. 

Format: 

L AO,(pktaddr) 
ER PFI$ 

Pktaddr is the address of a packet whose format is: 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 24-8 
PAGE REVISION PAGE 

T1 S3 H1 

Word 0 

filename 

2 
element-name 

3 

4 version-link-sequence-nbr pointer-link-sequence-nbr 

5 flag-bits element-type type-link-sequence-nbr 

6 

element·version-name 

7 

8 

9 

10 text-add ress 

date-and-ti me-of-creation 
11 

Word 5 

flag-bits: 

235 Marked for deletion 

228 ASCII symbolic 

226 Third-word sensitive 

225 Quarter-word sensitive 

224 _ Marked in error 



c/ 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 

Element-types: 

18 Symbolic 

28 Assembler procedure 

3
8 

COBOL procedure 

~ FORTRAN~o~dure 

58 Relocatable 

6
8 

Absolute 

Words 8-9 

The contents of words 8 and 9 are dependent upon the type of element as follows. 

Symbolic and procedure elements: 

35 31 30 2423 18 17 

Word 8 cycle-lim it latest-cycle 

9 processor-code 0 

processor-code: 

08 Unmarked 

18 @ELT 

28 @ASM 

38 @COB 

48 @FOR 

58 @ALG 

68 @MAP 

78 @DOC 

108 @SECURE 

Relocatable elements: 

Hl 

PAGE REVISION 

12 11 

cycle-count 

sector-Iength-of-text 

H2 

Word 8 sector-Iocation-of-preamble-with in-fi Ie 

9 sector-Iength-of-preamble sector-Iength-of-text 

24-9 
PAGE 

o 



4144 Rev. 2 
UP-NUMBER 

Absolute elements: 

Word 8 

9 

Description: 

UNIVAC 1100 SERIES SYSTEMS 
PAGE REVISION 

H1 H2 

program-I-bank-word-Iength program-D-bank-word-Iength 

first-D-bank-addr-in-program sector-Iength-of-text 

The element version can be present, zero, or blank. When the version is zero, blanks are substituted. 

When an absolute element is being inserted, its sequence number is recorded in the file table index. 

24-10 
PAGE 

For the relocatable elements, the file table index pointers to the entry point table are cleared and a new entry point table 
may have to be created. 

If the date-and-time-of-creation field is zero, the PF 1$ request inserts the current date and time. When this field is nonzero, 
the contents are used for the date and time. 

The link sequence numbers are supplied by the PFI$ request. 

24.3.1.2. TABLE OF CONTENTS SEARCH (PFS$) 

Purpose: 

Searches program file's table of contents for a given item. 

Format: 

L,U AO,pktaddr 
ER PFS$ 

Words 8 and 9 of the packet are supplied by the executive. 

Pktaddr is the address of a packet whose format is identical to that of the PFI$ request (see 24.3.1.1). 

Description: 

When the delete flag (bit 235 of word 5) is set, a find can be made on an element marked for deletion. 

When the element name is left blank and the element desired is an absolute element, the PFS$ request supplies the last 
absolute element added to the file. 

If the version name is zero, a find is made on element name only. When a version name other than zero is specified, it is used 
along with the element name in the search. When a version name is blank, a find is justified on the element name and blanks, 
for the version. 

When the element is found, the packet is filled with information from the element table entry. This information is used to 
access the element text. 



C~~/ 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 24-11 

24.3.1.3. MARK ELEMENT FOR DELETION (PFD$) 

Purpose: 

Sets delete flag in element table item for requested element. 

Format: 

L,U AO,pktaddr 
ER PFD$ 

Pktaddr is the address of a packet whose format is: 

Word 0 

2 \ 

3 

4 

5 

6 

7 

Word 5 

element-type 

Description: 

S3 

filename 

element-name 

element-type 

element-version 

Same as PFI$ (see 24.3.1.1) 

PAGE REVISION PAGE 

When the element being deleted is the most recently added absolute element in this file, the file table index entry containing 
the element sequence number of the most recently added absolute element is cleared to zero. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 24-12 
PAGE REVISION PAGE 

24.3.1.4. UPDATING NEXT WRITE LOCATION (PFUWL$) 

Purpose: 

Updates the next write location in a program file. The task of the PFUWLS request may also be performed by using PF 1$ (see 
24.3.1.1). This is accomplished by complementing register AO on the call to PFI$. 

Format: 

L,U AO,pktaddr 
L A 1 ,(new-address-in-program-file) 
ER PFUWL$ 

Pktaddr is the address of a packet whose format is: 

Word 0 

filename 

1 

The next write location is the next available sector at which the text portion of the element can be written without 
destroying other text words. 

24.3.1.5. RETRIEVING NEXT WRITE LOCATION ADDRESS (PFWL$) 

Purpose: 

Obtains the next write location in the program file. 

Format: 

L,U AO,pktaddr 
ER PFWL$ 

Pktaddr is the address of a packet whose format is: 

Word 0 

filename 

The next write location is stored in register A 1 upon normal return. The next write location is as defined for PFUWL$ (see 
24.3.1.4). 



4144 Rev. 2 
U P.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 24-13 
PAGE REVISION PAGE 

24.3.1.6. PROGRAM FILE PACKAGE STATUS CONDITIONS 

-', The status conditions are stored in register A2 on the return from the program file package ER's. The possible values are: 

,..-
( 

08 Normal status (operation completed) 

18 No find 

28 I/O error 

38 Program file not defined 

58 Program fi Ie overflow 

24.3.2. PROGRAM FILE BASIC SERVICE PACKAGE 

The basic service package (BSP) is an interface routine between the user program and a program file's table of contents. The 
user may, through selective calls to the BSP, perform the following functions: 

(1) Read the file table index into main storage buffer. 

(2) Read a selected program file table into a main storage buffer. 

(3) Search a selected program file table for a specific entry. 

(4) Delete a specific entry in a program file table. 

(5) Locate a program file table entry from its sequence number in the table. 

\"",,_/ (6) Add an entry to a program file table. 

(7) Write the last entry referenced. 

(8) Write a program file table. 

(9) Write the file table index. 

(10) Unlock the file table index. 

Any file assigned and not previously written in may be prepared as a program file by requesting (1) above. A table is created 
upon the first call to read it if not previously created. 

Several features of this package and rules for use are listed: 

(1) The user attempting to create a program file in a file area previously written in receives an error return. 

(2) Each table (except for the element table) on drum begins at the system defined sector or at a greater sector if a previous 
table now occupies the defined sector. 

(3) The table of contents is a fixed length - 1792 sectors. 

(4) Tables must be written back from the main storage area assigned, if the area is to be used for others. A diagnostic is 
given if a table cannot accept another item. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 24-14 
PAGE REVISION PAGE 

(5) The user must provide a 34·word area (file control table) for the file table index (FTI) and main storage buffers for 
each table read. 

(6) No main storage buffer may be less than 196 words in size, or an error diagnostic results. 

(7) The FTI in main storage is used by BSP to contain necessary information about the file. 

(8) Each table that has been altered in main storage requires a final call on the write program file subroutine in order to 
insure all information changed reflected on mass storage. 

See UNIVAC 1108 Operating System Technical Documentation (current version) for further information. 

,/ 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 
PAGE REVISION 

25-1 
PAGE 

25. INTERNAL EXECUTIVE DESIGN 

25.1. INTRODUCTION 

This section is not required reading prior to intelligent use of the system. The intention is to provide the interested reader 
with additional insight into the key concepts and algorithms incorporated in the internal design of the executive. The 
information presented is in no way intended as a complete description of internal logic in that many important aspects of the 
design are not mentioned. It is thought, however, that this section along with the internal design specifications either stated 
or implied in other sections (especially Sections 1 and 2, which discuss general capabilities and concepts) will provide the user 
with an overview of the total internal system design from the user programmer point of view. Design and capabilities relative 
to system generation and operator interface are not discussed, but they can be found in other Univac publications. 

Univac reserves the right to make changes in the internal design without notice. 

25.2. BASIC DESIGN PHILOSOPHY 

To achieve the broad spectrum of functional and operational capabilities defined for the executive in a reasonable amount of 
space and time, certain fundamental design criteria have been adopted: 

[] Wherever feasible and appropriate, individual components operate reentrantly. Where true reentrancy is not feasible, 
the individual component rather than its requestor, is in general responsible for serializing its operation. 

[] Components and data types which are permanently resident in main storage are limited to ones for which nonresidency 
is either impossible or would impose unacceptable overhead. 

a Central processor units (CPU) are in general treated equally. Components must be prepared to execute on any CPU; 
exceptions are limited to certain maintenance functions, and to input/output (I/O) situations in which a particular CPU 
does not have a direct electrical path to a particular peripheral device. This approach allows maximum CPU utilization 
in multiprocessor systems. 

C To assure timely response to real time related events, interrupt lockouts, and software interlocks on interrupt-related 
data are kept to a minimum. Wherever feasible and appropriate, real time requests are given top service priority. 

C To preserve generality, most executive components operate as ordinary activities, called exec workers, and are managed 
in a fashion very similar to the management of user task activities. Exceptions are limited to functions for which 
switching is either impossible (for example, the dispatcher and interrupt queueing) or requires unacceptable overhead. 

[] To meet system integrity and program protection requirements, individual user service requests are validated to 
whatever extent is necessary to eliminate undesired interaction with the system or other users. 

C Code required to support optional hardware components and software features is written such that it is not generated if 
the associated component or feature is not configur~d. 

To avoid wasting high cost resources like CPUs and main storage, data transfers involving low speed peripherals (for 
example, card readers, teletypes, and so forth) are nQImally buffered. Generally, large-volume data is buffered to mass 
storage and low-volume data is buffered in main storage until sufficient data has accumulated to warrant loading a task 
to process it. This approach means that user tasks can be executed at rates commensurate with the overall power of the 
system: and need not spend long periods essentially idle in main storage waiting (usually many milliseconds) for short 
data transfers to complete. The symbiont complex constitutes the principal application of this philosophy. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 

25.3. EXECUTIVE MAIN STORAGE USAGE 

25.3.1. GENERAL LAYOUT AND DISCUSSION 

Main storage has the following general physical layout: 

35 
Absolute 
Address 0 

Resident I Bank 

Executive Segment Overlay IArea 

User Main Storage 

PA GE RE VISION 
25-2 

PAGE 

o 

-- - - - - - -- - - - - - - - - - - - - - - - - - - - - --

(Expool Expansion) 

Resident D Bank 

EXPOOL 

n 

The individual areas are as follows: 

(1) The resident I bank area includes the interrupt locations and permanently resident executive instructions. I n general, no 
data is stored in this area. Also, it does not include any routines which are referenced directly by executive segments 
(nonresident routines) since the latter are also handled as I banks. 

(2) The executive segment overlay area is devoted exclusively to holding executive segments (transient or nonresident 
routines). This area is at least as large as the largest segment. Design rules for executive segments stipulate that a 
segment must not require any other segment to be loaded at the same time. Thus, at minimum, a serial operation is 
guaranteed. 

(3) The user main storage area is devoted primarily to user tasks and their associated program control tables (PCTs). 
Executive segments are also executed in this area when space permits; however, user tasks are always given priority over 
executive segments. In a few cases, the executive may acquire independent data buffers from this area, but these are 
normally acquired from EXPOOL (see 5). 

When the system is heavily loaded, the high address end of the user main storage area may be used to temporarily 
expand EXPOOL space. 



,r 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 25-3 
PAGE REVISION PAGE 

(4) The resident D bank area includes fixed (as opposed to pooled) data storage and those permanently resident routines 
which are referenced directly by executive segments. 

(5) EXPOOL is the executive data space pool. The EXPOOL mechanism is fundamental to executive design, since the 
ability to rapidly and conveniently acquire data space is essential for efficient reentrant design. EXPOOL allocation is 
based on a powers-of-2 structure wherein buffer sizes are 3, 7, 15,31,63,127,255, or 511 words (one word is always 
used for buffer control). While this sizing may cause some waste in in·use buffers, the structure allows extremely rapid 
buffer collection, which is very difficult in pooling structures which provide a continuum of sizes. Briefly, whenever a 
buffer of a particular requested size is not available, a check is made for an available buffer of the next larger size; if 
there is one, it is split into two equal halves; if not, the process is recursively repeated for still larger buffer sizes until a 
buffer can be obtained. When a buffer is released back to EXPOOL, it is recombined with adjacent available buffers to 
make the largest possible buffer. 

25.3.2. PCT USAGE 

Most data controlling the execution of a particular user run or task is maintained in the PCT. Such data is maintained in 
EXPOOL only if the data may be required while the task (including its PCT) is swapped out (for example, swapping control 
information) or if it may apply to another run (for example, information pertaining to catalogued files). This allows many 
runs (especially demand runs) to be controlled concurrently without an exorbitant load on EXPOOL. A prime example of 
this approach is activity control; the basic information concerning the status of an activity is kept in EXPOOL, but the 
activity environment, including control registers, is saved in the PCT. 

PCTs have two logical parts: a fixed area containing data always needed to control a run or its current task, and a variable 
area. The space in the variable portion is pooled by a mechanism analogous to EXPOOL. Also, the PCT may dynamically 
expand from a normal minimum of two main storage blocks (1024 words) for batch runs and one main storage block for 
demand runs up to a normal maximum of nine main storage blocks. 

L/ 25.3.3. DEFINITION AND RESIDENCY OF COMPONENTS 

Table 25-1 lists the executive components that permanently reside in main storage, and 25-2 lists the executive components 
that are normally transient in main storage. 

ExeclJtive Component 

Dispatcher and Activity Control 

ER Interrupt Handler 

Fault Interrupt Handlers 

Test and Set Interrupt Handler 

Executive Segment Controller 

Clock Interrupt Handlers and Clock Management 

Basic Internal Service Routines (EXPOOL, Access Word Check, and so forth) 

Basic Dynamic Allocator 

Basic I/O Control and Interrupt Queueing 

Basic Communications Control 

lSI Device Handlers 

Console Handler 

Symbiont/User Interface Routines (READ$, PRINT$, and so forth) 

Basic Symbiont Interface and Control 

Basic Symbiont Device Control 

Logging Control 

Table 25-1. Executive Components that Reside Permanently in Main Storage 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 

Executive Component 

Coarse Scheduler (Including Run Initiation) 

Control Statement Interpreter 

Run Termination 

Control Statement Function (CSF$) 

@START Control Statement Handler 

Logging & Accounting 

Checkpoi nt/Restart 

User Task and Segment Loader 

Dynamic Allocator Periodic Algorithm Adjustment 

Program Expansion/Contraction (MCOR E$/LCOR E$) 

Reentrant Processor Registration (R LlST$) 

Activity Error Termination 

Task Termination 

PCT Expansion 

Activity Naming (NAME$) 

Unsolicited Keyin Distributor and Handlers 

Date Control and Keyin Handler 

Console Patch Routine 

Symbiont Probe 

Symbiont Device Initialization/Termination 

@ADD Statement Control 

Symbiont Forms Control 

Symbiont File Manipulation (Alternates, Breakpoint, SYM, and so forth) 

Symbiont Output File Queueing and Termination 

Symbiont Operations Control (Repositioning, Error Handling, and so forth) 

Facilities Inventory & Assignment 

Facilities - I/O Interface 

Mass Storage Space Allocation 

Master Directory Control 

Catalogued File Rollout/Rollback 

Catalogued File Recovery 

Tape Reel Control (TSWAP$ and TINTL$) 

Tape/Disc Labeling 

Disc Prep 

Communications Initialization and Termination 

System Initialization 

Program File Package 

Panic Dump Editor 

Table 25-2. Nonresident (Transient) Components of the Executive System 

PAGE REVISION 
25-4 

PAGE 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 25-5 
PAGE REVISION PAGE 

25.4. MULTIPROCESSING 

The scheduling and CPU switching techniques used in the executive system are designed to provide multiprocessing 
capabilities. The extension to multiprocessing leads naturally from the multiprogramming aspects of the system where many 
independent activities in user programs are available for execution at any instant. Within the executive itself a similar 
situation exists where at any moment more than one independent exec worker requires CPU time. 

Consider an executive activity for a program that has an outstanding request for an I/O operation. When the I/O completion 
interrupt occurs, the executive interrupts the activity at a point unknown to it. The activity environment is saved, the 
interrupt processed, and control returned to the activity. The activity is never aware of the event, and would not be the wiser 
had the interrupt taken the executive to another CPU where the task was performed to complete the I/O operation. 

In a multiprocessor configuration, one executive in a shared main storage controls all processing. The multiprocessing 
extensions provide the ability to isolate each of the available CPUs. Each, in turn, acting as executive CPU inspects the list of 
current activities and selects one to be executed. One CPU may interlock the others while referencing critical areas of 
common data. 

The many runs being input to the system provide a number of tasks to be multiprocessed. Within any run, the individual tasks 
are executed in a serial manner as directed by the user. Among the many runs, the executive typically uses the processors of 
the system to work on tasks of more than one run. 

The executive provides the ability, via forking to generate multiple activities, for a user to split a program into an arbitrary 
number of independent execution paths. Each activity available for processing on any of the CPUs of the system. System 
design provides the ability to use all available CPUs on the execution of a particular program. The executive is of course free 
to use the available CPUs for program-related but independent operations necess!3rv within the executive. 

The areas of executive coding which reference common data and others with specialized coding methods must be protected 
from simultaneous execution, but many areas will be open and multiprocessed as necessary. 

C" 25.5. SCHEDULING 

25.5.1. GENERAL 

The general scheduling technique used by the executive removes any difficulty in the advancement of an installation into the 
use of multiprogramming. The technique is easily understood, and any installation can readily modify or extend its 
capabilities if necessary. 

The scheduling components of the supervisor are responsible for the control of facilities as well as the actual scheduling of 
runs and tasks. This includes both the assignment and release of facilities. There are five components within the system for 
handling the scheduling of runs and the tasks within runs; these are: 

• Facilities Inventory 

• Control Statement Interpreter (CSJ) 

• Coarse Scheduler 

• Dynamic Allocator 

• Dispatcher 

Each routine is discussed individually in the following paragraphs. 

25.5.2. FACILITIES INVENTORY AND SELECTION 

'-... .. , . The facilities at the disposal of the executive system include the I/O channels and all peripheral equipment attached to these 
channels, including available communications line terminals. Available facilities and their disposition are indicated to the 
system at system generation time; thereafter, the executive assigns these facilities as needed and as available, to fulfill the 
facility requirements of all runs entering the system. The executive maintains and continually updates inventory tables that 
reflect what facilities are available for assignment, and which runs are using the currently 'in use' facilities. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 
PA GE RE VISION 

25-6 
PAGE 

As demonstrated in the following discussion, facilities inventory is a basic constituent of the scheduling section of the 
supervisor. Only by establishing an efficient and convenient means of facilities control is the multiprogramming environment 
practical. The routines controlling the facilities available to the system are designed to optimize utilization of those facilities 
while requiring a minimum of user·generated statements concerning operational requirements. 

Devices such as magnetic tapes are normally assigned before run execution time, because they cannot be shared by two or 
more runs; and they normally require operator set ups. Such devices are always released automatically by the termination of 
the run; however, they may also be released during the course of the run by the user. 

Mass storage space is dynamically assignable and releasable by the user. The user is encouraged to do so whenever possible, 
since no relocation of information is necessary in allocating mass storage facilities (as may be the case for main storage). 

Word-addressable devices (FH-432, FH-1782, and so forth) are allocated internally in FASTRAND granules (track, position). 
This allows the same space to be assigned as either word-addressable drum format or as FASTRAND-formatted mass storage, 
depending on user requirements at the particular time. When word-addressable format is requested, an attempt is made to 
allocate the largest possible continuous space in order to give users maximum benefit of the word-addressable characteristics 
of the device. A portion of drum (or disc) is set aside at system generation time for the residence of the system and the 
processors. Normally, all user files which utilize drum during the course of a run are purged at the completion of the run, and 
the space used for such files is returned to the pool of available facilities. If so specified, however, a file may be retained for 
future reference (catalogued). 

Mass storage space is allocated in granules, with one granule equal to a track or a position (64 tracks). Given the equipment 
type from the @ASG control statement, the unit and area for the allocation of a granule of a particular file are selected 
according to the following hierarchy (only a simplified view of the algorithm is presented): 

(1) Allocate in a particular place on the unit which will perm it a contiguous allocation to a previous allocation for this file. 

(2) Allocate anywhere on the same unit as per the previous allocation. 

(3) If the file is catalogued, allocate on the unit containing the master file directory information for this file. 

(4) Allocate on the unit (of the desired equipment type) with the most availability. 

(5) Change the equipment type to next most desirable type and repeat step (4), 

By use of the @ASG control statement, a user specifies the number of granules to be initially reserved for the file. 

Each dynamic request for additional space then results in the assignment of an additional granule. When using the system file 
control routines, the user will not have to request additional mass storage space because this procedure is taken care of 
automatically by the system. 

In addition to maintaining cognizance of system information concerning device errors, and so forth, the facilities inventory 
routine is able to accept direction from an operator concerning device reliability, and so forth. The operator may request that 
devices or channels be removed from the pool of available facilities. 

When the coarse scheduler selects a run to be opened, an initial facility synopsis is performed to determine if the run can be 
opened. If it is found that a requested facility is not available, information pertinent to the run and the reason for the hold 
are gathered in a queue. The queue has three sections based on whether the hold is for initial facilities, facilities between 
executes or facility requests from a demand terminal. 

The hierarchy of the sections within the queue are as follows: 

(1) Facility requests from a demand terminal. 

(2) Facility requests between executes. 

(3) Initial facility requests. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 
PA GE REVISION 

25-7 
PAGE 

A held run remains in the queue until the hold mechanism is stimulated by the release of a facility. At this point, a search of 
the queue is performed based on the aforementioned hierarchy to determine if there is a held run which is waiting for the 
facility just released. If such a run is found, it is removed from the queue and a facility synopsis is again performed. 

The operator is informed via a console display when the executive has tried to open a held run n times; where n is specified at 
systems gene·ration time. The operator may then remove the held run via keyin. From a demand terminal, the break key 
followed by an X keyin removes the demand run from the held status. 

25.5.3. CONTROL STATEMENT INTERPRETER (CSI) 

Control statement interpretation is accomplished by CSI. It is used by the executive for the purpose of interpreting the input 
run stream~ and is exercised by both the input symbionts and the coarse scheduler. It is also used by the CSF function to 
interpret control statement images passed to that function internally via CSF$ requests. For each control statement image 
passed for interpretation, CSI performs the following: 

(1) Format checks the statement. 

(2) Requests continuation statements (continuation character is treated as an illegal character if request was to CSF). 

(3) Changes the external format of the control statement to an internally formatted table acceptable to the system. 

The CSI is the single component of the supervisor that dictates the syntax of the executive control language. If it should 
become necessary to input a run stream different from that specified by the executive control language, the CSI could be 
modified to accept this input as long as the interpretation presented functions known to the coarse scheduler and in the 
proper order and grouping. The coarse scheduler is the level at which the capabilities and functions of the system are defined. 
The coarse scheduler scans the input stream via READ$ requests in search of the next logical task or parameter on which it 
must act. If the next statement is a control statement, READ$ activates CSI and the internal table it builds is passed back to 
the coarse scheduler. The interface between CSI and the system is fixed, but input to CSI is fixed only in the sense that the 
executive control language is defined to have a particular syntax. 

25.5.4. COARSE SCHEDULER 

The coarse scheduler has two basic functions. They are: 

(1) The introduction of new runs into a backlog queue and the updating of runs already in the backlog queue. 

(2) The processing of control statements in an open run and the subsequent initiation of an executive operation or user 
task which is specified by a control statement. 

The first fu~ction is initiated when a new run is introduced to the system. The run may be introduced via a @START control 
statement, a @RSTRT control statement, or it may come through a symbiont input device .. In all cases, the coarse scheduler 
performs legality checks on the @RUN control statement, and if the run is a batch run, an entry representing the run is built 
and inserted into the backlog queue which is more commonly known as schedule queue (SCHO). Demand runs are not 
inserted into SCHO after the legality check on the @RUN control statement. Instead, they are immediately opened. 

The coarse scheduler also updates the scheduling parameters of runs in SCHOo The update must be performed when one of 
the following conditions exists: 

(1) An S option hold, a remote batch symbiont hold, or a console imposed hold is to be removed from a backlogged run. 

(2) Scheduling parameters, for a particular run or global parameters, may be dynamically changed via a console keyin. 

(3) A backlogged run's priority may be changed because a deadline time is imminent or the hold on a run which is imposed 
by a start-time must be removed because the start-time is imminent. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 25-8 
PAGE REVISION PAGE 

The first function also includes the selection of batch runs to be opened from SCHOo The following rules and constraints 
govern this selection process. 

(1) No runs except special system initiated runs are opened if: 

(a) the maximum nurllber of batch runs (defined at system generation) are already opened, or 

(b) system overload is approaching (for example, EXPOOL or mass storage near saturation). 

(2) If the above test is passp,j and a global scheduling hold is set, only 'removed' runs and 'allowed' runs are considered for 
opening. An allowed run has priority over a removed run, and the allowed run with the highest priority is chosen first. 

(3) , If a global hold is not set and test 1 is passed, a run is selected for opening on the basis of its current priority. Thus, a 
run is selected for opening only if its priority is the highest priority in SCHOo If two or more runs contain the highest 
priority in SCHO, the run which has been a candidate for opening for the longest period of time is selected. A run 
becomes a candidate for opening at the instant that it is free of all of the following hold conditions: 

(a) a hold imposed by a start-time; 

(b) an S option hold; and, 

(c) a remote-batch symbiont hold. 

If a run contains a deadline time as one of its scheduling parameters and the time when that run must be opened is 
approaching, that run's priority is adjusted so as to put it above the priorities of nondeadline runs. 

After a run has been selected for opening, the second function, the processing of control statements, is started. The coarse 
scheduler reads the first set of facility control statements, links them together and sends them to facility inventory for 
processing. The reading and linking of facility type control statements by the coarse scheduler is called a facility synopsis. All 
control statements except the conditional control statements and the @MSG, @LOG, @HDG, and @EOF control statements 
terminate the facility synopsis mode. These control statements are considered transparent during the facility synopsis mode. 

The processing of the initial facilities block by facilities inventory can have one of three results: 

(1 ) 

(2) 

(3) 

Rejected due to insufficient facilities, in which case the run is not opened, but rather placed in a facilities hold (see 
25.5.2). • 

Rejected due to an error in the control statement, in which case the run is fully opened and all statements up to and 
including the statement causing rejection are reprocessed and printed along with any warning or error messages 
(includes transparent statements). The run is then terminated in error. 

Accepted. 

If the facilities block is accepted, the run is fully opened and all statements in the block are processed as in (2), but run 
processing continues with the control statement that terminated facility synopsis mode. This statement is read and the 
operation it specifies is initiated by the coarse scheduler: This may be an executive operation in which an exec worker is 
initiated to process it or it may be a user task in which a main storage request packet is built and sent to the dynamic 
allocator thus directing it to load a program. When the exec worker has finished, or the user program has terminated, the 
coarse scheduler is again called to perform the following: 

(1) If a user program has just terminated, the abort and error indicators for the run are tested to determine if: 

(a) the run should be aborted, 

(b) the run should be error terminated in which case only @PMD control statements are honored, or 

(c) the processing of control statements can continue in normal fashion. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 
PAGE REVISION 

25-9 
PAGE 

(2) The next control statement is read and the process is repeated until a @FIN control statement is read in which case 
facilities inventory is called to begin the run termination procedure. 

Note that facilities control statements embedded in the run stream are blocked and handled in facilities synopsis mode in a 
fashion similar to that for the initial facilities block, the differences being that the run is already open and any hold is a 
between-tasks facility hold rather than an initial facilities hold. 

25.5.5. DYNAMIC ALLOCATOR 

25.5.5.1. GENERAL OVERVIEW 

The function of the dynamic allocator is the dynamic allocation of main storage space to the current mix of tasks (programs), 
where 'current mix' is determined by the particular group of runs presently being processed. Assuming that more than enough 
requests exist for the resources (main storage space and CPU time) of the central computer, it is the job of the dynamic 
allocator to mak~ an equitable allocation of these resources in order to best serve the varied interests of all users. The 
allocation is based 'on the type of tasks (real time, demand, and batch), as well as on the priorities and response times within a 
particular type. The basic principle under which the dynamic allocator operates is that the primary concern of any computing 
installation is the completion of batch runs at the required deadline (within the limitations of the operating environment) 
while at the same time attempting to maintain the required response times for demand users. Within this dynamic operating 
environment, the dividing line between demand and batch programs is subject to constant change as emphasis is placed upon 
allocating time to batch runs approaching the required completion time. 

In order to achieve the desired goals in system throughput and provide complete time-sharing capabilities, each of the 
program types has characteristics which differentiate it from the others for main storage allocation purposes: 

IJ Batch Tasks 

Deadline Tasks 

Demand Tasks 

m Real Time Tasks 

- A batch task is the execution of a system processor or an object program in a 
nonconversational mode. Batch programs are ordinarily not removed from main 
storage to provide space for other batch programs while progressing toward 
c~mpletion. In some instances, a batch program is swapped because it has reached 
an impass such as a self-imposed wait condition or a system or operator imposed 
facility wait condition. 

- A deadline task is a program which has a required completion time. Deadline tasks 
cause the swap of nondeadline tasks if necessary to achieve the run completion time 
requ irement. 

- Demand tasks are contained within a run entered from a demand remote terminal 
and generally thought of as being conversational in nature. Demand programs 
preempt batch as well as other demand programs for main storage allocation 
(within user-defined constraints). Frequent but relatively short periods of main 
storage residency are generally required to provide the desired terminal response 
time. 

- A real time program is a batch or demand program which is given preferential 
treatment because it is responding to real time hardware. These programs are never 
subject to swap or relocation by the dynamic allocator and as such are positioned in 
main storage so as to have minimum impact on system throughput. The presence of 
a real time program in main storage effectively reduces the amount of memory that 
can be allocated between the other program types. 

25.5.5.2. DYNAMIC MAIN STORAGE ALLOCATION 

The dynamic allocator (DA) is a service routine which reacts in response to requests from programs and other executive 
routines. The DA consists of three independent functions. These are: 

(1) T~e DA proper, which selects the highest priority request from a core queue and determines the most economical 
method of satisfying the request. 



4144 Rev. 2 
UP.NUMBER 

UN I VA C 11 00 S E R I E S S Y S T EMS 25-10 
PAGE REVISION PAGE 

(2) Core contents control (CCC), which carries out the requests in the manner decided upon by DA. This is the function 
which initiates the I/O requests for program swapping and loading. 

(3) DA periodic adjustment (DAPA), which reviews program activity periodically and makes adjustments in the priorities 
of entries on the core queue to balance sharing between program types. 

Each entry on the core queue is a service request for a program and has associated with it a request type and a priority. The 
priority is a function of program type, @RUN control statement priority, program characteristics, and request type. Entries 
are placed on the core queue in response to program requests and executive requests. The request types are: 

(1) Swap Out 

(2) I nitial Load 

(3) Reload 

(4) PCT Expansion 

(5) Program Expansion 

(6) REP Load 

(7) REP Remove 

- This is requested in order to position real time programs, to expand the program, or to 
service a higher priority program. A program is swapped for a higher priority program 
only if it is in a long wait state (for example, wait for tape mount, TWAIT$ of more than 
one-half second, or wait for terminal response) or if it has used up its first core quantum 
and the other program is not batch. 

- This is the request to load a task (absolute element) and is the result of an @XQT or 
processor control statement. 

- When an active program is swapped due to higher priority requirements, the request to 
reload that swapped out program is made at the time of the swap out. For a waiting 
program, the reload request is made when the wait condition is removed. 

- The PCT must be expanded as the result of some control statement or program request. 

- The program has done an MCO R E$ request. 

- The program is linking to a reentrant processor REP which is not already in main storage. 

- A REP is removed to satisfy a higher priority request or to position it for real time 
execution. 

Every program is assigned an area on mass storage for swapping. This area resides within a system file, SWAP$FI LE, and is 
reallocated each time the program changes size. The entire program is moved to or from swap file with one I/O request. 
Reentrant processors are never swapped as it is assumed that they do not store into themselves. When a core area used by a 
REP is required, the space is used and the next time the REP is requested, it is loaded from the program file. When a program 
is reloaded after being swapped, the PSRs (processor state registers) and SLRs (storage limit registers) of all activities are 

When main storage is allocated for a program, the DA attempts to position the I bank and D bank in different main storage 
modules in order to avoid main storage reference conflicts. Each program is also loaded as closely as possible to the extremes 
of available main storage in order to reduce fragmentation of the available space. Real time programs are always loaded at the 
absolute extremes of main storage, except for the executive and other real time programs, even if this involves swapping other 
programs. 

Executive transient (nonresident) routines are also loaded into the same main storage area as programs when space is 
available. However, programs are never swapped to satisfy an executive routine main storage requirement. The DA also 
controls the loading of these transient routines. 

Whenever a system transient routine completes its current operation, the main storage area it occupies is not actually released, 
but is placed in a release-if-necessary condition. Such a routine is therefore still available for use, if necessary, until the main 
storage space it occupies is required for some other operation. If the transient routine is requested again before such an event, 
its main storage is returned to the in-use condition. Each such transient routine has associated with it a 'sticking priority', so 
that the more frequently a transient is used, the longer it tends to retain its main storage space after each period of operation. 
This procedure prevents unnecessary loading of transient routines, since they remain in main storage as long as it is possible to 
do so without interfering with the over-all operation of the system. 

/,,-



c, 

4144 Rev. 2 
UP·NUMBER 

Definitions: 

Core Queue 

Core Seconds 

Core Block Seconds 

Core Second Accumulation 

Core Quantu m 

Core Priority 

UNIVAC 1100 SERIES SYSTEMS 
PAGE REVISION 

25-11 
PAGE 

- This is the priority structured list or queue into which program requests for main storage 
allocation are placed. It is this list from which the DA selects the next task to receive the 
desired allocation. 

- This is the amount of time spent using the CPU or an I/O channel. Additional time is 
accumulated for ERs which require the loading of nonresident executive segments. 

- This is core seconds multiplied by program size in core blocks and is accumulated in the 
PCT for accounting purposes. It is also the basis for demand/batch sharing. 

- This is core seconds plus voluntary wait time. Voluntary waits include TWAIT$ and 
WAIT$ requests for user response from a demand terminal. This value is accumulated in 
the PCT for accounting purposes. 

- The core quantum is the number of core seconds which a program is allowed to 
accumulate before it becomes available for swapping. The core quantum is computed 
each time the program is loaded. A program is not swappable until the first quantum is 
exceeded or it enters a voluntary wait state. 

- This value defines a program's position on the core queue and dictates how other 
programs may cause it to be swapped. For demand programs, the core priority is reduced 
one level and the quantum doubled each time a core quantum is exceeded. !he priority is 
reset to the highest allowed for the program when the program responds to the terminal 
(via READ$ or TREAD$ requests). 

25.5.5.3. DEMAND/BATCH SHARING 

The following parameters provide basic input to the demand/batch sharing algorithm. They are alterable by the operator: 

• DMIN 

DMAX 

II DINC 

- Minimum perqmt of computer usage guaranteed to demand, if requested . 

- Maximum percent of computer usage allowed to demand runs when batch runs are 
requesting service. 

- Increment in percent to be added to DMIN for each active demand run. The 
percentage used is DMIN + (number of active terminals *DINC), except that if this 
value exceeds DMAX, DMAX is used. 

Total core block seconds are accumulated by program type. The number of core blocks swapped are also accumulated. The 
blocks swapped are multiplied by average swapping time to convert to core block seconds and the result is added to the 
demand core block seconds. These values are used to determine the necessity of any sharing adjustments. 

The goal of demand/batch sharing is to provide for maintaining some minimum batch thruput. The values used to control the 
sharing, represent that percentage of the normal batch thruput capability which may be used for demand processing. The 
exact correspondence between the percentage and thruput varies somewhat with program mix but should still maintain an 
approximately linear scale. 

If demand programs are using in excess of the percentage allotted to them, and batch programs are waiting, the highest 
priority deadline or batch program is given a larger than normal quantum and is queued ahead of all demand programs. 
Demand programs do not cause the swapping of deadline programs under any circumstances unless the allotted demand 
minimum percentage is not being met. 

25.5.5.4. TIMESHARING 

Timesharing applies to demand tasks only and the control of response time. For a program whose size in core blocks is given 
by s, the cost of loading is proportional to s squared. The I/O transfer time is proportional to sand s core blocks are tied up 
for the duration of the transfer. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 25-12 
PAGE REViSiON PAGE 

The queueing algorithms are designed such that a program at level n is loaded twice as often as a program at level n+1. The 
highest level allowed for a demand program is then determined as a linear function of s squared. This is the level at which the 
program initially receives control and the level to which it is raised when reque~ting input from the terminal. 

The quantum allocated to the program is computed from the average time required to load the program. The quantum is 
constrained to be at least equal to this time, and is adjusted by @RUN priority and is doubled for each level below the highest 
level allowed for the program. 

High priority programs must not be allowed to dominate the system to the exclusion of all others. In order to appropriately 
allocate system resources to all users, the following algorithm is applied to the core queue: 

If the highest priority level is 2, the sequence of servicing is: 

2,3,2,4,2,3,2,5,2,3,2,4,2,3,2,6, ... 

This results in each lower level being loaded half as often as the one above it with an even distribution of levels in the 
sequence. 

25.5.6. DISPATCHER 

The dispatcher has prime responsibility for controlling CPU usage. In a broad sense, dispatching includes all CPU control 
decisions; more commonly it applies just to switching among activities. . 

The CPU usage algorithm may be characterized as "pure preemptive". That is, if some process (typically an activity) having a 
certain priority is using a CPU and some event occurs requiring performance of a higher priority process, then the lower 
priority process is immediately preempted in favor of the higher. Conversely, if the new process is of lower or equal priority, 
it must wait until no higher priority demands for CPU service exist. 

Two basic classes of CPU usage are defined: interlock and switchable. 

25.5.6.1. INTERLOCK PROCESSING 

Interlock processing is logically noninterruptable and nonswitchable. That is, once an interlock process begins, it is executed 
to completion and cannot, for example, be suspended and switched to another CPU or interleaved with other interlock 
processes of the same level. Interlock processes typically use the executive control registers (a privileged duplicate set of 
registers not usable under guard mode). They always have higher priority than any switchable process (activity). Three levels 
of interlock processing are defined: 

( 1 ) I nterru pt Preprocessi ng 

(2) ESI Processing 

(3) Executive Interlock 

- This is the highest level in the system, since the hardware locks out further interrupts on 
occurrence of an interrupt. Generally, interrupt preprocessing involves merely capturing 
essential information concerning the interrupt and recording it (typically in a queue) for 
subsequent processing. (See 25.7 for further discussion). 

- This is the next highest level. (See Sections 15 and 16 for details). 

- This is the lowest level of interlock processing. Most interlock processing occurs at this 
level. It includes the main dispatcher, internally specified index (lSI) interrupt processing, 
clock control and nonESI (externally specified index) internal interrupt handling (ERs, 
Test And Set, and program faults). The switching routine of the main .dispatcher is 
exercised only when no other interlock level processing remaios. 

The hierarchy among interlock levels is achieved by reserving some of the executive registers for each level (executive 
in,terlock is given all but a few). 



L, 

("'--

l~ 

4144 Rev. 2 
UP.NUMBER 

25.5.6.2. SWITCHING 

UNIVAC 1100 SERIES SYSTEMS 
PA GE RE VISION 

25-13 
PAGE 

All processing below interlock levels is done by activities. The selection and control of multiple activities competing for CPU 
time is the principal concern of the dispatcher. 

For switching purposes, activities are grouped into six types, and within each type there are up to 35 levels, numbered in 
order of priority from 1 to 35. Level 1 of each type is reserved for interrupt activities. The six activity types are: 

(1) High Exec Workers - This type is relatively scarce and is generally limited to those exec workers which must 
run above real time; for example, the abort routine. 

(2) Real Time User Activities - See Section 16. 

(3) Low Exec Workers - I ncludes most executive workers and all transient routines. Important levels include: 

2 - Symbionts 

3 - Mass Storage Allocation 

4 - DA Core Contents Control 

5 - Main DA 

6 -Logging and Accounting 

10 - Coarse Scheduler, Facilities Inventory 

11 - DA Periodic Adjustment 

22 - Unsolicited Keyins, Checkpoint/Restart 

(4) Demand Activities 

(5) Deadline Batch Activities 

(6) Normal Batch Activities 

Real time and executive activities (types 1, 2, and 3) are switched with "infinite quantum". That is, an activity may execute 
indefinitely without "supervision" at the same level for as long as it wishes. Level control is the responsibility of the activity; 
no automatic level manipulation is performed by the executive (as is done for demand and batch, described next). Within 
types 1,2, and 3, switching priority is simply by type (1 above 2 above 3) and by level within type. 

Demand and batch activities (type 4, 5, and 6) are switched in a much more complex manner. The algorithm to be described 
:has the fundamental objective of maximizing throughput by the strategy of: 

(a) giving high' priority for short periods to activities that request synchronous I/O service, and 

(b) giving lower priority for longer periods in proportion to the amount of computation an activity does. 

This strategy is intended to maximize utilization of peripheral equipment while reducing switching overhead for 
computational processes. 

The demand/batch CPU switching algorithm operates as follows: 

II Priority is by level (1 above 2 above 3 ... ) and by type within level (contrast with real time and execitive). 

fD Associated with each level is a quantum of CPU time directly proportional to the power of two of that level (that is, a 
level n quantum is twice that of level n-1). 

• Initial program activities start at level 2. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SE RI ES SYSTEMS . 25-14 
PAGE REVISION PAGE 

• As an activity executes, the amount of CPU time it consumes is accumulated in a quantum-used cell. When 
quantum-used exceeds the assigned quantum for the activity's level, the activity is dropped one level in priority, its 
quantum-used is cleared, and it is assigned a new quantum (twice as long); if the bottom level is reached, the same 
length quantum is assigned at the same level. In either case, the activity is placed at the end of the list of activities to be 
switched for the new level (and type). 

• If an activity issues a synchronous request (E R) for service that involves I/O, the activity is raised to level 2 and assigned 
a full level 2 quantum. 

• When an interrupt activity (level 1) is activated. upon completion of its associated I/O request, it is issued a level 1 
quantum. Expiration of that quantum, or any ER, causes the interrupt activity to be dropped to the level of the 
original activity. 

• Forked activities receive the same quantum and level as the original activity. 

• Quantums are timed with the real time clock. Whenever an activity is given control, the time remaining for its quantum 
is computed and the real time clock is set to interrupt no later than the computed time of quantum expiration. 

• Standard quantum values are 16 milliseconds for level 2. Currently seven levels are provided for types 4, 5, and 6, thus 
making the longest (level 7) quantum 512 milliseconds. These times are doubled for the 1106 system. 

Once any level control operations are performed, switching consists of simply taking the highest priority activity from a list, 
called the switch list, of all activities currently requiring CPU service. If the selected activity is of higher priority than the 
currently executing activity (if any), the latter is suspended and control switches to the selected activity. Otherwise, no 
switch occurs. If there are no activities requiring CPU time, the dispatcher goes into an idle loop until an interrupt occurs or, 
on multiprocessor system, an activity appears on the switch list. Note that the dispatcher is reentrant and can operate 
simultaneously on multiple CPUs by protecting the common switch list data at appropriate critical points. 

25.6. CLOCKING 

The clocking routines make provisions for clock usage by an object program as well as by the system. These routines are 
available to the user by means of ERs. The clocking routines serve as the basis for all accounting and logging functions, as well 
as a source of control for many real time applications. 

25.6.1. REAL TIME CLOCK 

The real time clock routine is used by the system for timing various activities such as I/O functions, operator responses and 
CPU usage time for each run. This routine is also used by the system to force interrupts after variable amounts of time.so that 
such events as nonresponsive I/O devices, unbalanced usage of CPU time, and so forth are detected. The frequency of 
interrupt ~epends on the needs of the system. The routine is so designed that many events may be simultaneously timed, and 
many interrupts may be simultaneously requested. 

25.6.2. DAY CLOCK 

The day clock routine is used by the system to maintain an accurate, standard time. This time is used by all processors for 
annotating listings, by the file control system for maintaining historical information about all files, by the accounting and 
logging routines for time-tagging events, as well as by other routines for other functions. 

25.7. INTERRUPT HANDLING 

In general, all interrupts are handled by the interrupt handler. This routine either queues the interrupt or routes control to 
the appropriate routine to handle the interrupt. Interrupts are received from either the control section of the CPU or from a 
peripheral subsystem. The interrupts fall into five general categories as follows: 

(1) Input/Output Interrupts 



\,,-

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 25-15 
PAGE REVISION PAGE 

(2) Clock Interrupts 

(3) Interprocessor Interrupts 

(4) Hardware Fault Interrupts 

(5) Program-Generated I nterru pts 

The handling of the real time and day clocks is discussed in 25.6.1 and 25.6.2. This paragraph discusses the handling of the 
other four classes of interrupts. 

25.7.1. INPUT/OUTPUT INTERRUPTS AND QUEUEING 

When an I/O interrupt occurs, the type of interrupt and the channel on which it occurred is either queued or routed to the 
appropriate processing routine. The three types of I/O interrupts are: 

iii lSI and ESI external interrupts 

• ESI and lSI data termination (monitor) interrupts 

• lSI function termination (function monitor) interrupts 

lSI interrupts are queued if: 

It higher priority interrupts are already in the queue; 

• another interrupt is being processed by an interlock level routine; or 

• the CPU was interrupted while operating in the ESI mode. 

lSI interrupts are removed from the queue by channel priority, channel zero having the highest priority. 

ESI interrupts are queued if all CPUs are currently busy on other ESI-Ievel work. ESI interrupt handling is further discussed 
in Sections 15 and 16. 

25.7.2. INTERPROCESSOR INTERRUPTS 

Interprocessor interrupts are issued within the executive via the privileged Initiate Interprocessor Interrupt (III) instruction. 
This feature allows one CPU to divert another CPU for the following reasons: 

(a) Issue an I/O request to a device which cannot be accessed by the first CPU (due to lack of direct electrical path). 

(b) Deactivate an activity which is currently executing on the other CPU; for example, for program suspension prior to 
swapout. 

(c) Process outstanding ESI interrupts in order to distribute the ESI load over the entire system, in the event that the 
initiating CPU is already busy processing an ESI interrupt. 

(d) System start-up. 

Prior to issuing the III instruction, the sending CPU sets a lock (Test And Set) and stores a function code in a common cell. 
When the receiving CPU is interrupted, control is routed to the interprocessor interrupt handler. This handler retrieves the 
function code, clears the lock, and routes control according to the function code, which defines some action to be taken 
under one of the four categories previously discussed (see 25.7 and 25.7.1). 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SE RIES SYST EMS 25-16 
PAGE REVISION PAGE 

25.7.3. HARDWARE FAULT INTERRUPTS 

25.7.3.1. STORAGE AND ICR PARITY ERROR INTERRUPTS 

The type of interrupts in this category are: 

(1) Storage Parity Errors 

(2) Input/Output Data Parity Errors 

(3) ICR Parity Errors 

(4) Access Control Word Parity Errors 

An interrupt of this type causes the system to halt. The only way to recover from these errors is to reload the system. 

25.7.3.2. POWER LOSS INTERRUPTS 

When a CPU receives a power-loss interrupt, three steps are taken to prepare for the total loss of power: 

(1) Save the control register contents of the interrupted CPU. 

(2) Disconnect all I/O channels of the interrupted CPU. 

(3) Go into a Jump Greater And Decrement (JGD) loop and wait for the total loss of power. 

If the CPU is still running at the end of the JGD loop, a transient power-loss interrupt has occurred; and the following steps 
are taken to recover the CPU: 

(1) Restore all control registers. 

(2) Reactivate all previously active ESI channels. In the case of lSI channels, an I/O TIMEOUT message will occur and an 
operator answer will reissue the command on the channel. 

(3) If a user or executive activity was interrupted, set up the interrupted activity's PSR and SLR and return control to the 
activity. If the above is not true, return control to the executive at its interrupted point. 

In the event of a real power loss, the operator can recover the CPU without rebooting the system. 

When the CPU is started, according to the power loss recovery procedures, all internal registers are reset; and the recovery 
procedure for a transient interrupt is followed. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 25-17 
PAGE REVISION PAGE 

25.7.4. PROGRAM-GENERATED INTERRUPTS 

This class of interrupts includes all those which occur immediately as the result of program instructions (in some cases, these 
may occur inside the executive). There are three subclasses of program interrupts: 

(a) Program Fault Interrupts:* 

- Illegal Operation 

- Guard Mode Fault 

(b) Arithmetic Exception Interrupts:* 

- Floating-Point Overflow 

- Floating·Point Underflow 

- Divide Fault 

(c) Programmed Interrupts: 

- Executive Request (see Section 4) 

- Test And Set Conflict (see 2.4.5, and Section 16) 

25.8. CATALOGUED FILE RECOVERY 

When the system is reloaded following a hardware or software failure, the executive reconstructs the master file directory of 
all catalogued files. The catalogued file recovery routine (CATFR) is executed during the initial phases of system reloading 
following the determination of the current hardware status. 

All master file directory information on all mass storage units is read and verified, the look up table and link addresses are 
recalculated, and mass storage is reallocated. These operations are performed 0f1 a unit by unit basis in order to minimize the 
amount of information which is lost should a unit be lost to the configuration or be partially overwirtten. 

In order to perform these operations as efficiently as possible, CATFR utilizes all available main storage. Independent, 
parallel I/O operations are performed on all available mass storage channels. After main storage is filled with master file 
directory items, the validation phase begins. Each file is processed independently and multiple validation activities are used to 
perform this operation as rapidly as possible. 

The master file directory information for each file consists of linked items. If a forward link address or granule table entry 
points to a downed unit or is a nonexistant address, the address is removed, the granule or last part of the file is lost, and the 
file is marked disabled in a special way ("hardware disabled'~) such that an attempt to assign the file results in a FAC REJECT 
message unless the Q option is used on the @ASG control statement. 

If the file was not assigned as read only at the time of the system stop, the file is marked disabled (standard disable) as it was 
possibly in a state of flux at the time of the stop. An assign of a disabled file is accompanied by aFAC WARNING message. 
Files which were still in the +1 F-cycle state, marked to be dropped, or whose FORWARD ITEM links were bad are dropped. 

FollOWing the verification, the granule counts are updated for the number of granules recovered and the file is entered into 
the look up table, used by the facilities mechanism of the executive. 

In addition to recovering as much of the files as possible, CATFR's validation ensures that all information required by the 
executive is present and correct. Unless some error is detected, the operation of CATFR is transparent to the user. 

See 8.2.17 and Section 19 for further information relating to disabled files. 

*These are discussed in 4.9. 





4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 26-1 
PAGE REVISION PAGE 

26. RUN SETUP EXAMPLES 

The following examples illustrate run streams used in executing various jobs. 

Example 1: 

The following run stream processes an assembly language program. 

LABEL ,:\ OPERATION 
10 20 

OPERAND 
30 

/\ 
40 

COMMENTS 
SO 

I. 'R ql~.t .. L_J.._J. ... L ... 1G.1~CB"ll~.P I 51 O:O,OJl.l9..l.g~j!:-...L)~O, ~l.Q1Ql ... L.L .. L-L_L.L-L_L ... L. L ... L_Ll_-1. ...... L.L ... l ...... L .. L .. L.....L.L .. L._L_.l .m.t .... J. 

2. @l~S.i~j.) .. lIL .. L.j~~~.l.)lf..l~l.LlJ/J~ J~L-L ... Ll .... L.L .. L..J ...... L ... L .. L. ... j .. _L ... L.l .. L...L...l ..... J .... J._ .. _l_L.l. ... 1.. .... L .... .l ... L ... J .. ....l __ l .... L .. L ..... l ... 1 ..... 1.. .... !. 

3. Sl1l:rLs...J~~iIl1eJ,S,. ~l;~l~J~lIMcl.gl. ~1E;~_J .. __ Ll. , I ; 1 . .L._L __ U._L.J ....... L_I : i I I.m .. l ... J ..... _L_l-L-...l--'-I--1L._l ! 

, , , I LJ __ ....LL .. Lm.l .•..• L. .. L_L .. ..l---1---'--'--'---'-, _.l._..l.. •.. L. .. ..l ..... _l... __ L . ...L..J_1-..L....L...1_ ... 1 ..•... .J .. 1... •... .L........L--LI ......J;L-.I. , .. l ...... ..l ....... J.._....L 

I I I 1 L...Lm.l ... _l , I , I ...L......L...L..Ll ... _L .. L_LJ_-L....l I! Iii 1 L .. 1 .. _1 .. 

J-.:...l---l---L::..:J....:=.::.L.....J.:L:::::..L~l~l~l~l~l~g._ II IN, FlU [.L. .. L_ . .L...l...--,---,---,--,--,I--,-1 -<-I ... .1.._ . .J ..... L. ... 1... •.. .L.. __ L . ....L...LI -L........L....J..I --1-1 .....L ...J. .... l...._.L....L..~IL........J.I--L-'-' ._L_.J ..... L .. ...L..J. ....... L 

_L. .. LL ... L. ... LL_L: , I , , , 1 ' '..l ...... l ....... L . ...l---L1 --1..1 --L..' -J....I -L--L-...1.-.L.-.L.1 J ... _LL 1 I 1 , LL_..l 1 1 I I L.l .... L_._L...L.--L--L--............. '-.. L 

\--l---l--1..-L-J......J.........J.......L .. __ l_ .... l_..J. __ L..L...l-L....l.......L....L.._.L.l_ .... L ..... l ... _.J._ . ..J.--.J...........l---'-...I...-..L.1 -11---1.1 1 ... _.l........L.L.....i.'-.l--L......J..........l-....L ..... L.. .. J ... ___ 1 -11--,---,-1 ...... 1 

--,--,---,---,--,-1 .. J_L .. L .... l. ... _L.....L-1 I 1 1 1 .... 1... .... L.L_L....L I I! 

... L_L..J_L . ...J.I--L-L.-1-...L..J .. _ .. L .... l .... _.L.......L.....l.~_l .. _ ... l ....... l .. _.J. __ J......J... 

.... L .... l .... L . ..l.._J....1 --,--,---,---,-I. ~..l_L .. L ... L. .. ...L._J .L-JL-.I.--L-L.-....!-..L..I __ l ....... L. ..... J ... ......L...l......L......J.......LJ.. ....... l ....... L .... .l_L_ 

... 1... __ L-L...L..J--1.--'--'--.' ...l......L .... L.....L...l.I--L--1-....1--L--'---'--..L.1 . ...L.l._.L .... 1... ..• Ll . ........l---L--L-L......L....l.1_....LL .. l--L-L.--1-...l-L-..J..I. 1.. .. _1 .... 1.. 

! ! ! ! I ! 

. ......1---'-.....L--'--............. I ..•... L._J.. ..... LL-1. . ....J.-L..L.L....L..J . ......L.J ... _.1-1......J....--'-.....I.--"---.l..........L-..l...., ._LL.._L..l .. -L-L..-L--'---'

.--L-.I..--L..-J......J.........L.......L •.. L.l._.l ... _LJI---L--'--L..-'-...LI--L, --1...1 L .. L.J.1.......L.......L-L..--L-...I.........L' ......J.....! ....L.L....L.l_L.JI--J.-...1.......1--L...1 ...L .... ..l . 

. .l.......L.......l-...1.--L-L.........I...-...1.-..I........J.1 ...... l.. .... L .... L ... L .J-I -,--I --'---...1.--'--.1..-1--'-1 -1_LJ ... _._L....l.---l---L........L-L......L.....L...L.L_l .. _ ...Ll........L-L.--'---'--..L....-L.....J..I ••... L.J . 

.....L-...L-..I-.-.L.....JL.......J.--1..--L--'-....... ' ....... ....l .•..•. 1. ..•.. .L._.l ... _._L..J_.-J11.........J.--L-.L...--'--'-- .... 1._ ... 1..._.1 ...... _ . .L1 ......L......l-...I........l.-..L.-l.......JL-1_ 

:'.:4-'=:J-....L..1 -LI ....J11.--L-...L--I..--'--L-....I...-JI ...... .l._ .. l ....•. LJ-L..L...L.J-L....L! 1 I .L..L I ! 1 .... LJ..---lI--1-1 --L..J......-L-..l.-..L..1 -..L...1 .....:IL.....J..I ._L .. ..L...l...-l.. 

p!!fJl.::.....L=.L;--L--L--'--.. L. .. L.. ... L..I...I-..L..--L-'-_'--'--.1..-L-.L ... L.l.. . ..L.-JIL..--J..---i-1 -J',--,-I .......l.-L.J....J.. .. _.L. ... L ... L....L....l.--1..........L-L.....J.......-L...,-. l..-I .. L....l.. ... _.l-L . ..J.1--I..-L.--L........1.-..L..! ....... L..L_L .... L...L....L.L 

.. -11.........11--1..1 -J....! -1--L........J.I--LI ....... L.J .. _LLLL I I I I I I 1._L ... L.l... I ! I I ! 1 I I .L •. L .•. L 1 I I I! __ LL .... L..J. . .....L. I 1 I I 1 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 26-2 
PAGE REVISION PAGE 

1. @RUN control statement: GYP is the run-id; 665000 is the account number; QUAL is the project-id; estimated run 
time is 10 minutes; and estimated page count is 100. 

2. Assign file ATMOS as a temporary file on FASTRAND mass storage with maximum of 20 granules. 

3. Assemble source language program TEN and produce a double-spaced listing consisting of both source language input 
and octal output. Insert symbolic element TEN into file ATMOS and produce a relocatable element called TEN in file 
ATMOS. 

4. Source language input for program TEN. 

5. Collect and produce absolute element TEN in file ATMOS. Accept the results of processing even if errors are detected 
and produce a comprehensive listing. 

6. Input to the collector directing that element TEN in file ATMOS be included in the collection. 

7. Execute absolute element ATMOS.TEN. 

8. Data input necessary for program execution. 

9. If the program terminates in error, a postmortem dump is taken. 

10. @FIN control statement terminates the run. 

Example 2: 

The following runstream executes the absolute element ABS produced by the collector from three relocatable elements 
produced in the run and one element from a user-specified file . 

...-------------------------------------------------- :/ 

LABEL ,\ OPERATION i.\ 
10 20 

OPERAND 
30 

/\ 
40 

COMMENTS 
50 

~. ,!~~~~:,~~iit~~~£~~~~~:,~~~~-~~-:~~~-:~ ~~-~:~:_~~_~~:: 
:3. M..1§j.} .. ~.l... ... .L_Ll__.lE!.l~IEIB. 1_.J ... _l...-.1 .•.. J ..... ...L...l .. _.! 1 I ! L .... LL.J._...l_.L I I ! I I I 1 I -L_L. .. ....l I ! ! I I 1 .... J.. .. L I I 1... •. .1 

4. _.l.E~&).J~_L_t£I,L!s..a .. ~.J~1.b.1 J 1 • ~LI~. __ LL ... L.._J.. .... L.1_.-L.....L-L.L..J._L_J .. _ ... L .... L • .L I I I I--LJ. ...... L ..... L .... .L I I! I __ l ...... L._.LJ 

5.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
... L.J--L...L-1 ! ! ! I 

.... L_L.L.L_L.LJ ..... J __ L . .Ll_ .... L. .. L ...... L._.L. .. .L..! -L-J--lL........L-'--1.! ... .J.....J._ .. l... ... _L.. ... L ..... L...L_ . .!-! -1.1--'---'-....... 1 ....L_LJ. ........ l... .. _I..--1--'--'--'---'-...... ! ....• 1 ... ..1 ....... L_l 

-'-...L..-........... '----L--'--'--. .1._1_ .. 1. __ . .L ... L . ....l_....l-l-L! I I I ! _L .. L .. I-...L--L---'--"..l..-.L.-..Ll -L . .L...L. ... L ..... L .... 1 ... _l_l-.L..-'--"""'"---''--. .L....L_ .. Ll ...... J--'--'--'-..1.-'--J._L.J ... ..1 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I ~I.J_~.~I~I~~~~~~~~~~I_I~~~~!~I 

g,~..1Yt'&.~~. 1 LIA1NI Gj U!A!Gj~..1;t;1.~P1U.[r.-'-'-1 ...L.-JL.......L.,.' 1_· ..L-1 1 1... .• J.._ •. L.L...L -'--.............. ' 1_L.l.-LJ .. _. L_l--,--,--,--,--,-.Ll_._ ... L._ .. 1 ... _L....l_.-,--,---,,--,---,

• .L! ·_IL.....l..-.L..-L-~.L...J\L....Ll.......L.1 _\t........J.l-L ..•. LLj--..L.J I I I .1 _1 .. _.1 __ .l _1l.....-L.-L.....I.-.!--1.......l-1 _L_L .. 1 _U ..l-L.J.JL..J--L.--L-.J.......J-J...i .-.1

1-...... 1 -->-1 -l-..L-...................... _L..J .. J-L ... L ... L 1 I I I 1 I ...L.L .. _I..-.L.L .. .L.l .. _L_L..1 1--'---1....-1..1 __ L.L_L_L L ... _L....l. I _L.L_L_ . .1 ...• 1 ... LL.4-1 --!1L...........l..--I..-..L.! _~_.L .. .J

,

..... "

4144 Rev. 2
UP.NUMBER

UNIVAC 1100 SERIES"SYSTEMS
PAGE REVISION

26-3
PAGE

8.
9.

• .L.l.. __ .L-L-L_L.LL_L.J __ l.. I I I I I L_L_.L-L._J.--L-I I , I I I ._.L-L-L.L--L-.L-1.-L---Ll._ .. _L_l. , I , , I .L __ .LL~-L_L._L ... L

AJ~}!j_,.J...1!-..LJ_~l::l~&~._El..~.l~J'J_..l."_lE, L'~.-L_1. _.L .. _l .. __ l_ ... _L. __ l._.L-L_l-L_.L_L..l-L.L._ .. J._ • .J---1---L-L_L.1 __ ... 1_._.L. __ l---L.l-l_..J ... _.L_ l ___ .L L

! I ! L L-Ll.-LJ.--'--'--'-.L-..J~!_LL.L-1---L.--'--"-.L.1 --,-' ..J.1---LI.._LL! I I I ! I .1.

.L-JI....J.--L-L--I.--L-
'

__ LLL.LL-L1.1---1--L-.l.-.J--L-1

I 1

! ! I ! I I I

15.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
lb.

I , ,

j--l--'---'--4---'--'-_.L. . .L..L~.-'--'--~'--'---'-...l.I_ ... _.L..L !--'---l..., -I1-L--'-.....lI.....L-L.l_L __ L..L-II'--'---l-...l..-.L-..l--L._l_ .. L..L __ L..-.L..L1 --L-...l..-.L.....l--L.! -l-1_......l......l.-..L....JL-J..

.......... ..:...c:.L:...:I..-.L...l---L--L.,.l_ ,.l... __ L .. L .. _ .. L .. L.L."L! ---1--L-..L1 ._Il-.J.I--1--'L-J.. __ L..-L-.l 1 , I ! I .LL .. .J. .. -L.L.-L....l.-.l-...J1L-.J..1---1-! -L-.....L.! .. J L.J .. -i--L-L-..l..-.L-JL-J..

I -L.LL_L .. L •. .L! -l11....J.! --1-' -11'--'----1-1 '--L,I ..J.L_J..-.L-l-..J.I--L! _!L-.l.--L....J....,,J,. .L...L J-1--,--,--'---'---'_1 I I I I I I ! I I ' .. LL._L . .J ! I I I

1. @RUN control statement: CLR is the run-id; 445 is the account number; 600 is the project-id; and nine minutes is the
estimated run time.

2. Assign file FILEA in FASTRAND format on FH-432, FH-880, or FH-1782 drums, FASTRAND mass storage, or 8414·
disc with an initial granule reserve of 10 tracks. FILEA is to be catalogued if the file is deassigned with a @FREE
control statement or if the run terminates normally.

3.

4.

5.

6.

7.

8.

9.

10.

Assign previously catalogued file FI LEB.

Calls FORTRAN compiler. A new symbolic element EL 1 is to be inserted into file FILEB. A listing is produced on the
new source language and a relocatable output element EL2 is placed in FI LEB.

Source language input deck.

Calls FORTRAN compiler. A new source language element EL3 is inserted in FILEA. A comprehensive listing is
produced of element E L3. The output relocatable element E L4 is placed in F I LEA.

Source language input deck.

Calls assembler. A new source language element EL5 is inserted in FILEA, and a complete listing of the element is
produced. A new relocatable element EL6 is placed in FILEA.

Source language input deck.

Calls the collector. Insert new MAP source language element SYM in the temporary program file·,(TPF$). Lines 11
through 15 are the source language statements which will comprise element SYM. Produce the absolute element ABS in
file TPF$ based on directives contained in element SYM.

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION

26-4
PAGE

11. Include relocatable element EL2 from file FI LEB in the collection to produce element ABS.

12. Include relocatable element EL4 from file FI LEA in the collection to produce element ABS.

13. Include relocatable element EL6 from file FI LEA in the collection to produce element ABS.

14. Include relocatable element EL7 from file FILEA in the collection to produce element ABS.

15. Execute absolute element ABS located in file TPF$.

16. Da~a input necessary for program execution.

17. @FIN control statement terminates the run.

Example 3:

In the following run stream, a program file is updated. A separate file is assigned to accept results of program execution; then
deassigned; the contents made public; and queued for output on a printer subsystem.

LABEL .\ OPERATION
10 20

OPERAND
30

A
40

COMMENTS
50

I.~,--",,=:.J-,..I._. L. ! J_ I I 1 I 1 I L...I-L .. L_L . .1 1 1 , I L .. .1...-1-1---L.L. L L L. . .L.-L.L.LL ... L t t. ...

2.
3.

. 1_.l.-.L.....l--L...L 1

--,---,--,-I _IL--.L' LL ... L.L..J..--LL-LL ...

ill ' 1..

--'--.L--L.. '--'-' --1-1 -LI __ LL_L I --'--'--'--.r..........lL-..J---L.-"' J..._.L_L.. .. l-L--'--'-...L.-~'--'--'-' _L..l-L.-1-....J.1--I-1 --'--'--.1-1 . -.1L-L-L

.--'--'--'--...... 1 --,--I 1 --'--'--L1 _L .. .1 .. _.1--,-1 --1-1 --'--I---'--.l..-J"--,---'---'-

1 1 '_L.

I ..

.1-l--l--1--L.-...I.-.L1 _L..l. L. .. L ... L_'L.-J.---L.....L--f--L......1-'---'-I......l ... _l...--'--f--L.......I.-.L......JL-.J.--'-_L.LL 1-1 -L-..1-l--I---L--I-...J..1 L .

... L .. .L...J1L-.J.--'--'--f--'--..l.--.L.L .. L ... L L..l.. I _LJ.. ..L-I..-..1--1-_

1 1 1 1 1 1 '1._ 1

..1.

1 1L_L.l-L

.,--,--,---,---,-1 --,1,--,-1--..1-1 ...l.-Ll_.L..L_I I--'---I--L..-L--...L.--'-'L......l_L-L L .. L.l---L..1 _'L...-J,.'--L..I1-....1.-...1-.-1. ... L. . .1...-.1 .. _ .. .1._L. ... _l.

;~,

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 26-5
PAGE REVISION PAGE

1.. @RUN control statement: AL5 is the run-id, and 888 is the account number.

2. Assign file AT as a word-addressable temporary file on the FH-1782 drum.

3. Assign file SPEC on FASTRAND mass storage and catalogue it as a public file if one of the following occurs:

Ii! the file is deassigned during the run by a @FREE control statement; or

II the run terminates without error.

4. Calls the assembler. Assembles element MU R K(15) from file PROGS, and produces relocatable element PROGS and a
new symbolic element MURK/ABER in file PROGS.

5. Replace lines 43 through 66 of element MURK(15) with the lines which follow (item 6) to produce MURK/ABER.

6. Correction statements to the source language element.

7. Calls the collector.

8. Include el.ement PROGS from file PROGS in the collection.

9. Close out the currently active print file and start a new file SPEC.

10. Execute the program.

11. Data statements necessary for program execution.

12. Print file SPEC is closed and a new system-defined print file is opened.

13. File SPEC is catalogued and made available for assignment by other runs.

14. File SPEC is queued for output on a printer subsystem.

15. @FIN control statement terminates the run.

Example 4:

The following example illustrates two run streams. The first generates a program, copies the symbolic element to tape, and
executes the program. The second references this tape file, inserts corrections, and produces a new tape file.

LABEL .\ OPERATIOH ;\
10 20

OPERAHO
30

A
40

COMMEtHS
50

I.~..:::l..:=.l!...:.l.-J.....-L.....-'--l--J..---L..I L lL-.L1...-.L.L-1-L-L....Ll L..l.-l--L...L...L l I l. L L-L...l1 .. _.1 1 .. .

2.
S.
4·

. ... 1 L l.. l ... _L-L-L..Lll.._ ... L_.L .. 1. L Il-L .. .L 1.... .. .1 L l l1_L,l .•. ..1. 1 1.. 1. ..

.L--L--l...........I....-J.I-L_.l.. L..J .. _

,..L-.l-......J.--L---I-. '--'---L--L..I _.l_L..L_LI.I.........L......I.-..L.-I....-L--L-...J...! -L.L1 -...I.--L-.l.-..L----1--1-.....L..1 -.LL..LJ...

~~~......L.....I.-~~-L-L~_~~~-L.....~I....-L-L~~~--'--L...I.-~~~I.~ . ...I.I~~~ 



4144 Rev. 2 
UP.NUMBER 

LABEL i\ 
10 

UN I V A C 11 00 S E R I E S S Y S T EMS 26-6 

OPERATION OPERAND 
20 30 

,\ 
40 

PAGE REVISION PAGE 

COMMENTS 
50 

.... 1.. ... .1. ....... .1 .... L .... l. ! II! .. 1.-1 ........ L ...... L. L-1 __ ' ! :! L ... L.L-L_L_L.LJ __ l_L.L .. L.-L..L ! I I ! ... .1 ..... L .. ..L I I ! L-1 ..... 1 ........ 1. .... .1 

5. @~.I~J'P..1.~MI!.lt.J~_~.1'&~l.~.) ... ;rl~l-pJeJ .... _.L_L_LJ......L_L .. 1 .... 1 ..•.• 1 ... .l ........ L.J._...L...L-L ... l ...... 1 ...... L ... J._J ........ L .... L . .1......L..L. .. L. •.. J ....... .l ...... .1 ... 1 ... ...1.......L---l ..... L .. .1 ...... I ....... L ..... 1 

6. A:g.ASl. ..... L. ... L-LU T A;P,E; . I_LL.J. ...... LJ._LL I , i ! L .... L .. L..1 ...... L ... J. II!! 1 _LL._L .. .1 1 I 1 ....• L.l I! I , L.1 

1. --L1-L--'--'-...l.'_l. ..... L .. L .. l .... _LJ... . ..1I--L-'--'-........... l ... .J ..... l ..... l_D-.1..1 -.1..1 -'--'-.1 ..... 1... .... 1. -'---'----..JJ.......Lf ---1. ... l... ... .1.. ..... J . ....J. 

8.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
, I , ' .• L .... L .L-.JJ.......L--L.--L.....J''---'-, --'--'-...... ! ! L f , , ,I! .L.J 

c.::..<..::-'---'--.L.-J'---<--'---L1 .. .J ..... L .. LJ--Lf -L.! --'--'--'--'--.J..-L-I-

--L....L......I-..l-.J1L-..L1-.l-1 _Ll_.L.L..J.! -L--L..-'--'--'---'--'--L-.l.L..-'--'--.J.--l...-J'--I---l.--,---,--,--,-L.-l--l--'---'---.L...-L ! I 

--'----'---'--'--'---'--.l..-J-.-J.! -L_L .... L..I.-1 .... ..l---L--L.--'--'----'. I I 

q. p!IU.::.....£--L.:~-'--..L._L.L .. LJ-L.L. I I I I , I 

p--'-"-I.=-'--'--'--:!-.. .1._..1 ..... LL-L. I I ! I I , 

.L.J. 

.-L--'--'---'---'--'--''---'---L.. L .... L.L.l-l..1 ...I--L-.J..-.L.....J.! .... L ... L .... L .. .l. 

I ! 

-'---'-...L.-.L..-I-....LI . .....LL ...... I--L.--'---'---'--'--.l..-.l.......1I __ L.l..-1_-'---'--'--L....-lL--l. 

L-...l-.l..--'--'---'-..J.--Il ..l...L.l---'---'--'---'--'--.................. --'-_.L.L-.L.' -'--'--'---'-.l...-1.......l--L--I-.• L.LL..! -'--'--'--.1..-'--''--'-

Z5.~~=+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
26. ~~-'--'---'- I I ! I ! I I ! I 

1--'---,---,-.L_.l......l .. .l __ 1 , , , 1. .• L.l ...... L_L.L I I I I 1......L.l ..•... L.L_L .. L_LL..l ! , , , I I I L.L.l .. :_.L..J-1-.J~ .. L.L ... L .. L.L.J.. 



'\ 

I 
\ 
"-_.' 

( 
\ 
'-.... 

4144 Rev. 2 
UP-NUMBER 

U N I V A ell 00 S E R I E S S Y S T EMS 26-7 
PAGE REVISION PAGE 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

@RUN control statement: INIT is the run-id; 12345 is the account number; and TR is the project-id. 

Temporarily assign file TAPE to any magnetic tape unit, reel number is 12. 

Calls FORTRAN compiler. A new source language input element PROG is inserted from the control stream into file 
TPF$ and a listing is produced. The relocatable element produced, PROG, is placed in TPF$. 

Source language statements. 

Copy program element PROG from mass storage to tape file TAPE. 

Mark an end-of-file (EOF) on the tape. 

Execute the program. 

Data input necessary for program execution. 

If the program terminates in error, a postmortem dump is taken. 

10. @FIN control statement terminates the run. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

@RUN control statement: NEW is the run-id; 12345 is the account number; and TR is the project-id. 

Temporarily assign file TAPE to any tape unit, reel number is 12. 

Temporarily assign file NTAPE to a UNISERVO VIII-C nine-track tape unit. 

Assign file PROGFI LE as a temporary file on mass storage with position granularity with an initial reserve of two 
granules and a maximum of five granules. 

Copy input file TAPE from tape to mass storage file PROGFILE. 

Release the tape unit assigned as file TAPE. It is good practice to release a facility when it is no longer needed by the 
run. 

Calls FORTRAN compiler. Compile element PROG from file PROGFILE; produce relocatable binary element RS and a 
new symbolic element PROG/A. 

Correction statements to apply against PROG to produce PROG/A. 

Copy program file PROGFI LE on mass storage to element file NTAPE on tape. 

20. Release the tape unit assigned as file NTAPE. 

21. Calls the collector. Produce symbolic element MAPSYM which contains the MAP directives and produce absolute 
output element ASS according to the directives. 

22. Include element RS from file PROGFILE in the collection. 

23. Execute absolute program element ASS located in TPF$. 

24. Data input necessary for the program. 

25. Produce a postmortem dump if the program terminates in error. 

26. @FIN control statement terminates the run. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 26-8 
PAGE REVISION PAGE 

Example 5: 

The following run stream inserts corrections into program elements of file PARTIAL and produces a tape file which contains 
elements from PARTIAL and tape file IN. 

r 
LABEL ,.\ OPERA TlOH 

10 
OPERAND 

20 30 
A 

40 
COMMEHTS 
50 

~~ili~:I~:~~~i~:~~~:~~~i~~~~~~l~~~:~~i:;~~:::=~E~~::::::~~~~ 
5'. F7R S,Cl-L I I ! tT~;C::I$I· 1 I I L..L.l...J I ! ' I \ Ii! I L..l Iii I I I I I I 1 I ! ! I ! I ! ! ! , 

6· .Al.~lil) .. Il ... J ... L .. L.iT-L"P£L.JEil.~lLtP'jtJ, ~ £J~.......L...L . .J. ... 1. .. L.J........L.J. 1 .LL...L ... LJ.-l..-L....l-L ... l. ..• L 1 .1.. •. 1...1 .. 

7. ~~~J.p.l..r~.LL . .1 .. 1r...l~1'. ... L_.L .• L.1 I 1 1 .L. .. J ....... 1... .•. L.L....1-1 I 1 1 I I .. .1.. .•.. 1. ..... L .... 1. .I ..... L.L..J.. I I 1 I L .Ll._L 1 I I .• l.._J ....... L.L.l.-1. 

B. uERlgtgL.J ... .L...J . ....J..JI.g· II! 1 .1 ..... L .. .J ..... J ' I ! 1 1 1 I ..l._L.l_ .. L .• L I 1 I I 1 ... _L_.1... • .1.....L' I I LJ ... 1 ..... .1. • , , .1 .. 

9. ·A'1 M , '~..L .. L ... L. .... lEA 'R,T,I AIL1:1?.ti8L .. ~J.1.J...· ;RA'RT'~L-1-L .... L_l-L..J-' --L-.I--1-.I...-l.....-1... 

10. - 34 '5 I I , I I, I 

II· 

, I L_.l. -'--L-.L--l..-J,---,--,-~--,-I . ....L .• L ... L ..... L ... Ll .. -L.--'--'--'--'---'-' .• L1 .......... 1 ......1--,--,---,--,--,---,-1 .. _1 ....... 1. 

i , I 

-L.-L-..1.-.I--'L........J.I .• J._1.. ... 1--L-.l..--'--'--'--..L.-.1.-..LL.L.1 ...1--L-J........JI...-L--'

.--'--'--'--L-.L--.L-.1I. ..L.l .. _l.......LJ---L---'---'--'--'--'--..... 1 •.. L .... LJi--L--'---'---'--'--'-..1..-.1.-..L...I. _1...1 
.--<"=--'--'--..1..-J.-I. _L.1 .•.. L .. L1.._II...-I.'--'--'-.....I.--'-I -Ll._L.L .. L .... L . ..l..-'--'--'--..L.-'--'--'-, .. .1 .... .1 ... 

1.=.l..:.....L.-.l--L--L.1 ...h.1 .... _L.L.l ... _L-1 •. -J'---'--'-...JL . ..l.-L .... L ... L .... l .... .l.. .1.-..'--'--'---'--'--'---'--1... .... 1......l---1.-1--'--'---'-' ..L..l. ... .1 .... _L..L 

I I I 1 I I 1 J ! ! , I I 

'I LL . ..J .L . .J. I I l_.1.. ... L.1.. .LL.L..L-L , I '_L.L_"! I 

I I LJ ..... L. .• L_L I , I I I I 1.-1 ....... 1.1 .. L . .1_l..-.L...LL.L..L 

--'---'--'I<---..J_.L...L .• .I. ....... L..l. , ! ,I L ... LJ ....... L .. I .... L •. L' .1 ....... 1-

J--L...-.I.--'--" L.Ll... i I I , I I , I --L...Ll-L-L.l._L-L-.l ... ...L....L I I, , I 

... .l .... _L .. L.l._J.._LJ. ..... JJ .... 1. .. L .. L. .. L.L.1_L.LLL.1 .. _L. ... L.L.J .... Ll.. ....... L ... .L.l...L .. L. ... l ... L_1.....1-.I.-.1-

.. 1. .... 1 ... I ...... L .L_J..-1-L_1-1_ .. .1 .... I .. ..1 ...... LL.L-L.Ll-L...l 1 I , , .. L .. LL-1 .... _l. .. -1_LJ_.1 __ LL . ..l ...... L ... .l. ..... L.L 

--'---'--'-....I.I.-L.J ........ L . ...I ...• L .. l .. J.. ... l " I '._.L .. L. .. L ... L .. L .... L. .... L .. L.J , I I 1 U_ ... L. .. L ..... L ... .J ...... L.L .. 1..1 . 

... 1. ..... 1 ..... L ..... L. ..... L.._LL.L ... L ... L_L ..... 1 .... L .... L ... L ... ~....L..l.......L....L_L.L.l . ....l ....... .l ... L .... l._I_LLJ.-1 ....... LJ.. ... J ..... L ... _.L ... .L 

I " 1 , I, I 1 , , 1 

..... 1.. .... L..L_1 ...... 1.... ... L. .... 1 ....... I.. .... .1 .. .1 .... I... .... L ... L.._L . .1 .... L .. J .... .1 .... L. 1 .. ...l....-1 .•. L .... L .... .1 .... I ....... .! ........ 1. 

_.l ...... J. ........ l ...... .l ....... J .• _LL.l-L.J . .....L....l-L..l ..... l' .•• J. .... _.J .•.... .l ...... ~L ... .J .. _ .. ..L..J.-L....L....l ..... l_-1 ..... 1 .... L_I.-L...L..J-L_LJ .. _.L.J .... .l. .•.. ..l ........ l_.L..L-L ... .l-1 ....... 1 ..... 1 ....... 1 ...... J.--'-1 -J11.-.L--->..1 ._L ... 1 . 

...• ..l ........ Ll ..... l ..... l. __ L ... L....l...-..J.....l.L..L.-1 •.. L .... L.J ...... L .... LL I , I ' ... L .. L ... L. . ..J ...... J ....... l .... l ... _Ll_.L.L._L.l ...... .l ...... L ... L.J .... .1 ... .l-1 ....... .1._L.L ... L ...... L ..... LL....l._L.L_L .. J ....... .l. ..• J ..• ....l 



C/ 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 26-9 
PAGE REVISION PAGE 

1. @RUN control statement: BAL is the run-id; 09100 is the account number; TST is the project-id; the estimated run 
time is 10 minutes; and estimated page count is 100. 

2. Temporarily assign file IN to an available tape device, reel number is 34. 

3. Temporarily assign file OUT to an available tape device. 

4. Assign file PARTIAL which was previously catalogued. 

5. Release the facilities assigned to TPF$. 

6. Temporarily assign TPF$ to a mass storage device with position granularity, an initial granule reserve of two granules 
and a maximum of ten granules_ 

7. Transfer program file IN from tape to mass storage file TPF$. 

8. Release the facilities assigned to file IN. 

9. Calls the assembler. Assemble element PART1 from file PARTIAL and produce relocatable element PART2. Produce a 
listing of only the octal output. 

10. Delete lines 34 through 50 of the source language input element. 

11. Correction statements. 

12. Calls FURPUR processor. Produce an edited listing of the table of contents of file PARTIAL. 

13. Calls FURPUR processor. Mark relocatable element FI RST in TPF$ as deleted. 

14. Calls FURPUR processor. Mark relocatable element SECOND in TPF$ as deleted. 

15. Calls FURPUR processor. Pack the nondeleted elements in TPF$. 

16. Prepare an entry point table for TPF$. 

17. Calls FURPUR processor.Print the table of contents and the entry point table for TPF$. 

18. Calls FURPUR processor. Copy the symbolic elements from file PARTIAL into file OUT. 

19. Calls-FURPUR processor. Copy the contents of TPF$ onto file OUT. 

20'. Release the facilities assigned to file PARTIAL. 

21. Calls FURPUR processor. Rewind file OUT to its load point. 

22. Calls FURPUR processor. Reset the next write location of TPF$ back to the start of the file and release its granules to 
the system. 

23. Transfer file OUT from tape to mass storage file TPF$. 

24. Calls FURPUR processor. Produce an edited listing of the table of contents of file TPF$. 

25. @FIN control statement terminates the run. 



4144 Rev. 2 
UP.NUMBER 

Example 6: 

UNIVAC 1100 SE RI ES SYSTEMS 26-10 
PAGE REVISION PAGE 

The fol/owing run stream builds a boot tape from a tape file that contains relocatable binary elements. 

LABEL 

I. 

,\ 
10 

OPERATION ;\ 
20 

OPERAND 
30 

:'\ 
40 

COMMENTS 
SO 

.... .J ........ L.-L.....L....L._L .. l .... .l ..... 1.. ... .1. 

L ... J . ......L-. .L.......l._ .. L .... L .. L. ..... 1.. ... L 

.. 1.. ... LI I I 1._.L ... 1.. 

.. L .... .l .... J .... ..l-.L..L.L_LL.L .. .1 .... L.J--L I ! 1 1 1 ..... 1.. ..... L1.--1..-' ...... '-->--....... 1. --L..J .... .1 ...... J. .• -L 

.-L-'----l..--I--I.1_l... ••. .L._ .. 1 .. 

---L--L.-1-...L1 L..l ..... L..L--'--'--..&.........J ........... --'--'-...... 1 ....... 1 ...•.. L ..... L . .l .... .1.. ... ..1 -'---'--.l..-.J1,---,-1 --<-I ->-' ...J. ... .I..-L.-'---'-I _IL...--L--,---,-I. j .... 1 .• ...L-1.-.L 

.. .L...1 ... -,,-' -'--'---'---'-

! I 1 ! 

.L-.J~'--'--'--L...L ..... L ........ L._ ..• L~..L! --L........L--L-LL...i. .... L LI • ...J.--L-I.--L--,--,I ._L . ..l ...... L..1.......L...J... 

.....L-....I.-.J..-;L...-J..--L.. .................... I...J.--'--'--'---'-I ...... '---,---,--, L.l_L. . ..1._...J.!--'---'--'-....... 

--I..-'--'---'--'----'-L ... L .J..........L..-JI--l.........L.......L-....I.-..l...--l--'---'-......1.I ... J-LJ..--,--,---,--,--,-! -1. . 

. -'---'---.l..--.''--'--'---'--'--.............. I_ . ..1 ... ...J--'--'-, -'---<--.......... '--'---'--'1'-1 -1.-~'-l.-..L.-'-' . ...J........l.. .. L.l. 

J.-.l..-l.-..L.--L---L'--l-' -'---'---'--'- L .. .L ... L._IL-l--L.....L.....L-J........;._L .. L-L......LL..LI --I-......L-....I.-.l...-J'---l._L.L_ ..... 1 --'--'-....... 

. 1..-1'-1..' .....1-1 ...J!---L--L.-1-...L..;.JI._.L.LJ..-L-LL 1 1 " J ... _1... ... 1. .-,---,--,--,---,---,-' ..... ' ............ ' ....... ' ....... L1. .. L .... L.L-'---'--'--'---'-....... 

...L.-L 

LL.L ...... I--s-' --'---'--.I...--& ...... 1-..l .... .1....J......J._L . ...L 

,'5,. 1 I I .L_L.1. ..... L .. LJ . ......A...--'--'-...L-............. --'---' 

.... L ... .L ! ! I I 

-,---,,--,---,--,1--,-' ......t1 ...... 1... ... .1 .... J ... _.I. 

/ 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 26-11 
PAGE REVISION PAGE 

1. @RUN control statement with A priority; SYSCEN is the run·id; 400400 is the account number; BUILD is the 
project·id; and estimated run time is 15 minutes; estimated page count is 200. 

2. Temporarily assign filename RB to any UNISERVO VIII·C, VI·C, or IV·C tape unit; reel number is 3434C. 

3. Temporarily assign file BOOTF I LE to any UN ISERVO VIII·C, VI-C, or IV-C tape unit; reel number is 4545C. 

4. Temporarily assign file RO to FASTRAND II or III mass storage unit with position granularity an initial reserve of two 
and a maximum size of 30 granules. 

5. Calls FURPUR processor. Move tape file RB over two EOF marks. 

6. Transfer tape file RB to mass storage file RO. 

7. Release the facilities assigned to file RB. 

8. Print the heading TOCS at the top of each page. 

9. Calls FURPUR processor. Produce an edited listing of the table of contents of file RO. 

10. The internal file name EXEC$ is attached to file RO and the file can be referenced by either name throughout the 
remainder of this run. 

11. Print the heading EXEC-8 MAP beginning at page one instead of at the print file's current page number. 

12. Calls the collector. Use the directives in symbolic element EX8MAP in file RO to produce an absolute element of the 
same name. 

13. Calls the collector. Use the directive which immediately follows in the run stream and produce absolute element 
SCH8PF in file TPF$. 

14. Relocatable element SCH8PF in file EXEC$ is to be included in the collection. 

15. Execute absolute element SCH8PF which is in file TPF$. 

16. Transmit the message BUI LD BOOTFI LE to the operator's console. 

17. Execute element EX8MAP in file EXEC$. 

18. Internal file name B is attached to file BOOTFILE and the file can be referenced by either name throughout the 
remainder of the run. 

19. Temporarily assign file OLDBOOT to any UNISERVO VIII-C, VI-C, or IV-C tape unit; reel number is 6565C. 

20. Calls FURPUR processor. Move tape file OLDBOOT over one EOF mark. 

21. Copy five files from OLDBOOT to tape file B and place one EOF mark after each file copied to tape file B. 

22. Release the facilities assigned to file OLDBOOT. 

23. Rewind tape file B to its load point. 

24. Release the facilities assigned to TPF$. 

25. Temporarily assign TPF$ to FASTRAND mass storage with initial granules reserve of two,position granularity, and a 
maximLim size of 20 granules. 

26. Move tape file B past one EOF mark. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 

27. Transfer tape file B to mass storage file TPF$. 

28. List the table of contents for TPF$. 

29. Reset the next write location of TPF$ back to the start of the file. 

30. Transfer tape file B to mass storage file TPF$. 

31. Print the table of contents of file TPF$. 

32. @FIN control statement terminates the run. 

PAGE REVISION 
26-12 

PAGE 



4144 Rev. 2 

UP.NUMBER 

@ADD 

@ALG 

@ASG 

c 

@ASM 

@BRKPT 

@CAT 

UNIVAC 1100 SERIES SYSTEMS A-1 

PAGE REVISION PAGE 

APPENDIX A. SUIVIMARY OF CONTROL 

STATEMENTS 

Provides a means of inserting images into the run stream from any file currently assigned to the user or any 
catalogued file, provided that the file is FASTRAND-formatted in SDF format or from any source element of 
a program file. 

@label:ADD,options filename.eltname 

Call the ALGOL language processor to translate source language instructions into relocatable binary code. The 
output is saved in a new relocatable element. 

@label:ALG,options eltname-',eltname-2,eltname-3 

Assigns physical facilities to a given run under the specified filename. 

For FASTRAND-formatted mass storage, word addressable mass storage, and simulated word addressable 
mass storage: 

@Iabel :ASG,options filename,type/reserve/granule/maximum,packid-' /packid-2 .. ./packid-n 

For magnetic tape files: 

@Iabel :ASG,options filename,type/units/log/noise,/MSA-trans/unit-trans/format,; 
reel-' /reel-2 .. ./reel-n,expiration-period 

For all devices except FASTRAND mass storage, drum, and magnetic tape units. Used primarily for the 
assignment of special I/O devices and communication equipment. 

@label:ASG filename,type 

Call the assembly language processor to translate source language instructions into relocatable binary code. 
The output is saved in a new relocatable element. 

@label:ASM,options eltname-',eltname-2,eltname-3 

Enables the user to establish breakpoints in the current print and punch files (PRINT$, PUNCH$, and so 
forth) . 

@label:BRKPT,options generic-name/part-name 

Catalogues one or more files independently of assigned facilities. 

@Iabel : CAT ,options fi lename,read-key /write-key, type/noise/MSA-trans/u nit-trans/format,; 
reel-',reel-2,reel-n 

@label:CAT ,options filename,type/reserve/granule/maximum,packid-' /packid-2 .. ./packid-n 



4144 Rev. 2 
UP-NUMBeR 

@CHG 

@CKPAR 

@CKPT 

@CLOSE 

@COB 

@COL 

@CON78 

@COPIN 

UNIVAC 1100 SERIES SYSTEMS A-2 
PAGE REVISION PAGE 

Changes element name, filename, version name, read key, write key, and mode of a file. 

@label:CHG,options name-l,name-2 

Initiates a program checkpoint. 

@Iabel :CKPA R,options filename.erement 

Saves the complete status of a run at a given point. 

@label:CKPT,options filename 

Writes two hardware EOF marks on a magnetic tape file and rewinds the tape. 

@label:CLOSE,options filename-l,filename-2, .. .filename-n 

Call the COBO L language processor to translate source language instructions into relocatable binary code. The 
output is saved in one main relocatable output element and possibly in several other dependent relocatable 
elements. 

@Iabel :COB ,options eltname-l,eltname-2,eltname-3 

Permits the user to change the read mode from the system-defined standard to the read mode specified by the 
first parameter on the control statement. The @COL control statement is only valid when read from an onsite 
card reader. 

@COL xx,sentinel 

Accept CUR-formatted symbolic elements on magnetic tape and convert them to FUR PUR-formatted 
symbolic elements. 

@label:CON78,options filename-l,filename-2 

Copies elements from an element file located on magnetic tape into a program file on FASTRAND-formatted 
mass storage. 

@label:COPIN,options name-l,name-2 

@COPOUT Copies a program file, or seleted elements from a program file, located on FASTRAND-formatted mass storage 
onto a magnetic tape file in element file format. 

@COPY 

@CULL 

@CYCLE 

@lilbel:COPOUT,options name-l,name-2 

Copies a file or element from one file to another. 

@label:COPY,options name-l,name-2,nbr-of-files 

I 

Call the CU LL processor to produce an alphabetically sorted, cross-referenced listing of all symbols found and 
the elements and lines on which they occur. 

@Iabel :CU L L,options pro/scol (res) ,name-l , ... name-n 

Sets the maximum range of absolute F-cycle numbers to be retained for specified files which are listed in the 
master file directory or sets the maximum number of element cycles to be retained for a specified symbolic 
element. 

@Iabel :CYCLE name,n 



",----

,~. 

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS A-3 
UP-NUMBER PA GE RE VISION PA GE 

@DATA Introduces, updates, and corrects data files from the control stream. 

@label:DATA,options fi lename-' , fi lename-2,sentinel 

@DELETE Drops catalogued files or marks elements in a program file as deleted. 

@Iabel: D E LETE,options name-' ,name-2, ... ,name-n 

@ED Allows the user to conversationally edit a symbolic file or element by permitting insertion, deletion, and 
replacement of text. 

@ELT 

@ENABLE 

@END 

@ENDCL 

@ENDX 

@EOF 

@ERS 

@FIN 

@FIND 

@FOR 

@Iabel: ED name-' ,name-2 

Introduces an element into a particular program file or makes corrections to a symbolic element in a program 
file from the run stream. 

@label:ELT,options eltname-l,eltname-2,sentinel 

Removes disable state from catalogued files. 

@label:ENABLE filename-l,filename-2, ... ,filename-n 

Notifies the system that this is the end of control stream images that are to be transferred as data by the 
previous @ELT,D or @DATA control statements. 

@END s 

Terminates the mode established by the @COL control statement. 

@ENDCL 

When encountered by an R EAD$ request in CLlST$ mode, a return with a CLiST index of 778 occurs. 

@ENDX 

When encountered by an R EAD$ request, this control statement causes an end-of-file return. 

@EOF s 

Resets next write location to the first sector of the text area, clears the table of contents, and returns to the 
system all FASTRAND-formatted mass storage allocated to a program file. 

@label:ERS filename-', filename-2, ... , filename-n 

Identifies the end of a run. The @FIN control statement must appear as the last statement in all runs. 

@FIN 

Locates an element in a magnetic tape file (file must be in element file format) and positions the file before 
the element's label block. 

@label:FIND,options eltname 

Call the FO RTRAN language processor to translate source language instructions into relocatable binary code. 
The output is saved in a new relocatable element. 

@Jabel:FOR,options eltname-' ,eltname-2,eltname-3 



4144 Rev. 2 
UP-NUMBER 

@FREE 

@HDG 

@JUMP 

@LlST 

@LOG 

@MAP 

@MARK 

@MODE 

@MOVE 

@MSG 

@PACK 

@PCH 

@PDP 

UNIVAC 1100 SERIES SYSTEMS A-4 
PAGE REVISION PAGE 

Release the physical facitities assigned to this run under the specified filename. 

@Iabel: F R E E,options fi lename 

Provides a means of printing a heading on successive pages of printer output along with the print file's 
cumulative page number and the current date. 

@label:HDG,options header 

Advances control to the specified labeled statement within the control stream. 

@label:JUMP label 

Call the LIST processor to produce an edited dump of one or more absolute, relocatable, or source language 
elements. 

@label:LlST,options eltname-' , ... ,eltname-n 

Places user-specified information in the master run log. 

@Iabel: LOG message 

Call the @MAP processor (the collector) to collect a specified set of relocatable elements to produce an 
executable program in absolute element format. 

@label:MAP,options eltname-' ,eltname-2,eltname-3 

Writes two hardware EOF marks on a magnetic tape file and positions the tape between the EOF marks. 

@label:MARK,C filename-' ,filename-2, ... ,filename-n 

Changes the mode settings initially set by a previous tape @ASG control statement. The file must be currently 
assigned to the run. 

@label:MOD E,options filename,noise/MSA-trans/unit-trans/format 

Moves a magnetic tape file forwards or backwards over a specified number of EOF marks. 

@label:MOVE,options filename,n 

Used to display messages on the system console. 

@label:MSG,options message 

Rewrites an entire program file, removing all elements marked as deleted from the program file. 

@label:PACK,options filename-', filename-2, ... , filename-n 

Punches program file elements into aD-column cards. 

@label:PCH,options eltname,seq-char 

Call the procedure definition processor (PDP) to produce program file procedure entries suitable for use by the 
assembler, COBOL, and FORTRAN language processors. 

@label:PDP,options eltname-' ,eltname-2 



I 
'-.., 

4144 Rev. 2 

UP-NUMBER 

@PMD 

@PREP 

@PRT 

@OUAL 

@REWIND 

. @RSPAR 

@RSTRT 

@RUN 

@SETC 

@START 

@SYM 

UNIVAC 1100 SERIES SYSTEMS A-O 

PAGE REVISION PAGE 

Calls the postmortem dump (PMD) processor to dump all or specified portions of a program that resides in 
main storage at program termination. 

@label:PMD,options eltname-l,addr/loc,length,format 

@label:PMD,options name-l,name-2, ... name-n 

Creates an entry point table from the preambles of the nondeleted elements of a program file. 

@label:PREP filename-l,filename-2, ... ,filename-n 

Provides a listing of the master file directory items for catalogued files, the table of contents of a program file, 
or the text of a symbolic element. Listings of absolute or relocatable elements must be obtained using the 
LIST processor. 

@label:PRT,options name-l,name-2, ... ,name-n 

Specifies a standard filename qualifier for implied use on succeeding statements involving filenames. 

@label:OUAL qualifier 

Rewinds magnetic tape files back to the load point of the first reel. 

@Iabel: R EWIN D ,options filename-l , filename-2, ... , filename-n 

Used to restart a program after a program checkpoint has been taken . 

@label:RSPAR,options filename.element 

Restore the run to its previous state after a checkpoint has been taken. 

@Iabel: RST RT ,priority /options runid,acct-id, fi lename,ckpt-nbr ,reel-nbr 

Identifies the run to the executive and provides information needed for accounting and scheduling purposes. 
The run control statement must be the first statement of every run. 

@RUN,priority /options run-id,acct-id,project-id,run-time/deadline,pages/cards,start-time 

Stores a value in T2 of the condition word. 

@label:SETC,options value/j 

Permits the user to schedule independent batch runs where the run streams for these runs have been created 
and previously entered into the system. 

@Iabel :START,priority/options name,set,run-id,acct-id,project-id,run-time/deadline,pages/cards,; 
start-time 

@label:START name,set 

@label:START,priority/options name,set,run-id,acct-id,project-id,run-time/deadline,pages/cards,; 
start-time 

Permits the user to select a symbiont or class of symbionts to print or punch selected files. 

@label:SYM,options filename"symbiont 



4144 Rev. 2 

UP.NUMBER 

@TEST 

@USE 

@XOT 

UNIVAC 1100 SERIES SYSTEMS A-6 
PAGE REVISION PAGE 

Tests the value of the condition word to select the particular control statements to be executed or skipped. 

@label:TEST f/value/j,f/value/j 

Equates filenames so that any particular file can be referenced by more than one filename. 

@Iabel: USE internal-fi lename,external-filename 
or 
@label:USE internal-filename,internal-filename 

Initiate the execution of a program which is in absolute element notation: 

@label:XOT,options eltname 



4144 Rev. 2 
UP-NUMBER 

ABORT$ 

ACT$ 

ADACT$ 

APCHCA$ 

APCHCN$ 

APNCHA$ 

APRINT$ 

UNIVAC 1100 SERIES SYSTEMS B-1 
PAGE PAGE REVISION 

APPENDIX B. SUMMARY OF 

EXECUTIVE REQUESTS 

Unconditionally terminate all activities and 
the run. 

ER ABORT$ 

Initiate an activity which must have been 
previously named through the NAME$ 
request. 

L 
ER 

AO,activity-name 
ACT$ 

Used to exit from an ESI activity, release 
specified buffers, and activate a previously 
named real time activity. 

L A1,name 
L,U AO,pktaddr 
ER ADACT$ 

Specify an ASCII punch control image to a 
punch device routine for an alternate punch 
file. 

L 
ER 

AO,(image-length,buffer-addr) 
APCHCA$ 

Specify an ASCII control function to a 
punch device routine for a punch file. 

L AO,(image-length,buffer-addr) 
ER APCHCN$ 

Place a quarter-word ASCII punch image 
into a user-defined punch file. 

L,U 
ER 

AO,pktaddr 
APNCHA$ 

Places a quarter-word ASCII image into the 
system-defined print file. 

L 

ER 

AO,(PF line-spacing; 
nbr-of-words,image-addr) 
APRINT$ 

APRNTA$ Places a quarter-word ASCII image into a 
user-defined print file. 

APRTCA$ 

APRTCN$ 

L,U 
ER 

AO,pktaddr 
APRNTA$ 

Specify an ASCII control function to a print 
device routine for an alternate print file. 

L 
ER 

AO,(image-length,buffer-addr) 
APRTCA$ 

Specify an ASCII control function to a print 
device routine for a print file. 

L AO,(image-length,buffer-addr) 
ER APRTCN$ 

APUNCH$ • Place a quarter-word ASCII image into the 
system-defined punch file. 

AREAD$ 

L 
ER 

AO,(nbr-of-words,image-addr) 
APUNCH$ 

Obtains an image in quarter-word ASCII 
from the run stream located in the R UN file. 

L 

ER 

AO,(EOF-return-addr; 
buffer-addr) 
AREAD$ 

AR EADA$ Obtain an image in quarter-word ASCII from 
a user-specified file. 

AWAIT$ 

L 
ER 

AO,pktaddr 
AREADA$ 

Delay further execution of the requesting 
activity until all specified activities have 
terminated. 

L 
ER 

AO,(activity-id-mask) 
AWAIT$ 



4144 Rev. 2 
UP-NUMBER 

BBEOF$ 

CADD$ 

CEND$ 

CGET$ 

CJOIN$ 

CLlST$ 

CMD$ 

CMH$ 

CMI$ 

CMOS 

UNIVAC 1100 SERIES SYSTEMS 8-2 

References the EOF address located in word 
21 of the FCT and records the value in 
MBBI of the respective files master file 
directory main item. 

L,U 
ER 

AO,pktaddr 
BBEOF$ 

Returns a number of buffers to the pool. 

L,U 
ER 

AO,pktaddr 
CADD$ 

Notifies the executive that the requesting 
activity has completed contingency 
processing. 

ER CEND$ 

Removes buffers from the pool only when 
the open chain method is employed. 

ER CGET$ 

Expands or adds to a previously established 
pool by joining it to an additional pool area. 

L,U 
ER 

AO,pktaddr 
CJOIN$ 

Allows the user to define his own set of 
control statements and register them with 
the executive. 

L 
ER 

AO,list-designator 
CLlST$ 

Initiates a communications handler dialing 
operation. 

L,U 
ER 

AO,lttaddr 
CMD$ 

Initiates a communications handler hangup 
operation. 

L,U AO,lttaddr 
ER CMH$ 

Initiates a communications handler input 
operation. 

L,U 
ER 

AO,lttaddr 
CMI$ 

Initiates a communications handler output 
operation. 

L,U 
ER 

AO,lttaddr 
CMOS 

CMS$ 

CMSA$ 

CMT$ 

COM$ 

COND$ 

CPOOL$ 

CREL$ 

CSF$ 

DACT$ 

PAGE REVISION PAGE 

To initialize one or more line terminal 
groups. 

L AO, (Ittcou nt,lttaddr) 
ER CMS$ 

Initiates a communications handler 
operation. 

L,U 
ER 

AO,lttaddr 
CMSA$ 

Deactivates the input or output line 
terminals and performs various housekeeping 
functions associated with a line terminal 
group. 

L,U 
ER 

AO,lttaddr 
CMT$ 

Requests use of the onsite operator's console 
to display output messages and solicit 
operator input. 

L,U 
ER 

AO,pktaddr 
COM$ 

Transfers the program condition word in AO. 

ER COND$ 

Establishes a pool of I/O buffers for 
communications usage. 

L,U 
ER 

AO,pktaddr 
CPOOL$ 

Enables symbionts or real time user 
programs to release buffer pools obtained 
through CPOO L$. 

LXI,U 
ER 

L 
ER 

AO,1 
CREL$ 

AO,poolid 
CREL$ 

Submit control statements for interpretation 
and processing from within an executing 
user program rather than from the run 
stream. 

LA 

ER 

AO, (i mage-word-Iength; 
image-addr) 
CFS$ 

Deactivate the calling activity must have 
been previously named through the NAME$ 
function. 

ER DACT$ 



4144 Rev. 2 
UP-NUMBER 

DATE$ 

EABT$ 

ERR$ 

EXIT$ 

EXLNK$ 

FACIL$ 

FACIT$ 

FITEM$ 

FORK$ 

IALL$ 

UNIVAC 1100 SERIES SYSTEMS 8-3 

Places in AO and A 1 the current Fieldata 
date and time. 

ER DATE$ 

Unconditionally terminate all activities but 
allow error diagnostics. 

ER EABT$ 

Terminate the requesting activity and place 
it in ERR mode. 

ER ERR$ 

Terminates the requesting activity wherever 
it is within a reentrant processor or nest of 
reentrant processors. 

ER EXIT$ 

Returns control to the instruction 
immediately following the LIN K$ request. 

ER EXLNK$ 

Obtains the first nine words of the F ITEM$ 
packet. 

L,U 
ER 

AO,pktaddr 
FACIL$ 

Obtains the first ten words of the F ITEM$ 
packet. 

L,U 
ER 

AO,pktaddr 
FACIT$ 

Provides a method to obtain a variable 
amount of information on file or facility 
assignments. 

L 
ER 

AO, (pkt-I ngth,pktaddr) 
FITEM$ 

Register and initiate an asynchronous 
program activity. 

LA 
ER 

AO,(parameter-word) 
FORK$ 

Registers a routine to handle one or more 
contingency types, either for the entire 
program or just for the requesting activity. 

L 
ER 

AO,(contingency-parameter) 
IALL$ 

10$ 

10ARB$ 

10AXI$ 

11$ 

PAGE REVISION PAGE 

Request an operation on an I/O file 
indicated and retu rn control to the 
executing program without waiting for 
completion of the I/O operation. 

LA 
ER 

AO,pktaddr 
10$ 

Initiates an arbitrary device I/O operation 
with control returned, in line, as soon as the 
request is either listed or the operations have 
been initiated. 

L 
ER 

AO,pktaddr 
10ARB$ 

Initiates an arbitrary device operation with 
the referenced activity simulating an exit 
function, and controls the return to the 
program at the appropriate interrupt activity 
specified in the request packet. 

L 
ER 

AO,pktaddr 
10AXI$ 

Provides a means to define the activity 
which is to accept any unsolicited input 
directed to the program. 

ER 11$ 

101$ Same as 10$ except that an interrupt 
activity is initiated at completion of the I/O 
request. 

10W$ 

10WI$ 

10XI$ 

L,U 
ER 

AO,pktaddr 
101$ 

Identical to 10$ except control is not 
returned to the executing program until 
completion of the I/O operation. 

L,U 
ER 

AO,pktaddr 
10W$ 

Same as 10W$ except that an interrupt 
activity is initiated upon completion of the 
I/O operation. 

L,U 
ER 

AO,pktaddr 
10WI$ 

Requests an operation on the I/O file 
indicated and terminate the requesting 
activity. Upon completion, initiate an 
interrupt activity. 

L,U 
ER 

AO,pktaddr 
10XI$ 



4144 Rev. 2 
UP-NUMBER 

LABEL$ 

LCORE$ 

LlNK$ 

LOAD$ 

MCORE$ 

MCT$ 

MSCON$ 

NAME$ 

NRT$ 

OPTS 

UNIVAC 1100 SERIES SYSTEMS 

Enables the user to read or write any label 
block in the first label group on the volume 
except the VOL 1 block. 

L,U 
ER 

AO,pktaddr 
LABEL$ 

Release unneeded main storage in the I or D 
banks. 

LA,U 
ER 

AO,high-req-addr-in~l-or-D-banl, 

LCORE$ 

Transfer control to any reentrant processor 
in the SYS$*LlB$ or the RLlST$ list. 

LA,U 
ER 

AO, ('repname') 
LINK$ 

Load a segment of a program. 

LA,U AO,segname 
LA,U A 1 ,jump-addr 
ER LOAD$ 

Obtain additional main storage for the I or D 
bank. 

LA,U 
ER 

AO,high-expansion-addr-req 
MCORE$ 

To retrieve information from the master 
configuration table (MCT) or to read/update 
the program area in the MCT. 

L 
ER 

AO,packet 
MCT$ 

Enables the user to obtain information 
either the entire MFD or entries pertaining 
to a particu lar file. 

L,U 
ER 

AO,pktaddr 
MSCON$ 

Attack a name to an activity so that the 
activity may be later referenced by a ACT$ 
or DACT$ activity. 

LA,U 
ER 

AO,18-bit-activity-name 
NAME$ 

Reduce an activity or program from real 
time status. 

ER NRT$ 

Makes available the options letters from the 
@XQT control statement. 

ER OPTS 

PCHCA$ 

PCHCN$ 

PCT$ 

PFD$ 

PFI$ 

PFS$ 

PFUWL$ 

PFWL$ 

PNCHA$ 

PA GE REVISION 
8-4 

PAGE 

Specify Fieldata punch control image to a /' 
punch device routine for an alternate punch 
file. 

L 
ER 

AO, (i mage-addr ,bu ffer -addr) 
PCHCA$ 

Specify Fieldata control . functions to a 
punch file routine for a punch file. 

LA 
ER 

AO,(image-length,buffer-addr) 
PCHCN$ 

Obtain a copy of requested portions of this 
program's PCT in the user-specified buffer. 

L 
L 
ER 
or 
L 
ER 

AO,(O,buffer-addr) 
A 1 ,(n,relative-addr) 
PCT$ 

AO, (word-count,buffer-addr) 
PCT$ . 

Sets delete flag in element table item for 
requested element. 

L,U 
ER 

AO,pktaddr 
PFD$ 

Inserts an entry in the program file's element 
table. 

L AO,pktaddr 
ER PFI$ 

Searches a program's file table of contents 
for a given item. 

L,U 
ER 

AO,pktaddr 
PFS$ 

Updates the next write location in a program 
file. 

L,U 
L 
ER 

AO,pktaddr 
A 1 ,(new-address-in-program-file) 
PFUWL$ 

Obtains the next write location in the 
program file. 

L,U 
ER 

AO,pktaddr 
PFWL$ 

Transfer a Fieldata image to a user-specified 
punch file. /~~ 

LA,U 
ER 

AO,pktaddr 
PNCHA$ 



,.. 
( 

\ 
'--/ 

4144 Rev. 2 
UP-NUMBER 

PRINT$ 

PRINTA$ 

PRNTA$ 

PRTCA$ 

PRTCN$ 

PSR$ 

PUNCH$ 

READ$ 

READA$ 

UNIVAC 1100 SERIES SYSTEMS 

Transfer a Fieldata image to the 
system-defined print file. 

L 

ER 

AO,(PF line-spacing; 
nbr-of-words,image-addr) 
PRINT$ 

Transfer a Fieldata image in a user·specified 
print alternate (PRNTA$) file. If an image is 
greater than 22 words, the printing of the 
PRNTA$ file is aborted. 

LA,U 
ER 

AO,pktaddr 
PRNTA$ 

Places a Fieldata print image into a 
user-defined print file. 

L,U AO,pktaddr 
ER PRNTA$ 

Specify Fieldata control functions to a print 
device routine for an alternate print file. 

LA 
ER 

AO,(image-length,buffer-addr) 
PRTCA$ 

Specify Fieldata control functions to a print 
device routine for a print file. 

LA AO,(image-length,buffer-addr) 
ER PRTCN$ 

Set or clear bits within processor state 
register (PSR) bit positions. 

LA 
ER 

AO,(parameter-word) 
PSR$ 

Transfer a Fieldata image to the 
system-defined punch file. 

LA 
ER 

AO,(nbr-of-words,image-addr) 
PUNCH$ 

Obtain a Fieldata image from the run stream 
located in the R EAD$ file. 

LA 

ER 

AO,(EOF-jump-addr; 
buffer-addr) 
READ$ 

Obtain a Fieldata image from a 
user-specified file. 

L 
ER 

AO,pktaddr 
READA$ 

RLlNK$ 

RLlST$ 

ROUTE$ 

RT$ 

SETC$ 

SNAP$ 

TDATE$ 

TFORK$ 

TIME$ 

8-5 
PAGE REVISION PAGE 

References any reentrant processor in the 
SYS$ * LI B$ list or the R LI ST$ list. 

L 
ER 

AO,('repname') 
RLlNK$ 

Enters a list of user-created reentrant 
processors. 

LA 
ER 

AO,(nbr-entries,pktaddr) 
RLlST$ 

Dynamically alters the primary paths of 
communication. 

L 
L,U 
ER 

AO,(mode,lttaddr) 
A 1,pointer 
ROUTE$ 

Raise the program status to real time or 
change the switching priority of an activity 
that is already real time. 

L,U 
ER 

AO,switching-priority-level 
RT$ 

Dynam ically set the contents of T3 of the 
program condition word. 

L,U AO,value 
ER SETC 

Obtain a snapshot dump of selected control 
registers and areas of main storage. 

SA 
L,U 
ER 

AO,pktaddr+2 
AO,pktaddr 
SNAP$ 

Places in AO the current binary date and 
time. 

ER TDATE$ 

Create a timed activity. A TFORK$ request 
is sim ilar to a FO R K$ request except that 
the new activity does not begin execution 
for a specified amount of time. 

L 
L 
ER 

AD,(parameter-word) 
A 1 ,(wait-time-in-milliseconds) 
TFORK$ 

Place in AD in binary the concurrent time in 
milliseconds past midnight. 

ER TIME$ 



4144 Rev. 2 
UP.NUMBER 

TINTL$ 

TRED$ 

TSWAP$ 

TWAIT$ 

UNLCK$ 

UNLNK$ 

WAIT$ 

WANY$ 

UN I VA C 1100 S E R I E S S Y STEMS 8-6 

Causes a specified tape file to be logically 
rewound so that a subsequent pass be made 
from the load point of the first reel. 

L,U AO,{function,pktaddr) 
ER TINTL$ 

Displays the Fieldata message supplied and 
obtains in Fieldata the response. 

L AO,pktaddr 
ER TREAD$ 

Close the current reel for a tape file and 
request loading of the next reel. 

L,U AO,(function,pktaddr) 
ER TSWAP$ 

Delay execution for a specified timed wait 
period. 

L,U .A 1 ,(wait·time-in-milliseconds) 
ER TWAIT$ 

Releases the high priority of an I/O interrupt 
activity. 

ER UNLCK$ 

Returns control to a main program. 

ER UNLNK$ 

Delay execution until the I/O operation 
controlled by a specified I/O packet has 
been completed. 

TP pktaddr+3 
ER WAIT$ 

Delay execution of an activity until an I/O 
operation for that activity has completed. 

ER WANY$ 

PA GE RE VISION PA GE 

\ .... 



,.,.."" 

4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SE RI ES SYST EMS C-1 
PAGE REVISION PAGE 

APPENDIX C. SYSTEM DIAGNOSTIC 

MESSAGES AND 

STATUS CODES 

C.1. RUN STREAM DIAGNOSTIC MESSAGES 

When a code from 18 to 378 is contained in an error message, it often points to one of the I/O problems described under type 
1, ER R mode (EMODE) and I/O status codes (see C.3). Note that most of the messages issued by the FU RPU R processor 
correspond to a specific I/O error and status code. 

Some diagnostic messages refer to operator response keyins. Here are the usual meanings of the most common operator 
response keyins: 

Keyin Description 

A Try again with standard recovery 

B Return I/O status 128 to packet 

D Declare device down. I/O status 138 

E Treat as end of file, or error off a run 

G Treat as unrecoverable error, since I/O device positioning appears to be good. I/O status 118 

H Halt the operation 

Initiate a locked out or suspended symbiont 

L Lock out a symbiont 

N The reply is "no" 

Q Reenter a symbiont file in its appropriate queue 

R Reprint or repunch a symbiont file 

S Suspend a symbiont 

T Terminate a symbiont 

X Abort a symbiont or abort a run 

Y The reply is "yes" 

One of the three abreviations, SI (symbolic input), RO (relocatable or absolute output), or SO (symbolic output), is 
frequently used to identify the element named in the corresponding specifications subfield of a processor control statement, 
such as @ASM, @COB, @FOR, or @MAP. For processors such as @ELT which have no RO subfield, only SI and SO are 
meaningful. 



4144 Rev. 2 UNIVAC 1100 SE RI ES SYSTEMS C-2 
UP.NUMBER PAGE REVISION PAGE 

The run stream diagnostic messages are: 

ADD ELEMENT NOT FOUND 

ADD FILE NOT ASSIGNED OR CATALOGUED 

ADD LOOP, FILE OR ELEMENT PREVIOUSLY ADDED IN THIS NEST 

AWAIT/DEACT AMBIGUITY 

the executive determined that all activities of the run were either in an AWAIT state (ER AWAIT$) or a DEACT state (ER 
DACT$) and could not nor would not be activated by the /run. 

BAD INPUT SEQUENCE 

The input control message was rejected because it conflicts with the current status of the run. 

x BADLY CODED FIELD 

Fill from previous field requested and filled field is illegal or ambiguous. 

BAD RUN STATEMENT 

The @RUN control statement is improperly formatted. This message is displayed only for demand runs; for batch runs the 
device is placed in the run search mode. If the statement was submitted from a demand terminal, it may be immediately 
retyped in the proper format. 

CANNOT SYM PU$ WHILE IN USER FILE 

Caused by @SYM PUNCH$"CP control statement when the current PUNCH$ file has been @BRKPT'd to a user file. 

CANNOT SYM TEMPORARY FILE 

x CYCLE SPECIFICATION IGNORED 

RO or SO cycle specification is meaningless and is ignored. Does not cause error return. 

DATA IGNORED - IN CONTROL MODE 

Data statements were encountered when the coarse scheduler was attempting to read control statements; that is, a program or 
processor was not in control of the run at the time these statements were encountered. 

DBANK CANNOT BE LOADED WITH NEGATIVE BD 

DBANK RELATIVE STARTING ADDRESS = OsssOOO, DBANK SIZE = OnnnOOO, 

LAST ADDRESS OF USER CO-RE = Oxxx777. 

The program cannot be loaded without causing Bd to become negative. This is the result of using a SETM IN directive to 
specify a minimum starting address for the DBANK. See UNIVAC 1108 Processor and Storage Programmer Reference 
Manual, UP-4053 (current version) 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS C-3 
UP.NUMBER PAGE REVISION PAGE 

DYNAMIC PCT EXPANSION FOR RT PROG NOT ALLOWED 

A PCT expansion attempt for a real time program could not be done. If the program expects PCT expansion it should use a 
@RUN control statement option to initialize PCT size so expansion is not attempted. 

ELEMENT ADD FROM TAPE NOT ALLOWED 

ELEMENT UNOBTAINABLE xx 

The element specified on the @START control statement cannot be found. xx is a program file search code (see C.5.2). 

@END IGNORED - IN CONTROL MODE 

An @END control statement was encountered when the coarse scheduler was attempting to read control statements; that is, 
the DATA OR ELT,D processor was not in control of the run at the time this statement was encountered. 

@EOF IGNORED - IN CONTROL MODE 

An @EOF control statement was encountered when the coarse scheduler was attempting to read control statements; that is, a 
program or processor was not in control of the run at the time this statement was encountered. 

EQUIPMENT TYPE ERROR, ADD FILE 

ERROR - DYNAMIC DUMPS NOT CLOSED 

I/O error encountered when writing system diagnostic file (DIAG$) 

ESTIMATED RUN TIME EXCEEDED 

The run either exceeded the system standard or the time specified on the @RUN control statement and the T option was set. 

FAC REJECTED xxxxxxxxxxxx 

This message appears for a run that aborted due to a statement that cannot be honored by the system. See C.2 for an 
explanation of the 12 digit (x ... x) octal code. 

FAC WARNING xxxxxxxxxxxx 

This message is a warning that the statement could cause a problem. See C.2 for explanation of 12 digit (x ... x) octal code. 

FILE ALREADY IN USE 

@BRKPT control statement issued for a file currently being used as a symbiont file (read alternate, print alternate, and so 
forth). 

x FI LE CAN NOT BE READ 

Input file is in read inhibited mode due to absence of read key, write-only mode set for file, or Y option used on the file 
assignment. 



4144 Rev. 2 
U~-NUMBER 

UNIVAC 1100 SERIES SYSTEMS C-4 
PAGE REVISION PAGE 

FILE ERROR 

The file requested on a @XQT or processor control statement could not be assigned. If the run is not demand, it is 
terminated. 

x FILE NOT FOUND - STATUS: n 

File x is neither assigned to the run nor catalogued. n is the status returned when an attempt was made to assign file x. 

FILE UNOBTAINABLE xxxxxxxxxxxx 

The file specified on the @START control statement cannot be accessed by the executive. xxxxxxxxxxxx is a 12-digit octal 
status code returned when the file cannot be assigned (see C.2). 

FIRST FILE NAME IS IN ERROR 

First file name was not given for @BRKPT or @SYM control statement, or a @BRKPT control statement was for an inactive 
alternate file. 

nn I LLEGAL CHARACTER x 

The coarse scheduler encountered an illegal character x at column nn of the above control statement. 

ILLEGAL CONTINUATION 

Continuation of the above control statement is not allowed or the next control statement has the control character (@) in 
column 1. The control statement is not honored and the run is terminated (!f it is not a demand run). 

x I LLEGAL DEVICE 

Output file is not FASTRAND format or input file is neither tape nor FASTRAND format. 

x ILLEGAL FIELD 

Field is ambiguous with option given (for example, I option specified and source output field coded). 

nn ILLEGAL OPTION x 

An illegal option x was encountered at column nn of the above control statement. The control statement is not honored and 
the run is terminated (if it is not a demand run). 

IMPROPER RUN STREAM IN FI LE 

The first image in the file or element specified on the @START control statement is an invalid @RUN control statement. 

IMPROPER SYM CONTROL MSG 

The operator has submitted a symbiont control message which contains improper information. 

INTERVENING STATEMENTS SKIPPED 

A conditional statement has been encountered and has caused one or more control statements to be bypassed. 



4144 Rev. 2 
UP.NUMBER 

INVALID SYMBIONT NAME 

UNIVAC 1100 SERIES SYSTEMS 

@SYM file is directed to an illegal device. 

I/O ERROR ENCOUNTERED 

C-5 
PAGE REVISION PAGE 

The executive returns this message after receiving an error code while trying to read the file specified on the @START control 
statement. 

I/O ERROR IN TERMINATION - PMD NOT INITIALIZED 

I/O error encountered when writing system diagnostic file (DIAG$) 

I/U OPTION CONFLICT 

Both I and U options given on processor control statement - ambiguous options. 

LABEL FORMAT ERROR 

User tried to illegally access a labeled tape or hardware error occurred when trying to validate a tape/disc pack label. Also, 
operator responded E to a request to mount a disc pack or tape. 

L IS LEGAL FOR TAPE ONLY 

The L option was specified on the @BRKPT control statement and file does not reside on tape. 

MASS STORAGE OVERFLOW 

Mass storage request cannot be satisfied because mass storage is not currently available. 

MAX CARDS 

The estimated card output has been exceeded and a system generation parameter or the C option on the @RUN control 
statement specified that the run be aborted if this occurred. 

nn MAX NUMBER OF CHARACTERS EXCEEDED 

The character at column nn of the above control statement is not a field/subfield terminator and the maximum number of 
characters for this subfield has been reached. The control statement is not honored and the run is terminated (if it is not a 
demand run). 

nn MAX NUMBER OF FIELDS OR SUBFIELDS EXCEEDED 

The character at column nn of the above control statement is the field terminator and no more fields are allowed for the 
control statement, or the character is a subfield terminator and no more subfields are permitted for that particular field. The 
control statement is not honored and the run is terminated (if it is not a demand run). 

MAX PAGES 

The estimated page output has been exceeded and a system generation parameter or the P option on the @RUN control 
statement specified that the run be aborted if this occurred. 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS C-6 
UP-NUMBER PAGE REVISION PAGE 

MAX TIME 

The estimated running time has been exceeded and a system generation parameter or the T option on the @RUN control 
statement specified that the run be aborted if this occurred. 

MESSAGE TOO LONG 

The operator has attempted to transmit a message which exceeds the input limit of 72 characters. 

NO FILE NAME 

NO FILE SPECIFIED 

File name is not specified on a @START control statement. 

NO RUN ACTIVE 

Applies only to demand processing - message appears on demand terminal if statements are entered before the @RUN 
control statement. 

NO SPACE FOR MAJOR SAVE ON ABORT$ CONTINGENCY 

No space available in PCT for register save when processing an ABORT$ contingency. Run is terminated. 

x NOT A PROGRAM FI LE 

x = SI: RO:, or SO:; file specified may not be used as a program file. 

NUMBER OF ADDS IN NEST EXCEED MAXIMUM ALLOWED 

OPERATION IS I LLEGAL FOR DEMAND 

@BRKPT PRINT$ or @BRKPT PRINT$/PRINT$ control statement from a demand terminal before@BRKPT PRINT$/file 

OPERATOR REMOVED RUN 

The operator removed the run from the backlog by the RM keyin. 

OPERATOR TERMINATED RUN BY AN E-KEYIN 

The operator replied with an E to @MSG control statement with a W option: batch runs are terminated in this case. 

OPERATOR TERMINATED RUN BY AN X-KEYIN 

Similar to above diagnostic except response was an X rather than an E keyin. 



I" 

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS C-7 
UP-NUMBER PA GE RE VISION PA G E 

xOUTPUT FILE IS TAPE 

Output file should be FASTRAND format and is tape instead. 

*** PARITY ERROR *** 

A parity error has been detected in at least one character of the input image. The entire image is discarded. (For teletypwriter 
only) 

PCT EXPANDED BEYOND SYSTEM LIMITS 

The number of main storage blocks required for expansion of this run's PCT exceeds the systems generation parameter 
PCTMAX. When a run aborts with this message, a postmortem dump of the PCT (obtained using @PMD,P) may show one of 
the following to be the cause: 

• Excessive number of granule tables (change track granularity to position granularity) 

• Excessive number of activities (check for ER FORK$ loop) 

a Excessive number of files assigned (check for ER CSF$ loop) 

PCT FULL, CANNOT ASSIGN ADD FILE 

PCT/PROGRAM SIZE EXCEEDS USER CORE 

Either an internal main storage bank has been downed so the program does not fit or a real time program has started and this 
program is too large to fit the available main storage. 

PMD NOT ALLOWED 

Postmortem dump is not allowed for a system processor (called from the file SYS$*LlB$) unless a Y option appeared on the 
@RUN control statement. If an N option appeared on the @RUN control statement, no postmortem dumps of any programs 
are allowed. 

PROGRAM NOT FOUND 

The requested program or processor is not in the given file, LI B$, or TPF$ (depending on the statement). If the run is not 
demand, it is terminated. 

PROGRAM TOO LARGE PROGRAM SIZE nnn BLKS. 
CORE SIZE xxx BLOCKS. 

The program is too large to fit in the space available to user programs. The program requires nnn main storage blocks and user 
main storage consists of xxx main storage blocks. A main storage block is 512 10 (10008 ) words and the sizes nnn and xxx are 
octal numbers, thus giving the sizes in octal 1000's. 

PUNCH FILE CANNOT BE PUNCHED: NO PUNCH DEVICES CONFIGURED 

x READ ONLY OUTPUT FILE 

Output file is in write inhibited mode, due to absence of write key, read-only mode set for file, or Y option used on the file 
assignments. 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 

REAL TIME PROGRAM ATTEMPTED PCT EXPANSION 

C-8 
PA GE RE VISION PAGE 

A PCT expansion attempt for a real time program could not be done. If the program expects PCT expansion it should use a 
@RUN control statement option to initialize PCT size so expansion is not attempted. 

nn REQUIRED FIELD OR SUBFIELD MISSING 

A field or subfield which is required on the above control statement has not been specified. The omission was detected when 
the field/subfield terminator or the end of the control statement was encountered at column nn. The control statement is not 
honored and the run is terminated (if it is not a demand run). 

RUN KI LLED VIA AN E-KEYIN 

The operator typed an unsolicited E keyin for this run. The message isprinted only for batch runs. An unsolicited E keyin for 
a demand run simply terminates the currently executing task. 

RUN KILLED VIA AN X-KEYIN 

Same as above except that the operator used the X keyin. 

RUNSTREAM ANALYSIS TERMINATED 

The run has been terminated because of an error condition and the remaining control statements are not processed. 

SECOND FILE NAME IS IN ERROR 

Caused by second file name on @BR KPT control statement not currently assigned to the user. 

SECOND FILENAME NOT ASSIGNED, PUNCH$ NOT BREAKPOINTED 

SECOND NAME IS ILLEGAL 

Second file cannot be given on a @BRKPT of a read alternate, print alternate, or punch alternate file. 

SI: CYCLE NON-EXISTENT OR IN ERROR 

Requested cycle of specified element does not exist or cycle field has improper format. 

SI: ELEMENT NOT FOUND 

Element name given cannot be found as a symbolic element in the specified program file. 

SI: IMPROPER LABEL BLOCK 

Source input file is tape, and tape is not positioned at the label block for requested element, probably because a @FIND has 
not been done. 

SI: MISSING FIELD 

A field of required information (for example, element name) was not given. 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS C-9 
UP-NUMBER PAGE REVISION PAGE 

SI: TAPE I/O ERROR - STATUS: n 

SIR EDIT ERR ere 

Line correction diagnostics produced by SI R in the edit mode. 

where: 

c 

e 

I ndicates the cause of the error. A I ist of possible causes is shown below. 

First four words of the range correction statement under whose control the error occurred. 

Specifies the change correction statement that caused the error. 

D 

D 

D 

D 

SEPARATOR 

COLUMN 

NO FIND 

The separator used in the change correction statement is invalid or 
nonexistent. 

The column number specified on a format 1 or 2 change correction statement 
is out of range, or that C > D for a format 2 change correction statement. 

The characters given in the old data parameter of a format 3 or 4 change 
correction statement could not be found in the line being corrected. 

NOTE: Whenever one of the above errors occurs, the change correction statement is ignored and the 
line remains unchanged. 

ASCII MODE 

CARD COUNT <-

CARD COUNT >-

Indicates that symbolic input or output is in ASCII code, or that the user 
requested ASCII code. Since SIR cannot correct ASCII code, all range and 
change correction statements are ignored. 

Not enough change correct jon statement were provided. Those lines for 
which no change correction statement was provided remain unchanged. 

Too many change correction statements were provided. The excess change 
correction statements were ignored. 

SYM FIL.E IS NOT CATALOGUED OR CANNOT BE FOUND IN THE DIRECTORY 

TAB STATEMENT ERROR 

If a @TABSET control statement is in error, the terminal operator is notified by the message and any previous tab definitions 
are ineffective. 

TAPE IMAGE LlST*REREAD 

Applies only to demand terminals - indicates that images were lost while inputting images in form II paper tape mode. 

TAPE LABEL FORMAT ERROR 

Additional diagnostic generated after LABEL FORMAT ERROR to indicate that the file was a tape file. 

TIME OUT 

No activity has occurred on the line for a predefined interval. If another time interval elapses without activity, the terminal is 
terminated and the message TIME-OUT TERMINATION is displayed at the terminal. 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS C-10 
PAGE REVISION PAGE 

UNRECOVERABLE I/O ERROR WHEN READING FILE filename 

The coarse scheduler encountered an unrecoverable I/O error when searching file filename for a program or processor. If the 
run is not demand, it is terminated. 

USER DID AN ER ABORT$ 

USER DID AN ER EABT$ 

Applies only to demand terminals - indicates that the system is not ready for further input. 

WARNING IMPROPER OPTION 

Caused by @SYM,C control statement with printer symbiont name (warning only). 

C.2. FACILITY REQUEST STATUS CODES 

If a facilities request made by one of the facilities control statements (@ASG, @MODE, @CAT, @FREE, and @USE) is found 
to be in error, a status word is generated in which the various bits set define the error. For incorrect facilities control 
statements submitted in the run stream, the status word is given as part of the FAC REJECTED ... or FAC WARNING ... 
message. For control statements submitted by a CSF$ request, the status word is returned in register AD. The meanings of the 
possible bit settings are given in Table C-1. 

Bit Set 

35* 

34* 

33 

32* 

31* 

3D 

29 

28 

27*t 

26*t 

25 

Description 

Request not accepted; check other bits for reason. 

Field error in control statement other than syntax. Option conflict (MH L, OE, or I B) or noise 
constant specification error. 

e 

File is already assigned for @ASG or @CAT control statement specified, already freed for the @FREE 
control statement specified, or not assigned for the @MODE control statement specified. This setting 
is fatal for @CAT and @MODE control statements. 

The file was previously catalogued. 

Equipment type specified on @ASG control statement is not compatible with catalogued type or file 
specified on @MODE control statement is not magnetic tape. 

Not used. 

That portion of the filename used as the internal name for I/O packets is not unique. 

Not used. 

Incorrect read key for catalogued file. 

Incorrect write key for catalogued file. 

Write key that exists in the master file directory is not specified in the @ASG control statement (file 
assigned in the read-only mode). 

Table C-1. Facility Status Bits 
(Part 1 of 2) 



4144 Rev. 2 
UP-NUMBER 

Bit Set 

24 

23* 

22* 

21* 

20* 

19* 

18* 

UN I VAC 1100 SE RI ES SY ST EMS C-11 
PA GE RE VISION PA G E 

Description 

Read key that exists in the master file directory is not specified in the @ASG control statement (file 
assigned in the write-only mode). 

Read key specified in the @ASG control statement; none exists in the master file directory. 

Write key specified in the @ASG control statement; none exists in the master file directory. 

A option was specified in the @ASG control statement and the filename cannot be found in the 
master file directory. 

Invalid reel number specified in the @ASG control statement for a catalogued tape file. 

Mass storage file has been rolled out. 

Request on wait status for facilities. For a tape file, thi's usually means a tape unit is not currently 
available. For a drum file, this usually is caused by an exclusive use conflict with another concurrent 
run. 

17* Option conflict for catalogued files; both a and K or CUPRW were specified, which are options for 
new files. 

16 Not used. 

15 Find was made on a catalogued file request and the file was already asigned to another run. 

14 Not used. 

13* Project-id incorrect for catalogued private file 

12 Not used. 

11 Read-only file catalogued with an R option. 

10 Write-only file catalogued with a W option. 

9 Equipment requested is down. 

8* File specified in a @ASG control statement is disabled because the links pertinent to its master file 
directory items have been destroyed. 

7 File specified in a @ASG control statement has been disabled because the file was assigned 
write-enabled during a file recovery. 

6* File specified in a @ASG control statement has been disabled because the file has been rolled out and 
the backup copy is unrecoverable. 

5-0 Not used. 

* Request was rejected. If facility request was submitted by the run stream, this results in a FAC REJECTED message 
and termination if a batch run (results in only a FAC REJECTED message for demand runs). For dynamic requests 
through a CSF$ request, bit 35 is set in the status word returned in register AD. 

tlf the statement was submitted by a CSF$ request, the run is aborted and no status word is returned in register AD. 

Table C-1. Facility Status Bits 
(Part 2 of 2) 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS C-12 
U P.NUMBER PA GE RE VISION PA GE 

C.3. ERR MODE (EMODE) AND I/O STATUS CODES 

This set of error codes is categorized as being under contingency type 128, 

Most of these codes relate to errors users make when setting up executive requests (E R's). The most common user errors are 
improperly set up, improperly referenced, and inadvertently overwritten packets. 

The ER's are categorized as follows: 

Type Mnemonic Definition 

18 I/O All I/O ER's (10$, lOWS, etc.) 

28 SYMB All symbiont ER's (READ$, PRINT$, etc.) 

38 ERR$ ER$ ER 

48 ER Miscellaneous E R's 

58 CONS COM$ ER 

68 COM2 
Communication ER's (CPOOL$, CMS$, etc.) 

78 COMM 

108 REP Reentrant processor ER's (LlNK$, RLlST$, etc.) 

Table C-2 is the full set of defined ER R mode codes. The following type 1 (I/O) codes 08 through 178 and 408 are included 
for the sake of completeness, even though they represent status conditions that are not necessarily errors, and do not directly 

. force a run into ERR mode. Many of these codes cause the system processors to take an error exit, after passing on the code 
to the user in an I/O error diagnostic message. 

Type 
Code 
Octal 

I/O (1) 0 

1 

2 

3 

4 

Description 

The request has been completed normally. If data transfer is involved, the count is given in H2 of 
word 4. 

End-of-file block detected on magnetic tape. 

• Answer of E was given to an I/O error message. 

• End-of-file block was detected on magnetic tape. 

• Block read drum function was truncated by encountering an end-of-block word. 

• Block search read function was truncated by encountering an end-of-block word before 
the specified number of words were transferred. 

End-of-tape mark encountered on magnetic tape on a read backward from load point or on a 
write. No transfer takes place for the read backward. The write is done in the normal manner. 
Subsequent writes are performed in the same fashion and, barring other problems, results in 
returning the same status code. 

No find was made on a mass storage device search. The search was terminated by an 
end-of-block, end-of-track, end-of-position, or expiration of sufficient time to pass over the 
entire area of concern depending upon the physical device and type of search. 

A nonintegral block was read from magnetic tape. The number of data characters accepted 
from the last word is indicated by S3 01 word 3 of the packet. 

Table C-2. ERR Mode (EMODE) and I/O Status Codes 
(Part 1 of 10) 



4144 Rev. 2 
UP.NUMBER 

Type 
Code 
Octal 

UNIVAC 1100 SERIES SYSTEMS 

Description 

PAGE REVISION 

C-13 
PAGE 

5 An attempt was made to initiate a mass storage search or read from an area which is wholly or 
partially unassigned. If the starting address is legal the read is truncated as reflected by the word 
count in the substatus field. 

10 The area of the FASTRAND mass storage file being unlocked by this write or unlock request 
timed out in the locking list or a subsequent request by the same activity had a packet format 
error detected between the time of submitting the request and the time of servicing. Other 
requests by other activities for the area may have been honored in the interim. If the function is 
write, the transfer is not performed. 

11 A nonrecoverable error has occurred. The suppress recovery mode is set for magnetic tape or an 
answer of G was given to an error message. If the suppress recovery mode is set, the EI status 
code is stored in AO of the interrupt activity control register set. All suppress recovery 
operations come back with this status. 

12 A read, or write error on magnetic tape has resulted in loss of position on the unit. This code is 
returned for all outstanding requests at the time the answer of B was entered in response to the 
I/O error message. Any subsequent request is honored but the lost position is maintained and 
no further program checkpoints are valid. 

13 The peripheral unit was declared down either by an unsolicited operator keyin or in response 
to an error message typed after the normal recovery failed to resolve a malfunction. 

20 Some form of write or a function causing area release was attempted on a file assigned in the 
read-only mode, or a form of read was attempted on a file in the write-only mode. 

21 An attempt was made to reference a filename for wpich no assignment has been made. 

22 An attempt was made to reference beyond the maximum for mass storage file or to expand a 
word addressable format file when no space is available. 

23 The packet address specified in the AO register is not within the program limits or defines a 
packet split between the instruction and data banks of the program. 

24 The function code is not defined for the assigned equipment type. This code also covers 
noncompatible fields on a set mode request. 

25 The I/O access word refers to a buffer which is wholly or partially outside of the program area 
or split between the instruction and data bank of the program. For GW$, SCR$, and SCRB$ 
functions, this error code is given if the number of access words is 0 or more than 50 or if the 
total word count is more than 65535. 

27 An I/O request was made with 'the status word of the request packet set negative indicating a 
possible program loop. Also, this error occurs when the packet (access word or file address) is 
found to have been changed while in the process of executing. 

31 A magnetic tape operation was issued with user recovery specified and an interrupt activity was 
not specified (that is, entrance was not made via 101$, 10XI$ or 10WI$). 

32 An I/O request could not be performed immediately, and when the packet was examined on a 
subsequent attempt to perform the request, the filename was found to be attached to a 
different subsystem or unit. This means the user program changed the packet between 
attempts. 

33 A FASTRAND-formatted or word-addressable I/O request may cause the PCT to expand past 
its maximum. The I/O request is not initiated. 

Table C-2. ERR Mode (EMODE) and I/O Status Codes 
(Part 2 of 10) 



4144 Rev. 2 
UP.NUMBER 

Type 

SYMB (02) 

Code 
Octal 

34 

35 

36 

40 

2 

3 

4 

5 

6 

7 

10 

11 

12 

13 

14 

15 

16 

20 

21 

22 

UNIVAC 1100 SERIES SYSTEMS C-14 
PAGE REVISION PA GE 

Description 

An absolute read or write was attempted by user program. 

Errors on read and lock, and unlock requests: 

(a) A second read and lock (RDL$) request by an activity for a particular area. 

(b) An unlock (UN L$) request for an area that the activity had not previously locked. 

Errors on WAIT$ requests: 

(a) The outstanding I/O request count for a program goes to zero and an activity is still 
waiting for completion of an I/O packet. 

(b) WAIT$ request was not immediately preceded by a Test Positive instruction or the Test 
Positive instruction had a nonzero h or i field. 

(c) A WAIT$ or WANY$ request was made without a previous outstanding I/O request for 
the program. (The executive tests for the case of I/O completion between the time the 
ER is initiated and the time it is processed without error notification.) 

The request is either in the process of being executed or is listed on the request queue for the 
particular channel. 

Second abnormal return from READ$ 

I/O error (READ$ or READA$) 

Image length error 

@ADD error, run stream 

READ$ access word failure 

Improper SDF control image, READ$ request, or READA$ request. 

Element ADD from tape 

Nested level exceeds maximum (ADD) 

File not assigned or catalogued 

Element not found in file 

Nested ADD loop 

ADD file equipment type error 

Cannot assign ADD file because PCT is at maximum size 

Alternate file not assigned for demand or real time run 

Cannot assign punch file 

Type of call does not match type of file 

Table C-2. ERR Mode (EMODE) and I/O Status Codes 
(Part 3 of 10) 



4144 Rev. 2 

UP.NUMBER 

Type 
Code 
Octal 

23 

24 

25 

26 

27 

30 

34 

35 

36 

37 

40 

41 

42 

43 

44 

ER (04) 1 

2 

3 

4 

5 

6 

10 

11 

20 

21 

31 

32 

33 

UNIVAC 1100 SERIES SYSTEMS C-15 
PA GE RE VISION PA GE 

Description 

Alternate packet out of limits 

Read alternate file not assigned 

Error on first read from read alternate 

Alternate file not FASTRAND or tape 

Maximum number of active alternate files exceeded 

Maximum number of breakpoints for print or punch exceeded. 

Exceeded print alternate file 

Exceeded punch alternate file 

Exceeded pu nch fi Ie 

Exceeded print file 

Buffer out of limits 

MAX pages 

MAX cards 

Illegal syntax in control image 

Maximum length exceeded on control image 

ER index out of range or ER for executive only 

Bad packet limits on ER (abnormal return from access word check) 

ER index within range, but not in use 

Error encountered on AWAIT$ request 

Bad activity number (id) specified on FOR K$ request. Either out of range or already in use 

Account number does not permit requested real time priority (RT$, FORK$) 

FACI L$/FACIT$/FITEM$ packet/failed access word check 

FACI L$/FACIT /F ITEM I/O error or PCT name section in error 

Bad BBEOF$ packet or invalid file control table address 

File not catalogued or file not mass storage FASTRAND format 

Illegal creation of real time activity via FORK$ request 

An activity marked as "named" cannot be found in the activity name table on a 
ACT$, or DACT$ request 

Illegal 11$ request 

Table C-2. ERR Mode (EMODE) and I/O Status Codes 
(Part 4 of 10) 

NAME$, 



4144 Rev. 2 
UP-NUMBER 

Type 
Code 
Octal 

37 

40 

41 

42 

43 

44 

46 

47 

50 

51 

52 

53 

54 

55 

57 

60 

61 

CONSOLE 
(05) 0 

1 

2 

3 

COMM 
(06) 1 

2 

3 

4 

6 

UNIVAC 1100 SE RIES SYSTEMS C-16 
PAGE REVISION PAGE 

Description 

Filename not assigned for tape swap 

Syntax error on CSF$ image 

CSF$ image length is greater than 40 words 

Illegal command for CSF$ 

Image is outside user's program limits 

Log entries for this run exceed MAX allowed by CSF 

Unsuccessful request for PCT buffer for use in loading a relocatable segment 

Invalid input parameter to LOAD$ (A 1 ,H1 or A2,H1 nonzero) 

I/O error encountered when loading segment 

Request to load an undefined segment 

Invalid information in segment load table or segment out of limits. 

Invalid MCORE$ request 

Attempt to release core not currently held via LCORE$ 

MCOR E$ request for core not available 

Attempt to release contingency or reentry address via LCOR E$ request 

Incorrect recognition key for DLOC$ or DIW$ 

Bad packet on E R SNAP$ 

Packet not within limits 

Output buffer not within limits 

Expected input count exceeds 50 characters 

Input buffer not within limits 

A CMD$ request has specified an invalid dial digit count or has specified a dial buffer address 
which is beyond the limits of the program. 

A CMS$ request specifying ESI completion activities with entry points in the I bank when 
attached to a reentrant processor. 

A CMO$ request has specified: (1) an invalid pool-id for POOL mode output; (2) an invalid 
buffer address; or (3) a buffer which has been released 

A CMO$ request for pool mode output has specified an invalid buffer character count 

A CGET$ or a CADD$ request has been made with an invalid buffer pool-id or has specified a 
closed-chain pool of buffers 

Table C-2. ERR Mode (EMODE) and I/O Status Codes 
(Part 5 of TO) 



4144 Rev. 2 
UP.NUMBER 

Type 
Code 
Octal 

11 

12 

13 

16 

20 

21 

22 

23 

24 

25 

26 

27 

30 

31 

32 

33 

34 

35 

36 

40 

41 

UNIVAC 1100 SERIES SYSTEMS C-17 
PAGE REVISION PAGE 

Description 

A CMD$ request utilizing automatic dialing is only supported for the CTMC 

A CMD$ request has been made with the dialing operation currently in progress 

A CMD$ request has been made with an invalid BCD dial digit 

The requestor's PCT is not large enough to contain the necessary processing information 
generated from servicing the CMD$ request. 

A ROUTE$ request has been made from the wrong type of coding. Use of this ER is not 
permitted for demand, deadline batch, or batch activities. 

A ROUTE$ request has specified a L TT address in H2 of AD which is beyond the limits of the 
program. 

A ROUTE$ request has specified a filename which does not appear in the facility assignment 
section of the user's PCT. 

A CGET$ request has specified a buffer count which is greater than the number of buffers 
available. 

A ROUTE$ request has specified an invalid mode parameter in R 1 of AD. 

A CADD$ request has specified an invalid buffer address or the buffer count exceeds the 
number of buffers in the chain. 

A ROUTE$ request has been made for output, but output is not defined for the alternate 
route. 

A ROUTE$ request has been made for input, but input is not defined for the alternate route. 

A ROUTE$ reference has requested an alternate path which has already been assigned. 

A ROUTE$ request has been made with a zero alternate drum address in the LTG's site table. 

A zero absolute drum address was computed for the alternate site table of a ROUTE$ 
REQUEST' 

A ROUTE$ request has specified a line terminal group which has not been initialized via a 
CMS$ request. 

A ROUTE$ request has specified an invalid pointer when requesting an alternate path. The 
pointer is greater than the number of alternates specified at systems generation time. 

A ROUTE$ request has been made for an output alternate, but that path has been downed or 
there is no path available. 

A ROUTE$ request has been made for an input alternate, but that path has been downed or 
there is no path available. 

A CMS$ request has been made with output specified for a terminal which was not set up for 
output at system generation time. 

A CMS$ request has been made with input specified for a terminal which was not set up for 
input at system generation time. 

Table C-2. ERR Mode (EMODE) and I/O Status Codes 
(Part 6 of 10) 



4144 Rev. 2 
UP.NUMBER 

Type 
Code 
Octal 

COMM 
(07) 1 

2 

3 

4 

5 

6 

7 

10 

11 

12 

13 

14 

15 

16 

17 

20 

21 

22 

23 

UNIVAC 1100 SERIES SYSTEMS C-18 
PAGE REVISION PAGE 

Description 

A CMS$ request has been made from the wrong type of coding. Use of this ER is not permitted 
for demand, deadline batch, or batch activities. 

A CMS$ request has specified a L TT address in H2 of AO which is beyond the limits of the 
program. 

The initialization request specified a L T table which is currently in use or has been initialized, 
but has never been terminated or a terminal which is inoperable at this time. 

A CMO$, CMI$, or a CMSA$ request has been made with the CPU path being downed by the 
system. 

An invalid value was specified for the input completion activity usage code within the 
requesting packet for a CMS$ request. 

The filename for an initialization request does not appear in the facility assignment section of 
the user's PCT. 

The end·of·input activity code in the packet for an initialization request is invalid. 

A CMI $, CMO$, or CMSA$ request has been made with the LTG having been deactivated due 
to an ESI contingency error or no ESI contingency specified for an ESI contingency. 

The control group address specified in a packet to be used for pool mode operation is invalid. 

Pool mode operation has been specified, but no buffers presently exist in the pool specified as 
the one to be used. 

The input completion activity address specified within the packet for a CMS$ request is beyond 
the limits of the program. 

The output usage code specified within the packet for an initialization request is invalid. 

A CMS$ request was made specifying output pool mode with an invalid pool·id or with closed 
mode. 

A CMT$ request has specified a L T group which has been terminated previously or has never 
been initialized. 

A CMT$ request has been made from the wrong type of coding. Use of this ER is not permitted 
for demand, deadline batch, or batch activities. 

A CMT$ request has specified a L TT address of H2 or AO vlfhich is beyond the I imits of the 
program. 

A request for an input operation has specified a filename for which input is not permissible. 
This indicates no input facility for the L T group was defined at systems generation time. 

An invalid value was specified for the input completion usage code within the requesting packet 
for CMI$ request. 

The number of characters specified for a single mode input or output operation exceeds the 
maximum permissible value established at systems generation time. 

Table C-2. ERR Mode (EMODE) and I/O Status Codes 
(Part 7 of 10) 



4144 Rev. 2 
UP.NUMBER 

Type 
Code 
Octal 

UNIVAC 1100 SERI ES SYSTEMS C-19 
PAGE REVISION PAGE 

Description 

24 CMI$, CMO$, or CMSA$ request has specified a L TT address in H2 of AD which is beyond the 
limits of the program. 

25 A nonmu Itiple of 6 was specified as the character count for an input operation on the WTS 
subsystem. 

26 An input operation has specified a character count and buffer starting address such that a 
portion of the input buffer exists beyond the limits of the program. 

27 An input or output operation has specified pool mode operation for a filename associated with 
equipment which uses the lSI method of buffering. Buffer swapping for lSI devices is not 
permitted because of the design of the hardware which operates on data by blocks rather than 
as a continuous input stream. 

30 The filename for a CMI$, CMO$, or CMSA$ request does not appear in the facility assignment 
section of the user's PCT. 

31 A request for output operation has specified a filename for which output is not permissible. 
This indicates that no output facility for the L T group was defined at systems generation time. 

32 An invalid value was specified for the output completion usage code within the requesting 
packet for a CMO$ request. 

33 A CMO$ request specifying pool mode operation has been made at the same time from more 
than one activity using the same L TT. 

34 An output operation has specified a character count and a buffer starting address such that a 
portion of the output buffer exists beyond the limits of the program. 

35 An initialization request has specified a filename associated with equipment which is not 
handled by the communications complex. 

36 A CPOO L$ request specified an illegal pool area because: (1) the pool size equals zero words; 
(2) pool area is split between user program's D and I banks; or (3) pool area is beyond the limits 
of user's program. 

37 The main storage area specified by a CPOOL$ request is located in the program's I bank. Pool 
buffering using the I bank is not permitted since a program should be positioned in main 
storage to allow the hardware memory overlap feature for ESI data transfers to reduce the 
number of main storage accesses from three to two for each transfer. 

40 A CPOOL$ request has specified an illegal buffer size because: (1) character count equals zero; 
or (2) character count exceeds system's specified maximum. 

41 A CPOO L$ request has specified a pool area which overlaps that of a previous request which 
has yet to be released. 

42 A CMI$, CMO$, CMSA$, CPOOL$, or CREL$ request to the communications handler has been 
executed from the wrong type of coding. Use for demand, dead line batch, or batch activities. 

43 The single mode of buffering has specified an input buffer which is in the I bank. 
Communications buffers are not permitted in the I bank because real time programs are 
positioned in main storage to allow the D·bank to utilize the memory overlap feature for each 
character transfer. 

Table C-2. ERR Mode (EMODE) and I/O Status Codes 
(Part 8 of 10) 



4144 Rev. 2 
UP-NUMBER 

Type 
Code 
Octal 

44 

45 

46 

47 

50 

UNIVAC 1100 SERIES SYSTEMS 

Description 

PAGE REVISION 
C-20 

PAGE 

A CMS$ request for pool mode operations and the buffer mode conflicts with the subsystem 
mode specified on the SGR configuration card. 

The address within the packet specified as the output completion activity was not valid for a 
CMS$ request. 

A CMI$ or CMOS request has been made requesting use of an L T group by the communications 
handler before that L T group has been initialized via a CMS$ request. 

The requestor's PCT is not large enough to contain the necessary processing information 
generated from servicing the initialization request. 

A CMI$ request for single buffer mode has specified an input buffer area which conflicts with 
the main storage module locations of the ESI access control words. Communications buffers are 
not permitted in the same main storage module as the ESI ACW's because of the extended time 
required for each character transfer when the memory overlap capability is not utilized. 

51 A CMOS request for single buffer mode has specified an output buffer area which conflicts with 
the main storage module locations fo the ESI ACW's. Communications buffers are not 
permitted in the same main storage module as the ESI ACW's because of the extended time 
required for each character transfer when the memory overlap feature is not utilized. 

52 The main storage area specified by a CPOOL$ request is located in the same main storage 
module as the ESI ACW's. Communications buffers are not permitted in the same main storage 
module as the ESI ACW's because of the extended time required for each character transfer 
when the memory overlap capability is not utilized. 

53 A CMS$ request has specified an L TT which exists in the real time program's I bank. Real time 
programs are expected to utilize the hardware feature of main storage overlap by being divided 
into appropriate I and D bank portions. 

54 A CMD$ or CMH$ request has been made from the wrong type of coding. Use of this ER is not 
permitted for demand, deadline batch, or batch activities. 

55 The dial usage code specified within the packet for a CMD$ request is invalid. 

56 A CMD$ or CMH$ request has specified an LTG which has been terminated previously or has 
never been initialized 

57 The address within the packet specified as the dial completion activity address was not valid for 
a CMD$ request. 

60 ESI contingency error for contingency types 1 through 5 from the ESI activity. 

61 ESI contingency error for ACT$ or ADACT$ requests from the ESI completion activity. 

62 ESI contingency error for CADD$ or ADACT$ requests from the ESI completion activity. 

63 ESI contingency error for illegal ER from the ESI completion activity. 

64 An ESI completion activity for an ESI contingency activity has exceeded the maximum amount 
of execution time set at systems generation time. 

65 A CMT$ request has specified a filename which does not appear in the facility assignment 
section of the user's PCT. 

Table C-2. ERR Mode (EMODE) and I/O Status Codes 
(Part 9 of 10) 

,. 



4144 Rev. 2 
UP-NUMBER 

Type 

REP (10) 

Code 
Octal 

66 

67 

70 

71 

72 

73 

74 

75 

76 

77 

1 

2 

3 

4 

5 

7 

11 

12 

14 

15 

16 

17 

20 

21 

22 

UNIVAC 1100 SERIES SYSTEMS C-21 
PAGE REVISION PAGE 

Description 

A CMD$ or CMR$ request has specified a filename which does not appear in the facility 
assignment section of the user's PCT. 

A CMD$ or CMH$ request has specified a filename for which no dialing or hang-up capability 
exists. 

A CREL$ request has specified an invalid pool name. 

ACRE L$ request has specified an invalid release code. 

A CR E L$ request has specified a buffer pool wh ich is not assigned to the requestor. 

A CREL$ request has specified a pool to be released which is being used for input. 

Neither input nor output mode has been specified in the packet for an initialization request. 

A CMOS request has been made with no CPU path available or a path marked as down by the 
system. 

A CMS$ request has been made with no output path available or the path has been downed by 
the system. 

A CMS$ request has been made with no input CPU path available or the path has been downed 
by the system. 

RLlST$ packet not within program limits. 

LlNK$ or RLlST$ request and REP's entry point is zero. 

R LlST$ request and either the file is not assigned or not on mass storage. 

R LlST$ entry name not found. 

LlNK$, RLlNK$, or RLlST$ request and REP's I bank exceeds program's starting 0 bank 
address. 

Attempt to link to multiple REPs simultaneously. 

RLlST$ request to remove previous REP list with REP's active. 

LI N K$ or RUN K$ request and specified name not found by system's search. 

EXLNK$ or UNLNK$ request not from linked routine. 

Number of RLlST$ REP names exceeds system's maximum. 

A LI N K$, R LI N K$, or R LlST$ request and no PCT space available. 

A LlNK$, RLlNK$, or EXLNK$ request and system detected an I/O error in loading a REP. Or 
an I/O error reloading the REP after its storage had been released for timesharing. 

The main program plus the REP's main storage requirements exceed total user main storage. 

Attempt to change REP size via MCORE$ or LCORE$ requests. 

Same as 20 except activity has been returned to main I bank, PSR, and storage limits. 

Table C-2. ERR Mode (EMODE) and I/O Status Codes 
(Part 10 of 10) 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS C-22 
UP-NUMBER PAGE REVISION PAGE 

C.4. CSF$ EXECUTIVE REQUEST STATUS CODES 

C.4.1. FACILITY REQUEST STATUS CODES (@CAT, @ASG,@FREE,@LOG,@MODE,@USE) 

The meaning of the bits of the status code returned in register AO for dynamic facility requests are described in Table C-l. 

C.4.2. @SYM AND @BRKPT STATUS CODES 

The status codes returned in register AO for dynamic @SYM or @BRKPT control statements are given in Table C-3, with the 
equivalent diagnostic that would have been generated if the control statement had been submitted in the run stream I (see 
C.l for explanation of the diagnostics). 

Status Code 
Equivalent Diagnostic (Octal) 

100000 SECOND FILENAME NOT ASSIGNED, PUNCH$ NOT BREAKPOINTED 

40000 SYM FILE IS NOT CATALOGUED OR CANNOT BE FOUND IN THE DIRECTORY 

20000 PUNCH FILE CANNOT BE PUNCHED; NO PUNCH DEVICES CONFIGURED 

10000 CANNOT SYM TEMPORARY FILE 

4000 WARNING IMPROPER OPTION 

1000 CANNOT SYM PU$ WHILE IN USER FILE 

200 INVALID SYMBIONT NAME 

100 NO FILE NAME 

40 FILE ALREADY IN USE 

20 SECOND FILE NAME IS IN ERROR 

10 SECOND NAME IS ILLEGAL 

4 L IS LEGAL FOR TAPE ONLY 

2 OPERATION IS ILLEGAL FOR DEMAND 

1 FIRST FILE NAME IS IN ERROR 

Table C-3. @SYM and@BRKPT Status Codes 

C.4.3. @ADD STATUS CODES 

No status code is returned. If an error is discovered, the requesting activity is given error mode contingency type 12
8

, error 
type 2 (see C.3). 

/-



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS C-23 

UP-NUMBER 

Status 
Code 

(Octal) 

10 

11 

12 

13 

14 

15 

16 

Equivalent Diagnostic 

ELEMENT ADD FROM TAPE NOT ALLOWED 

NUMBER OF ADDS IN NEST EXCEED MAXIMUM ALLOWED 

ADD FILE NOT ASSIGNED OR CATALOGUED 

ADD ELEMENT NOT FOUND 

ADD LOOP, FI LE OR ELEMENT PREVIOUSLY ADDED IN THIS NEST 

EQUIPMENT TYPE ERROR, ADD FILE 

PCT FULL, CANNOT ASSIGN ADD FILE 

C.4.4. @START DIAGNOSTICS AND STATUS CODES 

On return from a CSF$ @START control statement, register AO contains codes as follows: 

Status Codes 
(Octal) 

o 

Description 

REQUEST PROCESSED NORMALLY 

REQUEST REJECTED DUE TO IMPROPER RUN STREAM IN FILE 

2 REQUEST REJECTED DUE TO FILE UNOBTAINABLE 

3 REQUEST REJECTED DUE TO ELEMENT OBTAINABLE 

4 REQUEST REJECTED DUE TO FILENAME NOT SPECIFIED 

C.4.5. CHECKPOINT/RESTART STATUS CODES (@CKPT, @CKPAR, @RSTRT, @RSPAR) 

PAGE REVISION PAGE 

The meaning of the status codes returned in register AO for dynamic checkpoint requests are described in Table C-6. No 
status is returned for a dynamic restart request. 

C.5. MSCON$ AND PFP STATUS CODES 

C.5.1. MSCON$ REQUEST STATUS CODES 

When MSCON$ returns control to the user, register AO contains status information. The format is: 

35 34 30 29 24 23 18 17 o 

S 
executive I/O-error- status-code packet-addr 
indicator indicator 

The S bit is not set upon return for successful completion; if the S bit is set, the request was terminated in error. The possible 
status codes and their meaning are defined in Tables C-4 and C-5. 



4144 Rev. 2 
UP.NUMBER 

Status Codes 
(Octal) 

0 

1 

Status Codes 
(Octal) 

20 

21 

22 

23 

24 

25 

26 

27 

30 

31 

32 

33 

34 

UNIVAC 1100 SERIES SYSTEMS C-24 
PAGE REVISION PAGE 

Description 

The requested function was completed normally 

Special status returned for DREAD$ request. The end of the user buffer was encountered and 
more directory items are to be returned. 

Table C-4. Status Codes for Successful Completion (5=0) 

Description 

Wrong MSCON$ function code in user packet 

User packet not within program limits 

Referenced file is not assigned to this user 

User is referencing a temporary file 

The I/O error indicator (bits 29-24) contains the I/O status code received by MSCON$. 

User buffer not within program limits 

User is referencing a nonexistent start item (returned by the DREAD$ function) 

User buffer area not large enough (returned by functions DLlNK$, DADD$, and MSALL$) 

The function requires a main item extension sector which is not in existence for this file (returned by 
functions DLAPS$ and DLlNK$) 

The referenced disc drive has been marked down or reserved (returned by the DGETP$ function) 

The requested pack id cannot be found in the FASTRAND format availability table (returned by 
the DGETP$ function) 

The output file initial reserve is too small to contain the current total of system directory items (returned 
by the DGET$ function) 

The cumulative total of system directory items has dynamically expanded beyond the capacity of the 
output file (returned by the DGET$ function). This situation differs from that described above for 
status code 33

8
, in that, in this instance DGET$ has been in process and directory items have been 

output to the file. 

Table C-5. Status Codes for Error Termination (5=1) 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS C-25 
UP-NUM BE R PA GE RE VISION PA G E 

C.5.2. PROGRAM FI LE PACKAGE STATUS CODES 

A status code is returned in register A2 upon return from the program file package executive requests (PF 1$, PFD$, PFUWL$, 
and PFWL$). The possible values for the status code and their meanings are described below. 

Status Code 
(Octal) 

D 

2 

3 

5 

Description 

Normal status (operation completed) 

No find 

I/O error 

Program file not defined 

Program file overflow 

C.S. CHECKPOINT/RESTART ERROR CODES 

Tables C-6 and C-7 list the error codes which are supplied when a checkpoint or restart is error terminated. For a dynamic 
checkpoint request (via CSF$), the error code is returned in register AD; no status is returned for dynamic restart requests. 

When a checkpoint terminates in error, the following message is placed in the run log: 

run-id CHECKPOINT ERROR TYPE ccc 

where: 

ccc An error code as listed in Table C-6. 

When a restart terminates in error, the following message is placed in the n:m log: 

run-id RESTART ERROR TYPE ccc element-name nnn 

where: 

cc An error code as listed in Table C-7. 

element-name Name of the element in which the error occurred. 

nnn Line number in the element. 



4144 Rev. 2 
UP·NUMBER 

Error Codes 
(Octal) 

2 

3 

4 

5 

6 

7 

10 

11 

12 

13 

14 

15 

Error Codes 
(Octal) 

1 

2 

3 

4 

5 

6 

7 

10 

11 

12 

13 

14 

15 

16 

UNIVAC 1100 SERIES SYSTEMS C-26 
PAGE REVISION PAGE 

Description 

Unrecoverable magnetic tape error 

Unrecoverable FASTRAND-formatted mass storage error 

The filename specified for the checkpoint is not assigned 

The user is attempting to take a checkpoint on a facility other than magnetic tape or 
FASTRAND-formatted mass storage 

Read or write is inhibited on the FASTRAND-formatted checkpoint file 

Unused 

The mode has been changed on the checkpoint tape, possibly making the restart impossible. 

The PCT is at its maximum size and cannot be expanded. 

The run is already being checkpointed. 

A program is executing in real time (for keyin only), or ESI activities are present or the run is demand, or 
the ru n has reentrant processors attached. 

Keyin format error 

Program file not assigned or I/O error on program file 

Checkpoint file is not large enough - 228 status was returned 

Table C-6. Checkpoint Error Codes 

Description 

Unrecoverable magnetic tape error 

Unrecoverable FASTRAND-formatted mass storage error 

The checkpoint could not be found on the specified file 

A restart has been attempted on a facility other than magnetic tape or FASTRAND-formatted mass storage 

The checkpoint file was not catalogued 

A facility for the program to be restarted cannot be assigned 

Unused 

The checkpoint was not on the reel that was requested on the restart request 

The checkpoint is in error and is incomplete 

The next part of the checkpoint is not on the reel that was mounted 

Keyin format error 

Restart of this run is already in progress 

Unused 

Program file was not found 

Table C-l. Restart Error Codes 

....... 



.,,' ~ '. 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS C-27 
PAGE REVISION PAGE 

C.7. BLOCK BUFFERING AND ITEM HANDLER ERROR CODES 

C.7.1. DEVICE AND FILE EXIT CODES 

For each occurrence of a device or file error, control is returned to the user program through the respective control words 
. specified in the file control table (FCT). Upon such a return, an error status code is contained in H1 of register AO. The 

possible codes and their meanings are given in Table C-S. 

Error Codes 
(Octal) 

1 

2 

3 

4 

5 
. ' 

6 

7 

10 

11 

12 

13 

14 

15 

16 

17 

20 

21 

23 

24 

25 

26 

27 

64 

Description 

Buffer pool link not provided 

Request to close a file already closed. 

Request to open a file already opened 

Request to read or write a closed file 

Request to write a block greater than maximum block size specified in FCT or a request to rewrite a block 
in in/out mode and block size requested to write is greater than the block size read . 

FASTRAND variable block size specified on block read request larger than maximum block size, or reading 
variable blocks from fixed block file 

Random request and file not assigned to FASTRAND mass storage 

Random request and block size not fixed 

Insufficient buffers in pool to satisfy LAF for input or output request 

Invalid block number for random read request 

Read request for a block greater than block size read. 

File not assigned to FASTRAND mass storage for in/out mode processing 

Random write request for input file 

Random read request for output file 

Read request with move-length parameter specified but no move-address specified 

Read request for output file 

Buffer size less than specified block size 

Location of link or buffer area outside of user's assigned area 

Block size not fixed for reverse mode for FASTRAND mass storage file 

No I/O facilities assigned or improper equipment type 

Write request in input file 

Mark request for input file 

Invalid mode parameter for open request 

Table C-8. Device and File Exit Codes (Part 1 of 2) 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS C-28 
UP.NUMBER 

Error Codes 
(Octal) 

Description 

The following error codes occur only when processing at the item level: 

30 Move address not given on in/out read or write request 

31 Move address not given on read or write request of spanned item 

32 Item size fixed on request to write a spanned item 

33 Address of item same as move address given on in/out read or write request 

34 Address of item same as move address given on random read or write request 

35 Random request made in file without fixed items and blocks 

36 Operation attempted on a closed file 

37 Label specified but not found on open input request 

40 Update flag not set on in/out file read request 

41 Highest address written not set on in/out file write extend request 

42 Drain requested on in/out file 

43 A request was made to write a spanned item after reading it 

44 A request was made to write more than the size read on in/out file 

45 Read backwards requested on a spanned item 

46 Format not set in FCT 

47 Tape positioned improperly on open request 

50 Frame count error detected and user did not specify to accept this as normal. 

51 An EOF block was detected on a random read request 

52 Fixed item larger than max block size 

Table C-B. Device and File Exit Codes (Part 2 of 2) 

PAGE REVISION PAGE 



4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS C-29 
UP-NUMBER PAGE REVISION PAGE 

C.7.2. ABNORMAL EXIT CODES 

The occurrence of an abnormal condition causes control to be returned to the user's program by means of the abnormal exit 
control word in the PCT. When control is returned, a status code is contained in H 1 of register A 1. The abnormal status codes 
are: 

Error Codes 
(Octal) Description 

End-of-file mark or load point has been detected for input tape file; or FASTRAND highest address (EOF) 
has been detected 

2 End-of-tape mark has been detected for output file 

4 Label word error has been detected in label block for an input file 

6 Sentinel block has been detected for file 

10 Block previously read exclusively has been timed out by the executive for an in/out file 

12 Label block cannot be located, bad tape position 

13 Block size specified in FCT is less than 14 words for an output file; or input file block size of sentinel is 
greater than block size specified in FCT 

14 Item size specified in FCT not equal to item size in sentinel block for an input file 





( 
'-- ' 

"""---', 

4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SERIES SYSTEMS 
PAGE REVISION 

0-1 
PAGE 

APPENDIX D. CONVERSION TABLES 

0.1. INTRODUCTION 

This Appendix provides a series of conversion tables as an aid to the programmer. The following conversion tables are 
printed: 

Table 0-1 Fieldata-to-ASCII 

Table 0-2 ASCII-to-Fieldata 

Table 0-3 UNISCOPE 100 Display Terminal Control Functions 

Table 0-4 Illegal Text Characters (UNISCOPE 100) 

( Table 0-5 Cursor/SOE Coordinates (UNISCOPE 100) 
''--.../ 

I 

.----
r 

Table 0-6 XS-3-Fieldata-EBCOIC-BCO Conversion 

Table 0-7 Binary/Hexadecimal Conversion 

Table 0-8 Octal/Decimal Conversion 

0.2. ASCII AND FIELDATA CONVERSION TABLES 

Codes, which also represent collating sequence, are given in octal. 

ASCII codes from 008 to 378 are for communication, format, and separator control characters. These are not converted into 
Fieldata. 

The ASCII symbols represented by codes 408 to 1378 are converted into the identical Fieldata symbols, except that the 
quotation marks symbol is converted into a lozenge, the circumflex is converted into a delta, and the underscore is converted 
into a not equal sign. 

There are no remaining unique Fieldata symbols into which to convert the balance of the ASCII symbols, represented by 
codes 1408 to 1778, so these codes are 'folded' over codes 1008 to 1378 (by clearing bit 5, which amounts to subtracting 
408 ), This means that ASCII codes 101

6 
(A) and 1418 (a), for example are both translated as if they were codes 101 8 

(converted to Fieldata 068 for A). These 'tolded' codes are shown boxed in below. 

Although ASCII is presently a seven-bit code, it may eventually be extended to eight bits to allow for additional controls and 
special graphic characters, including possibly whol~ alternate alphabets. On a 36-bit machine, each ASCII code is stored 
within a 9-bit quarter word . 



4144 Rev. 2 
UP-NUMBER 

Fieldata 

Octal 
Code 

00 

01 

02 

03 

04 

05 

06 

07 

10 

11 

12 

13 

14 

15 

16 

17 

20 

21 

22 

23 

24 

25 

26 

" 27 

30 

31 

32 

33 

34 

35 

36 

37 

Symbol 

@ 

[ 

] 

# 
/]. 

SP 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

L 

M 

N 

0 

P 

Q 

R 

.S 

T 

U 

V 

W 

X 

Y 

Z 

UNIVAC 1100 SERIES SYSTEMS 0-2 
PAGE REVISION PAGE 

ASCII Fieldata ASCII 

Octal 
Symbol 

Octal 
Symbol 

Octal 
Symbol Code Code Code 

100 @ 40 ) 51 ) 

133 [ 41 - 55 -
135 ] 42 + 53 + 
43 # 43 < 74 < 

136 /\ '·44 = 75 = 
40 SP 45 > 76 > 

101 A 46 & 46 & 

102 B 47 $ 44 $ 

103 C 50 * 52 * 
104 D 51 ( 50 ( 

105 E .52 % 45 % 

106 F 53 : 72 
107 G 54 ? 77 ? 

110 H 55 ! 41 ! 

111 I 56 , 54 , 

112 J 57 \ 134 \ 
113 K 60 0 60 0 
114 L 61 1 61 1 
115 M 62 2 62 2 
116 N 63 3 63 3 
117 0 64 A 64 4 
120 P 65 5 65 5 
121 Q 66 6 66 6 
122 R 67 7 67 7 
123 S 70 8 70 8 

124 T 71 9 71 9 

125 U 72 I 47 
, 

126 V 73 , 73 , 

127 W 74 / 57 / 

130 X 75 56 
131 Y ·76 tl 42 " 
132 Z 77 '.....L 137 -r- -

Table D-1. Fieldata-to-ASCII Conversion 

/' 



4144 Rev. 2 
UP-NUMBER 

Octal 
Code 

40 

41 

42 

43 

44 

45 

46 

47 

50 

51 

52 

53 

54 

55 

56 

57 

60 

61 

62 

63 

64 

65 

66 

67 

70 

71 

72 

73 

74 

75 

76 

77 

100 

101 

102 

103 

104 

105 

ASCII 

Symbol 

SP 

! 
'II' 

# 
$ 

% 

& 
I 

( 

) 

* 

+ 
, 

- (minus) 

/ 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

, 

< 
= 

> 
? 

@ 

A 

B 

C 

D 

E 

UN I V A C 11 00 S E R I E S S Y S T EMS D-3 
PAGE REVISION PAGE 

Fieldata ASCII Fieldata 

Octal Symbol Octal 
Symbol 

Octal Symbol 
Code Code Code 

05 SP 106 F 13 F 

55 ! 107 G 14 G 

76 Il 110 H 15 H 

03 # 111 I 16 I 

47 $ 112 J 17 J 

52 % 113 K 20 K 

46 & 114 L 21 L 

72 I 115 M 22 M 

51 ( 116 N 23 N 

40 ) 117 0 24 0 

50 * 120 P 25 P 

42 + 121 Q 26 Q 

56 
, 

122 R 27 R 

41 - (minus) 123 S 30 S 

75 124 T 31 T 

74 / 125 U 32 U 

60 0 126 V 33 V 

61 1 127 W 34 W 

62 2 130 X 35 X 

63 3 131 Y 36 Y 

64 4 132 Z 37 Z 

65 5 133 [ 01 [ 

66 6 134 \ 57 \ 

67 7 135 ] 02 ] 

70 8 136 04 /:). 

71 9 137 77 =1= 

53 140 I 00 @ 

73 , 141 a* 06 A** 

43 < through through through through 

44 = 172 z 37 Z 

45 > t73 { 01 [ 

54 ? 174 I 57 \ 
00 @ 175 } 02 ] 

06 A 176 - 04 /:). 

07 B 177 DEL 77 =1= 

10 C 

11 D 

12 E 

*Iowercase alphabet **uppercase alphabet 

Table 0-2.' ASCII-to-Fieldata Conversation 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 

0.2.1. THE SPECIAL CHARACTERS IN ASCII 

SP designates space, which is normally non printing. 

DE L designates delete, and has a code of all 1 bits. 

PAGE REVISION 

This code obliterates any unwanted previous character - even on paper tape or other nonerasable medium. 

The names of the 8 new special characters in ASCII are: Some additional standardized names of interest: 

II 

{ 
I 
} 

Quotation marks 

Circumflex 

Underline 

Grave accent 

Opening brace 

Vertical line 

Closing brace 

Tilde 

# 
& 

* 

> 
@ 

[ 

\ 

Definitions of the 32 ASCII control characters, codes 008 to 378: 

00 NUL Null - all zeros character which may serve as time fill 

01 SOH Start of heading 

02 STX Start of text 

03 ETX End of text 

04 EOT End of transm ission 

05 ENQ Enquiry - 'Who Are You?' 

06 ACK Acknowledge - 'Yes' 

07 BEL Bell - human attention required 

1.0 BS Backspace 

11 HT Horizontal tabulation 

12 LF Line feed format effectors for printing 
or punching 

13 VT Vertical tabulation 

14 FF Form feed 

15 CR Carriage return 

16 SO Shift out - nonstandard code follows 

17 SI Shift in - return to standard code 

Number sign 

Ampersand 

Apostrophe 

Asterisk 

Greater than sign 

At sign 

Opening bracket 

Reverse slant 

0-4 
PAGE 

,/ 

'-



',,---

,;--

L. 

4144 Rev. 2 
UP·NUMBER 

20 

21 

22 

23 

24 

25 

26 

27 

30 

31 

32 

333 

34 

35 

36 

37 

DLE 

DC1 

DC2 

DC3· 

DC4 

NAK 

SYN 

ETB 

CAN 

EM 

SUB 

ESC 

FS 

GS 

RS 

US 

UNIVAC 1100 SERIES SYSTEMS 0-5 
PAGE REVISION PAGE 

Data link escape - change limited data communication controls 

Device controls for turning on or off ancillary devices 

Negative acknowledge - 'No' 

Synchronous idle - from which to achieve synchronism 

End of transmission block - relates to physical communication blocks 

Cancel previous data 

End of medium - end of used, or wanted portion of information 

Substitute character for one in error 

Escape - for code extension - change some character interpretations 

File separator 

Group separator These information separators are ordered in descending hierarchy. They 
are followed by ASCII 40

8 
(space), which can also be thought 

Record separator of as a word separator. 

Unit separator 



4144 Rev. 2 
UP.NUMBER 

UN I V A C 11 00 S E R I E S S Y S T EMS 0-6 
PAGE REVISION PAGE 

0.3. UNISCOPE 100 OISPLA Y TERMINAL 

Tables D-3 through D-5 provide the Fieldata equivalents of the ASCII representations of various UNISCOPE 100 functions 
and characters. 

ASCII Fieldata Description 

ESCa =I=;A=I= Erase to End of Display 

ESCb =I=;B=I= Erase to End of Line 

ESCc =I=;C=I= Delete in Line 

ESCC =I=;=f=C Delete in Display 

ESCD =I=;=f=D Insert in Display 

ESCd =I=;D=I= Insert in Line 

ESCe =1=; E =1= Cursor to Home 

ESCf =I=;F=I= Scan Up 

ESCg =I=;G=I= Scan Left 
ESCh =I=;H=I= Scan Right 

ESCi =1=;1=1= Scan Down 

ESCj =I=;J=I= Insert Line 

ESCk =I=;K=I= Delete Line 

HT =1=)=1= Tab 

BEL =1='=1= Message Waiting 

ESCHT =1=;)=1= Tab Stop Set 

FS =1=<=1= Start Blink Field 

DC4 =1=# Lock Keyboard 

GS =:/==:/= End Blink Field 

DC2 =1=2=1= Print 

ESC DC2 =I=;2=f= Print Transparent 

DC1 =1=1=1= Transmit 

LF =1=*=1= Line Feed 

FF =1=,=1= Form Feed 

EM =l=9=F End of Medium 

RS =1=>=1= Start of Entry 

CR =1=-=1= Carriage Return 

Table D-3. UNISCOPE 100 Display Terminal Control Functions 



4144 Rev. 2 
UP-NUMBER 

UNIVAC 1100 SE RIES SYSTEMS 0-7 
PAGE REVISION PAGE 

ASCII Fieldata 

c: 
0 

I- l- .;:; 
Ol Ol .... co .... ro 
0 Ol 0 .... 
ro ::l .... ro c: 
l- e; 0 I- Ol 
ro Q ro II) 

oJ: > oJ: Ol 
I-

U U c. 
Ol 
0: 

SOH 001 - *! 
ETX 003 - =1=# 
EOT 004 - =f:$ 

OLE 020 - *0 
*SYN 026 - *6 

*Does not set illegal character flag, but is stripped from text. 

NOTE: If these characters are allowed within text, a message incomplete hardware failure is generated. 

Table D-4. Illegal Text Characters 



4144 Rev. 2 
UP.NUMBER 

~ co 
c:: 
~ 
0 
0 
u 
>--X. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

"-Q) .... 
U 
E 
co 
~ 
u 

! 

" 
# 

$ 

% 

¢ 
I 

( 

) 

* 

+ 

, 

/ 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

: 

; 

< 
= 

> 
? 

@ 

A 
B 

C 
D 

E 

F 

G 

UNIVAC 1100 SE RI ES SYST EMS 0-8 
PA GE REVISION PA GE 

ANSCII Fieldata ANSCII Fieldata 

~ 
co 
c:: 

III ~ "- III .g 0 Q) .g 0 .... 
Q)= Q)= U U Q)= Q)= Q) E Q) 
::I co E ::I co ::I co E ::I co 
"itjt) - .... >- co - .... - .... 

::I co U - ~ co U ::I co U 
>2 z >2 X u >2 z >2 

040 01 6061 41 H 110 41 6461 

041 02 6062 42 I 111 42 6462 

042 03 6063 43 J 112 43 6463 

043 04 6064 44 K 113 44 6464 

044 05 6065 45 L 114 45 6465 

045 06 6066 46 M 115 46 6466 

046 07 6067 47 N 116 47 6467 

047 08 6070 48 0 117 48 6470 

050 09 6071 49 P 120 49 6471 

051 10 6160 50 Q 121 50 6560 
052 11 6161 51 R 122 51 6561 

053 12 6162 52 S 123 52 6562 

054 13 6163 53 T 124 53 6563 

055 14 6164 54 U 125 54 6564 

056 15 6165 55 V 126 55 6565 

057 16 6166 56 W 127 56 6566 

060 17 6167 57 X 130 57 6567 

061 18 6170 58 Y 131 58 6570 

062 19 6171 59 Z 132 59 6571 

063 20 6260 60 [ 133 60 6660 

064 21 6261 61 \ 134 61 6661 

065 22 6262 62 ] 135 62 6662 

066 23 6263 63 /\ 136 63 6663 

067 24 6264 64 137 64 6664 -
070 25 6265 65 \ 140 65 6665 

071 26 6266 66 a 141 66 6666 

072 27 6267 67 b 142 67 6667 

073 28 6270 68 c 143 68 6670 

074 29 6271 69 d 144 69 6671 

075 30 6360 70 e 145 70 6760 

076 31 6361 71 f 146 71 6761 

077 32 6362 72 9 147 72 6762 

100 33 6363 73 h 150 73 6763 

101 34 6364 74 i 151 74 6764 

102 35 6365 75 j 152 75 6765 

103 36 6366 76 k 153 76 6766 

104 37 6367 77 I 154 77 6767 

105 38 6370 78 m 155 78 6770 

106 39 6371 79 n 156 79 6771 

107 40 6460 80 0 157 80 7060 

Table D-5. Cursor/SOE Coordinates 



UNIVAC 1100 SERIES SYSTEMS 4144 Rev. 2 
.UP.NUMBER PAGE REVISION PAGE 

0.4. CHARACTER CODES, XS·3, BCD CONVERSION TABLE 

Table D-6 cross references printer symbols with the card punch, XS-3, Fieldata, EBCDIC, and BCD codes. 

High Speed 
Printer 80-Column 

Symbol Card Code XS·3 Fieldata EBCDIC BCD 

A 12-1 24 06 C1 31 

B 12·2 25 07 C2 32 

C 12·3 26 10 C3 33 
D 12-4 27 11 C4 34 

E 12·5 30 12 C5 35 

F 12-6 31 13 C6 36 

G 12·7 32 14 C7 37 

H 12·8 33 15 C8 38 

I 12·9 34 16 C9 39 

J 11-1 44 17 D1 21 

K 11-2 45 20 D2 22 

L 11-3 46 21 D3 23 

M 11-4 47 22 D4 24 

N 11-5 50 23 D5 25 

0 11-6 51 24 D6 26 
P 11-7 52 25 D7 27 
Q 11-8 53 26 D8 28 

R 11-9 54 27 D9 29 

S 0-2 65 30 E2 12 

T 0-3 66 31 E3 13 

U 0-4 67 32 E4 14 
V 0-5 70 33 E5 15 
W 0-6 71 34 E6 16 

X 0-7 72 35 E7 17 

Y 0-8 73 36 E8 18 

Z 0-9 74 37 E9 19 

0 0 03 60 FO OA 
1 1 04 61 F1 01 

2 2 05 62 F2 02 

3 3 06 63 F3 03 

4 4 07 64 F4 04 

5 5 10 65 F5 05 

6 6 11 66 F6 06 

7 7 12 67 F7 07 

8 8 13 70 F8 08 

Table 0-6. XS-3 Fieldata-EBCOIC-BCO Conversion Table (Part 1 of 2) 

0-9 



4144 Rev. 2 
UP.NUMBER 

High Speed 
Printer 

Symbol 

9 

+ 
- (minus) 

? 

! 

/ 
& 

= 
I 

: 

> 
@ 

) 

[ 

< 
# 
$ 

* 

] 

, 

b. 

* , (comma) 

( 

% 

/ 
11 

0 

UNIVAC 1100 SERIES SYSTEMS 
PAGE REVISION PAGE 

8O-Column 
Card Code 

XS·3 Fieldata EBCDIC BCD 

9 14 71 F9 09 

12 20 42 50 30 

11 02 41 60 20 

12·0 23 54 6F 

11-0 43 55 5A 

0-1 64 74 61 11 

2-8 63 00 7A 30 

3-8 35 44 7B OB 

0-3-8 56 72 7C 1B 

5-8 21 53 7D 

6-8 76 45 7E OE 

7-8 40 01 7f OC 

12-3-8 22 75 4B 3B 

12-4-8 75 40 4C 3C 

12-5-8 17 57 4D 3D 

12-6-8 36 43 4E 3E 

12-7-8 37 03 4F OB 

11-3-8 42 47 5B 2B 

11-4-8 41 50 5C 2C 

11-5-8 01 76 5D 2D 

11-6-8 1(> 73 5E 2E 

11-7-8 57 52 5F 2F 

0-2-8 60 77 EO 

0-3-8 62 56 6B 1B 

0-4-8 61 51 6C 1C 

0-5-8 55 02 6D 1C 

0-6-8 15 46 6E 11 

0-7-8 77 04 6F 3C 
Blank 00 05 40 10 

NOTE: For 0758 printer, if XS-3 60 is specified, a blank occurs; if Fieldata 77 is specified, a blank occurs for that 
print position and all ensuing print positions for that line. 

Table D-6. XS-3 Fieldata-EBCDIC-BCD Conversion Table (Part 2 of 2) 

0-10 

/ 



.. ".,'. 

4144 Rev . .2 
UP·NUMBER 

UNIVAC 1100 SERIES SYSTEMS 

0.5. BINARY/HEXADECIMAL CONVERSION TABLE 

Binary Hexadecimal 

0000 0 

0001 1 

0010 2 

0011 3 

0100 4 

0101 5 

0110 6 

0111 7 

1000 8 

1001 9 

1010 A 

1011 B 

1100 C 

1101 D 

1110 E 

1111 F 

Table D·7. Binary/Hexadecimal Conversion 

0.6. OCTAL/DECIMAL CONVERSION TABLE 

PAGE REVISION 
0-11 

PAGE 

The table of octal/decimal equivalents (Table D-8) provides a rapid means of converting from octal to decimal and vice versa. 
The range of the table is 0000 - 4095

10 
or 0000 - 7777

8
, 

To convert a decimal number greater than 4095 to its octal equivalent, reduce the number to 4095 or less by subtracting 
suffici~nt multiples of 4096. Convert this residue to octal by means of the table, and add 10000

8 
for each multiple of 4096 

which had been subtracted. 

To convert an octal number greater than 7777 to the decimal equivalent, reduce the number to 7777 or less by subtracting 
sufficient multiples of 10000. Convert this residue to octal by means of the table, and add 4096

10 
for each multiple of 

10000 which had been subtracted . 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 0-12 
PAGE REVISION PAGE 

OCTAL 0000 to 0777 DECIMAL 0000 to 0511 OCTAL 1000to1777 DECIMAL 0512 to 1023 

a •••• •••••• 0000 0001 0002 0003 0004 0005 0006 0007 0513 0514 0515 0516 0517 0518 0519 
0008 0009 0010 0011 0012 0013 0014 0015 0521 0522 0523 0524 0525 0526 0527 
0016 0017 0018 0019 0020 0021 0022 0023 0529 0530 0531 0532 0533 0534 0535 
0024 0025 0026 0027 0028 0029 0030 0031 0537 0538 0539 0540 0541 0542 0543 
0032 0033 0034 0035 0036 0037 0038 0039 0545 0546 0547 0548 0549 0550 0551 
0040 0041 0042 0043 0044 0045 0046 0047 0553 0554 0555 0556 0557 0558 0559 
0048 0049 0050 0051 0052 0053 0054 0055 0561 0562 0563 0564 0565 0566 0567 
0056 0057 0058 0059 0060 0061 0062 0063 0569 0570 0571 0572 0573 0574 0575 
0064 0065 0066 0067 0068 0069 0070 0071 0576 0577 0578 0579 0580 0581 0582 0583 
0072 0073 0074 0075 0076 0077 0078 0079 0584 0585 0586 0587 0588 0589 0590 0591 
0080 0081 0082 0083 0084 0085 0086 0087 0592 0593 0594 0595 0596 0597 0598 0599 
0088 0089 0090 0091 0092 0093 0094 0095 0600 0601 0602 0603 0604 0605 0606 0607 
0096 0097 0098 0099 0100 0101 0102 0103 0608 0609 0610 0611 0612 0613 0614 0615 
0104 0105 0106 0107 0108 0109 0110 0111 0616 0617 0618 0619 0620 0621 0622 0623 
0112 0113 0114 0115 0116 0117 0118 0119 0624 0625 0626 0627 0628 0629 0630 0631 
0120 0121 0122 0123 0124 0125 0126 0127 0632 0633 0634 0635 0636 0637 0638 0639 
0128 0129 0130 0131 0132 0133 0134 0135 0640 0641 0642 0643 0644 0645 0646 0647 
0136 0137 01380139 0140 0141 0142 0143 0648 0649 0650 0651 0652 0653 0654 0655 
0144 0145 0146 0147 0148 0149 0150 0151 0656 0657 0658 0659 0660 0661 0662 0663 
0152 0153 0154 0155 0156 0157 0158 0159 0664 0665 0666 0667 0668 0669 0670 0671 
0160 0161 0162 0163 0164 0165 0166 0167 0672 0673 0674 0675 0676 0677 0678 0679 
0168 0169 0170 0171 0172 0173 0174 0175 0680 0681 0682 0683 0684 0685 0686 0687 
0176 0177 0178 0179 0180 0181 0182 0183 0688 0689 0690 0691 0692 0693 0694 0695 
0184 0185 0186 0187 0188 0189 0190 0191 0696 0697 0698 0699 0700 0701 0702 0703 
0192 0193 0194 0195 0196 0197 0198 0199 0704 0705 0706 0707 0708 0709 0710 0711 
0200 0201 0202 0203 0204 0205 0206 0207 0712 0713 0714 0715 0716 0717 0718 0719 
0208 0209 0210 0211 0212 0213 0214 0215 0720 0721 0722 0723 0724 0725 0726 0727 
0216 0217 0218 0219 0220 0221 0222 0223 0728 0729 0730 0731 0732 0733 0734 0735 
0224 0225 0226 0227 0228 0229 0230 0231 0736 0737 0738 0739 0740 0741 0742 0743 
0232 0233 0234 0235 0236 0237 0238 0239 0744 0745 0746 0747 0748 0749 0750 0751 
0240 0241 0242 0243 0244 0245 0246 0247 0752 0753 0754 0755 0756 0757 0758 0759 
0248 0249 0250 0251 0252 0253 0254 0255 0760 0761 0762 0763 0764 0765 0766 0767 
0256 0257 0258 0259 0260 0261 0262 0263 0768 0769 0770 0771 0772 0773 0774 0775 
0264 0265 0266 0267 0268 0269 0270 0271 0776 0777 0778 0779 0780 0781 0782 0783 
0272 0273 0274 0275 0276 0277 0278 0279 0784 0785 0786 0787 0788 0789 0790 0791 
0280 0281 0282 0283 0284 0285 0286 0287 0792 0793 0794 0795 0796 0797 0798 0799 
0288 0289 0290 0291 0292 0293 0294 0295 0800 0801 0802 0803 0804 0805 0806 0807 
0296 0297 0298 0299 0300 0301 0302 0303 0808 0809 0810 0811 0812 0813 0814 0815 
0304 0305 0306 0307 0308 0309 0310 0311 0816 0817 0818 0819 0820 0821 0822 0823 
0312 0313 0314 0315 0316 0317 0318 0319 0824 0825 0826 0827 0828 0829 0830 0831 
0320 0321 0322 0323 0324 0325 0326 0327 0832 0833 0834 0835 0836 0837 0838 0839 
0328 0329 0330 0331 0332 0333 0334 0335 0840 0841 0842 0843 0844 0845 0846 0847 
0336 0337 0338 0339 0340 0341 0342 0343 0848 0849 0850 0851 0852 0853 0854 0855 
0344 0345 0346 0347 0348 0349 0350 0351 0856 0857 0858 0859 0860 0861 0862 0863 
0352 0353 0354 0355 0356 0357 0358 0359 0864 0865 0866 0867 0868 0869 0870 0871 
0360 0361 0362 0363 0364 0365 0366 0367 0872 0873 0874 0875 0876 0877 0878 0879 
0368 0369 0370 0371 0372 0373 0374 0375 0880 0881 0882 0883 0884 0885 0886 0887 
0376 0377 0378 0379 0380 0381 0382 0383 0888 0889 0890 0891 0892 0893 0894 0895 
0384 0385 0386 0387 0388 0389 0390 0391 0896 0897 0898 0899 0900 0901 0902 0903 
0392 0393 0394 0395 0396 0397 0398 0399 0904 0905 0906 0907 0908 0909 0910 0911 
0400 0401 0402 0403 0404 0405 0406 0407 0912 0913 0914 0915 0916 0917 0918 0919 
0408 0409 0410 0411 0412 0413 0414 0415 0920 0921 0922 0923 0924 0925 0926 0927 
0416 0417 0418 0419 0420 0421 0422 0423 0928 0929 0930 0931 0932 0933 0934 0935 
0424 0425 0426 0427 0428 0429 0430 0431 0936 0937 0938 0939 0940 0941 0942 0943 
0432 0433 0434 0435 0436 0437 0438 0439 0944 0945 0946 0947 0948 0949 0950 0951 
0440 0441 0442 0443 0444 0445 0446 0447 0952 0953 0954 0955 0956 0957 0958 0959 
0448 0449 0450 0451 0452 0453 0454 0455 0960 0961 0962 0963 0964 0965 0966 0967 
0456 0457 0458 0459 0460 0461 0462 0463 0968 0969 0970 0971 0972 0973 0974 0975 
0464 0465 0466 0467 0468 0469 0470 0471 0976 0977 0978 0979 0980 0981 0982 0983 
0472 0473 0474 0475 0476 .0477 0478 0479 0984 0985 0986 0987 0988 0989 0990 0991 
0480 0481 0482 0483 0484 0485 0486 0487 0992 0993 0994 0995 0996 0997 0998 0999 
0488 0489 0490 0491 0492 0493 0494 0495 1000 1001 1002 1003 ]004 1005 1006 1007 
0496 0497 0498 0499 0500 0501 0502 0503 1008 1009 1010 1011 1012 1013 1014 1015 
0504 0505 0506 0507 0508 0509 0510 0511 1016 1017 1018 1019 1020 1021 1022 1023 

Table 0-8. Octal/Decimal Conversion (Part 1 of 4) 



C 

,;"-

/' 

~ .. 

4144 Rev. 2 
U P.NUMBER 

1024 
1032 
1040 
1048 
1056 
1064 
1072 
1080 
1088 
1096 
1104 
1112 
1120 
1128 
1136 
1144 
1152 
1160 
1168 
1176 
1184 
1192 
1200 
1208 
1216 
1224 
1232 
1240 
1248 
1256 
1264 
1272 
1280 
1288 
1296 
1304 
1312 
1320 
1328 
1336 
1344 
1352 
1360 
1368 
1376 
1384 
1392 
1400 
1408 
141·6 
1424 
1432 
1440 
1448 
1456 
1464 
1472 
1480 
1488 
1496 
1504 
1512 
1520 
1528 

UNIVAC 1100 SERIES SYSTEMS 

DECIMAL 1024 to 1535 
)Ii ".,,' ~'(~,":" ~,,: i "'f"..f'!f~~f il ~'f'\ {,~" :'. ~ 

OCTAL ':·:,·3QOOlto 3777 
_ ~ :,,:' :'(1) ~ :;"l~f,~ .' I' .. 

0-13 
PA GE RE VISION PAGE 

DECIMAL 1536 to 2047 

•••••• •••••• 1025 1026 1027 1028 1029 1030 1031 1536 1537 1538 1539 1540 1541 1542 1543 
1033 1034 1035 1036 1037 1038 1039 1544 1545 1546 1547 1548 1549 1550 1551 
1041 1042 1043 1044 1045 1046 1047 1552 1553 1554 1555 1556 1557 1558 1559 
1049 1050 1051 1052 1053 1054 1055 1560 1561 1562 1563 1564 1565 1566 1567 
1057 1058 1059 1060 1061 1062 1063 1568 1569 1570 1571 1572 1573 1574 1575 
1065 1066 1067 1068 1069 1070 1071 1576 1577 1578 1579 1580 1581 1582 1583 
1073 1074 1075 1076 1077 1078 1079 1584 1585 1586 1587 1588 1589 1590 1591 
1081 1082 1083 1084 1085 1086 1087 1592 1593 1594 1595 1596 1597 1598 1599 
1089 1090 1091 1092 1093 1094 1095 1600 1601 1602 1603 1604 1605 1606 1607 
1097 1098 1099 1100 1101 1102 1103 1608 1609 1610 1611 1612 1613 1614 1615 
1105 1106 1107 1108 1109 1110 1111 1616 1617 1618 1619 1620 1621 1622 1623 
1113 1114 1115 1116 1117 1118 1119 1624 1625 1626 1627 1628 1629 1630 1631 
1121 1122 1123 1124 1125 1126 1127 1632 1633 1634 1635 1636 1637 1638 1639 
1129 1130 1131 1132 1133 1134 1135 1640 1641 1642 1643 1644 1645 1646 1647 
1137 1138 1139 1140 1141 1142 1143 1648 1649 1650 1651 1652 1653 1654 1655 
1145 1146 1147 1148 1149 1150 1151 1656 1657 1658 1659 1660 1661 1662 1663 
1153 1154 1155 1156 1157 1158 1159 1664 1665 1666 1667 1668 1669 1670 1671 
1161 1162 1163 1164 1165 1166 1167 1672 1673 1674 1675 1676 1677 1678 1679 
1169 1170 1171 1172 1173 1174 1175 1680 1681 1682 1683 1684 1685 1686 1687 
1177 1178 1179 1180 1181 1182 1183 1688 1689 1690 1691 1692 1693 1694 1695 
1185 1186 1187 1188 1189 1190 1191 1696 1697 1698 1699 1700 1701 1702 1703 
1193 1194 1195 1196 1197 1198 1199 1704 1705 1706 1707 1708 1709 1710 1711 
1201 1202 1203 1204 1205 1206 1207 1712 1713 1714 1715 1716 1717 1718 1719 
1209 1210 1211 1212 1213 1214 1215 1720 1721 1722 1723 1724 1725 1726 1727 
1217 1218 1219 1220 1221 1222 1223 1728 1729 1730 1731 1732 1733 1734 1735 
1225 1226 1227 1228 1229 1230 1231 1736 1737 1738 1739 1740 1741 1742 1743 
1233 1234 1235 1236 1237 1238 1239 1744 1745 1746 1747 1748 1749 1750 1751 
1241 1242 1243 1244 1245 1246 1247 1752 1753 1754 1755 1756 1757 1758 1759 
1249 1250 1251 1252 1253 1254 1255 1760 1761 1762 1763 1764 1765 1766 1767 
1257 1258 1259 1260 1261 1262 1263 1768 1769 1770 1771 1772 1773 1774 1775 
1265 1266 1267 1268 1269 1270 1271 1776 1777 1778 1779 1780 1781 1782 1783 
1273 1274 1275 1276 1277 1278 1279 1784 1785 1786 1787 1788 1789 1790 1791 
1281 1282 1283 1284 1285 1286 1287 1792 1793 1794 1795 1796 1797 1798 1799 
1289 1290 1291 1292 1293 1294 1295 1800 1801 1802 1803 1804 1805 1806 1807 
1297 1298 1299 1300 1301 1302 1303 1808 1809 1810 1811 1812 1813 1814 1815 
1305 1306 1307 1308 1309 1310 1311 1816 1817 1818 1819 1820 1821 1822 1823 
1313 1314 1315 1316 1317 1318 1319 1824 1825 1826 1827 1828 1829 1830 1831 
1321 1322 1323 1324 1325 1326 1327 1832 1833 1834 1835 1836 1837 1838 1839 
1329 1330 1331 1332 1333 1334 1335 1840 1841 1842 1843 1844 1845 1846 1847 
1337 1338 1339 1340 1341 1342 1343 1848 1849 1850 1851 1852 1853 1854 1855 
1345 1346 1347 1348 1349 1350 1351 1856 1857 1858 1859 1860 1861 1862 1863 
1353 1354 1355 1356 1357 1358 1359 1864 1865 1866 1867 1868 1869 1870 1871 
1361 1362 1363 1364 1365 1366 1367 1872 1873 1874 1875 1876 1877 1878 1879 
1369 1370 1371 1372 1373 1374 1375 1880 1881 1882 1883 1884 1885 1886 1887 
1377 1378 1379 1380 1381 1382 1383 1888 1889 1890 1891 1892 1893 1894 1895 
1385 1386 1387 1388 1389 1390 1391 1896 1897 1898 1899 1900 1901 1902 1903 
1393 1394 1395 1396 1397 1398 1399 1904 1905 1906 1907 1908 1909 1910 1911 
1401 1402 1403 1404 1405 1406 1407 1912 1913 1914 1915 1916 1917 1918 1919 
1409 1410 1411 1412 1413 1414 1415 1920 1921 1922 1923 1924 1925 1926 1927 
1417 1418 1419 1420 1421 1422 1423 1928 1929 1930 1931 1932 1933 1934 1935 
1425 1426 1427 1428 1429 1430 1431 1936 1937 1938 1939 1940 1941 1942 1943 
1433 1434 1435 1436 1437 1438 1439 1944 1945 1946 1947 1948 1949 1950 1951 
1441 1442 1443 1444 1445 1446 1447 1952 1953 1954 1955 1956 1957 1958 1959 
1449 1450 1451 1452 1453 1454 1455 1960 1961 .1962 1963 1964 1965 1966 1967 
1457 1458 1459 1460 1461 1462 1463 1968 1969 1970 1971 1972 1973 1974 1975 
1465 1466 1467 1468 1469 1470 1471 1976 1977 1978 1979 1980 1981 1982 1.983 
1473 1474 1475 1476 1477 1478 1479 1984 1985 1986 1987 1988 1989 1990 1991 
1481 1482 1483 1484 1485 1486 1487 1992 1993 1994 1995 1996 1997 1998 1999 
1489 1490 1491 1492 1493 1494 1495 2000 2001 2002 2003 2004 2005 2006 2007 
1497 1498 1499 1500 1501 1502 1503 2008 2009 2010 2011 2012 2013 2014 2015 
1505 1506 1507 1508 1509 1510 1511 2016 2017 2018 2019 2020 2021 2022 2023 
1513 1514 1515 1516 1517 1518 1519 2024 2025 2026 2027 2028 2029 2030 2031 
1521 1522 1523 1524 1525 1526 1527 2032 2033 2034 2035 2036 2037 2038 2039 
1529 1530 1531 1532 1533 1534 1535 2040 2041 2042 2043 2044 2045 2046 2047 

Table D-8. Octal/Decimal Conversion (Part 2 of 4) 



4144 Rev. 2 
UP.NUMBER 

UNIVAC 1100 SERIES SYSTEMS 0-14 
PA GE RE VI SION PAGE 

OCTAL ~ 4000 to 4777 , DECIMAL 2048 to 2559 OCTAL . 5000 to 5777 DECIMAL 2560 to 3071 

••••• •• 2049 2050 2051 2052 2053 2054 2055 2560 2561 2562 2563 2564 2565 2566 2567 
2057 2058 2059 2060 2061 2062 2063 2568 2569 2570 2571 2572 2573 2574 2575 
2065 2066 2067 2068 2069 2070 2071 2576 2577 2578 2579 2580 2581 2582 2583 

"'4000·, · . : ,'4010', • . 4020' ••• ,4030 2073 2074 2075 2076 2077 2078 2079 2584 2585 2586 2587 2588 2589 2590 2591 
4040 

• :e 
2081 2082 2083 2084 2085 2086 2087 2592 2593 2594 2595 2596 2597 2598 2599 

""4050 · .. · . 2089 2090 2091 2092 2093 2094 2095 2600 2601 2602 2603 2604 2605 2606 2607 
4060. • •• 2097 2098 2099 2100 2101 2102 2103 2608 2609 2610 2611 2612 2613 2614 2615 
4070·' • • 2105 2106 2107 2108 2109 2110 2111 2616 2617 2618 2619 2620 2621 2622 2623 

2112 2113 2114 2115 2116 2117 2118 2119 2624 2625 2626 2627 2628 2629 2630 2631 
2120 2121 2122 2123 2124 2125 2126 2127 2632 2633 2634 2635 2636 2637 2638 2639 

4100 
,<41 fo 

4120 2128 2129 2130 2131 2132 2133 2134 2135 2640 2641 2642 2643 2644 2645 2646 2647 
4130 2136 2137 2138 2139 2140 2141 2142 2143 2648 2649 2650 2651 2652 2653 2654 2655 
4140 2144 2145 2146 2147 2148 2149 2150 2151 2656 2657 2658 2659 2660 2661 2662 2663 
4150 2152 2153 2154 2155 2156 2157 2158 2159 2664 2665 2666 2667 2668 2669 2670 2671 
4160 2160 2161 2162 2163 2164 2165 2166 2167 2672 2673 2674 2675 2676 2677 2678 2679 
4170 2168 2169 2170 2171 2172 2173 2174 2175 2680 2681 2682 2683 2684 2685 2686 2687 
4200 2176 2177 2178 2179 2180 2181 2182 2183 2688 2689 2690 2691 2692 2693 2694 2695 
4210 2184 2185 2186 2187 2188 2189 2190 2191 2696 2697 2698 2699 2700 2701 2702 2703 

2192 2193 2194 2195 2196 2197 2198 2199 2704 2705 2706 2707 2708 2709 2710 2711 
2200 2201 2202 2203 2204 2205 2206 2207 2712 2713 2714 2715 2716 2717 2718 2719 

4220 
423-0,~ 
424'0, 2208 2209 2210 2211 2212 2213 2214 2215 2720 2721 2722 2723 2724 2725 2726 2727 

,4250' 2216 2217 2218 2219 2220 2221 2222 2223 2728 2729 2730 2731 2732 2733 2734 2735 
4260 2224 2225 2226 2227 2228 2229 2230 2231 2736 2737 2738 2739 2740 2741 2742 2743 

,4270, 2232 2233 2234 2235 2236 2237 2238 2239 2744 2745 2746 2747 2748 2749 2750 2751 
, .~ -

~.4300 2240 2241 2242 2243 2244 2245 2246 2247 2752 2753 2754 2755 2756 2757 2758 2759 
2248 2249 2250 2251 2252 2253 2254 2255 2760 2761 2762 2763 2764 2765 2766 2767 
2256 2257 2258 2259 2260 2261 2262 2263 2768 2769 2770 2771 2772 2773 2774 2775 
2264 2265 2266 2267 2268 2269 2270 2271 2776 2777 2778 2779 2780 2781 2782 2783 

A310, 
,432'0." 
4330· .. · 
4340 2272 2273 2274 2275 2276 2277 2278 2279 2784 2785 2786 2787 2788 2789 2790 2791 
4350 2280 2281 2282 2283 2284 2285 2286 2287 27"92 2793 2794 2795 2796 2797 2798 2799 
4360 2288 2289 2290 2291 2292 2293 2294 2295 2800 2801 2802 2803 2804 2805 2806 2807 
4370- 2296 2297 2298 2299 2300 2301 2302 2303 2808 2809 2810 2811 2812 2813 2814 2815 
4400 • • 2305 2306 2307 2308 2309 2310 2311 2816 2817 2818 2819 2820 2821 2822 2823 
4410 2313 2314 2315 2316 2317 2318 2319 2824 2825 2826 2827 2828 2829 2830 2831 

-'4420- 2321 2322 2323 2324 2325 2326 2327 2832 2833 2834 2835 2836 2837 2838 2839 
4430 2329 2330 2331 2332 2333 2334 2335 2840 2841 2842 2843 2844 2845 2846 2847 
4440 2337 2338 2339 2340 2341 2342 2343 2848 2849 2850 2851 2852 2853 2854 2855 
4450 2345 2346 2347 2348 2349 2350 2351 2856 2857 2858 2859 2860 2861 2862 2863 
4460 2353 2354 2355 2356 2357 2358 2359 2864 2865 2866 2867 2868 2869 2870 2871 
4470 • • 2361 2362 2363 2364 2365 2366 2367 2872 2873 2874 2875 2876 2877 2878 2879 
4500 2368 2369 2370 2371 2372 2373 2374 2375 2880 2881 2882 2883 2884 2885 2886 2887 
4510, 2376 2377 2378 2379 2380 2381 2382 2383 2888 2889 2890 2891 2892 2893 2894 2895 
4520 2384 2385 2386 2387 2388 2389 2390 2391 2896 2897 2898 2899 2900 2901 2902 2903 
4530 2392 2393 2394 2395 2396 2397 2398 2399 2904 2905 2906 2907 2908 2909 2910 2911 
4540 2400 2401 2402 2403 2404 2405 2406 2407 2912 2913 2914 2915 2916 2917 2918 2919 
4550 2408 2409 2410 2411 2412 2413 2414 2415 2920 2921 2922 2923 2924 2925 2926 2927 
4560 2416 2417 2418 2419 2420 2421 2422 2423 2928 2929 2930 2931 2932 2933 2934 2935 
4570 2424 2425 2426 2427 2428 2429 2430 2431 2936 2937 2938 2939 2940 2941 2942 2943 

2432 2433 2434 2435 2436 2437 2438 2439 2944 2945 2946 2947 294~ 2949 2950 2951 
2440 2441 2442 2443 2444 2445 2446 2447 2952 2953 2954 2955 2956 2957 2958 2959 
2448 2449 2450 2451 2452 2453 2454 2455 2960 2961 2962 2963 2964 2965 2966 2967 
2456 2457 2458 2459 2460 2461 2462 2463 2968 2969 2970 2971 2972 2973 2974 2975 
2464 2465 2466 2467 2468 2469 2470 2471 2976 2977 2978 2979 2980 2981 2982 2983 
2472 2473 2474 2475 2476 2477 2478 2479 2984 2985 2986 2987 2988 2989 2990 2991 
2480 2481 2482 2483 2484 2485 2486 2487 2992 2993 2994 2995 2996 2997 2998 2999 
2488 2489 2490 2491 2492 2493 2494 2495 3000 3001 3002 3003 3004 3005 3006 3007 
2496 2497 2498 2499 2500 2501 2502 2503 3008 3009 3010 3011 3012 3013 3014 3015 
2504 2505 2506 2507 2508 2509 2510 2511 3016 3017 3018 3019 3020 3021 3022 3023 
2512 2513 2514 2515 2516 2517 2518 2519 3024 3025 3026 3027 3028 3029 3030 3031 
2520 2521 2522 2523 2524 2525 2526 2527 3032 3033 3034 3035 3036 3037 3038 3039 
2528 2529 2530 2531 2532 2533 2534 2535 3040 3041 3042 3043 3044 3045 3046 3047 
2536 2537 2538 2539 2540 2541 2542 2543 3048 3049 3050 3051 3052 3053 3054 3055 
2544 2545 2546 2547 2548 2549 2550 2551 3056 3057 3058 3059 3060 3061 3062 3063 
2552 2553 2554 2555 2556 2557 2558 2559 3064 3065 3066 3067 3068 3069 3070 3071 

Table D-8. Octal/Decimal Conversion (Part 3 of 4) 

,,-



(' 
'-......../. 

l, 

4144 Rev. 2 
UP.NUMBER 

", , , ," ," "~,,, < .,,' 'r" '''"'I,". 

'OCTAL ,'6000 to '6777" , 
~ fl.. ~,!' ,~ :' 

UNIVAC 1100 SERIES SYSTEMS D-15 
PAGE REVISION PAGE 

DECIMAL 3072 to 3583 DECIMAL 3584 to 4095 

•••••• •••••• 3072 3073 3074 3075 3076 3077 3078 3079 3584 3585 3586 3587 3588 3589 3590 3591 
3080 3081 3082 3083 3084 3085 3086 3087 3592 3593 3594 3595 3596 3597 3598 3599 
3088 3089 3090 3091 3092 3093 3094 3095 3600 3601 3602 3603 3604 3605 3606 3607 
3096 3097 3098 3099 3100 3101 3102 3103 3608 3609 3610 3611 3612 3613 3614 3615 
3104 3105 3106 3107 3108 3109 3110 3111 3616 3617 3618 3619 3620 3621 3622 3623 
3112 3113 3114 3115 3116 3117 3118 3119 3624 3625 3626 3627 3628 3629 3630 3631 
3120 3121 3122 3123 3124 3125 3126 3127 3632 3633 3634 3635 3636 3637 3638 3639 
3128 3129 3130 3131 3132 3133 3134 3135 3640 3641 3642 3643 3644 3645 3646 3647 
3136 3137 3138 3139 3140 3141 3142 3143 3648 3649 3650 3651 3652 3653 3654 3655 
3144 3145 3146 3147 3148 3149 3150 3151 3656 3657 3658 3659 3660 3661 3662 3663 
3152 3153 3154 3155 3156 3157 3158 3159 3664 3665 3666 3667 3668 3669 3670 3671 
3160 3161 3162 3163 3164 3165 3166 3167 3672 3673 3674 3675 3676 3677 3678 3679 
3168 3169 3170 3171 3172 3173 3174 3175 3680 3681 3682 3683 3684 3685 3686 '3687 
3176 3177 3178 3179 3180 3181 3182 3183 3688 3689 3690 3691 3692 3693 3694 3695 
3184 3185 3186 3187 3188 3189 3190 3191 3696 3697 3698 3699 3700 3701 3702 3703 
3192 3193 3194 3195 3196 3197 3198 3199 3704 3705 3706 3707 3708 3709 3710 3711 
3200 3201 3202 3203 3204 3205 3206 3207 3712 3713 3714 3715 3716 3717 3718 3719 
3208 3209 3210 3211 3212 3213 3214 3215 3720 3721 3722 3723 3724 3725 3726 3727 
3216 3217 3218 3219 3220 3221 3222 3223 3728 3729 3730 3731 3732 3733 3734 3735 
3224 3225 3226 3227 3228 3229 3230 3231 3736 3737 3738 3739 3740 3741 3742 3743 
3232 3233 3234 3235 3236 3237 3238 3239 3744 3745 3746 3747 3748 3749 3750 3751 
3240 3241 3242 3243 3244 3245 3246 3247 3752 3753 3754 3755 3756 3757 3758 3759 
3248 3249 3250 3251 3252 3253 3254 3255 3760 3761 3762 3763 3764 3765 3766 3767 
3256 3257 3258 3259 3260 3261 3262 3263 3768 3769 3770 3771 3772 3773 3774 3775 
3264 3265 3266 3267 3268 3269 3270 3271 3776 3777 3778 3779 3780 3781 3782 3783 
3272 3273 3274 3275 3276 3277 3278 3279 3784 3785 3786 3787 3788 3789 3790 3791 
3280 3281 3282 3283 3284 3285 3286 3287 3792 3793 3794 3795 3796 3797 3798 3799 
3288 3289 3290 3291 3292 3293 3294 3295 3800 3801 3802 3803 3804 3805 3806 3807 
3296 3297 3298 3299 3300 3301 3302 3303 3808 3809 3810 3811 3812 3813 3814 3815 
3304 3305 3306 3307 3308 3309 3310 3311 3816 3817 3818 3819 3820 3821 3822 3823 
3312 3313 3314 3315 3316 3317 3318 3319 3824 3825 382p 3827 3828 3829 3830 3831 
3320 3321 3322 3323 3324 3325 3326 3327 3832 3833 3834 3835 3836 3837 3838 3839 
3328 3329 3330 3331 3332 3333 3334 3335 3840 3841 3842 3843 3844 3845 3846 3847 
3336 3337 3338 3339 3340 3341 3342 3343 3848 3849 3850 3851 3852 3853 3854 3855 
3344 3345 3346 3347 3348 3349 3350 3351 3856 3857 3858 3859 3860 3861 3862 3863 
3352 3353 3354 3355 3356 3357 3358 3359 3864 3865 3866 3867 3868 3869 3870 3871 
3360 3361 3362 3363 3364 3365 3366 3367 3872 3873 3874 3875 3876 3877 3878 3879 
3368 3369 3370 3371 3372 3373 3374 337!) 3880 3881 3882 3883 3884 3885 3886 3887 
3376 3377 3378 3379 3380 3381 3382 3383 3888 3889 3890 3891 3892 3893 3894 3895 
3384 3385 3386 3387 3388 3389 3390 3391 3896 3897 3898 3899 3900 3901 3902 3903 
3392 3393 3394 3395 3396 3397 3398 3399 3904 3905 3906 3907 3908 3909 3910 3911 
3400 3401 3402 3403 3404 3405 3406 3407 3912 3913 3914 3915 3916 3917 3918 3919 
3408 3409 3410 3411 3412 3413 3414 3415 3920 3921 3922 3923 3924 3925 3926 3927 
3416 3417 3418 3419 3420 3421 3422 3423 3928 3929 3930 3931 3932 3933 3934 3935 
3424 3425 3426 3427 3428 3429 3430 3431 3936 3937 3938 3939 3940 3941 3942 3943 
3432 3433 3434 3435 3436 3437 3438 3439 3944 3945 3946 3947 3948 3949 3950 3951 
3440 3441 3442 3443 3444 3445 3446 3447 3952 3953 3954 3955 3956 3957 3958 3959 
3448 3449 3450 3451 3452 3453 3454 3455 3960 3961 3962 3963 3964 3965 3966 3967 
3456 3457 3458 3459 3460 3461 3462 3463 3968 3969 3970 3971 3972 3973 3974 3975 
3464 3465 3466 3467 3468 3469 3470 3471 3976 3977 3978 3979 3980 3981 3982 3983 
3472 3473 3474 3475 3476 3477 3478 3479 3984 3985 3986 3987 3988 3989 3990 3991 
3480 3481 3482 3483 3484 3485 3486 3487 3992 3993 3994 3995 3996 3997 3998 3999 
3488 3489 3490 3491 3492 3493 3494 3495 4000 4001 4002 4003 4004 4005 4006 4007 
3496 3497 3498 3499 3500 3501 3502 3503 4008 4009 4010 4011 4012 4013 4014 4015 
3504 3505 3506 3507 3508 3509 3510 3511 4016 4017 4018 4019 4020 4021 4022 4023 
3512 3513 3514 3515 3516 3517 3518 3519 4024 4025 4026 4027 4028 4029 4030 4031 
3520 3521 3522 3523 3524 3525 3526 3527 4032 4033 4034 4035 4036 4037 4038 4039 
3528 3529 3530 3531 3532 3533 3534 3535 4040 4041 4042 4043 4044 4045 4046 4047 
3536 3537 3538 3539 3540 3541 3542 3543 4048 4049 4050 4051 4052 4053 4054 4055 
3544 3545 3546 3547 3548 3549 3550 3551 4056 4057 4058 4059 4060 4061 4062 4063 
3552 3553 3554 3555 3556 3557 3558 3559 4064 4065 4066 4067 4068 4069 4070 4071 
3560 3561 3562 3563 3564 3565 3566 3567 4072 4073 4074 4075 4076 4077 4078 4079 
3568 3569 3570 3571 3572 3573 3574 3575 4080 4081 4082 4083 4084 4085 4086 4087 
3576 3577 3578 3579 3580 3581 3582 3583 4088 4089 4090 4091 4092 4093 4094 4095 

Table D-B. Octal/Decimal Conversion (Part 4 of 4) 





"....- .. , 

I~ 

4144 Rev. 2 
UP-NUMBER 

Equipment 
Code 
(octal) 

1 

2 

3 

4 

5 

6 

7 

10 

11 

12 

13 

14 

15 

16 

17 

20 

21 

22 

23 

UNIVAC 1100 SERIES SYSTEMS E-1 
PAGE REVISION PAGE 

APPENDIX E. EQUIPMENT CODES 

Equipment Type 

UNISERVO VIII-C Magnetic Tape Subsystem (seven-track) 

UNISERVO VI-C Magnetic Tape Subsystem (seven-track) 

UNISERVO VIII-C Magnetic Tape Subsystem (hardware translate) 

UNISERVO VI-C Magnetic Tape Subsystem (hardware translate) 

UNISERVO VIII-C Magnetic Tape Subsystem (nine-track) 

UNISERVO VI-C Magnetic Tape Subsystem (nine-track) 

UNISERVO IV-C Magnetic Tape Subsystem 

UNISERVO IV-C Magnetic Tape Subsystem (hardware translate) 

UNISERVO 12 Magnetic Tape Subsystem 

UNISERVO 16 Magnetic Tape Subsystem 

UNISERVO 12 Magnetic Tape Subsystem (nine-trr;lck) 

UNISERVO 16 Magnetic Tape Subsystem (nine-track) 

not used 

UNISERVO II I-A Magnetic Tape Subsystem 

UNISERVO II-A Magnetic Tape Subsystem 

FH-432 Magnetic Drum Subsystem 

FH-880 Magnetic Drum Subsystem 

FH-1782 Magnetic Drum Subsystem 

not used 



4144 Rev. 2 . 
UP.NUMBER 

Equipment 
Code 
(octal) 

24 

25 

26 

27 

30 

31 

32 

33 

34 

35 

36 

37 

40 

41 

42 

43 

44 

45 

46 

47 

50 

51 

52 

53 

54 

55 

56 

UNIVAC 1100 SERIES SYSTEMS E-2 
PAGE REVISION PAGE 

Equipment Type 

not used 

Unitized Channel Storage 

not used 

not used 

FASTRAND II or III Magnetic Drum Subsystem 

not used 

FASTRAND·formatted FH·432 Magnetic Drum Subsystem 

FASTRAND·formatted FH·880 Magnetic Drum Subsystem 

FASTRAND-formatted FH-1782 Magnetic Drum Subsystem 

UNIVAC 8414 Disc Subsystem 

UNIVAC 8440 Disc Subsystem 

FASTRAND·formatted Unitized Channel Storage 

Card Reader and Punch Subsystem 

not used 

UNIVAC 0920/0926 Paper Tape Subsystem 

not used 

UNIVAC 751 High Speed Printer Subsystem 

UNIVAC 758 MUltiple High Speed Printer Subsystem 

not used 

UN I V AC 9200/9300 Subsystem 

UNIVAC 1004 Subsystem 

not used 

not used 

not used 

not used 

not used 

not used 



,,,----

L, 

4144 Rev. 2 
UP.NUMBER 

Equipment 
Code 
(octal) 

57 

60 

61 

62 

63 

64 

65 

66 

67 

70 

71 

72 

73 

74 

75 

76 

77 

UNIVAC 1100 SERIES SYSTEMS E-3 
PAGE REVISION PAGE 

Equipment Type 

not used 

not used 

not used 

not used 

not used 

not used 

not used 

not used 

not used 

Communications Terminal Synchronous Subsystem 

Word Terminal Synchronous Subsystem 

Communications Terminal Module Controller Subsystem 

not used 

not used 

not used 

not used 

arbitrary device 





4144 UNIVAC 1100 SERIES SYSTEMS Index 1 
UP.NUMBER PAGE REVISION PAGE 

INDEX 

Term Reference Page Term Reference Page 

A Activity name 
definition 2.2.6 2·5 

Abbreviations 2.2.8 2·8 
Activity registration 

Abort run 4.3.2.3 4·7 definition 2.2.6 2·5 

Absolute element Activity termination 
definition 2.2.3 2·3 definition 2.2.6 2·5 

Absolute read/write 6.8 6·27 ACW 
definition 2.2.7 2·6 

/" Account 
( initialization and chaining entries 23.7.3 23·22 Addressing "--/ o bank 10.5.4 10·40 

Accounting Section 23 file 7.2.3 7·2 

Activity Allocation 
activation 4.3.3.4 4·10 mass storage 7.2.2 7·2 
changing priorities 16.4.2.1 16·5 
changing to real time status 4.3.4.1 4·10 Alternate, file 
control 4.3 4·6 ASCII images 5.2.4 5-5 
creating 4.3.1 4·6 Fieldata images 5.2.3 5·4 
creating with timed wait 4.3.1.2 4·6 
deactivation 4.3.3.3 4·9 Alternate print file 
definition 2.2.6 2·5 ASCII control functions 5.4.4 5·13 
error termination 4.3.2.2 4·7 ASCII images 5.3.4 5·9 
interrupt 6.1.2 6·4 Fieldata control functions 5.4.3 5·13 
interrupt, priority reduction 16.4.2.3 16·6 Fieldata images 5.3.3 5-8 
joining of 4.3.3.1 4·8 
naming of 4.3.3.2 4·9 Alternate punch file 
normal termination 4.3.2.1 4·7 ASCII control functions 5.4.8 5-15 
real time 16.6.2.2 16·9 ASCII images 5.3.8 5·11 
reducing interrupt priority 6.3.8 6·10 Fieldata control functions 5.4.7 5·15 
registration 4.3.1 4·6 Fieldata images 5.3.7 5·10 
removing real time status 4.3.4.2 4·11 
synchronization 4.3.3 4-8 Application 
termination 4.3.2, 4·7 definition 2.2.2 2·1 

16.4.2.4 16·6 
timed wait 4.3.5 4·11 Applications programs 1.8 1·8 

(' Activity·id Arbitrary device '----
definition 2.2.6 2·5 assign 3.7.1.4 3-33 



4144 UNIVAC 1100 SERIES SYSTEMS Index 2 
UP-NUMBER PAGE REVISION PAGE 

Term Reference Page Term Reference Page 

Arbitrary device handler 6.9 6-27 Block buffering Section 13 
initiation 6.9.2, 6-30 changing EO F sector address 22.3.10 22-14 

6.9.3 6-31 data files 13.2 13-1 
I/O packet 6.9.1 6-27 EO F sector address 13.3.2.9 13-9 

subroutines 13.3.1 13-2 
ASCII transferring control to user program 13.3.4 13-10 

Fieldata conversion 5.6, 5-17 
Appendix 0 Block items 

layout 13.4.3 13-22 
ASCII control functions 

alternate print file 5.4.4 5-13 Branching 
alternate punch file 5.4.8 5-15 from within a run stream 3.9.4.3 3-49 
print file 5.4.2 5-12 
punch file 5.4.6 5-14 Breakpoint 

definition 2.2.7 2-6 
ASCII images 

alternate file 5.2.4 5-5 *BR KPT (SSG) 20.7.2.1 20-6 
alternate print file 5.3.4 5-9 
alternate punch file 5.3.8 5-11 Buffer 
printing 5.3.2 5-7 initialization of a dump 11.3.3.1 11-19 
punching 5.3.6 5-10 processing 15.7.2 15-22 
reading 5.2.2 5-4 real time operations 16.3 16-1 

real time size 16.3.4 16-2 
Assigning facilities 1.3.3.3 1-4 

Buffer mode, single 
AXR$ I/O operations 15.4.1.6 15-11 

definition 2.2.7 2-6 
Buffer pools 

establishing 13.5.2 13-32 

B C 

Batch processing 1.3.1.1 1-2 Calling sequence 
definition 2.2.5 2-4 conventions 4.1.2 4-1 

BCD Card reader 
XS3-Fieldata-EBCDIC conversion table Appendix 0 mode control 3.6.5 3-18 

BILLER 23.7 Cataloguing 
no input specified 23.7.3.3 23-24 files 3.7.3 3-35 

BI LLER commands Catalogued file 
INSERT 23.7.3.1 23-22 definition 2.2.4 2-4 
READ 23.7 .3.2 23-23 
REMOVE 23.7.3.2 23-23 Central site 
PURGE 23.7.3.2 23-23 definition 2.2.2 2-1 

Billing Changed word dump 11.3.1.3 11-8 
constraints for user-implemented 23.7.2 23-21 
routine 23.7 23-21 Checkpoint 

complete (run save) 17.2.1 17-1 
Binary file format 17.2 17-1 

time and date 4.5.2 4·13 file identification message 17.2.3 17-5 
log entries 23.6.4.8 23-17 

Binary /Hexadecimal conversion Appendix 0 partial (program save) 17.3.1 17-8 



4144 
U P.NUMOER 

Term 

Checkpoint/restart 
error codes 
partial 

*CLEAR (SSG) 

Clocking 

CMS$ usage 

Coding restrictions 

Collection 
definition 
reentrant processors 

Collector 

definition 
directives 
CLASS 
COR 
DEF 
DSEG 
END 
ENT 

~-. EGU 
! IN 
'-... / LIB 

NOT 
REF 
RSEG 
SEG 
SNAP 
functional aspects of 
initiation 
relocatable elements 
tables 
tables generated 

Common blocks 

Communications 
altering paths 
completion activities 
console 
equipment 
establishing a pool 
exiting from an ESI activity 
expanding a pool 
handler 
hangup operation 
idle line monitor 
initiating dialing operation 

.... '_.,.- initiating I/O operations 
r initiating input operation I 
. ',_/ 

initiating output operation 
interrupt response 

UNIVAC 1100 SERIES SYSTEMS 

Reference Page Term 

Section 17 modes of operation 
17.4 17·10 operator 
17.3 17·8 releasing pools 

removing buffers from a pool 
20.7.2.2 20·7 returning buffers to a pool 

routing procedures 
25.6 25·14 timing considerations 

10.5.6.3 10·41 Communications handler 

4.1.1 4·1 Communication pool 

10.5.4.1 10·40 Communications peripherals 
2.2.3 2·3 FITEM$ request packet 
10.2.3.4 10·20 

Components 
1.4.1, 1·6 definition and residency 
10.2 10·1 
2.2.3 2·3 Conditional control procedures 
10.2.2 10-4 X$AND 
10.2.2.8 10-10 X$IF 
10.2.2.9 10·12 X$OR 
10.2.2.4 10·7 X$TAL Y 
10.2.2.15 10·17 
10.2.2.11 10-15 Conditional statement 
10.2.2.6 10-9 
10.2.2.7 10-9 Condition word 
10.2.2.1 10-5 control 
10.2.2.3 10·7 
10.2.2.2 10-6 setting 
10.2.2.5 10-8 testing 
10.2.2.14 10·17 
10.2.2.13 10-16 Console 
10.2.2.10 10-13 output and solicited input 
10.2.3 10·18 
10.2.1 10·2 Contingency 
10.2.3.1 10-18 additional considerations 
10.5.4.3 10-41 definition 
10.2.4.8 10-30 ESI 

line terminal 
10.2.4.6 10-27 mode termination 

processing 
registration 

15.4.3 15·19 restart 
15.5 15·20 routine 
Section 6 types and standard action 
15.1.1 15·1 
15.4.2.1 15-15 Continuation 
15.5.1 15·20 FLUSH 
15.4.2.4 15·18 
15.4 15·8 Console 
15.4.1.9 15·13 communications 
15.6 15·21 interrupt handling 
15.4.1.2 15-9 log entries 
15.4.1.5 15-11 replies to log entry 
15.4.1.3 15·10 unsolicited input 
15.4.1.4 15-10 
15.7.1 15·22 

PAGE REVISION 

Reference 

15.1.2 
1.3.3.5 
15.4.2.5 
15.4.2.2 
15.4.2.3 
15.4.3.1 
15.7 

Section 15 

15.4.2 

7.2.6.5 

25.3.3 

11.3.2.3 
11.3.2.1 
11.3.2.2 
11.3.2.4 

3.9.2 

3.9.4 
3.9.4.1, 
4.4 
4.4.1 
3.9.4.2 

6.1 

4.9 
4.9.4.3 
2.2.7 
4.9.5 
15.9 
4.9.4.2 
4.9.4 
4.9.3 
17.2.5 
4.9.4.1 
4.9.2 

21.2.4 

Section 6 
16.4.2.6 
23.6.4.7 
23.6.4.10 
4.6.2 

Index 3 
PAGE 

Page 

15·2 
1·4 

15·18 
15·17 
15·17 
15·20 
15·21 

15·14 

7·11 

25·3 

11·17 
11·16 
11-17 
11·18 

3-45 

3-46 
3-47 
4-11 
4-11 
3-48 

6-1 

4-23 
4-28 
2-6 
4-29 

15-24 
4-28 
4·27 
4·25 

17-7 
4-27 
4-23 

21-12 

16·7 
23·16 
23·19 
4·15 



4144 UNIVAC 1100 SERIES SYSTEMS 
Index 4 

PAGE REVISION PAGE UP-NUMBER 

Term Reference Page Term Reference Page 

Control @CULL 18.5 18-15 
activity and program 4.3 4-6 @CYCLE 8.2.16 8-24 
queueing and unit 6.1.3 6-4 @OATA 18.3 18-4 

@OELETE 8.2.7 8-17 
Control characters @OOC 21.3 21-13 

OCT-500 12.2.2.2 12-13 @EO 18.4 18-6 
OCT-lOOO 12.2.3.3 12-16 @ELT 18.2 18-1 
UNISCOPE 100 12.2.3.3 12-16 @ENABLE 8.2.17 8-26 
UNISCOPE 300 12.2.4.2 12-21 @ENO 18.2.1 18-4 

@ENOF 3.8.2 3-43 
Control functions @EOF 10.3.2 10-32 

print file 5.4.1 5-11 @ERS 8.2.6 8-17 
@FILE 3.8.1 3-42 

Control functions, ASCII @FIN 3.4.2 3-9 
alternate print file 5.4.4 5-13 @FINO 8.2.13 8-21 
alternate punch file 5.4.8 5-15 @FLUSH 21.2 21-2 
print file 5.4.2 5-13 @FREE 3.7.4 3-37 
punch file 5.4.6 5-14 @HOG 3.6.1 3-13 

@JUMP 3.9.4.3 3-49 
Control functions, Fieldata @LlST 18.6 18-18 

alternate print file 5.4.3 5-13 @LOG 3.5.2 3-12 
alternate punch file 5.4.7 5·15 @MAP 10.2.1 10-2 
punch file 5.4.5 5·14 @MARK 8.2.9 8-19 

@MOOE 3.7.2 3-34 
Control registers @MOVE 8.2.4 8-13 

definition 2.2.2 2-1 @MSG 3.5.1 3-11 
@PACK 8.2.14 8-22 

,/ 

Control statement @PCH 8.2.12 8·20 
annotation 3.2.4 3-2 @PMO 11.2.1 11-1 
continuation 3.2.5 3·2 @PREP 8.2.11 8-19 
data preparation 3.8 3-42 @PRT 8.2.5 8-14 
definition 2.2.5 2·4 @REWINO 8.2.8 8-18 
dynamic request of 4.8.1 4·17 @RSPAR 17.3.2 17-9 
facility control 3.7 3-19 @RSTRT 17.2.4.1 17-6 
format 3.2 3-1 @RUN 3.4.1 3-5 
FURPUR 8.2 8·5 @SECURE 19.3 19-2 
interpreter (CSt) 25.5.3 25-7 @SETC 3.9.4.1 3-47 
language processor 9.4.1 9·2 @SSG 20.4 20·3 
listing user-defined 5.5 5-16 @START 3.4.3 3·9 
log entries 23.6.4.1 23·8 @SYM 3.6.3 3·16 
message 3.5 3-11 @TABSET 12.2.1.5 12-9 
notation 2.3.2 2-13 @TEST 3.9.4.2 3-48 
processor 9.4 9-1 @USE 3.7.5 3-40 
scheduling 3.4 3·5 @XOT 10.3.1 10-31 
summary 3.3, 3-3 

Appendix A Control register 
@ADO 3.9.1 3-44 dump 11.3.1.8 11-13 
@ASG 3.7 .1 3-19 
@BRKPT 3.6.2 3-14 Control register and main storage dump 11.3.1.2 11-6 
@CAT 3.7.3 3-35 
@CHG 8.2.15 8-22 Conventions 
@CKPT 17.2.1.1 17-2 calling sequence 4.1.2 4-1 
@CLOSE 8.2.10 8-19 
@COL 3.6.5 3-18 Conversion 
@CON78 18.7 18-19 ASCII/Fieldata 5.6 5·17 ,/ 

@COPIN 8.2.2 8-9 
@COPOUT 8.2.3 8-11 Conversion tables Appendix 0 '-

@COPY 8.2.1 8-5 



4144 
UP-NUMBER 

Term 

Conversational mode 
'- -' Fieldata images 

CON78 

CON78 processor 

CPOO L$ usage 

Copying 
file 
from tape to program files 
program files to tape 

Core storage 
definition 

Correction diagnostics 
partial line 

Correction indicator 
redefinition of 

Corrections 
for a relocatable element 
partial line 

~ ..... - , Correction statement 
( change 
''----.-./ 

range 

*CO R RECT (SSG) 

CPU 
definition 

CRT 
definition 

*CREATE (SSG) 

CTMC 

CTS 

CU LL processor 

CU R-to-FU R processor (CON78) 

Cursor/SO E coordinates 

Cycle 
altering retention limit 
definition 

,,'-", symbolic element 

L 
Cycle, range 

changing maximum 

UNIVAC 1100 SERIES SYSTEMS 
PAGE REVISION 

Reference Page Term Reference 

5.2.5 5-6 D 

1.5.1 1-6 Data and instruction areas 10.2.4.2 

18.7 18-19 Data blocks 
layout 13.3.3 

10.5.6.3 10-41 random reading 13.3.2.3 
random writing 13.3.2.5 
sequential reading 13.3.2.2 

8.2.1 8-5 sequential writing 13.3.2.4 
8.2.2 8-9 
8.2.3 8-11 Data file 

closing 13.4.2.10 
definition 2.2.4 

2.2.2 2-1 relinquishing user program association 13.4.2.11 
defining physical organization 13.5.3 
organization 13.7 

9.5.2.3 9-10 
Data image 

definition 2.2.7 
9.5.1.1 9-8 

Data items 
exclusive random reading 13.4.2.4 

10.2.2.9 10-11 random reading 13.4.2.3 
9.5.2 9-8 random writing 13.4.2.6 

sequential reading 13.4.2.2 
sequential writing 13.4.2.5 

9.5.2.2 9-9 
9.5.2.1 9-8 Data processor 1.4.4 

18.3 
20.7.2.3 20-8 

Data separation 10.3.2 

2.2.2 2-1 Day clock 25.6.2 

o bank 
2.2.2 2-1 addressing 10.5.4 

20.7.2.4 20-9 DCT-500 
control characters 12.2.2.2 

15.1.1.2 15-1 demand symbiont 12.2.2 
teletypewriter mode 12.2.1.8 

15.1.1.1 15-1 
DCT-lOOO 

1.5.4, 1-7 control characters 12.2.3.3 
18.5 18-15 operational considerations 12.2.3.2 

user program interface 12.2.3.4 
1.5.1 1-6 

Deadline run 
Appendix 0 definition 2.2.5 

*DEFINE (SGS) 20.7.2.5 
8.2.16 8-24. 
2.2.7 2-6 Definition and residency of components 25.3.3 
2.6.5 2-21 

22.3.8 22-13 

Index 5 
PAGE 

Page 

10·21 

13-9 
13-4 
13-6 
13-4 
13-5 

13-21 
2-4 

13-22 
13-34 
13-43 

2-6 

13-16 
13-15 
13-17 
13-13 
13-16 

1-6, 
18-4 

10-32 

25-14 

10-40 

12-13 
12-11 
12-10 

12-16 
12-16 
12-19 

2-4 

20-9 

25-3 



4144 UNIVAC 1100 SERIES SYSTEMS Index 6 
UP-NUMBER PAGE REVISION PAGE 

Term Reference Page Term Reference Page 

Definitions priviledged instruction 2.2.7 2-6 
absolute element 2.2.3 2-3 program 2.2.3 2-3 
activity 2.2.6 2-5 program file 2.2.4 2-3 
activity-id 2.2.6 2-5 project 2.2.7 2-6 
activity name 2.2.6 2-5 processor 2.2.3 2-3 
activity registration 2.2.6 2-5 processor control statement 2.2.5 2-4 
activity termination 2.2.6 2-5 PSR 
ACW 2.2.7 2-6 public file 2.2.4 2-4 
application 2.2.2 2-1 qualifier 2.2.4 2-4 
AXR$ 2.2.7 2-6 real time processing 2.2.5 2-4 
batch processing 2.2.5 2-4 reentrant routine 2.2.6 2-5 
breakpoint 2.2.7 2-6 relocatable element 2.2.3 2-3 
catalogued file 2.2.4 2-4 remote site 2.2.2 2-1 
central site 2.2.2 2-1 REP 2.2.6 2-5 
collection 2.2.3 2-3 run 2.2.5 2-4 
collector 2.2.3 2-3 run stream 2.2.5 2-4 
contingency 2.2.7 2-6 scatter/gather 2.2.7 2-6 
co ntro I registers 2.2.2 2-1 SDF 2.2.4 2-4 
control statement 2.2.5 2-4 SLR 2.2.2 2-1 
core storage 2.2.2 2-1 standard action 2.2.7 2-6 
CPU 2.2.2 2-1 switching 2.2.6 2-5 
CRT 2.2.2 2-1 symbionts 2.2.7 2-6 
cycle 2.2.7 2-6 symbolic element 2.2.3 2-3 
data file 2.2.4 2-4 system 2.2.1 2-1 
data image 2.2.7 2-6 system processor 2.2.3 2-3 
deadline run 2.2.5 2-4 task 2.2.5 2-4 
demand processing 2.2.5 2-4 temporary file 2.2.4 2-4 
element 2.2.3 2-3 TPF$ 2.2.4 2-4 
element file 2.2.4 2-4 track 2.2.2 2-1 
ERU$ 2.2.7 2-6 unit processor 2.2.2 2-1 
ESI 2.2.7 2-6 unitized channel storage 2.2.2 2-1 
ESI completion activity 2.2.7 2-6 user 2.2.1 2-1 
executive 2.2.1 2-1 user program 2.2.3 2-3 
executive control language 2.2.5 2-4 word 2.2.2 2-1 
executive request 2.2.7 2-6 word-addressable drum 2.2.2 2-1 
external filename 2.2.4 2-4 
facility 2.2.2 2-1 Deleting 
FASTRAND-formatted mass storage 2.2.2 2-1 dynamic dumps 11.3.3.3 11-21 
Fieldata 2.2.7 2-6 
file 2.2.4 2-4 Demand 
granule 2.2.2 2-1 symbiont/user interface 12.1.2 12-4 
image 2.2.7 2-6 termination 12.1.1.3 12-3 
interlock 2.2.7 2-6 
internal filename 2.2.4 2-4 Demand processing 1.3.1.2, 1-2 
lSI 2.2.7 2-6 Section 12 
language processor 2.2.3 2-3 definition 2.2.5 2-4 
main storage 2.2.2 2-1 
mass storage 2.2.2 2-1 Demand run 
multiprocessing 2.2.6 2-5 submission 12.1.1.2 12-2 
multiprocessor 2.2.2 2-1 
multiprogramming 2.2.6 2-5 Demand symbiont 
noise constant 2.2.7 2-6 DCT-500 12.2.2 12-13 
operating system 2.2.1 2-1 DCT-lOOO 12.2.2 12-13 
packet 2.2.7 2-6 Friden 7100 12.2.1 12-5 
PCT 2.2.5 2-4 general operation 12.2 12-5 /-

PMD 2.2.7 2-6 teletypewriter 12.2.1 12-5 
position 2.2.2 2-1 UNISCOPE 100 12.2.3 12-14 "-

private file 2.2.4 2-4 UNISCOPE 300 12.2.4 12-20 



4144 UNIVAC 1100 SERIES SYSTEMS Index 7 
UP.NUM f3ER PAGE REVISION PAGE 

Term Reference Page Term Reference Page 

"'---/ Demand terminal initializing a buffer 11.3.3.1 11·19 
Friden 7100 12.2.1.7 12·10 initiating a string of dynamic 11.3.2.1 11·16 
initialization 12.1.1.1 12·2 logical rJml control of 11.3.2.3 11·17 
user techniques 12.3 12·22 logical [ill) control 11.3.2.2 11·17 

main storage 11.3.1.1 11·5 
Devices mass storage 11.3.1.5 11·10 

assigning line terminal 15.2 15·2 placing a message in 11.3.3.4 11·22 
error handling 13.8.1 13·46 postmortem and dynamic Section 11 
release 3.7.4 3·37 reentrant processor 10.5.7 10-42 

saving and deleting 11.3.3.3 11·21 
Device handlers snapshot 4.8.5 4·21 

input/output 1.3.3.6, 1·5 standard editing formats 11.3.1.8.1 11·13 
Section 6 tape block 11.3.1.4 11·9 

adding 10.2.2.10 10·13 
Diagnostic messages 

run stream Appendix C Dynamic allocator 25.5.5.1 25·9 

Directives Dynamic dumps 11.3 11·4 
internal control (D 0 C) 21.3.2 21·6 
FLUSH options 21.2.3 21·4 Dynamic dump procedures 11.3 11·4 
segmentation 10.2.4.1 10·21 X$CORE 11.3.1.1 11·5 

X$CREG 11.3.1.7 11·12 
Directory item X$CW 11.3.1.3 11·8 

formats 22.5 22·22 X$DRUM 11.3.1.5 11·10 
X$DUMP 11.3.1.2 11·6 

Disc X$FI LE 11.3.1.6 11·11 
/--., 

FITEM$ request packet 7.2.6.6 7·13 X$TAPE 11.3.1.4 11·9 
( handler 6.7 6·25 
~ handler, free format 6.9.4 6·31 

labeling 7.4 7·19 E 
link insertion 22.3.12 22·16 
prepping 6.7.2 6·26 EBCDIC 

XS3·Fieldata·BCD conversion table Appendix D 
Dispatcher 25.5.6 25·12 

ED processor 1.4.6, 1·6 
*DIVIDE (SGS) 20.7.2.6 20·10 18.4 18·6 

DO C processor 1.5.5, 1·7 EDIT$ 14.2 
21.3 21·13 generating the packet 14.2.1 14·3 

editing control 21.3.2.4 21·17 
internal control directives 21.3.2 21·14 *EDIT (SGS) 20.7.2.7 20·10 
listing control 21.3.2.2 21·15 
text control 21.3.2.3 21·16 Editing 
title control 21.3.2.1 21·15 control (D OC) 21.3.2.4 21·17 

format for dump 11.3.1.8.1 11·13 
Documentation processors Section 21 output 14.1 14·1 

Dropout rules 3.2.7 3·3 Editing formats 
user·defined for dump 11.3.1.8.2 11·14 

Dumps 
allowing and ignoring procedure calls 11.3.3.2 11·20 Editing mode 
changed word 11.3.1.3 11·8 initialization and termination 14.2.2 14·4 
control register 11.3.1.8 11·13 
control register and main storage 11.3.1.2 11·6 Edit mode commands 

~" 
controlling the conditional switch 11.3.2.4 11·18 ED processor 18.4.1 18·7 
dynamic 11.3 11·4 

',------", editing formats, user·defined 11.3.1.8.2 11·14 Editing routine 
file 11.3.1.6 11·11 output 14.3 14·10 



4144 UN I V A C 11 0 0 S E R I E S S Y S T EMS Index 8 
UP.NUMBER PAGE REVISION PAGE 

Term Reference Page Term Reference Page 

Editing routines Element, preambles 
general purpose 14.2.3 14·4 processing 10.2.3.5 10·20 
ECHAR$ 14.2.3 14·4 
ECOL$ 14.2.3 14·4 Elements, program file 
ECOLN$ 14.2.3 14·4 punching 8.2.12 8·20 
ECOPY$ 14.2.3 14·4 
EDAY1$ 14.2.3 14·4 Elements, relocatable 
EDAY2$ 14.2.3 14·4 collector·produced 10.2.3.1 10·18 
EDAY3$ 14.2.3 14-4 corrections 10.2.2.9 10·12 
EDECF$ 14.2.3 14·4 
EDECV$ 14.2.3 14·4 Elements, symbolic 
EFD1$ 14.2.3 14·4 compressed 9.4.3 9·7 
EFD2$ 14.2.3 14·4 modifying 9.5 9·7 
EMSG$ 14.2.3 14·4 
EMSGR$ 14.2.3 14·4 Elements, SYMSTREAM 
EOCTF$ 14.2.3 14·4 Backus normal form 20.10 20·25 
EOCTV$ 14.2.3 14·4 
EPACK$ 14.2.3 14·4 Element table 
ESKIP$ 14.2.3 14·4 updating 24.3.1.1 24·7 
ETIME$ 14.2.3 14·4 

EL T processor 1.4.4, 1·6 
Editing routines, floating point 14.2.4 14·9 18.2 18·1 

EFLF1$ 14.2.4 14·9 
EFLF2$ 14.2.4 14·9 *ELSE (SGS) 20.7.2.8 20·11 
EFLG1$ 14.2.4 14·9 
EFLG2$ 14.2.4 14·9 End 
EFLS1$ 14.2.4 14·9 input 10.2.2.11 10·13 
EFLS2$ 14.2.4 14·9 

*END (SGS) 20.7.2.8 20·11 
Editor 

log file 23.8 23·25 *END (SSG) 20.7.2.3 20·8 

Element Entry point table 
changing the name 8.2.15 8·22 creation of 8.2.11 8·19 
changing version name 8.2.15, 8·22 

8.2.15.2 8·23 EOF 
definition 2.2.3 2·3 marking on tape file 8.2.9 8·19 
deleting 8.2.7 8·17 
deleting SGS's, PERM, and TEMP 20.7.2.12 20·15 EOF marks 
exclusion . 10.2.2.2 10·6 writing 13.3.2.6 13·7 
file format 24.2.2 24·3 
inclusion 10.2.2;1 10·5 EO F sector address 

10.2.3.2 10·18 changing block buffering 22.3.10, 22·14 
mark for deletion 24.3.1.3 24·11 13.3.2.9 13·9 
names 2.6.4 2·20 
positioning within 8.2.13 8·21 EOUT$ 14.3 
removal of deleted 8.2.14 8·22 control functions 14.3.4 14·13 
SYMSTREAM 20.7 20·5 editing functions 14.3.1 14·11 

modal functions 14.3.3 14·12 
Element, absolute 

definition 2.2.3 2·3 Equipment codes Appendix D 
optimization 10.2.2.12 10·16 

Error 
Element file termination considerations 4.9.2.1 4·25 

definition 2.2.4 2·4 
Error codes 

Element, program file checkpoint/restart 17.4 17·10 ,-

changing name 8.2.15.2 8·23 line terminal contingencies 15.9 15·24 



4144 UNIVAC 1100 SERIES SYSTEMS Index 9 
UP-NUMBER PAGE REVISION PAGE 

Term Reference Page Term Reference Page 
Error handling 4.1.4 4-2 AWAIT$ 4.3.3.1 4-8 

abnormal 13.8.3 13-49 BBEOF$ 13.3.2.9 13-9 
device 13.8.1 13-46 BJOIN$ 13.5.2 13-32 
file 13.8.2 13-46 BPOOL$ 13.5.2 13-32 

CAOO$ 15.4.2.3 15-17 
Error, I/O CENO$ 4.9.4.2 4-28 

log entry 23.6.4.6 23-14 CGET$ 15.4.2.2 15-17 
CJOIN$ 15.4.2.4 15-18 

ERU$ ClIST$ 5.5 5-16 
definition 2.2.7 2-6 CMOS 15.4.1.2 15-9 

CMH$ 15.4.1.9 15-13 
ESI CMI$ 15.4.1.3 15-10 

activities 15.5 15-20 CMOS 15.4.1.4 15-10 
activity exit 15.5.1 15-20 CMS$ 15.4.1.1 15-9 
contingencies 4.9.5 4-29 CMSA$ 15.4.1.5 15-11 
definition 2.2.7 2-6 CMT$ 15.4.1.10 15-13 
interrupts 16.6.2.1 16-9 COM$ 4.6.1 4-13 
real time concepts 16.6.1 16-8 CPOOL$ 15.4.2.1 15-15 
timing 16.6.2 16-9 CREL$ 15.4.2.5 15-18 

CSF$ 4.8.1, 4-17 
ESI completion activity 17.2.1.2, 17-1 

definition 2.2.7 2-6 17.2.4.2 17-6 
OACT$ 4.3.3.3 4-9 

Exclusive use OATE$ 4.5.1 4-12 
files 7.2.4 7-3 ERR$ 4.3.2.2 4-7 

EXIT$ 4.3.2.1, 4-7 
Executive 10.4.5.3, 10-37 

,,---, definition 2.2.1 2-1 16.4.2.4 16-6 

l/ control language 1.3.3.1 1-3 EXLNK$ 10.4.5.1 10-37 
internal design Section 25 FACIL$ 7.2.7 7-14 
language interface 12.1.3 12-4 FACIT$ 7.2.7 7-14 
main storage layout 25.3.1 25-2 FITEM$ 7.2.6 7-3 
main storage usage 25.3 25-2 FORK$ 4.3.1.1 4-6 
service requests Section 4 IALl$ 4.9.3 4-25 

IJ$ 4.6.2 4-15 
Executive control language 10$ 6.3.3 6-8 

definition 2.2.5 2-4 IOARB$ 6.9.2 6-30 
IOAXI$ 6.9.3 6-31 

Executive control statements Section 3 101$ 6.3.4 6-8 
10W$ 6.3.5 6-9 

Executive request 2.4.4 2-15 10WI$ 6.3.6 6-9 
basic I/O 6.1.1 6-1 1$00 6.2.2 6-6 
definition 2.2.7 2-6 I$OT 6.2.1 6-4 
program file maintenance 24.3.1 24-7 LABEl$ 7.3.1 7-18 
summary of 4.2 4-2 LCORE$ 4.7.2 4-16 
synchrony 4.1.3 4-2 lINK$ 10.4.4 10-35 
within reentrant processors 10.5.6 10-41 LOAO$ 10.5.6.4 10-41 
ABORT$ 4.3.2.3 4-7 MCORE$ 4.7.1 4-15 
ACT$ 4.3.3.4 4-10 MCT$ 4.8.6 4-22 
AOACT$ 15.5.1 15-20 MSCON$ 22.3 22-2 
APCHCA$ 5.4.8 5-15 NAME$ 4.3.3.2 4-9 
APCHCN$ 5.4.6 5-14 NRT$ 4.3.4.2 4-11 
APNCHA$ 5.3.8 5-11 16.4.2.1 16-5 
APRINT$ 5.3.2 5-7 OPTS 4.8.2 4-18 
APRNTA$ 5.3.4 5-9 PCHCA$ 5.4.7 5-10 

/-- APRTCA$ 5.4.4 5-13 PCHCN$ 5.4.5 5-14 
( APUNCH$ 5.3.6 5-10 PCT$ 4.8.3 4-19 
'--/ 

AREAO$ 5.2.2 5-4 PFO$ 24.3.1.3 24-11 
AREAOA$ 5.2.4 5-5 



4144 U N I V A C 11 00 S E R I E S S Y S T EMS Index 10 
UP.NUMBER PAGE REVISION PAGE 

Term Reference Page Term Reference Page 

PFI$ 24.3.1.1 24-7 directive options 21'.2.3 21-4 
PFS$ 24.3.1.2 24-10 general 1.5.2 1-7 
PFUWL$ 24.3.1.4 24-12 general output 21.2.2 21-2 
PFWL$ 24.3.1.5 24-12 operation modes 21.2.2 21-3 
PNCHA$ 5.3.7 5·10 type I options 21.2.3.1 21·5 
PRINT$ 5.3.1 5-7 type II options 21.2.3.2 21-6 
PRNTA$ 5.3.3 5-8 type III options 21.2.3.3 21-9 
PRTCA$ 5.4.3 5-13 type IV options 21.2.3.4 21-11 
PUNCH$ 5.3.5 5·9 type V options 21.2.3.5 21-12 
READ$ 5.2.1 5-3 
READA$ 5.2.3 5·4 Forking 
RUNK$ 10.4.4.2 10-35 reentrant processor 10.4.6 10-37 
RUST$ 10.4.3 10-34 
ROUTE$ 15.4.3 15-19 Formats 
RT$ 4.3.4.1, 4·10, directory item 22.5 22-22 

16.4.2.1 16-5 file 24.2, 24-1 
SETC$ 4.4.1 4-11 23.6 23-3 
SNAPS 4.8.5 4-21 master log entry 23.6.4 23-7 
TDATE$ 4.5.2 4-13 standard editing for dumps 11.3.1.8.1 11-13 
TFORK$ 4.3.1.2 4-6 user-defined for editing dump 11.3.1.8.2 11-14 
TlME$ 4.5.3 4-13 summary account file entry 23.6.3 23-5 
TINTL$ 7.2.8 7-14 system data file (SO F) 24.2.3 24-4 
TSWAP$ 7.2.9 7-15 
TREAD$ 5.2.5 5-6 Friden 7100 12.2.1.7 12-10 
TWAIT$ 4.3.5 4-11 
UNLCK$ 6.3.8, 6-10 Functions 

16.4.2.3 16-6 handler, magnetic drum and unitized 
UNLNK$ 10.4.5.2 10-37 channel storage 6.5.1 6-21 
WAIT$ 6.3.1 6-7 tape handler 6.4.1 6-10 
WANY$ 6.3.2 6-8 

Functions, handler 
Executive system 1.3 1-2 FASTRAND mass storage 6.6.1 6-23 

functional areas 1.3.3 1-3 functions 6.7.1 6-25 

External definition retention 10.2.2.4 10-7 Functions, MSCON$ 22.3 22-2 

External filename FU RPU R processor 1.4.2, 1-6 
definition 2.2.4 2-4 Section 8 

FU RPU R control statements 
External reference definition 10.2.2.7 10-9 @CHG 8.2.15 8-22 

@CLOSE 8.2.10 8-19 
External reference retention 10.2.2.5 10-8 @COPIN 8.2.2 8-9 

@COPOUT 8.2.3 8-11 

F 
@COPY 8.2.1 8-5 
@CYCLE 8.2.16 8-24 
@DELETE 8.2.7 8-17 

Facility @ENABLE 8.2.17 8-26 
control statements 3.7 3-19 @ERS 8.2.6 8-17 
definition 2.2.2 2-1 @FIND 8.2.13 8-21 
usage log entries 23.6.4.2 23-9 @MARK 8.2.9 8-19 

@MOVE 8.2.4 8-13 
initialization for item handling 13.4.2.1 13-12 @PACK 8.2.14 8-22 

@PCH 8.2.12 8-20 
Flowchart generator 21.2 21-2 @PREP 8.2.11 8-19 

@PRT 8.2.5 8-14 /' 

FLUSH processor 21.2 21-2 @REWIND 8.2.8 8-18 
box types 21.2.5 21-13 
continuation 21.2.4 21-12 F-cycles 2.6.3 2-19 



4144 UNIVAC 1100 SERIES SYSTEMS Index 11 
U P-NUM BER PAGE REVISION PAGE 

Term Reference Page Term Reference Page 

\ '_ .. -- Facility assignment 1.3.3.3 1-4 cycles (F-cycles) 2.6.3 2-19 
alternate method of retrieving 7.2.7 7-14 definition 2.2.4 2-4 
retrieving (FITEM$) 7.2.6 7-3 deleting 8.2.7 8-17 

dump 11.3.1.6 11-11 
Facilities inventory 25.5.2 25-5 enabling disabled 8.2.17 8-26 

error handling 13.8.2 13-46 
FASTRAND exclusive use 7.2.4 7-3 

assigning files 3.7.1.1 3-21 external and internal names 2.6.2 2-18 
formats 23.6, 23-3 

FASTRAN D-format mass storage 24.2 24-1 
definition 2.2.2 2-1 format definition 13.5.3.1 13-35 
FITEM$ request packet 7.2.6.2 7-6 identification - SSG 20.5 20-4 
handler 6.6.1 6-23 independent cataloguing 3.7.3 3-35 

item retrieval 22.3.1 22-4 
Fieldata item retrieval for an individual file 22.3.3 22-9 

ASCII conversion 5.6, 5-17 listing 8.2.5 8-14 
Appendix 0 maintenance 24.3 24-7 

definition 2.2.7 2-6 master directory Section 22 
time and date in 4.5.1 4-12 modifying identity 22.3.11 22-15 
XS3-EBCDIC-BCD conversion table Appendix 0 multireel 8.1.3 8-3 

Fieldata control functions File 
alternate print file 5.4.3 5-13 names 2.6.1 2-18 
alternate punch file 5.4.7 5-15 organization 7.2 7-1 
print file 5.4.1 5-11 output queueing 3.6.3 3-16 
punch file 5.4.5 5-14 referencing 2.6.6 2-21 

releasing 3.7.4 3-37 
",,-- Fieldata images rollout and rollback 7.2.5 7-3 

L alternate file 5.2.3 5-4 search sequencing 10.2.2.3 10-7 
alternate print file 5.3.3 5-8 SECURE, selection for unload 19.8 19-7 
alternate punch file 5.3.7 5-10 SECURE recovery 19.10 19-8 
conversational mode 5.2.5 5-6 simultaneous use of 8.1.2 8-3 
printing 5.3.1 5-7 specifying a qualifier 3.7.6 3-41 
punching 5.3.5 5-9 structure and maintenance Section 24 
reading 5.2.1 5-3 symbiont 2.4.3.1 2·14 

terminating mode 3.8.2 3-43 
File utility routines (FURPUR) Section 8 

addressing 7.2.3 7·2 
administration processor (SECU R E) 1.4.5, 1·6 File, alternate 

Section 19 ASCII images 5.2.4 5-5 
altering backup entries 22.3.5 22-10 Fieldata images 5.2.3 5-4 
assignment 3.7.1 3-19 
attaching internal names 3.7.5 3-40 File, catalogued 
basic formats 8.1.4 8·3 changing the name 8.2.15.1 8-22 
basic notation 23.6.1 23·3 
catalogued, recovery 25.8 25·17 File, data 
changing keys 8.2.15, 8-22 at block buffering level 13.3 13-1 

8.2.15.1 8-22 closing 13.4.2.10 13·21 
changing read/write keys 22.3.9 22·14 defining physical organization 13.5.3 13·34 
changing mode 8.2.15, 8-22 item level 13.4.2, 13·12 

8.2.15.1 8·22 13.4 13·11 
changing the name 8.2.15 8·22 manipulation at block level 13.3.2 13·2 
checkpoint file format 17.2 17·1 manipulation at item level 13.4.2 13·12 
checkpoint identification message 17.2.3 17·5 organization 13.7 13-43 
copying 8.2.1 8·5 relinquishing user program association 13.4.2.11 13-22 

,""'.'. 
creation of card image 3.8.1 3-42 

\,,-- control 1.3.3.4, 1·4 File, element 
7.1 7·1 format 24.2.2 24·3 



.. I .... UNIVAC 1100 SERIES SYSTEMS Index 12 
UP.NUMBER PAGE REVISION PAGE 

Term Reference Page Term Reference Page 

Files, FASTRAND·formatted initialization 7.2.8 7·14 
assignment 3.7.1.1 3·21 marking an EO F 8.2.9 8·19 

rewinding 8.2.8 8·18 
File, input positioning 8.2.4 8·13 

label and sentinel handling 13.6.2 13·43 positioning within 8.2.13 8·21 
swapping reels 7.2.9 7·15 

File, log 
editor 23.8 23·25 File, word addressable 

assignment 3.7 .1.3 3·31 
File, master log 

creation and control 23.5 23·3 File control table 
arbitrary device handler I/O 6.9.1 6·27 

File, mass storage closing 13.3.2.8 13·8 
usage entry 23.6.4.3 23·10 generating 13.5.1.2 13·29 

initializing for block buffering 13.3.2.1 13·2 
File, print 

ASCII control functions 5.4.2 5·12 G Fieldata control functions 5.4.1 5·11 
output 23.3 23·2 Granule 

definition 2.2.2 2·1 
File, print alternate 

ASCII control functions 5.4.4 5·13 Granule items 
ASCII images 5.3.4 5·9 adding 22.3.13 22·16 
Fieldata control functions 5.4.3 5·13 

H 
File, program 

basic service package 24.3.2 24·13 Handler 
copying to tape 8.2.3 8·11 arbitrary device 6.9 6·27 
emptying 8.2.6 8·17 disc 6.7 6·25 
executive request maintenance 24.3.1 24·7 disc free format 6.9.4 6·31 
format 24.2.1 24·1 FASTRAND mass storage 6.6 6·23 
status 24.3.1.6 24·13 magnetic drum and unitized channel storage 6.5.1 6·21 
retrieving write location address 24.3.1.5 24·12 
table of contents search 24.3.1.2 24·10 Hardware fault interrupts 25.7.3 25·16 
update next write location 24.3.1.4 24·12 

Heading 
File, punch output control 3.6.1 3·13 

ASCII control functions 5.4.6 5·14 
Fieldata control functions 5.4.5 5·14 I 

File, punch alternate IALL$ usage 10.5.6.2 10·41 
Fieldata images 5.3.7 5·10 
ASCII control functions 5.4.8 5·15 I banks 10.5.1.1 10·39 
ASCII images 5.3.8 5·11 
Fieldata control functions 5.4.7 5·15 ICR 

File, summary account parity error interrupts 25.7.3.1 25·16 
creation and updating 23.4 23·3 
entry format 23.6.3 23·5 Idle line monitor 15.6 15·21 
structure 23.6.2 23·4 

*IF (SGS) 20.7.2.8 20·11 
File, system data 

format 24.2.3 24·4 Illegal text characters Appendix 0 

File, tape Image 
assigning 3.7 .1.2 3·26 calling a predefined sequence 20.7.2.11 20·14 
closing 8.2.10 8·19 definition 2.2.7 2·6 
copy into program files 8.2.2 8·9 defining skeleton sequences 20.7.2.5 20·9 



4144 UNIVAC 1100 SERIES SYSTEMS Index 13 
UP-NUMBER PAGE REVISION PAGE 

Term Reference Page Term Reference Page 

editing package 14.2 14-1 executive language, demand mode 12.1.3 12-5 
outputting nondirective skeleton (SGS) 20.7.2.7 20-10 routines, symbiont/user 5.1.2 5-2 
skeleton/loops (SGS) 20.7.2.9 20-13 
skipping skeleton (SGS) 20.7.2.8 20-11 Interlock 

definition 2.2.7 2-6 
Images, ASCII processing 25.5.6.1 25-12 

alternate file 5.2.4 5-5 
alternate print file 5.3.4 5-9 Internal filename 2.2.4 2-4 
alternate punch file 5.3.8 5-11 
printing 5.3.2 5-7 Interrupt 
punching 5.3.6 5-10 activity 6.1.2 6-4 
reading 5.2.2 5-4 activity priority reduction 16.4.2.3 16-6 

console 16.4.2.6 16-7 
Images, Fieldata ESI 16.6.2.1 16-9 

alternate file 5.2.3 5-4 handling 25.7 25-14 
alternate punch file 5.3.7 5-10 hardware fault 25.7.3 25-16 
conversational mode 5.2.5 5-6 interprocessor 25.7.2 25-15 
printing 5.3.1 5-7 power loss 25.7.3.2 25-16 
punching 5.3.5 5-9 program·generated 25.7.4 25-17 
reading 5.2.1 5-3 reducing activity priority 6.3.8 6-10 

response 15.7.1 15-22 
*INCREMENT (SGS) 20.7.2.9 20-13 storage and I C R parity error 25.7.3.1 25-16 

I nitial execution status 10.3.1.1 10-32 lSI 2.2.7 2-6 

Input Item 
end of 10.2.2.11 10-15 altering the main 22.3.4 22-10 

\, form I paper tape 12.2.1.2.1 12-6 retrieval for an individual file 22.3.3 22-9 
"-------' form II pape tape 12.2.1.2.2 12-7 retrieval for files 22.3.1 22-4 

merge of input streams (SSG) 20.9 20-22 
merging with skeleton streams (SSG) 20.7.2.3 20-8 Item handler Section 13 
none specified to BILLER 23.7.3.3 23-24 format procedure 13.5.3.1.1 13-35 
paper tape 12.2.1.2 12-5 transfer control to user program 13.4.4 12-24 
solicited console 4.6.1 4-13 
SSG 20.2 20-1 K 
termination sentinel 18.2.1 18-4 
unsolicited console 4.6.2 4-15 

Keyin 
Input mode processing log entry 23.6.4.11 23-19 

transfer control 13.4.4.2 13-24 
Keyin, unsolicited 

Input/output log entry 23.6.4.12 23-20 
device handlers Section 6 
device handlers and symbionts 1.3.3.6 1-5 L 
initiation 6.3.3 6-8 

6.3.7 6-9 
magnetic drum packet generation 6.2.2.1 6-4 Label 

magnetic tape packet generation 6.2.1 6-4 field 3.2.1 3-1 
packet generation 6.2 6-4 handling 13.6 13-42 
program synchronization 6.3 6-7 handling for input files 13.6.2 13-43 
wait for completion of 6.3.1 6-7 
error log entry 23.6.4.6 23-14 Labeling 

priority, real ti me 16.4.1.1 16-4 disc 7.4 7-19 
log entry, tape 23.6.4.13 23-20 

,.- Instruction and data areas 10.2.4.2 10-21 statements 3.9.3 3-45 
( tape 7.3 7-15 
''-.", ' Interface 

demand symbiont/user 12.1.2 12-4 Language processors 1.6 1-7 



4144 UNIVAC 1100 SERIES SYSTEMS Index 14 
UP-NUMBER PAGE REVISION PAGE 

Term Reference Page Term Reference Page 

language processor *lOOP (SGS) 20.7.2.9 20-13 
control statements 9.4.1 9-2 
definition 2.2.3 2-3 M 

lapse entries, altering 22.3.6 22-11 Magnetic drum 
FITEM$ request packet 7.2.6.4 7-10 

lC 0 R E$ usage 10.5.6.1 10-41 handler 6.5 6-21 

leading blanks in fields 3.2.6 3-2 Magnetic tape 
FITEM$ request packet 7.2.6.3 7-7 

library handler 6.4 6-10 
relocatable subroutine 1.7 1-7 I/O packet generation 6.2.1 6-4 

lIB$ 9.2 9-1 Main storage 
allocation and reentrancy 2.5.2 2-15 

line corrections 9.5.1 9-7 contraction 4.7.2 4-16 
partial 9.5.2 9-8 definition 2.2.2 2-1 

dump 11.3.1.1 11-5 
line terminal dynamic allocation 25.5.5 25-9 

deactivation input/output 15.4.1.10 15-13 executive 25.3 25-2 
expansion 4.7.1 4-15 

line terminal devices expansion and contraction 4.7 4-15 
assignment 15.2 15-2 

Mass storage 1.3.2 1-3 
line terminal group allocation 7.2.2 7-2 

initialization 15.4.1.1 15-9 definition 2.2.2 2-1 
dump 11.3.1.5 11-10 

line terminal table 15.3 15·2 file usage entry 23.6.4.3 23-10 
I/O packet generation 6.2.2 6-6 

link insertion for disc packs 22.3.12 22-16 monitoring availability 22.3.14 22-17 

LIST processor 1.5.6 1-7 Master configuration table 
18.6 18·12 retrieval of 4.8.6 4·22 

listing Master file directory 7.2.1 7-1 
control (DOC) 21.3.2.2 21-15 Section 22 
files and master file directory 8.2.5 8-14 listing 8.2.5 8-14 
user·defined control statement 5.5 5·16 manipulation 22.3 22-2 
user-created reentrant processors 10.4.3 10-34 structure 22.2 22-1 

lOAD$ usage 10.5.6.4 10·41 Master log 
creation and control 23.5 23-3 

Log entry formats 23.6.4 23-7 
checkpoint entries 23.6.4.8 23-17 inserting information in 3.5.2 3-12 
console entries 23.6.4.7 23-16 
console replies entry 23.6.4.10 23-19 MCO RE$ usage 10.5.6.1 10-41 
control statement 23.6.4.1 23-8 
entry initiation and control 23.2 23-1 Message 
facility usage entries 23.6.4.2 23-9 displaying 3.5.1 3-11 
file editor (LOG FED) 23.8 23·25 placing in a dump 11.3.3.4 11·22 
I/O error entry 23.6.4.6 23-14 
keyin entry 23.6.4.11 23-19 Millisec'onds 
program termination entry 23.6.4.4 23-12 time in 4.5.3 4-13 
run initiation entry 23.6.4.9 23·18 
run termination entry 23.6.4.5 23·13 MINGAP 10.2.2.12 
tape labeling entry 23.6.4.13 23-20 
unsolicited keyin entry 23.6.4.12 23·20 MINSIZ 10.2.2.12 --

Logging and accounting Section 23 Model functions (EOUT$) 14.3.3 14-12 



4144 UNIVAC 1100 SERIES SYSTEMS Index 15 
UP-NUMBER PAGE REVISION PAGE 

Term Reference Page Term Reference Page 

~/ Modes of operation 1.3.1 1-2 0 

Move Octal/decimal conversion Appendix 0 
considerations 6.4.2.3 6-18 

Operand 
MSCON$ fields 3.2.3 3-2 

status conditions 22.4 22-21 

Operating system 1.2 1-1 
MSCON$ functions definition 2.2.1 2-1 

OAOO$ 22.3.13 22-16 library files 9.2 9-1 
OBACK$ 22.3.5 22-10 
OBB$ 22.3.10, 22-14 Operation 

22.3.11 22-15 fields 3.2.2 3-2 
OBIT$ 22.3.4 22-10 multiple channel 6.4.3 6-18 
OCYC$ 22.3.2 22-8 
OGET$ 22.3.1 22-4 Operator communications 1.3.3.5 1-4 
OKEY$ 22.3.9 22-14 central site to remote site 12.2.1.6 12-9 
OLAPS$ 22.3.6 22-11 
OLlNK$ 22.3.12 22-16 Options 
OREAO$ 22.3.3 22-9 FLUSH directive 21.2.3 21-4 
OUNLO$ 22.3.7 22-13 retrieving on @XOT control statement 4.8.2 4-18 
MSALL$ 22.3.14 22-17 

Output 
Multiprocessing 25.4 25-5 editing package Section 14 

definition 2.2.6 2-5 editing routine 14.3 14-10 
file queuing 3.6.3 3-16 

Multiprocessing and mUltiprogramming 1.3.1.4 1-3 FLUSH 21.2.1 21-2 
" generation (SSG) 20.7.2 20-6 
',-/ Multiprocessor heading control 3.6.1 3-13 

definition 2.2.2 2-1 nondirective skeleton images (SGS) 20.7.2.7 20-10 
print file 23.3 23-2 

Multiprogramming printer 23.7.4 23-24 
application to real time 16.4.2.2 16-6 SSG 20.3 20-2 
considerations 2.5.5 2-16 
definition 2.2.6 2-5 Output functions (EOUT$) 14.3.2 14-12 

Multiple channel Output mode processing 
operations 6.4.3 6-18 transfer co ntrol 13.4.4.1 13-24 
operation 6.5.3 6-23 

P 
*MULTIPLY (SGS) 20.7.2.10 20-14 

Packet 
N definition 2.2.7 2-6 

Naming Paper tape 
activity 4.3.3.2 4-9 form I input 12.2.1.2.1 12-6 

form II input 12.2.1.2.2 12-7 
Name lists input 12.2.1.2 12-5 

SECURE 19.7.2 19-6 

Noise constant 
Parity error 

storage and ICR interrupts 25.7.3.1 25-16 
definition 2.2.7 2-6 

Notational conventions 2.3.1 2-12 
PCT 

definition 2.2.5 2-4 

C 
usage 25.3.2 25-3 

Numeric expressions 
SSG 20.7.1.5 20-6 POP processor 1.4.7 1-6 



4144 UNIVAC 1100 SERIES SYSTEMS Index 16 
UP-NUM BER PAGE REVISION PAGE 

Term Reference Page Term Reference Page 

Peripherals, communications Print file 
FITEM$ request packet 7.2.6.5 7-11 ASCII control functions 5.4.2 5-12 

Fieldata control functions 5.4.1 5-11 
Peripherals, disc 

FITEM$ request packet 7.2.6.6 7-13 Print file, alternate 
ASCII control functions 5.4.4 5-13 

Peripheral devices ASCII images 5.3.4 5-9 
assignment 3.7.1 3-19 Fieldata control functions 5.4.3 5-13 

Fieldata images 5.3.3 5-8 
Peripherals, FASTRAND mass storage 

FITEM$ request packet 7.2.6.2 7-6 Printer 
output 23.7.4 23-24 

Peripherals, magnetic drum 
FITEM$ request packet 7.2.6.4 7-10 Priority 

changing 16.4.2.1 16-5 
Peripherals, magnetic tape control, real time 16.4.2 16-5 

FITEM$ request packet 7.2.6.3 7-7 interrupt activity reduction 16.4.2.3 16-6 
real time dispatching 16.4.1.2 16-4 

Peripherals, nonstandard reducing interrupt activity 6.3.8 6-10 
FITEM$ request packet 7.2.6.1 7-5 

Priority, 1/0 
PM D processor real time 16.4.1.1 16-4 

definition 2.2.7 2-6 
Private file 

Pool mode definition 2.2.4 2-4 
1/0 operations 15.4.1.7 15-12 

Privileged instruction 
/ 

Pool mode, dual definition 2.2.7 2-6 
input operations 15.4.1.8 15-13 

Procedure 
Pool, dual A$PRINT 5.3.2 5-7 

method 16.3.5 16-3 A$PRNTA 5.3.4 5-9 
A$PNCHA 5.3.8 5-11 

Position A$PUNCH 5.3.6 5-10 
definition 2.2.2 2-1 A$READ 5.2.2 5-4 

A$READA 5.2.4 5-5 
Postmortem dump processor 1.4.3, 1-6 B$GPU L 13.5.2 13-32 

11.2 11-1 E$DIT 14.2.2 14-4 
E$DlTR 14.2.2 14-4 

Power loss E$DITX 14.2.2 14-4 
interrupts 25.7.3.2 25-16 FORMAT 13.5.3.1.1 13-35 

I$OW 6.3.5 6-9 
Preambles, element I$OWI 6.3.6 6-9 

processing 10.2.3.5 10-20 I$OXI 6.3.7 6-9 
L$OAD 10.4.5.1 10-37 

Preparatio n L$SNAP 4.8.5 4-21 
reentrant processor 10.4 10-33 P$NCHA 5.3.7 5-10 

P$RNTA 5.3.3 5-8 
Print P$RINT 5.3.1 5-7 

file output 23.3 23-2 P$UNCH 5.3.5 5-9 
output heading control 3.6.1 3-13 R$EAD 5.2.1 5-3 

R$EADA 5.2.3 5-4 
Printing X$FRMT 11.3.1.8.2 11-14 

ASCII images 5.3.2 5-7 
Fieldata images 5.3.1 5-7 Procedure definition processor 1.4.7, 1-6 /' 

9.7 9-12 
'-



4144 UNIVAC 1100 SERIES SYSTEMS Index 17 
UP·NUMBER PAGE REVISION PAGE 

Term Reference Page Term Reference Page 

~/ Procedures, block buffering 13.3.2.7 13·8 Procedures, item handler 
BCLOSE 13.3.2.8 13·8 BLOCK 13.5.3.1.2 13·35 
BMARK 13.3.2.6 13·7 CLOSE 13.4.2.9, 13·20 
BOPEN 13.3.2.1 13·2 13.4.2.10 13·21 
BREAD 13.3.2.2 13·4 DRAIN 13.4.2.8 13·19 
BRRED 13.3.2.3 13·4 end·format 13.5.3.1.5 13·38 
BRWRIT 13.3.2.5 13·6 EOF 13.5.3.1.2 13·35 
BWRIT 13.3.2.4 13·5 EOR 13.5.3.1.2 13·35 
BXRED 13.3.2.3 13·4 ITEM 13.5.3.1.2 13·35 

LABEL 13.5.3.1.2 13·35 
Procedures, conditional control OPEN 13.5.3.1.2 13·35 

X$AND 11.3.2.3 11-17 READ 13.4.2.1 13·12 
X$IF 11.3.2.1 11-16 READRM 13.4.2.2 13-13 
X$OR 11.3.2.2 11-17 RELESE 13.4.2.11 13-22 
X$TALY 11.3.2.4 11·18 section-name 13.5.3.1.3 13-36 

subroutine-name 13.5.3.1.4 13-36 
Procedures, dynamic dump 11.3 11·4 WRITE 13.4.2.5 13-16 

WRITRM 13.4.2.6 13-17 
Procedures, editing 

E$CHAR 14.2.3 14-4 *PROCESS (SGS) 20.7.2.11 20-14 
E$COL 14.2.3 14-4 
E$COLN 14.2.3 14·4 Processor 
E$COPY 14.2.3 14-4 control statements 9.4 9·1 
E$DATl 14.2.3 14-4 CON78 18.7 18-19 
E$DAT2 14.2.3 14·4 CULL 18.5 18-15 
E$DAT3 14.2.3 14-4 DATA 18.3 18·4 
E$DAYl 14.2.3 14·4 definition 2.2.3 2-3 

/..-"- E$DAY2 14.2.3 14-4 DOC Section 21 L E$DAY3 14.2.3 14-4 ED 18.4 18-6 
E$DECF 14.2.3 14·4 ELT 18.2 18-1 
E$DECV 14.2.3 14·4 FLUSH Section 21 
E$FDl 14.2.3 14-4 interface routines 9.6 9·10 
E$FD2 14.2.3 14-4 language 1.6 1-7 
E$FLFl 14.2.4 14-9 LIST 18.6 18-18 
E$FLF2 14.2.4 14-9 postmortem dump 11.2 11-1 
E$FLGl 14.2.4 14-9 referencing 10.4.4 10-35 
E$FLG2 14.2.4 14-9 system symbolic Section 18 
E$FLSl 14.2.4 14-9 system utility 1.5 1-6 
E$FLS2 14.2.4 14-9 system 1.4 1-6 
E$MSG 14.2.3 14·4 
E$MSGR 14.2.3 14-4 Processor, reentrant 10.4 10·33 
E$OCTF 14.2.3 14·4 collecting 10.2.3.4 10-20 
E$OCTV 14.2.3 14-4 entering a list of user-created 10.4.3 10·34 
E$PACK 14.2.3 14·4 searching 10.4.2 10-33 
E$SKIP 14.2.3 14-4 termination 10.4.5 10-37 
E$TD 14.2.3 ·14·4 
E$TIME 14.2.3 14-4 Processor control statement 

definition 
Procedures, EDIT$ 

2.2.5 2-4 

E$PKT 14.2.1 14-3 Processor state register 
E$PKTF 14.2.1 14-3 altering of 4.8.4 4-20 

Procedures, specification for dumps Processing 
X$BACK 11.3.3.3 11-21 buffer 15.7.2 15-22 . 
X$BUFR 11.3.3.1 11-19 contingency 4.9.4 4·27 

,~.' ... -... X$MARK 11.3.3.3 11·21 demand Section 12 
, ,-....... ",-, X$MESG 11.3.3.4 11-22 error 13.8 13-46 

X$OFF 11.3.3.2 11-20 interlock 25.5.6.1 25-12 
X$ON 11.3.3.2 11-20 real time Section 16 



4144 UNIVAC 1100 SERIES SYSTEMS Index 18 
UP.NUMBER PAGE REVISION PAGE 



4144 UNIVAC 1100 SERIES SYSTEMS Index 19 
UP.NUMBER PAGE REVISION PAGE 



4144 UNIVAC 1100 SERIES SYSTEMS Index 20 
UP-NUMBER PA GE RE VISION PA G E 

Term Reference Page Term Reference Page 

SEG directive considerations 10.2.4.3 10-21 SNOOPY 11.4 11-24 

Segment Source input routine 
relocatable 10.2.2.14 10-17 control options 9.4.2 9-6 
versus nonsegmented programs 10.2.3.3 10-19 

Source language 
Segment, dynamic @SECURE 19.7 19-5 

definition 10.2.2.15 10-17 
SGS 

Segment, program dynamic expansion of streams 20.7.2.4 20-9 
loading 10.4.5 10-37 skeleton image sequences 20.7.2.5 20-9 

Segmentation SSG processor Section 20 
program 10.2.4 10-20 file identification 20.5 20-4 

general 1.5.3 1-7 
Segmentation directives 10.2.4.1 10-21 input streams 20.2 20-1 

IN 10.2.2.1 10-5 merging input and skeleton streams 20.1.2.3 20-8 
NOT 10.2.2.2 10-6 numeric expressions 20.7.1.5 20-6 
RSEG 10.2.2.14 10-17 stream generation 20.7.1.4 20-5 
SEG 10.2.2.13 10-16 

Standard action 
Sentinel definition 2.2.7 2-6 

handling 13.6 13-42 
handling for input files 13.6.2 13-43 Starting address redefinition 10.2.2.6 10-9 
input termination 18.2.1 18-4 

Starting address redefinition 10.2.2.6 10-9 
Service requests 

executive Section 4 Status 
initial execution 10.3.1.1 10-32 

Set mode program file package 24.3.1.6 24-13 
function (SM$) 6.4.1.1 6-12 

Status codes 6.10 6-32 
Sector address run stream Appendix C 

changing block buffering EO F 22.13.10 22-14 
Status conditions 

SECURE processor 1.4.5, 1-6 MSCON$ 22.4 22-21 
Section 19 

applications 19.9 19-8 Storage 
direction 19.7.4 19-7 parity error interrupts 25.7.3.1 25-16 
file recovery 19.10 19-8 
major function definitions 19.2 19-2 Summary account filecreation and updating 23.4 23-3 
name lists 19.7.2 19-6 entry format 23.6.3 23-5 
selection of files for unload 19.8 19-7 structure 23.6.2 23-4 
source language 19.7 19-5 
standard commands 19.7.1 19-5 Subroutine, end-of-file 13.5.3.3.5 13-42 

*SET (SGS) 20.7.2.13 20-16 Subroutine, end-of-reel 13.5.3.3.4 13-42 

Single items Subroutine, item record 13.5.3.3.3 13-41 
layout 13.4.3 13-22 

Subroutines, block buffering 
SLR BCLOF$ 13.3.2.8 13-8 

definition 2.2.2 2-1 BCLOR$ 13.3.2.7 13-8 
BMARK$ 13.3.2.6 13-7 

Snapshot dump 4.8.5 4-21 BOPEN$ 13.3.2.1 13-2 
BREAD$ 13.3.2.2 13-4 

Snapshot dumps BREL$ 13.3.2.8 13-8 
adding 10.2.2.10 10-13 BRRED$ 13.3.2.3 13-4 



4144 UNIVAC 1100 SERIES SYSTEMS Index 21 
UP.NUMBER PAGE REVISION PAGE 

Term Reference Page Term Reference Page 

"--./ BRWRT$ 13.3.2.5 13·6 Symbolic stream generator (SSG) Section 20 
BWRIT$ 13.3.2.4 13·5 
B$MOVE 13.3.2.4, 13·5 System 

13.3.2.5 13·6 definition 2.2.1 2·1 

Subroutines, block record 13.5.3.3.2 13·41 System data file (SO F) 
format 24.2.3 24·4 

Subroutines, ED IT$ 
EDIT$ 14.2.2 14·4 System processor 
EDITR$ 14.2.2 14-4 definition 2.2.3 2·3 
EDITX$ 14.2.2 14·4 

Subroutines, item handler 
System symbolic processors Section 18 

IHCLF 13.4.2.10 13·21 System utility processors 1.5 1-6 
IHCLR 13.4.2.9 13·20 
IHDRN 13.4.2.8 13-19 SYMSTREAM 
IHOPN 13.4.2.1 13-12 Backus normal form 20.10 20-25 
IHRD 13.4.2.2 13·13 directive structure 20.11 20-26 
IHRDRN 13.4.2.3 13-15 elements 20.7.1 20·5 
IHWRT 13.4.2.5 13-16 fundamentals of 20.7 20-5 
IHWTRN 13.4.2.6 13·17 integer expressions 20.7.1.3 20-5 

process parameters 20.7.1.2 20·5 
Subroutines, label record 13.5.3.3.1 13-41 syntax 20.7.2 20-6 

variables 20.7.1.1 20-5 
Supervisor 1.3.3.2 1-3 

SYS$*DLOC$ 
Switch use with SECURE 19.6 19-4 ,/'.-

Switching 25.5.6.2 25-13 
'-_/ definition 2.2.6 2-5 

Symbionts T 
definition 2.2.7 2-6 
directive statement 3.6 3-13 Table 

collector produced 10.5.4.3 10-41 
Symbiont, demand updating element tables 24.3.1.1 24-7 

DCT-500 12.2.2 12-11 
general operation 12.2 12-5 Tape 
teletypwriter 12.2.1 12-5 assigning files 3.7.1.2 3-26 
DCT-lOOO 12.2.3 12-14 block dump 11.3.1.4 11-9 
UNISCOPE 100 12.2.3 12-14 labeling 7.3 7-15 
UNISCOPE 300 12.2.4 12-20 reading and writing label blocks 7.3.1 7-18 

unit mode control 3.7.2 3-34 
Symbiont file 2.4.3.1 2-14 

Tape file 
Symbionts copying to program files 8.2.2 8-9 

general 5.1.1 5-1 initialization 7.2.8 7-14 
file breakpointing 2.4.3.1 2-14 swapping reels 7.2.9 7-15 
input/output 1.3.3.6 1-5 
interface requests Section 5 Tape handler 
output 2.4.3 2-14 functions 6.4.1 6-10 
output file queuing 3.6.3 3-16 
user interface demand mode 12.1.2 12-4 Tape labels 
user interface routines 5.1.2 5-2 log entry 23.6.4.13 23-20 

Symbolic element Tape, paper 
".-....... 

definition 2.2.3 2-3 input 12.2.1.2 12-5 
,'--...-/ form I input 12.2.1.2.1 12-6 

Symbolic element cycles 2.6.5 2-21 form II input 12.2.1.2.2 12-7 



4144· UNIVAC 1100 SERIES SYSTEMS Index 22 

UP.NUMBER PAGE REVISION PAGE 

Term REference Page Term Reference Page 

Tape reel Track 
closing 13.3.2.7, 13·8 definition 2.2.2 2·1 

13.4.2.9 13·20 
Task Type I options (FLUSH) 21.2.3.1 21·5 

definition 2.2.5 2·4 
initiation 2.5.2 2·15 Type II options (FLUSH) 21.2.3.2 21·6 
termination 2.5.6 2·17 

Type III options (FLUSH) 21.2.3.3 21·9 
Task control 

basic concepts 2.5 2·15 Type IV options (FLUSH) 21.2.3.4 21·11 

Techniques for utilization of mass storage 1.3.2 1·3 Type V options (FLUSH) 21.2.3.5 21·12 

Teletypewriter U control characters 12.2.1.3 12·7 
OCT·500 12.2.1.8 12·10 

UNISCOPE 100 demand symbiont 12.2.1 12·5 
operational considerations 12.2.1.1 12·5 control characters 12.2.3.3 12·16 

display terminal control functions Appendix 0 

Temporary file operational considerations 12.2.3.1 12·14 

definition 2.2.4 2·4 user program interface 12.2.3.4 12·19 

Temporary program file (TPF$) 9.3 9·1 UNISCOPE 300 
control characters 12.2.4.2 12·21 definition 2.2.4 2·4 
operational considerations 12.2.4.1 12·20 

Test and set usage 16.4.4 16·7 
Unit record 

Text editor (ED processor) FITEM$ request packet 7.2.6.1 7·5 
/' 

general 1.4.6 1·6 
Unitized channel storage 

Text definition 2.2.2 2·1 

control (DOC) 21.3.2.3 21·16 
handler 6.5 6·21 

Time User 

changing unload 22.3.7 22·13 definition 2.2.1 2·1 

in milliseconds 4.5.3 4·13 symbiont interface, demand mode 12.1.2 12·4 

Time and date User program 

in binary 4.5.2 4·13 definition 2.2.3 2·3 

in Fieldata 4.5.1 4·12 
Unit processor 

Timing definition 2.2.2 2·1 

communications 15.7 15·21 

V 
Time·sharin!) 25.5.5.4 25·11 

Time·sharing (demand processing) 1.3.1.2 1·2 
Variable 

changing existing or created (SGS) 20.7.2.13 20·16 
division (SGS) 20.7.2.11 20·14 

Timed wait multiplication (SGS) 20.7.2.10 20·14 
activity 4.3.5 4·11 SYMSTREAM 20.7.1.1 20·5 
considerations 16.4.2.5 16·7 zeroing existing and created (SSG) 20.7.2.2 20·7 
creating an activity with 4.3.1.2 4·6 

Version 
Time limitation changing the name 8.2.15 8·22 

exceeding maximum 16.4.3 16·7 /'-

Version names "-
Title control (DOC) 21.3.2.1 21·15 deleting SGS, PERM, and TEMP 20.7.2.12 20·15 



4144 UN I V A C 11 00 S E R I E S S Y S T EMS Index 23 
UP-NUM BE R PAGE REVISION PAGE 

Term Reference Page Term Reference Page 

I 

"'---- \N X 

Wait 
completion of I/O 6.3.2 6-8 @XQT control statement 
completion of specific I/O 6.3.1 6-7 retrieving options 4.8.2 4-18 

Word XS3 
definition 2.2.2 2-1 Fieldata - EBCDIC-BCD conversion table Appendix D 

Word-addressable drum 
assigning files 3.7.1.3 3-31 
definition 2.2.2 2-1 Z 

Write 
considerations 6.4.2.2 6-14 Zeroing existing and created variables 20.7.2.2 20-7 
protect mode 10.5.3 10-40 

Writing 
current buffer content 13.4_2.8 13-19 
EO F marks 13.3.2.6 13-7 
tape label blocks 7.3.1 7-18 

Writing, random 
data blocks 13.3.2.5 13-6 
data items 13.4.2.6 13-17 

('....-- Writing, sequential 

~ data blocks 13.3.2.4 13-5 
data items 13.4.2.5 13-16 

WTS 15.1.1.1 15-1 



"" 


