
Floating Point Benchmark
This is John Walker’s Floating Point Benchmark, derived from…

Marinchip Interactive Lens Design System
 John Walker December 1980

 by John Walker
 http://www.fourmilab.ch/

This program may be used, distributed, and modified freely as long as the origin informa-
tion is preserved.

This is a complete optical design raytracing algorithm, stripped of its user interface and
recast into Mathematica. It not only determines execution speed on an extremely floating
point (including trig function) intensive real-world application, it checks accuracy on an
algorithm that is exquisitely sensitive to errors. The performance of this program is typically
far more sensitive to changes in the efficiency of the trigonometric library routines than the
average floating point program.

Implemented in November 2016 by John Walker.

Spectral Lines

We define names for standard spectral lines in Angstroms. (Not all are used in this
program.)

In[41]:= aLine = 7621.0;

bLine = 6869.955;

cLine = 6562.816;

dLine = 5895.944;

eLine = 5269.557;

fLine = 4861.344;

gPrimeLine = 4340.477;

hLine = 3968.494;

Lens Design

The test case used in this program is the design for a 4 inch f/12 achromatic telescope
objective used as the example in Wyld’s classic work on ray tracing by hand, given in Ama-
teur Telescope Making, Volume 3 (Volume 2 in the 1996 reprint edition).

Definitions for accessing fields of a surface description in a design.

In[49]:= curvatureRadius = 1;

indexOfRefraction = 2;

dispersion = 3;

edgeThickness = 4;

In[53]:= wyldClearAperture = 4;

wyldLens =

 27.05, 1.5137, 63.6, 0.52 ,

 -16.68, 1.0, 0.0, 0.138 ,

 -16.68, 1.6164, 36.7, 0.38,

 -78.1, 1.0, 0.0, 0.0

;

traceContext

A traceContext is a list consisting of the following fields:

axialIncidence Is the ray paraxial or marginal?

radiusOfCurvature Radius of curvature of surface being crossed. If 0, surface is plane.

objectDistance Distance of object focus from lens vertex. If 0, incoming
rays are parallel and the following must be specified:

rayHeight Height of ray from axis. Only relevant if objectDistance == 0

axisSlopeAngle Angle incoming ray makes with axis at intercept

fromIndex Refractive index of medium being left

toIndex Refractive index of medium being entered

Definitions for accessing fields in a traceContext list.

In[55]:= axialIncidence = 1;

radiusOfCurvature = 2;

objectDistance = 3;

rayHeight = 4;

axisSlopeAngle = 5;

fromIndex = 6;

toIndex = 7;

transitSurface

transitSurface carries a ray across a surface. The function is called with the elements of
the traceContext as its arguments. It returns a traceContext as a list with the following
components modified to reflect the ray as it exits the surface.

2 fbench.nb

objectDistance Distance from vertex to object focus after refraction

rayHeight Height of ray from axis

axisSlopeAngle Angle incoming ray makes with axis at intercept after
refraction

There are four cases: a paraxial or marginal ray, each crossing a flat or curved surface.

First, a paraxial ray crossing a flat surface.

In[62]:= transitSurfaceparaxialRay, radiusOfCurvatureS_, objectDistanceS_,

rayHeightS_, axisSlopeAngleS_, fromIndexS_, toIndexS_ :=

paraxialRay, 0, objectDistanceS * toIndexS fromIndexS,

rayHeightS, axisSlopeAngleS * fromIndexS toIndexS,

fromIndexS, toIndexS /; radiusOfCurvatureS ⩵ 0

Second, a paraxial ray crossing a curved surface.

In[63]:= transitSurfaceparaxialRay, radiusOfCurvatureS_, objectDistanceS_,

rayHeightS_, axisSlopeAngleS_, fromIndexS_, toIndexS_ :=

Blockodz, axisSlopeAngleP, iangSin, rangSin, axisSlopeAnglePP,

rayHeightP, objectDistanceP, odz = objectDistanceS ⩵ 0;

axisSlopeAngleP = Ifodz, 0, axisSlopeAngleS;

iangSin = Ifodz, rayHeightS radiusOfCurvatureS,

objectDistanceS - radiusOfCurvatureS radiusOfCurvatureS *

axisSlopeAngleS; rangSin = fromIndexS toIndexS * iangSin;

axisSlopeAnglePP = axisSlopeAngleP + iangSin - rangSin;

rayHeightP = Ifodz, rayHeightS, objectDistanceS * axisSlopeAngleP;

objectDistanceP = rayHeightP axisSlopeAnglePP;

paraxialRay, radiusOfCurvatureS, objectDistanceP, rayHeightP,

axisSlopeAnglePP, fromIndexS, toIndexS /; radiusOfCurvatureS ≠ 0

Third, a marginal ray crossing a flat surface.

In[64]:= transitSurfacemarginalRay, radiusOfCurvatureS_, objectDistanceS_,

rayHeightS_, axisSlopeAngleS_, fromIndexS_, toIndexS_ :=

Withrang = -ArcSinfromIndexS toIndexS * SinaxisSlopeAngleS,

marginalRay, 0, objectDistanceS *

toIndexS * Cos[-rang] fromIndexS * CosaxisSlopeAngleS,

rayHeightS, -rang, fromIndexS, toIndexS /; radiusOfCurvatureS ⩵ 0

Fourth and finally, a marginal ray crossing a curved surface.

fbench.nb 3

In[65]:= transitSurfacemarginalRay, radiusOfCurvatureS_, objectDistanceS_,

rayHeightS_, axisSlopeAngleS_, fromIndexS_, toIndexS_ :=

Blockodz, axisSlopeAngleP, iangSin, iang, rangSin, axisSlopeAnglePP,

sagitta, rayHeightP, objectDistanceP, odz = objectDistanceS ⩵ 0;

axisSlopeAngleP = Ifodz, 0, axisSlopeAngleS;

iangSin = Ifodz, rayHeightS radiusOfCurvatureS,

objectDistanceS - radiusOfCurvatureS radiusOfCurvatureS *

SinaxisSlopeAngleS; rangSin = fromIndexS toIndexS * iangSin;

iang = ArcSiniangSin;

axisSlopeAnglePP = axisSlopeAngleP + iang - ArcSinrangSin;

sagitta = 2 * radiusOfCurvatureS * SinaxisSlopeAngleP + iang 2 ^ 2;

rayHeightP = Ifodz, rayHeightS, objectDistanceS * axisSlopeAngleP;

objectDistanceP = radiusOfCurvatureS *

SinaxisSlopeAngleP + iang * CotaxisSlopeAnglePP + sagitta;

marginalRay, radiusOfCurvatureS, objectDistanceP, rayHeightP,

axisSlopeAnglePP, fromIndexS, toIndexS /; radiusOfCurvatureS ≠ 0

traceLine

traceLine performs a ray trace for a given design for a specific spectral line and ray
height. The caller passes in the design and desired spectral line, along with a traceContext
initialised with the required axialIncidence, radiusOfCurvature (0), objectDistance (0),
rayHeight, axisSlopeAngle (0), and fromIndex (1). We walk through the design list, applying
transitSurface for each surface encountered, and return a traceContext whose objectDis-
tance and axisSlopeAngle contain the results of the ray trace.

In[66]:= traceLinedesign_, spectralLine_, context_ := context /; Lengthdesign ⩵ 0

In[67]:= traceLinedesign_, spectralLine_, context_ :=

Blocksurf, toIndexP, contextP, surf = Firstdesign;

toIndexP = IfsurfindexOfRefraction > 1,

surfindexOfRefraction + dLine - spectralLine cLine - fLine *

surfindexOfRefraction - 1 surfdispersion, surf

indexOfRefraction; contextP = transitSurfacecontextaxialIncidence,

surfcurvatureRadius, contextobjectDistance, contextrayHeight,

contextaxisSlopeAngle, contextfromIndex, toIndexP;

(* Print"traceLine: ", surf, " ",context, " ",contextP; *)

traceLineRestdesign, spectralLine,

contextPaxialIncidence, contextPradiusOfCurvature,

contextPobjectDistance - surfedgeThickness, contextPrayHeight,

contextPaxisSlopeAngle, contextPtoIndex, 0 /; Lengthdesign > 0

traceLens

The traceLens function is a little bit of syntactic sugar to simplify invoking traceLine. It
creates an initial traceContext for traceLine which specifies the axialIncidence and
rayHeight (computed from the clear aperture of the design), invokes traceLine with the

4 fbench.nb

supplied design and spectral line, then returns a list containing the objectDistance and
axisSlopeAngle resulting from the ray trace.

Definitions to access fields in the result from traceLens:

In[68]:= tlOD = 1;

tlSA = 2;

traceLensdesign_, clearAperture_, spectralLine_, axialIncidenceS_ :=

Withcontext = traceLinedesign, spectralLine,

axialIncidenceS, 0, 0, clearAperture 2, 0, 1, 0,

contextobjectDistance, contextaxisSlopeAngle

evaluateDesign

The evaluateDesign function performs a ray trace on a given design with a specified clear
aperture and returns a designEvaluation list which includes the results for the D line and
calculation of spherical aberration, coma, and chromatic aberration, along with the conven-
tional acceptable upper bounds for these quantities.

Definitions to access fields in the result from evaluateDesign:

In[71]:= eDdMar = 1;

eDdPar = 2;

eDaberrLspher = 3;

eDaberrOsc = 4;

eDaberrLchrom = 5;

eDMaxLspher = 6;

eDMaxOsc = 7;

eDMaxAchrom = 8;

evaluateDesigndesign_, clearApertureS_ :=

With dMar = traceLensdesign, clearApertureS, dLine, marginalRay,

dPar = traceLensdesign, clearApertureS, dLine, paraxialRay,

cMar = traceLensdesign, clearApertureS, cLine, marginalRay,

fMar = traceLensdesign, clearApertureS, fLine, marginalRay,

(* Print"dM ", dMar, " dP ", dPar, " cM ", cMar, " fM ", fMar; *)

WithaberrLspherS = dPartlOD - dMartlOD, aberrOscS =

1 - dPartlOD * dPartlSA SindMartlSA * dMartlOD,

aberrLchromS = fMartlOD - cMartlOD,

maxLspherS = 0.0000926 SindMartlSA^2,

(* Print"Lspher ", aberrLspherS, " OSC ", aberrOscS, " Lchrom ",

aberrLchromS, " Max Aberr ", maxLspherS; *)dMar, dPar,

aberrLspherS, aberrOscS, aberrLchromS, maxLspherS, 0.0025, maxLspherS

evaluationReport

evaluationReport edits the list result from evaluateDesign into primate-readable text

fbench.nb 5

we can compare with the expected results. This function is not timed in the benchmark.

In[80]:= nf[n_] := ToStringNumberFormn // N, 14, 11

evaluationReportde_ :=

" Marginal ray " <> nfdeeDdMartlOD <> " " <>

nfdeeDdMartlSA <> "\n" <> " Paraxial ray " <>

nfdeeDdPartlOD <> " " <> nfdeeDdPartlSA <> "\n" <>

"Longitudinal spherical aberration: " <> nfdeeDaberrLspher <> "\n" <>

" (Maximum permissible): " <> nfdeeDMaxLspher <> "\n" <>

"Offense against sine condition (coma): " <> nfdeeDaberrOsc <> "\n" <>

" (Maximum permissible): " <> nfdeeDMaxOsc <> "\n" <>

"Axial chromatic aberration: " <> nfdeeDaberrLchrom <> "\n" <>

" (Maximum permissible): " <> nfdeeDMaxAchrom <> "\n"

validateResults

The validateResults function compares a primate-readable report from evaluationRe-
port with the archival results from the reference implementation (which all language imple-
mentations must reproduce character-by-character [apart from trivia such as end of line
conventions and trailing white space]). It returns a Boolean value indicating whether the
results compared. This function is not timed in the benchmark.

In[82]:= validateResults[er_] := WithexpectedResults =

(* Reference results.These happen to be derived from a run

on Microsoft Quick BASIC on the IBM PCAT. *)

" Marginal ray 47.09479120920 0.04178472683\n" <>

" Paraxial ray 47.08372160249 0.04177864821\n" <>

"Longitudinal spherical aberration: -0.01106960671\n" <>

" (Maximum permissible): 0.05306749907\n" <>

"Offense against sine condition (coma): 0.00008954761\n" <>

" (Maximum permissible): 0.00250000000\n" <>

"Axial chromatic aberration: 0.00448229032\n" <>

" (Maximum permissible): 0.05306749907\n",

er ⩵ expectedResults

Running the Benchmark

In[83]:= standardNumberOfIterations = 1000;

runBenchmarkiters_ := Blockev, stime, etime, er, stime = AbsoluteTime[];

Doev = evaluateDesignwyldLens, wyldClearAperture, iters;

etime = AbsoluteTime[] - stime;

er = evaluationReport[ev];

If! validateResults[er], Print"Error(s) in results! This is VERY SERIOUS.";

Print"Execution time ", etime, " seconds for ", iters, " iterations.";

Print"Execution time for ", standardNumberOfIterations,

" iterations: ", etime * standardNumberOfIterations iters, " seconds.";

6 fbench.nb

Perform Benchmark

In[86]:= runBenchmark1000

Execution time 5.609737 seconds for 1000 iterations.

Execution time for 1000 iterations: 5.609737 seconds.

fbench.nb 7

