Books by Gershenfeld, Neil

Gershenfeld, Neil. Fab. New York: Basic Books, 2005. ISBN 0-465-02745-8.
Once, every decade or so, you encounter a book which empowers you in ways you never imagined before you opened it, and ultimately changes your life. This is one of those books. I am who I am (not to sound too much like Popeye) largely because in the fall of 1967 I happened to read Daniel McCracken's FORTRAN book and realised that there was nothing complicated at all about programming computers—it was a vocational skill that anybody could learn, much like operating a machine tool. (Of course, as you get deeper into the craft, you discover there is a great body of theory to master, but there's much you can accomplish if you're willing to work hard and learn on the job before you tackle the more abstract aspects of the art.) But this was not only something that I could do but, more importantly, I could learn by doing—and that's how I decided to spend the rest of my professional life and I've never regretted having done so. I've never met a genuinely creative person who wished to spend a nanosecond in a classroom downloading received wisdom at dial-up modem bandwidth. In fact, I suspect the absence of such people in the general population is due to the pernicious effects of the Bismarck worker-bee indoctrination to which the youth of most “developed” societies are subjected today.

We all know that, some day, society will pass through the nanotechnological singularity, after which we'll be eternally free, eternally young, immortal, and incalculably rich: hey—works for me!   But few people realise that if the age of globalised mass production is analogous to that of mainframe computers and if the desktop nano-fabricator is equivalent to today's personal supercomputer, we're already in the equivalent of the minicomputer age of personal fabrication. Remember minicomputers? Not too large, not too small, and hence difficult to classify: too expensive for most people to buy, but within the budget of groups far smaller than the governments and large businesses who could afford mainframes.

The minicomputer age of personal fabrication is as messy as the architecture of minicomputers of four decades before: there are lots of different approaches, standards, interfaces, all mutually incompatible: isn't innovation wonderful? Well, in this sense no!   But it's here, now. For a sum in the tens of thousands of U.S. dollars, it is now possible to equip a “Fab Lab” which can make “almost anything”. Such a lab can fit into a modestly sized room, and, provided with electrical power and an Internet connection, can empower whoever crosses its threshold to create whatever their imagination can conceive. In just a few minutes, their dream can become tangible hardware in the real world.

The personal computer revolution empowered almost anybody (at least in the developed world) to create whatever information processing technology their minds could imagine, on their own, or in collaboration with others. The Internet expanded the scope of this collaboration and connectivity around the globe: people who have never met one another are now working together to create software which will be used by people who have never met the authors to everybody's mutual benefit. Well, software is cool, but imagine if this extended to stuff. That's what Fab is about. SourceForge currently hosts more than 135,500 software development projects—imagine what will happen when StuffForge.net (the name is still available, as I type this sentence!) hosts millions of OpenStuff things you can download to your local Fab Lab, make, and incorporate into inventions of your own imagination. This is the grand roll-back of the industrial revolution, the negation of globalisation: individuals, all around the world, creating for themselves products tailored to their own personal needs and those of their communities, drawing upon the freely shared wisdom and experience of their peers around the globe. What a beautiful world it will be!

Cynics will say, “Sure, it can work at MIT—you have one of the most talented student bodies on the planet, supported by a faculty which excels in almost every discipline, and an industrial plant with bleeding edge fabrication technologies of all kinds.” Well, yes, it works there. But the most inspirational thing about this book is that it seems to work everywhere: not just at MIT but also in South Boston, rural India, Norway far north of the Arctic Circle, Ghana, and Costa Rica—build it and they will make. At times the author seems unduly amazed that folks without formal education and the advantages of a student at MIT can imagine, design, fabricate, and apply a solution to a problem in their own lives. But we're human beings—tool-making primates who've prospered by figuring things out and finding ways to make our lives easier by building tools. Is it so surprising that putting the most modern tools into the hands of people who daily confront the most fundamental problems of existence (access to clean water, food, energy, and information) will yield innovations which surprise even professors at MIT?

This book is so great, and so inspiring, that I will give the author a pass on his clueless attack on AutoCAD's (never attributed) DXF file format on pp. 46–47, noting simply that the answer to why it's called “DXF” is that Lotus had already used “DIF” for their spreadsheet interchange files and we didn't want to create confusion with their file format, and that the reason there's more than one code for an X co-ordinate is that many geometrical objects require more than one X co-ordinate to define them (well, duh).

The author also totally gets what I've been talking about since Unicard and even before that as “Gizmos”, that every single device in the world, and every button on every device will eventually have its own (IPv6) Internet address and be able to interact with every other such object in every way that makes sense. I envisioned MIDI networks as the cheapest way to implement this bottom-feeder light-switch to light-bulb network; the author, a decade later, opts for a PCM “Internet 0”—works for me. The medium doesn't matter; it's that the message makes it end to end so cheaply that you can ignore the cost of the interconnection that ultimately matters.

The author closes the book with the invitation:

Finally, demand for fab labs as a research project, as a collection of capabilities, as a network of facilities, and even as a technological empowerment movement is growing beyond what can be handled by the initial collection of people and institutional partners that were involved in launching them. I/we welcome your thoughts on, and participation in, shaping their future operational, organizational, and technological form.
Well, I am but a humble programmer, but here's how I'd go about it. First of all, I'd create a “Fabrication Trailer“ which could visit every community in the United States, Canada, and Mexico; I'd send it out on the road in every MIT vacation season to preach the evangel of “make” to every community it visited. In, say, one of eighty of such communities, one would find a person who dreamed of this happening in his or her lifetime who was empowered by seeing it happen; provide them a template which, by writing a cheque, can replicate the fab and watch it spread. And as it spreads, and creates wealth, it will spawn other Fab Labs.

Then, after it's perfected in a couple of hundred North American copies, design a Fab Lab that fits into an ocean cargo container and can be shipped anywhere. If there isn't electricity and Internet connectivity, also deliver the diesel generator or solar panels and satellite dish. Drop these into places where they're most needed, along with a wonk who can bootstrap the locals into doing things with these tools which astound even those who created them. Humans are clever, tool-making primates; give us the tools to realise what we imagine and then stand back and watch what happens!

The legacy media bombard us with conflict, murder, and mayhem. But the future is about creation and construction. What does An Army of Davids do when they turn their creativity and ingenuity toward creating solutions to problems perceived and addressed by individuals? Why, they'll call it a renaissance! And that's exactly what it will be.

For more information, visit the Web site of The Center for Bits and Atoms at MIT, which the author directs. Fab Central provides links to Fab Labs around the world, the machines they use, and the open source software tools you can download and start using today.

December 2006 Permalink