
A

",¢: ."-'

~ ~ f t <:.
'" " <j, ~',

Volume 4
System Utility
Programs
Programmer Reference

UNIVAC
LUMPU1FR SYS1EIVlS

UP-4144.41

This document contains the latest information available at
the time of publication. However, Sperry Univac reserves
the right to modify or revise its contents. To ensure that you
have the most recent information, contact your local Sperry
Univac representative.

Sperry Univac is a division of Sperry Rand Corporation.

AccuScan, FASTRAND, PAGEWRITER, SPERRY UNIVAC,
UNISCOPE, UNISERVO, UNIVAC, and ~ are trademarks of
the Sperry Rand Corporation.

This manual corresponds to CULL level 3R2, DOC level
4Rl, FLAP level 4R1A, LIST level 3Rl, PIRCB$ level
1.0, and SYSLIB level 73R1 of the 1100 Series
Executive System.

/s' 1 9 66, 1 9 6 8 , 1 9 7 1, 1 9 7 3, 1 9 7 4, 1 9 7 5, 1 9 7 7 -
SPERRY RAND CORPORATION

PRINTED IN U.S.A.

UftOA T£ LEvn

pss -1
"AGE

4 '144.41 L SPERRY UNIVAC 1100 Series Executive
UP-HUM8EA System Utility Programs - ,-----:--...::.-.------'-----'---

PAGE STATUS SUMMARY

ISSUE: UP-4144.41

Section Pages Update Section Pages Update Section Pages Update

Cover/Discl.imer

I
PSS 1

Pref.ce 1

Content. 1 ~hru 5

1 1 ~hru 2

2 1 ~hru 110

3 1

4 1 t.hru 4

5 1 thru 17

6 1 thru 12

7 1 thru 4

User Comment

Sheet

Tot.l: Hi9

p.ges .nd cover

....

4144.41 L SPERRY UNIVAC 1100 Series Executive I I Preface-I
~~~_____ _ ________ s~vs_t_e_m __ U_t_il_;t_v_P_r_o_g_r_a_m_s. ______________________ ~u_~_A_n __ L~ __ L ____ ~ __ 'A_G_E ____ _ 

Preface 

The SPIERRY UNIVAC 1100 Series Executive System Programmer Reference manual is divided into 
four vollumes. These volumes are titled as follows: 

• SPERRY UNIVAC 1100 Series Executive System, Volume 1, Index, UP-4144. 1 

Volume 1 references terms and subjects covered in the other volumes. The references are 
by volume number dash paragraph number, e.g., paragraph 3.7.4 of Volume 2 will be 
2-3.7.4. 

• SPERRY UNIVAC 1100 Series Executive System, Volume 2, EXEC Programmer Reference, 
UP-4144.2 

Volume 2 describes the overall control of SPERRY UNIVAC 1100 Series Systems by the 
Executive system. 

• SPERRY UNIVAC 1100 Series Executive System, Volume 3, System Processors Programmer 
Re'ference, Ur-4144.3 

Volume 3 describes the basic system processors. 

• SPERRY UNIVAC 1100 Series Executive System, Volume 4, System Utility Programs 
Programmer Reference, UP-4144.41 

Volume 4 describes the system relocatable library and utilitv processors. 

Cross re'ferences to subjects in. other volumes are by volume number dash paragraph number, e.g., 
2--3.7.4 is Volume 2, paragraph 3.7.4. 



4144.41 L SPERRY UNIVAC 1100 Serle. Executive Contents-1 
~~~____ __ ______ S~y_s_te_m __ U_t_ili~ty~Pr_o~g_r8_m __ s __________________ _Lu_~_A_n_~ __ L ____ ~'_M_E __ ___ 

Page Statu!~ Summary

Prefa~ce

ContEtnts

1. Introduction

2. S"stem Relocatable Library (SYSLIB)

2. 'I. Systetm Standard Procedures and Definitions
2. 11 . 1. AXR $

2.11.2. Common Bank Entry Points
2. 11.2. 1. CBEPFORV$
2.1!.2.2. CBEPMATH$
2.1.2.3. CBEPMDP$
2.1.2.4. CBEPPIR$
2.1.2.5. CBEPP2IQ$
2.1.3. CERU $
2.1.4. ERU$
2.1.5. PROC$
2.1.6. Element Subtype Definitions (SSTYP$)

2.~~. Collector Interface Routines

2.~L Diagnostic and Debugging Routines
2.3. 1. Program Trace Routine (SNOOPY)
2.3.2. CABSAD$
2.3.2.1. Compute Absolute Address (CABSAO$)
2.3.2.2. Initialize CABSAD$ (CAINIT$)
2.3.2.3. Compute Bank Index (CBX$)
2.3.2.4. Compute Segment Index (CSX$)
2.3.2.5. Compute Symbol Value (CSYMVL$)
2.3.3. CRELAD$
2.3.3.1. Compute Relative Address (CRELAD$)
2.3.3.2. Initialize CRELAo$ (CRINIT$)
2.3.3.3. Convert Bol to Symbolic Bank Name (CBN$)
2.3.3.4. Convert Segment Index to Segment Name (CSN$)

Contents

1-1

2-1

2-1
2-1
2-1
2-1
2.:..1
2-1
2-1
2-2
2-2
2-2
2-3
2-4

2-4

2-5
2-5
2-16
2-16
2-17
2-18
2-18
2-19
2-19
2-19
2-20
2-21
2-21

4144.41
U .. -HUMIER

SPERRY UNIVAC 1100 Serle. executive
System Utility Programs

2.4. Editing Routines
2.4.1. Introduction
2.4.2. Image Composition Editing Package (EDIT$)
2.4.2. 1. EDIT$
2.4.2.2. Time and Date Editing Routines (EDIT$T)
2.4.2.3. floating-Point Editing Routines (EDIT$F)
2.4.2.4. The Packet Format

. 2.4.2.5. Procedures for EDIT$ (EDIT$P)
2.4.3. ASCII Image Composition Editing Package (AEDIT$)
2.4.3.1. The AEDIT$ Packet
2.4.3.2" Generating the AEDIT$ Packet
2.4.3.3. ASCII Editing Routine Descriptions
2.4.4. EOUT$ (Generalized Output Editing Routines)
2.4.4.1. Editing Functions
2.4.4.2. Output Functions
2.4.4.3. Modal Functions
2.4.4.4. Control Functions
2.4.4.5. EOUT$ Calling Sequences

2.6. Processor Interface Routines (PIRs)
2.5.1. Preprocessor Routines (PREPRO,PREPRM)
2.5. 1. 1. Preprocessor Routine (PRE PRO)
2.5.1.2. Preprocessor Routine (PREPRM)
2.5. 1.3. PARTBL Description
2.5.1.4. Reusable Processor Construction
2.5.1.4.1. Reusable Processor Preprocessor Routine (REPRO$)
2.5.1.4.2. Reusable Processor Preprocessor Routine (REPRM$)
2.5.1.5. Processor Field Retrieval (FLDGET)
2.5.2. Preprocessor Routine (PREPF$)
2.5.3. INFOR Table Interlace Routines (INFOR$)
2.5.3.1. Element and File Notation
2.5.3.2. Reading the INFOR Table
2.5.3.3. Internal Format Routines
2.5.3.4. Read INFOR Table (RINF$)
2.5.3.5. Search Infor Table (SINF$)
2.5.3.6. Transfer to ELT$ Table From INFOR Table (SEL T$)

UP'OA T£ LEVEL

2.5.3.7. Assign Attached Name to File Specified in INFOR Table (DUSE$)
2.5.4. Identification Line Routines (IDLlNE$/IDONLY$)
2.5.4. 1. IDLlNE$
2.5.4. 1. 1. JOLIN $

2.5.4.1.2. IDTIME$
2.5.4.2. IDONLY$
2.5.4.2. 1. IDONLY$
2.5.4.2.2. IDTOME$
2.5.5. Processor Scratch File Routine (GETPSF$)
2.5.6. Source Input/Output Routine (SIR$)
2.5.6. 1. SIR$ Control Options
2.5.6.2. Open Source (OPNSR$)
2.5.6.3. Initialize Source (INISR$)
2.5.6.4. Get Source Image in Fieldata (GETSR$)
2.5.6.5. Get Source Image in ASCII (GETAS$)
2.5.6.6. Get Source Image In Native Mode (GETNM$)

Contents-2
"AGE

2-22
2-22
2-22
2-23
2-23
2-26
2-28
2-30
2-32
2-33
2-34
2-34
2-36
2-38
2-39
2-39
2-40
2-41

2-42
2-42
2-43
2-44
2-44
2-45
2-47
2-47
2-48
2-50
2-51
2-53
2-53
2-53
2-54
2-54
2-56
2-58
2-58
2-59
2-60
2-60
2-60
2-60
2-60
2-60
2-61
2-64
2-65
2-66
2-67
2-68
2-69

4144.41 L SPERRY UNIVAC 1100 S.rle. Executive Contents-3
~~____ __ ______ S_y_s_te_m __ U.,_t_ili_~ __ P_ro_g_ra_m __ s __________________ ~u_~_A_n_~ __ L ____ ~~_A_GE __ ___

2,5.6.7. Close Source (CLOSR$)
2.5.6.8. SIR$ Externalized Labels
2.5.6.9. SIR$ Multipass Capability
2.5.6.10. Compressed Symbolic Elements
2.5.7. Program File Basic Service Package (BSP$)
2.5.7.1. Read File Table Index
2.5.7.2. Read Program File Table
2.5.7.3. Search Table for Requested Item
2.5.7.4. Delete Item From Requested Table
2.5.7.5. Entry Look-Up By Number
2.5.7.6. Add Item to Requested Table
2.5.7.7. Write Last Item Referenced
2.5.7.8. Write Requested Table Back to Mass Storage
2.5.7.9. Write File Table Index
2.5.8. Relc:>catable Output Routine (ROR)
2.5.8.1. Start Relocatable Output Routine (SROR$)
2.5.8.2. Generation of Relocatable Output (ROR$)
2.~5.8.3. End Relocatable Output Routine (EROR$)
2.!5.8.4. TiJble Write Subroutine (TBLWR$)
2.!5.8.5. Optimization Information
2.5.9. Source Output Routine (SOR)
2.15.9.1. Start Source Output Routine (SSOR$)
2.!5.9.2. Gisneration of Source Output (SOR$, SORA$, SORASC$, SORASCA$)
2.!5.9.3. End Source Output Routine (ESOR$)
2.!5.10. Post Processor Routine (POSTPR$)
2.!5. 10.1. Field Release (FLDREL$)

2.IS. UTIUTY ROUTINES
2.~5.1. Master File Directory Service Package (MFDSP$)
2.~5.2. Fieldata/ASCII Data Conversion (FDASC$)
2.~5.2.1. Filsldata to ASCII Conversion Routine (FDASC$)
2.6.2.2. ASCII to Fieldata Conversion Routine (ASCFD$)
2.t3.3. Fieldata/ASCII Conversion Table (TABLE$)
2.t3.4. System Data Format Input/Output Routines (SDFI, SDFO)
2 .• 3.4.1. System Data Format Input Routine (SDFI)
2.0.4.2. System Data Format Output Routine (SDFO)

3. Processor Interface Routine Common Bank (PIRCB$)

4. CUILL Processor

4. 'I. INTRODUCTION

4.:1. @CULL

5., Dc)cument Processor (DOC)

6. 'I. INTRlODUCTION

6.:t @DOC FORMAT

6.:1. OUTFJUT LISTINGS

2-69
2-70
2-70
2-70
2-71
2-73
2-74
2-76
2-78
2-81
2-82
2-86
2-87
2-88
2-89
2-89
2-90
2-93
2-94
2-97
2-97
2-99
2-99
2-100
2-100
2-100

2-101
2-101
2-102
2-103
2-103
2-104
2-104
2-104
2-107

3-1

4-1

4-1

4-1

5-1

5-1

5-1

5-6

4144.41
U UMBER

SPERRY UNIVAC 1100 Serie. executive
System Utility Programs

6.4. INTERNAL CONTROL DIRECTIVES
5.4.1. Title Control
5.4. 1. 1. Title Control Compatibility
6.4.2. Input Case Control
5.4.3. Listing Control

. 6.4.4. Text Cvntrol
6.4.4.1. Hyphenation Removal

. 6.4.4.2. Right Margin Alignment
6.4.6. Editing Control

6.5. DOC PROCESSOR DIAGNOSTICS
6.6. 1. Error Handling
6.6.2. DOC Processor Error Messages

6. Flow Analysis Program (FLAP)

6.1. GENERAL

6.2. FLOW OUTPUT PROCEDURE (FLOP)

6.3. FLOW INFORMATION PROCESSOR (FLIP)

6.4. ERROR MESSAGES PRODUCED BY FLOP

6.6. ERROR MESSAGE'S PRODUCED BY FLIP

7. LIST Processor

7. 1. INTRODUCTION

7.2. @LlST

User Comment Sheet

Figures

Figure 2-1. PARTBL Description
Figure 2-2. Format of INFOR Table
Figure 2-3. Format of the EL T$ Table

Tables

UIIOATE LEVEL
Content&-4

"AGE

6-6
6-7
6-7
6-7
6-9
6-11
6-12
6-12
6-13

6-16
6-16
6-16

6-1

6-1

6-2

6-6

6-11

6-11

7-1

7-1

7-1

2-46
2-62
2-66

Table 2-1. Control Register and Partial Word Designator Mnemonics and Addresses 2-2
Table 2-2. Omnibus and Symbolic Element Subtypes 2-4
Table 2-3. SNOOPY Demand Mode Commands 2-10
Table 2-4. SNOOPY Control Flags 2-16
Table 2-6. General Purpose Editing Routines (In EDIT$) 2-24
Table 2-6. Time and Date Editing Routines (In EDIT$T) 2-26
Table 2-7. Floating-Point Editing Routines (In EDIT$F) 2-27
Table 2-8. Initialization and Termination of ASCII Editing Mode 2-34
Table 2-9. General Purpose ASCII Editing Routines 2-36
Table 2-10. ASCII Floating-Point Editing Routines 2-36
Table 2-11. RINF$ Error Messages 2-64
Table 2-12. IDBUFF Length 2-69
Table 2-13. Source Input Routine Options 2-64

4144.41 L SPERRY UNIVAC 1100 Serlo. executive Contents-5
~~____ __ ________ S_y_st_e_m __ U_t_ih_·ty __ P_r_og __ ra_m_s ____________________ ~~u_~_A_n_uw ___ l __ ~_'M __ E __ __

Table 2-14. ROA Item
Table 2-15. Base Table
Table 2-16. Location Counter Table
Table 2-17. Undefined Symbol Table
Table 2-18. Entry Point Table
Table 2-19. Control Information Table
Table 2-20. File Control Table for SDFI
Table 2-21. File Control Table for SDFO
Table 4-1. @CULL Control Statement, Options
Table 5-1. @()OC Control Statement Options
Table 5-2. @()OC Device Forms
Table ti-3. Title Control Directives
Table 5-4. Listing Control Directives
Table 5-5. COLUMN and LENGTH Directives
Table 6-1. FLOP Entry Points

2-90
2-95
2-95
2-96
2-96
2-97
2-106
2-109
4-3
5-3
5-4
5-8
5-10
5-12
6-2

4144.41 L SPERRY UNIVAC 1100 Se,ie. executi"e 1-1
~~______ _________ S_y_s_te_m __ U __ t;_Ii_ty __ P_ro_g_r_a_m_s ______________________ L-u~ __ n __ ~ __ L ____ ~'~ __ E __ __

1. Introduction

This volume doscribes the routines included in the System Relocatable Library (SYSLlB). Also
described are certain utility processors that are provided for the convenience of the user that are not
essential to use' the SPERRY UNIVAC 1100 Series Executive System. These processors are CULL.
DOC. FLAP and LIST.

SYSLIB is contCllined in the system relocatable library file SYS$*RLlB$ along with other relocatable
libraries. When these relocatable subroutines are referenced by user programs they are automatically
includetd in the absolute program constructed by the Collector.

SYSLIB is composed of relocatable and procedure elements that can be grouped into six functional
cHeas. These areas are listed below.

• System Standard Procedures and Definitions

AXR$ CBEPMDP$ CERU$ SSTYP$
CBEPFORV$ CBEPPIR$ ERU$
CBEPIVIATH $ CBEPP210$ PROC$

• C()lIector Interface Routines

DLOAO$ IDLD$
IDL$ IDLAD$
IDLA$ SNAPS

• Diagnostic and Debugging Routines

CABSAD$ XCREG$ XLGIC$
CRELAD$ XCW$ XMARK$
SNOOPY XDRUM$ XMESG$
XBUFH$ XDUMP$ XSIZE$
XCOMN$ XFILE$ XTALY$
XCORE$ XFRMT$ XTAPE$

• Ed!itin'g Routines

AEDIT$ EDIT$ EDIT$T
AEDIT$F EDIT$F EOUT$
AEDIT$T EDIT$P

4144.41

Ull-NUMIEA

•

••

SPERRY UNIVAC 1100 Serie. Executive
System Utility Programs

Processor Interface Routines (PIRs)

BSP$ INFOR$ PRE PRO
GETPSF$ POSTPR$ ROR
IDUNES PREPF$ SIR$
IDONLY$ PREPRM SOR

Utility Routines

FDASC$ SDFI
HQUCNV SOFO
HQUCRTS TABLE$
MFOSP$

Ufl'DATt llEV£l

The Collector interface and dynamic dump routines are described in Volume 3. The remaining
routines are described in this volume.

4144.41 L SPERRY UNIVAC 1100 Se,.e. Executive 2-1
~~____ __ _______ S~y_s_te_m __ U_t_il_it~y_P_r_o~g_ra_m __ ! ____________________ _Lu_~_A_n __ uw __ L __ ~~~_M_E ____ _

2. System Relocatable Library (SYSLIB)

2. 1. System Standard Procedures and Definitions

2.1.1. AXR$

AXR$ is a systc3m procedure that contains the numeric definitions of the standard mnemonic
designators for control registers, partial word designators, etc., which are used in assembly language
coding.

Table 2-1 lists the mnemonic designators and absolute addresses of control registers and partial
word dE~signators.

2. 1.2. Common Bank Entry Points

2. 1.2. 1. CBEftFORV$

CBEPFORV$ is the entry point to FORTRAN V 1/0 common bank and FORTRAN V/NUALG error
common bank.

2.1.2.2.. CBEPMATH$

CBEPMJ~ TH $ is the entry point to the 1100 Series Mathematical Library common bank.

2. 1.2.3. CBEPMDP$

CBEPM[)P$ is th~e entry point to the MACRO processor common bank.

2. 1.2.4. CBEPPIR$

CBEPPIA:$ is the entry point to the processor interface routine common bank.

4144.41
UP-NUM8EA

SPERRY UNIVAC 1100 S.r ••• Executive
System Utility Programs UfIOATf LML

2-2
PAGE

Tllble 2-1. Control Register lind Pllnilll Word Designlltor Mnemonics lind Addresses

Index Registers Arithmetic Registers R Registers Staging Registers Partial Word

J Registers Designators

Mnemonic Absolute Mnemonic Absolute Mnemonic Absolute Mnemonic Absolute Mnemonic i-Value
(Octal) (Oct81) (Octal) (Octal) For j (Octal)

XO 0 AO 14 R1 101 SRl 103 W tor none) 0
Xl 1 Al 15 R2 102 SR2 104 H2 1

X2 2 A2 16 R3 103 SR3 105 Hl 2
X3 3 A3 17 R4 104 JO 106 XH2 3
X4 4 A4 20 R5 105 Jl 107 XH1 4
X5 5 A5 21 R6 106 J2 110 T3 5
X6 6 A6 22 R7 107 J3 111 T2 6
X7 7 A7 23 RS 110 Tl 7
XS 10 AS 24 R9 111 Sl 15
X9 11 A9 25 Rl0 112 S2 14

X10 12 Al0 26 R 11 113 S3 13
X 11 13 All 27 R12 114 S4 12

A12 30 R13 115 S5 11
A13 31 R14 116 S6 10
A14 32 R15 117 01 7
A15 33 02 4

03 6

04 5

U 16

XU 17

2.1.2.5. CBEPP2IQ$

CBEPP210$ is the entry point to ASCII FORTRAN 1/0, ANSI sequential tape 110, SDF sequential 110,
SDF direct 110, common 110 error, PLUSIPLUS common 110, ISAM and multi-keyed indexed 1/0
common banks.

2. 1.3. CERU$

The relocatable element CERU $ contains the names of all system common banks and their associated
BDI values.

2.1.4. ERU$

The relocatable element ERU $ consists of externally defined labels and generates no code in a user
program. It consists of:

1. Mnemonic names of the Executive Requests (PRINT$, 10W$, et al.) which are equated to the ER
indexes needed by the EXEC (see Volume 2-Section 4).

2. The mnemonic names for 1/0 functions (W$, WEF$, R$, et al.) which are equated to the value
shown in Volume 2-Table 6-1.

4144.41 I SPERRY UNIVAC 1100 Serle. Executive 2-3
up~~~~ ________________ S~y_s_te_m __ U __ ti_li_tY __ P_ro_g __ ra_m __ s ______________________ ~u_~_A_n_l_~ __ L ____ ~P_A_GE ____ ___

3. A label RLIB $ which is equated to the Fieldata representation of the current level of
SYS$*RLlB$.

4. Th~e mnemonic names for RSI$ functions (RSBAT$, RSGET$, RSTRY$, etc.) which are equated
to the values shown in Volume 2-8.6.

5. Thc~ mnemonic names for MSCON$ functions (DREAD$, DGET$, etc.).

6. Thc~ mnemonic names for INFO$ functions (see Volume 2-4.8.7.).

7. ThH following externalized labels:

PCTBD$ - BDI value for user PCT bank.

RPCTA$ - User entry point to PCT bank.

CYCLlM$ - System standard symbolic element cycle maximum.

ERU $ is automatically included in a collection if any of the above symbols are referenced in an
assembler program.

2.1.5. PROC$

PROC $ j1s a collection of Assembler Procedures as follows:

1. Procedures which generate calling sequences and packets for symbiont calls (see Volume
2-Section 5), 1/0 calls (see Volume 2-Section 6) and various other Executive Requests.

2. Procedures for EOUT$ editing routine calls (see 2.4.4).

3. Procedures which generate calls to the dynamic dump routines (X$DUMP, X$DRUM, et al.) (see
Volume 3-Section 3).

4. A procedure which generates NTAB$ tables for FORTRAN V. (See SPERRY UNIVAC 1100 Series
FOI~TRAN V Programmer Reference, UP-4060 (current version).)

5. ThE! EL T$ PFtOC defines the fields of the file and element notation table (EL T$), prepared by the
INFOR routine SEL T$.

6. Procedures (ASCII and Fieldata) used with the assembler to change the radix ior generation of
chalracter data.

7. A$SCTRL is a procedure which defines the mnemonics for the ASCII control characters
corresponding to octal codes 0-37 and 177. These ASCII control characters are defined in
Volume 2-Appendix 0.2.1.

8. JRE:G function to aid in loading J registers (see UNIVAC 1100 Series Assembler (Fieldata)
Programmer Reference UP-4040 (current version)).

9. SN$DEF PROC which defines SNOOPY flags (see 2.3.1).

4144.41
UP-NUMBEA

SPERRY UNIVAC 1100 Series Executive
System Utility Programs

2.1.6. Element Subtype Definitions (SSTYP$)

UPOA T£ LEVEL
2-4

PAGE

A non-executable element is available from the library which contains a table of the standard
symbolic and omnibus element subtypes (processor codes). It has a single external definition.
SSTYP$. which is the address of a word containing the length of the table which begins at
SSTYP$ + 1. If the subtype number exceeds the contents of SSTYP$. no table entry exists, and the
value must be edited in octal. Otherwise, the subtype number is used as an index relative to
SSTYP$ + 1. Entries in the table are three characters per word. Fieldata LJSF (left-justified
space-filled).

The subtype codes are contained in the element table items in the program file (See Volume
3-11.2.1.1).

The omnibus and symbolic element subtypes are defined in Table 2-2.

Table 2-2. Omnibus and Symbolic Element Subtypes

Mnemonic Code Processor Language
SYM 00 Symbolic (No subtype)
ELT 01 ELT

ASM 02 Assembler
COB 03 COBOL
FOR 04 FORTRAN
ALG 05 ALGOL
MAP 06 Collector
DOC 07 Document Processor
SEC 010 SECURE Processor
SSG 011 Symbolic Stream Generator
APL 012 A Programming Language
BAS 013 BASIC
LSP 014 LISP
PLS 015 PLUS
PLl 016 PL/I
CTS 017 Conversational Time Sharing
FLT 020 FLIT Processor
PNC 021 Panic
TCL 022 Traffic. Control Language

MSM 023 Meta-Assembler (MASM)
MSD 024 MASM Definition Language
MAC 025 MACRO
APT 026 Automatic Program Tools

2.2. Collector Interface Routines

The Collector interface routines are described in Volume 3. Section 2.

4144.41
UP-HUMIEA UPOA TE LEVEL

2-5
PAGE ~ SPERRY UNIVAC 1100 Serie. Executive

System Utility Programs
,-,-~~~---'------'----

2.3. Diiagnost;c and Debugging Routines

Tlhe dynamic dump routines are described in Volume 3, Section 3.

2.3. 1. ProgratTl Trace Routine (SNOOPY)

SNOOPy is a program trace routine which is designed for use primarily with assembly-language
programs. In batch mode, SNOOPY provides a straightforward accour.(of every instruction executed
and its ~~ffect. In the demand mode, SNOOPY acts as a powerful diagnostic routine affording user
control ~Dver the trace operation.

Two formats are available for calling SNOOPY:

SLJ SNOOPY$ (or SNOOPY with pre-SYSLIB 73R 1 releases)
+ mode-bits,termination-addr .mode-word

and

SLJ TON$

When the first format is employed, tracing begins with the instruction following the mode-word.
Tracing continues until the termination address (termination-addr) is reached or until another
termination condition is encountered.

If bit 1 SI of the mode word is set, quarter-word mode is simulated by SNOOPY for checkout of
quarter-word sensitive programs on machines without quarter-word hardware. Otherwise, SNOOPY
uses either third-· or quarter- word mode depending on the mode set in the PSR on entry. Bit 19
of the mode word may be set to suppress the solicition of commands at the beginning and end of
a trace when SNOOPY is used in demand mode.

When the second format is employed, tracing begins following the SLJ instruction and continues until
a termin,Btion condition is encountered; quarter-word or third-word mode is determined by the mode
set on entry.

When operating in the batch mode, tracing may be terminated by:

1. Recllching the specified termination address (program execution continues).

2. Executing an SLJ TOFF$ instruction (program execution continues). If an SLJ TOFF$ instruction
is e!xecuted outside of the trace routine, it has no effect.

3. Performing an ER EXIT$ (see Volume 2-4.3.2.1.). This not only terminates SNOOPY but it also
terminates the activity being traced.

4. Encountering a program contingency of types 1a, 2a, 7 a' or 12a for which standard system
actiion has been specified (see Volume 2-4.9.). The activity being traced is terminated by EXIT$.

When operating in the demand mode, tracing may be terminated by the following methods in addition
to those availabh~ for batch mode:

1. Using the TOFF$ command (see Table 2-3); program execution continues.

2. Using the EXIT$ command (see Table 2-3). This not only terminates SNOOPY but it also
terminates the activity being traced.

4144.41

UP-NUMIER

SPERRY UNIVAC 1100 S.r ••• Executiv.
System Utility Programs

The following restrictions apply to SNOOPY:

UPDA T£ l.EVEL

1. SNOOPY must be part of the program's main segment (see Volume 3-2.2.2.14.).

2. Tracing terminates if the main segment is reloaded.

3. Only one activity may be traced at anyone time unless duplicate copies of SNOOPY are used.

4. The program cannot be running in real-time mode.

5. No activity contingency routine may exist for the activity being traced.

6. The only I/O Executive Requests permitted are 10$ and 10W$.

7. Reentrant processor Executive Requests will terminate the trace.

8. Byte instructions and J-register (character addressing) mode are not supported.

A program being traced functions the same as an untraced program except that:

1. Execution time is slower, which may affect I/O timing if that is relevant to the program being
diagnosed.

2. Contingencies that would normally cause the activity being traced to teminate in error will result
in EXIT$ termination.

When using SNOOPY, the u-field of the instruction is edited in octal if it does not refer to control
storage. It is possible to provide a symbol table to SNOOPY giving Fieldata characters instead of octal
values when the u-field falls within a certain range. This is done by storing a value into the
externally-defined location SYMTB $. This may be done at any time, even while a program is being
traced. The value stored in SYMTB$ has the following form:

H1 H2

nbr-of-entries table-addr

The symbol table at the specified address is an array of three·-word entries in the form:

Hl H2

o high+ 1 low

Fieldata symbol name or address of long name

2 bits symbol address

4144.41
UP-NUM8ER L SPERRY UNIVAC 1100 Serie. Executive

System Utility Programs
------:..-~----'------'---.

UPOA TE LEVEL
2-7

PAGE

If the lowest bit of bits (bit 0) is set, word 1 of the entry is not taken to be a one-to-six-character
FieldatCi symbol, but is instead assumed to be the address of a seven-to-twelve-character Fieldata
symbol. This allows accommodation of long labels.

If, for the last entry in the symbol table, bit 1 of bits is set, the next word after the last entry is assumed
to be another symuol table descriptor word, in a format identical to that of SYMTB$. The symbol
table to which it points will then be searched in the same fashion. This may be repeated to any depth
desired; however, circularity must be avoided.

If the u·-field of an instruction satisfies low ~ u ~ high, the u-field is edited as the sym'bol given by
the second word of the entry, plus or minus an offset calculated from the symbol address in the third
word. Ijf the nbr·-of-entries parameter of STMTB $ is zero, as it is initially, all u-fields outside control
storage are edit~~d in octal, except TOFF$ and a number of ER indices.

For batc:h users, operation is as just described. Users are cautioned that large quantities of printout
may be produced when using SNOOPY.

Demand users are given a great deal of control over the behavior of SNOOPY. When entered,
SNOOPY examines the program control table (peT) to compute storage limits and the contingency
routine ,address. At this time, the program type is checked; if it is demand, conversational control
facilities are enabled.

When tracing a demand program, the amount of output produced by SNOOPY is reduced because
of the low speed devices used for output. In particular, header and trailer messages are brief, registers
are dumped only on request, and line length may be restricted. Further control over printing may
b.~ obtained through the use of commands as described in Table 2-3.

For demand programs, SNOOPY operates in two modes: trace mode, in which instructions are being
traced, c~nd command mode, in which commands are accepted that direct SNOOPY's operation.
SNOOPY enters command mode under these circumstances:

1. On entrance, before tracing any instructions, except if mode bit 19 was set.

2. When the RBK contingency occurs (@ @x e).

3. On completion of the number of instructions specified by a SKIP or a numeric command.

4. When a condition specified by the BREAK or TRAP command is encountered.

5. At trace termination, except if mode bit 19 was set.

In command mode, commands are solicited by the typeout "e-". Parameter fields required by the
commands are solicited by a typeout indicating the nature of the parameter required. More than one
command may b4~ given on arlyline solicited in command mode (including parameter lines). The
commands and pi!Hameters are separated by delimiters, where a delimiter is any character not in the
set (A-Z, 0-9, $, or -). Excess blanks are ignored. If any other consecutive delimiters are encountered,
the effect is the same as the STEP command; that is, if "e-" is answered with a line consisting of
"/ / / /", it has the same effect as four STEP commands. In certain cases, specific delimiters are
required. To omit a parameter entirely, the delimiter which terminated the command must be
followed by another (nonblank) delimiter (for example: "PRINT /"). Trace mode is suspended, the last
instruction is printed, and a soliciting message is made under the above five circumstances.

4144.41

UP-NUM8ER

SPERRY UNIVAC 1100 Series Executive
System Utility Programs UPDATE LEV£L

2-8
'AGE

In each of the following circumstances, all commands on the line after the last one performed are
ignored and can be reentered (if so desired):

1. trace termination (unless mode bit 9 was set).

2. the @ @X C sequence is used to interrupt the trace.

3. . an invalid command is encountered.

4. the CHANGE, TOFF$, or EXIT$ command is used, without a trailing asterisk.

A blank line (carriage return) in reply to the "C-" typeout has the same effect as the STEP command;
a blank line repsonse to a parameter request may be erroneous or may have a special meaning
depending on the nature of the command.

A command solicitation typeout may be answered by entering a line beginning with the character
%. The remainder of the line should be an Executive control statement, exclusive of the initial @

character. The statement must be one of those legal for submission to the CSF$ Executive Request
function (Volume 2-4.10.1.1.). SNOOPY will convert the initial % character to a @ and submit the
resulting image to CSF$. If the requiest is processed normally, the status bits from AO are displayed,
and SNOOPY solicits the next command. Otherwise, the appropriate contingency is intercepted and
the message "CSF$ ERROR" is printed, followed by command solicitation. For example, to assign a
temporary file named T35, the user may respond to "C-" by typing "%ASG,T T35,F2".

When command mode is entered at trace termination, the trace may be completed only through use
of the GO or STEP commands or a command with an equivalent effect. Once such a command is given,
no further commands are executed, and the trace terminates. The activity then continues execution
or exits, depending on the type of trace termination.

In all cases where number is called for, octal notation is assumed, unless otherwise indicated, a
leading zero is not required. In general, SNOOPY uses octal notation everywhere except in register
designations and in the instruction cycle count printed by SNOOPY.

Certain commands (TOFF$,EXIT$,CHANGE) clear SNOOPY's command buffer before reading further
commands because of the potentially irreversible nature of the operation to be performed. If this
is not desired, an asterisk may be affixed to the command (e.g. TOFF*). For example, to terminate
a trace and continue an execution without typing in two lines, the sequence "TOFF $ *GO" may be
used.

All commands listed may be abbreviated to the first three characters; all commands except AL TPRT,
TON$. RBK,RLlB, and STEP may further be abbreviated to the first character only.

In some cases particularly for complex programs, the set of commands provided by SNOOPY may
not meet all the debugging requirements of the programmer. For this reason, a method is provided
to allow a programmer to extend the command interpreter as his needs dicate. This is done by
allowing SNOOPY to link to a user-supplied subroutine when a command is encountered which is
not contained in the set of standard commands. (Because one-character abbreviations are permitted
for most SNOOPY commands, a user command may not begin with the same letter as a SNOOPY
command. Therefore, it is strongly suggested that user commands begin with the $ character.) A
user command routine is identified to SNOOPY by storing its address in H2 of the externally defined
cell SNUCM$. The user routine must return to O,X 11 if the command cannot be recognized; normal
return is to 1,X 11. The volatile register set may be used without saving and restoring it. On entry
to the user command routine, A l-A2 contains the command in Fieldata, left-justified, space filled;
X2 contains the current program address (simulated P-register); and X 10 points to an area containing
the program's simulated control registers, located offset corresponding to their absolute addresses
(e.g., AO contents at 0 14,X 1 0, R5 contents at 01 05,X 10, and so on). The value in SNUCM $ may

UPDATE LEVEL
2-9

'AGE
4144.41

UP-NUM8EA ~ SPERRY UNIVAC 1100 Serie. Executive
System Utility Programs

.-------:....--~-----------.....-----

be changed at any time by the user program, even while a trace is being performed. If it is set to
zero, no user commands will be interpreted.

A user command routine may reference SNOOPY's command reading routine and lexical scanner by
performling an Sl.J to SNGTC$. AO should contain 0 or a pointer to a TREAO$ packet before calling
SNGTC $;. If AO ::.. 0, no input will be read; the remainder of the line containing the user command
will be scanned for information. If AO contains a TREAO$ packet pointer, the input buffer specified
must be SNBUF$. On return from SNGTC$, AO is unchanged, A 1-A2 contains a Fieldata command,
leh-justified and space filled (unless A3 = 0), A3 contains the nonblank character count for A 1-A2,
and'R 1 contains the terminated delimiter. If an entirely blank line is encountered, A3 = 0 and R 1
= '/'. SNOOPY commands conform to element name syntax (alphabetics, numerics, '-', and '$').

In some cases, it is not desirable to use SNOOPY to trace an entire program. Instead, one would
like to huve SNOOPY gain control only when a contingency occurs. A routine is available to provide
this capability, it is called as follows:

SLJI SNCNT$

Followin'g this calling sequence, the program proceeds normally until a contingency is encountered.
When a contingency occurs, SNOOPY will take control; the simulated P register will point to the
contingency address + 1. A message indicating the nature of the error will be printed. In batch
mode, if the contingency is fatal, SNOOPY will EXIT$. For nonfatal contingencies, the remainder of
the program will be executed. In demand mode, the user is given control in command mode so that
the program environment may be examined. No distinction is made between fatal and nonfatal
contingencies in demand mode. Note that it is the user's responsibility to clear registers in case of
arithmetic fault and to respond to the onsite operator in case of an II keyin. For IGOM, note also that
the trapped addrE~SS mayor may not be the address of the offending instruction. The contingency
interception mode may be reset by the call:

SLJ SNCLR$

In frequently executed code, it is not always desirable to trace every iteration of a loop or every call
of a subroutine; in particular, a bug may not appear until a routine has been executed some number
of times. The a/'arm-clock mechanism provides a way to call SNOOPY selectively. The calling
sequenco is:

SLJ TCNT$
+ count,start
+ until,every
+ mode-bits,termination-address

where mode-bits and termination-address are the same as for an SLJ to SNOOPY. The count field
should b4e. zero initially and will be incremented on each pass through the code. If start ~ count <
until and count - start = 0 (modulo every), SNOOPY will begin tracing following the mode word.
Otherwis,e, execut.ion will continue in normal (untraced) mode.

Table 2-:3 lists th,e SNOOPY commands, their permissible abbreviations, and their functions.

4144.41
UP-HUMBER

Command

ABSAD

ABS

A-

ALTPRT

ALT

BREAK n1,n2, ..

BREAK+ n1,n2 ...

BREAK?

SPERRY UNIVAC 1100 Ser.e. Executive
System Utility Programs

T6ble 2-3. SNOOPY Oemand Mode Comm6nds

Description

UPOA T£ LEVEL

Convert relative program addresses to absolute addresses. The parameters are:

eltname.loc-counter.location.

or

symbol.

2-10
PAGE

If the program is segmented and the specified address is in a segment not in main storage. a message

is printed.

In case of symbols. only reference symbols defined by non-RLIB. routines may be looked up unless

the collection source language included a "TYPE EXTDIAG" statement. in which case all symbols may

be looked up (see Volume 3-2.2.2.13).

This command is useful in conjunction with the BREAK. CAPTUR. CHANGE. DUMP. JUMP. and TRAP

commands.

Send all trace printout to an alternate print file. while command solicitation. command responses

(as by DUMP. for example) and all print requests by the program are sent to the terminal as usual.

One parameter may be given, which is the name of the file to be used as an alternate print file. If

the file specified is not assigned. SNOOPY will automatically assign a temporary file. (If the file is

to be printed by the @SYM statement. the user must assign it himself as catalogued rather than

temporary.) The user must observe the restrictions on the maximum number of alternate files allowed

to be open if the program being traced also uses alternate symbiont files.

The AL TPRT command gives the user control over the disposition of his alternate print files. In

general. when the AL TPRT command isgiven and an alternate file is in use. the current alternate file

will be @BRKPTed. This action may be suppressed by employing an asterisk (*) as the trailing

delimiter for the parameter; e.g .• either "ALTPRT <filename>." or "ALTPRT .", To obtain printout

both at a terminal and in an alternate file. the AL TPRT filename should have a trailing exclamation

point t); e.g,. "ALTPRT <filename>I". This il useful for obtaining a permanent record when working

at a terminal which lackl a hard-copy capability. If an alternate file is already active. the command

forms" AL TPRT I" and "AL TPRT ?" may be used to set and clear echo mode while leaving the same

alternate file in use. Echo mode is alwaYI cleared when the trailing exclamation point is not used;

therefore. to start a new alternate file without breakpointing the old file and with echo mode set.

the command sequence "ALTPRT. ALTPRT <filename>!" must be used.

If the parameter is omitted (as in "AL TPRT r), printing will be directed to the terminal, as it is initially.

Thil command is effective for all SNOOPY operations until another AL TPRT command is given or

the program being traced terminates. This command forces the location counter-element name

printout to be given. so that each piece of printout may be easily identified.

This command indicates a stopping point for SNOOPY when operating in trace mode. When any

of the specified addresses is reached. the trace will ItOP and SNOOPY will enter command mode.

Thil command il uleful for running with printing turned off. The form BREAK+ il used to add entries

to the exilting table. A maximum of 16 addresses is permitted. The. specification may be used

to retrieve the last address returned by the ABSAD command. The form BREAK? is used to list the

table of break addresses. The command BREAK may be abbreviated to just the ~etter B.

4144.41 I SPERRY UNIVAC 1100 Series Executive I I 2 11
___ U_P_~_U_M_8E_R __ ~ __________________ S~y_s_te_m ___ U_t_jl_it~y __ p_r_o_g_r_a_m_s ________________________ ~_u_PO_A_n __ L~ __ E_L ____ L_PA_G_E_-____ __

Command

CAPTUR

CHANGE

C

Table 2-3. SNOOPY Demand Mode Commands (continued)

Description

NOTE: This form of the break command is INCOMPATIBLE with the previous form. The change is

being made for reasons of efficiency and utility; the break on element name and/or location counter

was seldom used but introduced a considerable overhead for each instruction traced. while it was

impossible to have more than one break active at the same time. The user may determine which

form of the BREAK command is available in the SNOOPY in use by entering the BREAK command

without parameters on the same line (nor a "I· to indicate no parameters). The old form of BREAK

will solicit input with the typeout "EL T NAME-·. whereas the new form will reque!Jt input with the

typeout "LOCN-".

Enter SNOOPY from ordinary program execution mode whenever control reaches any of a specified

set of addresses. The instructions at the specified addresses will be overlaid by a jump to a SNOOPY

internal table area. where an SW TONt will be performed. followed by the overlaid instruction. The

overlaid instruction may not be referenced as data by the program. but there are no other restrictions.

The syntax of command is CAPTUR <loc-1 >.<loc-2> Up to 8 locations may be specified, with

commas being the mandatory separators. Any existing list is replaced by the new list (with the

overlaid instructions restored). If CAPTUR+ is used. the specifications are added to the existing

table. again up to a total limit of eight. CAPTUR? may be used to print out the contents of the table.

When using this command with segmented or multi-banked programs. care should be taken that

the specified capture locations are in core when they are to be changed. The purpose of this

command is to provide the fastest possible means of getting past a portion of the program which

is irrelevant to the debugging task. The use of external symbols is subject to the restrictions noted

for the ABSAD command. See CHANGE command for use of the symbol $.

Allows the user to change the contents of control registers or main storage. The single parameter

gives the location to be changed. After reading the location parameter. the contents of the specified

location is displayed as if the location parameter had been given to a DUMP command; then the new

value is solicited. The new value is stored and the new contents displayed. A void new value results

in no change to the indicated main storage element.

If the parameter is a register name. a number. or a number or register name preceded by an H or

O. the new value is to be entered as a songle octal number.

The CHANGE command allows the use of mnemonics and external symbols for I-format (instruction

format) changes. as well as octal values. The first item given to the "NEW VAL-" typeout may be

an op-code mnemonic instead of an octal number for the f-field of the instruction. Abbreviated

forms such as L, LN, ANM, etc., are not permitted, however, LX, LA, LR, LNA, ANMA and so on must

be used. For some instructions. the op-code mnemonic specifies values for the j-field and perhaps

the a-field as well. In such cases, the next value given to the CHANGE command will be an a-field

or an x-field. Mnemonics may also be used for the j-designator values (W,H 1 ,H2,XH 1 ,XH2.T1,

T2,T3,S 1 ,S2,S3,S4,S5,S6,0 1 ,02,03,04,U and XU) and for standard X-, A-. and R-register names.

If a register name is used in the a-field of an instruction, its value will be adjusted appropriately.

Truncation errors are NOT detected. FieldS of an instruction are always expected to be entered in

the order f,j,a,x,hi. and u. Note that the h- and i-fields are combined. An external symbol may be

used for any field except the f-field, subject to the same restrictions noted for the ABSAD command.

For specification of an address to the CHANGE command, the t and $P have the following special
meaning:

tP The P register of the traced program.

4144.41
UP-NUMBER

Command

DUMP

o

SPERRY UNIVAC 1100 Series Executive
System Utility Programs UPDATE LEVEL

2-12
PAGE

T6ble 2-3. SNOOPY Oem6nd Mode Comm6nds (continued)

• P-n

•

Description

Where n is an octal number, used to compute a value offset negatively from $P .

The last value returned by the ABSAD command, or the last address plus one

CHANGEd or DUMPed. This allows one to continue a dump or change operation

immediately following the lalt area referenced, or to change a cell at an address

to be calculated by ABSAD without retyping the absolute address.

$-n Where n is an octal number, used to compute a value offset negatively from $.

NOTE:

The form .P (but not .P-n, $ or $-n) may also be used with the RELAD command.

Display the program status. Each parameter must be separated by a comma. If no parameter or

an empty parameter (that is, two consecutive commas) is given, all registers and the carry and

overflow designators are dumped. The parameters are:

A,X, or R

T

L

B

S

E

N

Dumps the indicated group of registers. To dump the contents of a single

register, use the register mnemonic or the octal address.

Dumps the carry and overflow designators.

Display current storage limits.

Display names of active banks (in order main-I, main-D, utility-I, utility-D, with

commas indicating place for unbased PSR portions), will indicate

write-inhibited banks by an asterisk (*). Banks whose names cannot be found

in diagnostic tables will be printed in octal numbers.

Display names of active segments.

Last contingency and address, if any.

Instruction cycle count

Any dump specification which references an address may be given a trailing + sign followed by an

octal number N. A dump is then taken of the N consecutive storage locations following the original

address, in the same format as the first dump, resulting in a dump of N + 1 locations.

If a specification number is neither the address of a register, nor within the storage limits of the
program, an error message i. displayed.

See CHANGE command for use of symbols $, .P.

The contents of the specified location is printed in octal.

The letter I preceding a number or register designator produces an instruction-format dump.

The letter H preceding a number or register designator produces a Fieldata-character dump.

4144.41 I SPERRY UNIVAC 1100 Series Executive 2-13
UP~~~~, _________________ S_y~s_t_e_m __ U __ t_il_it~Y_P __ ro_g~ra_m __ s ________________________ ~_UP1) __ A_n_L_~ __ EL ____ ~P_A_G_E ____ ___

Command

EXITS

E:

GO

G

HOG

JHT

JUMP

J

LINE

Table 2-3. SNOOPY Demand Mode Commands (continued)

Description

The lener a preceding a number or register designator produces an ASCII-character dump.

Terminates the traced activity by means of an EXIT. request. Trace mode is terminated and the last

instruction is printed.

Return to trace mode command mode.

This command allows the insertion of print control information into SNOOPY's output, whether

directed to a standard symbiont file or to an alternate file. Unles,s given as "HOG.", the command

buffer will be flushed, and all other commands on the line will be ignored. In any case, the input

for this command will be solicited by the printout "HOG- -". Only print control information may go

on this line; no commands are permitted. The format is identical to that used for the

PRTCN./PRTCA. ERs (see Volume 2-5.4). In particular, for heading information. the form is

"H.opt,ps.txt". but any of the other print control functions may be used as well.

Print the jump history table. starting with the most recent jump-from address and continuing with

the last eight jump instructions which causes a transfer of control. The table is cleared on entry to

SNOOPY. so fewer than eight addresses may be printed early in a trace. A jump which has been

executed several times in succession without any other jumps intervening (i.e .• a loop) will produce

a listing with a repeat count, rather than many identical entries in the table. On 1110 and 1100/40

systems. if SNOOPY is activated by a contingency after a call on SNCNTS, the JHT command may

be used to retrieve the hardware jump history stack as captured at the time of the contingency. This

applies only to hardware contingencies (IOPR. IGDM. IFOF. IFUF, and IOOF).

Transfers control to an address specified as an octal number or externally defined Ioymbol. The

current absolute and relative P register values are displayed. If the new value is within the program

storage limits. that value is set into the P register. The new value is printed in relative form and the
next command is executed.

This command is the only way to get out of EXIT. mode and do further traCing by means of the TON.

command. If TON. is used in the EXIT. mode without a JUMP command. the TON. command is
rejected and a message is displayed.

If a JUMP command is used in EXIT. mode termination, the termination mode becomes a TOFF.

termination; a TON. command is required if tracing is to continue.

The jump-to address specified for the JUMP command may be an external symbol as well as an octal

value, subject to the restrictions on use of external symbols noted for the ABSAO command.

Adjust the length of the line printed by SNOOPY. If "LINE /" is entered. the line length set is the default

value of 132 decimal - 204 octal. Otherwise. the parameter given to LINE must be an octal number

denoting the line length for the device in use. As indicated the default value is 132 decimal _ 204

octal for devices such as OCT 500 Terminals. For a UNISCOPE 300 Display Terminal, "LINE 100"

should be used, while for use with alternate print files (see the ALTPRT command), "LINE 204" may

be most convenient. The effect of a LINE command is cancelled by the next LINE command or by

program termination. The previous valuo will be printed as "WAS nnn". This value is also printed
when SNOOPY signs on.

4144.41

UP-HUMBER

Command

number

PRINT

P

RBK

RELAD

R

RLiB param

SPERRY UNIVAC 1100 S.rl •• Ex.cutive
System Utility Programs

Table 2-3. SNOOPY Demand Mode Commands (continued)

Description

UPOA T£ LEVEL
I 2-14

PAGE

Has the same effect as a SKIP n GO sequence (where n is the number). See SKIP command. The

number is in octal.

Allows modification of the amount of printing. The PRINT command recognizes only one parameter

at anyone time. If an invalid parameter or no parameter is specified. the F parameter is assumed.

The parameters are:

c

E

F

N

P

I.n

M,msk

Produce a printout omitting extraneous spaces used for formatting.

Produce an expanded printout (formatting spaces are included). The E mode

is effective until a PRINT C is encountered.

Produce a full printout consisting of each instruction, its location, and the

contents of main storage and registers (in before/after form if the value

changed). For cenain Executive Requests. the contents of the associated

packet is also dumped. This is the default mode.

Suppress printout. This provides a means of skipping long sections of

irrelevant code.

Produce printout of the instructions but not referenced main storage or

Ex"cutive Requests packets. If SNOOPY is in the N mode. the P mode is set

automatically upon the occurrence of an RBK contingency or encountering a

BREAK specified break condition.

The value of n is an exponent of 2 indicating the frequency with which the

instruction cycle printout is given. The default is 10, the minimum is 6. The

printout may be turned off by using a value of 35.

The value of msk is a mask which determines which instructions are tl) be

edited while tracing. The most useful value for msk is 400, which will

suppress all instructions except for jumps, skips. and ERs. Other values for

msk may be determined by examination of the code for SNOOPY (edit
descriptor bits).

Allows the user to simulate an RBK contingency for the executing program; the actual RBK

contingency is intercepted by SNOOPY and directs a return to command mode. This command

provides the means for tracing a contingency routine. If the user program does not expect the
contingency. an appropriate message is displayed.

Conven absolute program addresses to relative addresses. A list of locations separated by commas
may be specified as parameters.

See tP specification for DUMP command.

Ambiguities are resolved in favor of elements residing in loaded segments in active banks.

The parameter specified may be either an L, an E. an X, an A, or an N. Anything else will be assumed
to be N.

4144.41
UP-NUMBER ~Ii ______ ..-.:.. __ --=-----= __ ~ _____ -L.-___ ..L--__ '

SPERRY UNIVAC 1100 Serle. executive 2-15
System Utility Programs UPDATE LEVEL PAGE

Table 2-3. SNOOPY Demand Mode Commands (continued)

~.------.--------.~--,
Command Description

~'-----------------+---1

SKIP n

S

STEP

TOFF.

T

TON.

TflAP

"RLIB L" will print the system type, system level identification, and site as well as the RLIB. level used

at collection time. "RLIB E, <element-list>" where <element-list> is a list of element names

separated by commas specifies that the elements named are to be treated as if they were RliB'

elements for the purposes of RLiB. trace suppression. The list .pecified completely replaces any

preceding list. If a ' + . sign follows the E, the elements given are added to the current list. A maximum

of 16 names may be specified. An empty list is specified by following the "E" with punctuation other

than a comma, a plus sign, or a question mark. "RLIB E?" prints the current list. "RLIB X, < element-list

>" has syntax identical to that for "RLIB E", but the effect is inverted. That is, any element not

contained in the RliB X list 'will be treated as an RLiB. element. RLiB X+ may be used to extend

the list. "RLIB A" is used to allow tracing of RLiB. routines, while "RLIB N" is used to suppress trace

printout of RLIB. code. When tracing of RLlBt is suppressed (which is the default mode for demand

operations) and RLiB. code is entered, the print mode in effect is saved, printing is turned off, and

the RLiB. code is interpreted until control leaves RLlBt code, at which time the print mode is restored

and normal execution continues. This command may be used at any time; if it is used to change

the mode while the program is in RLiB. code, the effect will be as if RliB. was just exited (from

N to A) or entered (from A to N). This means that the print mode will be saved or restored, respectively.

If a break interrupt happens to give the user control in RLiB. (or pseudo-RlIB.) code and RliB.

tracing is suppressed, the STEP command and the blank line command are disabled to prevent losing

control due to the blank line transmitted by the break contingency under certain EXEC levels. Caution

should be exercised to turn off printing or else allow RLiB. tracing so that a runaway print situation

can be avoided.

Return to command mode after executing n number of instruction cycles. If n is omitted, any

previously existing skip count ii deleted and no skip interrupt occurs. Otherwise, an octal number

is used to set the interrupt point. If the count is exceeded during an indirect addressing or execute

remote cascade, the command mode is reentered when the instruction is completed.

Execute one instruction in trace mode and return to command mode.

Leave the trace mode and continue execution as if an SW TOFFt command had been executed.

Trace mode is terminated and the last instruction is printed.

Restart a trace that was to be terminated and execute one instruction. To compute the number of

instruction cycles performed, use the TOFF. command followed by the TON. command. The TON.

command is not affected if the activity is about to terminate by means of an EXITt request; if it is

desired to continue tracing from that point. a JUMP command must first establish a point from which

execution will continue.

Enter command mode from trace mode whenever one of a set of locations is referenced or altered

except for ER operations. The locations may be octal numbers, register mnemonics, or external

symbols. Entering the command "TRAP < loc-1 >, < loc-2 > .. : will place up to sixteen locations in

the trap table. Commas must be used as separators.

If an asterisk immediately follows the "TRAP", the trap will occur only when a location's contents are

changed. If the change occurs via an ER or asynchronously, the trap occurs at the next reference.

The use of external symbols is subject to the restrictions noted for the ABSAD command. Each list

specified completely replaces the preceding list. unless a + immediately follows the "TRAP"

(intervening spaces not allowed), in which case, the specifications are added to the list. The

command "TRAP?" will print out the current list. See CHANGE command for use of the symbol t.

4144.41
UP-NUMBER

SPERRY UNIVAC 1100 Serle. Executive
System Utility Programs UPOAT£ LEVEL

2-16
PAGE

The location of some of SNOOPY's control flags is externalized with the label SNFLG$. In addition,
a PAOC has been added to the standard library which will provide mnemonic tags for the various flags;
this PAOC is named SN$OEF. The flags defined are described in Table 2-4.

Flag

REMOTE

CCALL

REMPRT

REMSKPIT

CONTNGF

REMBRK

WASRLB

CMODE

COMPRT

RLlB$T

OLDSKP

ECHO

RLlBX

TBbie 2-4. SNOOPY Control FIBgs

Description

Clear for batch mode, set for demand mode. (SNFLG t .. S 1)

Set by SNCNT$, cleared by SNCLRt. (SNFLG ... S2)

Set for partial print mode ("PRINT PO), clear for full print mode. (SNFLGt .. S3)

Set for suppress print mode ("PRINT N°), clear for full or partial print mode. (SNFLGt .. S4)

Set when a contingency has occurred, otherwise clear. (SNFLGt .. S5)

Set when the break contingency has occurred or by encountering a condition set by the SKIP (or number)

command, the BREAK command, or the TRAP command. When set, SNOOPY will enter command mode

before interpreting the next instruction. (SNFLG ... S6)

Set when executing an RLiB t or pseudo-RLIB $ element. (SNFLG t + 1 .. S 1)

Set when tracing a contingency routine. (SNFLG $ + 1 .. S2)

Set for compressed print ("PRINT C"), clear for expanded print. (SNFLG$+ 1 .. S3)

Set to enable RLiB. tracing ("RLIB A"), clear to suppress RLlBt tracing ("RLIB N°). (SNFLGt+ 1 .. S4)

Saved value of REMSKPIT when RLlB.T = 0 and WASRLB = 1. (SNFLG.+ 1 .. S5)

Set for echo mode of ALTPRT. (SNFLGt + 1 .. S6)

Set if RLiB list is in exception mode, otherwise clear. (SNFLG. + 2 .. S 1)

2.3.2. CABSAO$

2.3.2.1. Compute Absolute Address (CABSAO$)

Purpose:

Computes the absolute address for a given address relative to a location counter.

4144.41
UP-HUMIER System UtilitV Programs UPOATI LEVEL ~ SPERRY UNIVAC 1100 Series Executive

,-----~----

Format:

L, U AO, relative-add ress-to-be-converted
L,U A 1 ,location-counter-address-is-rAlative-to
OL A2,(element-name-containing·-address)
LM,J X 11 ,CABSAO$

error return
n()rmal return

Registers Used: X 11 ,AO-A5,R 1-R3

Descriptiion:

When the normal return is taken, AO contains the requested absolute address and A 1 contains a
pointer into SL T$ If A 1 = 0, the program is not segmented or the element lies in the main segment.
and the !requested address is alwavs in core. Otherwise, if A 1 >0, the instruction

TP SLT$,A 1

will skip if the element is in core, On return, H 1 of A2 contains the length of the location counter
srecified and H2 of A2 contains the starting address of that location counter, for possible further
use,

If the error return is taken and AO <0, the requested address does not exist because either there is
no such 191ement in the executing program, that element has no such location counter, the location
given is out of range for that location counter, or the program was collected with the Z option, so
that then9 are no diagnostic tables, If AO> 0, then AO contains an I/O error status code and A 1
contains the sector address of the error on FASTRAND mass storage in the file from which the
program is loaded.

If a program usin~, CABSAO$ is checkpointed and restarted, the restart contingency routine should
contain tlhe instruction

SZ *CABSAD$-1

to reinitiallize CABSAD $'s tables.

2.3.2.2. Initializl~ CABSAO$ (CAINIT$)

Purpose:

To initiali;ze CABSI"O$ to examine the diagnostic tables of an absolute element other than the one
being eXElcuted.

Format:

OL AOJile-name
L A2,addr-of-header-tbl-of-abs-element
LMJ X 11 ,CAINIT$

ern)r return
normal return

Registers Used: X 11, AO-AS, R 1-R3

4144.41
UfI..,.UMIER

Description:

SPERRY UNIVAC 1100 Serl •• executlye
System Utility Programs UPIDATI LEV£L

2-18
flAGE

This initializes the tables of CABSAO$ to point to the diagnostic tables of the absolute element
indicated by the file name and header table start address indicated. Until re-initialized, all references
to CABSAO$, CSX$, CBX$, and CSYMVL$ will refer to the absolute element specified. The error
return is identical to a CABSAO$ error return. References to SL T$ are not valid, unless CABSAD$
is working on the absolute element being executed.

2.3.2.3. Compute Bank Index (CBX$)

Purpose:

Computes the BOI corresponding to a given bank name.

Format:

OL AO,bankname
LMJ X 11,CBX$

error return
normal return

Registers Used: X 11 ,AO-A5 ,R 1-R3

Description:

The bank name must be in Fieldata, left-justified and space filled. At the error return, AO = 0 indicates
that the specified name could not be found in the diagnostic table, while AO>O indicates that an 1/0
error has occurred. The contents of registers are the same as for an I/O error from CABSAO$. When
the normal return is taken, AO contains the requested BOI.

2.3.2.4. Compute Segment Index (CSX$)

Purpose:

Computes the segment index corresponding to a given segment name.

Format:

DL AO,segment-name
LMJ X 11 ,CSX$

error return
normal return

Registers Used: X11,AO-A5,R1-R3

Description:

The segment name must be in Fieldata, left-justified, and space filled. Error conditions are the same
as for CBX$. When the normal return is taken, AO contains the requested segment index. A segment
index may be converted to an SL T$ offset pointer by multiplying the index by 4. Segment indexes
are the values used in references to ER LOAD$, except for the main segment.

4 144.4 1 I SPERRY UNIVAC 1100 Serie. Executive 2-19
~_~~ _________________ S~y~s_te_m ____ U_ti_'i~tY~P_ro_g~r_a_m_s _________________________ ~u~ __ A_n_uw __ L _____ ~M_G_E ________ ,

2.3.2.5" Compute Symbol Value (CSYMVL$)

Purpose:

Comput4~s the value of an externally defined global symbol.

Format:

DL AO,symbol-name
LM.J X 11 ,CSYMVL$

error return
normal return

Registem used: X 11 ,AO-A5,R 1-R3

Descriptlion:

The symbol name must be in Fieldata, left-justified, and space filled. Error conditions are the same
as for CB;X$. Wh4~n the normal return is taken, AO contains the value of the symbol and A 1 contains
an SL T$ pointer as discussed for CABSAD$. If the symbol is absolute, A 1 is always zero. If the TYPE
EXTDIAG statement was used in the collection source, any externally defined symbol of the collection
may be Ilooked up; otherwise, unreferenced symbols and symbols defined in RLlB$ elements are
excluded (see Volume 3-2.2.2.13). If the symbol is not a global symbol (i.e., is defined instead by
a locally included element), one of the local definitions will be returned, although which one cannot
be predicted.

2.3.3. CRELA06

2.3.3. 1. Compute Relative Address (CRELAO$)

Purpose:

Computes the element name, location counter number and address relative to that location number
for a givEm absolute address.

Format:

L, U AO ,absol ute-add ress-to-be-converted
LMJ X 1 1,CRELAD $

error return
normal return

Registers Used: X 11 ,AO-AS,R 1-R3

Descripti()n:

When thEI normal return is taken, A2-A3 contain an element name, left- justified, space filled, A 1
contains ,B location counter number, and AO contains an address relative to that location counter.
These are the relat:iveaddress values corresponding to the input absolute address. If the input value
in AO is not in range for the program (or segment), i.e., it is less than 01000, between the 1- and
D-banks, or beyond the end of the D-bank, AO will be unchanged, A 1 will contain 0, and A2-A3 will
contain '*ABSOLUTE*' when the normal exit is taken. This will also happen if the diagnostic tables
are-missing from the absolute element (collection was done with the Z option), for then the necessary
information to compute relative addresses is not available.

4144.41
UP-NUMBER

SPERRY UNIVAC 1100 Serie. Executi~e
System Utility Programs UPOA TE !LEVEL

I 2-20
PAGE

On normal return, A4 and A5 contain the location counter limits or zeros in case the address was
absolute. Specifically, A4 equals the location counter lower limit - 1 and A5 equals the location
counter upper limit. Thus, the instruction:

TW A4,x

will skip if x contains an address in the same element and location counter range as the address on
the call to CRELAD$ that computed A4 and A5. This information may be used to saye the computation
used by a call to CRELAO$ by using the same A 1 ,A2,A3 and computing AO = x-(A4 + 1).

The routine must be part of the main segment and cannot be used by more than one activity at a
time.

If more than one element in different segments have addresses corresponding to the given absolute
address, the one in main storage will be used. If there is none in main storage, an error condition
exists.

The error return is taken if an I/O status other than 0 or 5 is encountered. In that case, AO contains
the status code, A 1 the error address on FASTRANO, and A2-A3 the Fieldata characters 'INPUT
ERROR', A4-A5 contains zero.

If a program using CRELAO$ is checkpointed and restarted, CRELAD$ must be reinitialized. This may
be done by the instruction:

SZ *CRELAO$-1

which should be included in the restart contingency code.

Alternate Format:

L AO,(bdi,addr)
LMJ X 11 ,CRELAO$

error return
normal return

Registers Used: X11,AO-A5,Rl-R3

This entry provides the same results as previously described. The only difference is that the user
is permitted to specify a IBOI in H 1 of AO. This is necessary if the address given in H2 of AO is in
a bank which overlaps the bank containing CRELAD$ (usually the control bank) and the address is
in the overlap area. Otherwise, when CRELAD$ performs an ER BANK$ to determine the BDI for the
address, it will obtain the wrong BDI since the CRELAD$ PSR is then active.

2.3.3.2. Initialize CRELAO$ (CRINIT$)

Purpose:

To initialize CRELAD$ to examine the diagnostic tables of an absolute element other than the one
being executed.

4144.41
UII-NUMIER System Utility Programs U!tOATI LML ~ SPERRY UNIVAC 1100 Serie. executive

,---------'----"----

Format:

DL AO,file-name
L A2,addr-of-header-tbl-of-abs-element
LM.J X '11 ,CRINIT$

error return
normal return

Registen~ Used: X 1 1, AO-A5, R 1-R3

Description:

This initializes the tables of CRELAD$ to point to the diagnostic tables of the absolute element
indicatedl by the file name and header table start address indicated. Until re-initialized, all references
to CRELA,D$, CSN$ and CSN$ will refer to the absolute element specified. The error return is identical
to a CRELAD$ error return. References to loaded segments are not meaningful, unless CRELAD$ is
working on the absolute element being executed.

2.3.3.3. Convert BDI to Symbolic Bank Name (CBN$)

Purpose:

Determines the symbolic bank name corresponding to the given SOl and returns it in AO-A 1 (in
Fieldata).

Format:

L,U AO,bdi
LMJ X 11 ,CSN$

error return
normal return

Registers Used: X 11 ,AO-A5,R 1-R3

Descriptic)n:

If AO = () at the error return, the SOl was out of range or referred to a common bank. If AO t 0,
an I/O error occurred and the registers contain the same values as for a CRELAD$ 110 error.

2.3.3.4. Convert Segment Index to Segment Name (CSN$)

Purpose:

Determin4~S the symbolic segment name corresponding to the given segment index and returns it in
AO·-A 1 (in Fieldata).

Format:

L,U AO,seg-index
LMJ X11,CSN$

error return
normal return

4144.41
UP-NUM8EA

SPERRY UNIVAC 1100 Serle. Executive
System Utility Programs

Registers Used: X 11 ,AO-A5,R 1-R3

Description:

The error and normal returns are as described for CBN $.

2,4. Editing Routines

2.4. 1. Introduction

UftOATE lEVEL
I 2-22

PAGE

This subsection describes the three output editing packages EDIT$, AEDIT$ and EOUT$. EDIT$ and
AEDIT$ are the newer editing packages 'and are more efficient and easier to use than EOUT$. It is
recommended that EDIT$ or AEDIT$ be used; EOUT$ is documented solely as an aid to those users
who are using EOUT$ in existing programs.

2.4.2. Image Composition Editing Package (EDIT$)

EDIT$ is a unified collection of routines which may be used to compose strings of Fieldata characters
in an area specified by the user. EDIT$ may be used to produce:

• Images for the printer and the punch,

• Symbiont control images, and

• Control statements for CSF$.

EDIT$ has routines for editing decimal, octal, and floating-point (single- and double-precision) as well
as routines for copying character strings and adjusting column settings. Routines are also available
for editing the time and the date. A versatile collection of Assembler procedures makes it easy to
code for EDIT$.

EDIT$ is reentrant and uses no D-bank storage. Working storage is provided by a six-word packet
(10 words if floating-point is used) provided by the user. The format of this packet is given in 2.4.2.4.

The EDIT$ editing package consists of four elements:

• EDIT$ - general purpose editing routines

• EDIT$T - time and date editing routines

• EDIT$F - floating-point editing routines

• EDIT$P - procedure calls for editing routines.

EDIT$ does not reference the other routines. However, both EDIT$T and EDIT$F require the services
of EDIT$.

4144.41
UP-NUMBEA System Utility Programs U"I)ATE LEVEL

2-23
PAGE L SPERRY UNIVAC 1100 S.ri •• Ex.cutive

----~----'---

2.4.2.11. EDIT$

Before using thEt EDIT$ package, edit mode must first be established by calling the EDIT$ routine.
When €!dit mode is on, the index registers X 1, X2, and X3 are used as pointers by EDIT$. The original
values of these registers are saved in the packet to be restored when edit mode is turned off. The
only other registers used by EDIT$ are X 11, AO, A 1, A2, A3, and R 1. These registers are not saved
or restored.

All EDIT$ routines are called with an LMJ on X 11 and expect the parameters in AO, A 1, and A2. A
column pointer is maintained by EDIT$ which is advanced by the number of characters inserted
whenever an editing function is performed. The first column is zero.

Table 2-5 describes the EDIT$ routines.

2.4.2.2. Time ,and Date Editing Routines (EDIT$n

Table 2,-6 describes the time and date editing routines.

Each of these routines accepts input in TDATE$ format; that is, in the form:

F m,d,y,t

where:

and

F ,- FORM 6,6,6,18

m:= Month(1-12)
d := Day
y := Year (relative to 1964)

:= NumbE~r of seconds since midnight.

4144.41
UP-NUM8ER

Routine

ECHAR$

ECLEAR$

ECOLN$

ECOL$

ECOPY$

EOCFZ$

EOECF$

EOECV$

EOITR$

EDITX8

EDIT.

EFD1.

EFD28

SPERRY UNIVAC 1100 Serle. Executive
System Utility Programs UI'OA T! LEVEL

I 2-24
PAGE

Tllble 2-5. GIJnerll1 Purpose Editing Routine$ (In EDIT',

Function

insert a character

clear image

compute the column number

position to a fixed column

copy a string

edit decimal (fixed length with

leading zero)

edit decimal (fixed length)

edit decimal (variable length)

reenter edit mode

leave edit mode

initialize and establish edit mode

insert Fieldata (one-word)

inlert Fieldata (two-words)

Operation

The character contained in the low-order six bits of AO will be

insened in the image.

The image will be set to blanks and the column pointer will be

set to the start of the image (column zero).

Returns with the column number in AO.

The column pointer will be- changed to the number specified in

AO. The first character position of the image is column O.

AO is expected to contain the address of a string of characters.

Number of characters in A 1 will be copied from this area into the

image.

Edit AO to a decimal number right-justified in a field of A 1

characters. A leading '-' is added if AO is negative. The result will

overflow the field to the right if it does not fit in the specified field

size. Leading zeros will be produced where EOECF. would

produce leading spaces. This routine is convenient for editing

decimal fractions.

Edits AO to a decimal number right-justified in a field of A 1

characters. A leading '-' is added if AO is negative. The result

will overflow the field to the right if it does not fit in the specified

field size.

Edits AO to a decimal number. A leading '-' is added if AO is

negative. The number of characters generated is a function of the

sign and magnitude of AO.

MUlt be called with the address of the packet in AO. Edit mode

will be reestablished and the column pointer (saved by EOITX.)

will be restored.

Will terminate edit mode. The column pointer will be saved in

the packet. EDITX. will return with the packet address in AO.

Must be called with the address of the packet in AO. 53 of the

first word of the packet is expected to contain the number of

wordl in the image area and H2 of the first word of the packet

is expected to contain the location of the image area. The image

will be set to blanks and edit mode will be established. The

column pointer will be set to the start of the image.

The six characters in AO will be inserted into the image. Blanks

and master spaces will be ignored.

The 12 characters in AO and A 1 will be inserted into the image.

Blanks and master spaces will be ignored.

4144.41 I SPERRY UNIVAC 1100 Sertel Executive 2-25
up~~~~ ________ . _________ s~v_s_te __ m __ U_t_il_it~v __ P_ro_g=-ra_m __ s ________________________ L-u_~_A_n_~ ___ L ____ ~'_AG_E ____ ___

Tllble 2-5. Generlll Purpose Editing Routines (In EDIT') (continued)

Routine Function Operation
-. ______ . ____ ~--_---------------------------4_----.--~

EMSGRel

EMSGt

EOCTF$

EOCTV$

EPACK$

ESKIP$

message editor reentry

message editor initial entry

edit octal (fixed le,ngth)

edit octal (variable length)

cop" and pack a string

advlllnce the column pointer

This routine performs the same operation 81 EMSG. except that

the pointer to the input string is taken from the packet. With

these two routines it is possible to copy a Itring into the image,

occasionally interrupting this process to perform other editing

functions at certain selected points in the string.

Copies the characters starting at the address given in AO into the

image. This process stops when the character in S2 of the first

word of the packet is found. The pointer to thil string il laved

in the packet and return il made to the uler.

Edits AO to A 1 octal digits. Leading zerOI are not suppressed.

A 1 must not exceed 12.

Edits contents of AO to octal. The number of digits edited will

depend on the lize of the number. If the number is greater than

seven, a leading zero will be added.

Same as ECOPY $ except that master spaces will be ignored.

The number given in AO will be added to the column pointer. AO

may be negative.

~.------.----~------------------------------~--~

Routine

EDAY1$

EDAY2.

EOAY3.

Tllble 2-6. Time lind Dllte Editing Routines (In EDIT' n

Function

Edit a date (format mm dd yy)

Operation

Edits the date portion of AO into the format

mm dd yy

where mm, dd, yy are the two digits of the month, day and year,

respectively.

Edit II date (format dd mmm yy) Edits the date portion of AO into the format

dd mmm yy

where dd and yy are the two digits of the day and year, respectively,

and mmm il a three character abbreviation for the month.

Edit a date (format month dd, Edits the date portion of AO into the format

year)

month dd, year

Where month is the name of the month (up to 9 characters) dd is the

day (one or two characterl) and year is the four digit year.

4144.41
UP-NUMBEA

Routine

EOAY4$

EOAYS$

ETIME$

SPERRY UNIVAC 1100 Serte. Executive
System Utility Programs

T6blB 2-6. TimB 6nd D6tB Editing RoutinBs (In EDITI TJ (continuBdJ

Function Operation

UPDATE lEVEL
2-26

PAGE

Edit a date (format yearmmdd) Edits the date portion of AO into the format

yearmmdd

where ye.r is the four year digit year and mm and dd ilre the two digits

of the month and day respectively.

Edit a date (format yymmdd) Edits the date portion of AO into the format

yymmdd

where yy, mm and dd are the two digits of the year, month and day

respectively.

Edit 8 time Edits the time portion oi AO into the format

hh:mm:ss

where hh. mm and II are the two digits of the hours, minutes and

lecondl of the time, respectively.

2.4.2.3. Floating-Point Editing Routines (EDIT$ F)

The floating-point editing routines require three parameters in addition to the address of the floating
point packet. The first two are called x and y and are supplied in 55 and S6 of AO. They specify
the format of the edited number as described below. The third parameter is the single or double
precision number to be edited. If single precision, the number is specified in A 1; if double precision,
the number is specified in A 1 and A2.

Edited numbers may appear in one of the two general formats: "fixed decimal" format (no exponent)
and "scientific" format. A number edited in "fixed decimal" format consists of a sign (if negative)
followed by the digits of the number and an embedded decimal point. The sign is present only if
the number is negative; a positive number has no sign character. The parameter x specifies the width
of the edited field: the number of character positions the edited number will occupy, including sign
and decimal point. If the value of x is given too small to represent the value being edited, it is ignored
and as many character positions are used as is required to correctly represent the number. The
parameter y specifies how many fractional digits are to be edited. This is the number of digits
appearing to the right of the decimal point. The value of y may be any value greater than or equal
to zero, but should always be less than the value of x to allow for the sign and decimal point
characters.

The "scientific" format is similar to the "fixed decimal" format but has an exponent at the right. The
exponent consists of an optional exponent character (usually 'E' for single precision and '0' for double
precision numbers) followed by the exponents's sign (either" + " or "-") and the exponent's digits.
Exponents of single precision numbers are always edited as a two digit value, and those of double
precision numbers are always edited as a three digit value. The parameter x specifies the total
number of character positions to be occupied by the edited number, including signs, digits, decimal
point, and exponent character. If the edited numbers require more character positions than is
specified by the value of x, the parameter x is ignored and the required character positions are used.
The parameter y specifies the total number of mantissa digits to appear in the edited number. It

4144.41
UP-NUMIEA UP'DATt LML

2-21
'AGE ~ SPERRY UNIVAC 1100 Serle. Executive

System Utility Programs
, ___ ------L------L---

includes the digits on both sides of the decimal point but not the decimal point itself. The placement
of the decimal point within the y digits of the mantissa is determined by the value in the packet cell
FPS. This is the number of digits to appear to the left of the decimal point. It is normally set to one.

Table 2-7 describes the floating-point editing routines.

Routine

IEFLF1.

EFLF2.

EFLG 1 $

EFLG2.

EFLS 1$

EFLS2$

Table 2-7. Floating-Point Editing Routines (In EDIT'F)

Function

Single-precision fixed

decimal format

Double-precision fixed

decimal format

Single-precision

generalized format

Double-precision

generalized format

Single-precision

scientific format

Double-precision

scientific format

Operation

A 1 is edited to fixed decimal format with y digits following the decimal point.

right-:justified. in II field of size x.

A 1, A2 is edited to fixed decimal format with y digits following the decimal

point, right-justified, in a field of size x.

Same as scientific format except that an attempt is made to move the decimal

point in such a way as to reduce the exponent to zero. If this can be done

the exponent is set to blanks. Otherwise scientific format is used.

See EFLG 1$ and IEFLS2 •.

A 1 is edited to scientific format with y significant digits in a field size of x.
The exponent is two digits long.

A 1, A2 is edited to scientific format with y significant digits in a field size of

x. The exponent is three digits long.

4144.41
UP-HUM8ER

SPERRY UNIVAC 1100 Ser.e. Executive
System Utility Programs UPOA TE lEVEL

2-28
PAGE

2.4.2.4. The Packet Format

The EDIT$ packet format is: (Italicized fields are filled by EDIT$)

o

1

2

3

4

5

6

7

8

9

Word 0

ts

msg

il

iloc

Word 2

fps

fpr

zero

ts msg il iloc

c;x w;x c;m w;m

fps fpr zero return

ret save 1

save2

save3

dpc spc ndp ndf I sign I zero

fcol scale

value

This area may be used as a Test-and-Set flag by the user.

Signal character for EMSG and EMSGR$.

Image length in words.

Image location (18 bit address).

Number of digits to be placed to the left of the decimal point for scientific format
floating-point editing.

If nonzero the floating-point rounding option is on: 5 is added to the first significant
digit after the last significant digit to be printed.

Example:

Input 1.4356

3 digits printed

Result = 1.44

Must be zero.

4144.41 I SPERRY UNIVAC 1100 Serle. executive 2-29
UP~~~~, ________________ S~ys_t_e_m __ U_t_il_it~y_P_r_o_g_ra_m __ s ____________________ ~~U_~_A_n __ ~ __ L ____ ~P_M_E ____ __

Word 6

dpc

spc

If nonzero, specifies the character which is to separate the mantissa and the exponent
for scientific format double-precision floating-point editing. Normally 0 if nonzero.

If nonzero, specifies the character which is to separate the mantissa and the exponent
for scientific format single-precision floating-point editing. Normally E if nonzero.

The following fie,lds are maintained by EDIT$ and are of concern to the user only for debugging:

ei)(' Used by EDITX$ to save the character index for EDITR$.

wix Used by EDITX$ to save the relative word index for EDITR$.

elm Used by EMSG$ and EMSGR$ to save the character index to the input message.

wim Used by EMSG$ and EMSGR$ to save the word index to the input message.

return Used as the return point for the character store vector.

ret Used to save the return point to the user during calls to other EDIT$ functions.

save 1 Used to save the modifier portion of X 1 during edit mode.

save2 Used to save X2 during edit mode.

save3 Ul;ed to save X3 during edit mode.

ndp Number of digits to be edited before the decimal point.

ndf Number of digits to be edited following the decimal point.

sign Nonzero if the floating-point number being edited is negative.

zero Nonzero if the floating-point number being edited was not normalized.

fcol Contains information to facilitate proper positioning of the edited result.

scale Used to build the exponent.

value Used to save intermediate results (two words). (Used only by floating-point.)

Two PROCs are available to generate a packet for EDIT$. The PROC E$PKT generates a six-word
packet and the PI~OC E$PKTF generates a 10-word packet suitable for floating-point editing. The
format of the PROC call is:

label PROC-name IL,ILOC L1 L2 ...

The lists L1, L2, ... are used to override the assumed values to be placed in the fields msg, fps, fpr,
dpc, spc. The assumed values are msg = '&', fps = 1, fpr = 1, dpc = 0 and spc = O. The format
of an ovorride list L1 consists of the name of the fie'ld enclosed in quotes, a comma, and the value
to be used. For example, the following PROC reference will generate a packet which will edit
floating-point numbers in a format similar to that used by FORTRAN:

PKT E$PKTF 22,LINE 'FPS',O 'FPR',O 'SPC', 'E' 'OPC', '0'

4144.41
UP-NUMIEA

SPERRY UNIVAC 1100 Serle. Executive
System Utility Programs

2.4.2.5. Procedures for EDIT$ (EDIT$P)

UPDATE ILEVEL

Each routine in the EDITS editing package has a corresponding procedure call. The name of the
procedure may be found by deleting the'S' at the end of the routine name and placing a'S' between
the first and second characters.

Some of the procedures do not require any parameters. These are ESDITX, ESCl.EAR, ESCOLN,
ESMSGR, ESTD, ESDAT1, ESDAT2, ESDAT3, ESDAT4 and ESDAT5. The last six are special
procedures which generate an executive request to TDATES and then call ETIMES, EDAY1 S, EDAY2S,
EDAY3S, EDAY4S and EDAY5S respectively.

The procedures ESDIT, ESDITR, ESCHAR, ESCOL, and ESSKIP accept one parameter and generate:

LA,U
LMJ

AO, < parameter>
X 11 ,<routine>

If there are no parameters, then the load instruction is not generated. The parameter may include
indexing and may also specify a j-designator to override the implied "U". "*"(s) in the appropriate
places will, of course, be honored. For example:

ESCHAR 'A'

will generate

LA,U AO,'A'
LMJ X11,ECHARS

but

ESCHAR *TAG,X6,S5

will generate

LA,S5 AO,*TAG,X6
LMJ X11,ECHAR$

also

eSCHAR

will generate simply

LMJ X11,ECHARS

The procedures ESOCTV, ESDECV, ESFD1, ESFD2, ESMSG, ESTIME, ESDAY1, ESDAY2, ESDAY3,
ESDAY4 and ESDAY5 will generate ...

LA
LMJ

AO,<parameter>
X 11 ,<routine>

with the exception of ESFD2 which will generate a Double Load A instruction. Again an index and
a j-designator may be specified as well as indirect addressing and automatic index incrementation.
If the parameter is missing, the load instruction will not be generated. For example:

ESDECV COUNT"H2

4144.41 I SPERRY UNIVAC 1100 Serl •• Executive 2-31
~~~, ________________ S~v_st_e_m __ U_t_il_it~v_P_r_o_g_ra_m __ s ____________________ ~u_~_A_n_uw ___ L __ ~_'_M_E ____ __ 

will generate 

but 

LA,H2 
LMJ 

. E$[)ECV 

will gen~Hate 

LM.J 

AO,COUNT 
X 11 ,EDECV$ 

X 11 ,EOECV$ 

The routiines ECOPY$, EPACK$, EOCTF$, EOECF$ and EOCFZ$ require two parameters. The general 
form of 1the call for their procedures is: 

<plroc name> Pl,P2 

and they generatl3 

LA 
LA,lJ 
LM • .I 

AO,P2 
A l,Pl 
X 11,<routine> 

except that ECOPY$ and EPACK$ generate a "U" j-designator on the first instruction. Again, indexing, 
an overriding j-dE,signator, etc., may be specified. ~f P2 is missing the first instruction will not be 
generated. If both P 1 and P2 are missing neither load instruction will be generated. For example: 

E$COPY 

will generate 

but 

LA,lI 
LA,lI 
LMJ 

E$COPY 

will gene1rate 

also 

LA 
LA'U 
LMJ 

E$COPY 

will genel'ate 

LA,U 
LMJ 

50,LlNE 

AO,LlNE 
Al,50 
Xll,ECOPY$ 

50,TAB,X6,W 

AO,TAB,X6 
Al,50 
X 11,ECOPY$ 

COUNT 

Al,COUNT 
X 11,ECOPY$ 



4144.41 
UII-HUMIEA 

The PAOC call 

E$OECF 

will generate 

LA 
LA,U 
LMJ 

SPERRY UNIVAC 1100 S.,'.' Ex.cutlve 
System Utility Programs 

10,COUNT 

AO,COUNT 
A 1,10 
X 11 ,EDECF$ 

UIIDATE LEVEL 
I 2-32 

IIAGE 

The procedures E$FLS1, E$FLS2, E$FLG1, E$FLG2, E$FLFl and E$FLF2 have the following form for 
their procedure call: 

<proc name> x*/6+y,p 

where x and yare defined in the section on the floating-point editing routines (see 2.4.2.3.). The 
procedures will generate: 

LA 
LA,U 
LMJ 

A 1,p 
AO,x*/6+y 
X 11 ,<routine> 

except that the double-precision PAOCs generate a Double Load A instruction, for the first instruction. 
Indexing, indirect addressing and automatic index incrementation may be specified for p. The 
dropout rules are the same as before. For example: 

E$FLF2 

will generate 

but 

OL 
LA,U 
LMJ 

E$FLF 1 

will generate 

LA,U 
LMJ 

30*/6+ 18,(1.2340) 

Al,(1.2340) 
AO,30*/6+ 18 
X 11 ,EFLF2$ 

AO,20*/6+9 
X 11 ,EFLF 1 $ 

2.4.3. ASCII Image Composition Editing Package (AEDIT$) 

AEDIT$ is a set of reentrant subroutines used for composing strings of ASCII characters in a 
user-specified area. The AEOIT$ package is very similar to the EOIT$ package used for Fieldata 
images. AEOIT$ is useful in preparing images for: 

• Printed ASCII output (EA APAINT$) 

• Punched ASCII output (ER APUNCH$) 

• Other Executive Requests which require ASCII images. 



4144.41 
UIt-HUMIEfI 

I SPERRY UNIVAC 1100 Serle. becutlve I I 2 33 
~, ________________ 5_y~s_t_e_m __ U_t_i_lit~y __ p_ro_g~ra_m __ s __ . ____________________ -L_u~ __ A_n_~ ___ L ____ ~_ItAG __ E_-____ ___ 

2.4.3. 1. The AE:OIT$ Packet 

AEDIT$ works from the following packet. Words 7-10 are used for editing floating-point numbers 
only. 

. 0 [Test and Set] gwm image length image address 

chsr index word index AEMSG' chsr. AEMSG' word (index) 

2 fps fpr zero return sddress for chsr. store 
i-. 

3 user's return sddress ssve of origins! X 1 modifier 

ssve of origins! X2 contents, or ssve of chsrscter pointer 

6 ssve of origins! X3 contents. or ssve of word pointer 

8 ,AEMSG. Stop char. (01) I [dpe] (02) [Ipe] (03) I unused 

7 unused digits before digits sfter I negstive sign I not norms!ized 

8 fins! column position exponent's power of ten 

9 

10 
ssve sres for intermediste "osting-point results 

52 of wOlrd 0 contains the P5R status for third/quarter-word mode and character addressing mode 
of the USE~r on initial entry. Bit 0 of 52 will reflect the state of 04 (P5R bit 31 - character addressing 
mode) and bit 3 of 52 will reflect the state of 010 (P5R bit 17 - third/quarter-word mode) as defined 
for the LF'D and 5PD instructions. All other bits will be O. When the user calls AEDITX$, qwm will 
be used to restore the user to the state he was in on entry to AEDIT$. In AEDIT$ mode all routines 
function in quarter-word mode. 

All other items in the AEDIT$ packet carry the same meaning as they do in the EDIT$ packet. The 
following changes in location occur from the EDIT$ packet: 

• The AEM5G $ stop character is stored in 01 of word 6, instead of 52 of word 0 (for the EM5G $ 
stop charactEtr in the EDIT$ packet). . 

• The dpc and spc characters are stored in 02 and 03 of word 6 instead of 51 and 52 of word 6, 

• Words 7-10 of the AEDIT$ packet are the same as words 6-9 of the EDIT$ packet. 

• 04 of word 0, and 51 and 52 of word 7 are unused in the AEDIT$ packet. 



4144.41 
UP-NUM8ER 

SPERRY UNIVAC 1100 Serle. executive 
System Utility Programs UPDATE LEVEL 

2.4.3.2. Generating the AEDIT$ Packet 

The following PROC call generates a seven-word AEDIT$ packet (for non- floating-point routines), 
where msg='&' if field 2 is omitted. 

A$EPKT imaye-Iength, image-address ['MSG', 'AEMSG$-stop'] 

The following PROC call generates an eleven-word AEDIT$ packet (for editing floating-point 
numbers), where the values msg = '&', fps = 1, fpr = 1, dpc = 0, spc = 0 are inserted if the 
corresponding field is omitted. 

A$EPKTF i mage-I eng t h, image-add res s [' MSG' , , AEMSG$-s t op' ] 
['FPS' ,fps number] ['FPR' ,fpr number] 
['OPC' ,dpc-char] ['SPC' ,spc-char] 

2.4.3.3. ASCII Editing Routine Descriptions 

The AEDIT$ routines use the same calling sequences as the corresponding EDIT$ routines, except 
for the routine names. To get the AEDIT$ routine name, simply add 'A' before the name of the 
corresponding EDIT$ routine (e.g., ECHAR$ becomes AECHAR$). To get the AEDIT$ PROC name, 
replace the leading 'E$' of the corresponding EDIT$ PROC name with 'A$E' (e.g., E$SKIP becomes 
A$ESKIP). 

Table 2-8 describes the routines for initialization and termination of ASCII editing mode. Table 2-9 
describes the general pupose ASCII editing routines, and Table 2-10 describes the ASCII 
floating-point editing routines. 

Table 2-8. Initialization and Termination of ASCII Editing Mode 

PROC Routine Description 

AtEDIT AEDITt Initial entry into ASCII edit mode. 

The image il Ipace filled; the column pointer il let to column 0; qlJlarter-word mode 

il let; X 1-X3 are saved. The AEDITt package Ulel, but doel not save or restore 
X11, AO-A3, R1. 

AtEDITR AEDITRt Reentry into ASCII edit mode. 

Column pointer is reltored. 

AfEDITX AEDITXt Terminate ASCII edit mode. 

Reltore X 1-X3; lave column pointer in packet. 



4144.41 /1 SPERRY UNIVAC 1100 Series Executive I I 2 35 
___ U_P_~_U_M_8_EA __ ~I ________ . _________ S_y~s_t_e_m __ U __ ti_li_tY~P_r_o~g~r_a_m_s ________________________ ~_U_~_A_n __ UNl __ l ____ ~~'_A_G_E_-__ ___ 

Table 2-9. General Purpose ASCII Editing Routines 

PRO C Routine Description 

AtECH.f ,R AECHARt Edit an ASCII character. 

Insert the ASCII character from 04 of AO into the image. 

AtECLE AR AECLEARt Set image to blanks and column pointer to start of image (column 0). 

AtECOL AECOLt Position the pointer to a fixed column. 

AtECOL N AECOLNt Obtain the current column number in AO. 

AtECOP Y AECOPY$ Copy a string into the image. 

A$EOAY 1 AE[)AY1t Edit the date portion of AO into the format: 

mm/dd/yy 

(Use AtEOAT1 for the current date) 

AtEOAY 2 AEtIAY2$ Edit the date portion of AO into the format: 

dd mmm yy 

(Use A$EOAT2 for the current date) 

A$EOAY .3 AEOAY3$ Edit the date portion of AO into the format: 

month dd. year 

(Use AtEOAT3 for the current date) 

A$EOAY ·4 AEDAY4$ Edit the date portion of AO into the format: 

yearmmdd 

(Use AtEOAT4 for the current date) 

AtEOAY !) AEOAY6t Edit the date portion of AO into the format: 

yymmdd 

(Use AtEOAT6 for the current date) 

A.tEOCF 2~ AEOCFZ$ Convert to ASCII decimal (fixed field length) with leading zeros. 

A.tEOEC F AEOECFt Convert to ASCII decimal (fixed length field). 

AtEOEC V AEOECVt Convert to ASCII decimal (variable length field). 

AtEF01 AEFI)1t Insert ASCII (one word). 

Insert the contents of AO (four ASCII characters) into the image. excluding any 

quarter-word whose value is 040 (ASCII space) or 000. 

AtEF02 AEF[)2t Insert ASCII (two words). 

This is the same as AEFO 1 t. except that it inserts the contents of AO and A 1 (eight 
ASCII characters) into the image. 

AtEMSG AEMSGt Message editor (initial entry). 

Insert ASCII characters starting at the address in AO into the image. This process 

stops when the AEMSG t stop character (01 of word 6 of the packet) is 
encountered in the string. 



4144.41 
UP-NUM8ER 

PRoe Routine 

A$EMSGR AEMSGR$ 

A$EOCTF AEOCTF. 

A.EOCTV AEOCTV$ 

A$EPACK AEPACK$ 

A$ESKIP AESKIP$ 

A$ETIME AETIME$ 

PRoe Routine 

A$EFlF1 AEFlF1. 

A.EFlG1 AEFlG1. 

AtEFlS1 AEFlS1. 

AtEFlF2 AEFlF2. 

AtEFlG2 AEFlG2. 

AtEFlS2 AEFlS2t 

SPERRY UNIVAC 1100 Serlel executive 
System Utility Programs 

rIb/II 2-9, Gllnllrl/ PurposII ASCII Editing Routines (continulldJ 

Description 

Mellage editor (reentry), 

Convert to ASCII octal (fixed length field), 

Convert to ASCII octal (variable length field), 

Copy and pack a Itring into the image, 

UI'OATE lEVEL 

Thil il the lime al AECOPY., except that the quarter-word whole value il 000, 

although included in the character count, il not inlerted into the image, 

Skip an area in the image (advance column pointer), 

Edit the time portion of AO into the format: 

hh:mm:11 

(Use AtETD for the current time) 

rIb/II 2-10, ASCII Flostin(J-Point Editing Routinlls 

Description 

ASCII lingle-precision fixed...point format. 

Alii edited to fixed-point format with y digits following the decimal point, 

right-justified, in a field of size x, where the calling lequence il: 

l,U AO,x*/6+y 
l A 1 ,addr.-of-number 

lMJ X 11 ,AEFlF 1 $ 

ASCII single-precilion generalized format, 

ASCII lingle-precilion Icientific format. 

ASCII double-precilion fixed-point format, 

This is the lime al AEFlF ,. I except that the contents of A 1 and A2 are edited. 

ASCII double-precision generalized format. 

ASCII double-precision scientific format, 

2.4.4. EOUT$ (Generalized Output Editing Routines) 

EOUT$ is an interpretive routine which performs editing functions for Fieldata output produced for 
a printer, communications terminal, card punch, or display console. 



4144.41 I SPERRY UNIVAC 1100 Se,le. Executive 2-37 
u,~u~~, _______________ S~y_s_te_m __ U __ ti_'i~~_p_rO_g~r_8_m_s ______________________ ~u~ __ An __ ~ __ L ______ 'M __ E ____ ___ 

The interpretive instructions performed by the routine are constructed similarly to machine language 
instructkms, the format is: 

315 31 30 2423 18 17 18 15 0 

[. __ f_~I_t~l_d~l~xl ________ m __ ~1 
where: 

f Function code 

Print position (printer) or character position (display console). Print position 
numbering starts at zero. 

d DE!cimal point location 

x Specifies indirect address and use of the simulated index register 

m Adldress (main storage location of data) 

EOUT$ i~i called by: 

LMJI X 11 ,E()UT$ 

There arE! two entry points to this subroutine. The normal entry point is EOUT$. The other, EOUTR$, 
is the point for reentry after the E$TERM (terminate) function (see 2.4.4.4.). 

The addressed word in the m-field may be either in a control register or main storage. Any word, 
even if in a volatile register, is permissible; but if register X 11 is addressed, the location. of the 
interpretive word which references X 11 is output. All registers, including volatile ones, are saved 
and restolred. ThE! x-field is used to specify indirect addressing and the use of the single simulated 
index reglister. Its permissible values (in octal) are: 

00 _. No action 
01 _. Use address indirectly 
02 _. Apply simulated index register 
03 _. Apply simulated index register then use address indirectly 

Indlirect addressing is permitted to one level only, and the x-, h- and i- field of the indirectly addressed 
word are ignored. It is possible, however, to indirectly address control storage. All modes may be 
used with indirect addressing. 

The various functions are described in the following paragraphs. All may be called as procedures. 
Each of the procedure calls generates one word in the correct format. The parameters of these 
procedur~es are interpreted differently depending on the number written. A single parameter is taken 
m; two plilrameters m and x; three parameters t, d and m; and four parameters t, d, m and x. Any 
missing parametelrs are assumed to be zero. 

Entry to EOUT$ mlay be obtained by the procedure E$OUT or E$OUTR, depending on the entry point 
desired. No pararneters are required. 



4144.41 
UP-ftUUIE .. 

SPERRY UNIVAC 1100 S.rI .. Executiv. 
System Utility Programs 

2.4.4. 1. Editing Functions 

UPOATI LEVEL 
2-38 

PAGE 

These functions convert the information to be output. In all cases, except E$A (alphanumeric words), 
the field specifies the print position at which the rightmost digit, bit, or character is to be printed. 
The number given in parentheses following the procedure call is the octal function code. 

E $ 0(01) - Decimal: The address word is treated as if it were a signed decimal integer and is edited 
without a decimal point unless a set function (see E$PNT - 2.4.4.3.) is in effect. Leading zeros to 
the left are suppressed and a minus sign, if any, is printed immediately to the left of the number (also 
see E$OVRP - 2.4.4.3.). If the value is zero, a single zero is printed. If a set point is in effect, the 
decimal number is assumed to have the started point specified by the set point, and the d-field 
specifies the number of decimal digits to be printed to the right of the decimal point. If a set field 
function (see E$FLD - 2.4.4.3.) with 0 =: 0 is in effect, the specified field is treated as an unsigned 
decimal integer. 

E$0(02) - Octal: The d low-order bits of the addressed word are edited and printed as (d+2)/3 octal 
digits, unsigned. For a full octal, binary, or alphanumeric character word. d must always be given 
as 36. 

E$B(03) - Binary: The d low-order bits of the addressed word are edited as d binary digits unsigned. 

E$C(04) - Alphanumeric Characters: The d low-order bits of the addressed word are edited and 
printed as (d+5)/6 alphanumeric characters in Fieldata code. 

E$A(05) - Alphanumeric Words: the d words beginning with the addressed word are edited as 6*d 
characters in Fieldata code. For this editing function only, the t-field specifies the print position at 
which the leftmost character is printed. 

E$E(06) - Floating-Point (FORTRAN E): The addressed word is edited as a floating-point number with 
d significant digits. Normally these are all printed to the right of the decimal poin't (see E$SCL -
2.4.4.3.). A decimal exponent consisting of a sign and two digits is inserted immediately to the right 
of the significant portion. If the floating-point number is negative, a minus sign is inserted 
immediately to the left of the number (see E$OVRP - 2.4.4.3.). If the addressed word is minus zero, 
there is no effect, and the field is left blank. 

E$F(07) - Floating-ta-Fixed (FORTRAN F): The addressed word is assumed to be a floating-point 
number and is edited to fixed point with d places following the decimal point. Negative numbers, 
including minus zero, are treated as in E $ E. 

E$DE(26) - Double-Precision Floating-Point: This editing function is the same as E$E with the 
addressed word and the addressed word plus one edited as a double-precision floating-point 
number. A decimal exponent consisting of a sign and three digits is inserted immediately to the right 
of the significant portion. 

E$DR(27) - Double-Precision Floating-ta-Fixed: This editing function is the same as E$F with the 
addressed word and the addressed word plus one edited as a double-precision floating-point 
number. 

EIMG$ - The edited output of EOUT$ is sorted in a 22-word buffer in EOUT$'s D-bank following the 
externally defined label EIMG $. 



___ 4_1_4_4_.4_1__ IL ________ s~P~E_R_RY __ U_N_IV_A_C~'_'00~_S_.r_'._._E_X_._Cu_t_iV_. ______________ ~ ____________ ~ __ 2_-3_9 __ _ U'-NUMIER ---l_ System Utility Programs UPOATE LEVEL PAGE 

2.4.4.~~. Output Functions 

The ou1tput functions serve to transmit the edited Une to an output device. The device to be used 
is determined by the d-field: 

Prilnter d=O 

Card Punch d = 1 

Display Console d = 2 

The wOlrd or character count is given in the t-field. This count must be given. (It is not assumed 
maximum if it is given as zero.) For the printer, the word count is normally 22; for the card punch, 
normall'v 14. For the display console, the t-field is a character count and cannot be more than 60. 

Foil" the printer, the m-field serves to specify the number of lines to be spaced. A value greater than 
the lenglth of a logical page results in printing on the first line of the next page. For the punch and 
display console, the m-field is ignored. The number given in parentheses following the procedure 
call is the octal function code. 

E$WT( 1 0) - Write and Terminate: The edited image is transmitted to the specified device, and the 
routine Ireturns control to the next instruction in machine language mode. The image is not reset to 
blanks. .::: 

E$W( 11) - Write: The edited image is transmitted to the specified device and the routine continues 
in the interpretive mode. The image is reset to blanks. 

ESWS( 12) - Wrih~ and Save: The edited image is transmitted to the specified device and the routine 
continUEtS to the next instruction in the interpretive mode. The image remains available for use by 
further output functions or further editing. 

2.4.4.3. Modal Functions 

The modal functions serve to enter information which affects the interpretation of one or more of 
the instructions which follow. The number given in parentheses following the procedure call is the 
octal function code. 

E $ SCl( 13) - Set Scale: The contents of the address field is treated as a signed power of 10 to be 
applied 1to any floating-point or floating-to-fixed functiQn which follows the set scale function. For 
floating-point, the scale is the number of digits to be printed to the left of the decimal point. The 
exponent field is reduced accordingly, so that the resulting value is the same asif no set scale function 
were in Etffect. Nt3gative values of the address (the 16-bit ones complement) introduce leading zeros 
aher the decimal point and increases the exponent field accordingly. 

For floating-to-fj,ced conversion, the actual value of the resulting number is altered by multiplying 
it by the power of 10 indicated by the address. The set scale function remains in effect until it is 
countermanded by a new set scale. Upon initial entry to EOUT$, the scale is assumed to be O. 

E$PNT(14) - Set Point: The set point function specifies the position of the binary point for the next 
editing function to be encountered (presumably a decimal editing function). It remains in effect only 
fOlr the single edit. The address of the set point gives the number of bits following the binary point. 
Negative values are permitted (see E$FlD). 



4144.41 
UP-NUMBEA 

SPERRY UNIVAC 1100 Serle. executive 
System Utility Programs UPOATt LEVEL 

I 2-40 
'AGE 

E $ FLO( 15) - Set Field: The set field function is used to specify a subfield of the next word to occur 
(presumably decimal, octal, binary or alphanumeric character function). The t-field specifies the 
lefthand margin and the m-field the righthand margin. The bits of the machine word are numbered, 
for the purposes of this function, from left (00) to right (35). The d-field specifies extension of sign: 
if it is nonzero, the field is treated as sign. A set field function with d=O and t=O may be used to 
treat fields, includin~ the sign bit, as unsigned unless m=35 (that is, a whole word must always be 
signed in the event a sign is applied). 

The set field function remains in effect only for the next function encountered. If both a set field and 
a set point function are in effect when editing occurs, the set field function is applied first. In this 
case, the set point function specifies the binary point counting from the righthand end of the specified 
field. 

E$INOX( 16) - Set Index: The set index function is used to address a quantity in main storage which 
is to be loaded into the single simulated index register. For any function which addresses storage 
(including this one), the presence of a 1 bit in the increment (h) portion of the address causes the 
simulated index to be added to the specified address before access is made. The left half of the index 
register word is ignored. If the d-field is nonzero, the contents of the m-field (with sign extension) 
is loaded into the simulated index register. The set index function remains in effect until it is 
countermanded by another set index function. 

E$OVRP( 17) - Overpunch: The overpunch function specifies that any minus signs produced by the 
editing functions are to be removed from their positions in front of the edited numbers and placed 
as 11-punches over the low-order digits. In the case of floating-point editing, the sign of the 
mantissa is placed over the low-order digit of the mantissa and the sign of the exponent over its 
low-order digit. The space that would normalty contain the sign of the exponent is omitted. 

The overpunch function is initiated by its occurrence with address 1. It is countermanded by its 
occurrence with address O. Upon initial entry to EOUT$, the overpunch mode is assumed to be off. 

2.4.4.4. Control Functions 

The control functions serve to introduce into the interpretive language some of the control operations 
available in machine language. The number given in parentheses following the procedure call is the 
octal function code. 

E$TERM(20) - Terminate: The terminate function causes the routine to return to the next instruction 
in machine language. Upon reentry at point EOUTR$, all counters, modes in effect, interpretive 
subroutines, and any partial image are left undisturbed; control is returned to the next instruction in 
machine code. If reentry is made at EOUT$, these are all cleared and control is returned to the 
interpretive mode. Entry at EOUT$ is made by: 

LMJ X 11 ,EOUTR$ 

E$LlNK(21) - Link: The link function is used to form subroutines in the editing language. Its effective 
address specifies the location of the entry to a subroutine. Subroutines may be nested to a depth 
of 10. 

E$JUMP(22) - Jump: The jump function with a nonzero effective address causes an interpretive 
transfer of control to the designated location. If the address is zero, the jump function serves as a 
subroutine exit. Transfer is to the interpretive function following that link control most recently 
executed for which no exit has been performed. 



UItDATE LEVEL 
2-41 

'AGE 
4144.41 ~ SPERRY UNIVAC 1100 Serle. executive 
UP-NUMIER System Utility Programs _ , __ ---:....-~ __ ---'---___L...__ 

E$RPT(~!3) - Repeat: The repeat function causes the next single interpretive function to be repeated 
the number of times specified in the d-field of the repeat word. A repeat function preceding E$LlNK 
is meaningless; for mUltiple execution of E$LlNK, the routine EOUT$ should be called within a 
machinEt language loop. The t- and m-fields contain increments to the t- and m-fields of the 
instruction to be repeated for each execution. Any modes set by the modal functions which would 
be in ef'fect for the first execution of a repeated instruction remain in effect for all executions. 

E$"CLEAIR(24) - Clear: The clear function sets the image to blanks. 

2.4.4.5. EOUT~~ Calling Sequences 

Several example!» (The use of FORTRAN formats here is merely to indicate the format desired. The 
I/O func:tions in FORTRAN employ an editing scheme peculiar to themselves.) of typical calling 
sequences to EOUT$ follow: 

Example 1: 

The FOA:TRAN instruction: 

PRINT 100,A,I,N,8,c 

100 FORMAT (6X,E20.7, 120, 020, 1 P.2F20.6) 

is equivClllent to the interpretive sequence: 

E$()UT 

E$e: 26,7,A 

E$D 46,0,1 

E$O 66,36,N 

E$SCL 

E$F 86,6,8 

ESF 106,6,C 

E$VVT 22,0,1 

Ne,xt machine language instruction. 

Example 2: 

If this linle were tel be put out on the card punch, whose output code is 1, then the last interpretive 
instructic~n would be replaced by: 

E$VVS 14,1,0 

E$VVT 22,0,1 

Only the first 80 columns of the image would be punched. 



4144.41 
U'..,.UMIEA 

Example 3: 

SPERRY UNIVAC 1100 S.rl •• ex.cutl". 
System Utility Programs 

Tl1e FORTRAN statements 

PRINT 100 (J (I), K (I), L (I), M (I), 1= 1,4) 

100 FORMAT (2016) 

are equivalent to the following interpretive sequences: 

E$RPT 30,4, i 

E$D 6,0,J,2 

E$RPT 30,4,1, 

E$D 12,0,K,2 

E$RPT 30,4,1 

E$O 18,0,L,2 

E$RPT 30,4,1 

E$D 24,0,M,2 

E$WT 22,0,1 

2.5. Processor Interface Routines (PIRs) 

UPDATE LEVEL 

A set of routines, which are available in the system relocatable library to provide a standard interface 
with the operating system for all system and language processors. These routines simplify the task 
of incorporating additional processors into the operating system. 

In general, processors assign input and output files, obtain source and correction input, and generate 
source and relocatable output. When using the processor interface routines, the processor need only 
be concerned with requesting the next input image and outputting a relocatable word. 

The various processor routines are described briefly in the following paragraphs. Detailed 
descriptions follow. Note that the volatile register set (X 11, AO-A5, R 1-R3) is assumed available for 
the routines. 

2.5. 1. Preprocessor Routines (PREPRO,PREPRM) 

The PREPRO routine is designed for use by processors which require source input, source output, and 
relocatable output parameters on the processor control statement. The PREPRM routine is designed 
for use by processors which require only source input and source output parameters. 



4144.41 L SPERRY UNIVAC 1100 Se'le, executl"e 2-43 
~~______ ________ S~y_s_te_m __ U __ ti_li~ty __ P_ro_g_r_a_m_s ______________________ ~U~ __ An __ UW __ L ______ 'A_G_E ____ _ 

2 .. 5.1. 'I. Prepr'ocessor Routine (PREPRO) 

• Relads the INFOR from processor call. card 

• Standardiz«3S its form in PARTBL (see Figure 2-1) 

• Dynamically assigns the necessary files 

• Obtains the options 

• Obtains the 'next write location' for program files 

• Verifies the element for tape files 

Initial Conditions: 

The processor must not have done an ER to READS prior to entering PREPRO. 

PARTBL must be externally defined, at least 40 words long, and should be zero filled. 

Format: 

LMJ X 11,PREPROS 
error return 
normal return 

Description: 

The user-provided PARTBL is filled with data necessary to process the files. The input/output files 
will be alssigned as follows: 

51 - assioned 
RO - exclusively assigned 
SO - exclusively assigned 

The RO j1Jnd SO clssign will override the 51 assign. 

The error return is taken under the following conditions: 

I/O error occurs (AO = 0) 

control card is in error 
tapE~ positioned improperly 
pro!)ram file is undefined 

AO t 0 



4144.41 
UP-NUM8ER 

SPERRY UNIVAC 1100 Serle. Executive 
System Utility Programs 

2.5. 1.2. Preprocessor Routine (PREPRM) 

Purpose: 

UPDATE LEVEL 
2-44 

PAGE 

Generates the source input and source output fields of PARTBL (see Figure 2-1). Performs dynamic 
assigns and/or program file searches on the source input and/or source output files. 

Initial Conditions: 

PARTBL must be externally defined, 27'0 words long (or 40,0 words long if relocatable output field 
is needed), and should be zero filled. 

Format: 

LMJ X 11 ,PREPRM $ 
error return 
normal return 

Description: 

The information on the processor call statement is transferred to PARTBL (see Figure 2-1). 

The input/output files will be assigned as follows: 

SI - assigned 
SO - exclusively assigned 

The SO assign will override the SI assign. 

On error return, an error message is printed. 

2.5. 1.3. PARTBL Description 

All file, element and version names are left-justified and space filled. 

Filenames are dynamically attached usenames (SI$, RO$, SO$). The default filename is TPF$. NAME$ 
is the default element name. 

Word 0 

file type 

options 

Word 13 

file information 

000 - Input from run stream 
050 - Program file 
076 - Tape file 

Option letters are A-Z left to right. Le., Z option, bit zero set to one. 

Contains indicators for use by the routine POS'TPR$ to restore 
program files to their original assignment state. 
S 1 - source input 
S2 - source output 
S3 - relocatable output 



4144.41 
UP-HUMIER ~ SPERRY UNIVAC 1100 Serie. Executive 

System Utility Programs 
~,_~~_--..L..-------L---

UPOATE lEVEL 

ITI - input termination indicator 

requestEtd cycle 

00 - no action 
01 - @FREE.A remove attached name (51$.50$. RO$) 
02 - @ FREE.AX remove attached name and release 

exclusive-use 
03 - @FREE.AR remove attached name and free file. 

Contains the SIR$ input termination indicator for purposes of 
processor reusability. The possible values are: 

o - Reuse of the processor is possible (input terminated by call 
to CLOSR$. or @EOF image. end of @ADD.E file. INFOR 
CLIST image. or transparent control image) 

1 - Bit 35 end-of-file has been encountered 
2 - @ ENDX has been encountered 

Contains source input element cycle requested. If none 
requested the latest cycle is used. 

2.5.1.4 .. Reusable Processor Construction 

Initial program IOi3d operations are expensive relative to swapping. A mechanism is provided to allow 
a program to make itself reusable. thereby avoiding the need to reload itself. This is applicable to 
programs called by processor call statements but not by @XOT. If the processor in question makes 
use of tlhe standard processor interface routines (PRE PRO. PREPRM. POSTPR$. ROR. SOR. SIR$). 
implementing reusability is not a major task. The steps involved are as follows: 

1. Re~lister the processor's name with INFOR CLIST. either ASCII or Fieldata, using a type 0 list 
(unlknown control statement causes CLIST mode termination). 

2. Bec:ome self.-initializing or self-reinitializing. This may be done by explicitly setting all initialized 
variables to their initial value. or by reloading the main segment. The former method is 
rec()mmend43d, unless the number of variables is excessive. 

3. ChEtck for potential reusability as indicated in PARTBL by SIR$ (S4 of PARTBL+ 13. see Figure 
2-1). call REPRO$ or REPRM$ to read the next INFOR. if any, and reinitialize or terminate 
depending on which return is given by REPRO$/REPRM$. 

Number one is described in detail in Volume 2-5.5. Number two simply means that any data areas 
which are expect43d to contain particular values at the beginning of the program must be initialized 
by a particular instruction sequence, rather than relying on static data initialization. Number three is 
elaboratEtd as follows: 

A. Ijf S4 of PARTBL+ 13 > O. call POSTPR. then quit. 

B. Call REPRO$ or REPRM$. setting AO as desired. 

C. lif absolute-eof-return, call POSTPR then quit. 

D. lif wrong-CLIST value. take action as defined for the particular processor in question. 

E. If error re1turn, treat same as error return from PRE PRO or PREPRM. 

F. If normal return, re-initialize processor (and SIR$. if used, by storing 0 in SIRP2 $). and begin 
nC3W processing operation (compilation, assembly, etc.). 



4144.41 
U'~UMBER 

Word 0 
1 

3 

5 
6 

7 

9 

0 
1 

2 

3 
4 

6 

-
-

2 

2 
2 

2 

3 
3 

3 

3 
3 
3 
3 
3 

5 

a 
7 

9 

1 

2 

3 

5 
a 
7 
8 
9 

35 30 
file type J 

flag bits 

cycle limit 

processor I 
code 

SPERRY UNIVAC 1100 Serle. Executive 
System Utility Programs 

25 
/A options 

internal filename 

element name 

I elrv~:nt I 
version name 

I latest cycle I number of cycles 

I length of element text 

location of element text in program fite 

time element created I date element created 

o 
Z 

fite information I ITI I I re~~~f:ed 

internal filename 

- -
r--

(Same al wordl 3 through 12 -
of Source Input) 

next write location in fite (relative sector) 

internal fitename 

element name 

flag bits I el:v~:nt I 
verlion name 

location of preamble 
length of preamble / length of relocatable text 

location or relocatable element text 
time element created / date element created 

next write location in file (relative .ector) 

Figure 2-1. PARTSL Description 

... " 

Source 

Input 

'v 
... " 

""'--
Source - Output 

'v 
d' 

Relocatable 

Output 

'v 

UPOA TI! LEV£L 
2-46 

'AGE 

Symbolic 

Element 

Table Item 

(See Volume 3-

~l 
Relocatable 

Element 

Table Item 

(See Volume 3-

~~11-3J 



4t144.41 
UP-NUMBER UPOATE LEVU 

2-47 
PAGE L SPERRY UNIVAC 1100 Series Executive 

System Utility Programs, 
,----:....-.---~-----

2.5.1.4.1. Reusable Processor Preprocessor Routine (REPRO$) 

Purpose: 

neads IINFOR from INFOR GUST processor call card, provided INFOR$ has been set to zero. 

Other purposes same as PRE PRO. 

Initial Conditions: 

An INFOR GUST must have been established, and on completion of SIR$, S4 of PARTBL+ 13 must 
be O. 

PARTBL must bo externally defined and be at least 40 words long. 

Format: 

LA. AO,expected-GUST -index-or-zero 
LMJ X 11 ,REPRO$ 

Descrip'tion: 

a bsol ute-eof-retu rn 
wrong-GUST -index-return 
error return 
normal return 

The err()r and normal returns are identical to those 'for PREPRO$. The absolute-eof-return indicates 
that an EOF condition has been encountered which cannot be bypassed; that is, a nontransparent 
control statement or @ ENDX was encountered. In that case, the processor cannot reuse itself and 
must terminate. The wrong-CUST -index return is optional for processors which have more than one 
item in 'their INFOR CUST and only want to analyze one specific command automatically, which is 
specified by its CUST index given in AO prior to calling REPRO$. This return will never be taken if 
AO is ZEtro on entry to REPRO$. After the wrong-GUST -index return, X 11 will point to a reentry 
location if it is desired to continue with the preprocessor routine after all. (Note that the GUST index 
encountered is found in S3 of INFOR$ + 1.) This may be done by the following instructions: 

LMJ X 1 1,0,X 1 1 
error return 
normal return 

where the two returns are as for PREPRO$. 

2.5.1.4.2. Reusable Processor Preprocessor Routine (REPRM$) 

Purpose:: 

Reads I~'FOR from INFOR GUST processor call card, provided INFOR$ has been set to zero. 

Other purposes s,ame as PREPRM. 

Initial C()nditions: 

An INFOR CUST must have been established, and on completion of SIR$, S4 of PARTBL+ 13 must 
be O. 



4144.41 

UP-NUMBER 

SPERRY UNIVAC 1100 Serle. Executive 
System Utility Programs 

PARTBL must be externally defined and be at least 27 words long. 

Format: 

LA AO,expected-CUST -index-or-zero 
LMJ X11,REPRM$ 

Description: 

absolute-eof-return 
wrong-CUST -index-return 
error return 
normal return 

UPDATE LEVEL 
I 2-48 

PAGE 

The error and normal returns are identical to those for PREPRM $. The absolute-eof return indicates 
that an EOF condition has been encountered which cannot be bypassed; that is, a nontransparent 
control statement or @ENDX was encountered. In that case, the processor cannot reuse itself and 
must terminate. The wrong-CUST -index return is optional for processors which have more than one 
item in their INFOR CUST and only want to analyze one specific command automatically, which is 

\ 

specified by its CUST index given in AO prior to calling REPRM$. This return will never be taken if 
AO is zero on entry to REPRM $. After the wrong-CUST -index return, X 11 will point to a reentry 
location if it is desired to continue with the preprocessor routine after all. (Note that the CUST index 
encountered is found in S3 of INFOR$ + 1.) This may be done by the following instructions: 

LMJ X 11,O,X 11 
error return 
normal return 

where the two returns are as for PREPRM $.' 

2.5.1.5. Processor Field Retrieval (FLDGEn 

Purpose: 

This routine retrieves individual fields from the processor call card not normally processed by PRE PRO 
or PREPRM. 

Format: 

F66618 
F2466 

FORM 
FORM 

6,6,6,18 
24,6,6 

the calling sequence is as follows: 

L A 1 ,(F2466 O,I,f) 
l AO,(F6618 O,n,m,j) 
lMJ X 11 ,FLDGETO$ (if using PREPRO$) 

or 

lMJ X 11 ,FLDGETM $ (if using PREPRM $) 
error return 
normal return 



4144.41 

UP-NUMBER L SPERRY UNIVAC 1100 Serle. Executive 
System Utility Programs 

----..:-~--~--'---
UftOATE LEVEL 

2-49 
,.AGE 

where: 
I -- list number desired, currently 01 is only valid list number 

f -- field number desired 

n _. control bits 

BIT 24 - if set field is to be used for output 

- if not set field is to be used for input 

BIT 25 - if set disallow tape for input 

- if not set allow tape for input 

BIT 26 - if set the routine will print any error messages 

- if not set the routine will not print error messages 

m - type of element (1-7); 070 for file only 

j - address of 13 word data area 

Description: 

The information pertaining to the requested field is transferred from the INFOR table to the 13 word 
data area specified by j. Files are assigned if necessary and the element, if designated for input, 
is verifie!d. A use name of the form 'F xxyy $' is attached to the file, where xx is the list number and 
yy is the field number. TPF$ is the default file. 

It is possible to request either a file or an element by OR'ing 070 with the element type, i.e., 077 
in field J71 indicates an omnibus element or a file. The request for an element has precedence over 
a request for a file. 

When bilt 24 of field n is set the routine does the following: 

1. Assign file E~xclusively 

2. Taple file not alloweq 

3. The' element name, version, and type are stored in the 13 word data area 

When bit 24 of field n is not set the routine does the following: 

1. Tape file allowed, depending upon bit 25 

2. Equipment code is stored in S4 of the first word of the 13 word data area. 

3. An ER PFS $ is done on information supplied. 

4. Elernent cycling is checked, relative cycling allowed. 

When bit 26 is set, printing of the error message is suppressed when the field is not found and the 
first word of the 13 word data area is set negative. 



4144.41 
UP-NUMIER 

SPERRY UNIVAC 1100 Serle. executive 
System Utility Programs 

The error return is taken when: 

1. the file cannot be assigned correctly, 

2. the input element cannot be found, 

3. incorrectly coded field, and 

UPlMl1LML 

4. the field specified cannot be found. (AO will contain the same information SEl T$ returned in 
AO on a no find return). 

2.5.2. Preprocessor Routine (PREPF$) 

Purpose: 

Generates the source input and source output fields of PARTBL (see Figure 2-1). Performs dynamic 
assigns of source input and output files. This routine is intended for processors which use files rather 
than elements. 

Initial Conditions: 

PARTBL must be externally defined and at least 27 decimal words in length. 

Format: 

LMJ X 11 ,PREPF$ 
error return 
normal return 

Description: 

The information from the source input and source output parameters or the processor call statement, 
if given, is transfered to PARTBL. The options specified on the processor call statement governs how 
the information is placed in PARTBL. 

no options 

I option 

U option 

- if SI is given, the L option is assumed. 

- if the SO field is given, an error message is printed. 

- if both SI and SO fields are given, the files are assigned and no options are 
assumed. 

- if neither 51 nor SO fields are given, a normal return to the user is taken. 

- SI field is assumed to be the output file. 

- if the SO field is given, an error message is output. 

- if the 51 and SO fields are not given, a normal return to the user is taken. 
\ 

- if the SI field is not given, an error message is printed and the error return taken. 

- if the SO field is given, an error message is printed and the error return taken. 



4144.41 L SPERRY UNIVAC 1100 Series Executive 2-51 
~~______ _________ 5~y_s_te_m ___ U_ti_'i_ty~P_r_o_g_ra_m __ s ______________________ ~u_~_A_n_L_~ __ L _____ P_A_G_E __ ~ 

- the U option implies that the next higher f-cycle of the 51 file is to be produced. 
PREPF$ assigns the next higher f-cycle. The name specified in the SI field 
cannot be a USE name. 

It is important to remember that PREPF$ expects file names. If the user is not in DATA MODE then 
a peri()d must be included in the file name. 

2.5.3. INFOR Table Interface Routines (INFOR$) 

NOTE: 

When using the preprocessor routines, they must perform the first READ$ request and they must 
proces's the information from the processor control statement. 

The INIFOR tabll~ interface routine: 

'1. RE~ads the INFOR table. 

2. SE~arches for a parameter subfield. 

~l. RE!trieves a complete parameter. 

4. Performs a dynamic @USE (see Volume 2-3.7.5). 

Internall format (INFOR) is the table of information returned from the operand field of a processor call 
statemE~nt when a program is called for execution as a processor rather than by being named on an 
@XOT control statement. The INFOR is returned on the program's first request to READ$ (see Volume 
2-5.2.1 ). 

The INF:OR call in contrast to @XOT is as follows: 

@ .~Itname,()ptions operand-field 

The opEirand-field may consist of many parameters, separated by commas, each of which may contain 
information of any kind, as long as it conforms to the syntax conventions of a file or element name. 
For example, an operand field of 23, REVI5E/@7., 16/17 would create the following INFOR entries: 

• 
• 

• 

Parameter 1 is treated as element name: 

Parameter :2 is treated as filename: 

read key: 
write key: 

Palrameter :3 is treated as element name: 

version name: 

'23 

'REVISE 

'@ 
'7 

'16 

'17 

The format of the INFOR table is flexible, with control words to indicate which components of a 
filenamE! or elemf~nt name are actually present (nonvoid). Figure 2-2 illustrates the INFOR table format. 
A set oir routine!; is provided for reading and manipulating the INFOR table. These routines are 
describE!d in following subsections. 



4144.41 
UP-NUMBEA 

Subfield 
Control Word 

35 

FT 

SPERRY UNIVAC 1100 Serle. Executive 
System Utility Programs 

2625 23 17 11 

type options 

subfield-descriptions 

I FN I SFN 1 FCI I 
symbolic-subfield 

subfield-description 

Figure 2-2. Format of INFOR Table 

5 

CC I wc 

UPOATl LEY£L 
I 2-52 
~'AGE 

o 

Subfield 
Description 

The fields of the INFOR table are: 

type 

options 

The contents of type is right justified and specifies the control image (518 for 
processor; 1008 for FURPUR). 

A mask containing the specified options in master bit notation (bit 25 for A; bit 0 for 
Z). 

A subfield-description represents each subfield specified on the control image. The subfield control 
word which is the first word of the subfield-description, has the following fields: 

FT 

FN 

SFN 

FCI 

CC 

Field type supplied by the following: 

o - options (or command) field 
1 - specification field 

Field number within field type (numbered from one). 

Subfield number within field (numbered from one). 

File continuation indicator (used with element notation). Contains 075 octal if field 
was preceded by a period, otherwise zero. 

Specifies the number of characters in the last word of the symbolic subfield. The 
remaining characters are spaces. 

WC Specifies the number of words in the symbolic subfield. 

The number of characters in the symbolic subfield is 6*(WC-1 )+CC. 



4144.41 
UP-NIJMBER 

I SPERRY UNIVAC 1100 Serle. Executive I I 2 53 
~ _______________ S~y_s_te_m __ U_t_il_it~y_P_r_o_g_ra_m __ s ____________________ ~u_~_A_n __ uw __ L __ ~~'_M_E_-__ ___ 

2.5.3. 1. Element and File Notation 

For element and file notation formats, see Figure 2-3. In file and element notation, if the (*) appears 
without a qualifiEtr, the INFOR table contains a qualifier of twelve spaces. (see Volume 2-2.6) When 
the element name has the form: 

.[N] [/[V]] [([C])] 

the leading period causes the first subfield to contain 758 (Fieldata for period) in the FCI subfield. 
If this occurs in the command field of a control statement, a call for a user-defined processor in TPF$ 
is made. If this occurs in a specification field, the previous specification field is used (TPF$ is the 
first specification field). 

2.5.3.2. Reading the INFOR Table 

READ$ provides the processor an INFOR table as its first card images. The following bits in AO control 
the reading of the INFOR table: 

bit 31 - Image is part of the INFOR table 

bit 30 - Another READ$ request is needed to complete the reading 

bit 17-00 - Number of words transferred (normally 27) 

2.5.3.3. Intern~.1 Format Routines 

The outliines and functions available to INFOR$ are: 

RINF$ - reads the INFOR table 

SINF$ - searches for specification subfield 

SEL.T$ - searches for a file or element notation 

DUSE$ - performs a dynamic @USE (see Volume 2-3.7.5) 

All of the code in INFOR$ is I-bank reentrant and quarter-word and third-word insensitive. INFOR$ 
uses reglisters AO through A5, X 11, R 1, and R2. 

In addition to the routine names, the following cells are externally defined: 

INFOR$ 

INFOR$ + 1 

FILE:$ 

ELT$ 

- parameter supplied to RINF$ 

- contents of AO after first READ$ performed by RINF$ (status bits, CLlST$ index, 
etc.) 

- edited filename from DUSE$ (8 words) 

- field description table from SEL T$ (14 words) 



4144.4 t 
UP-NUMIEA 

SPERRY UNIVAC 1100 Serle. Executive 
System Utility Programs 

2.5.3.4. Read INFOR Table (RINF$) 

Purpose: 

Reads the INFOR table into an area supplied'l:'cy the caller. 

Format: 

L AO, (word-count,starting-add r ) 

LMJ X 11 ,RINF$ 
error return 
normal return 

Description: 

UftDATE LEVEL 
I 2-54 

PAGE 

If INFOR$, an externally defined tag, is zero a read of INFOR is done. If INFOR$ is not zero, INFOR 
is assumed to have been read and is in the area described by INFOR$. Therefore on a reusability 
call INFOR$ must be set to zero in order to read INFOR. 

Register AO must contain the address in the modifier portion area and the length in the increment 
portion (length in the form 27n+ 1). If no errors occur, the INFOR table is read into the specified area, 
followed by a zero word, and the normal return is taken. 

When an error is encountered, register A 1 contains the error type and register AO contains the 
PRINT$ control word for the error message. The possible messages are given in Table 2-11. 

T6ble 2-11. RINF, Error Mess6ges 

Error Error Message and Description 
Code 

'. PROCESSOR CALL ERROR 

Data images were returned on the first call to READ. indicating that no INFOR table was created for 
this program. 

2. ABNORMAL RETURN FROM READe 

READe returned with an end-of-file or other status which indicates that this program has neither an 
INFOR table nor input data images. 

3. TOO MANY SPECIFICATIONS 

The buffer area provided bV the user Is not large enough to hold the INFOR table. 

2.6.3.5. Search Infor Table (SINF$) 

Purpose: 

Searches the INFOR table (previously read by RINF$, see 2.5.3.4) for a specification subfield. 



4144.41 
UP-HUM8EA L SPERRY UNIVAC 1100 Serle. Executive 

System Utility Programs 
----.:.-~ __ -'--------L--UlltDATE LEVEL 

2-55 
'AGE 

f:ormat: 

L,IU AO,component-descriptor 
LMJ )( 11 ,SINF$ 

no-fi nd-retu rn 
f;nd-return 

Description: 

Register AO must contain the specification subfield description (H 1 of the control word). 

The component descriptor is an octal value of ffsscc, where ff is the field number, beginning with 
01, ss is the subfield number, beginning with 01, and cc is the component number with the 
components ranging from 018 to 108 as follows: 

18 File qualifier (two-word entry) 

28 Filename (two-word entry) 

38 File cycle (one-word entry) 

48 Read key (one-word entry) 

58 Write key (one-word entry) 

68 Element name (two-word entry) 

78 Version name (two-word entry) 

10:8 Element cycle (one-word entry) 

T() returrn the element name component of subfield 3, for example, the component descriptor would 
be 0 1 0~J068' 

There is a special case where an element name is preceded by a period and given without a filename. 
This is normally interpreted to mean that the file for the present subfield is to be either TPF$ if it is 
the first subfield, or the same file as was used for the previous subfield. Following a find-return from 
SINF$ to get an element name component, the following test skips if this special file continuation 
case exists: 

L,S4 A 1 ,0,A2 
TE,IU A:2,'.' 

If a file qualifier component of spaces is returned, a qualifier was implied by a leading asterisk (*) 
before the filename. 

When a find-return occurs, the registers contain the following: 

AO,A1 - Fieldata name (left-justified, space filled) 

A2 - ~ocation of control word (S4 contains the Fel field; see Figure 2-2) 

A3 - number of characters 



4144.41 
UP-NUMBEA 

SPERRY UNIVAC 1100 Serle. Executive 
System Utility Programs 

2.5.3.6. Transfer to EL T$ Table From INFOR Table (SEL T$) 

Purpose: 

UPDATE LEVEL 
2-56 

PAGE 

Transfers a subfield of file or element notation from the INFOR table to the El T$ table. A leading 
period (.) in eloment notation automatically causes file continuation; the element cycle is converted 
to binary. 

Format: 

F2466 FORM 24,6,6 

l AO,(F2466 O,ff,ss) 
where: ff is the field number desired 

ss is the subfield number desired 

lMJ X 11 ,SEl T$ 
no-find-return 
find-return 

NOTE: 

The only field currently allowed is 0 " if 00 is given a 01 is assumed. The specification of the field 
number is to accommodate future enhancements to the 1100 Series Executive System control 
statement interpreter. 

Figure 2-3 describes the El T$ table when a find-return occurs. 

ElT$+O 
+1 
+2 
+3 
+4 
+5 
+6 
+7 
+8 
+9 

+ 11 

ElT$+ 13 

51 
FOl I 
ENl I 

S2 S3 S4 S6 
FNl I FCl I RKl I WKl 
EVl I ECl I CFN I ECC 

FOUAl 
(two words) 

FNAME 
(two words) 

FCYC 
RKEY 
WKEY 
ENAME 

(two words) 
EVER 

(two words) 
ECYC 

Figure 2-3. Form6t of the EL TI T6ble 

S6 

I IOF 

I BEC 



4144.41 II SPERRY UNIVAC 1100 Serie. Executive 2-57 
UP~~I ________ -=S..:.y.:.s.:..:te:...m_U::..t_il_it..:.y_P_r_o...::g:...r_a_m_s ___________ ..... U_PO_A_TE_LEVE_L __ ..... '_AG_E __ _ 

The fiellds in the EL T$ table represent the following: 

FelL length (in characters) of file qualifier or 0 

FNIL length (in characters) of filename or 0 

FCL length (in characters) of F-cyc~e or 0 

RKL length (in characters) of read key or 0 

WI<L length (in characters) of write key or 0 

IOF implied qualifier flag 

ENL length (in characters) of element name or 0 

EVL length (in characters) of element version or 0 

ECL length (in characters) of element cycle or 0 

CFIN file continuation field number or 0 

ECC element cycle signal character 

BEC binary element cycle 

FOUAL Fieldata file qualifier 

FNAME Fieldata filename 

FCYC Fieldata F-cycle 

RKEY Fieldata read key 

WKEY Fieldata write key 

ENJ~ME Fieldata element name 

EVER Fieldata element version 

ECYC Fieldata element cycle 

Descript:ion: 

Since EL T$ is not cleared, the field lengths of the first two words should be interrogated to determine 
which Fi,eldata fields contain meaningful information. When defined, a Fieldata field is left-justified 
and space filled to one or two words. 

A leadin'9 * sets the implied qualifier flag (IOF) to nonzero and file qualifier length (FOL) to zero. 

If file cc)ntinuati,on field number (CFN) is zero, then the file information was taken from the 
specificaltion which was requested. If CFN is nonzero, then it contains the number of the field from 
which th,e file information was taken. This field is linked to the field being searched for by a sequence 
of element name!s with leading periods. 



4144.41 
UP-NUMBER 

SPERRY UNIVAC 1100 Serle. executive 
System Utility Programs UP'OATE LEVEL 

2-58 
PAGE 

If the element cycle field is not specified, the element cycle signal character (ECC) equals a Fieldata 
minus sign (-) and the binary element cycle (BEC) equals zero. When it is specified, the numeric 
portion of the cycle is converted to binary and the result is placed in BEC. If the cycle is neither 
numeric nor signed numeric, or is greater than 63, the field ECC contains the Fieldata image E, 
indicating an error. Normally, ECC contains 0, Fieldata +, or Fieldata - when the first character of 
the cycle is numeric, +, or -, respectively. 

Since EL T$ is not cleared, the character count must therefore be examined to determine which fields 
contain meaningful information. 

When a no-find-return occurs, register AO contains the address of the control word that stopped the 
search. If this word is zero, the rest of the INFOR table is empty. 

As assembler procedure, EL T$, defines the field names in the EL T$ table (see Figure 2-3) as EOUF's. 

2.5.3.7. Assign Attached Name to File Specified in INFOR Table (DUSE$) 

Purpose: 

Assigns an attached name to a file which was specified in the INFOR table by a CSF$ request naming 
a @USE control statement. DUSE$ uses the filename information in the ELT$ table and the attached 
name supplied by the programmer. 

Format: 

DL AO,(attached-name) 
LMJ X 11,DUSE$ 

return 

Description: 

Registers AO and A 1 must contain the 12-character attached name, 'eft-justified and space filled. 

After the return, AO contains the status bits from CSF$ (see Volume 2-4. 10.1.1), and the a-word area 
FILE$ contains the filename (edited, left-justified, and space filled). If a filename is not specified (FNL 
= 0), TPF$ is assumed. 

2.5.4. Identification Line Routines (IDlINE$/IDONLY$) 

IDLlNE$/IDONLY$ is a routine that provides a standard identification line for 1100 Series System 
language and utility processors. 

• Identification Line Format 

A standard processor identification line is generated in a processor supplied buffer called 
IDBUFF. All fields but the processor name and level field are generated. The element cycle 
information field is optional. All information is generated in Fieldata code. 

The format of the complete 10 line is: 

PPPLLL RRRRRR MOIDD/YY HH:MM:SS (old,new) 



4144.41 
UP-NUM8ER 

2-59 
'AGE ~ SPERRY UNIVAC 1100 Series Executive 

System Utility Programs , __ ~---=----=----_--L-----'----UPDATE LEVEL 

where: 

PPPLLL 

RRRRFtF\ 

MO/DD/YY 

HH:MM:SS 

(old,new) 

• IDBUFF 

= processor name and level, 12 characters or less, supplied by the 
processor. 

= System Relocatable Library level the processor is collected with. The 
form varies with the level number. For example, RL72R 1, 73R 1 Q 1. 

= month/day/year at processor call. 

= hour:minute:second at processor call. 

= optional (input,output) symbolic element cycle number. 

Th'e processor must supply a buffer with an externally defined label, IDBUFF. Prior to calling 
IDLlNE$/IDONLY$ this buffer must be initialized with the name/level field (up to 12 characters) 
leU-justified and the remainder of the buffer blank filled. This buffer must be at least 6 words 
long and up to 8 depending upon the name/level length and whether or not cycle information 
is Irequested. 

ThlB IDBUFF length is shown in Table 2-12. 

Table 2-12. IOBUFF Length 

Name and Level Length 

Call 1 Word 2 Words 

IDLlN$/IDTIME$ 7 8 

IDONLY$/IDTOME$ 6 7 

A processor' name and level> 12 characters may be used if the start of IDBUFF is defined as 
the word following the name and level. 

• Re!~ister Us,age: 

IDl.INE$/IDONLY$ uses registers AO-A5, X9, X 11, R 1-R3 (X9 is saved and restored), is reentrant 
and is not quarter/third-word sensitive. 

2.5.4.1" IDLlNE:$ 

There are two entry points to the IDLlNE$ routine, IDLlN$ and IDTIME$. 



4144.41 
UP-NUMBEA 

2.5.4. 1. 1. IDLIN $ 

SPERRY UNIVAC 1100 Series Executive 
System Utility Programs UPDATE lEV£L 

I 2-60 
PAGE 

Generates the complete 10 line including symbolic element cycle information. The element cycle 
information is taken from PARTBL, which is filled in by the System Library routine PREPRM/PREPRO, 
so the call on PREPRM/PREPRO must precede the call on IDUN$/IDTIME$. 

The IDUN $ calling sequence is: 

LMJ X 11 ,PREPRO $ . or PREPRM $ 
J ERROR . error return from PREPRO$ or PREPRM$ 
LMJ X11,IDUN$ 

PF FORM 
LA 
ER 

12,6,18 
AO,(PF 1,7 ,IOBUFF) 
PRINT$ 

2.5.4. 1.2. IDTIME$ 

This call is the equivalent of IDUN$ except the caller furnishes the date (in register R2) and time (in 
register R3) in ER OATE$ format. 10TIME$ can be used by a processor that executes for a considerable 
time before it prints the 10 line. In this case the actual date and time that the processor began 
execution would be saved and then passed to IDUNE$ in registers R2 and R3. 

2.5.4.2. IDONLY$ 

There are two entry points to the IDONLY$ routine, IDONLY$ and IDTOME$. 

2.5.4.2. 1. IDONL Y$ 

Generates the 10 line without the symbolic element cycle information. IDONLY$ can be used by 
processors which do not create or update elements. An externally defined PARTBL is not required. 

The IDONL Y$ calling sequence is: 

LMJ X11,IDONLY$ 

PF FORM 
LA 
ER 

12,6,18 
AO,(PF 1,6,IDBUFF) 
PRINT$ 

2.5.4.2.2. IDTOME$ 

This call is the equivalent of IDONLY$ except the caller furnishes the date (in R2) and time (in R3) 
in ER DATE$ format. 

2.5.5. Processor Scratch File Routine (GETPSF$) 

As a matter of efficiency, a set of file names has been defined for common use by system processors, 
language processors, and user programs which require one or more scratch files. Based on the 
abbreviation PSF (Program Scratch File), these filenames are PSF$, PSF1 $, PSF2$, etc. These files 
are generally to be assigned only once per run; the first program requiring a file will perform the 



4144,41 
UP-NUM8ER ~ SPERRY UNIVAC 1100 Series Executive 

System Utility Programs 
, __ ~~_-----'--.--.L---_ UPDATE LEVEL 

assignment and leave it assigned for subsequent use by other programs in the run. Moreover, a 
program should not assign the file by CSF$ if it is already assigned to the run; this can be determined 
by usin~~ the FITEM $ ER or by intercepting an 10 21 contingency. Each program is free to use as 
many PSF files as is needed; it is most economical to restrict the requirements to one or two. Since 
these files are used by the Collector and other complex programs, it is also desirable to assign them 
with a siubstantial granule maximum, such as 3000 tracks. 

To- faciHtate the uniform assignment of these files,- a library subroutine exists to obtain them in a 
manner consistent with the above requirements, This routine, GETPSF$, may be called as follows: 

l,U AO,n-1 
lMJ X 11 ,GETPSF$ 

error return 
normal return 

where n is the number of files desired (in the range 1 to 10). 

If the normal return is taken, the requested files are assigned to the run in FASTRAND format, track 
granularity, and with a granule maximum of 3000. For each file, a FACll$ will be performed before 
attempting to assign the file,' both to check equipment type for already assigned files and to prevent 
superfluous CSF$ requests. 

An alternate entry point is available to assign only one specified file, as follows: 

l,U AO,n 
lM,J X 11 ,GETPSFN$ 

error return 
normal return 

where n is the number of the file desired (n = 0 for PSF$, n = 1 for PSF 1 $, and so forth). The 
error conditions are the same as for the call to GETPSF$, 

Upon normal return, A 1 contains '$ $, " if one file was requested (0 if GETPSFN$) or' n $ n $,' ,where 
n is one less than the number of files requested (n if GETPSFN$). H 1 of A 1 is used for any @USE 
the processor may make on a PSF file (@USE name ,PSF ('H 1 of A 1')). 

When the error return is taken, AO will contain an error code with auxiliary information in other 
registers depending on the nature of the error. The error codes are as follows: 

AO = 0 

AO = 1 

AO = 2 

The input value in AO is negative or exceeds 9: 
A 1 contains the value. 

A file is assigned to the run which is not FASTRAND format. A 1 points to the 
FACll$ packet. 

A CSF$ request was rejected. A 1 points to the FACll$ packet and A2 contains 
the status bits returned by CSF$. 

2.5.6. Source Input/Output Routine (SIR$) 

The SOUlrce Input Routine (SIR$) is used by a processor to obtain the source images from the run 
stream, from a symbolic element in a program or element file, or from a SDF file. The routine can 
automatically merge corrections, list the corrections, and produce an updated symbolic element 
which is inserted into a program file. The symbolic element which contains the source input may 
be cycled; the desired cycle is specified in the processor call statement. The source input routine 
automatically passes to the processor only those images that pertain to the cycle requested, 



4144.41 
UP-HUMBER 

SPERRY UNIVAC 1100 Serle. Executive 
System Utility Programs UPOA TE LEVEL 

I 2-62 
PAGE 

SIR$ contains six user interface entries, OPNSR$, INISR$, GET5R$, GETAS$, GETNM$, and CLOSR$. 
These are described in following subparagraphs. The general capabilities of the source input routine 
are described below. 

The information pertaining to source input and output elements or files (e.g., their names) is obtained 
from the respttctive entries in PARTBL. The information in PARTBL is usually produced by the 
PREPRM/PREPRO (see 2.5.1) or PREPF$ (see 2.5.2) routines from information specified on the 
processor call statement. The options that may be placed on a processor call statement that are used 
by 51R$ are presented in Table 2-13. Depending upon options used, one may direct the input and 
output of data in Fieldata or ASCII, input and check sequence numbers, insert symbolic elements, 
update and produce new cycles and list correction lines. The source-like correction statements used 
by SIR$ to modify symbolic elements are described in Volume 3-1.2.1. 

The images processed and produced by 51R$ are in System Data Format (SDF). See Volume 3-11.2.3, 
for a description of SDF. SIR$ passes control images and label images of the 5DF source language 
to the user, but does not count them as items when applying corrections. 

When an updated or new source element is specified on the processor call statement, the corrected 
source is written to the program file. If a two-pass processor calls on SIR$ and no updated or new 
source element was specified on the processor call statement, the processor must provide a scratch 
file to hold the corrected source for the second pass. The internal filename of the scratch file must 
be in PARTBL+ 14,15, and PARTBL+ 16 must be set to zero prior to entering SIR$. 

When a new element is being inserted into a program file from the run stream, 51R$ precedes the 
text images of the element with a label image. 

The format of this label control word and image is: 

S1 S2 53 56 

0

1 

rl ____ o_5_o __ ~ _____ 0_' ____ ~ ___ 0_3_0 __ ~ _____________________ ~_A __ S_c_#_fl_a_g_4 

. *SDFF* 

Word 0 

S 1 - 050 is the 5DF label identifying this as an SDF element 
S2 - indicates that a one-word image follows 
53 - the Fieldata character '5' identifies this as a SIR$ created file or element 
56 - indicates the code type of the following text images. with a 1 indicating ASCII and a 0 indicating 

Fieldata. 



41.14,41 

UP·-HUM8EA L SPERRY UNIVAC 1100 Serle. Executive 
System Utility Programs 

------:-~:...----~--'---, 
UPDATE LEVEL 

2-63 
PAGE 

If SIA$i applies corrections to the input, the output will contain 052 control images whose format 
is a~ follows: 

o 

n 

where: 

Word 01, S 1 

052 

Word 0, S2 

L 

Word 0, H2 

0~;2 L num-delete 

Correction Image 

specifies that a correction image follows or that H2 of the 052 control word contains 
the number of images deleted before the next image on the last update, 

specifies the length of the following correction image (L = 0 if this is a number of 
deleted images control image.) 

num-dEllete Zero implies this is a correction statement control image. Nonzero implies H2 contains 
the number of images deleted before the next image on the last update. (This image 
is not returned to the user). 

If the word specifies a correction statement image, the type of the image is the same as the current 
type of 1the input, Fieldata or ASCII. The tI_n" correction image is placed in the output immediately 
after lin~e n. The "-m,n", "-m-, and "-m,n" correction images are placed in the output immmediately 
after linca m-1. The 052 control images in the SDF input element are discarded by SIA$ on its first 
pass. 



4144.41 
UP-NUMIEA 

SPERRY UNIVAC 1100 Serle. Executive 
System Utility Programs UPDA Tt LEVEL 

2-64 
PAGE 

A control word precedes each data image in the element. The format of this control word is: 

3534 2423 18 17 12 11 65 o 

image length (words) flag previous delete new flag start 
0 images deleted cycle number cycle number 

S6 is the element cycle at which this image was added, and S4 is the cycle at which it was deleted. 
If the image was added on the latest cycle (after cycle 0), the new flag is set, so the calling processor 
can mark the line as "NEW". If this is not a new image, and any previous images were deleted on 
this cycle, S3 is nonzero. (See Volume 3-11.2.3.3.) 

When the source input is from an element file (see Volume 3-11.2.2), the tape label block is read 
prior to entering SIR$, which then treats it as a program-file element. After SIR$ is closed, the tape 
is positioned in front of the new element label block. 

2.5.6.1. SIR$ Control Options 

Table 2-13 contains a list of those options used by the source input routine to control the input and 
output of the source language elements. Most language processors (FOR, ASM, COB, ALG, and so 
forth) supplied by Sperry Univac use the source input routine to obtain their input. Therefore, the 
listed options are generally applicable to language processors. 

Table 2-13. Source Input Routine Options 

Option Description 
Character 

G Input is compressed symbolic in columns 1-80 of the card deck. 

H Input contains sequence numbers in columns 73-80 of the symbolic images. 

I Insert a new symbolic element into the program file. 

J Input contains compressed symbolic images in columns 1-72 of the cards and 
sequence numbers in columns 73-80. These sequence numbers are not checked 
by the K option. 

K Check sequence numbers in columns 73-80 of the symbolic images (valid only 
with H option). 

P Output symbolic element in Fieldata. (Compare with a.) 



4144.41 
UP-NUM8ER ' 

SPERRY UNIVAC 1100 Series Executive 
System Utility Programs 

Table 2-13. Source Input Routine Options (continued) 

UIIOATE LEVEL 
2-65 

'AGE 

~.-----------~------------------------------------------------------------------------------------, 
Option 

Character 
Description 

~'---------+-------------------------------------------------------------------------1 
a Output symbolic element in ASCII. (If neither P nor a is specified, code type of 

input element, if any, is used; otherwise, P is assumed.) If both P and a are 
sp1ecified, output symbolic element with mixed images, Fieldata and ASCII (only if 
mixed mode code is turned on (NM = 1), otherwise output is the same as input 
type.) 

U Update and produce a new cycle of the symbolic element. 

W List correction lines. 

2.5.6.2. Open Source (OPNSR$) 

PlUrpose: 

Initialize-s SIR$ to allow input/output. 

Format: 

LMJ X11,OPNSR$ 

Description: 

e,'ror return 
normal return 

(Either OPNSR$ or INISR$ may be called for initialization but not both on the same pass.) 

Provides first or ~second pass initialization functions for the Get Source routines. The System Data 
Format Input routine (SDFI) is opened if the source input is from a program file or tape. The System 
Data Format Output routine (SDFO) is opened if the source output is specified. 

If input is from an element and S3 of the label control word is nonzero and not the Fieldata character 
'5', the message NOT SIR TYPE FILE will be printed and all cycling information in the control words 
will be ignored. 

The errOir return is taken when: 

1. SDFI was unable to open source input. A5 contains the I/O error status code from SDFI. 

2. An attempt was made to process an invalid SDF file or element. A5 = O. The associated error 
message is: 

'INVALID S[)F LABEL WORD w 

whlere w is the first two words of the element or file printed in Fieldata. 



4144.41 
U,.""UMIEft 

SPERRY UNIVAC 1100 Ser'" executive 
System Utility Programs 

2.5.6.3. Initialize Source (INISR$) 

Purpose: 

Initializes SIR$ to allow input/output. 

Format: 

L A4, < initialization-word> 
LMJ X 11 ,INISR$ 

error return 
normal return 

Parameter: 

UPDATE LEVEL 
2-66 

,.AGE 

initialization-word - Word used by SIR$ to specify which control images are not wanted by the 
calling processor and whether or not to create output to a scratch file if 
there are no corrections. 

Description: 

This entry point performs the same functions as OPNSR$ as well as initializing further information 
for SIR$. On entry, bits 0-31 of A4 specify which controf images are not wanted by the calling 
processor. If bit n is set, (n is the octal bit position, right-most bit = 0), then control image n +040 
will not be returned to the caller on a GET image call. 

Example: 

A4 = 043 on a call to INISR$ would prevent control image types 040, 041, and 045 from being 
returned to the caller. If bit 35 is set (A4 is negative) SIR$ will check for the following conditions 
to exist: 

1. Output is to a file (PARTBL+ 16=0), 
2. input is not from tape, and 
3. there are no corrections 

If these conditions exist, SIR$ will not do output to the processor's scratch file on the first pass. On 
subsequent passes SIR$ will reread the input element. If these conditions are met SIR$ will do 
approximately 75 percent fewer 10$'s on the first pass than would be done by calling OPNSR$. 

Example: 

@ASM,S < non-tape-si-element >, < ro-element > 
@eof 

This example would not create the unused output to the processor scratch file if the assembler had 
set A4 negative and called INISR$ instead of OPNSR$. 

NOTE 

A processor whose purpose is to create an output file specified in the SO portion of PARTBL should 
not call INISR$ with A4 negative. Example: the @OA TA processor. 



UPDATE LEVEL 
2-67 

PAGE 
414,4.41 L SPERRY UNIVAC 1100 Series Executive 
UP-NUMBEA System Utility Programs 
,-, -~~-~----'--

2.5.6.4. Get Source Image in Fieldata (GETSR$) 

lPurpos;e: 

Gets a source input image in Fieldata, and if source output is specified, generates a new source 
element image. 

Format: 

L AO,(buffer-length, buffer-addr) 
LMJ ;< 11 ,GETSR$ 

Hrror return 
EOF return 
normal return 

ParamElters: 

buffer-length _. Length of the buffer into which the images are to be read. 

(If the user's buffer is longer than the image returned, the buffer will be 
blank-filled to the end. If the user's buffer is shorter than the image returned, 
only the part of the image that will fit in the buffer is returned - the last part of 
the image is lost.) 

buffer-,addr Address of the buffer. 

DescrifJltion: 

An image is transferred to the caller's buffer. GETSR$ will get the next image upon request. The user 
buffer will be spaced filled if the image returned is smaller than the buffer. Truncation will occur if 
the imalge exceE~ds the buffer size. 

The error return is taken when either an 1/0 (unrecoverable) error occurs, a correction image sequence 
error occurs, or a partial line correction error occurs. In case of I/O error, A5 contains the 1/0 error 
status code. In case of sequence or partial line correction error, A5 =0 and AO contains a print control 
word for the image in error. The caller must do an ER PRINT$ to print the error message (see Volume 
3-1.2.6;). 

The EOIF return is taken when a SDF EOF image is encountered in the source input element or when 
READ$ gives an EOF return when reading images from the run stream. 

The foUowing information is returned to the caller when the normal return exit is taken: 

AO -

A1 

A2 -

(S6) == 0 (image returned is Fieldata) 

SDF image control word. If A 1 (bit 35) = 1 an SDF control image is being passed to the 
caller, A2 and A4 are undefined. 

(51) Always contains a Fieldata space (05). 

(S2) Fieldata '#' symbol (03) if the sequence numbers in columns 73-80 are not 
sequential, otherwise a Fieldata space (05). Applies only with the Hand K options. 

(S3) Fieldata '*' symbol (050) if the image came from the run stream, otherwise a Fieldata 
space (05). 



4144.41 
UP-NUMBER 

A3 -

SPERRY UNIVAC 1100 Serle. Executive 
System Utility Programs 

(H2) 3-digit Fieldata cycle number tor the image. 

Contains one of the following in Fieldata: 

1. The characters 'NEW 'if this is a new image, 

UftOATE lEV£L 
2-68 

fJAGE 

2. The characters' xxxxxx' where xxxxxx is a five or six digit decimal number left-justified 
space filled (preceded by a minus symbol if five digits) indicating the number of images 
deleted prior to this image. 

3. Six space characters. 

A4 - The current line number within the source input element. A4 = 0 when a new image from 
the run stream is passed to the caller. The line number for each image is the same for all 
passes. 

2.5.6.5. Get Source Image in ASCII (GETAS$) 

Purpose: 

Gets a source input image in ASCII for the user and, if source output is specified, generates a new 
source element. 

Format: 

L AO,(buffer-length,buffer-addr) 
LMJ X11,GETAS$ 

Description: 

error return 
EOF return 
normal return 

The format and operation of the GETAS$ request are identical to those for the GETSR$ request (see 
2.5.6.5) except that the images are returned in ASCII and the contents of the registers returned are 
altered as follows: 

AO -

A2 -

A3 -

(56) 

(01) 

= 1 (image returned is ASCII) 

Contains the same information as S2 except in ASCII ('#' or ' , = 043 or 
040) 

(02) Contains the same information as S3 except in ASCII (,*' or ' , = 052 or 
040) 

(H2) Contains 2-digit ASCII cycle number for the image. 

Contains either 'NEW', 'xxxx " or ' , with xxxx being a three or four digit ASCII 
number similar to that for GETSR$. 



4144.41 L SPERRY UNIVAC 1100 Serle. Executive 2-69 
~~~~ . _________ S~y_s_te_m __ U_t_i_'it~y __ P_ro_g_r_a_m_s ______________________ ~u~ __ An __ ~ __ L ____ ~'A_G_E ____ _ 

2.5.6.EL Get Source Image In Native Mode (GETNM$)

Purpos~9:

Gets a source input image in whatever type it is input and if source output is specified, generates
, a new source element image.

Format:

L AO,(buffer-length,buffer-addr)
LMJ X11,GETNM$

Description:

error return
EOF return
normal return

The format and ()peration of the GETNM $ request are identical to those for the GETSR$ request (see
2.5.6.5) except the images are returned as the type they were input, either from the runstream or
SOF input. The registers are returned as described under the GETSR$ request if the image is returned
in Fieldata or are returned as described under the GETAS $ request if the image is returned in ASCII.
The contents of AO may be used to determine the mode.

This en1try point is available at site option. If this code is active the output may be of mixed type if
the P and Q options were both specified on the processor call (see Volume 2-3.9). Fieldata and ASCII
images may be intermixed in the output element with the appropriate SOF FieldatalASCIl switch
control words (0420 ... 0/1) inserted.

2.5.6.7. Close Source (CLOSR$)

Closes t:he source input file, and if output is specified, closes the source output file.

Format:

LMJ X 11 ,CLOSR$
eHor return
normal return

Descrip1tion:

Provides first or second pass termination functions for the Get Source routines. The System Data
Format Input rou·tine (SOFI) is closed if source output was specified. If first pass, and source output
is an eI4~ment, an entry is made in the source output program file through the Program File Input
routi ne I[PF 1$).

The error return is taken when either SOFO is unable to close source or PFI$ gives an error return
to SIR$. In the c,ase of SOFO error, A5 contains the 1/0 error status code. In the case of PFI$ error,
A5 = 0 and A2 contains the PFI $ status code (see Volume 3-Appendix B).

4144.41
UP-NUM8ER

SPERRY UNIVAC 1100 Serle. Executive
System Utility Programs

2.5.6.8. SIR$ Externalized Labels

SIR$ externalized labels are as follows:

• SIRIB$ - start of 448-word input buffer,

• SIROB$ - start of 448-word output buffer, and

UPDATE ILEVEl

• SIRP2$ - set to one in CLOSR$ to identify a second pass call to OPNSRS, INISRS, GETSRS,
GETAS$, and GETNMS.

The user may not use SIRIB$ or SIROBS buffers between calls to OPNSRS or INISR$ and CLOSR$.

2.5.6.9. SIR$ Multipass Capability

SIR$ allows many passes to be made over the input element, if a scratch file or output element is
made available in PARTBL+ 14,15 (except as noted under INISR$(2.5.6.4)). For reusable processors,
SIR$ must therefore be told when to initialize itself to process the element designated on the next
processor call statement read in by INFOR CLiST. This is done by storing zero into the externally
defined cell SIRP2$ in SIR$. No other action is required.

2.5.6.10. Compressed Symbolic Elements

In order to minimize the number of cards required to contain a symbolic element, the FURPUR
processor (see Volume 3-Section 4) can compress strings of blanks in symbolic images before
punching the element. The source input routine can expand the compressed images on input.

A compressed symbolic image card deck is produced when the appropriate options are used on the
FURPUR @PCH control statement (see Volume 3-4.2.12). The source input routine converts
compressed card image decks to SDF images upon initial input when the appropriate options are
used on the processor control statement (see Volume 2-3.9.).

The first card punched is an @ELT control statement (see Volume 3-5.2) with the appropriate options.
Following the @ELT control statement are the cards which contain the compressed symbolic images.

The compressed image consists of a stream of characters in the following format:

xccc ... cyxccc ... cz

where:

x Number of characters C (1 ~ x ~ 378)

Y 408 + Number of blanks (41 8 < y ~ 778)

z 408 = End-of-image

The number of characters in a string is limited to 378; the number of blanks is limited to 368, If either
is larger, a new x or y is initiated.

In addition to the x, y, and z characters, two other special characters are used:

4 18 character indicates the end-of-images in this element

4144.41 I SPERRY UNIVAC 1100 Serle. Executive 2-71
___ u_p~_~~~ ________________ S~y_s_te_m __ U __ ti_'i_tY __ P_ro __ g_ra_m __ s ______________________ ~u_~_A_n_~ ___ L ____ ~p_A_GE _______ ,

0 8 character A special character used in column SO if a new x would begin in
column SO. The x is moved to the next physical card and the 0 8 is
placed in column SO.

The compressed images immediately follow one another on the physical card and continue to the
next card when the end-of-card is reached. The punch routine begins each physical card with an
x, y, or 2: by breaking an x string at the end of the card, and starting a new string on the next card.
This gualrantees a nonzero character in the first character position of the card. A compressed blank
image would be represented by a 408 character. The physical card may contain compressed image
characte'rs in columns 1-S0.

Compressed images are not retained in the program file. The source input routine expands the
images, and stoms them in the program file in SDF format.

Compre!iised image symbolic input is site dependent; for further information see the SPERRY UNIVAC
11 00 SE~ries Operating System Installation Reference (UP-S4S6).

2.5.7. ')rogram File Basic Service Package (BSP$)

The Basile Service Package (BSP$) is an interface routine between the user and a program file Table
of Contents. BSP~~ is available in a common bank (PIRCB$) or as a relocatable element in SYSLIB.
The user may, through selective calls to the BSP$, perform the following functions:

1. Read the file table index into a buffer

2. Read a selected program file table into a buffer.

3. Search a selected program file table for a specific entry.

4. DelE~te a specific entry in a program file table.

5. Locate a program file table entry from its sequence number in the table.

6. Add an entry to a program file table.

7. Write the last entry referenced.

S. Write a program file table.

9. Write the file table index.

Any file cllssigned and not previously written in may be prepared as a program file by requesting
number (11) above. If not previously created, a table is created upon the first call to read it. The table
is not written to the file until number (9) above is requested.

Foliowing are some rules concerning the use of BSP$:

1. Reference PlnCB $ (section 3) for discription of common bank features.

2. The ILJser attempting to create a program file in a file area previously written in will receive an
error return, provided the first word encountered is not '**PF**' or the sector 0 is not all zeros.

3. Each table (except for the element table) on mass storage will initially begin at the system defined
sector or at a greater sector if a previous table now occupies the defined sector.

4144.41
UP-NUM8ER

SPERRY UNIVAC 1100 Serle. Executive
System Utility Programs

4. The Table of Contents (TOC) is normally 1792 sectors in length.

UIIDATE Il.EVEl
I 2-12

PAGE

5. Tables must be written back from the main storage area assigned, if the area is to be used by
others. A diagnostic is given if a table cannot accept another item.

6. The user mcst provide a 34 word area (using BSP$) or a 47 word area (using PIRCB$) for the
File Table Index (FTI) and main storage buffers for each table read. A request to read the FTI
must be made before any other BSP$ functions are used. The FTI must be in core until all BSP
functions that may be necessary have been executed.

7. No buffer may be smaller than 196 words, or an error diagnostic will result.

8. The File Table Index in main storage will be used by BSP$ to contain necessary information
about the file.

9. Each table that has been altered in main storage requires a final call on the Write Program File
subroutine in order to ensure all information changed reflected on mass storage.

10. The major register set is assumed available for BSP$ subroutines, although any major registers
used are saved and restored.

The following descriptions of the BSP$ functions include the various entry methods. Entry points
in the common bank are prefixed with the letter B .

The entries will be given in the following order:

(1) Auto switch (for systems which can base more than one bank simultaneously)

(2) Common Bank LlJ

(3) Relocatable Collection Method

4144.41' 'I SPERRY UNIVAC 1100 S.rl •• Executlv. 2-73
U'-HUMIE.. -.-J, _________ S...;.Y_s_t8_m_U_t_il_it..;..y_P_r_O_g_r8_m_s __________ --'-U_PD_A_Tl_lIVE __ L---:'---I_'_AG_E __ _

2.5.7. 1. Read File Table Index

1. Cailling Sequence

L,U AO,FCT

(1) LMJ

(2) LXI,U
LlJ

(3) LMJ

X11,BRFTI$-1

X11,PIRCB$
X 11 ,BRFTI$

X, 1,RFTI$
error return
normal return

FCT = Address of 34 or 47 word buffer; word 0, 1 contains the internal filename.

a. Error Return

AO = ()2

AO = 1700000000xx

b. Normal Return

This file may not be used as a program file.
xx = Status from 10W$ on error return.

Words FCT +6 will contain the File Table Index

, Words FCT +0 to FCT + 5 contain the packet used last for I/O. If an 05 I/O status was
returned on the read, the FCT, words 6-33, is initialized as an empty file.

2. Registers Us,ed: A 1 ,A2,A4,A5

4144.41
U....,.UU.ER

SPERRY UNIVAC 1100 S.ri •• Executiv.
System Utility Programs UPDATE LlVEL

ARRANGEMENT OF THE FILE CONTROL TABLE AFTER THE FILE TABLE INDEX IS READ

Word

0 internlll filename
1

VO 2 dlltll required

PACKET 3 by
4 I/O
5
8 progrllm file identifier constllnt f**PF**)
7 next sector IOClltion IIvailllble for writing
8 run-id jysed by CTS)
9

element tllble information
11
12

ASSEMBLER procedure tllble informlltion
14
15

COBOL procedure tllble informlltion
17

18

20
FORTRAN procedure tllble informlltion

21

23
entry point tllble informlltion

24
25
26

largest prellmble size I I new rb flaf}

sequence number of Illst IIbsolute IIlement in PF

stllrt .ector of elemllnt text

not used

32
33 r---~ TIMEI vlllue lu.ed by CTS)

2.5.7.2. Read Program File Table

BRPFET$
RPFET$

BRPFAPT$
RPFAPT$

- Read Program File Element Table

- Read Program File Assembler Procedure Table

FILE
TABLE
INDEX

2-74
PAGE

4144.4 1 ~ SPERRY UNIVAC 1100 Se"e. Execut.ve
UP-NUMIEA System Utility Programs _ , __ ------=-----=-----.:~_---L--~ Uf'DA TE LEVEL

2-75
PAGE

BFIPFCPT$
RPFCPT$

- Read Program File COBOL Procedure Table

BRlPFFPT$
RPFFPT$

- Read Program File FORTRAN Procedure Table

BR:PFEPT$
. RPFEPT$

- Read Program File Entry Point Table

1. Calling Sequence:

L,U AO,FCT
L A 1 ,(buffer,length)

(1) LMJ

(2) LXI,U
LlJ

(3) LMJ

X 11 ,BRPFxxT$-l

X 11,PIRCB$
X 11,BRPFxxT$

X 11,RPFxxT$
error return
normal return

Buffer is the starting address of the buffer to be used for the table.

Lf~ngth is the length in words of the area reserved for the table. It should be a multiple of 28 words.
To minimize reacJI before writes, it should be of the size 28(5+np) words, where p is the number of
sectors ,in a physical disc record and n is some postive integer. The size can not be less than 196
words.

a. Error Return

AO = 024

AO = 044

AO = 012

AO = 7700000000xx

b. Norma~ Return

User buffer too small. (There must be at least 7 sectors, 196
words, available.)

No room in file to create this table.

User does not have FTI in main storage.

I/O Error.

Buffer is filled with the requested table, if the table does not exist the buffer is initialized.

2. Re"isters U!;ed: AO - A5

4144.41
UP UMBEA

SPERRY UNIVAC 1100 Serle. Executive
System Utility Programs

2.5.7.3. Search Table for Requested Item

1 .

BETIS$
ETIS$

BAPTIS$
APTIS$

BCPTIS$
CPTIS$

BFPTIS$
FPTIS$

BEPTIS$
EPTIS$

- Element Table Item Search

- Assembler Procedure Table Item Search

- COBOL Procedure Table Item Search

- FORTRAN Procedure Table Item Search

- Entry Point Table Item Search

Calling Sequence:

L,U AO,FCT
L,U A1,SPKT SPKT = Address of SEARCH Packet

(1) LMJ X11,BxxIS$-1

(2) lXI,U X 11,PIRCB$
lIJ X11,BxxIS$

(3) lMJ X 11 ,xxIS$
error or no find
normal return

a. Error Return

AO = 012 No FTI

= 022 Designated table not in main storage

= 7700000000xx 1/0 Error

b. No Find

AO = 001 Pointer table

= 011 Pointer link

= 021 Type link

= 041 Version link

A1 =0

A2 = SEQNBR of last item referenced

UftDATt LEVEL
2-76

'AGE

4144.41 I SPERRY UN.VAC1100 Se,'e, Executive 2-77
~~~~ ________________ S_y~s_t_e_m __ U_t_ih_'ty~p_r_o~g_ra_m __ s ____________________ ~~u_~_A_n_~ ___ l __ ~~~_~_E ____ __ 

c. Normal Return 

AO == ITEM Location 

A 1 == SEQNBR 

A2 - H1 = 001 Pointer Table 
= 011 Pointer Link 
= 021 Type Link 

H2 = SEQNBR of pointing item 

= 041 Version Link 

2. Rel~isters Used: AO - A5 

Packet Formats for Table Item Search: 

10 Element Table Item Search Packet 

35 17 

o 
element name 

2 zeros 

L zeros element zeros 
type 

3 

4 version name 

I 

5 

o 

Element Type Code 1 may be used for any symbolic element. Search will consider all type codes 
lesls than 5 as symbolic elements. 

2. A5!~embler cmd FORTRAN Procedure Table Item Search Packet 

35 0 

0 

procedure name 

2 zeros 

3 Ie 0 



4144.41 
U'-NUMBER 

SPERRY UNIVAC 1100 Seri •• Executive 
System Utility Programs 

3. COBOL Procedure Table Item Search Packet 

35 17 o 

o 
COBOL procedure name (first 12 characters) 

2 
zeros 

:I~l I zeros 

3 

4 
COBOL procedure name (second 12 characters) 

5 

6 
zeros 

7 
COBOL procedure name (last 6 characters) 

4. Entry Point Table Item Search Packet 

35 o 
o 

entry point name 

2 zeros 

3 D 0 
F 

2.5.7.4. Delete Item From Requested Table 

BETID$ 
ETID$ 

BAPTIO$ 
APTID$ 

BCPTID$ 
CPTID$ 

BFPTID$ 
FPTID$ 

BEPTIO$ 
EPTIO$ 

- Element Table Item Delete 

- Assembler Procedure Table Item Delete 

- COBOL Procedure Table Item Delete 

- FORTRAN Procedure Table Item Delete 

- Entry Point Table Item Delete 

UPDATE LEVEL 
2-78 

PAGE 

First four words always pr.s.nt in search packet. 

Second four words pr.sent only if COBOL 

Procedure Name .xceeds 12 characters and 

includ.s d.leted item indicator word 3, bits 

35-30 equals 60, or 20, 



4144.41 I SPERRY UNIVAC 1100 S.,' •• Executive 2-79 
UP-NI~~-.-J, _________ S..;..y_st_e_m_U_t_il_it_y_p_r_o_g_ra_m_s __________ .......I ..... U_fIO_A_TE_LEVE_L __ ...... _AG_E __ _ 

1. Calling Sequence: 

L,U AO,FCT 
L,U A 1 ,SPKT (address of delete packet) 

(1) LMJ 

(2) LXI,U 
LlJ 

(3) LMJ 

X11,BxxID$-1 

X11,PIRCB$ 
X11,BxxID$ 

X 11 ,xxID$ 
error return 
normal return 

a. Error Return 

AO = 012 FTI not in main storage 

AO = 022 Designated table not in main storage 

AO = ., 700000000xx I/O Error 

AO t Above Item could not be located 

b. Normal Return 

Requested item has been deleted from table. 

2. Reglisters Used: AO - AS 

Packet Formats fe)r Table Item Delete: 

1. Element Table Item 

o 

1 

2 
3 
4 

5 

zeros 

I 

I 

30 24 17 

I I 

element name 

zeros 

zeros I type I 
version name or blank 

o 

zeros 

Element type 1 may be used for 
deleting procedures of types 2, 3, 
or 4. 



4144.41 
UP-NUMBEA 

SPERRY UNIVAC 1100 Serie. Executive 
System Utility Programs UPDATE LEVEL 

2-80 
PAGE 

2. Assembler or FORTRAN Procedure Table Item Delete packet 

35 

o 

1 
procedure name 

2 zeros 

3 zeros 

3. COBOL Procedure Table Item Delete Packet 

3534 o 

o 
COBOL procedure name (first 12 characters) 

2 zeros 

3 0 C zeros 
I 

4 COBOL procedure name 

5 
(second 1 2 characters) 

6 zeros 

7 COBOL procedure name (last six characters) 

4. Entry Point Table Item Delete Packet 

35 

o 
entry point name 

2 zeros 

3 'zeros 

o 

First four words are included in 
every CPT Delete Packet 

Second four words are included 
only if procedure name exceeds 12 
characters and bit 34 of word 3 
(Continuation Indicator) is on. 

o 



_
__ 4_1_4_4_.4_1__ /. ______ . ________ s~P~E_RR_Y __ U_N'_V_A~C_1_1_00~S_._ri._._E_X_.C_U_tl_V. ______________ ~ __________ ~ __ 2_-_8_' ___ Ult-NUMIEA ..-J_ System Utility Programs UPDATE LEVEL 'AGE 

2.5.7.51. Entry Look-Up By Number 

BETNL$ 
ETNL$ 

- Element Table Number Lookup 

BA~PTNL$ 

APTNL$ 
- Assembler Procedure Table Number Lookup 

BCPTNL$ 
CPTNL$ 

- COBOL Procedure Table Number Lookup 

BFIPTNL$ 
FPTNL$ 

- FORTRAN Procedure Table Number Lookup 

BEIPTNL$ 
EPTNL$ 

- Entry Point Table Number Lookup 

1. Calling Sequence: 

L,U AO,FCT 
L A 1,SEQNBR 

(1) LMJ X 11 ,BxxNL$-1 

(2) LXI,U X11,PIRCB$ 
X 11 ,BxxNL$ LlJ 

(3) LMJ X 11 ,~xNL$ 
error return 
normal return 

a. Error Return 

AO = 014 

= 012 

= 022 

= 7700000000xx 

b. Normal Return 

AO = L.ocation of item 

2. Registers Used: AO - A5 

Out of range 

FTI not in main storage 

Table not in main storage 

1/0 Error 



4144.41 
UP-NUM8ER 

SPERRY UNIVAC 1100 Serle. Executive 
System Utility Programs UP'DATI LEVlL 

2.5.7.6. Add Item to Requested Table 

1. 

BETIA$ 
ETIA$ 

BAPTIA$ 
APTIA$ 

BCPTIA$ 
CPTIA$ 

BFPTIA$ 
FPTIA$ 

BEPTIA$ 
EPTIA$ 

- Element Table Item Add 

- Assembler Procedure Table Item Add 

- COBOL Procedure Table Item Add 

- FORTRAN Procedure Table Add 

- Entry Point Table Item Add 

Calling Sequence: 

L,U AO,FCT 
L,U A1,SPKT (address of add packet) 

(1 ) LMJ X 11,BxxIA$-1 

(2) LXI,U PIRCB$ 
LlJ X 11,Bxx1A$ 

(3) LMJ X 11 ,xxIA$ 
error return 
normal return 

a. Error Return 

AO = 012 FTI not in main storage 

AO = 022 Designated table not in main storage 

AO = 7700000000xx I/O Error 

AO = 044 No room for item 

b. Normal Return 

Requested item has been added to designated table. A 1 has new SEQNBR. If the item being 
added is for the element table, and the item describes a relocatable element, the pointers 
to the entry point table in the File Control Table are cleared, effectively destroying the entry 
point table when the File Table Index is written back into the program file. 

2. Registers Used: AO - A5 



4144.41 L SPERRY UNIVAC 1100 Series Executive 2-83 
~~~ . _________ S_y_s_te_m __ U_t_il_it_y_P_r_o_g_r_a_m_s ______________________ ~u_~ __ An __ uw __ L ____ ~'A_G_E ____ _ 

Packet Formats for Table Item Add:

1. Symbolic or Procedure Element Add to Element Table

o
element name (Fieldata L.J.S.F.)

2 not used

3 flag-bits I type I not used

4
!

5
version name or blanks (Fieldata L.J.S.F.)

6 cycle limit I latest cycle number I current number of cycles

7 sub-type I zero I length of element text

8 location of element text on mass storage

9 time element added I date element added (or 0)

Ele,ment Type will be: 01 If Symbolic Element

02 If Assembler Procedure Element

03 If COBOL Procedure Element

04 If FORTRAN Procedure Element

Used only by Procedure Definition Processor

Element sUb-types: See 2.1.0.

4144.41
UP-NUM8ER

SPERRY UNIVAC 1100 Ser.e. Executive
System Utility Programs UPDATE L£VEl

2. Relocatable Element Add to Element Table

o
element name (Fieldata L.J.S.F.)

2 not used

3 flag-bits I type = 5 I zeros

4

5
version name or blanks (Fieldata L.J.S.F.)

6 location of preamble

7 length of preamble I length of relocatable text

8 location of element text on mass storage

9 time element added (or 0) I date element added (or 0)

length of element is total of 'length of preamble' and 'length of relocatable text' in sectors.

3. Absolute Element Add to Element Table

o
element name (Fieldata L.J.S.F.)

2 not used

3 flag bits I type = 6 I zeros

4

5 version name or blanks

6 bank information

7 zeros I length of the element text

8 location of the element on mass storage

9 time element added (or 0) I date element added (or 0)

4144.41 ~ SPERRY UNIVAC 1100 Serle. Executive
U'-NUMIER System Utility Programs

- , __ ----=--~~----I..---'-----
Ut-OATE lEV£l

4. Omniibus Element Add to Element Table

o
element name (Fieldata L.J.S.F.)

2 not used

3 flag-bits I type = 7 I zeros

4

5
version name or blanks (Fieldata L.J.S.F.)

6 not used

7 sub-type I not used

8 location of element text on mass storage

9 time element added (or 0) I date element added (or 0)

5. Assembler Procedure or FORTRAN Procedure Item

o
procedure name

2 related element table item number I not used

3 relative location of the procedure in the file

4144.41
UP-NUMIER

SPERRY UNIVAC 1100 S.rl •• Ex.cutlve
System Utility Programs

6. COBOL Procedure Item Add to COBOL Procedure Table

3534 17 o

o
COBOL procedure name (first 12 characters)

2 related element table not used
item no. (element

link)

3 C relative location of the procedure in the
I file

4 COBOL procedure name

5 (second 1 2 characters)

6 zeros

7 COBOL procedure name (final six characters)

7. Entry Point Table Item Add

o
entry point name

2 related element table item number

3 zeros

NOTE:

UPDATE LEVEL

The first four words must be in all
COBOL Procedure Table Add
Packets.

The second four words will be
present only if the COBOL
Procedure Name exceeds 12
characters and Bit 34 of word 3
(continuation indicator) is set to 1.

not used

not used

If time and date are zero, BSP$ will insert the current time and date upon entry into a program file.

2.5.7.7. Write Last Item Referenced

BPTEWT$
PTEWT$

BPTATWT$
PTATWT$

BPTCTWT$
PTCTWT$

- Part Table Element Table Write

- Part Table Assembler Procedure Table Write

- Part Table COBOL Procedure Table Write

4144.41 L SPERRY UNIVAC 1100 Serle. Executive
UP-NUMIER System Utility Programs
-- ,--=":,,,::,,::~=--------,----,--,

tm)ATE LEVEL
2-87

'AGE

BPTFT\NT$
PTFTWT$

BPTETVVT$
PTETWT$

_. Part Table FORTRAN Procedure Table Write

_. Part Table Entry Point Table Write

1. Cal"ing Sequence:

L,U AO,FCT

(1) LMJ X 11 ,BPTxxWT$-1

(2) LXI,U X11,PIRCB$
LlJ

(3) LMJ

X 11 ,BPTxxWT$

X 11 ,PTxxWT$
error return
normal return

a. Error Return

AO = 024 User error

= 7700000000xx 1/0 Error

= 012 No FTI

= 022 Table not in main storage

b. Normal Return

Last item referenced written.

2. Registers Used AO - AS

2.15.7.8. Write flequested Table Back to Mass Storage

BWPFET:S
WPFET$

BWPFAPT$
WPFAPT:S

BWPFCPT$
WPFCPTl~

BWPFFPT$
WPFFPT$I

B~/PFEPT$

WPFEPT$i

- Write Program File Element Table

- Write Program File Assembler Procedure Table

- Write Program File COBOL Procedure Table

- Write Program File FORTRAN Procedure Table

- ~Vrite Program File Entry Point Table

4144.41
UP-NUMBEA

1.

SPERRY UNIVAC 1100 Serle. Executive
System Utility Programs

Calling Sequence:

L,U AO,FCT

(1) LMJ X 11,BWPFxx$-1

(2) LXI,U X 11,PIRCB$
LlJ X 11,BWPFxx$

(3) LMJ X 11,WPFxx$
error return
normal return

UPDATE LEVEL
2-88

'AGE

The change indicator in S3 of word 0 of the File Table Index 3 - word item for the particular table
to be written must be set, for the table to actually get written back to the program file. This will
ordinarily have been done if the user has modified the table by doing an item add call (2.5.7.6) to
BSP$.

a. Error Returns

AO = 012 FTI not in main storage

= 022 Requested table not in main storage

= 7700000000xx I/O Error

b. Normal Return

Designated Table, Pointer Table, and last segment left in main storage if changed, are
written to mass storage.

2. Registers Used: AO - A5

2.5.7.9. Write File Table Index

1. Calling Sequence:

L,U AO,FCT

(1) LMJ X 11 ,BWFTI$-1

(2) LXI,U X 11,PIRCB$
LlJ Xll,BWFTI$

(3) LMJ Xl1,WFTI$
error exit
normal exit

4144.41
UP-NUM8ER ~ SPERRY UNIVAC 1 100 Se,ie. Executive

System Utility Programs
'--~~---'--------'----

UPDATE LEVEL

a. Error Heturn

AO == 042 At least one table has not been written back by a call on Write
Program File Table·

=: 7777777777xx I/O Error

. b. Normal Return

The File Table Index has been written back to mass storage.

2. Re!gisters Used: AO - A5

2.5.8. Relocatilble Output Routine (ROR)

The relocatable output routine is used to produce a relocatable element that is used for input to the
Collector. The relocatable element is produced from relocatable items generated by language
processors.

The relocatable output routine contains user interfaces SROR$, ROR$, EROR$ and TBLWR$ which
are described in following subparagraphs.

2.5.8.1" Start Belocatable Output Routine (SROR$)

Purpose:

Initializes ROR prior to output of any relocatable text words.

Format:

L,U AO,K-bit limit
LMJ X 11 ,SROR$

error return
nc)rmal return

Parameters:

K--bit limit, the number of bits required to contain either the largest control counter used or the number
of undefined symbols for the relocation, whichever is larger.

DCBscription:

SROR$!~aves the K-bit limit for the relocatable element and establishes the program file write location
for the ellement via ER PFWL$. (See Volume 3-11.3.1.5.) SROR$ adjusts the output buffer to minimize
read-bejfore-write operations, if possible.

The errOlr return is taken when a nonzero status code is encountered in A2. A2 contains the status
code (se'e Volumle 3-11.3.1.6) from ER PFWL$.

4144.41
UP-NUMBER

SPERRY UNIVAC 1100 Serle. Executlye
System Utility Programs

2.5.8.2. Generation of Relocatable Output (ROR$)

Purpose:

Formats relocatable items and outputs text to the relocatable element.

Format:

L,U AO,item addr
LMJ X 11 ,ROR$

error return
normal return

Parameters:

item addr - Address of item.

Description:

UPDATE LEVEL
2-90

PAGE

ROR is called for every text word (e.g., instruction or data word) to be inserted in the relocatable
element. For each call the user will furnish the text word and its relocation information in an item.

The minimum length of the item is three words; however, it may be larger. Any relocation of a text
word, other than a simple relocation of the right address under the same location counter that applies
to the text word, must be handled through special relocation items. Any number of special relocation
items may be appended to the item. The ROR item format is shown in Table 2-14.

o n

1

2 f

~d~

n-1

Word 0

n

r

Tsble 2- 14. ROR Item

I not used I I I r
•.

text word

I zero I Ic I address

special items

~-j /"

special items

item length, including any special relocation items

bits 16 and 17 of a left address field plus ten sign bits, or twelve sign bits for
a left half-word field.

bits 16 and 17 of a right address field plus ten sign bits, or twelve sign bits for
a right half-word field.

4144.41 L SPERRY UNIVAC 1100 Series Executive 2-91
~~_____ _ ________ S_y~s_t_e_m __ U_t_il_it~y_P_r_o~g~r_a_m_s ______________________ ~u_~_A_n __ ~ __ l ____ ~M_G_E ____ _

Word '1

text word

Word :l

f bit 32 = 1, right address (bits 0-15) relocatable
bit 33 = 1, left address (bits 18-34) relocatable.

Ic contains the location counter the text word is under and by which relocation
specified by f takes place. May be overridden by a type 013 special item.

address address of the text word.

Words 3, 4, etc:. may contain special relocation items.

The Location Counter Relocation Item, type 011, format is:

35 30 24 18 12 0

~_1 -1--1 _011 --L-1_--L.-.1 _r --.J..I __ IC _I
This itEtm is used when relocation by a location counter other than the one specified in 53 of word
2 is de!sired.

the left margin of the field of relocation (a bit number in the range 0-35)

r the right margin of the field of relocation (a bit number in the range 0-35, with r less
~han or equal to I)

Ic iocation counter number; a signed 12 bit integer. The starting address of the location
counter is added if Ic is positive or subtracteti if Ic is negative.

The External Reference Item (two words), type 012, format is:

35 30 24 18 12 o

~
2 012 I r signs

sequence number of the external reference in the preamble

This it.em is used when relocation by the value of an externally defined symbol is desired.

r

the left margin of the field of relocation

the right margin of the field of relocation

12 bits of all zeros or ones, depending on whether the external reference is to
be added or subtracted, respectively.

4144.41
UP-HUMIER

SPERRY UNIVAC 1100 Serle. Executive
System Utility Programs

The Large Location Counter Item, type 013, format is:

35 30 24

01 013 not used

UPDATE LEVEL

12

Ie

If this special item is used, it must be the first special item appended to the item.

2-92
PAGE

o

This item overrides the Ie in word 2 of the item. This allows location counters greater than 63.

Ie - location counter number the text is to be under.

ROR formats the text words and the relocation information into blocks and outputs the blocks to the
relocatable element. Blocks contain one or more word groups. Word groups represent text words
that are allocated to sequential memory cells. Each word group consists of two separate parts; the
relocation information and the text words themselves.

The relocation information for the word groups starts at the beginning of the block and the text words
are at the end of the block. Word groups for relocatable information format is:

35 o

relocation information for first word group

relocation information for second word group

~~ /' ~~ /'

text words for second word group

text words for first word group

The text words are in the inverse order in which they are allocated to memory cells.

The relocation information for any word group is a stream of bits. The length of the stream is variable.
The first bit of a stream is always the left-most bit of a word.

4144.41 I SPERRY UNIVAC 1100 Serle. executive 2-93
~~~~ ______________________ S~y_s_te_m ____ U_tl_'li_tY~P_r_o_g_ra_m ___ s ________________________ ~u_~_A_n_~ ___ L _____ ~'_A_G_E ____ _ 

The str.eam of bits contain both fixed and variable length fields, the format is: 

36 33 17 8 6 o 

1 ° addr wc L gc 

gc I bit stream 

Bits 34-35 an indicator which signals a new word group 

addr a fixed field containing the relative starting address of the first text 
word in the group. 

we: 

L 

gc 

a fixed field containing the number of text words in the word group. 

a fixed field indicating which location counter to use. 

an optional variable length field indicating a location counter. If L is 
3 then this field is present. The field length is the K-bit count. 

The rest of the bit stream is variable length and contains the relocation bits for the text words. 

The error return is taken when: 

1. an 1/0 error occurs, A 1 will contain the status or 

2. an internal inconsistency occurred in AOA, A 1 will be zero. 

2.5.8.3:. End Relocatable Output Routine (EROR$) 

PurpOSEt: 

Termineltes AOA after the last text word has been processed. 

Format: 

L AO,(transfer addr,transfer addr Ic) 
LMJ X 11 ,EAOA$ 

error return 
normal return 

NOTE: 

If no tnJnsfer location is specified (element may be a subroutine) then AO must be negative. 

Parameters: 

Tn1lnsfer adldr is the location of the first instruction to be executed in the main program. 

Tri1lnsfer adldr Ie is the location counter to which the address applies. 



4144.41 
UP-NUMBEA 

Description: 

SPERRY UNIVAC 1100 Serie. Executive 
System Utility Programs UPDATE LEVel 

2-94 
PAGE 

EROR outputs the last block built by ROR and generates a transfer image. The transfer image is a 
special word group. 

The EROR format is: 

35 33 17 8 6 o 

1 1 transfer address zero L gc 

gc I 

EROR always generates a separate block for the word group: 

The error return is taken when an I/O error occurs. The status is returned in A 1. 

2.5.8.4. Table Write Subroutine (TBLWR$) 

Purpose: 

Outputs the preamble constructed by the user to the program (ile containing the relocatable text. The 
text must have been previously entered in the program file through ROR and EROA must have been 
called. 

Format: 

L,U AO,preamble addr 
L,U A 1 ,preamble length 
LMJ X 11 ,TBLWA$ 

error return 
normal return 

Description: 

The preamble supplied by the user is written to the program file. The entries in PAATBL+29 through 
38 (see Figure 2-1) are updated to reflect the preamble length, preamble location and the element 
type (5 = relocatable). 

An EA PFI$ is done to update the file's table of contents. 

The error return is taken when: 

1. an I/O error occurs. A 1 will contain the status. 

2. an error occurs on the EA PFI $. A 1 will equal 0 and A2 will contain the status. 

The preamble consists of one to five tables. Each table will be discussed below. Only those tables 
necessary to a particular element, except the Ba"Se Table, are included in the preamble. The Base 
Table is always included. 



UPOATE lEVEL 
2-95 

PAGE 
4144.41 ~ SPERRY UNIVAC 1100 Serle. Executive 
UP-NUMBER System Utility Programs - ,-----=--~---'------'---

The Basoe Table 'format is shown in Table 2-15. 

Table 2- 15. Base Table 

. 0 index-location counter table item count-location counter table 

index-undefined symbol table item count-undefined symbol table 

2 index-entry point table item count-entry point table 

3 index-control information table item count-control information table 

The indices in bits 18-35 are relative 'to word zero of the Base Table. Bits 0-17 contain the number 
of items of the other tables. If the table is not present then the number of items will be zero. 

The 10cBltion in the table is the location counter number. The Location Counter Table (Table 2-16) 
is of variable length. The length is equal to the highest location counter number used plus one. 

Table 2-16. Location Counter Table 

o K-bit count length of location counter 0 

minimum data area address length of LC 1 

::::~~ /,~ ;..-

N-2 length of LC N-2 

N-1 length of LC N-1 

K-bit count must be the same value supplied to SROR. 

The undlefined Svmbol Table (Table 2-17) is a list of all symbols that are not defined within the 
element. The undefined symbols may be up to twelve characters in length, therefore each item is 
two words long. There may be up to 1024 undefined symbols, within the constraints of K-bit count. 



4144.41 
UP-NUMBER 

35 

o 

1 

2 

n 

SPERRY UNIVAC 1100 Serie. Executive 
System Utility Programs 

Tsble 2-17. Undsfinsd Symbol Tsbls 

undefined symbol-12 characters 

UI'OATllEVEL 

The Entry Point format (see Table 2-18) is: 

Each item is four words in length. 

Words 0,1 entry point name 

Word 2 descriptor word 

bit 27 = 1 - entry point is absolute and has value of value word 

bit 27 = 0 - the value word is relative to the location counter 

bits 18-26 - location counter 

Word 3 value word 

Tsbls 2- 18. Entry Point Tsbls 

35 

o 

1 entry point name-12 characters 

2 descriptor word 

3 value word 

4 

~~ 

n 

2-96 
PAGE 

o 

o 

d~ /" 



4144.41 I SPERRY UNIVAC 1100 Serie. Executive 2-97 
up~u~ _________________ S~ys~t=e~m~U~t~il~it~y~P-ro~g~r-a-m-s----__________________ ~u_~ __ An __ ~ __ l ____ ~P_M_E _____ ___ 

The Control Information format (see Table 2-19) is: 

Each item is four words in length. 

Words 0,1 common block name 

Word 2 group number 

designates named(2) and blank named(4) common blocks 

minimum addr 

minimum address at which this block will be addressable 

Word 3 location counter 

location counter this common block will be under 

Table 2-19. Control Information Table 

35 30 24 17 o 

o common block name 

(12 characters) 

2 ,group number! 
! 

minimum address 

3 location counter number 
! 

4 

~~; /,~ /' 

n 

2.5.8.5. Optimization Information 

Both ROR and the Collector are optimized, as for storage space and relocation efficiency, for the 
instructi()ns and data to be coded under control of location counters one and two, respectively, ROR 
has less processing to do and produces a more compact relocatable element. The Collector has a 
smaller bit stream to analyze. 

2.5.9. Source Output Routine (SOR) 

The Source Output Routine (SOR) is used to insert source images produced by a processor into a 
program file as a symbolic element. The symbolic element produced by SOR is suitable for input 
to another procelssor by SIR$. No other routine may be attempting to write into the designated 
program file. The first pass of SIR$ must therefore be completed before calling on SOR. (See Figure 
2-1 for IPARTBL description.) 



4144.41 
UI'-NUMIER 

SPERRY UNIVAC 1100 Serle. Executive 
System Utility Programs UI'OATE LfYEL 

2-98 
'AGE 

PARTBL entries are as follows: 

PARTBL+27,+28 internal filename 

PARTBL+29,+30 element name 

PARTBL+33,+34 version name 

SOR inserts the following: 

NOTE: 

SOR uses the table item (13 words) normally used for relocatable output for symbolic output. 

S2 of PARTBL+32 

S3 of PARTBL+32 

T 1 of PARTBL+ 35 

T2 of PARTBL+35 

T3 of PARTBL+35 

S 1 of PARTBL+ 36 

H2 of PARTBL+ 36 

PARTBL+37 

PARTBL+38 

PARTBL+39 

ASCII bit set or clear (bit 28) depending on mode of first 
image 

element type number (Ol-symbolic) 

cycle limit (system standard = 5) 

latest cycle number (0) 

current number of cycles (1) 

processor code 

length of text 

location of text 

Time and date element created. Initialized to zero at SSOA. 
User may insert time and date after SSOR call, otherwise 
current time and date will be used. 

next write location in PF 

The file, element, and version names may be entered in PARTBL by PREPRO. 

File control images are constructed automatically by SOA. 

The File Control Table (FCT) and the buffers provided by SOR for SOFO are similar to those required 
by SOFI. Therefore the external label SORFCT$ for the first word of the FCT has been provided. 
Initially zero, SORFCT$ is set non-zero upon the call to SSOR$ and reset to zero upon the call to 
ESOR$. If, at the time of a SSOR$ call, SORFCT$ is non-zero, a 01 (no find) A2 error condition is 
generated. User programs desiring to use the FCT and SOR buffers must do the following: 

1. Check SORFCT$ to be zero before using. 

2. Set SORFCT$ non-zero while using. 

3. Reset SORFCT$ to zero when no longer required. 



4144.41 I SPERRY UNIVAC 1100 5." .. Exec.,1ve 2-99 
UP~~I ________________ S~y_s_te_m __ U_t_il_it~y_p_r_o~g~r_a_m_s ______________________ ~u_~_A_n __ ~ __ L ____ ~AA_G_E ____ _ 

4. Be! sure 52 of SORFCT$ +3 is the correct I/O code. 

NOTE: 

StR$ hc9S its own input FeT and buffers for SOFt use. 

2.5.9.1. Start Source Output Routine (SSOR$) 

Initializ€!s the SOR routine by setting up PARTBL and opening the program file. 

Format: 

LMJ X 11 ,SSOR$ 
error return 
normal return 

Description: 

SOR is initialized and PARTBL entries are made for a symbolic element. The user receives control 
at the eHor return if ER PFWL$ (see Volume 3-11.3.1.5) encounters an error condition. On error 
return, A2 is nonzero (see Volume 3-Appendix B for status code). 

2.5.9.2. Genercnion of Source Output (SOR$, SORA$, SORASC$, SORASCA$) 

Purpose: 

Outputs a source language from the user to a specified program file. 

Format: 

L AO,(image length,image location) 
LM.J X '11 ,SOR$ (or SORA$, SORASC$, SORASCA$) 

error return 
normal return 

Description: 

An imag.~ is transferred from the user area to the source output area. On the first entry, the label 
is also written. The user receives control at the error return if SDFO (see 2.6.4.2) encountered an 
I/O error (unrecoverable). A5 = I/O status code. SORASC$ is an alternate entry point for ASCII 
images. 

The ent,." points SORA$ and SORASCA$ are provided for the cases when trailing blanks may be 
meaningtful to thE! user and SOR should not adjust the image length. Non I/O error returns are 
generated for the two following cases: 

1. A5 iis zero for the illegal case of a zero image location with a non-zero image length. 

2. The requested image length is over the 2047 word maximum allowable length, A5 (H 1) = 0, 
and A5 (H2) = length. 



4144.41 
UP-NUMIEA 

SPERRY UNIVAC 1100 Serle. Executive 
System Utility Programs 

2.5.9.3. End Source Output Routine (ESOR$) 

Purpose: 

Terminates the operations of the SOR routine. 

Format: 

LMJ X 11 ,ESOR$ 
error return 
normal return 

Description: 

UPDATE LEYEl 
2-100 

PAGE 

SOR is terminated, SOFO (see 2.6.4.2) is closed and the generated element is inserted in the program 
file (ER PFI $) (see Volume 3-11.3. 1. 1). If the user receives control on the error return from ER PFI $, 
AS will equal O. A2 will contain the descriptive code. If the error return is from SOFO an 
(unrecoverable) I/O error has occurred and AS will contain the 1/0 status code. 

2.5.10. Post Processor Routine (POSTPR$) 

Purpose: 

Removes all changes in the assignment status of a program file which were made by PREPRO, 
PREPRM or PREPF $. 

Format: 

LMJ X 11 ,POSTPR$ 
error return 
normal return 

Registers Used: X 1 1 ,AO-A3 

Description: 

All files specified on the processor call statement are restored to their status preceding the processor 
call. 

The error return is taken if any reference to CSF$ returns a nonzero status code. 

2.5.10.1. Field Release (FLDREL$) 

Purpose: 

Remove changes in the assignment of program files which were made by FLOGETO$ or FLOGETM$. 

Format: 

L,U AO,j 
LMJ X 11 ,FLDREL$ 

error return 
normal return 



4144,41 I SPERRY UNIVAC 1100 Serle. Executlye 2-101 
up~u~, _______________ S~ys_t_e_m __ U_t_il_it~y_P_r_o~g_ra_m ___ s ______________________ ~~u_~_A_n_~ ___ l __ ~~'_AG_E ____ __ 

where: 

j == address of data area given to FLDGET$. 

Description: 

Using the inform,ation saved in the first three words of the data area pointed to by j, the file is restored 
to -its state prior to the calling of FLDGET$. 

The error return is taken if the free returns a negative status. 

2.6. UTILITY ROUTINES 

The utiliity routines are available in the system relocatable library. Some of these routines (FDASC$, 
SDFI, SOFO) also are available in the common bank PIRCB$. 

2.6.1. Master File Directory Service Package (MFDSP$) 

Purpose: 

Selectively retrieve items from a file produced by the ER MSCON$ (DGET$) and (DGETP$) functions, 

Format: 

L AO,(size,address) 
L,U A 1 ,function 
LMJ X,ll,MFDSP$ 

where: 

error return 
normal return 

address - the address of an area in the user D-bank 

size - the size of the above area in words 

Registel~s Used: X 11 ,AO-A5,R 1-R3 

Descrip'tion: 

The first two w()rds of the area supplied by the user must contain the internal name of the file 
containilng the output from a MSCON$, (DGET$) or (DGETP$) function. The user must have produced 
the file prior to calling MFDSP$. 

The fol/owing is a list of the functions and their meanings: 

00 Initiali;ze for a file produced by a MSCON$ (DGET$) function. This function returns the 
address of the first lead item. 

01 Initiali:ze for a file produced by a MSCON $ (DGETP$) function. This function returns the 
address of the first main item. 

02 Returns the core address of the next lead item. 



.... 41 
"P-NUMIER 

SPERRY UNIVAC 1100 Serie. Executive 
System Utility Programs 

03 Returns the core address of sector 1 of the above lead item. 

U~ATE LEVEL 
2-102 

PAGE 

04 If MFDSP$ was initialized with a function of 00, this function returns the core address of 
the next main item associated with the lead item retrieved by use of a function 00 or 02. 

If MFDSP$ was initialized with a function of 01, this function returns with the next main 
item in the file. 

05 Returns the core address of the next sector of the main item. 

06 Returns the core address of the granule item associated with the main item retrieved by 
function 04 or 05. 

07 Returns the core address of the next granule item associated with the main item retrieved 
by function 04 or 05. 

When the normal return is taken, the address of the desired item will be in A 1. If the item could not 
be found A 1 will be set to O. 

When the error return is taken AO will contain an error code. The codes and their meanings are as 
follows: 

01 Function out of range 

02 User supplied buffer too small 

03 Illogical function sequence 

04 I/O error, status will be in A5 

07 x Where x is an octal digit, indicating an internal error 

The area size required by MFDSP$ is variable. MFDSP$ has 25 words of fixed storage. The dynamic 
storage is directly proportional to the number of different types of mass storage on which files are 
cataloged. A good rule of thumb is three words of storage for each different type of mass storage. 
If after allocation of the buffer to internal storage, the remaining buffer is less than the number of 
sectors in a physical disc record (prepping factor), the error return is taken with AO set to 02. It 
is suggested that at least a track size buffer be used. 

When MFDSP$ is initialized with a function of 01, functions 02 and 03 perform the same as function 
04. A function of 01 may be used on a file produced by a (DGET$) MSCON$ function. The use of 
a function 01 causes MFDSP$ to utilize neither the look up table nor the lead items when performing 
subsequent functions. 

2.6.2. Fieldata/ASCIl Data Conversion (FDASC$) 

The Fieldata/ASCII conversion routine consists of two elements: FDASC$ and TABLE$. FDASC$ is 
reentrant and does not assume quarter/third-word mode. See Section 3 for common bank usage. 



4144.41 L SPERRY UNIVAC 1100 Serl •• executive 2-103 
UP~~____ ' . ________ S_y~s_t_em ___ U_ti_Ii~~P_r_o~g_ra_m __ s ____________________ ~U~ __ An __ uw __ L ____ ~P_AG_E ____ _ 

2.6.2. ~I. Fielduta to ASCII Conversion Routine (FDASC$) 

Purposl9: 

Converts Fieldata to ASCII 

Calling Sequence: 

L,U AO,input buffer word count 
L,U A 1 ,input buffer adrs 
L,U A2,output buffer adrs 

( 1)1 LMJ X11,BFOASC$-1 

(2)1 LXI,U X 11 ,PIRCB$ 
LlJ X 11 ,BFDASC $ 

(3)1 LMJ X 11 ,FOASC$ 

Registers used: X11,AO-A5,R1 

Description: 

The Fiel1data characters in the input buffer (six characters per word) are converted to ASCII and placed 
in the output bufier (four characters per word, with trailing space fill if necessary). The length of the 
output buffer in words must be at least 1 and 112 times the length of the input buffer. On returning 
control to the user program, AO contains the length of the converted ASCII image (in words). 

2.6.2.2~. ASCII to Fieldata Conversion Routine (ASCFD$) 

Purposn: 

Converts ASCII to Fieldata 

Calling Sequence: 

L,U AO,input buffer word count 
L,U A 1 ,input buffer adrs 
L,U A2,output buffer adrs 

(1) LMJ 

(2) lXI,U 
LlJ 

(3) LMJ 

X 11 ,BASCFO$-l 

X11,PIRCB$ 
X11,BASCFO$ 

X 11 ,ASCFO$ 

Registers used: Xl 1,AO-A5 



4144.41 
UP-NUMBER 

Description: 

SPERRY UNIVAC 1100 Serle. Executive 
System Utility Programs UII'OATE LEVEL 

2-104 
.. AGE 

The ASCII characters in the input buffer (four characters per word) are converted to Fieldata and 
placed in the output buffer (six characters per word - with trailing space fill if necessary). The length 
of the output buffer in words must be at least 2/3 the length of the input buffer. On returning control 
to the user program, AO contains the length of the converted Fieldata image (in words). 

2.6.3. Fieldata/ASCIl Conversion Table (TABLE$) 

TABLE$ is 128 words long and has the entry point ASCFDASC$. H 1 of the table is ASCII to FO 
translation. H2 of the table is FO to ASCII. H2 of the last 64 words of the table is unused. 

Purpose: 

Fieldata to ASCII conversion table used by FOASC$ routine. Entry point is 'ASCFDASC$'. 

2.6.4. System Data Format Input/Output Routines (SOFI, SOFO) 

The System Data Format Input (SOFI) routine and the System Data Format Output (SOFO) routine are 
two independent elements designed to handle files/elements that are in System Data Format (see 
Volume 3-11.2.3). Both routines are reentrant and become part of the user's program at collection 
time. For either routine the user must provide a File Control Table (FCT), an image and an image 
control word (SOFa) or image area (SOFI) and two equal length buffers. These buffers must be some 
multiple of 28 which is the length of a FASTRANO sector in size. Because disc physical records are 
most frequently four FASTRANO sectors (112 words) in size, SOFI and SOFO will run most efficiently 
when their buffers are a multiple of 112 words in length. If the buffer size is larger than 112 words 
but not a multiple, the excess (28, 56, or 84 words) will not be used in I/O operations, unless the 
I/O device is tape. For tape, the standard buffer size is 224 words. If tape is referenced, the buffer 
length should be the length of the tape block. A description of each routine and its corresponding 
File Control Table is given below. See section 3 for common bank usage. 

2.6.4. 1. System Data Format Input Routine (SOFI) 

Purpose: 

Inputs images one at a time to the user from a System Data Format (SOF) file/element on mass 
storage. 

Format: 

Open SOFI 

L,U AO,FCT -addr 

( 1) LMJ X 11 ,BSDFIO $-1 

(2) LXI,U X11,PIRCB$ 
LlJ X 11 ,BSOFIO$ 



4144.41 I SPERRY UNIVAC 1100 Serle. Executlye 2-105 
~~~ _______________ S_ys_t_e_m __ U_ti_Ii_~ __ p_ro_g_r_a_m_s ______________________ u_~_A_n_~ __ l ___ , __ '_~_E ____ __ 

(3) LMJ X 11,SDFIO$
error return
normal return

The sec:ond entry point is provided which allows reading to begin at any word within the starting
sector !.pecifie~ in the packet. The entry is referenced as follows:

L,U AO,FCT -addr
L A 1,OFFSET

(1) LMlJ X 11 ,BSDFIOA$-l

(2) LXI,U X 11 ,PIRCB$
LlJ X 11 ,BSDFIOA$

(3) LMJ X 11 ,SDFIOA$
error return
normal return

Input Image

L,U AO,FCT -addr

(1) LMJ X11,BSDFI$-1

(2) LXII,U X 11,PIRCB$
LlJ X11,BSDFI$

(3) LlJ X 11 ,SDFI$
error return
end-of-file return
normal return

Close SI)FI
L,U AO,FCT -addr

(1) LM,J X 11 ,BSDFIC$-1

(2) LXI,U X 11 ,PIRCB$
LJJ X 11 ,BSDFIC$

(3) LM,J X 11,SDFIC$
error return
normal return

Registerls Used: X11 ,AO-A5,R 1-R3

4144.41
U .. -NUM8ER

Description:

SPERRY UNIVAC 1100 Serle. executive
System Utility Programs UPOATE LEVEL

2-106
.. AGE

Images are retrieved from an SOF filelelement on mass storage or tape until an SDF end-of-file image
control word is encountered. The EOF control word contains an 077 in S 1. SOFI recognizes 051
continuation control images and does not pass them to the caller.

SOFI is initialized by calling SOFIO$ or SOFIOA$. If the latter entry is referenced, 'the offset in A 1
should satisfy 0 ~ A 1 < 28. Once the file has been opened for input, the routines SOFI$ and SOFIC$
may be used as usual. If A 1 = 0, the effect of SOFIOA$ is identical to that of SOFIO$. Thereafter,
for each image requested by the user, a call must be made to SOFI$. The two buffers provided by
the user are alternately filled with input images. With each call on SOFI $ an image is transfered to
the area specified by the user in the FCT, and its corresponding Image Control Word is set in FCT
+ 10. If the image is larger than the area provided by the user, the user's area will be filled and the
rest of the image skipped. When reading from a mass storage file, SOFI maintains the mass storage
address. This process is continued until an end-of-file image control word is encountered. At this
point, the end-of-file return is taken by SOFI$. The user closes SOFI by calling SOFIC$.

The file control table for SOFI is described in Table 2-20. The table must be provided by the user
and all information except that marked 'filled' must also be provided.

The error return from SOFI is taken when an unrecoverable I/O error status code occurs (see Volume
2-Appendix C.3). When an error return is made, A5 contains the I/O status code. The user program
may examine the packet in words 0 through 5 of the FCT which is a standard I/O packet.

Table 2-20. File Control Table for SDFI

FCT+O

+1
internal filename

+2

+3 I 020 I
+4 buffer length (words) buffer address (filled)

+5 Relative Mass Storage Address (Sector)

+6 buffer number 1 address buffer number 2 address

+7 buffer length (sectors) length of image area

+8 01 image area location

+9 01 buffer image location (filled)

+10 SDF Image Control Word (filled)

Words 0 through 5 are the 1/0 Packet

- H2 of FeT + 4 is filled by SOFI when filling a buffer from the SOF file or element.

UPDATE lEVEL
2-107

PAGE
414.4.41 L SPERRY UNIVAC 1100 Serle. executive
UP-NUM8ER System Utility Programs

-------------- ------------------~--------------------------~----------~------

- FCT + !) is the location (sector) of the Image Control Word (lCW) of the image to be read.

- H2 of FCT + 9 is used by SOFI for the input buffer address for the next image.

- FCT + 10 is filled by SDFI with the ICW of the SDF image.

2..6.4.,2. Syst.~m Data Format Output Routine (SoFO)

IPurpos:e:

Outputs images one at a time from the user to a System Data Format file/element on mass storage.

Format':

Open SDFO

L,U AO,FCT -addr

(1) LMJ)(11 ,BSOFOO$-1

(2) L)O,U)(11 ,PIRCB $
LI.J)(11 ,BSOFOO$

(3) LMJ X11,SDFOO$
normal return

Output Image

L,lJ AO,FCT -addr

('I) LMJ X11,BSDFO$-1

(2) LXI,U X 11,PIRCB$
LlJI X 11,BSDFO$

(3) LMJ X 11,SDFO$
error return
normal return

Close SOFO

L,U AO,FCT -addr

(1) LMJ X11,BSDFOC$-1

4144.41
UP-NUMBER

(2) LXI,U
LlJ

(3) LMJ

SPERRY UNIVAC 1100 S.,I •• Executive
System Utility Programs

X 11,PIRCB$
X 11 ,BSOFOC$

X11,SOFOC$
error return
normal return

Registers Used: X11,AO-A5,R1-R3

Description:

U'I)ATl L£V£l
I 2-108

PAGE

Images are output to an SDF file/element either on tape, or on mass storage at the relative location
specified in the FCT.

SOFO is initialized by calling SOFOO$. Thereafter, for each image that is to be output to the SOF
file/element, a call must be made to SOFO$. With each call on SOFO$ an SOF image control word
(ICW) must be provided in FeT + 10. The ICW is set in the output buffer and is immediately followed
by the output image whose location is specified in H2 of word 8. When an image spans the output
buffers, a partial transfer is made to the first buffer and the buffer is written out. The remainder of
the image is then transferred to the next buffer. When writing to a mass storage file, SOFO maintains
the write address. The process is continued until the user makes a call on SOFOC$. At SOFOC$
an end-of-file ICW is set in the output buffer and the last buffer is written out. If the write was to
mass storage, SOFOC $ returns an adjusted mass storage address in FCT + 5 so sector length of text
may be computed.

The error return is taken from SOFO when an unrecoverable I/O error occurs (see Volume 2-Appendix
C.3). When an error return is made, A5 contains the I/O status code. The user program may examine
the packet in words 0 through 5 of the FCT which is a standard I/O packet.

Table 2-21 describes the File Control Table for SOFO. The table and all information except that
marked 'filled' must be provided by the user.

4144.41
UP-HUMIER UPDATE LEV£L

2-109
PAGE L· SPERRY UNIVAC 1100 Serle. Executive

System Utility Programs .
----.:.-~----'------------

Table 2-21. File Control Table for SOFO

FCT+O

+1
internal filename

+2

+3 I 010 I
+4 buffer length in words (filled) buffer address (filled)

+5 Relative Mass Storage Address (Sector)

+6 buffer number 1 address buffer number 2 address

+7 buffer length (sectors) length of image area (filled)

+8 01 image area location

+9 01 buffer image locator (filled)

+10 SOF Image Control Word

Words 0 througlh 5 are the 1/0 Packet

- H2 of FCr + 4 is filled by SOFO when writing out a full buffer.

- FCT + 5 is the location (sector) to which images are to be written.

- H2 of FCr + 9 is used by SOFQ for the output buffer address for the next image.

4144.41
Ufll-NUMIE"

SPERRY UNIVAC 1100 Serie. Executive
System Utility Programs

The general format of the image control word located in FCT + 10 is:

3534 2423

1°1
image length (worda)

I
variable

Data Image Format
or

35 3029 2423

I
type

I
image length

I
variable

Control Image Format (bit 35 = 1)

UftOATE LlV£L
I 2-110

'AGE

o

o

For a general discussion of SDF see Volume 3-11.2.3. For a description of SIR$ generated SDF see
2.5.6.

For FORTRAN V formatted 1/0, the label and data image control words are described in: SPERRY
UNIVAC 1100 Series FORTRAN V Library, UP-7876 (current version) and SPERRY UNIVAC 1100
Series FORTRAN V Programmer Reference, UP-4060 (current version).

4144.41 L SPERRY UNIVAC 1100 S.r ••• executive 3-1
___ U_~_U_M'_ER______ _ ________ S_y~s_te_m __ U __ ti_Ii~~_P_ro~g~r_a_m_s ____________________ ~_~ __ n __ UW __ L ____ ~~_~_E ____ _

3. Processor Interface Routine Common Bank (PIRCB$)

PIf3CB l~ provides all the capabilities of the system relocatable library routines BSP$, FOASC $, SOFI,
and S[)FQ.

The common bank entry points are defined in SYSLIB element CBEPPIA$. These entry points are
the same as the ones in the relocatable routines except they are prefixed with the letter B. The
comm()n bank rroutines have dual referencing capability. They may be referenced via LMJ (auto
switch)l, for systl~ms which can base more than one bank simultaneously, or Common Bank LlJ. Three
calling sequences are available for routines in a common bank. The type of call has been identified
througlhout this Volume as (1), (2), and (3). They are identified as follows:

(1) AutIO Switch Method

(2) Connmon Bank LlJ

(3) Aelocatable Collection Method

To utilize the LMJ referencing method the bank, PIACB$, must be based on one of the PSAs when
the routine is referenced (See Volume 3 Section 2). To prevent part of a program from becoming
inacce!jsible, care must be exercised when collecteng the PIACB $ bank. The bank starts at address
01000 and occupies 03777 words.

4144.41 L SPERRY UNIVAC 1100 Serle. Executive 4-1
~~______ ________ S~y_s_te_m __ U __ ti_lit~y __ P_ro~g~r_a_m_s ______________________ ~u~ __ An __ ~ __ L ____ ~'~ __ E ____ _

4. CULL Processor

4. 1. INTRODUCTION

This section describes the CULL processor which generates a listing of symbols, cross-referenced
to the e!lement and line in which they are found.

4.2. @CULL

Scans a collection of symbolic elements and produces a cross-reference listing of the symbols found,
the elements, and the lines on which they occur. A list of symbols which are either to be omitted
from thEt sort or the only symbols to be included in the sort may be specified. The CULL processor
is called by the @CULL control statement.

All parameters in the @CULL control statement are optional.

Format:

@ I abe I : CULL, opt ions p ro/sco I (res) ,name-1, ... ,name-n.

Parameters:

options Specifies available options for obtaining sorted symbolic listings (see Table 4-1).

pro Specifies the symbolic elment being scanned/sorted. The possible values are:

ALG - ALGOL elements

ASM - 1100 Series assembly code

COB - COBOL elements

DATA - all symbolic e,lements

DOC - DOC elements

ELT - symbolic data element

4144.41
UfI-HUMIER

scol

res

names

Description:

SPERRY UNIVAC 1100 Serle. Executive
System Utility Programs

FOR - FORTRAN elements

MAP - MAP elements

PLS - PLUS elements

If omitted, ASM is assumed.

UfIOA Tt lEVEL
I 4-2

flAGE

Specifies the column number where the scan automatically stops. If omitted, the
following values are assumed:

ASM- 40

ALG, COB, FOR - 72

DATA, DOC, ELT, MAP, PLS - 80

Specifies the number of mass storage positions reserved for scratch files. If
omitted, 2 is assumed (approximately 70,000 references).

Specifies element or filenames in standard notation (see Volume 2-2.6.6).

Each file must be assigned or catalogued. If filename is not given, TPF$ is assumed. All files are
returned to their original status when the CULL processor terminates. If a file is not a
FASTRAND-formatted program file, an error is noted, and the parameter is ignored.

I

If read/write keys are necessary, they must be given in the first reference to the file. Keys appearing
anywhere else are ignored.

The set of elements to be scanneo and sorted is formed in one of two ways:

• If an element name is a parameter, it is included in the scan/sort.

• If a filename is a parameter, the most recent cycle of each symbolic and procedure element is
included in the scan/sort, unless the 0 and P options are specified.

Standard system dropout rules apply to both file and element name formats (see Volume 2-3.2.7).

Data images, following the @CULL control statement, are scanned for strings of characters separated
by blanks; these strings are the special symbol table. If the M option is specified, only the symbols
in .this table are accepted; if omitted, the symbols in this table are ignored. If the S option is used,
the special symbol table is printed. Processing does not begin until the end of the data is encountered
(indicated by encountering a control statement).

Certain options specify that a symbol which is found under special circumstances is to be marked.
When a symbol is to be marked, then all occurrences of that symbol elsewhere are to be marked.
If the N option is not specified, only unmarked symbols are printed. If the N option is specified, then
only marked symbols are printed.

4144.41
UfI-HUMBEA L SPERRY UNIVAC 1100 Serie.Executlve I I 4-3

System Utilhy Prog~r_a_m_s~~~~~~~~~~~~_u_~_A_n~~~L~~~_P_~_E~~_

The following special options are available:

• Special Options for Symbolic Data Elements

Tlhe data scanner accepts strings of characters from the set A-X, 0-9, $, and period (.) up to
1.2 characters in length. See Table 4-1 for the special options available only to the data scanner.

•. Scanner for Fortran Elements

Action is the same as data scanner, except comment lines are ignored.

• Scanner for COBOL Elements

Action is the same as data scanner, except symbols may be up to 30 characters.

• Special Options for Assembly Language Elements

The assembler scanner accepts strings which are valid identifiers or numbers in the 1100 Series
assembly language. These strings may include up to 12 characters, and the symbol $ is
recognized. The assembler scanner recognizes an identifier when it is a label, directive, or
operand; occurrences of labels and directives are followed by * and 0, respectively. Labels
defined at clnother level are marked with a double asterisk. The special options available to the
as!sembler scanner are given in Table 4-1.

Tllble 4-1. @CULL Control Stlltement, Options

OPtiO~~ ____ ~ __ ~ ____________ ~ ___ D_e_s_c_r_iP_t_i_o_n~~~~~ __ ~~ __ ~ ____ ~~ __ ~
General Option.

C Produces a 72-column listing; omits list of elements processed and summary information at end.

E Does not eject the page. Otherwise. page eject for each time symbol begins with different character than

pre"ious symbol.

H Coupled with the l option. produces page headings of the element name currently being listed.

l Produces a full listing of each element scanned/sorted.

M Only symbols in data images are accepted.

N Marked symbols only are printed; otherwise only ullmarked symbols printed.

o Symbolic elements are not scanned.

P Procedure elements are not scanned.

S Symbols in data images are printed.

Z ACCElpts symbolic elements with subtype _ O.

4144.41
UP-NUMBER

Option

SPERRY UNIVAC 1100 Serle, executive
System Utility Programs

r.blll 4-1. @CULL Control St.ttlmllnt, Option. (continulld)

Description

Special Option, for Symbolic Data Elements

A Does not son strings beginning with an alphabetic character.

UPDATE LEVEL

o Does not son strings beginning with any character from the set: 0-9, ., and period (.).

Special Option, for AsHmbler Language Element.

A Does not son identifiers.

o Sons numbers and the symbol t.

N Prints only marked symbols (otherwise, prints only unmarked symbols).

4-4
'AGE

I Any symbol that appears in the special internal table is not soned. This table contains all symbols that are

commonly used as directives, mnemonics, register names, and j designators. If the M option is specified,
the internal table is Llsed as 8 supplement to the special symbol table.

a Sons data items from the set A-Z, 0-9, ., and period (.) which are enclosed in quotes. These references
are followed by a O.

U Causes used symbols to be marked (and hence not printed in absence of N option, thus giving listing of
symbols defined as labels but not otherwise referenced).

W Marks a symbol when it appears in the label field.

X Marks a symbol when it appears in the label field and is followed by an asterisk (*).

Y Restricts the Wand X options to elements explicitly named in the @CULL control statement.

Examples:

1. @CULL

2. @CULL,D ASM/SO(30),EXEC1. ,EXEC2. ,EXEC3. ,EXEC4.

3. @CULL,D DATA/SO(10),PRM/REV21

4. @CULL , Q*F . A, . B, . C, .0

1. Sorts all of the elements in the Temporary Program File (TPF$) using the assembler scanner.

2. Used to obtain a complete scan and sort of the assmebly language files EXEC 1 through EXEC4
and to reserve 30 positions of mass storage for use by the CULL processor.

3. Data element PRM/REV21 contains images for a document. This control statement is used to
generate a glossary of words used.

4. Used to CULL elements A,B,C and D in file Q*F.

_ __ 4_1_44_'4_1__ 'I' ______ , ________ s_P~E_R_RY __ U_N_IV_A~C_1_1_00~S_._ri_ •• _b __ ._CU_ti_V. ______________ ~ __________ ~ ___ 5-_1 __ __ UP-NUMBER ~_ System Utility Programs UPDATE LEVEL PAGl

5. Document Processor (DOC)

6. 1. INiTRODUCTION

The Doc:ument Processor (DOC) is used to produce formatted printed listings (ASCII or Fieldata) of
a document and to update a document. The document is simply a symbolic element in standard
format alnd it may be manipulated by the FURPUR processor (see Volume 3- Section 4) just like any
other symbolic element.

Control of the document is provided in the following ways:

• @ DOC control statement options

• Control commands within the text that provide:

listing control

text control

• Editing commands that permit:

input line image editing

character string editing

6.2. @IDOC FORMAT

Purpose:

The DOC: processor is used to produce a formatted printed listing of a document or to update a
document. The [)OC processor is called by the @DOC control statement.

All parameters in the @DOC control statement are optional.

Format:

@Iabel :DOC,options elt-1,elt-2,altfi le,form,form-params ...

4144.41
UP-NUMIER

Parameters:

options

elt-1

elt-2

altfile

SPERRY UNIVAC 1100 Serle. Executive
System Utility Programs

See Table 5-1.

UllOA 1'£ LEVEL

Specifies the symbolic input element, output element for I option, or both for U option.
May be omitted if input follows the control statement, and no output element is to
be created.

Specifies the symbolic output element (not used with I or U options). May be omitted
if output element is not created.

Specifies alternate print file to be used for output. If the file specified is not
catalogued, a temporary file will be assigned. The version subfield of this
specification may contain IDENT, in which case SIR corrections must be terminated
by @EOF or @ENDX followed by an identification line, such as the name of the person
to whom the listing is to be returned. This line will be solicited by the typeout 'MSG?'.
To print the alternate file, the user must @FREE and @SYM the file himself, which can
be done only if the file was catalogued. A temporary alternate file is suitable for
examination by the text editor, for example.

If the filename is omitted but IDENT is used in the version subfield, DOC will catalogue,
assign, write into, breakpoint, free, and queue for printing a file whose name will be
chosen by DOC, based on the time of day and the generated run-id. This file should
be unique. Use of the B option is not advisable in this case.

When this method of automatic file assignment is used, the qualifier field may specify
the symbiont to be used for printing the file. (For example, "CSPPR 1 *./IDENT" in field
3.) This may be necessary if not all symbionts have lowercase printing capability.

form Specifies the output device form. The various permitted values are given in Table 5-2.
If omitted, the value HSP is assumed.

form-params Specifies values to override standard form parameters. See Table 5-2.

Other specification fields are reserved for future expansion and should not be used.

4144.41
U'-NUMIEFI UPOATE LEVEL L SPERRY UNIVAC 1100 Serie. Executive

System Utility Programs
.----.:.-~ __ --L----'----

Op'tion
Chalracter

18

c

HI

J

K

L

M

N

o

P

Q

R

TllblB 5- t. @OOC Control $tlltBmBnt Options

Description

Not used.

Inhibit @8RKPT of alternate file when one has been specified by use of the altfile field.

Activates automatic lower-casing procedure to conve" all-capitals document (produced by

monocase device or created in Fieldata) to mixed uppercase and lowercase.

Inse"s current data in title printed on each page.

Specifies global page numbering rather than numbering each chapter separately. With the E

option. page numbers will not be reset to 1 for each new chapter. The table of contents will

always be numbered separately.

Page numbers will be centered and printed at the foot of the page rather than in the top right
corner.

Remove hyphenation at end of lines (may be overridden by UNHYPH directive; must not be used
with H option).

Activates automatic hyphenation (may be overridden by HYPHEN directive; must not be used with G
tlption).

Standard SIR option.

Not used.

"'ard copy output with TKTRNX or TKTRN2 forms.

When right margin space is available (beyo·nd rgd which must be nonzero). flags indicating the

c:ontrol directives encountered will be printed in the right margin. These flags will consist of the

first two characters of the directive name. followed by the parameter specified. if any.

Produce modified listing (line numbers moved to within page boundaries).

Suppress listing (may be overridden by LIST and UNLIST directives).

~Vhen the R option is used. the listing produced will be right-aligned. but the output element will

not. The 0 option is used to produce a right-aligned output element. The 0 option is meaningless

unless the R option is used and an output element is specified.

Output element will be Fieldata instead of ASCII. This option is not needed if the input element is
Fieldata. Also see remarks under Q below.

Output element will be ASCII instead of Fie~data. This option is needed only if the input element is

i'l Fieldata. Otherwise, the output element ils always written in ASCII. If both P and Q are present.
o will override P.

Right margin alignment activated (may be overridden by RIGHTM directive.)

4144.41
UP-NUMBER

Option

Character

S
.

T

U

V

W

X

Y

z

Form

HSP

HSP2

FR80

TTY

U10064

U10080

U100

OCT 500

DCT1K

SPERRY UNIVAC 1100 S.r ••• ex.cutive
System Utility Programs

T.ble 5-1. @DOC Control St.tement Options (continued)

Description

Not used (single spacing i. assumed mode).

UPDATE lEVEL

Invens the normal table of contentl generation mode. For untitled forms, the table of contents will

be generated, for titled forml, the table of contentl will be lupprelled.

Update (cycling is not available) when the U option is specified, the output element will be cycle 0

of a new element with the lame name as the input element.

Page ejects for new chapters (level 1 counter change) are suppressed. This option implies the

effect of the E option.

Standard SIR option.

Allows construction of the index file DOCtX when INDEX directives are specified in the text of the

document (without the X option, the file will not be created), and printing of a soned index

following the table of contents.

Not used.

Not used (reseNed for diagnostic purposes).

Table 5-2. @DOC Device Forms

Description

Standard high-speed printer format.

High speed printer format with two pages of text per printed page (~O character line width, maximum

of 70 lines per page).

Modified HSPfor ule with FR80 miciofiche output device.

72 character teletypewriter format (line numbers only with M option).

64 character line width UNISCOPE 100 Display Terminal format (line numbers only with M option).

80 character line width UNISCOPE 100 Di.play Terminal format (line numbers only with M option).

Same as U 1 0064.

132 character teletypewriter format.

OCT 1000 Clame .1 OCT 500).

4144.41 I SPERRY UNIVAC 1100 S.rl.1 Executiv. 5-5
U'-HUM~, ____ • __ ..;,.,..._S_y~s_t_e_m_U_ti_li_ty~P_r_o...;g;...r_a_m_s ____________ ..L...U_PO_A_Tt_LEVE_l ___ '_AG_E ____ ~~. __

Form

TKTRNX

TKTRN2

FORM

Tllble 5-2. @DOC Device Forms (continued)

Delcription

TEK'TRONIXTM 4012/13 format, lingle column (lame as TTY except that page erales

are generated, and hard copy requests are made if the K option is used.

TEK'rRONIX 4012/13 format, two columns per page, otherwise same as TKTRNX (CAUTION: very short

linell are printed).

Usel'-defined form. The parameters defining the form are numbers given in fields five through eight

of the DOC processor call statement, with the format as follows, Itarting from field four:

"FORM,mulcol*ttlsw.datpos/pnrpos(ttlsp),lpp/cpdl,lmrg/llng,lgd*rgd.lnsw/lnpos"

The fields have the following meanings:

mulcol

ttlsw

datpos

pnrpos

ttlsp

Ipp

cpdl

Imrg

ling

Igd

rgd

Insw

Inpos

One less than the number of columns per page. 0 for all standard form

definitions. except HSP2, for which it is 1.

Title switch: 1 for titled forms, 0 for untitled.

Position of date in title when 0 option is used.

Page number position in title and in table of contents entries.

Number of blank lines to follow the title line.

Number of text lines per page; does not include title or cutting guide
information.

Characters per device line (hardware page width).

Left margin position of text.

Text line length.

Left cutting guide pOSition.

Right cutting guide position.

Line numbering switch: 1 for line numbers printed, 0 for line numbers not
printed.

Line number print pOSition (meaningful only if Insw is not zero).

If pnrpol is zero, it will be computed al IIng+lmrg-7. All print positions are mealured in columns

from 0 which il the left-molt column. If rgd is 0, page quides will not be printed. Default valuel for

omitted parameters are those for the HSP form. The M option il not meaningful when FORM il used.

For convenience, the Ipecifications of the form in ule are printed as part of the DOC header, even
when a standard form is being ueed.

This will allilt the user in defining his own forml. Any of thele parameters may be specified for a

Itandard form, in which case the normal value is replaced. Parameters not Ipecified will retain their
Itandard values.

4144.41
UP-NUMBER

Form

TKFORM

SPERRY UNIVAC 1100 Serlel executive
System Utility Programs UPOATIE LEVEL

I 5-E
PAGE

Tllble 5-2. @DOC Device Forms (continued)

Description

NOTE:

For sites which have configured 8 lines-per-inch printing instead of 6 lines-per-inch. when the HSP

form il uled. the recommended value of "Ipp' is 70.

Whenever the user supplies values for any of these parameters .. there exists the possibility of

describing a form which is internally inconsiltent. DOC will check for this and make adjustments,

including an error diagnostic, if necessary.

User-defined TEKTRONIX form. Same as FORM except that TEKTRONIX features are enabled.

The forms corresponding to interactive devices (everything except HSP and FR80) are generally
referred to as untitled. For these forms, references to titling are not meaningful. Moreover, a table
of contents will be generated for an untitled form only if the T option is used. Nevertheless, a title
image must always be given, even for an untitled form.

5.3. OUTPUT LISTINGS

The first image of a document element is the title. It may begin in column 1, while its length is
dependent on the form selected. The title of the document is printed at the top of each page. If
the 0 option was used, the current date will be suffixed to the title, in the format dd mmm yy. The
page number, sequenced within chapters, is printed flush with the right margin, following the title.
Pairs of periods, to be employed as trimming guides, are printed below the title and after the last
line of text on each page. For the HSP form, these periods are 8 112 inches apart. The precise
position of the trimming guides may be affected by the M option.

The text appears below the title and page guides. The number of lines per page is device dependent,
but is 50 for the HSP' form. The line numbers of the output element are printed to the left of the
text (for some forms, only if the M option is used). New material (introduced via SIR corrections) is
indicated by line numbers with an asterisk suffixed.

Hyphenation at the end of a line may be obtained automatically through the use of the H option or
the HYPHEN directive. When text justification requires it, hyphenation will be removed and the two
parts of a word run together. This action may be forced for all hyphenation by use of the UNHYPH
directive. If a word which normally contains a hyphen, such as 'right-handed' appears with the
hyphen at the end of a line, to avoid losing the hyphen altogether, two consecutive hyphens should
be used. Other than that, an input element may be hyphenated freely.

5.4. INTERNAL CONTROL DIRECTIVES

Internal control directives are distinguished from text by the appearance of a nonblank character in
column 1. The types of control directives available are described in the following paragraphs.

___ 4_'_44_'_4_'__ I ______________ s~P~E_RR_Y __ U_N_tV_A~C~1_1_00~S_._ri_._._b_._C_Ut_iV_. ______________ ~ __________ ~ ___ 5_-_7 __ __ UP-NUMBER .--L_ System Utility Programs UItOATE LEVEL .. AGE

5,4.1. 'Title Control

Title dimctives helVe a nonzero digit in column 1, followed by text, which is the title for that portion
of the document. This title is not to be confused with the document title, which is specified by the
first image of the input. Nine counters are maintained by the DOC processor in a hierarchical
organization. The most significant of" these is the level 1 counter, also called the chapter counter,
which is controlled by title directives having a ' l' in column 1. The other eight counters are ordered
from levlel 2 to level 9, controlled by title directives having '2' through '9' in column 1, respectively.
The number of c()unters printed corresponds to the level of counter being referenced. All counters
at a 10wE.r numbered level are printed, and any that were zero are set to one. The counter at the level
being referenced is incremented by one and printed. All counters at a higher level are set to zero
and ther,efore are not printed. Titles for counters 2 through 9 will be printed with two vertical spaces
before and after the line. A title for counter 1 will be printed on a new page, and will be followed
by two vertical spaces. Level 1 directives also reset the page number (in the absence of the V or
E options), table number, and figure number to 1. The test on a title directive, which may begin in
calumn :Z, is printed following the values of the various counters. The exact amount of text that may
be printEtd will depend on the level being referenced, the form in use, and the values of the various
counters, but a limit of 40 characters is a good guide .

. The ima~Je insertud in the output element will contain the counter level digit in column 1 followed
by the tElxt of the section title, and will thus not correspond to the printed listing.

In addition to appearing in the text of the printed document in the appropriate place, the title
directive:s are alse) used to produce a table of contents for the document which will be printed at the
end of the listing. Untitled forms require the T option for the table of contents to be printed. The
image inserted in the table of contents will contain the page numbers on which the title directives
appeared.

In additi()n to chapter and section titling described above, tables and figures may also be titled and
automatically numbered. This is done using the TABLE, FIGURE, and END directives (see Table 5-3).

5.4. 1. 1. Title Control Compatibility

Older versions of IOOC accepted only four levels of title control counters, numbered 4 through 1, and
4 was thc:t most significant level. This is not directly compatible with the scheme described above,so
the following cornpatibiltiy transformation is made: If the first title directive encountered contains
a '4' in cc)lumn 1, the document is assumed to be in the old format. Digits 1 through 4 encountered
in column 1 will then be transformed by the mapping as follows: 1-4, 4-1, 2-3, 3-2. This
transformation will affect the output element, if one is specified. When the compatibility
transformation is applied, an appropriate diagnostic message will be printed.

5.4.2. Input Cal~e Control

Folr' ease of convelr'sion of a Fieldata DOC element to ASCII, or for use with a monocase input device
(such as .1 teletypetwriter or card reader, DOC contains a routine which will automatically convert text
in uppercase only to mixed uppercase and lowercase. The method used is to leave in uppercase the
first charlEtcterof each word of a title, and also the first alphabetic character following a period, colon,
question mark, or exclamation point. All other characters will be made lowercase. This means that
proper nc)uns, abbreviations, and so on will require manual editing through a dual-case device.

4144.41
UP-NUMBER

Directive

TABLE text

FIGURE text

FXFORM

END

TITLE text

SUBHDG x,text

SETCTR k,n

SPERRY UNIVAC 1100 Serlel Executive
System Utility Programs

Tllbl8 5-3. Titl8 Control Oir8ctiv8S

Description

U..oAT£ LEVEL

The text is the title of the table, which will be centered between the left and right margins. The

chapter and table counters will be edited, preceded by the word "able' and followed by the specified

text. Within a table, the status of the HYPHEN, UNHYPH, and RIGHTM modes i ... ved, and these

modes are turned off. Their status will be restored when 'END' is encountered. Text composition

will not be performed within a table, so the table must be constructed exactly as it is desired to

appear. If text composition is desired within a table, the 'END' may immediately follow the "ABLE'

directive, followed by the text of the table. This will give the author the titling and numbering feature

of the TABLE directive without suppressing text compOSition or the HYPHEN, UNHYPH, or RIGHTM
modes.

The discussion above applies fully to the FIGURE directive. except that a figure will be titled as a

figure, and there is a separate counter for figures. Title will be centered between left and right
margins.

This command provides the fixed format of TABLE or FIGURE for the text which follows, without.
however. providing a title for the text. Fixed format is terminated by the END directive.

The END directive is used to terminate a table or figure, or to terminate fheed format mode. It restores

the G, H, and R option settings and turns on text composition.

This directive replaces the existing title information (obtained from the first image of the document

or a preceding TITLE directive) with the title specified by "text", a string beginning in column 7.

This directive allows the specification of subheadings to be printed at the top of each page, or the

elimination of subheadings already being printed. The "x" field may be one of the following:

N - Do not print subheadings ("text" is ignored)

L - Print this subheading flush left

C - Print this subheading centered

R - Print this subheading flush right

The ·x" field must appear in column 8 and the "text" field begins in column 10. The "text" field

specifies the contents of the subheading, except when X-No Up to 4 subheadings may be in use

simultaneously. It il not necessary to stop the use of lubheadings at the end of II document before

printing the table of contents; the table of contents printing is done with its own subheadings.

Subheadings are not printed for untitled forms. The lubheadings will be printed in the order

encountered. Since subheadings are cumulative, the N form must be used before changing to a new
set of subheadings.

This directive allows setting any of 12 counters used by DOC to a specified value. The "k" field may
be any of the following:

digit 1-9 - Ipecified section counter

P - page counter

F - figure cQunter

T - table counter

The "k" field must be in column 8, and the "n" field is an iflteger beginning in column 10 with a

maximum of 999999. The Ipecified counter will be let to n-1, 10 that at the next incrementation,

it will be given the lpecified value. If a lection counter is being set, all higher numbered section

counterl are let to zero, and any lower numbered section counters which are zero will be set to one.

___ 4 __ 14_4'_.4 __ 1 ______ ~I'L __________ S_PE_R_R_Y __ U_N_'V_A_C __ 1_1_00 __ s_e_r_le_s_E_x_e_cu_t_'v_e ________________ ~ ________________ 5 __ -f-____ __ UP-NUMBER. System Utility Programs UPOATE LEVll 'AGE_

Directive

TOCLVL n

Table 5-3. Title Control Directives (continued)

Description

This mean. that section counter •• hould be .et in increasing order if more than one i. being s.t.
This directive is most useful when composing a document in pan. or for insening material into an

existing document.

Thi. command i. used to control the amount of section titling information which appears in the Tabl.
of Contents. The "n" field is a single decimal digit indicating the highest level of titling to appear.

For example, the normal mode is 9, a setting of 0 prevents all entries from appearing, while a value

of 2 would allow only first and second level titles to appear in the table of contents. and so on. This

command is u.ed to keep the Table of Contents from becoming cluttered.

The 10wer-casin'J routine is activated by the C option or by the CASE directive. The CASE directive
is intended for use when a portion of a Fieldata document is to be left in uppercase, or when some
portion of a document has been edited on a monocase device. Since the function of the CASE
directivE~, once it has been performed, is not needed again in the output elment, the CASE directive
images will not be written to the output element. The CASE directive is described as follows:

CASE k,x Controls lower-casing routine.

k = L x is not used. Turns the lower-casing routine on.

k = N x is not used. Turns the lower-casing routine off.

k = C x is used. Denotes x as a "shift character". When in lower-casing
mode (set by C option or "CASE L H), a" alphabetic characters between
two shift characters wi" remain in upper case. Any ASCII character
may be specified for x. If x is a blank, the shift character feature is
inactive, which is the situation at the start of a document. The CASE
command and a" shift characters. wi" be deleted from the final
document. The shift character may be changed as often as desired.

5.4.3. Listing Control

Listing directives specify the appearance of the listing. The format is a directive word, beginning in
column '1, extending no further than column 6. In some cases a specification field may follow. The
available commands and their descriptions are given in Table 5-4.

Directive

DOUBLE

CENTER text

EJECT n

FLUSHR text

HYPHEN mode

INDEX text

INSERT text

LIST

OPTION k.mode

REMAIN n

RIGHTM mode

ROMAN mode

SINGLE

SPERRY UNIVAC 1100 Series Executive
System Utility Programs

r.bllJ 5-4. Listing Control DirectivlJs

Description

Selects double spacing.

I 5-10
PAGE

The text specified will be printed centered between the left and right margins. Since the LENGTH

command affects the margin position. it will affect the positioning performed by this command. For

proper positioning. exactly one blank should follow the R in the word CENTER. since leading blanks

are not recognized. Trailing blankl will be stripped.

Ejects paper n times to begin a new page with n-1 intervening blank pages. If n is zero. there is

no effect. If n is omitted. 1 is assumed.

The text specified will be printed flush with the right- hand margin. Except for the position on the

line. all considerations specified for the CENTER command apply equally to the FILUSHR command.

Turns the automatic hyphenator on or off. where mode is either ON or OFF, beginning in column 8.

The heuristic used does not guarantee dictionary-correct results. which should not be expected.

The text specified. which begins in column 7. will be written to the index file project-id*DOC.X if

the X option was specified on the @ DOC processor call card. The level 1 and 2 section counters

and the page number will be suffixed. A limit of about 40 characters should be observed. The

DOC.X file is written in SDF (System Data Format). DOCtX may be attached as a @USE name te

some other file if the DOC user so desires. If the X option is on at the end of the document. the index

items will be sorted in alphabetical order and printed following the table of contents.

The INDEX command is transparent. This means that unlike other commands. it may occur at any

point in the text of the document without affecting line composition. Because of the requirements

of text composition, an INDEX command may not appear in the output element in exactly the same
location it had in the input element.

Inserts the text. which begins in column 13, into the table of contents.

Turns on the listing. cancelling the effect of an UNLIST directive or the N option on the @DOC
processor call statement.

Allows clearing or setting any of the option letters from the DOC processor call statement (see Table

5-1). where "k" in column 8 specifiel the option affected, and "mode" is either ON or OFF. This

command can perform the same functions al LIST, UNLIST, RIGHTM, HYPHEN, and UNHYPH.

Changing the SIR optionl, the C options or the M option is not meaningful. The 8 option is checked

only at the end of the document, so the lalt setting il the only one used.

Ejects paper for a new page if fewer than n lines remain on the page, where n is an unsigned integer
in columns 8-9. If n il omitted or il zero, the paper is not ejected.

Turns the right margin alignment on or off, where mode is either ON or OFF. beginning in column 8.

This command allows pages to be numbered with either Roman or Arabic numerals ·mode" is ON

or OFF. with the obvious meanings. It is.uggested that Roman numerals be employed only with the

F option .et, .ince they take up a good deal more space in the title area than Arabic numerals.

Select •• ingle spacing mode.

4144.41 I SPERRY UNIVAC 1100 Series Executive 5-11
___ U_~ __ UM_'_EA--~,--------------------S~y-st-e-m---U---ti-li-ty~p_r-o~g_r_a_m_s ________________________________ ~_U_~_A_n ___ L~ __ L ____ ~P_AG_E ______ __

Directive

SMCON text

SPACE ,n •

UNLIST

UNHYPI-il mode

r.blB 6-4. Listing Control OirtlctivBS (continuBd)

Description

Performs a .vmbiont control (APRTCNt/APRTCAt) function using the spttcified text. When used to

request special forms or margins for a document, this command should immediatelv follow the title

image (the first Image). If several documents are being .tacked in an alternate print file bV use of
the B option, this command is most useful in proce .. ing the first of the stacked documents, as the

symbiont control function requested will then applv to the remainder of the alternate file.

Spaces paper n lines, where n is an unsigned integer in columns 7-8. If n is omitted, 1 is allumed.

A blank image encountered in the input element will be converted to a SPACE directive with n
omitted. ·If n is 0, no spacing Is performed. The SPACE 0 directive is uled al a no-operation directive

for control of text composition.

Turns off the listing.

Turns the hyphenation removal routine on or off, where mode is ON or OFF, beginning In column 8.

When in the UNl.IST mode, the EJECT, REMAIN, and SPACE directives are recognized for purposes
of keeping the correct page numbering, but they do not cause any paper movement.

5.4.4. 'Text Control

The DOC processor assigns proper margins to the text that appears on the listing (and in the output
element)l. This is accomplished by moving words (defined as strings of consecutive nonblank
characteirs) and suing of blanks from the input line to an output area until the output area is full. The
output lilile is then printed and sent to the output element (if any). Control over this process is achieved
by using the COLUMN, LENGTH, HYPHEN, UNHYPH, RIGHTM, and SPACE 0 directives, some of which
have bee:!n described above.

The text movement and line composition are terminated under the following conditions:

• Start of a now paragraph

• Rec:ognition of a directive

A new paragraph is recognized by the presence of either an indented line or a hanging line. An
indented line is one on which the first nonblank character is to the right of the current left margin,
while a hanging ~ine is one on which the first nonblank character is to the left of the current left
margin. All other text lines (i.e., those on which the first nonblank character is in the current left margin
column) .!lre called normal lines. Only normal lines are processed fully by the text compositon routine,
although an indented or hanging line may be affected on the right by movement of words to or from
a succeeding normal line.

In view o'f the above, it is necessary to maintain careful control of the left margin when text is indented,
lest the ()utput document be composed improperly. Similarly, when indenting text for an example,
as the fOlllowing:

This is an example.

it is nece:ssary to prevent the following normal text line from being moved onto the example line. This
is done by using Bl SPACE 0 directive as a no-operation directive following the example line to force
the next normal line to begin on a new line.

4144.41
UP-NUMBEA

SPERRY UNIVAC 1100 S.rie. Executive
System Utility Programs UPOATt LEVEL

5-12
PAGE

Control over the left margin is provided by the COLUMN directive, while LENGTH provides control
over the right margin. These commands are described in Table 5-5.

Directive

COLUMN n

LENGTH n

TsblB 5-5. COL UMN snd LENGTH DirectivBs

Description

Adjusts the left margin to column n, where n is an unsigned integer in columns 8-9. If n is omitted,

the value 2 is assumed. Until a COLUMN directive is encountered, 2 is the default value at the stan

of a document. A value Ie.. than 2 is illegal, as are excellively large value.; the permissible

maximum depends on the form in use and the current LENGTH .pecification. Note that DOC expects

that those Input lines which are to be treated as normal text lines will begin in column n. Text

beginning in column 2 will not be moved over to column n (n> 2) but will be treated as a hanging

line instead.

Defines the current line length to be n where n is a signed or unsigned integer in columns 8-11.

If n is unsigned, an absolute length is assigned. If n Is .igned, the new line length is relative to the

line length previously in effect; a preceding plus sign increases the line length by n. while a preceding

minus sign decreases the line length by n. Note that the LENGTH command pertains only to the

listing and output element; input lines may be shorter or longer as desired (up to 132 character.

maximum). It is suggested that the relative (signed integer) form of the LENGTH directive be used

to obtain indentation of text on the right. Since there is a possibility of processing a document on

various devices with standard line lengths of various sizes, the relative form will provide correct

results in all cases.

The SPACE 0 directive (see Table 5-4) is used to indicate that the next normal line is to begin on
a new line. A SPACE 0 directive will be generated automatically preceding any line which contains
a 0 in column 1. The 0 will be replaced by a blank in column 1 in the output element.

5.4.4.1. Hyphenation Removal

If the automatic hyphenator is used when an output element is produced, the output element is
hyphenated just as the listing shows. Since the hyphenator uses a heuristic, not a dictionary, the
hyphenation may be performed at places that are not correct, according to common usage. For this
reason, the G option and UNHYPH directive have been provided to remove all hyphenation at the end
of lines. In occasional cases, a word at the end of the line will actually require the hyphen internally
(such as 'right-handed'). To avoid losing the hyphen altogether, the hyphen should be replaced by
two adjacent hyphens. Then, only one will be removed, leaving one to be retained inside the word.

Hyphenation removal will not be performed between TABLE and TABLE END directives, not between
FIGURE and FIGURE END, unless it is specifically requested by the UNHYPH directive. The mode in
effect when TABLE or FIGURE was encountered wi" be restored when TABLE END or FIGURE END
is reached, independent of any changes inside the table or figure.

5.4.4.2. Right Margin Alignment

Documents being prepared for final distribution may be printed using the right margin alignment
algorithm. This is activated by the R option on the @DOC Processor call statement or by the RIGHTM
directive. Only the printed output is right-aligned, not the outPltt element, unless the 0 option was
specified on the @DOC Processor call statement.

4144.41 I SPERRY UNIVAC 1100 Se,le, executive 6-13
~~~----1, _______________ S_y~s_t_e_m __ U_t_ili_ty~p_r_o_g_ra_m __ s ____________________ ~_u_~ __ n_~ ___ L __ ~~'_M_E ____ __ 

The comments about hyphenation removal inside tables and figures apply equally to right margin 
alignment. 

5.4.5. Editing Control 

Une im~lge editing is provided by standard correction lines in the format common to all processors 
(see Volume 2-3.2). 

Charact1er string lediting is the manipulation of character strings on a particular line image of the input 
(text or control directive) in the run stream or input element. Character editing directives have an 
ampersand (&) in column 1, but are otherwise free form. They immediately follow the line to be 
altered. 

ExamplEts: 

• To correct line 18 of the input element: 

[-18] 

& ... 

• To correct an image in the run stream. 

[ <BA[) line>] 

& ... 

The character correction lines have four formats. In the following format descriptions, the slash (I) 
is used as a character string delimiter; however, any non blank character which does not appear in 
the text on the line may be used. Only one character may be used as the delimiter on a card. The 
first nonblank character on the card (after the ampersand in column 1) is the delimiter character for 
that linE' and any number of blanks may precede it. 

Flormat 1: 

&1 <oldtext>1 <newtext>1 

The linet being corrected is searched for the first occurrence of old text which is replaced by new 
text. 

Format 2: 

&1 < oldtext > I < newtext > 1* 

Similar to format 1, except that every occurrence of old text is replaced by new text. The asterisk 
must immediately follow the third delimiter. If a character other than asterisk is used, format 1 is 
assumed. However, this does not preclude the use of the asterisk as the delimiter. 

Format 3: 

&1 I <column-nbr>1 <newtext>1 

The new text string is inserted in the line to be modified beginning at the column specified by 
column·-nbr. 



4144.41 
UP-NUMIER 

SPERRY UNIVAC 1100 Serle. Executive 
System Utility Programs UPDATE ILEVEL 

5-14 
'AGE 

The insert overlays any previously existing characters. The first two characters after the ampersand 
are consecutive delimiters, no characters may separate them. The column-nbr may be stated or 
omitted. If it is omitted or contains a nonblank or nondigit character, the value assumed is the value 
on the most recent COLUMN directive. 

Format 4: 

& II <column-nbr>1 

The first non blank character, after column 1, on the line being altered is placed in the column 
specified by column-nbr. The entire character string is shifted to satisfy this specification. This 
format is similar to format 3, except that there must be exactly three delimiters on the card. 

Character correction directives may alter the length of the line image. If it is shortened, the unused 
area is filled with blanks. If it is lengthened, the excess is checked to see if it is entirely blank. If 
so, it is ignored. Otherwise, the line is continued in such a way that a word is not broken between 
line images. This means that each line image ends with a string of blanks and the first word of each 
continuation line begins in column n, with columns 1 through n-1 containing blanks. The length of 
a word must not exceed 67 - n characters, where n is the column number on the current COLUMN 
n directive. A line may expand to a maximum length of 600 characters by using more than one 
character correction directive. The line to be changed is followed with as many character insertion 
directives as necessary with the changes made in the order of the directive encountered. 

Examples: 

• The following is a portion of a document: 

43 ... UNARMED AND UNPREPARED TO BEET THEM BACK. 'TIS 

44 SAID THAT RICHMOND IS THEIR ADMIRAL. AND THERE THEY 

45 HULL, AWAITING BUT ETH AID OF BUCKINGHAM TO 

46 WELCOME THME ASHOR ... 

There are several typographical errors in the document which can be corrected as follows: 

@DOC,DLMU RICHARD/I I I 
-43 
&/BEET/BEATI 
-45 
&/ETH/THEI 
-46 
&/THME/THEMI 
&/ASHOR/ASHOREI 
&1121 (WILLIAM SHAKESPEARE) 
&/WILLIAM/WM.I 



4144,41 ~ SPERRY UNIVAC 1100 Se,ie. Executive 
UP-NUMIER System Utility Programs 

- --~---=------::'-'-----'------'-----
UflDATE lEVEL 

This results in the following output, assuming no line number changes: 

43* ... UNARMED AND UNPREPARED TO BEAT THEM BACK. 'TIS 

44 SAID THAT RICHMOND IS THEIR ADMIRAL. AND THERE THEY 

45* HULL, AWA:TING BUT THE AID OF BUCKINGHAM TO WELCOME 

46* THEM ASHORE ... 

47 (VVM. SHAKESPEARE) 

• Thle following illustrates an appropriate use of the COLUMN directive to produce a blocked, 
lef1t-justified description following each item in a list. 

Th~e input f()r a portion of a document is: 
OPTIONS AVAILABLE ARE: 
COLUMN 11 

S - THIS OPTION IS USED TO INDICATE THAT 
THE FILE IS TO BE SENT TO A SPECIFIC DEVICE 

SPACE 1 
C - USED FOR A REMOTE PUNCH FILE. 

The output generated is: 

C1 C10 C20 C30 C40 

'14 OPT IONS AVA I LABLE ARE: 

C50 C60 C66 

16 S - THIS OPTION IS USED TO INDICATE THAT THE FILE IS TO BE 
17 SENT TO A SPECIFIC DEVICE. 

19 C - USED FOR A REMOTE PUNCH FILE. 

The prolPer use ()f COLUMN and LENGTH directives is essential to the production of a document 
whose appearance will be satisfactory. 

5.5. D()C PROCESSOR DIAGNOSTICS 

5.5. 1. E,rror Handling 

In case errors occur, an error summary will be printed at the end of the listing. For each error, the 
summa,.,f will include the error type number, the line at which it occurred (which will be 1 for errors 
occurrinlg during the first pass, before printing begins, such as SIR errors), a descriptive message, 
and an ,associated error code, which may be facility bits, 1/0 status, or etc. A maximum of 100 error 
messagEtS will be listed; if that limit is exceeded, all subsequent errors will be ignored. 

5.5.2. ClOC Proc:essor Error Messages 

The DOC processor error messages are as follows: 

SCI~ATCH/PRINT/INDEX FILE UNAVAILABLE 



4144.41 
UP-NUMBER 

SPERRY UNIVAC 1100 Serle. Executive 
System Utility Programs UftDATE lEVEL 

I 6-16 
'AGE 

A file could not be assigned. This may be the internal scratch file DOC$, the index file DOC$X (if 
the X option was used and INDEX directives appear in the input), or the alternate print file specified 
by field 3 of the processor call card. The error code is the facility bits (see Volume 2- Appendix C 
for description). 

PARTBL NOT INITIALIZED 

Th"e @DOC processor call card has an incorrect element specification in field 1 or 2, there is an option 
conflict, or an @XQT card was used to call DOC. There is no error code. 

SIR ERROR RETURN 

The Source Input Routine has encountered an I/O error. The error code is the I/O status code. 

SOR ERROR RETURN 

The Source Output Routine has encountered an I/O error. The code is the I/O status code. 

INVALID CONTROL DIRECTIVE 

A line with a nonblank in column 1 was encountered in the input, but the line does not specify one 
of the allowed directives. The code is the first four characters of the line. 

COLUMN DIRECTIVE IN ERROR-ADJUSTED 

A COLUMN directive specifies a number too large or too small. The value is adjusted to the largest 
or smallest permissible value, respectively. The code is the incorrect value. 

SDF I/O ERROR 

An I/O error has been encountered while transferring data to or from the internal scratch file. The 
error code is the I/O status code. 

POSTPR$ ERROR 

The Post Pr·ocessor routine was unable to restore the files assigned by the Preprocessor routine to 
their original state. There is no error code. 

UNDEFINED FORM-HSP ASSUMED 

Field 4 of the @DOC processor call statement specified an unknown form. The HSP form is used. 
The error code is the first six characters of the incorrect specification. 

DIRECTIVE SPECIFICATION INVALID 

A directive such as LENGTH has specified a value which is not in the permitted range. The error code 
is the offending value. 

'END' NOT PAIRED WITH 'TABLE/FIGURE' 

An extra END has been inserted. There is no error code. 

'TABLE/FIGURE' DIRECTIVE WHEN ALREADY IN TABLE/FIGURE MODE 

An END has been omitted. There is no error code. 



4144.41 I SPERRY UNIVAC 1100 Serle. executive 6-17 
~i~ ________________ S~y_s_te_m __ U_t_il_i~ __ p_r_o_g_ra_m __ s ____________________ -Lu_~ __ n __ ~ __ l __ ~~'_M_E ____ __ 

CONTINGEr~CY INTERRUPT 

A contingency has occurred, probably due to an internal error, although the'@ @X C sequence will 
also produce this message. The error code is the contents of the contingency packet. Submit a SUR 
if the error recurs after trying to remedy the cause (e.g. assigning a larger file in case 10 22 error). 

NONBLANK STRING EXCEEDS LINE LENGTH OF FORM 

A nonblank string was encountered which was too long to fit on a single line and could not be 
hyphenclted by the heuristic normally used (either because the H option was not set or the string 
containE~d non-alphabetic characters). The string has been hyphenated at an arbitrary point. If this 
is not desired, change the line length either in the form definition on the DOC processor call card 
or through use of the LENGTH command. 

TOtO MANY SUBHDG COMMANDS-EXCESS IGNORED 

More th.an four SUBHDG cards specifying additional subheadings have been used. This may be 
caused lOy the ornission of "SUBHDG Nil. Otherwise, remove the excess SUBHDG card. 

FILIE OVERFILOW 

The spe.=:ified file is full. If it is the output file, (SO$ or SI$) DOC will continue processing but will 
not produce output. If a DOC internal file (PSF$ or DOC$X) overflow, DOC will terminate. Either of 
these filEtS should then be reassigned with a larger granule maximum and the DOC operation repeated. 

SOI~T ERROR 

A sort elrror has occurred while processing the index. Consult the SPERRY UNIVAC 1100 Series 
Sort/Merge (Subroutine) Programmer Reference, UP-7621 (current version) for the meaning of the 
error code. 



4 144,41 L SPERRY UNIVAC 1100 Serle. executive 6-1 
~~______ ________ S~y_s_te_m--U_t_i_IiW~_P_ro~g~r_a_m_s------------------____ ~u~ __ An __ ~ __ L ____ ~'M __ E ____ _ 

6. Flow Analysis Program (FLAP) 

6. 1. GENERAL 

The Flow Analysis Package (FLAP) provides detailed information about the timing and frequency of 
the basilc intervals of a program in its machine language form. 

Within a program, those locations which contain instructions which branch, perform Executive 
Requests, or perform repeat instructions at some point during execution of the program are called 
the brealkpoints for that execution. An interval is a sequential set of instructions which control enters 
as a result of an ~~xecution break (a jump destination or falling through an ER or repeated instruction) 
and leaves the sE~quence at a breakpoint. A basic interval is an interval with at most, one entry and 
one exit (breakpoint), 

The basic intervul is a natural unit for the analysis of program flow and timing since it is alw,ays 
entered at its fin;t location and is completely executed upon each entry. The frequency of a basic 
interval is the number of times which it is entered during the execution of the program. 

In softwlare, most of the work is performed by a very small fraction of the program. By isolating these 
pClrtions of the program and examining their actions, an economical means of determining the 
inefficiencies of j~ program is available. FLAP is a system for recording and summarizing the action 
of a prolgram. By examining the summary, it is possible to easily recognize the areas of a program 
which are the best candidates for "tightening". In most instances, it is of more value to have a section 
of the program coded for generality or clarity rather than efficiency. However, most programs have 
sections which are so frequently used that the efficiency of these sections is of significant importance. 

FLAP performs an analysis of instructions executed within a program, an analysis of the frequency 
and timo spent doing executive returns (ERs), and optionally produces a report of I/O activity. 

In the FLAP system time is measured in units which are approximately equal to the basic instruction 
time of al 11 00 SI~ries processor; e.g., the time for a load or store instruction referencing an alternate 
bank is one time unit. Since UNIVAC 1108 (1106,SPERRY UNIVAC 1100/10,1100/20, and 1110 
(1100/40)) processors have different timing characteristics, there is a parameter to choose which 
machine timing is, to be used. Instruction time extension due to referencing same bank or referencing 
sixth or third words is not measured. 

The FLAP system is a pair of programs:· FLOP is collected with and called from the program to be 
analyzed. FLOP interpretively executes the program and writes a very condensed description of the 
actions ()f the program to the output file FLAP$F. The second program, the FLIP processor, analyzes 
the information in the FLAP$F file and produces reports which describe in detail where the program 
is spending its time. 



4144.41 
U ...... UM.ER 

SPERRY UNIVAC 1100 Serle. executive 
System Utility Programs UIIDATE LEVEL 

6-2 
PAGE 

The operating characteristics of FLAP are reasonable enough so as not to discourage use of the 
system. FLOP is able to gather information about a ten second execution on one half reel of magnetc 
tape in seven minutes. This is usually sufficient time to analyze a compiler or assembler. Programs 
that run a long time usually are repeating the same process over many records of information. For 
these cases, the FLOP$STOP parameter can be set to the number of reels of FLOP output desired 
before program termination. The time required by FLIP to analyze the information is approximately 
equal to the time required by FLOP to generate the information. 

6.2. FLOW OUTPUT PROCEDURE (FLOP) 

FLOP is a program trace which is collected with and called from the program to be analyzed. 

The trace is initiated by performing: 

SLJ FLOP$ 

and normally continues until the activity terminates via an Executive Request to EXITS, ERR$, EABT$ 
.or ABORT$. When the activity terminates, FLOP closes the FLAP$F output file and always stops via 
a jump to the terminating ER. FLOP will also stop if an illegal instruction is encountered or if control 
goes to an address less than 0200. 

If the user wishes to shut off the trace for a portion of his program, the call 

SLJ FLOPE$ 

will stop the trace, but leave the output file open for a later call to start the trace. 

If the user wishes to shut off the trace and end the report, but leave the FLAP$F file open for additional 
reports from the same absolute element, he can perform: 

SLJ FLOPS$ 

If the user wishes to shut off the trace and close the FLAP$F output file before his activity terminates, 
he can perform: 

SW FLOPC$. 

An interface subroutine is available to allow FORTRAN or COBOL programs to call FLOP. The entry 
points are summarized in Table 6-1. 

r.bl" 6-1. FLOP Entry Points 

ASM Entry COSIFOR Entry Deecription 

FLOPt FLOP Open file if ~ot already open. Start trace. 

FLOPEt FLOPE Stop trace. Leave FLAPtF output file open. 

FLOPSt FLOPS Stop trace. End report. Leave FLAPtF output file open. 

FLOPCt FLOPC Stop trace. Close FLAPtF output file. 



4144.41 I SPERRY UNIVAC 1100 Serle. Executive 6-3 
~~ ________________ S_y~s_t_e_m __ U_t_ili_tY~P_r_o_g_ra_m __ s ____________________ ~_u_~_A_n_~ ___ L __ ~_'_AG_E ____ ___ 

The output file for FLOP will always be named FLAP$F. It may be pre-assigned by the user as a 
FASTRAND-formattedfile, or as magnetic tape (may be multi-reel). If FLOP receives control and 
FLAP$F has not been assigned, FLOP will perform a CSF$ request on: 

@JI,SG,T FLAP$ F,FS/ 1/pos/300 

Several parameters may be passed to FLOP as external definitions, these are: 

• FSI<IP$ 

If Zlero, then test instructions which skip are treated as execution breakpoints, and thus, define 
the end of a basic interval. If nonzero, then test instructions are never treated as breakpoints. 
ThEI recommended value is: FSKIP$ eau 0 

• FJUMPS$ 

If nonzero and if a jump to an unconditional jump is encountered, then the unconditional jump 
is not treated as a basic interval in itself, but is treated as an extension of the previous interval. 
The! recommended value is: FJUMPS $ eau o. 

• FJUMP$ 

If a jump is encountered to $ + n where 1 ~ ~ FJUMP$ and if the jump instruction does not 
contain indE!xing or indirect addressing, then the jump will not be treated as an execution 
bre,Etkpoint which terminates the current interval. The intention of this parameter is to allow the 
use of jump instructions when no test/skip instruction is appropriate. The recommended value 
is: FJUMP$ eau O. 

• U1'I10T 

If U 111 OT= 0, timing is output using tables for 1106, 110S, 1100/10, and 1100/20 
instructions. If U 111 OT = 1, timing is output using tables for 1110 and 1100/40 instructions. 
The setting is independent of the machine which FLOP is on, but should be set according to 
which compruter the normal program is being measured for. The timing information is passed 
to FLIP via the FLAP$F file. 

• FLOP$STOP 

If zeiro, FLOP will run normally. If n, and if FLAP$F is a tape, FLOP will stop the trace and close 
the output file after filling n reels. 

• FTIC} $ 

If not zero, FLOP will output information from all I/O packets so FLIP can analyze 10. If FTIO $ 
is z.~ro, no I() analysis will be done. 

• CHt<:$SUM 

If nc)t zero, FILOP will checksum each FLAP$F data block, which is 44S words long, by placing 
the sum of the last 446 words of the block in the first word of the block. FLIP will repeat the 
checksum and compare the result, treating an error as a read format error. If CHKSSUM = 0, 
no checksumming will be performed. 



4144.41 
U ...... UM.ER 

SPERRY UNIVAC 1100 Ser ... Executive 
System Utility Programs 

The following example is a set of MAP source statements which could be used in the collection of 
the program to be analyzed: 

Eau FSKIP$/1,FJUMP$/2,FJUMP$/0 
EaU U1110T/1 
EaU FLOP$STOP/2 
EaU FTI0$/1 

The following restrictions apply to FLOP: 

· USE 1110 TIMING VALUES 
· STOP TRACE AFTER FILLING 2 REELS 
· TURN ON 10 TRACE 

1. FLOP must be part of the program's main segment and never be overlayed by an RSEG. 

2. FLOP must be located totally in the control bank, and must be based by the active PSR while 
tracing the program. (FLOP has only even numbered location counters.) 

3. Tracing will be destroyed if the main segment is reloaded. 

4. Only one activity may be traced at anyone time. 

5. No activity contingency routines will be traced. 

6. The trace will not be active while code in a reentrant processor is being executed. 

7. Timing figures may not be accurate if the program executes instructions which are different from 
or not contained in the absolute element. 

8. The EDIT instruction (33-07) cannot be timed, but may be executed. 

9. Programs which reference common banks can be traced by FLOP, but common bank code is 
described as an undefined area by FLIP. 

10. Programs collected with no diagnostic tables (Z option on @MAP) can be traced, but only 
absolute addresses will appear in the reports produced by FLIP. Also, reports will be in terms 
of instruction count$ rather than instruction timing. 

11. 10XI$ and 10AXI$ ER's cannot be processed. 

A program being traced, functions the same as an untraced program except that: 

1. Execution time is slower - FLOP executes approximately 40 instructions for each user program 
instruction executed. This may affect I/O timing if that is relevant to the program being analyzed. 

2. . FLOP will terminate via ERR$ if the output file is the wrong device type, or cannot be assigned. 

NOTES: 

1. Care should be used when FLAPPING a FORTRAN program which uses NTRAN. The first 
program call to NTRAN causes an ER FORK$, followed by an ER EXIT$. Thus, the CALL FLOP 
statement should normally appear after the first CALL NTRAN statement. Otherwise, FLOP will 
stop the trace when the ER EXIT$ in NTRAN is encountered. 

2. When FLOP is active, the address of the instruction being processed may be found in the first 
cell under location counter $(6) in FLOP. It has the external definition PR$. This may be useful 
if an IGOM or similar error occurs while a program is being traced. 



UftOATl lEVEL 
6-5 

PAGE 
4144.41 ~ SPERRY UNIVAC 1100 Serle. Executive 
UP-NUM8ER System Utility Programs _ , __ ----=-----=----...::.--.......L------L---

6.3. Fl.OW INFORMATION PROCESSOR (FLIP) 

Purpose: 

The FLIP processor reads the information output by the trace routines and produces several reports. 

Format: 

@FLlP,options spec 1 

options 

spec 1 

Descriptiion: 

The options are: 

B. Batch print format 

R Use alternate key for sorting intervals for report 2. 

G. If the G option is set, gaps in the intervals listed in report 1 will be flagged by 
'**GAP-SIZE = nn'. A count of gaps will always be kept and printed in each 
section summary in report 1. Only non-executed code internal to each section 
can be detected and marked. 

M The M option inhibits a tape rewind before reading the input (FLAP$F) file, 
enabling multi-file tapes. If FLAP$F is a mass storage file, the M option is 
meaningless. 

P Print the P-address of the start and stop trace instructions. 

X If a fatal error occurs, stop via ER ERR$, with A 15 containing the address .of the 
instruction which jumped to the error routine. If the X option is not set, FLIP will 
stop via an ER EXIT$, enabling the remainder of a batch runstream to be 
processed. 

S Print summary 1/0 report 

L List all 1/0 references in order of occurrence, and print the 1/0 summary report. 

specifies the filename containing the data to be processed. If spec 1 is absent, the 
ncame FLAP$ F is assumed. 

At the bEtginning of the reports generated by FLIP is a summary of the interval information. Included 
is the summation of (INTERVAllENGTH)*(FREQUENCY OF INTERVAL) over all intervals. If the FLOP 
parametlers, FSKIP$, FJUMPS$, and FJUMP$ were all set to zero during the FLOP trace, the value 
of the sUlmmation is equal to the number of instructions executed by the program while it was being 
traced. 

FLIP sor1ts and mt~rges the list of intervals in the FLAP$F file to produce another file containing a list 
of the intervals and the number of times they were executed. This file is then scanned to produce 
a list of the basic: intervals and the frequencies with which they are executed. FLOP also provides 
a copy of the obj43ct program to FLIP, via the FLAP$ F file. By examining the instructions in this copy 
of the (Jlbject program, FLIP estimates the amount of time spent in each basic interval. After 
performi~ng another sort, FLIP is ready to produce the first two,.,eports. 



4144.41 
UP-HUMIER 

SPERRY UNIVAC 1100 Serle. executive 
System Utility Programs UPDATE LEVEL 

The first report lists all of the basic intervals in the program, sorted according to the location of the 
basic interval within the program. The column headings are: 

INTERVAL 

RELATIVE 

ABSOLUTE 

LENGTH 

FREQUENCY 

RAW TIME 

% TIME 

TIME/INST 

REP TIME 

TOTAL % TIME 

NOTES: 

cross reference number so that each entry may be referenced in 
subsequent reports. 

interval address limits relative to the location counter within an element. 

interval address limits. 

number of instructions in the interval. 

number of times the interval was executed. 

total number of time units spent in the interval. 

percentage of total program execution time spent in the interval. 

percentage of total time spent in the interval, per instruction, executing 
nonrepeated instructions. This value is a measure of how much work is 
performed by each instruction. 

the percentage of the program time which was spent in repeat mode in 
the interval. 

a running sum of % TIME. The % time used by any contiguous group 
of intervals can be found by subtracting the initial value from the final 
value from entries in this column. 

1. The columns listing RA W TIME or FREQUENCY can be used like a bar graph (each additional 
digit is an increase in time spent) to find clusters of intervals where a relatively large amount 
of time is spent. 

2. The % of program time spent in an interval cluster can be found by subtracting the TOTAL % 
TIME column for the cluster from the last entry. 

3. When FSKIP$ = 0 in FLOP, intervals which end with a TEST instruction can be examined to 
get conditional branch probabilities for optimal ordering of complex conditions. 

In the second report, the basic intervals are listed according to the average instruction timing. The 
basic intervals near the beginning are the one which if eliminated or modified, would make the 
greatest improvement in running time of the program. If FLIP is run with the R option set, this report 
is sorted by gross nonrepeat time. The intervals near the beginning are those in which most 
execution time is spent in the program. These intervals tend to be long, frequently executed intervals. 
Because of their length, the probability of being able to make an improvement in execution time for 
the interval, and thus, a significant improvement in total program execution time, is larger than for 
short intervals. The column headings for the second report are: 

INTERVAL interval number as listed in report 1. 

TIME/INST same as TIME/INST for report 1. 

LENGTH number of instructions in the interval. 



UIIDATE LEVEL 
4144.41 ~ SPERRY UNIVAC 1100 Se,le. executl"e 
Uft-NUMIER System Utility Programs - ,--~~~-~~ 

TOTAL 

TOTAL % INST 

. % OF N.R. 

. TOTAL 

% OF PROG 

TOTAL 

a running sum of interval lengths. 

percent of total instructions executed represented thus far in this 
report. 

percent of total nonrepeat time spent in this interval. 

a running sum of % of N.R. 

percent of total execution time spent as nonrepeat time in this interval. 

a running sum of % of PROG. 

By comparing calumn 7 with column 5, it can easily be seen that normally a large percentage of 
executioln time is spent executing a fairly small number of instructions. 

The third report lists those intervals containing a repeat instruction (BT, SE, MSE, etc.). FLOP supplies 
FLIP with timing information about these instructions. Since these instructions are coded quite 
infrequently, this report is usually very short. The column headings are: 

TIME/FREQ 

TIME 

TOTAL 

average percent of total time used by the repeat instruction in the 
interval for one interval execution. 

percent of total program time used by the repeat instruction in the 
interval. 

a running sum of TIME 

The fourth report lists execution time totals for each element. Only those location counters in which 
instructi.)ns were executed are listed. This report was designed mainly to assist in optimal memory 
placement of portions of code in the 1110 (1100/40). The column headings are: 

ELEMENT NAME 

COUNTER 

BANK NAME: 

SUM 
(INT LNG)*(FREQ) 

RA\lV NON-FIPT TIME 

% NRT OF TOTAL 

% FIPT OF TOTAL RPT 

SUM % NRT OF 
TOTAL NRT 

name of relocatable element collected 

location counter within element 

bank name specified (or implicit) in collection for this elt/counter 

sum all items in the scalar (dot) product of interval length and 
frequency, for all intervals in this elt/counter. When FSKIPS, 
FJUMPSS, and FJUMPS are all zero, this is the number of instructions 
executed. 

total number of time units spent in this location counter executing 
non repeat instructions. 

percent of total program time spent in this elt/counter executing 
non repeat instructions. 

percent of total time spent doing repeat instructions in this 
elt/counter. 

running sum of percent of total nonrepeat time spent executing 
non repeat instructions. 



4144.41 
U~UM8ER 

SPERRY UNIVAC 1100 S.,l •• executive 
System Utility Programs UfIOATE lEVEL 

The rightmost column lists the interval numbers for the elt/counter which were assigned in report 
one. 

The fifth report is an analysis of the frequency and time spent doing Executive Returns (ERs). The 
cost of an ER is taken from a table of values which appears in the EXEC 8 element AAERGTP and 
which is used to compute SUPs for a run. The cost can be compared on an equal scale with the raw 
times listed in reports 1 and 4. 

Report 5 lists the ERs executed, sorted by raw cost. The column headings are: 

ER 

FREQUENCY 

% ER COST 

% OF PROG 

ELEMENT 

ADDRESS 

LC 

BANK 

SEGMENT 

SUM % ER 

The mnemonic code for the function. 

The number of times the ER located at the address listed was 
executed .. 

The ratio of the cost of all executions of this ER at this location, to the 
cost of all ERs executed in the program. 

Since ER times are not included in reports 1 through 4, this column 
lists the ratio of ER time charged compared to total program execution 
time plus total ER time. 

The name of the element the ER occurred in. 

Relative address within the location counter where the ER occurs. If 
the ER is in a location outside the original absolute element (e.g. in an 
area attached by MCORE$) this address will be only relative to the PSR, 
and not to any program element. 

The location counter number where the ER occurs. 

The name of the program bank the ER was executed in. 

The name of the program segment the ER was executed in. 

A running sum of % ER COST. 

Report 6 is a summary of subroutine calls within the traced program. All SLJ and LMJ instructions 
are assumed to be subroutine calls in this analysis. No other techniques for calling subroutines are 
considered. The report is sorted first by subroutine entry location, and then by frequency of the 
subroutine calls. 

The column headings for this report are: 

ENTRY ADRS 

ELEMENT 

LC 

BANK 

Relative address within an element of the subroutine entry point. The 
line of data containing the entry address describes the subroutine. 

Name of the element containing the subroutine entry point or the 
subroutine call. 

Location counter containing the subroutine entry point or the 
subroutine call. 

Bank containing the subroutine entry point or the subroutine call. 



4144.41 I SPERRY UNIVAC 1100 S.ri •• Executive 6-9 
~~~ _________ S_y;....s_t_e_m_U_tl_·li_ty~P_r_o.:.g_ra_m_s __________ --'_U_flDA_TE_LlVE __ L_---''-'_M_E __ _ 

SEGMENT

CALL AORS

. FRI:QUENCV

. SUM FREQUENCY

TYPE

ENTRY NAME

Segment containing the subroutine entry point or the subroutine call. \.

Relative address within an element of the subroutine call. The line of
data containing the call address describes the subroutine call.

The frequency of execution of the described subroutine call .

A running sum of the calls of the described subroutine.

The instruction which was used for the subroutine call. (LMJ or SLJ)

The externalized name of the subroutine entry point. This will be blank
if no name can be found in the absolute element diagnostic tables.

Report 7 is a rep()rt of 10 activity as seen by the FLOP trace. To get this report, the FLOP parameter
FTIO$ must have been set non-zero and FLOP must have seen at least one 10 request. The 10 report
has two parts: a time ordered list of every 10 request seen by FLOP, and a summary of 10 requests.
The 10 trace is selected by using the L-option on the FLIP processor call. The 10 summary is selected
by using the S-option (or the L-option) on the FLIP processor call. In order to make the 10 Trace Report
more compact, s~tgment numbers and bank descriptor indices are printed instead of segment and
bank names. To provide a simple correlation between names and number, the 10 Trace Report is
preceded by a simple listing of BANK NAME - BOI, and SEGMENT NAME - SEG#. 10 requests using
the arbitrary device handler are not reported.

The 10 items are sorted by filename, function, requested transfer count, and actual transfer count.
All matching entries are combined to compute total words transferred and frequency of
read-bef1ore-write occurrences in the 10 Summary Report.

The column headings for the 10 Trace Report are:

FILENAME

FUNIC

#-XFR

MS AORS

RB~'

ER TYPE

BUF AOR

Name from words 0,1 in 10 packet.

Mnemonic for 10 operation performed. (See
Volume 2 Table 6-1)

Word transfer request or number of S/G ACW's.

Number of words actually transferred by the 10
request.

Mass Storage Address or contents of word at 10
packet +5.

An asterisk (*) appears if criteria for
read-before-write are met. See discussion on
FLIP parameter entry.

Name of ER used to request the 10 operation.

Program relative address of the ER used to
request the the 10 operation. The SEG# and BOI
for the ER are listed in the next two columns.

Program relative address of buffer used for 10
transfer or address of S/G access words. The
SEG# and BOI for the buffer address are listed
in the next two columns.

4144.41
Ult-HUMIER

PKT ADR

SPERRY UNIVAC 1100 S.rf •• Executive
System Utility Programs UP'DA Tl LEVEL

Program relative address of the 10 packet. The
SEG# and BDI for the 10 packet are listed in the
next two columns.

The column headings for the 10 Summary Report are:

FILENAME

FUNC

#-ACW

#-XFR

Name from words 0,1 in 10 packet.

Mnemonic for 10 operation performed.

Word transfer request or number of S/G ACWs.

Number of words actually transferred into or out
of the users buffer space.

TOTAL XFR Total number of words transferred.

FREQUENCY Frequency of 10 requests for this file, function
requested and final word count.

#RBW Frequency of RBW criteria match for this file,
function and word count.

Read-Before-Write (RBW) Computation.

FLIP has the capability of recognizing a read-before-write (RBW) situation and printing all such
instances as part of the 10 Trace Report and 10 Summary Report. The information needed to
recognize RBW includes 10 device type, prepping factor, and simulated device type (FASTRAND or
word addressable drum format). If RBW computation is desired, the RBW criteria are passed to FLIP
on parameter statements in the runstream following the FLIP processor call.

FORMAT:

Filename Prepfactor Adrs Mode

Parameter:

Filename

Prepfactor

Adrs Mode

Is the internal filename used in the 10 packets.

Is the number of words in a disc record. If this value is omitted, the value 11 2 is
assumed.

Is the number of file relative addresses in a disc record. If the file is FASTRAND
formatted, this field may be omitted and the value will be assumed to be
Prepfactor/28. If the file is formatted as word-addressable-drum, then this value
must be entered as the same number as Prepfactor.

If no parameter statements are present, RBW will not be checked. If any parameter statements are
present, files named will be checked for RBW according to the criteria specified and files not named
will be checked for RBW according to the parameters specified on the last parameter statement.
Since FLIP does not know which user files were tape and which were mass storage, improper RBW
values may appear for tape files unless Prepfactor and Adrs Mode are set to one(1) for tape files.

4144.41 L SPERRY UNIVAC 1100 S.rl •• Executlv.
U'-NUMIER System Utility Programs

- -----=--~:....------'-----"--

8-11
PAGE

F.xampI1e:

FIILEF 28

FIILEW 56 56

FILET

FILED

where:

FILEF is on FAS1'RAND, FILEW is a word addressable drum file simulated on a disc prepped at 56
wordS/I-ecord, FILET is a tape, FILED and all other files are on a disc prepped at 112 words/record.

If all filels used by a program are on a disc prepped at 112 words/record, a blank card following the
FLIP pr()cessor call will be sufficient to cause RBW checking on all files.

6.4. EBROR MESSAGES PRODUCED BY FLOP

• COULD NOT LOCATE ABS EL T

FLOP could not find the ABS of the program being executed in the program file pointed by the
LO.AD$ filename in the PCT.

• COULD NOT ASG FLAP$F OUTPUT FILE

FilEt FLAP$F was not assigned when FLOP got control, so FLOP did ER CSF$ with the image

@ASG,T FLAP$F,F8/1/POS/300

sta1tus bits in AO give reason for FAC REJECT.

• ILLIEGAL OUTPUT DEVICE FOR FLAP$F

Device assi"ned for file FLAP$F was not tape or FASTRAND formatted mass storage.

• ERFI nn ON FILE filename

Status = nn received from FLOP 10 request on file named. This is a warning message only and
FLOP will n()t stop.

6.5. ER:ROR ME:SSAGES PRODUCED BY FLIP

• PR()CESSOR CALL ERROR

FLift must b.3 called as a processor, not with @XQT.

• ABtlORMAL RETURN FROM READ$

FLIP must bc~ called as a processor, not with @ XQT.

4144.41
Uft-HUMIE ..

SPERRY UNIVAC 1100 S.ri .. executive
System Utility Programs

• TOO MANY SPECIFICATIONS

Too many specifications supplied on FLIP processor call.

• SPECIFICATION ONE SHOULD BE A FILE NAME

Element name was specified for input file.

• UNABLE TO ASSIGN THE [INPUT/ABS.] FILE-STATUS: nnn

UPDATE L.EVEL
6-12

'AGE

Could not assign either the file named on the processor call or the FLAP$F file, or could not
assign a scratch file to contain the absolute element of the program being FLAP'ed.

• INPUT FILE IS NOT FASTRAND FORMAT MASS STORAGE OR MAGNETIC TAPE

'FLAP$F or file specified on FLIP processor call is not on a usable device.

• COLLECT WITH FLOP LEVEL 4R1A OR LATER

The levels of FLOP and FLIP used are incompatible.

• ERR nn ON FILE filename

10 error status.= nn occurred on file named. FLIP will continue unless 10 10 errors have
occurred, in which case FLIP will error terminate.

• INTERNAL ERROR

Bad data or bug in FLIP caused abnormal condition in FLIP. Save register dump and PMD for
analysis. Register A 15 contains relative address in the element FLIP where error was discovered.

• RANDOM FILE PACKAGE ERROR

10 error on FLIP scratch file or bug in FLIP. Status code in A2 gives error type. See RFP$
symbolic listing for details.

• ERROR READING ABS EL T WRITTEN BY FLOP

Unexpected formatting of absolute element being analyzed. Use standard collector.

• READ FORMAT ERROR ON FILE BUILT BY FLOP

This is usually caused by improper usage of FLOP or a program bug causing data destruction
in FLOP output buffers.

• HIT UNEXPECTED END-OF-FILE * SOME DATA MAY HAVE BEEN LOST

Either FLIP encountered end-of-data due to FLOP$STOP parameter being set in FLOP, or FLIP
encountered an 10 error reading the FLAP$F file.

'" 4 .. 144.41 I SPERRY UNIVAC 1100 S.rl •• Executlv. 7-1
UP-NU~, _________ S..:.y_st_e_m_U_t_il_ity.:-P_r_o.;:.g_ra_m_s __________ -'-UPOA __ Tl_LEVE __ L_......&_~_M_E __ _

7. LI ST Processor

7. 1. INTRODUCTION

This section describes the LIST processor which produces an edited listing of any type element.

7.2. @LlST

Purpose:

Produce!) an editEld listing of any type of element. The LIST processor is called by the @LlST control
statement.

All pararneters in the @LlST control statement are optional except eltname-1.

Format:

@lable:LlST,options eltname-1 (cycle-1), ... ,eltname-n(cycle-n)

Parametnrs:

options If neither A, 0, R nor S is specified, S is assumed. All four options are allowed and
all elements of the specified type found will be edited.

A - Absolute elements

o - Omnibus elements (dumped in octal)

R - Relocatable elements

S - Symbolic elements

The 0 option is used with A, R, 0 or S to dump the elements in octal. The dump is
not edited.

4144.41
UP-HUMIEA

eltnames

cycles

Description:

SPERRY UNIVAC 1100 Se,le. Executive
System Utility Programs UPDATE LEVEL

If the R option is present C, E, L and X have the following meanings in relation to the
relocatable's tables:

C - dump the Control Information Table

E - dump the Entry Point Table

L - dump the Location Counter Table

x - dump the External Reference Table

If the A option is present E, N, V and W have the following meanings in relation to
the absolute's diagnostic tables:

E - dump Entry Point Name Table

N - dump Segment, Bank, Element and Location Counter TablE~s

V - dump Absolute Value Table

W - dump Static Diagnostic Walkback Table

.In addition if I is specified with the A option and text is dumped, the instruction format
editing will not be done to the text.

If the P option is present C, E, L, N, V, Wand X are assumed.

If the T option is present the text will also be dumped.

If none of C, E, L, N, V, W, X, P or T is on, both P and T are assumed.

Specifies the elements.

Specifies symbolic cycles whose line numbers are desired. This parameter is used
only with the S option.

The edited listing contains the following information for each type of element:

• Symbolic elements

Every SDF image in the element, including control images, is printed with the Igngth and
relative word address of the image.

The line numbers of the symbolic images belonging to the specified cycle or, if none, to
the most recent symbolic cycle are printed. The cycle information for all symbolic images
is printed.

If the symbolic element is an Assembler, COBOL, or FORTRAN procedure, the appropriate
procedure name table is printed.

• Relocatable Elements

Each text word is printed as 12 octal digits. The j-field (bits 29-26), a-field (bits 25-22),
x-field (bits 21-18), and h-, i-fields (bits 17-16) are printed below the text word.

4144.41
UjII-HU,.IER

SPERRY UNIVAC 1100 Serle. executive
System Utility Programs UPDATE LEVEL

The fClllowing abbreviations are used when the relocation information is printed:

LA - Left address (bits 33-18)

LC - Location counter

LH - Left half (bits 35-18)

RA - Right address (bits 15-0)

RH - Right half (bits 27-0)

XR - External reference

7-3
'AGE

• Absolute EI13ments

• Fileis

Each tl:txt word is printed as 12 octal digits (see first entry under relocatable elements).

The foilowing abbreviations are used when the relocation information for the relocatable
segments is printed:

L - Left half relocated

R - Right half relocated

The edited listing contains the following information for files.

The listing of a file operates in an interactive mode. If on the initia~ read a @ EOF is encountered,
LIST willi then dump the entire contents of the file in octal.

A blocking factor can be specified on the processor call in the version field of the file name, i.e.,
'FILE.l2~r. The maximum blocking factor allowed is 896 words (half a track). If an illegal blocking
factor is encount~9red the default is 28. (If the blocking factor is not specified on the call card, no
blocking of the output will be done.)

@UST FILE1.156, FILE2., FILE3.1100

FILE 1 will be listed with blocking factor of 56. A @EOF will terminate listing of FILE 1 and proceed
with the listing of FILE2 (no blocking factor). A @EOF will terminate listing of FILE2 and proceed with
listing of: FILE3 with blocking factor of 100. A @ EOF will then terminate LIST.

The command characters and explanation follow for the interactive LIST. All blanks are ignored.

L Sets the line length printed in characters. The length must lie between 36 and
132 characters.

FORMAT: 'L 0' - where 0 is a number (leading zero implies octal).

The format for the edit statement is as follows:

[#] [e) [g) a [/ [g) I]

Prints the word address in the file of the first word of the line printed. (If not
present the address is printed as sector and offset).

4144.41
UII'-NUMIEA

e

9

a

I

I

EXAMPLES:

o
FO
AO/2
00/51
l60
F0142000/S2
#1792/51

SPERRY UNIVAC 1100 Serle. Executive
System Utility Programs UII'DA TE lEVEL

The type of editing to do on line .. (The default type of editing is octal).

A = ASCII, D = DECIMAL, F = FIELDATA, 0 = OCTAL

7-4
PAGE

Type of number following (default for address is sectors and for length is words).

5 = SECTORS, W = WORDS

Address to edit (first word). The address must be specified and must be a number
(leading zero implies octal).

Implies a length to dump follows. (Default length is one).

Length to dump. L must be specified if 'I' is present and must be a number
(leading zero implies octal).

- would dump word zero of the file in octal
- would dump word zero of the file in FIELDATA
- would dump word zero and word one in ASCII
- would dump sector zero in octal
- would set line printed length to 60 characters
- would dump 2 sectors starting at sector 1792 in FIELDATA
- would dump sector 1792 in octal with decimal word addresses.

A number of editing statements may be input on one line as follows:

F 0 * 1792 * F 0142001 * 0142002 * F 0142003 I 10 (The * is any character that is not
recognized by LIST).

Assuming the above is a program file and the element at sector 1792 is in SDF format, the output
will look something like this:

o
1792
1792
1792
1792

o
o
1
2
3

PF
500130000000
SDFF
(Some SDF control image in octal - say 001200000000).
(10 words printed out in FIELDATA format).

Two spaces are inserted between every word edited to the output.

.....
jR u:

USER COMMENT SHEET

Colmments concerning the content, style, and usefulness of this manual may be made in the space provided below.
Plnase fill in the requested information.

REtquests for copies of manuals, lists of manuals, pricing information, etc. should be made through your 1100 Series
site manager to your Sperry Univac representative or the Sperry Univac office serving your locality.

System:

MclOual Title: _____________________________________ _

UP No: Revision No: _______ _ Update: __________ _

N~lmeofuser: __ ~(----------_
\-

Address of User: ------------------------------... /-\0'(-----
j I

ec.mments:

FOLD ._------------------------------------
FIRST CLASS

BUSINESS REPLY MAIL PERMIT NO. 21

NO POSTAGE NECESSARY IF MAILED IN THE UNlTEO STATES
BLUE BELL, PA.

POSTAGE WILL BE PAID BY

I
SYSTEMS SUPPORT
ATTN: INFORMATION SERVICES M.S. 4533
PD. SOX 3942

I·',
lu .

ST. PAUL, MINNESOTA 55165

:

I
~

I~
I·+.

I
I
I
t

(')
c
I~

I
I
I
I
I
I
I
I

. I
·-ro~---------------------------------I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	1-01
	1-02
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	3-01
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	7-01
	7-02
	7-03
	7-04
	replyA
	replyB

