
I
1

Processor and Storage
Programmer Reference

A UNIVAC
COMPUTER SYSTEMS UP-8492

This document contains the latest information available at
the time of publication. However, Sperry Univac reserves
the right to modify or revise its contents. To ensure that you
have the most recent information, contact your local Sperry
Univac representative.

Sperry Univac is a division of Sperry Rand Corporation.

AccuScan, FASTRAND, PAGEWRITER, SPERRY UNIVAC,
UNISCOPE, UNISERVO, UNIVAC, and + are trademarks of
the Sperry Rand Corporation.

©1977 - SPERRY RAND CORPORATION PRINTED IN U.S.A.

8492
UP-NUMBER

I SPERRY UNIVAC 11 00/80 S~ems PSS-l
~. ___ P_ro_c_e_ss_o_r_a_n_d_S_t_o_r_a_g_e_p_rr_o_g_r_a_m_m_e_r_R_e_fe_re_n_c_e _____L..U_PO_A_T£_L_EVE_L __ ~P_AGE .' ____ , __ _

Page Status Summary

ISSUE: UP-8492

SI9ction Pages Update Section Pages Update Section Pages Update

Cover/Oisc'aimer

PSS 1

Contents , thru 12

1 " thru 7

2 " thru 3

3 1 thru 16

4 1 thru ~5

5 1 thru 70

6 1 thru 70

7 11 thru 23

8 11 thru 12

Appendix A 1 thru 9

Appendix B 1 thru 14

Appendix C 1 thru 18

Appendix 0 1 thru 5

User Comment

Sheet

Tota': :Z87 pages

and cover

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference

Pane Status Summary

Contents

1 . I ntrod uction

1. 1. GENERAL

1.2. 1100/80 SYSTEM CONFIGURATIONS
1.2.1. Central Processor Unit
1.2.2. Main Storage
1.2.3. Input/Output Unit (IOU)
1.2.4. System Console
1.2.5. System Transition Unit (STU)
1.2.6. System Maintenance Unit
1.2.7. Auxiliary Storage and Peripheral Subsystems

2. Processing Unit

2. 1. GENERAL

2.2. CONTROL SECTION
2.2.1. Control Section Operation
2.2.2. Instruction Repertoire
2.2.3. Control Registers
2.2.4. Data Shift/Complement/Store Operation

2.3. ARITHMETIC SECTION

2.4. MAINTENANCE SECTION

2.5. INPUT/OUTPUT UNIT (IOU)

3. Storage

3. 1. GENERAL

3.2. MAIN STORAGE
3.2.1. Main Storage Addressing

I Contents-'
PAGE

Contents

1-1

1-1

1-1
1-1
1-5
1-5
1-6
1-6
1-7
1-7

2-1

2-1

2-1
2-1
2-1
2-2
2-2

2-2

2-2

2-2

3-1

3-1

3-1
3-1

8492
UP-NUM8ER

SPERRY UNIVAC 1100/80 Syeteml
Processor and Storage Programmer Reference

3.2.2. MSU Address Assignments
3.2.3. Fixed Address Assignments

3.3. BUFFER STORAGE
3.3. 1. Set Associative Addressing
3.3.2. Address Interleave

UPDATE LEVEL
Contents-2

PAGE

3-2
3-5

3-7
3-7
3-9

3.4. CONTROL STORAGE 3-10
3.4. 1. Control Register Selection Designator 3-10
3.4.2. Control Register Address Assignments 3-10
3.4.2.1. Storage for MSR Value - Address 0143 3-11
3.4.2.2. User Index (X) Register - Addresses 0001 - 0017 3-12
3.4.2.3. User Accumulator (A) Registers - Addresses 0014 - 0033 3-13
3.4.2.4. User Unassigned Registers - Addresses 0034 - 0037 3-13
3.4.2.5. EXEC Bank Descriptor Table Pointer Register - Address 0040 3-13
3.4.2.6. Immediate Storage Check Interrupts - Addresses 0041 - 0042 3-13
3.4.2.7. Normal Interrupts - Addresses 0043 - 0044 3-13
3.4.2.8. User Bank Descriptor Table Pointer Register - Address 0045 3-13
3.4.2.9. Bank Descriptor Index Registers - Addresses 0046 - 0047 3-13
3.4.2.10. Quantum Timer - Address 0050 3-13
3.4.2.11. Guard Mode - Addresses 0051 - 0053 3-13
3.4.2.12. Immediate Storage Check Status - Address 0054 3-14
3.4.2.13. Normal Status - Address 0055 3-14
3.4.2.14. Unassigned Registers - Addresses 0056 - 0067 3-14
3.4.2.15. Jump History Stack - Addresses 0070 - 0077 3-14
3.4.2. 16. Real-Time Clock Register (RO) - Address 0100 3-14
3.4.2.17. User (R 1) Repeat Count Register - Address 0101 3-14
3.4.2.18. User (R2)/Mask Register - Address 0102 3-14
3.4.2.19. User (R2-R5)/Staging Registers (SR 1-SR3) - Address 0103 - 0105 3-15
3.4.2.20. Us~r (R6-R9)/J-Registers (JO-J3) - Address 0106 - 0111 3-15
3.4.2.21. User R-Registers (R 1 O-R 15) - Addresses 0112 - 0117 3-15
3.4.2.22. Executive (RO) R-Register - Address 0120 3-15
3.4.2.23. Executive (R 1) Repeat Count Register - Address 0121 3-15
3.4.2.24. Executive (R2)/Mask Register - Address 0122 3-15
3.4.2.25. Executive (R3-R5)/Staging Registers (SR 1-SR3) - Addresses 0123 - 01253-15
3.4.2.26. Executive (R6-R9)/J-Registers (JO-J3) - Addresses 0126 - 0131 3-15
3.4.2.27. Executive R-Registers (R10-R15) - Addresses 0132 - 0137 3-15
3.4.2.28. Executive Index Registers (X 1-X 15) - Addresses 0141 - 0157 3-16
3.4.2.29. Executive Accumulator Registers (AO-A 15) - Addresses 0154 - 0173 3-16
3.4.2.30. Executive Unassigned Registers - Addresses 0140, 0174 - 0177 3-16
3.4.2.31. Control Register Protection 3-16

4. Processor 4-1

4. 1. ARITHMETIC SECTION 4-1
4.1. 1. General Operation 4-1
4.1.1.1. Data Word 4-1
4.1.1.2. Data Word Complement 4-2
4.1.1.3. Absolute Values 4-2
4.1.2. Microprogrammed Control 4-2
4. 1.3. Main Adder Characteristics 4-2
4. 1.4. Fixed-Point Single- or Double-Precision Add or Subtract Overflow and Carry 4-2

Contents-3
UPDATE LEVEL PAGE

8492 L SPERRY UNIVAC 1100/80 S~.m.
UP~UMBER Processor and Storage Programmer Reference
-,------=---=---~~-

4. 1.4. 1. Overflow
4.1.4.2. Carry
4.1.4.3. Arithmetic Interrupt
4.1.5. Fixed-Point Division
4.1.6. Fixed-Point Multiplication
4. 1.7. Floating-Point Arithmetic
4.1.8. Floating-Point Numbers and Word Formats
4. 1.8. 1. Single-Precision Floating-Point Numbers
4. 1.8.2. Double-Precision Floating-Point Numbers
4. 1.8.3. Negative Floating-Point Numbers
4.1.8.4. Residue
4. 1.9. Normalized/Unnormalized Floating-Point Numbers
4. 1. 1 O. Floating-Point Characteristic Overflow/Underflow
4. 1. 10. 1. Floating-Point Characteristic Overflow
4. 1. 10.2. Floating-Point Characteristic Underflow
4.1.10.3. Floating-Point Divide Fault
4. 1. 11. Fixed-Point to Floa~ing-Point Conversion
4.1. 12. Floating-Point Addition
4.1.12.1. Double-Precision Floating-Point Addition
4. 1. 13. Floating-Point Subtraction (Add Negative)
4.1.14. Floating-Point Multiplication
4.1.15. Floating-Point Division
4.1.16. Floating-Point Zero
4.1.17. Byte Instructions

4.2. CONTROL SECTION
4.2. 1. Instruction Word Format
4.2.2. Instruction Word Fields
4.2.2.1. Use of the f-Field
4.2.2.2. Description of the j-Field
4.2.2.2. 1. Use of the j-Field as an Operand Qualifier
4.2.2.2.2. Use of the j-Field to Specify Character Addressing
4.2.2.2.3. Use of j-Field as Partial Control Register Address
4.2.2.2.4. Use of j-Field as Minor Function Code
4.2.2.3. Uses of the a-Field
4.2.2.3. 1. Use of the a-Field to Reference an A-Register
4.2.2.3.2. Use of the a-Field to Reference an X-Register
4.2.2.3.3. Use of the a-Field to Reference an R-Register
4.2.2.3.4. Use of the a-Field to Reference a Jump Key
4.2.2.3.5. Use of the a-Field to Reference Halt Keys
4.2.2.3.6. Use of the a-Field as Minor Function Code
4.2.2.4. Use of the j- and a-Fields to Specify GRS Control Register Address
4.2.2.5. Use of the x-Field
4.2.2.6. Use of the h-Field
4.2.2.7. Use of the i-Field
4.2.2.8. Description of the u-Field
4.2.2.8.1. Use of the u-Field as an Operand Address Designator
4.2.2.8.2. Use of the u-Field as an Operand Designator
4.2.2.8.3. Use of the u-Field as a Shift Count Designator
4.2.2.8.4. Restrictions on the Use of the u-Field

5. Iinstruction Repertoire

4-3
4-3
4-3
4-3
4-4
4-4
4-4
4-6
4-6
4-6
4-7
4-7
4-7
4-7
4-8
4-8
4-8
4-8
4-9
4-9
4-9
4-9
4-9
4-10

4-10
4-10
4-11
4-11
4-11
4-11
4-14
4-19
4-19
4-19
4-19
4-20
4-20
4-20
4-20
4-20
4-21
4-21
4-22
4-22
4-23
4-24
4-24
4-24
4-25

5-1

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference

5. 1. INTRODUCTION

5.2. LOAD INSTRUCTIONS
5.2.1. Load A - L,LA 10
5.2.2. Load Negative A - LN,LNA 11
5.2.3. Load Magnitude A - LM,LMA 12
5.2.4. Load Negative Magnitude A - LNMA 13
5.2.5. Load A - L,LA 23
5.2.6. Load X Modifier - LXM 26
5.2.7. Load X - L,LX 27
5.2.S. Load X Increment - LXI 46
5.2.9. Double Load A - DL f = 71 j = 13
5.2.10. Double-Load Negative A - DLN 71,14
5.2.11. Double Load Magnitude A - DLM 71, 15

5.3. STORE INSTRUCTIONS
5.3.1. Store A - S,SA 01
5.3.2. Store Negative A - SN,SNA 02
5.3.3. Store Magnitude A - SM,SMA 03
5.3.4. Store A - S,SA 04
5.3.5. Store Constant Instructions - XX 05; a = 00-07
5.3.6. Store X - S,SX 06
5.3.7. Double Store A - OS 71,12
5.3.S. Block Transfer - BT 22

5.4. FIXED-POINT ARITHMETIC INSTRUCTIONS
5.4.1. Add to A - A,AA 14
5.4.2. Add Negative to A - AN,ANA 15
5.4.3. Add Magnitude to A - AM,AMA 16
5.4.4. Add Negative Magnitude to A - ANM,ANMA 17
5.4.5. Add Upper - AU 20
5.4.6. Add Negative Upper - ANU 21
5.4.7. Add to X - A,AX 24
5.4.S. Add Negative to X - AN,ANX 25
5.4.9. Multiply Integer - MI 30
5.4.10. Multiply Single Integer - MSI 31
5.4.11. Multiply Fractional - MF 32
5.4.12. Divide Integer - 01 34
5.4.13. Divide Single Fractional - DSF 35
5.4.14. Divide Fractional - OF 36
5.4. 15. Double-Precision Fixed-Point Add - DA 71, 1 0
5.4. 16. Double-Precision Fixed-Point Add Negative - DAN 71,11
5.4.17. Add Halves - AH 72,04
5.4.18. Add Negative Halves - ANH 72,05
5.4.19. Add Thirds - AT 72,06
5.4.20. Add Negative Thirds - ANT 72,07

5.5. FLOATING-POINT ARITHMETIC
5.5.1. Floating Add - FA 76,00
5.5.2. Floating Add Negative - FAN 76,01
5.5.3. Double-Precision Floating Add - DFA 76,10
5.5.4. Double-Precision Floating Add Negative - DFAN 76,11

UPDATE LEVEL

5-1

Contents-4
PAGE

5-2
5-2
5-2
6-2
5-2
5-3
5-3
5-3
5-3
5-3
5-3
5-4

5-4
5-4
5-4
5-4
5-5
5-5
5-5
5-5
5-6

5-6
5-7
5-7
5-7
5-7
5-8
5-S
5-S
5-S
5-8
5-8
5-9
5-9
5-9
5-10
5-10
5-10
5-10
5-10
5-11
5-11

5-11
5-11
5-12
5-12
5-13

U8p4~U2MBER _._. __ ._L __ S_P_E_R_R_Y_U_N_IV_A_C_1_100_/8.....:0=--S~_ •:m=-. ___________1 ____ _ -.. _ __ Processor and Storage Programmer Reference UPDATE LEVEL 1 contents-s
PAGE __ ~ _ .. _, ___ ~_._w_

5.5.5. Floating Multiply - FM 76,02 5-13
5.5.6. Double-Precision Floating Multiply - DFM 76,12 5-14
5.5.7. Floating Divide - FD 76,03 5-15
5.5.8. Double-Precision Floating Divide - DFD 76,13 5-15
5.5.9. Load and Unpack Floating - LUF 76,04 5-16
5.5.10. Double Load and Unpack Floating - DFU 76,14 5-16
5.5.11. Load and Convert to Floating - LCF 76,05 5-16
5.5.12. Double Load and Convert to Floating - DFP, DLCF 76,15 5-17
5.5.13. Floating Expand and Load - FEL 76,16 5-18
5.5.14. Floating Compress and Load - FCL 76,17 5-18
5.5.15. Magnitude of Characteristic Difference to Upper - MCDU 76,06 5-19
15.5.16. Characteristic Difference to Upper - CDU 76,07 5-19

!5.6. SEARCH AND MASKED-SEARCH INSTRUCTIONS 5-19
!b.6.1. Search Equal - SE 62 5-22
!5.6.2. Search Not Equal - SNE 63 5-22
5.6.3. Search Less ~han or Equal - Search Not Greater - SLE,SNG 64 5-22
5.6.4. Search Greater - SG 65 5-23
5.6.5. Search Within Range - SW 66 5-23
5.6.6. Search Not Within Range - SNW 67 5-24
5.6.7. Mask Search Equal - MSE 71,00 5-24
5.6.8. Mask Search Not Equal - MSNE 71,01 5-25
!5.6.9. Mask Search Less Than or Equal - Mask Search Not Greater - MSLE,MSNG 5-25
!5.6. 10. Mask Search Greater - MSG 71,03 5-26
!5.6.11. Masked Search Within Range - MSW 71,04 5-26
!5.6.12. Masked Search Not Within Range - MSNW 71,05 5-27
!5.6.13. Masked Alphanumeric Search Less Than or Equal - MASL 71,06 5-27
!5.6.14. Masked Alphanumeric Search Greater - MASG 71,07 5-28

5.7. TEST (OR SKIP) INSTRUCTIONS
!5.7.1. Test Even Parity - TEP - 44
!5.7.2. Test Odd Parity - TOP 45
!5. 7 .3. Test Less Than or Equal to Modifier - TLEM 47
!5.7.4. Test Zero - TZ 50
!5.7.5. Test Nonzero - TNZ 51
!5.7.6. Test Equal - TE 52
!5.7.7. Test Not Equal - TNE 53
!5.7.8. Test Less Than or Equal - Test Not Greater - TLE,TNG 54
!5.7.9. Test Greater - TG 55
!5.7.10. Test Within Range - TW 56
!5. 7.11. Test Not Within Range - TNW 57
!5. 7.12. Test Positive - TP 60
!5.7.13. Test Negative - TN 61
!5.7.14. Doublfl-Precision Test Equal - DTE 71,17

1).8. SHIFT INSTRUCTIONS
!5.8.1. Single Shift Circular - SSC 73,00
!5.8.2. Double Shift Circular - DSC 73,01
!5.8.3. Single Shift Logical - SSL 73,02
!5.8.4. Double Shift Logical - DSL 73,03
5.8.5. Single Shift Algebraic - SSA 73,04
!5.8.6. Double Shift Algebraic - DSA 73,05

5-28
5-28
5-29
5-29
5-29
5-30
5-30
5-30
5-30
5-31
5-31
5-31
5-32
5-32
5-32

5-33
5-34
5-34
5-34
5-35
5-35
5-3&

8492
UI4tUM8ER

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference

5.8.7. Load Shift and Count - LSC 73,06
5.8.8. Double Load Shift and Count - DLSC 73,07
5.8.9. Left Single Shift Circular - LSSC 73,10
5.8.10. Left Double Shift Circular - LDSC 73,11
5.8.11. Left Single Shift Logical - LSSL 73,12
5.8.12. Left Double Shift Logical - LDSL 73,13

5.9. UNCONDITIONAL JUMP INSTRUCTION
5.9.1. Store Location and Jump - SLJ 72,01
5.9.2. Load Modifier and Jump - LMJ 74,13
5.9.3. Allow All Interrupts and Jump - AAIJ 74,07

5.10. BANK DESCRIPTOR SELECTION INSTRUCTIONS
5.10.1. Load Bank and Jump - LBJ 07,17
5.10.2. Load I-Bank Base and Jump - LlJ 07,13
5.10.3. Load D-Bank Base and Jump - LDJ 07,12

5. 11. CONDITIONAL JUMP INSTRUCTIONS
5.11.1. Jump Greater and Decrement - JGD 70
5.11.2. Double-Precision Jump Zero - DJZ 71, 16
5.11.3. Jump Positive and Shift - JPS 72,02
5.11.4. Jump Negative and Shift - JNS 72,03
5.11.5. Jump Zero - JZ 74,00
5.11.6. Jump Nonzero - JNZ 74,01
5.11.7. Jump Positive - JP 74,02
5.11.8. Jump Negative - IN 74,03
5.11.9. Jump - Jump Keys - J,JK 74,04
5.11.10. Halt Jump - Halt Keys and Jump - HJ,HKJ 74,05
5.11.11. Jump No Low Bit - JNB 74,10
5.11.12. Jump Low Bit - JB 74,11
5.11.13. Jump Modifier Greater and Increment - JMGI 74, 12
5.11.14. Jump Overflow - JO 74,14; a = 0
5.11.15. Jump Floating Underflow - JFU 74,14; a = 1
5.11.16. Jump Floating Overflow - JFO 74,14; a = 2
5.11.17. Jump Divide Fault - JDF 74,14; a = 3
5.11.18. Jump No Overflow - JNO 74,15; a = 0
5.11.19. Jump No Floating Underflow - JNFU 74, 15; a = 1
5.11.20. Jump No Floating Overflow - JNFO 74,15; a = 2
5.11.21. Jump No Divide Fault - JNDF 74,15; a = 3
5.11.22. Jump Carry - JC 74,16
5. 11.23. Ju~p No Carry - JNC 74,17

5. 12. LOGICAL INSTRUCTIONS
5. 12. 1. Logical OR - OR 40
5. 12.2. Logical Exclusive OR - XOR 41
5. 12.3. Logical AND - AND 42
5. 12.4. Masked Load Upper - MLU 43

5. 13. MISCELLANEOUS INSTRUCTIONS
5.13.1. Load DR Designators - LPD 07,14
5.13.2. Store DR Designators - SPD 07,15
5.13.3. Execute - EX 72,10

UPDATE LEVEL
Contents-l

PAGE

5-35
5-36
5-36
5-36
5-36
5-37

5-37
5-37
5-38
5-38

5-38
5-38
5-39
5-39

5-40
5-40
5-40
5-40
5-40
5-41
5-41
5-41
5-41
5-41
5-42
5-42
5-42
5-42
5-43
5-43
5-43
5-43
5-43
5-44
5-44
5-44
5-44
5-44

5-44
5-45
5-45
5-45
5-46

5-46
5-46
5-46
5-47

/

_ _ 8_4_9_2 ____ L __ S_P_E_R_RY_U_N_IV_A_C_1_1_00_1_8_0_S_
Y8t
_em_B ___________ ~ _____ -,--_C_on_te_nt_s-,_7 ____ _ UP~UMBER_ Processor and Storage Programmer Reference UPDATE LEVEL PAGE_

~i. 13.4. Executive Request - ER 72,11
~). 13.5. Test and Set - TS 73,17; a = 0
~). 13.6. Test and Set and Skip - TSS 73,17; a = 1
~).13. 7. Test and Clear and Skip - TCS 73,17; a = 2
f •. 13.8. No Operation - NOP 74,06
f •. 13.9. Store Register Set - SRS 72,16
f •. 13.10. Load Register Set - LRS 72,17
fL 13.11. Test Relative Address - TRA 72,15
f •. 13. 12. Increase Instructions - XX 05; a = 10-17

fi. 14. BYTE INSTRUCTIONS
ft.14.1. Byte Move - BM 33,00
ft.14.2. Byte Move With Translate - BMT
f •. 14.3. Byte Translate and "Compare - BTC
fi.14.4. Byte Compare - BC 33,04
5. 14.5. Edit - EDIT 33,07
Ei. 14.5. 1. Function Byte
Ei.14.5.2. Subfunction Byte

33,01
33,03

5. 14.6. Byte to Binary Single Integer Convert - BI 33,10
5.14.7. Byte to Binary Double Integer Convert - BDI 3::'\,11
5.14.8. Binary Single Integer to Byte Convert - 18 33, 12
5.14.9. Binary Double Integer to Byte Convert - DIB 33, 13
Ei. 14. 1 O. Byte to Single Floating Convert - BF 33, 14
5.14.11. Byte to Double Floating Convert - BDF 33, 15
5.14. 12. Single Floating to Byte Convert - FB 33, 16
Ei. 14. 13. Double Floating to Byte Convert - DFB 33,17
5.14. 14. Byte Add - BA 37,06
Ei.14.15. Byte Add Negative - BAN 37,07

Ei. 15. EXECUTIVE INSTRUCTION REPERTOIRE
5.15.1. Prevent All Interrupts and Jump - PAIJ 72,13
5.15.2. Enable/Disable Dayclock - EDC,DDC 73,14, 11-12
5.15.3. Select Dayclock - SOC 73,14, 13
5.15.4. Select Interrupt Locations - SIL 73,15, 00
5.15.5. Load Breakpoint Register - LBX 73,15, 02
Ei.15.6. Store Processor 10 - SPID 73,15, 05
5.15.7. Load Ouantum Timer - LOT 73,15, 03
5.15.8. Load Base - LB 73,15 10
Ei.15.9. Load Limits - LL 73,15, 11
5.15.10. Load Addressing Environment - LAE 73,15, 12
Ei. 15. 11. Store Ouantum Time - SOT 73, 15, 13
fi.15.12. Load Designator Register - LD 73,15, 14
Ei.15.13. Store Designator Register - SO 73,15, 15
fi.15.14. User Return - UR 73,15, 16
fi,15.15. Reset Auto-Recovery Timer - RAT 73,15, 06
f •. 15.16. Toggle Auto-Recovery Path - TAP 73, 5, 07
f •. 15. 17. Store System Status - SSS 73,15, 17
f •. 15. 18. Diagnotics - 73,14, 14 - 17
fi. 15. 19. Input/Output Instructions

6. Input/Output

5-47
5-48
5-48
5-48
5-48
5-49
5-49
5-49
5-50

5-51
5-55
5-55
5-56
5-57
5-57
5-58
5-60
5-61
5-63
5-63
5-64
5-64
5-65
5-65
5-65
5-66
5-66

5-66
5-67
5-67
5-67
5-67
5-67
5-67
5-68
5-68
5-68
5-68
5-68

" 5-68
5-69
5-69
5-69
5-69
5-69
5-69
5-70

6-1

8492
UP-HUMBER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference

6. 1. INTRODUCTION

6.2. FUNCTIONAL CHARACTERISTICS
6.2. 1. Channels
6.2.2. Subchannels

6.3. CONTROL OF INPUT/OUTPUT DEVICES
6.3. 1. Input/Output Device Addressing
6.3.2. States of the Input/Output System
6.3.3. Condition Codes
6.3.4. Instruction Format and Channel Address Word
6.3.5. Instruction Operation

6.4. I/O INSTRUCTIONS
6.4.1. Sense Release - SRL 75,00
6.4.1.1. Byte or Block Multiplexer Channel Operation
6.4. 1.2. Word Channel Operation
6.4.2. Start I/O Fast Release - SIOF 75,01
6.4.2. 1. Byte or Block Multiplexer Channel Operation
6.4.2.2. Word Channel Operation
6.4.3. Test I/O - TIO 75,02
6.4.3. 1. Byte or Block Multiplexer Channel Operation
6.4.3.2. Word Channel Operation
6.4.4. Test Subchannel - TSC 75,03
6.4.4.1. Byte or Block Multiplexer Channel
6.4.4.2. Word Channel Operation
6.4.5. Halt Device - HDV 75,04
6.4.5. 1. Byte or Block Multiplexer Channel OperatiOn
6.4.5.2. Word Channel Operation
6.4.6. Halt Channel - HCH 75,05
6.4.6. 1. Byte or Block Multiplexer Channel Operation
6.4.6.2. Word Channel Operation
6.4.7. Load Channel Register - LCR 75,10
6.4.7.1. Byte and Block Multiplexer Channel
6.4.7.2. Word Channel Operation
6.4.8. Load Table Control Words - L TCW 75,11
6.4.8.1. Byte and Block Multiplexer Channel
6.4.8.2. Word Channel Operation

6.6. EXECUTION OF I/O OPERATIONS
6.5.1. Channel Command Word
6.5.2. CCW Completion

6.6. COMMAND CODE
6.6. 1. Transfer in Channel Command - TIC
6.6.2. Store Subchannel Status Command - SST

6.7. DATA TRANSFER
6.7. 1. Format Flags (E, A, B, and C)
6.7.2. Skip Data - SK
6.7.3. Data Address Decrement - DAD
6.7.4. Data Address lock - DAl

UPDATE LEVEL

6-1

Contents-8
PAGE

6-1
6-3
6-5

6-5
6-5
6-6
6-10
6-10
6-17

6-17
6-17
6-18
6-18
6-19
6-19
6-20
6-20
6-21
6-21
6-21
6-21
6-22
6-22
6-23
6-24
6-24
6-24
6-25
6-25
6-25
6-26
6-26
6-26
6-27

6-27
6-28
6-31

6-37
6-38
6-39

6-39
6-39
6-40
6·-40
6-40

_ _ 8_4_9_2 ___ L __ SP_E_R_RY __ UN_I_VA_C_11_00_1_8-=O_S_~_ •:m=-. ___________ ...J1~~_,,'!:!~~_--,-l~A~CE ont8""nt8-,_9 '" __ _ UP UMBER ,_ Processor and Storage Programmer Reference .'" . _ _

6.8. CHAINING OPERATIONS 6-40
6.B.1. Data Chaining 6-41
6.B.2. Command Chaining 6-41
6.B.3. EI Chaining (ESI Word Interface Only) 6-42
6.B.4. Truncated Search 6-43
6.B.5. Truncated Search Restrictions 6-44

6.9. INTERRUPT GENERATION FLAGS 6-44
16.9.1. Program Controlled Interruption - PCI 6-44
6.9.2. Monitor - MON (Word Channel Only) 6-45

16.10. STATUS 6-45

6.11. INSTRUCTION STATUS 6-49

6.12. STATUS TABLE 6-50

~S.13. STORE SUBCHANNEL STATUS - SST 6-52

~S.14. SUBCHANNEL STATUS 6-53
6.14.1. SIOF Device Check (Bit 52) (Byte or Block Multiplexer Channel Only) 6-53
6.14.2. Interface Control Check (Bit 53) 6-53
6. 14.3. Channel Control Check (Bit 54) 6-53
6.14.4. Channel Data Check (Bit 55) 6-53
IS.14.5. Not Used (Bit 56) 6-54
6.14.6. Program Check (Bit 57) 6-54
6.14.7. Monitor (Bit 5B) (Word Channel Only) 6-54
6.14.B. Incorrect Length (Bit 5B) (Byte and Block Multiplexer Channels Only) 6-55
IS.14.9. Program Controlled Interrupt (Bit 59) 6-55

6.15. DEVICE STATUS 6-55

6.16. DATA CHAINING PRECAUTIONS 6-56

6.17. SUBCHANNEL EXPANSION FEATURE AND CHANNEL BASE REGISTER 6-63

6.18. MASK REGISTER 6-63

6.19. INITIAL LOAD 6-65

6.20. BACK-TO-BACK OPERATION (Word Channel Only) 6-65

6.21. PRIORITIES 6-66

6.22. BASIC PROGRAMMING PROCEDURE 6-66

6.23. PROGRAMMING EXAMPLES 6-67

7. Interrupts 7-1

~7. 1. INTRODUCTION 7-1

8492
UP-HUMSER

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference

7.2. INTERRUPT SEQUENCE
7.2.1. Program Status
7.2.2. Addressing Status
7.2.3. Interrupt Status

7.3. INTERRUPT TYPES
7.3.1. Program Exception Interrupts
7.3.2. Arithmetic Exception Interrupts
7.3.3. Program-Initiated Interrupts
7.3.4. Interprocessor Interrupt
7.3.5. Clock Interrupts
7.3.6. Storage Check Interrupts
7.3.6. 1. Immediate Storage Checks
7.3.6.2. Delayed Storage Check Interrupts
7.3.6.2.1. SIU/MSU Errors and Internal SIU Errors
7.3.6.2.2. Storage Check Interrupt Status
7.3.7. Power Check Interrupt
7.3.8. Byte status Code
7.3.9. Multi-Processor-Interrupt Synchronization

7 .4. INPUT/OUTPUT INTERRUPTS
7.4. 1. Machine Check Interrupts
7.4.2. Normal Interrupts
7.4.3. Tabled Interrupts

8. Executive Control

8. 1. GENERAL

8.2. PROCESSOR STATE
8.2.1. Designator Register

8.3. INTRODUCTION TO ADDRESSING
8.3. 1. Main Storage Organization
8.3.2. Program Segmentation
8.3.3. General Theory of 1100/80 Addressing-
8.3.4. Bank Descriptor
8.3.5. Limits
8.3.6. Control Information
8.3.7. Bank Descriptor Registers
8.3.8. Address Generation
8.3.9. P-Capturing Instructions

Appendix A. Glossary

Appendix B. Summary Of Word Formats

Appendix C. User Instruction Repertoire

Appendix D. Character Codes

User Comment Sheet

UPDATE LEVEL
Contents-10

PAGE

7-3
7-3
7-4
7-4

7-5
7-5
7-6
7-7
7-8
7-9
7-9
7-9
7-10
7-10
7-11
7-14
7-14
7-18

7-18
7-18
7-19
7-22

8-1

8-1

8-1
8-1

8-7
8-7
8-7
8-7
8-8
8-8
8-8
8-8
8-10
8-12

A-1

B-1

C-1

0-1

Contents-11
UPDATE LEVEL PAGE

8492 L SPERRY UNIVAC 1100/80 S~.m.
UP~UM8ER Processor and Storage Programmer Reference

_ ,_~---=----_----L...----L.--_

FIGURES

Figure 1-1. SPERRY UNIVAC 1100/81 System Minimum Configuration
Figure 1-2. SPERRY UNIVAC 1100/82 System Expended Configuration
Figure 3-1. Main Storage Mapping of 262K Words

1-2
1-3
3-3
3-4
3-9
4-12
4-13
4-15
4-16
5-51
6-2
6-4
6-68
6-70
7-6
7-7
7-8
7-8
7-10
7-13
7-14
8-6
8-9
8-11

Figure 3-2. Main Storage Unit Address Assignment
Figure 3-3. Requester Absolute Address Format
Figure 4-1. Data Transfers From Storage
Figure 4-2. Data Transfers to Storage
FigurEt 4-3. J-·Register Format for Character Addressing Mode
FigurEt 4-4. Byte Selected for Valid Combinations of BL and Ob Field Values
FigurEt 5-1. J-·Register Format
Figure 6-1. 1100/80 Input/Output Unit
Figure 6-2. Byte or Block Multiplexer Channel Compared to 1100/80 Word Channel
Figure 6-3. Block Multiplexer Channel
Figure 6-4. W'ord Channel lSI Interface Example CCW List
FigurE! 7-1. Format of Guard Mode Interrupt Status
Figure 7-2. Format of Addressing Exception Interrupt Status
Figure 7-3. Format of Breakpoint Interrupt Status
Figure 7-4. Format of Interprocessor Interrupt Status
FigurE! 7-5. Format of Immediate Storage Check Interrupt Status
FigurE! 7-6. Storage Check Interrupt Status Word
FigurE! 7-7. Power Check Interrupt Status
Figure 8-1. Basic Designator Register States
FigurEI 8-2. Bank Descriptor and BOT Pointer Formats
Figure 8-3. Base Value Selection

TABLES

Table 1-1.
Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.
Table 3-6.
Table 3-7.
Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 4-5.
Table 4-6.
Table 4-7.
Table 4-8.
Table 4-9.
Table 5-1.
Table 5-2.
Table 5-3.
Table 5-4.
Table 5-5.
Table 5-6.
Table 5-7.

Fully Supported Configurations 1-4
MSR Values vs. Module Identification 3-5
Fixed Address Assignment 0200-0237 3-6
Fixed Address Assignments 0240-0277 3-7
Words/Blocks Per Storage Set as a Function of Main Storage/Buffer Capacity 3-8
MSR Selection 3-10
GRS Register Assignments 0 Through 63 3-11
GRS Register Assignments 64 Through 127 3-12
Instructions that Condition the Carry and Overflow Designators 4-3
Single-Precision Floating-Point Characteristic Values and Exponent Values 4-5
Double-Precision Floating-Point Characteristic Values and Exponent Values 4-5
Explanation of J-Register Fields for Character Addressing Mode 4-15
Output Ob Values Produced When BL = 0 4-17
Output Ob Value Produced When BL = 1 4-18
Output Ob Values Produced When BL = 2 4-18
O~tput Ob Values Produced When BL = 3 4-19
Summary of Use of i-Field 4-23
Truth Table for Logical OR, XOR, and AND 5-45
J-Register Increment Field Values 5-53
Byte Status Word 5-54
Byte String Sign Codes 5-55
Function Byte Interpretation 5-58
Subfunction Byte Interprataion 5-60
Summary of Staging Register and J-Register Fields 5-62

8492
UP-HUMBER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference

Table 6-1. Device Addressing
Table 6-2. Channel, Subchannel, and Device States
Table 6-3. 1/0 System Composite State vs Condition Codes
Table 6-4. 1/0 Instruction Condition Codes for Byte or Block Channel
Table 6-5. 1/0 Instruction Condition Codes for Word Channels
Table 6-6. MSU Data Format - 36-Bit Format, Forward Operation
Table 6-7. MSU Data Format - 36-Bit Format, Backward Operation
Table 6-8. Format Flags vs Type of Channel

UPDATE LEVEL

Table 6-9. CCW Flags vs Termination Conditions on Byte or Block Multiplexer Channel
Table 6-10. CCW Flags vs Termination Conditions on Word Channel
Table 6-11. CCW Command Code
Table 6-12. IOU Status
Table 6-13. IOU Fixed Addresses
Table 6-14. Byte Data Packing on Abnormal Boundaries
Table 6-14. Byte Data Packing on Abnormal Boundaries (continued)
Table 6-14. Byte Data Packing on Abnormal Boundaries (r.ontinued)
Table 6-14. Byte Data Packing on Abnormal Boundaries (continued)
Table 6-14. Byte Data Packing on Abnormal Boundaries (continued)
Table 6-15. Scratch Pad Formats for Subchannel Expansion Feature
Table 6-16. Interrupt Mask Register
Table 7-1. Interrupt Priority
Table 7-2. Byte Status Code Definition
Table 7-3. Gtmeral Input Format for Byte-to-Floating Instructions
Table C-l. MnemoniclFunction Code Cross-Reference
Table C-2. Instruction Repertoire
Table 0-1. Fieldata To ASCII Code Conversion

Contents-1 2
PAGE

6-7
6-8
6-11
6-12
6-14
6-32
6-33
6-34
6-35
6-37
6-38
6-47
6-49
6-58
6-59
6-60
6-61
6-62
6-64
6-65
7-2
7-15
7-16
C-l
C-4
0-1

8492 l
UP-NUMBER -

1.1. GENERAL

SPERRY UNIVAC 1100/80 S'l!Items
Processor and Storage Programmer Reference

1. Introduction

This manual provides information on the central processor unit (CPU), main storage unit (MSU), buffer
storage (SIU), and input/output unit (IOU) of the SPERRY UNIVAC 1100/80 Systems.

The SPERRY UNIVAC 1100/80 Systems are high-performance, software compatible, extensions to
the proven SPERRY UNIVAC 1100 Series Systems. Designed to enhance the efficiency of the
SPERRY UNIVAC 1100 Series, the 1100/80 Systems offer dependable and highly effective
processing in real-time, demand, and batch modes and excel in multiprocessing applications.

Although the 1100 Series Systems may differ in hardware design, software compatibility is
maintained. All components of the 1100/80 Systems (processing units, input/output units, storage
units, and peripherals) are controlled by the SPERRY UNIVAC 1100 Series Operating System.
Industry standard language processors and application software are provided. The flexible design
of the 1100/80 Systems allows the user to select a system to best meet his individual requirements.

1.2. 1100/80 SYSTEM CONFIGURATIONS

The basic 1100/8 1 Processing System (1 x 1 configuration) consists of two functionally and physically
indelPendent units: one CPU and one IOU. The processor organization is intrinsically that of a
multlitask processor and is designed for operation in a multiprogramming environment. The basic
system may be expanded by adding a CPU and/or an IOU up to a total of two CPUs (1100/82 System)
and two IOUs (2x2). The basic 1 x 1 configuration is shown in Figure 1-1. A 2x2 configuration is
shown in Figure 1-2. Table 1-1 lists all fully supported configurations.

1.2.1. Central Processor Unit

The processing unit is the central element of a large-scale system that is capable of serving both
business and scientific applications in batch, demand, and real-time environments. The processing
unit provides compatibility with prior 1100 Series Systems at the user object level, depending on
internal code selections, peripheral configurations, and software implementation of hardware
enhancements and user interfaces.

8492
UP-filUMBER

SYSTEM

MAINTENANCE

UNIT

SYSTEM

TRANSITION

UNIT

400 HZ

SPERRY UNIVAC 1100/80 8~m.
Processor and Storage Programmer Reference

MAIN STORAGE

262K WORDS

(0 TO 7)

UPOA T£ lEVEL

STORAGE EXPANSION

262K WORDS

(0 TO 7)

,-------'-----,.- - - - - - - - - - - - - - -,

STORAGE INTERFACE
UNIT

4K WORDS
SIU EXPANSION

4K WORDS

1

1

1

1

1-------------1--------------1
4K BUFFER EXP. 4K BUFFER EXP. :

--------------1
MMA MMA

'----1r---------r----l- - : :: :::: r- - - - - - - - - J -- / -- / --- / --- /
,---_--'-_~-_--r--___ ----.L __ __iC.L_-____. __________ _

CENTRAL INPUT/OUTPUT I/O

PROCESSOR
UNIT EXPANSION

UNIT

2-4 1 - 4

CHANNEL CHANNEL
MODULES MODULES

MOTOR/ALTERNATOR

SYSTEM

CONSOLE

(ONE OR MORE)

NOTE: Main storage must contain a minimum of 524K words.

Figure 1- 1. SPERRY UNIVAC 1100/81 System Minimum Configur6tion

8492

UP-NUMBER

SPERRY UNIVAC 1100/80 S~.m. 1-3
UPDATE lEVtl PAGE Processor and Storage Programmer Reference , _________ --=---_---= ___________ -L-____ ----i __ ,_, ___ ,_, __ _

I
I
I
I
I
I
I

- - - - - - - -,-----------,

STOR. EXP.

262K WORDS

(1 TO 4)

MAIN STORAGE

262K WORDS

(1 TO 4)

r-------------,- - - - - - - - - - I

MAIN STORAGE

262K WORDS

(1 TO 4)

STOR. EXP.

262K WORDS

(1 TO 4)

L. _________ ~y~-------

I
I

STORAGE INTERFACE UNIT
4K WORDS

4K BUFFER EXPANSION

MMA

CENTRAL

PROCESSING UNIT

I 1/0 EXP.
I

INPUTI
OUTPUT

UNIT
I
I
I
I
I

UNIT

L - ____ -'--___ --J

1-4 2-4
CHANNEL CHANNEL
MODULES MODULES

[

SYSTEM]
TRANSITION

UNIT

400 HZ MOTORI

ALTERNATOR

(lOR 2)

SIU EXPANSION
4K WORDS

4K BUFFER EXPANSION

MMA

CENTRAL

PROCESSING UNIT

INPUTI
OUTPUT

UNIT

I/O EXP.

UNIT
I
I
I

L--___ -A- _____ --'

2-4 1-4
CHANNEL CHANNEL
MODULES MODULES

SYSTEM

MAINTENANCE

UNIT

SYSTEM CONSOLE

(TWO OR MORE)

NOTE: Main storage must contain a minimum of 1048K words.

Figure 1-2. SPERRY UNIVAC 1100/82 System ExptlndlHi Configuration

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S\'Stems
Processor snd Storage Programmer Reference I UPOA Tt LEVll

I I 1-4
PAGE

Tabls 1-1. Fully Supportsd Configurations

Configuration

1100/81 1100/82

Units 1X1 1X2 2X1 2X2

CPU 1 1 2 2

IOU 1 2 1 2

Main Storage (words) 524K - 524K - 1048K - 1048K -
4194K 4194K 4194K 4194K

Storage Interface Units (words) 8K (1) - 8K (1) - 16K 16K
16K 16K

System Console 1-N* 1-N* 2-N* 2-N*

System Transition Unit 1 1 1 1

System Maintenance Unit 1 1 1 1

Motor/Alternator 1 1-2 1-2 1-2

* N equals any number required, but it is limited by I/O.

(1) May be one 8K buffer or two 4K buffers.

The basic processing unit consists of the following components:

• A control and arithmetic section that includes fixed-point arithmetic; logical data manipulation;

• Instruction, interrupt, and arithmetic control and control storage;

• Maintenance section which acts as a device and a control during off-line maintenance
procedures initiated by the maintenance processor; and

• Interfaces for two input/output units, one storage interface unit, one system maintenance unit,
one system transition unit, and the system interrupt network.

The processing unit also has the following features:

• Floating-point instruction control and arithmetic.

• Byte-oriented instruction control and arithmetic.

The processing unit has the following general characteristics:

• A complete set of arithmetic, logical, manipulative, data transfer, and sequence control
instructions.

8492 L SPERRY UNIVAC 1100/80 S~tem. I I 1 5
UP-NUMBER Processor and Storage Programmer Reference UPOATt lEVU PAGE -- ,-------=--------'---~

• A comprehensive relative addressing mechanism providing program segmentation and storage
protection.

• An absolute addressing range of sixteen million 36--bit words.

• A basic instruction fetch period of 200 nanoseconds.

• A general purpose microprogrammed arithmetic section.

1.2.2. Main Storage

The 11 OO/SO main storage system consists of large capacity storage units plus high speed storage
buffEtrs to achieve increased performance from the lower speed main storage. Operation of the buffer
is transparent to software, to the extent that software organization affects the miss rate, or percentage
of instructions, or operands not located in the buffer when requested.

The basic main storage unit consists of 262K words located in a single cabinet. This can be expanded
up to eight storage cabinets, minimum memory is 524K words.

The basic storage interface unit contains SK words of buffer storage. In addition, a second 4K-word
buffer may be added which may be expanded to SK words giving a maximum buffer size in a system
of 16K words"

1.2.:i. Input/Output Unit (IOU)

The basic 11 00/S1 System configuration includes one input/output unit (IOU). The IOU controls all
transfers of data between the peripheral devices and main storage. Transfers are initiated by a CPU
under program control. The IOU includes independent data transfer paths to the CPU and to main
storage. The primary mode of I/O transmission is through byte channels with word channels available
as an option.

The IIOU consists of two sections: a control section and a section containing from two to four
input/output channel modules. An IOU expansion allows up to four additional channel modules to
be added to the IOU. The word I/O channel option provides four word I/O channel modules and
occupies one byte channel module position. A second IOU with identical expansion capabilities can
be added to a system.

The control section includes all logic associated with the transfer of function, data, and status words
between main storage and the subsystems. It also services I/O requests from either one or both of
the CPUs (in a multiprocessor system) and routes interrupts to one of the two processing units.
Interrupt routing may be specified by program.

The IOU capabilities are given below.

• Primary mode of I/O transmission through byte channels; word channels are optional.

• Channel transfer rates of:

3.0 x 106 bytes per second (maximum) on a block multiplexer channel module;

200 x 103 bytes per second (maximum) on a byte multiplexer channel module;

500 x 103 words per second aggregate for a word channel module.

8492
UP-NUMBER

SPERRY UNIVAC 1 100/80 S~.
Processor and Storage Programmer Reference UPOAlt LEVEL

1-6
PAGE

• Externally specified index (ESI) and internally specified index (151) transfer modes on the word
channels.

• Channel buffering

• Interrupt tabling

• Parity generation/checking capability on all 151 channels.

1.2.4. System Console

The system console provides the means for communication with the Executive System. The basic
console consists of the following major components:

• The CRT/keyboard consists of a UNISCOPE 100 Display Terminal. The display format is 16 lines
with 64 characters per line. The seven-bit ASCII character set, consisting of 95 characters plus
the space, is used. The keyboard provides all of the operator controls required for generating
data and initiating transfers.

• The incremental printer operates at 30 characters per second and provides a hard copy of
console messages. (Five additional incremental printers may be connected to a console.)

• Maintenance interface for remote console operation by means of the system maintenance unit
and the Total Remote Assistance Center (TRACE) computer system.

• The fault indicator, located on the incremental printer, provides the operator with a visual
indication of a fault condition in a major system component. The actual component and nature
of the fault may then be determined from indicators on the operator/maintenance panel on the
system transition unit.

• A standard byte multiplexer channel interface.

1.2.5. System Transition Unit (STU)

The STU contains the controls and indicators required for control and assignment of the system units.
The functions controlled by the STU are:

• Power sequencing

Controls turn-on/turn-off of main system power and sequencing of ac power in the CPUs, IOUs,
and main storage (including buffer storage sections).

• Partitioning

This function provides the ability to assign the individual units to either one of two independent
applic.ations or to isolate it from either application for off-line concurrent maintenance. Included
in this function is the control for the automatic expansion or compression of the main storage
address range for both applications. This operation provides contiguous main storage ranges
for either or both applications for any combination of main storage unit assignments.

This function also indicates the operational status of each central complex unit. The state of
these status conditions are available to system software for configuration control.

8492 L SPERRY UNIVAC 1100/80 S~.
UP-HUMBER Procossor and Storage Programmer Reference - ,--------=-----=--------'----~

UPOATt lEV£l
1-7

PAGE

The ability to partition peripheral subsystems is provided by controls on the individual
subsystems and, optionally, for byte peripheral subsystems, by software command.

• Initial Load

This function provides the ability to set MSR (module select register) values, select initial load
paths and initiate the initial load operation for either one of two applications.

• Automatic Recovery

This function provides the system, specified in Application 0, with an automatic system recovery
capability'. When auto-recovery is enabled and the system software does not reset the
auto-recovery timer within the preset time interval, the system is cleared, reloaded, and
reinitiated. The system provides two recovery paths. The alternate recovery path is
automatically initiated when an attempted recovery fails. The function provides for software
resetting of the auto-recovery timer and selection of the auto-recovery path to be used by the
next auto-recovery attempt.

• Processor and Input/Output Unit Controls

This function provides the controls and indicators required for manual control of the processors
,and inputloutput units.

1.2.6. System Maintenance Unit

The system maintenance unit provides for diagnostic checkout and fault isolation by the automatic
comparison of maintenance indicators against known correct data and the creation of dumps. The
system maintenance unit includes a maintenance processor, communications capability, UNISCOPE
100 Display Terminal, card tester and peripherals.

1.2.7'. Auxiliary Storage and Peripheral Subsystems

The 1100/80 Systems offer a full range of auxiliary storage and peripheral subsystems to provide
the capability to satisfy many requirements. The following list of peripheral equipment is the
minimum available with the 1100/80 System. This minimum has been established to ensure an
adequate complement for customer engineering and software support.

Minimum Complement

1. One 0716 Card Reader and one 0776 High
Speed Printer Subsystem

2. 8430/8433/8434 Disk Subsystem with one
!)046 Control Unit and two 8430 or two
8433~or two 8434 Disk Storage Units

3. UNISERVO Magnetic Tape Subsystem with
!5042 Control Unit and four UNISERVQ 30
Tape Units

Alternate

One disk subsystem as follows:
- 5024 Control Unit with two 8425
Disk Storage Units

UNISERVO Magnetic Tape Subsystem
with 5017 Control Unit and four
UNISERVO 12/14/16120 Tape Units

8492 L SPERRY UNIVAC 1100/80 Systems 2-1
UP-NUMBER Processor and Storage Programmer Reference UPOATt LEVEL 'AGE
,~~--=---~---L--

2. Processing Unit

2. 1. GENERAL

The '1100/80 Central Processing Unit (CPU) contains a control section, an arithmetic section, a
maintenance section, a General Register Stack, and interfaces through which it is connected to other
equipment. The IOU controls all data transfers between peripheral devices and storage. Transfers
are initiated by a CPU under program control.

2.2. CONTROL SECTION

The c:ontrol section of the CAU interprets instructions and directs all processor operations except
certain I/O operations. It is discussed briefly below and in more detail in 4.2.

2.2. 1. Control Section Operation

The program instruction words are sequentially loaded into the control section. Each instruction word
is interpreted by the control section which generates the signals necessary to perform the instruction.
The instruction words are located in main storage and the data words (operands) are located either
in main storage or in the addressable control registers which are part of the control section. The
control section includes an address formation segment which generates the absolute main storage
addresses to obtain the instruction words.

The instruction word is divided into fields. These fields specify to the control section the function
to be performed, which portion of the operand is to be used, a control register, indexing, index register
modification, indirect addressing, and an operand address.

2.2.2.. Instruction Repertoire

The instruction repertoire includes fixed-point and floating-point arithmetic, logical functions, byte
operations, block transfers, comparisons, tests, I/O control, and special purpose instructions. There
are over 200 basic instructions in the repertoire. Partial word data transfers and repetitive operations
are included in the instruction repertoire. Indexing capability is provided with all instructions. Indirect
addressing capability is also provided and is usable to any level with full indexing capability at each
level.

InstrUlctions such as data transfers, single-precision fixed-point adds, and certain logical functions,
require less than 250 nanoseconds for complete execution. Indexing (18-bit) does not add to the
execution time of an instruction. Details of the instruction repertoire are found in Section 5.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S'{8tems
Processor and Storage Programmer Reference

2.2.3. Control Registers

UPOA T£ LEVEL
2-2

PAGE

The 128 addressable control registers in the general register stack (GRS) of the control section are
integrated-circuit registers. These control registers are addressed either explicitly or implicitly by
the instructions. They fall into four categories: index registers, arithmetic registers, special registers,
and unassigned registers.

The control registers are discussed in detail in Section 3.

2.2.4. Data Shift/Complement/Store Operation

The CPU includes circuitry which permits the various store instructions to bypass the arithmetic
section. This circuitry includes the shifting capability needed for storing partial words in main
storage, the sign testing capability needed for the Store Magnitude A instruction, and the
complementing capability needed for the Store Negative A and Store Magnitude A instructions.

2.3. ARITHMETIC SECTION

All arithmetic computation is microprogram controlled and is performed using the nonaddressable
registers of the arithmetic section. These arithmetic processes can be performed in either fixed-point
or floating-point mode. Fixed-point arithmetic instructions provide for single-precision,
double-precision, half-word, and third-word addition and subtraction, and for fraction and integer
multiplication and division. Floating-point instructions provide for both single-precision and
double-precision operation. The arithmetic section also performs certain logical operations such as
shifting and comparisons. The instruction word may be used to specify the transfer of any chosen
portion of a word (half, third, quarter, or sixth) to the arithmetic section. The ability to transfer only
the selected portion of a word minimizes the number of masking and shifting operations required.

A shift matrix in the arithmetic section permits the completion of an entire single word shift operation
in one ma·in storage cycle time. By use of the matrix, the shift operation can shift a single or double
word operand in either direction up to 72 bit positions.

Details on the operation of the arithmetic section are found in 4.1.

2.4. MAINTENANCE SECTION

The maintenance section performs all diagnostic tests using its own repertoire of commands. It
operates only when the processor is in maintenance mode. In this mode the processing system can
be operating either online or offline. When online, the processing system and the maintenance
system operate concurrently. In this case the maintenance system is connected to and operating on
the byte bus and the processing system operates normally except that the processing operation is
suspended whenever the maintenance system needs to use the processor data and control paths for
executing a maintenance function.

2.5. INPUT/OUTPUT UNIT (IOU)

The IOU is a separate functional entity. I/O activity is initiated when the interpretation of certain
instructions by the CPU causes signals to be sent to the IOU. Once an I/O operation is initiated, the
IOU and the subsystem control the input and output transfers. The IOU operates with a wide variety
of peripheral devices, and it requires minimal attention from the CPU.

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference UItOATt LEVtL

2-3
PAGE

On<:e an I/O operation is initiated by the program, I/O activity is independent of program control. The
I/O data flows between main storage and the peripheral subsystem through an I/O channel. Each
I/O channel consists of 36 input data lines, 2 input parity lines, 36 output data lines, 2 output parity
lines, and various control signal lines. All data word bits are transmitted in parallel to or from the
subsystem.

The I/O unit Ihas four interfaces: a storage interface, a processor interface, a control unit-peripheral
interface, and a system transition unit interface.

Det.ails of the IOU are presented in Section 6.

8492
UP-NUMBER L SPERRY UNIVAC 1100/80 S~.m.

Processor and Storage Programmer Reference
.~~----=--_-----L----'---

UPOA T£ LEVEL

3. Storage

3. 1. GENERAL

The storage system comprises up to 4,194,304 words of main storage, up to 16,384 words of high
speed buffer storage and 128 words of control registers.

The main storage units (MSUs) provide storage for the instruction and data words. The storage
interface unit (SIU) provides high speed buffer storage between the storage units and the processor
and between the storage units and the input-output units (IOUs). The 128 addressable control
regis1ters in the control section of each CPU provide fast access storage for data and control words.

3.2. MAIN STORAGE

A data or instruction word consists of 36 information bits and two parity bits. The two parity bits
provide hardware parity checking on each 18-bit segment of the word transferred over the MSU-SIU
interface.

Data to or from main storage is transferred in block increments of eight contiguous words. The eight
words, comprising four double words (72 data, 4 parity bits) are transferred in four s~quential
oper~ltions. Each double word is written into or read from storage as an 80-bit word (72 data, 8 ECC).
The eight error correction code (ECC) bits are generated from the write data. If a single-bit error is
detected during a read, the error correcting code is used to correct the data. If multiple errors are
detected in the stored data the processor is notified with an Interrupt signal.

A main storage cabinet contains 262K or 524K words. A maximum of eight cabinets may be used
in a system. Figures 1-1 and 1-2 show the minimum and expanded system configurations.

3.2.1. Main Storage Addressing

Main storage addressing is continuous from the lowest order address to the highest. Figure 3-1
shows the MSU mapping of 262K words into 8-word block increments. Each block contains eight
contiguous words and the blocks are sequential relative to the set addresses. Also shown is the
relationship of the set address portion of an absolute address to the blocks stored in an MSU when
the buffer capacity is 4096 words. That is, in each 262K module of main storage there are 128
8-word blocks for each set address or, stated differently, 1/128 of the total storage capacity
(regardless of size) is assigned to each set address. For an expanded buffer of 8192 words 1/266
of the total storage capacity is assigned to each set address. Set addresses associated with a buffer
storage capacity of 4096 words are on a modulo 1024 and for a 8192-word buffer capacity the set
addresses are on a modulo 2048.

SPERRY UNIVAC 11 00/80 S~tem.
Processor and Storage Programmer Reference UPDATE LEVel

3-2
PAGE

8492
UP-NUMBER __ ~ __________ -L __ ~ __________ ~ ___________ _

When a requested absolute address is not in buffer storage the SIU initiates a request to main storage
to read out the 8-word block containing the needed address and data. The request is initiated by
bussing the 18 bits of the absolute address (shown in the following format) to all the MSUs in the
configuration. The identified MSU executes the read cycle.

3.2.2. MSU Address Assignments

A system can have one to eight MSUs with each MSU having 262K or 524K words each. A maximum
configuration has 4,194,304 words in eight cabinets. The system is capable of addressing
16,}77,216 words which is divided into upper and lower address ranges of 8,388,608 words each.

The addressing for the first MSU (0) installed always begins at the mid-address 223 -1 (8,388,607)
minus the size of that main storage unit (262K or 524K). The second MSU (1) begins its addressing
at 223 if the SIU upper address is present. More MSUs can be added on either side of the mid-address
point up to eight MSUs. MSUs added to either address range are assigned to the configuration with
their numbers in an increasing order going away from the midpoint address. (See Figure 3-2.) This
method of MSU assignment allows using a system of as little as one MSU and expanding it to eight
MSUs with no change in the addressing logic. Table 3-1 shows the absolute addresses for MSUs
assigned to specific positions in a maximum storage configuration.

This redundancy in the SIU allows concurrent addressing of the upper and lower address ranges and
the even and odd addresses within each address range. It is possible to service four requests
concurrently.

Note that the minimum SIU configuration is 8K words which can be one 8K buffer or two 4K buffers,
with one 524K MSU or two 262K units. However, the system will operate in a degraded mode with
one 4K SIU and one 262K MSU.

8492
UP-NUMBER Processor and Storage Programmer Reference I UPDAT< LEVU

I 3-3
PAGE L SPERRY UNIVAC 1100/80 S'l!Items

Sets
8K 4K
0 0
1 1
I 2

(1)
I 3
I 4
I I
I I
I' 126

'127 127
(1)

'128 0
'129 1

I 2
I I
I (2)
I I

254 126
255 127

0 0
I 1
I I
I (3)

I i
'127 127

(2)
'128 0

I 1
I I
I ~:4)

I I
254 126
~!55 127

0 0
1 1
2 2

f5)
3 3
4 4
I I
I I

126 126
127 127

(3)
1128 0
129 1

I 2
I I
I (6)
I

Figure 3-1. Main Storage Mapping of 262K Words

MSU Words

0 - 7
8 - 15

16 - 23

24 - 31
32 - 39

1008 - 1015
1016 - 1023

1024 - 1031
1032 - 1039
1040 - 1047

2032 - 2039
2040 - 2047
2048 - 2055
2056 - 2063

3064 - 3071

3072 - 3079
3080 - 3087

4080 -
4088 -
4096 -
4104 -
4112 -

4120 -
4128 -

5104 -
5112 -

5120 -
5128 -
5136 -

4087
4095
4103
4111
4119

4127
4135

5111
5119

5127
5135
5143

Sets MSU Words
8K 4K

254 126 6147 - 6135
255 127 6136 - 6143

0 0 6144 - 6151
I 1 6152 - 6159
I I I
I (7) I
I I I
I 127 7160 - 7167

(4) 0 7168 - 7175
I 1 7176 - 7183
I I I
I (8) I
I I I

255 127 8184 - 8191
0 0 8192 - 8199
1 1 8200 - 8207

(9)
2 2 8208 - 8215
3 3 8216 - 8223
I I I
I I I
I 127 9208 - 9215

(5)
0 9216 - 9223

I I I
I (10) !
I I I

255 127 10240 - 10247
I I

~~
I

/"

I I I
128 0 261120 - 161127

(64) I I
I I I

(128)
I I I

255 127 262136 - 262143

NOTE:

The numbers in parentheses () show the
association of the number of buffer-set
increments to each 262K of storage.

.d~ ;/"

MSU7 MSU5 MSU3 MSU1 MSUO MSU2 MSU4

2 23 I 2 23 I 2 23 I 2 23 22f3 222 I 222 I 222
2 23 2 20 2 23 2 20 2 23 2 19 2 23 2 18 2 23_1 221 222 221 222 221

221_1 2 19 2 20 2 18 2 20 2 18 2 19 I 2 20 221 2 20 221 2 19

2 18 2 19 2 19 2 20 2 18 2 20 2 18

2 19

~ SIU Upper Address Range SIU Lower Address Range

Figure 3-2. Main Storage Unit Address Assignment

MSU6

I 222
222 221 222
221 2 18 221

2 19

'\.
/

c co
~ ~
C N
~
til

'" ::II

-0 en
~."
Om
n:D
CD:D cn-<
cnc:
~~
C»<
~~
Q.C')

(1)=
88
~,

C»oo co
CD en
~
0-
c3 ;-
3
3
CD
~

::D
CD
i'
~
(J)
~
n
(J)

C

~
i
r

~
'"(0)

t ...

8492 L SPERRY UNIVAC 1100/80 S~tems I I 3-5
UP-NUMBER Processor and Storage Progra~mer Reference U!tOATt LEVtL PAGE

- .~~~--~--

Table 3-1. MSR Values vs. Module Identification

Lower Address Range

MSR Value Address Ranges (Octal) Physical Module
(Octal)

140 30 000 000 - 30 777 777

144 3 1 000 000 - 3 1 777 777 MSU6

150 32 000 000 - 32 777 777
t--

154 33 000 000 - 33 777 777 MSU4

160 34 000 000 - 34 777 777

164 35 000 000 - 35 777 777 MSU2

170 36 000 000 - 36 777 777

174 37 000 000 - 37 777 777 MSUO

Upper Address Range

MSR Value Address Ranges (Octal) Physical Module
(Octal)

200 40 000 000 - 40 777 777

204 4 1 000 000 - 4 1 777 777 MSU1

210 42 000 000 - 42 777 777

214 43 000 000 - 43 777 777 MSU3

220 44 000 000 - 44 777 777

224 45 000 000 - 45 777 777 MSU5

230 46 000 000 - 46 777 777

234 47 000 000 - 47 777 777 MSU7

3.2.:3. Fixed Address Assignments

The nnterrupt subroutine entrances and certain status words are assigned fixed locations in main
storage as shown in Tables 3-2 and 3-3. The listed addresses are relative to the contents of the
7-bit module select register (MSR) and the position of the SIU Upper/Lower switch. MSR may be
manually loaded by pressing the desired combination of the seven MSR switches and the SIU
UppEtr/Lower switch on the system transition unit partitioning panel. When an initial load operation

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference UPOA TE lEVU

3-6
PAGE

is performed, the value in the MSR identifies the main storage area in which the incoming data is
to be stored. During an ESI-I/O operation the value in the MSR identifies the high order bits of the
address of the main storage locations from which the ESI access control words and chain pointer
words are obtained.

Octal

200
201
202
203
204
205
206
207
210
211
212
213
214
215
216
217
220
221
222
223
224
225
226
227
230
231
232
233
234
235
236
237

Tllble 3-2. Fixed Address Assignment 0200-0237

Decimal Assignment

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

Reserved for Hardware Default
Unassigned
Unassigned
Unassigned
I/O Normal Status Interrupt
I/O Tabled Status Interrupt
I/O Machine Check Interrupt
Unassigned
Quantum Timer Interrupt
Real Time Clock Interrupt

Dayclock Value
Dayclock Interrupt
Immediate Storage Check Interrupt
Invalid Instruction
Executive Request Interrupt
Guard Mode Interrupt
Test and Set Interrupt
Characteristic Underflow Interrupt
Characteristic Overflow Interrupt
Divide Check Interrupt
Addressing Exception Interrupt
Breakpoint Interrupt
Interprocessor Interrupt
Power Check Interrupt
Delayed Storage Check Interrupt
Jump History Stack Interrupt
Emulation Interrupt
Unassigned

All fixed addresses are relative to the MSR.

8492
UP-NUMBER L SPERRY UNIVAC 1100/80 S~tems 3-1

Processor and Storage Programmer Reference U.-oAT£ LEVEL 'AGE . -~----=-----=----~~.-

Table 3-3. FixBd Address AssignmBnts 0240-0277

Octal Decimal Assignment

2401
241
242
243
244
245
246
247
2501
251
252
253
254
255
256
257
260
261
262
263
264
265
266
267

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

Processor 0 Channel Address Word 0
Processor 0 Channel Address Word 1
Unassigned
Unassigned
Processor 1 Channel Address Word 0
Processor 1 Channel Address Word 1
Unassigned
Unassigned
Processor 0 Interrupt Address Word
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Processor 0 Interrupt Address Word
Processor 0 Channel Status Word 0
Processor 0 Channel Status Word 1
Processor 0 Channel Status Word 2
Processor 1 Interrupt Address Word
Processor 1 Channel Status Word 0
Processor 1 Channel Status Word 1
Processor 1 Channel Status Word 2

All fixed addresses are relative to the MSR. Addresses 270 through 277 are unassigned.

3.3. BUFFER STORAGE

BuffEtr storage is in the storage interface unit (SIU) and is transparent to users, processors, IOUs, and
the operating system. The only access to main storage is through the SIU with absolute addresses.
The basic buffer capacity is 4096 word (36 bit + parity bit words) and is expandable in 4096 word
increments to 16,384 words.

The storage interface unit, comprises two identical arid functionally independent halves, SIU upper
and SIU lower. SIU upper provides access to MSUs assigned with absolute addresses 223

(8,388,608) and up; SIU lower provides access to MSUs assigned with absolute addresses 2 23 -1
(8,388,607) and down. Each SIU half contains a buffer of 4096 words, expandable to 8192 words
maximum and a table of the block addresses (called tag) of the words resident in the buffer.

3.3. '1. Set Associative Addressing

Both the buffer and the absolute address space in main storage are divided into sets. Each set in
the buffer is associated with a corresponding set of absolute addresses in main storage. Each buffer
set is functionally a 4-entry content-addressable memory, where each entry represents a block (8
words) of main storage in an associated absolute address space set. A block is eight contiguous
words beginning at an address divisible by eight. Each buffer set contains four 8-word blocks (32
words) and its contents could be al)Y four blocks from a like numbered storage set. For example,
buffer set 1 could contain blocks 4104-4111, 8-15, 6152-6159, 2056-2063 from storage set 1.

8492
UP-NUMBER

SPERRY UNIVAC 11 00/80 S~.m.
Processor and Storage Programmer Reference UPDATE lEVEL

3-8
PAGE

Figure 3-1 shows the relationship of main storage blocks to the 4K and 8K buffer sets. For a 4K
buffer 1/128 of all storage blocks are associated with a given buffer set. For an 8K buffer 1/256
of all storage blocks are associated with a given buffer set. For example, main storage blocks
associated with the 4K and 8K buffer sets are on a modulo 1024 and 2048, respectively, as follows:

4K Buffer 8K Buffer

Set 0 Set 1 Set 127 Set 0 Set 1 Set 255

0-7 8 - 15 1016-1023 0-7 8 - 15 2040-2047

1024-1031 1032-1039 2040-2047 2048-2055 2056-2063 4088-4095

2048-2055 2056-2063 3064-3071 4096-4103 4104-4111 6136-6143

3072-3079 3080-3087 4088-4095 6144-6151 6152-6159 8184-8191

etc. etc. etc. etc. etc. etc.

Table 3-4 shows the relationship of the number of buffer sets to the number of words and 8-word
blocks in a storage set for the 1100/80 main storage capacities available.

Table 3-4. Words/Blocks Per Storage Set as a Function of Main Storage/Buffer Capacity

4K Buffer (128 Sets) 8K Buffer (256 Sets)
Main Storage Words Per Storage Blocks Per Words Per Blocks Per

Capacity Set Storage Set Storage Set Storage Set
(Words)
262144* 2048* 256* 1024* 128*
524288 4096 512 2048 256
786432 6144 768 3072 384

1048576 8192 1024 4096 512
1310720 10240 1280 5120 640
1572864 12288 1536 6144 768
1835008 14336 1792 7168 896
2097152 16384 2048 8192 1024
2359296 18432 2304 9216 1152
2621440 20480 2560 10240 1280
2883584 22528 2816 11264 1408
3145728 24576 3072 12288 1536
3407872 26624 3328 13312 1664
3670016 28672 3584 14336 1792
3932160 30720 3840 15350 1920
4194304 32768 4096 16384 2048

* Degraded mode only

8492 I SPERRY UNIVAC 1100/80 S~.m. I I 3 9
___ u_~_~_U_M_IE_ft ____ ' ~ _____ P_r_o_c_e_s_so __ r_a_n_d __ S_to_r_a_g_e ___ prro_g_r_a_m __ m_e_r_R __ e_f_e_r_e_n_c_e ________ ~~U_~ __ n __ l~ __ l ____ ~_'A_G_E_-________ _

3.3 .. 2. Address Interleave

Wht~n the SIU contains an upper and lower half then each half may be configured as an even and
odd segment .. When a requesters absolute address (contents of Figure 3-3 sans MSR) is sent to the
SIU,. bit 23 se·lects the upper or lower half and bit 0 selects the odd or even segment in that SIU half.
The set address initiates the reading of four block addresses from the tag and the data from the buffer.
A comparison is made between the requested block address and the four tag block addresses and
if the requested block is resident, the data is sent to the requester; if not, bits 20 through 3 with MSR
appfended is sent to main storage. (See 3.2.1.) The MSR values are listed in Table 3-5.

NOTE:

=0
= 1

Selects lower address range 2 23 - 1 and down (SIU Lower)
Selects upper address range 223 and up (SIU Upper)

Block address

Set addresses - 0 - 127 (4096 word basic buffer)

Set addresses - 0 -255 (8192 word expanded buffer)

Selects 1 of 4 odd or even words (00-11)

o = Even word segment
1 = Odd. word segment

MSR is appended by the SIU when an MSU request is made.

Figure 3-3. Requester Absolute Address Formllt

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~tem.
Processor and Storage Programmer Reference

Table 3-5. MSR Selection

MSU Granularity Number Of SIU Upper Bits
(Mi II ions10 of Words

Words) (Mi II ions10)
Avai lable To

SIU Half
2 1 1/2 1/4 23 22 21 20 19 18

X 1/4 1 0 0 0 0 0
X X 1/2 1 0 0 0 0 1

X 3/4 1 0 0 0 1 0
X X X 1 1 0 0 0 1 1

X 1 1/4 1 0 0 1 0 0
X X 1 1/2 1 0 0 1 0 1

X 1 3/4 1 0 0 1 1 0
X X X X 2 1 0 0 1 1 1

NOTE:

UPDATE LEVel
3-10

PAGE

SIU lower Bits

23 22 21 20 19 18
0 1 1 1 1 1
0 1 1 1 1 0
0 1 1 1 0 1
0 1 1 1 0 0
0 1 1 0 1 1
0 1 1 0 1 0
0 1 1 0 0 1
0 1 1 0 0 0

Bit 1S & 17 of MSA will always be zero in the normal (non-debug) case regardless of SIU half
selection.

This optional redundancy in the SIU allows concurrent addressing of the upper and lower address
ranges and the even and odd addresses within each address range. It is possible to service four
requests concurrently.

3.4. CONTROL STORAGE

The control section of the CPU includes a general register stack (GAS) comprising 128 addressable
control registers that can be independently referenced in parallel with main storage. Each control
register stores a word consisting of 3S information bits. The control registers are addressable by
the a-, and x-fields of the instruction word and by the value U de\eloped in the index subsection
of the CPU's control section. The details of control register addressing are explained in Section 4.
Table 3-S and 3-7 summarize the control register address assignments.

3.4. 1. Control Register Selection Designator

The 128 addressable control registers include one set of registers for use by the user program and
another set for use by the Executive program. The control register selection designator (OS) in the
designator register defines which set of registers is addressed by the a- and x-designators of an
instruction word. When OS = 0, the user program set of control registers is addressed; when OS
= 1, the Executive program set of control registers is addressed. The contents of OS has no effect
on the choice of a control register for any particular value of U.

3.4.2. Control Register Address Assignments

Operand addresses 0 8 through 1778 are assigned to the control registers. The following paragraphs
define the various uses and related address assignments for the control registers.

8492 I SPERRY UNIVAC 1100/80 S~m. 3-11
___ U_~~_U_M_'_Eft ____ ~ _____ P_ro_c_e_s_s_o_r_a_n_d_S_t_o_ra_g~e __ P_rr~o_g~r_a_m_m __ e_r_R_e_fe_r_e_n_c_e ________ ~_u~ __ n __ L_~_L ____ ~~A_G_E ______ ___

3.4.2. 1. Storage for MSR Value - Address 0143

During Initial Load of the system the value in the module select register (MSR) is loaded into GRS
by the hardware. This one time load makes the MSR value available for referencing by software.

Octal

0000
0001

0011
0012
0013
0014
0015
0016
0017
0020
0021

0033
00~J4

0037
0040
0041
0042
0043
0044
0045
0046
0047
0050
0051
0052
0053
0054
0055
0056
0057

0067
0070

0077

Table 3-6. GRS Register Assignments 0 Through 63

Decimal Register Assignment

o
1

9
10
11
12
13
14
15
16
17

27
28

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

55
56

63

Initial Load MSR Value ... X3
User X 1

User X9
User X10
User X 11
User X12/AO
User X13/A 1
User X 14/A2
User X 15/A3
User A4
User A5

User A 15
Unassigned

Unassigned
Exec BOT Pointer
Immed. Stor. Check Program Return Address
Immed. Stor. Check Designator Register
Normal Program Return Address
Normal Designator Register
User BOT Pointer
E/OIO-OI BOlO IEI2lQ-Oi BDI2
EI 1 10-01 BDI1 IEI31O-01 BDI3
Quantum Timer
Guard Mode Program Return Address
Guard Mode Designator Register
Guard Mode Interrupt Status
Immed. Stor. Check Status
Normal Status
Unassigned
Unassigned

~----

Jump History Stack

Jump History Stack

.. --

.-

* Note that locations 060 through 067 are used as temporary working storage locations
by the processor, and their contents are therefore unpredictable. Delay Storage Checks
are classed as normal interrupts.

8492
UP-NUMBER

Octal

0100
0101
0102
0103
0104
0105
0106
0107
0110
0111
0112

0117
0120
0121
0122
0123

0137
0140
0141

0153
0154

0157
0160

0173
0174

0177

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference

Tab/II 3-7. GRS Rtl(Jistllr A!I$ignmllnts 64 Through 127

Decimal Register Assignment

64
65
66
67
68
69
70
71
72
73
74

79
80
81
82
83

95
96
97

107
108

111
112

123
124

127

Real Time Clock
User R 1/Repeat Count
User R2/Mask Register
User R3/Staging ReJlister 1
User R4/StaginJl ReJlister 2
User R5/Staging Register 3
User R6/JO
UserR7/Jl
User RS/J2
User R9/J3
User Rl0

User R15
Exec RO
Exec R 1/Repeat Count·
Exec R2/Mask Register
Exec R3/Staging Register 1

Exec R15
Unassigned
Exec Xl

Exec Xll
Exec X12/AO

Exec X15/A3
Exec A4

Exec A15
Unassigned

Unassigned

3.4.2.2. User Index (X) Register - Addresses 0001 - 0017

UPOATt LEVtL
3-12

'AGE

The index registers, referred to as X-registers provide the programmer with address modification
capability (indexing).

An index register contains a modifier field (Xm), which is used to modify the operand address
(indexing), and an increment field (Xi), which is used to modify the modifier field (automatic
incrementation). If designator register bit 7 (07) and the i-bit of an instruction are one, 24-bit index
register mode is specified. In this mode, Xm is the lower 24 bits of the index register (bits 23-0),
and Xi is the upper 12 bits of the index register (bits 35-24). In all other cases, lS-bit index register
mode is selected. In this mode, Xm is the lower 18 bits of the index register (bits 17-0), and Xi is
the upper 18 bits of the index register (bits 35-18).

8492
UP-NUMBER . Processor and Storage Programmer Reference UP'OATl LEVU PAGE -L SPERRY UNIVAC 1100/80 Systems I I 3 13

- ,----------'--------

3.4.:2.3., User Accumulator (A) Registers - Addresses 0014 - 0033

The A-registers store arithmetic operands and results. The actual computation or logical function
is performed in the arithmetic section and the results are stored in the A-register or registers specified
by the instruction. Four of the A-registers (addresses 0148 - 0178) overlap registers assigned as
X-registers. This affords additional versatility in the use of A-registers and X-registers.

3.4.:2.4. User Unassigned Registers - Addresses 0034 - 0037

Two of these unassigned registers (00348 and 00358) serve as an extension of the set of user
A-registers when 06 = 0 and an instruction which requires more than one user A-register is being
perf()rmed. All four of these unassigned registers can serve as general purpose registers.

3.4.:2.5. EXEC Bank Descriptor Table Pointer Register - Address 0040

The word at this location is read when the Executive bank descriptor pointer is specified.

3.4.2.6. Immediate Storage Check Interrupts - Addresses 0041 - 0042

When an interrupt occurs, these registers temporarily store the captured program return address and
desiunators, respectively.

3.4.2.7. Normal Interrupts - Addresses 0043 - 0044

When an interrupt occurs, these registers store the normal captured program return address and
designators, respectively.

3.4.2.8. User Bank Descriptor Table Pointer Register - Address 0045

The word at this location is read when the user bank descriptor pointer is specified.

3.4.2.9. Bank Descriptor Index Registers - Addresses 0046 - 0047

The control register at address 0468 is used as a holding register for bank descriptors 0 and 2. The
register at address 0478 is used as a holding register for bank descriptors 1 and 3.

3.4.2.10. Quantum Timer - Address 0050

When an interrupt occurs the captured quantum timer value is stored in this register.

3.4.2. 11. Guard Mode - Addresses 0051 - 0053

When a Guard Mode Fault interrupt occurs: the program return address is captured in address 0051 8,
the designators are captured at address 00528 and the status is captured at address 00538,

8492
UP-HUMBER

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference UPDATE LEVEL

3.4.2. 12. Immediate Storage Check Status - Address 0064

When an Immediate Storage Check interrupt occurs the status is stored in this register.

3.4.2. 13. Normal Status - Address 0066

3-14
PAGE

Address 0055 stores all processor generated interrupt status except Immediate Storage Check status
and Guard Mode status.

3.4.2. 14. Unassigned Registers - Addresses 0066 - 0067

The processor uses 00608 through 00678 as temporary working storage.

3.4.2.16. Jump History Stack - Addresses 0070 - 0077

The jump history stack consists of eight general register locations (070 to 077) that hold recent 24-bit
absolute jump instruction addresses. Bit 35 of each entry contains a pass flag indicating whether
the entry was stored on an odd or even pass through the stack. Entry stacking is activated by a LBRX
instruction, according to the conditions specified in the breakpoint register. Unless terminated by
one of these conditions, the process continues in a wraparound manner, and older entries are
subsequently overwritten by new entries.

3.4.2. 16. Real-Time Clock Register (RO) - Address 0100

The contents of the lower half (bit positions 17-00) of the real-time clock (RTC) register are decreased
by one every 200 microseconds, independent of program control or supervision. A Aeal-Time Clock
interrupt occurs if the ATC value in the lower half of the ATC register is zero when a decrementation
cycle is initiated. The upper half (bit positions 35-18) of the ATC register should not be used.

3.4.2. 17. User (R 1) Repeat Count Register - Address 0101

The contents of the repeat counter register define the number of times a repeated instruction is
executed. During execution of a repeated instruction the contents of the lower half of the repeat count
register are decreased by one each time the repeated instruction is executed. If an interrupt occurs
during the sequence of repeated executions of an instruction, the repeat sequence is suspended to
process the interrupt, and the current count is left in A 1. The repeated sequence may be resumed
after the interrupt has been processed. The final value of the count after the repeat sequence
terminates is always available in A 1. If the contents of the repeat count register is zero, the repeated
instruction is not executed and the execution of the next instruction is initiated. Zero is defined as
all zeros or all ones in the lower half of the word (bit positions 17-00); the upper half (bit positions
35-18) of the repeat count register should not be used.

3.4.2. 18. User (R2)/Mask Register - Address 0102

the bits in the mask register specify the fields of operands to be operated upon in certain instructions.
A logical ~ is performed with the operand and the mask and/or its complement. The portions of
the operand so selected are then used in the instruction operation.

8492
U"-f'UMBEft

SPERRY UNIVAC 11 00/10 S~.m.
Processor and Storage Programmer Reference I U_ TI 'EIIl'

I 3-15
.. AGE

3.4.2.19. User (R2-R5)/Staging Registers (SR1-SR3) - Address 0103 - 0105

The three staging registers are used for holding operand information and operation status for byte
instruction execution.

3.4.2.20. User (R6-R9)/J-Registers (JO-J3) - Address 0106 - 0111

WhEtn designator register bit 4 (04) is one, j-field values of 4 through 7 specify registers R6 throulh
AS, ,'espectively, instead of partial-word selections. These registers provide character addressing and
indexing in at manner that is similar to, and in addition to, the word indexing function of the
X-registers.

3.4.2.21. User R-Registers (R10-R15) - Addresses 0112 - 0117

These registers are unassigned and serve as general purpose registers. When 06 :-= 0, each of these
registers can be implicitly addressed by one of the values 128 through 1 71 in the a-field of a load
A or Store A instruction.

3.4.2.22. Executive (RO) R-Register - Address 0120

This register is unassigned and serves 8S a general purpose register. When 06 _ 1, this register
is implicitly addressed when the a-field of a load A or Store A instruction equals zero.

3.4.2.23. Executive (R 1) Repeat Count Register - Address 0121

This register has the same function and format as the user A 1 repeat count register when De -= 1.

3.4.2.24. Executive (R2)/Mask Register - Address 0122

This register performs the same function as the user A2 mask register when 06 = 1.

3.4.2.25. Executive (R3-R5)/Staging Registers (SR 1-SR3) - Addr ••••• 0123 - 01215

These registers perform the same function as the user SR 1 - SA3 staging registers when 06 =- 1.

3.4.:2.26. Executive (R6-R9)/J-Registers (JO-J3) - Addresses 0126 - 0131

These registers perform the same function as the user JO - J3 registers when 06 z: 1.

3.4.:2.27. Executive R-Registers (R10-R15) - Addresses 0132 - 0137

These registers are unassigned and serve as general purpose registers. When 06 =-= 1, each of these
regi!ltEHs can be implicitly addressed by one of the values 1 28 through 1 78 in the a-field of a Load
A or Store R instruction.

8492
UP-HUMBER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPDATE LEVEL

3.4.2.28. Executive Index Registers (X 1-X 16) - Addresses 0141 - 0167

When 06 = 1, these registers perform the same functions as the user index registers.

3.4.2.29. Executive Accumulator Registers (AO-A 16) - Addresses 0164 - 0173

When 06 = 1, these registers perform the same function as the user A-registers.

3.4.2.30. Executive Unassigned Registers - Addresses 0140, 0174 - 0177

3-16
PAGE

When 06 = 1, these registers are used in the same manner as the unassigned registers at addresses
0348 - 0378,

3.4.2.31. Control Register Protection

When operating in guard mode (02 = 1 and 06 = 0) a Guard Mode interrupt will occur if an attempt
is made to execute a privileged (Executive) instruction or to store data into an Executive GRS location.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference I 4-1

PAGE

4. Processor

The 1100/80 Central Processor Unit (CPU) comprises an arithmetic section, control section,
maintenance section, general register stack, and interfaces for communicating with other units in the
system.

The arithmetic and control sections are discussed in this section. The general register stack (GRS)
is di:scussed in Section 3. A brief discussion of the maintenance section is in Section 2.

4. 1. ARITHMETIC SECTION

4.1. ',. General Operation

During the execution of logical and arithmetic instructions the following steps are performed:

1. Transfer input data from instruction word specified storage locations or control registers to input
registers in the arithmetic section. During the transfer, the input data are processed by the main
control section to provide absolute values.

2. Perform the arithmetic operations of addition, subtraction (add negative), multiplication, division,
byte manipulation, skip detection, etc., as specified by the instruction word.

3. Transfer final results from the arithmetic section to temporary holding registers, general register
storage (GRS), or indicate skip condition.

4.1. '1.1. Data Word

The highest order binary bit represents the sign of the value contained in the remaining bit positions.
If the sign bit contains a zero, the word is positive and 1 's in the remaining bit positions represent
significant data. If the sign bit contains a one, the word is negative and O's in the remaining bit
positions represent significant data. A binary data word containing all zeros is referred to as positive
zero (+0). A binary data word containing all ones is referred to as negative zero (-0).

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~em.
Processor and Storage Programmer Reference I UPO' Tt lEVEL

4. 1.4. 1. Overflow

An "overflow" condition is detected when one of the ten instructions in Table 4-1 is executed and
the !numeric value of the result obtained exceeds the maximum numeric value that can be contained
in the register holding the final result. Under this condition the resulting sign will be incorrect, an
overflow enable is generated and sent to control and designator 01 is set.

Tabltl 4-1. Instructions that Condition thtl Carry .nd Ov.rfIow Oesign.tors

FlUnction Code (Octal) Instruction

f = 14, j = 00-17 Add to A

f= 15, j = 00-17 Add Negative to A

f= 16, j = 00-17 Add Magnitude to A

f= 17, j = 00-17 Add Negative Magnitude to A

f = 20, j = 00-17 Add Upper

f = 21, j = 00-17 Add Negative Upper

f = 24, j = 00-17 Add to X

f = 25, j = 00-17 Add Negative to X

f = 71, j = 10 Double-Precision Fixed-Point Add

f = 71, j = 11 Double-Precision Fixed-Point Add Negative

4. 1.4.2. Carry

A "carry" condition is detected when an arithmetic carry is generated out of the sign bit position as
the result of the addition of two numeric values. The sign combinations which could set designator
DO to a 1-bit indicating that a carry has occurred.

4. 1.44.3. Arithmetic Interrupt

The arithmetic section cannot cause a system interrupt. But, when an arithmetic fault occurs, it
generates- a fault condition signal which allows the control section to set the appropriate designator
bit. Other processor conditions in conjunction with those arithmetic fault conditions determines
whether or not control generates an interrupt.

4. 1.5. Fixed·-Point Division

The process of dividing one fixed-point number by another consists of transferring the numbers to
the arithmetic section, performing a series of trial subtractions to form a quotient and a remainder,
transferring the properly signed quotient to a register and, if the remainder is to be saved, transferring
the properly signed remainder to another register. All divide operations use the main adder and
shifter.

8492 SPERRY UNIVAC 1100/80 S~.m.
UPOA T£ lEVEL

4-4
PAGE UP-NUMBER Processor and Storage Programmer Reference _-=--=-___ ---1 ______________ .:...-__________ --'--______ L--___ ---.-.--.-.-..

4. 1.6. Fixed-Point Multiplication

The arithmetic section contains a fast multiplier unit to handle multiplications. The main adder and
shifter are used only in the beginning and ending cycles for input and output data adjustments.

4. 1.7. Floating-Point Arithmetic

Floating-point arithmetic handles the scaling problems which arise in computations involving
numbers which vary widely in range. In floating-point arithmetic, the numbers are represented in
a special format so that the computer can automatically handle the scaling.

4.1.S. Floating-Point Numbers and Word Formats

Floating-point numbers in the instructions are represented in single-precision format as a 27-bit
fractional quantity multiplied by the appropriate power of two, or in the double-precision format as
a eO-bit fractional quantity multiplied by the appropriate power of two. The power of two is called
the exponent. In machine representation, the exponents are biased to make them lie in the range
of positive numbers or zero. These biased exponents are called characteristics. The fractional part
is referred to as the mantissa. The two format types, single-precision and double-precision, are as
follows.

Single-Precision Floating-Point Format

.1 s 1 Characteristic Mantissa

35 34 27 26 o

Double-Precision Floating-Point Format

Characteristic Mantissa

71 70 6069 36

Mantissa

35 o

An explanation of the sign bit, characteristic, and mantissa follows:

• SIGN - The sign bit expresses the sign (5) of the numerical quantity represented by the
floating-point number.

If 5 = 0, the numerical quantity is positive (+).

If 5 = 1, the numerical quantity is negative (-).

• CHARACTERISTIC - The characteristic represents both the numerical value and the sign of the
exponent.

UPOA Tt LEVEL
4-5

PAGl
8492 l SPERRY UNIVAC 1100/80 S~tems
UP-NUMBER Processor and Storage Programmer Reference - '----=---=---~---'-----;

1. Single-Precision Characteristic - The 8-bit characteristic of a single-precision
floating-point number represents an exponent value in the range + 127 through -128. The
characteristic is formed by adding a bias of + 128 (2008) to the exponent. Table 4-2 shows
the range of characteristic values and corresponding exponent values.

Table 4-2. Single-Precision Floating-Point Characttlristic Vlllues lind Expon"nt Vlllues

Decimal Values Octal Values

Characteristic Unbiased Characteristic Unbiased
Exponent Exponent

255 + 127 377 + 177

128 000 200 000

000 -128 000 -200

I

2. Double-Precision Characteristic - The 11-bit characteristic of a double-precision
floating-point number represents an exponent value in the range + 1023 through -1024.
The characteristic is formed by adding a bias of + 1024 (20008) to the exponent. Table
4-3 shows the range of characteristic values and the corresponding exponent values.

Table 4-3. Double-Precision Floating-Point Characteristic Values and Exponent Vlllues

Decimal Values Octal Values

Characteristic Unbiased Characteristic Unbiased
Exponent Exponent

2047 +1023 3777 + 1777

1024 0000 2000 0000

0000 -1024 0000 -2000

• MANTISSA - The mantissa portion of a floating-point number represents the fractional part of
the number. In the instructions the fractional part is normalized so that the absolute values
represented are greater than or equal to 112 but less than one. Zero cannot be represented
in this range and it is considered to be normalized as it stands. The binary point of a

3492
UP-NUMBER

SPERRY UNIVAC 1 100/80 S~.m.
Processor and Storage Programmer Reference UPOA T£ lEV£l

4-6
PAGE

floating-point number is assumed to lie between the last bit of the characteristic and the first
bit of the mantissa. The mantissa of a single-precision floating-point number contains 27 bits;
for a double-precision floating-point number, the mantissa contains 60 bits. The mantissa need
not be normalized for all instructions.

4. 1.8. 1. Single-Precision Floating-Point Numbers

A single-precision floating-point number can be derived from a positive decimal number as follows:

Example

• Sign = + = 0

• Characteristic

• Mantissa

Given number = + 12,0

= exponent + bias

= 00 000 1002 + 10 000 0002

= 10 000 1002

= . 11 0 000 0002

• The format for the floating-point number is as shown (sign included):

Sign Characteristic Mantissa

0 10 000 100 1100 0

3534 27 26 o

4. 1.8.2. Double-Precision Floating-Point Numbers

= 2046000000008

A double-precision floating-point number can be derived from a positive decjmal number following
the same steps that were used for single-precision with these two exceptions:

• A bias value of 20008 is added to the exponent to form the characteristic. For single-precision
the value is 2008,

• The single-precision floating-point number for -12 10 (including sign) is 573 177 777 777 8 ,

4. 1.8.3. Negative Floating-Point Numbers

A floating-point number can be derived to represent a given negative number as follows:

• Represent the given number as a positive floating-piont number.

• Form the ones complement of the entire positive floating-point number.

Example Given number = -12,0

9492
UP-NUMBER

SPERRY UNIVAC 1100/aO Systems
Processor and Storage Programmer Reference I UI'OA Tf LEVU

\

• The single-precision floating-point number for + 12 10 (including sign) is 204 600 000 OOOa·

• The single-precision floating-point number for -12 10 (including sign) is 573 177 777 777 a·

4. 1.8.4. Residue

WhEm a single-precision floating-point add or add negative operation is performed, the result
consists of two single-precision floating-point numbers. One of the numbers represents the algebraic
sum and the other number is the residue.

When the two 36-bit input operands for an Add or Add Negative instruction are transferred to the
arithmetic section, their characteristics are examined, and the mantissa of the input operand with the
smaller characteristic is right-shifted a number of bit positions equal to the difference between the
characteristics. The bits shifted out of the 36-bit arithmetic register are saved in an auxiliary register.
The portion of the mantissa saved in the auxiliary register is used to form the residue and it is not
included in the algebraic addition. After completion of the addition and any shifting necessary to
normalize the sum, the sum and the residue are packed into single-precision floating-point format
and transferred to two consecutive registers.

4. 1.9. Normali,zed/Unnormalized Floating-Point Numbers

A floating-point number is normalized when the leftmost bit of the mantissA is not identical to the
sign bit or when all bits of the mantissa are identical to the sign bit. A floating-point number is
unnormalized when all bits of the mantissa are not sign bits and the leftmost bit of the mantissa is
identical to the sign bit.

All floating-point operations produce a normalized result when the input operands are normalized.
The :sums produced by Floating Add and Floating Add Negative instructions and the result produced
by the Load And Convert To Floating instruction are always normalized regardless of whether or not
the input operands are normalized. When either or both input operands are not normalized, the result
obtained may be less accurate than if normalized input operands had been used.

Normalized input operands must be used for the Floating Multiply, Divide, Compress And Load, and
Expand And Load instructions. If normalized input operands are not used for these instructions, the
resuhs are undefined.

4. 1. 10. Floating-Point Characteristic Overflow/Underflow

Floating-point characteristic overflow/underflow occurs when the characteristic does not lie in the
range representable in the number of bits allowed for the characteristic.

When any of the Floating-Point Add, Add Negative, Multiply, Divide or Load And Convert instructions
or the Compress And Load instruction are performed, overflow or underflow may occur.

4. 1. '10. 1. Floating-Point Characteristic Overflow

Single-precision floating-point characteristic overflow occurs when the a-bit characteristic of the
resultant most significant single-precision floating-point word represents a number greater than
3778 and the associated mantissa is not zero.

Double-precision floating-point characteristic overflow occurs when the 11-bit characteristic of the
resultant double-precision floating-point number represents a number greater than 3777 a and the
associated mantissa is not zero.

8492
UI'-NUMBER

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference UPDATE LEVEL

4-8
PAGE

When overflow is detected, the action taken depends on designator bit 020. Designator bit 022 is
always set.

4. 1. 10.2. Floating-Point Characteristic Underflow

Single-precision floating-point characteristic underflow occurs when the resultant floating-point
word represents a negative number and the associated mantissa of the result is not zero. This means
that the exponent of the result is less than -2008' thus the attached sign (positive - because absolute
value is used) changes due to the borrow. If the characteristic of the residue (Floating Add, Floating
Add Negative), remainder (Floating Divide), or the least significant single-precision word of the
product (Floating Multiply) represents a negative number, this fact by itself does not result in
underflow. Instead, the residue, remainder, or least significant word of the product is cleared to all
zero bits or set to all one bits (to reflect the appropriate sign).

Double-precision floating-point characteristic underflow occurs when the 11-bit characteristic of the
result represents a negative number, i.e., the exponent of the result is less than 20008, the mantissa
of the result is not zero, and designator 05 is cleared.

When underflow is detected, designator 021 is always set and the action taken by the processor
depends on the state of designator 020.

4. 1. 1 0.3. Floating-Point Divide Fault

For single- or double-precision floating-point division a divide fault condition will be detected when
the mantissa of the divisor is zero. The action taken depends on designator 08 (for single-precision
floating-point division only) and designator 020. Designator 023 is always set.

4. 1. 1 1. Fixed-Point to Floating-Point Conversion

Conversion of a fixed-point number to floating-point number is performed in the arithmetic section.
The first input operand contains a characteristic (biased exponent) which defines the location of the
binary point for the fixed-point number with respect to the standard position of the binary point for
a floating-point number. The second input operand is the signed fixed- point number to be
converted.

The conversion process consists of transferring the two operands to the arithmetic section, shifting
the fixed-point number, ~ if necessary, to position its bits as the mantissa for a normalized
floating-point number. Modify the characteristic to reflect the magnitude and direction of the
normalizing shift. Pack the shifted fixed-point number (mantissa) and the modified characteristic in
floating-point format. load the packed results in a register (conversion to single-precision
floating-point format) or into two consecutive registers (conversion to double-precision floating-point
format).

4. 1. 12. Floating-Point Addition

The process of adding two floating-point numbers consists of loading the numbers into the arithmetic
section, determining the difference between the characteristics of the two numbers, shifting (right)
the mantissa of the number having the smaller characteristic, adding the mantissas, combining the
results in floating-point format, and transferring the resulting floating-point numbers to GRS.

The input operands for floating-point addition need not be normalized numbers. For single-precision
addition, the sum (most significant word produced) is always a normalized number. The residue word

4-9
PAGE

8492 L SPERRY UNIVAC 1100/80 S~.ms
UP-NUMBER Processor and Storage Programmer Reference _ ,_--=-~_--L..--~

UPOA Tt LEVEL .

mayor may not be a normalized number. For double-precision addition, the sum is always a
normalized number.

4. 1 " 1 2. 1. Double-Precision Floating-Point Addition

The steps performed for double-precision floating-point addition are similar to those for the
single-precision addition with these six differences:

1. Each of the two operands occupy two 36-bit registers in the arithmetic section. In
single-precision addition both operands are contained in two 36-bit registers.

2. The mantissa sum can contain a maximum of 60 bits in double-precision addition instead of
27 bits as in single-precision addition.

3. The bits that are shifted out of the right end of the 36-bit register when the operands are lined
up prior to addition are lost. There is no residue.

4. Double-precision characteristic overflow occurs when the characteristic is greater than 37778
and the mantissa is not zero.

5. Double-precision underflow occurs when the exponent is less than -20008 and the mantissa
is not zero. In single-precision the value is -2008 ,

6. The sum is stored in two consecutive registers, A and A + 1. No residue is stored.

4. 1. 13. Floating-Point Subtraction (Add Negative)

Floa1ting-point subtraction (both single-precision and double-precisicln) uses the same routine as for
the Floating-point Add operation.

4. 1. 14. Floating-Point Multiplication

The IProcess of mUltiplying two floating-point numbers consists of loading normalized input operands
into the arithmetic section, unpacking, multiplying the mantissas, adding the characteristics, packing
the results into floating- point format, and transferring the result to GRS. The results obtained for
all Ci~ses in which either or both input operands are not normalized numbers are undefined.

4.1.15. Floating-Point Division

The process of dividing one floating-point number by another consists of loading the normalized input
operands into the arithmetic section, unpacking, dividing one mantissa by the other, subtracting the
chari1lcteristics, packing the results into floating-point format, and transferring the result to GRS. The
results obtained for all cases in which either or both input operands are not normalized numbers are
undefined.

4. 1.16. Floating-Point Zero

Floating-point zero can be defined as a floating-point number having all mantissa bits identical to
the sign bit.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference

4. 1. 1 7. Byte Instructions

UPOA Tt LEVU
4-10

PAGE

This class of instructions is designed to permit transference, translation, comparison, and arithmetic
computation of data in the form of predetermined bit patterns (e.g., half words, third words, quarter
words, and sixth words) referred to as bytes.

There are a total of 15 distinct instructions that perform the various multiword (byte string) operations
ooted above. These instructions may be arranged under three functional groups:

1. instructions that involve byte transfers and manipulations between one storage location and
another.

2. instructions that permit the mutual transference and manipulation of data among storage and
various control and arithmetic registers, and

3. instructions that perform decimal arithmetic addition and subtraction operations.

Twelve of the byte instructions are performed in the arithmetic section. The remaining three
instructions (33,00 - Byte Move, 33,01 - Byte Move with Translate, and 33,07 - Edit) are
performed in the main control section.

4.2. CONTROL SECTION

4.2. 1. Instruction Word Format

During the running of a program in the SPERRY UNIVAC 1100/80 Processor, instructions are
transferred from main storage locations to the control section of the Central Processing Unit (CPU).
The instructions are transferred from sequentially addressed main storage locations until the
sequence is broken by the program or interrupted by the control section's reaction to some special
condition or event. Each instruction is a coded directive to the control section; the control section
initiates a sequence of steps necessary to perform the particular operation prescribed by the
instruction. The 36-bit instruction word, illustrated below, is subdivided into seven fields.

f a x 1+1 u

35 3029 2625 2221 18 17 16 15 o

where:

f = Function Code

j = Operand Qualifier, Character Addressing, partial Control Register Address, or Minor Function
Code

a = A-, X-, or R-register; Channel number, Jump Key or Stop Keys number; Minor Function Code;
partial Control Register Address

x = Index Register

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~.ms
Processor and Storage Programmer Reference I UI'OA Tf LEV",

I 4-11
,.AGE

h = Index Register Incrementation Control

i = Indirect Addressing Control, Base Register Suppression Control, 24-Bit Indexing Control. or
Operand Basing Selector

u = Operand Address or Operand Base

4.2.2. Instruction Word Fields

The following paragraphs describe the manner in which the CPU's control section reacts to the
contents of each of the seven fields of an instruction word.

4.2.2. 1. Use of the f-Field

The f-field is used to define the basic operation to be performed for all legal values of f less than
or equal to 708 (except 078, 338, and 378), When the f-field is 078, 338, 378 or greater than 708,
the f- and j-fields are combined to form a 1 O-bit field used to define the basic operation. For eleven
of these f, j combinations, the value in the a-field is used to define variations of the basic operation.
All f!Unction codes are defined in Section 5 and listed in Appendix C:

4.2.:2.2. Description of the j-Field

When f is less than 708 (except 078, 338 and 378), the j-field is used as an operand qualifier or to
identify a J-register used in the character addressing mode. When f is equal to 708, the j-field is
used as part of a control register address. When f is 078, 338, 378 or greater than 708, the j-field
and the f-field are used to define a basic operation, and, in this instance, the j-field operates as a
minor function code.

4.2.2.2. 1. Use of the j-Field as an Operand Qualifier

When the f-field of an instruction contains a value in the range 018 through 678 (except 078, 338
and 378) and 04 = 0, the j-field is used as an operand qualifier which specifies the data transfer
pattElrn to or from main storage except as specified in 4.2.2.2.2.

Thej-field can contain values ranging from 008 through 178, Each value except 48 through 78
determines a specific data transfer pattern. Each of the j-field values 48 through 78 may specify either
of two different data transfer patterns, or character addressing with the choice dependent on the
contents of the quarter word mode selector (010) and the character addressing mode selector (04)
of the designator register (See 8.2.1). If 04 = 1, character addressing is specified and each of the
j-field values 48 through 78 specify a J-register as explained in 4.2.2.2.2. Figures 4-1 and 4-2
illustrate all the possible data transfer patterns which can be specified by the j-field when 04 = O.

8492
UP-NUMBER

J
(Octal)

0

2
3

4**
5**
6**
7**
4**
5**
6**
7**
10
11
12
13
14
15

16***
17***

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference UP'OA 1"£ LEVU

4-12
PAGE

Quarter-Word c> Designator* Storage location Arithmetic Register

o or 1 135 0~35 01
o or 1 117 o~;~z~r;s= = = ~8117 01
o or 1 135 181 ~~z~r;s= = = ~8117 01
o or 1 117 O~;~Slg;s= = = ~81 1
0 135 181 ~;~s~;s= = = ~8117 01
0 111 o~~~;s= = = = = = ~2111 01
0 123 121 ~~~g;s= = = = = = ~;r;===<>l
0 35 241 ~~~g;s= = = = = = ~2111 01

126 181 ~i5~;;~ ~ ~ ~ ~ _- ~ ~ ~18 01
18 0~~-5_-Z;~~_- _- _- _- _- _- _- _- ~18 01

117 91 ~i5_-z;r~~ _-~ ~ ~ ~ _- _- ~!8 01
135 271 ~i~z;~~~ ~ _-~ ~ ~ ~ _- ~18 01

o or 1 15 O~~~~~~=~=======~
o or 1 111 61 ~~~~~~=========~
o or 1 117 121 ~~~~~=========~
o or 1 123181 ~~~~~~=========;~
o or 1 129241 ~~~~~~=========~
o or 1 135301 ~~~~~=========~
o or 1 117 o~;~z~r;s= = = ~8117 01
o or 1 117 0~5=slg;s= = = =18117 01

* The Quarter-Word Designator bit (010) is held in the designator register.

** Character Addressing Designator bit (04) will imply J-Register usage for instruction codes less
than f = 70 (except 07, 33, 37) for character or byte manipulation. 04 overrides 010.

*** If x = 0, the h, i, and u are transferred. If x is not equal to zero, then u + (Xx) is transferred.

Figure 4-1. Data Transfers From Storage

8492
UP-HUMBER UPDATE LEVU

SPERRY UNIVAC 1100/80 S~tems
Processor and Storage Programmer Reference

J Quarter-Word (> (Octal) Designator* Arithmetic Register Storage Location

0 o or 1 135 ~35

o or 1 117 J----@---1 1,7

2 o or 1 117 J----@---135 181

3 o or 1 117 J----@---1 1,7

4** 0 117 0~35 181

5** 0 111 ~ 1,1

6** 0 1" ~ 123 121

7** 0 1,1 ~35 241

4** 18 ~ 126 lsi

5** Is O~ Is

6·.* Is ~ 117 91

7·.* Is ~35 271

10 o or 1 15 O~
11 o or 1 15 o~ 1"

12 o or 1 15 ~ 1,7 121

13 o or 1 15 ~ 1231s1

14 o or 1 15 ~ 129241

15 o or 1 15 ~35301
16 o or 1 No Data Transfer

17 o or 1 No Data Transfer

* The Quarter-Word Designator bit (010) is held in the designator register.

4-13
PAGE

,,-

01

01

1

0]

]

0]

I
I
1

01

I
I

Is 01

61 I

1

I
I

I

** Character Addressing Designator bit (04) will imply J-Register usage for instruction codes less
than f = 70 (except 07, 33, 37) for character or byte manipulation. 04 overrides 010.

Figure 4-2. Data Transfers to Storage

a492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference

• Operand qualification when f = lOa through 67 a (except 33a and 37 a)

UPOA Tt lEVU
4-14

PAGE

These instructions require the transfer of a full 36-bit word or a partial word to the arithmetic
section.

1. If j = OOa, the full 36-bit word addressed by U is transferred to the arithmetic section.

2. If j = 0 la through 15a and U specifies a main storage location (U ~ 2008), a partial word
is transferred to the arithmetic section. In the arithmetic section, the partial word is
extended to a full 36-bit word either by zero fill or by sign bit fill from the leftmost bit
position of the partial word, as illustrated in Figure 4-1.

3. If j = 16a or 17 a' an 18-bit partial word is transferred to the arithmetic section. Details
on the formation of this partial word and its extension are given in 4.2.2.8.2.

When j = 0 la through 15a and U specifies a control register (U S 177 a), the j-field is treated as
if it contained OOa and the full 36-bit word is transferred from the control register to the arithmetic
section.

• Operand qualification for store and block transfer instructions

The full 36-bit word in the control register specified by the a-field (see 4.2.2.3.1) is transferred
to a nonaddressable register in the data shift/complement/store section (f=O la through 04a
and 068), The nonaddressable register is cleared to 0 when f=05 8.

1. If j = OOa, the full 36-bit word is transferred from the nonaddressable register to the
location (main storage or control register) specified by U.

2. If j = 0 la through 15a and U specifies a main storage location (U ~ 2008), a partial word
is transferred from the least significant bit positions of the nonaddressable register to the
main storage location as shown in Figure 4-2. The contents of the remaining bit positions
of the main storage location are not changed. Partial word writes of a third word, quarter
word, or sixth word increase the storage cycle time to 200 nanoseconds.

3. If j = 16a or 17 a' data is never transferred from the nonaddressable register to any storage
location (main storage or control register).

When j = 0 la through 15a and U specifies a control register (U S 177 a), the j-field is treated as
if it contained OOa, and the full 36-bit word is transferred to the control register.

4.2.2.2.2. Use of the j-Field to Specify Character Addressing

When the f-field of an instruction contains a value in the range 01 through 67 a (except 07 a' 33a,
and 37 a), 04 (the character addressing mode selector) = 1, and j = 4a, 5a, 6a, or 7 a' the character
addressing mode is specified. When the character addressing mode is specified, a j-field value of
4, 5, 6, or 7 specifies JO, J 1, J2, or J3, respectively, in the GAS, as the register defining character
or byte size, the position of the byte within a word, and other details. When 06 = 0, the J-register
is selected from the 'set of four J-registers at GAS locations 106 through llla. When 06 = 1, the
J-register is selected from the set of four J-registers at GAS locations 126 through 131 8, The format
of a J-register word as used in the character addressing mode is shown in Figure 4-3 and explained
in Table 4-4.

8492 ~ SPERRY UNIVAC 1100/80 S~tems I I 4-15
UP-NUMBER Processor and Storage Programmer Reference UPDATE lEVel PAGE __________ __ ______________________ ~ ____ ~ ________________________ _L ____________ ~

35 34 33 32 31 21 20 18 17 3 2 0

Figure 4-3. J-Register Format for Character Addressing Mode

Table 4-4. Explanation of J-Register Fields for Character Addressing Mode

Bit Positions J-Register Interpretation
Field Identifier

35 I The I-bit of the J-Register in conjunction with the h-bit of the
instruction, specifies whether or not the contents of the Ow and
Ob-fields are modified when the instruction is performed as
follows:

34,33 BL

32 E

31-21 Iw

20-18 Ib

17-3 Ow

• I = 0 or h = 0 specifies no J register modification*

• I = h = 1 specifies modification of Ow and Ob by Iw
and Ib, respectively.

Specifies the byte length, as follows:

• BL = 0 specifies a 9 bit byte

• BL = 1 specifies an 18 bit byte

• BL = 2 specifies a 6 bit byte

• BL = 3 specifies a 12 bit byte

Specifies the bit used to extend the byte to 36 bits, if necessary,
as follows:

• E = 0 specifies extension with 0 bits

• E = 1 specifies extension with the high order bit of the
byte

Iw specifies the increment (or decrement) in words. Ib specifies
the increment (or decrement) in bytes. If I = 0, or h = 0 these
two values are ignored.

If I = 1 and h = 1, the values in the Iw and Ib-fields are added
to the values in the Ow and Ob-fields, and the sums are stored
in the Ow and Ob-fields after the initial values in these two fields
are used to form the absolute address of a word and select a byte
within the word.

The offset in words. This value is used to form the relative
address U and the absolute addresses SI and SO.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference I UPO.< Tt LEV"

I 4-16
PAGE

Table 4-4. Explanation of J-Register Fields for Character Addressing Mode (continued)

Bit Positions J-Register Interpretation
Field Identifier

2-0 Ob The offset in bytes. This value is used to select a particular byte
within the selected word. The valid values of Ob for the possible
values of BL are shown in Figure 4-4. Other byte selections are
not defined.

* If I = 0, h = 1 in the instruction word specifies index register modification when x t O.

BL = 0
(9-bit bytes)

BL =
(1 a-bit bytes)

BL = 2
(6-bit bytes)

BL = 3
(1 2-bit bytes)

Ob = 0 Ob = 2 Ob = 4 Ob = 6

35 27 26 18 17 9 8 0

Ob = 0 Ob = 4]
35 18 17 0

I Ob = 0 I Ob = I Ob = 2 [Ob = 31 Ob = 41 Ob = 51
35 3029 24 23 18 17 12 11 6 6 o

Ob = 0 Ob = 2 Ob = 4

35 24 23 12 11 o

Figure 4-4. Byte Selected for Valid Combinations of BL and Ob Field V61ues

The additions performed when I = 1 and the h-bit of the instruction = 1 are symbolized by

Ob + Ib - Ob

and

Ow + Iw - Ow

The values in the Ow- and Ob-fields are always treated as positive values in these additions. The
high order bit in the Iw-field (bit 31 of the specified J-register) is applied as the sign of both the Iw
and Ib-fields. If this sign is a zero bit, forward modification of Ow/Ob is performed. Forward
modification permits incrementing the Ow- or Ob-field value (or both) to produce new Ow- and
Ob-field values to select any desired byte in lower order bit positions of the same word or select any
desired byte in any word having a higher address. If the sign bit applied to the Iw- and Ib-fields is
a one bit, backward modification of Ow/~b is performed. Backward modification permits
decrementing the Ow- and Ob-field value (or both) to produce new Ow- and Ob-field values to select

UPOATt lEvtl

4-17
.. AGE

8492 l SPERRY UNIVAC 1100/80 S~ems
UP-NUMBER Processor and Storage Programmer Reference _ _ __ ----L-----'-----

any desired byte in higher order bit position of the same word or select any desired byte in any word
having a lower address.

The result produced for the addition Ob + Ib - Ob is dependent on the two values used as inputs,
the sign in the Iw-field and the value in the BL- field, as shown in Tables 4-5 through 4-8. The valid
combinations of Ob and Ib are shown in these tables. The result produced when any other
combination is used is undefined.

The addition Ow + Iw - Ow is performed in an 18-bit ones complement subtractive adder after
extEmding the 15-bit Ow-field to 18 bits with three high order zero bits and extending the 11-bit
Iw-field to 18 bits with seven high order bits identical to the sign bit in the Iw-field. A carry or borrow
generated in the addition Ob + Ib - Ob also enters the Ow + Iw - Ow addition. The sum is stored
in the Ow field of the specified J-register after the initial value in the Ow field is used to form the
relative and absolute addresses needed for the instruction.

If the value in the Ow field is modified by adding a positive Iw value to produce an 18-bit sum greater
than 0777778 or by adding a negative Iw value to produce a negative 18-bit sum, the 15-bit value
stored in Ow is undefined. Producing a negative 18-bit sum is a common programming error which
can be avoided by choosing an artificially high-initial value for Ow and reducing the initial value of
Xm by a like amount.

If the value U produced by the addition u + Xm + Ow (see 4.2.2.5) for an instruction which specifies
the character addressing mode is less than 2008 , a register in the GRS is not referenced. Instead,
the values 51 and SO are produced, and if U passes the storage limits test, an attempt is made to
reference main storage.

Table 4-5. Output Ob Values Produced When BL = 0

Valid Input Ob Values
BL = 0 (9-Bit Number Of Valid 0 2 4 6

Bytes) Bytes Ib
Forward Or Value
Backward

Forward 0 0 0 2 4 6
Modification 1 2 2 4 6 Oc

(J31 = 0) 2 4 4 6 Oc 2c
3 6 6 Oc 2c 4c

Backward 0 7 0 2 4 6
Modification 1 5 6 8 0 2 4
(J31 = 1) 2 3 48 6 8 0 2

3 1 28 48 68 0

For valid Ob/lb input combinations

C = Carry (+ 1) to Ow + Iw - Ow addition

B = Borrow (- 1) to Ow + Iw - Ow addition

8492
UP-NUMB~R

SPERRY UNIVAC 1 1 00/80 S~.m.
Processor and Storage Programmer Reference UPOAT£ lEVEL

Table 4-6. Output Ob Value Produced When BL == 1

Valid Input Ob Values
Bl = 1 (la-Bit Bytes) Number Of Valid 0 4

Bytes Ib
Forward Or Value
Backward

Forward 0 0 0 4
Modification (J~ 1 = 0) 1 4 4 Oc

Backward 0 7 0 4
Modification (J~ 1 = 1) 1 3 48 0

For Valid Ob/lb Input Combinations

C = Carry (+ 1) to Ow + Iw - Ow addition

B = Borrow (- 1) to Ow + Iw - Ow addition

Table 4-7. Output Ob Values Produced When BL = 2

Valid Input Ob Values
Bl = 2 (6-Bit Number Of Valid Ib 0 1 2 3 4

Bytes) Bytes Value
Forward Or
Backward

0 0 0 1 2 3 4
Forward 1 1 1 2 3 4 5

Modification 2 2 2 3 4 5 Oc
(J31 = 0) 3 3 3 4 5 Oc lc

4 4 4 5 Oc lc 2c
5 5 5 Oc lc 2c 3c
0 7 0 1 2 3 4

Backward 1 6 58 0 1 2 3
Modification 2 5 4R 58 0 1 2

(J31 = 1) 3 4 3 8 48 58 0 1
4 3 2R 3R 48 58 0
5 2 lR 2R 3 A 48 5 A

For valid Ob/lb combinations

C = Carry (+ 1) to Ow Iw - Ow addition

B = Borrow (- 1) to Ow Iw - Ow addition

5

5
Oc
lc
2c
3c
4c
5
4
3
2
1
0

4-18
PAGE

8492 1
UP-NUM8ER

-

SPERRY UNIVAC 1100/80 S~tems
Processor and Storage Programmer Reference UPOAT£ LEVEL

4-19
PAGE

Table 4-8. Output Ob Values Produced When BL = 3

Valid Input Ob Values
BL = 3 (12-Bit Number Of Valid Ib 0 2 4

Bytes) Bytes Value
Forward Or
Backward --

Forward 0 0 0 2 4
Modification 1 2 2 4 O-.e

(J31 = 0) 2 4 4 Oc 2-.e
Backward 0 7 0 2 4

Modification 1 5 48 0 2
(J~1 = 1) 2 3 28 48 0

For valid Ob/lb c.ombinations

C = Carry (+ 1) to Ow Iw - Ow addition

B = Borrow (- 1) to Ow Iw - Ow addition

4.2.2.2.3. Use of j-Field as Partial Control Register Address

When f = 708' the most significant bit of the j-field is ignored by the hardware, and the three
low-·order bits are combined with the contents of the a-field to form a 7-bit control register address.

4.2.2.2.4. Use of j-Field as Minor Function Code

When f = 078, 338, 37 8, or 718 through 768 , the value in the j-field is a minor function code
designator. An explanation of the details of each of these instructions is given in Section 5 they are
summarized in Appendix C.

4.2.:2.3. Uses of the a-Field

The contents of the a-field of an instruction word has a number of uses. The exact use is dependent
on the instruction being performed and, in many cases on the contents of the designator register.

4.2.2.3. 1. Use of the a-Field to Reference an A-Register

For most of the instructions, the value in the a-field references one of the A-registers. When the A-,
X-, and R-register set selector, 06, is equal to 0, each value in the range 008 through 178 in the a-field
references one of the user A-registers in the range of control register addresses 148 through 338,
respectively. When 06 = 1, each value in the range 008 through 178 in the a-field references one
of the Executive A-registers in the range of control register addresses 1548 through 1738
respectively. In some instructions, the value in the a-field references two or three A-registers. When
two or three A-registers are referenced, the value in the a-field explicitly references register Aa, and
implicitly references registers Aa + 1 and Aa + 2.

8492
UP-filUMBER

SPERRY UNIVAC 1100/80 S'{Stems
Processor and Storage Programmer Reference UPOATt LEV£L

4-20
PAGE

The unassigned control registers at addresses 348,358, 1748 and 1758 can be used as extensions
of the two sets of 16 A-registers. For example, when a = 178 and the instruction requires referencing
three A-registers (Aa, Aa+ 1, and Aa+2) then:

• If 06 = 0, the last user A-register (address 338) is referenced for Aa, the first user unassigned
control register at address 348 is referenced for Aa+ 1, and address 35 8 is referenced for Aa+ 2.

• If 06 = 1, the last Executive A-register at address 1738 is referenced for Aa, the following
Executive unassigned control register at address 1748 is referenced for Aa+ 1, and address
1758 is referenced for Aa+2.

4.2.2.3.2. Use of the a-Field to Reference an X-Register

For certain instructions, the value in the a-field references one of the X-registers. When 06 = 0,
each value in the range of 018 through 178 in the a-field references one of the user X-registers in
the range of control register addresses 018 through 178 respectively; if a 08' the user nonindexing
X-register at control register address 0008 is referenced. When 06 = 1, each value in the range
of 018 through 178 in the a-field references one of the Executive X-registers in the range of control
register addresses 1418 through 1578 respectively; if a = 0 8, the Executive nonindexing X-register
at control register address 1408 is referenced.

4.2.2.3.3. Use of the a-Field to Reference an R-Register

For certain instructions, the value in the a-field references one of the R-registers. When 06 = 0,
each value in the range of 008 through 178 in the a-field references one of the user R-registers at
control register addresses 10°8 through 1178, respectively. When 06 = 1, each value in the range
of 008 through 178 in the a-field references one of the Executive R-registers at control register
addresses 1208 through 1378, respectively.

4.2.2.3.4. Use of the a-Field to Reference a Jump Key

For a Jump Key instruction, each value in the range of 018 through 1 78 in the a-field references one
of the 15 select jump control circuits in the CPU. These circuits may be individually set and cleared
via switches on the operator/maintenance panel on the STU.

4.2.2.3.5. Use of the a-Field to Reference Halt Keys

For a Halt Keys and Jump instruction, each of the four bit positions in the a-field references one of
the four select stop control circuits in the CPU. These circuits may be individually set and cleared
via switches on the STU.

4.2.2.3.6. Use of the a-Field as Minor Function Code

The value in the a-field specifies a particular variation of the basic operation initiated by the f, j
combination of the following instructions:

• Load Breakpoint Register/Store Jump Stack,

• Load Processor State Register,

UP-NUMBER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPOA 1'£ lEVEL

4-21
P"GIE

8492 L
- ,----------'------'-----

• Initiate Interprocessor Interrupt/Enable Second Day Clock/Enable Day Clock/Disable Day Clock.

• Test and Set/Test and Set and Skip/Test and Clear and Skip.

• .Jump Overflow/Jump Floating Underflow/Jump Floating Overflow/Jump Divide Fault,

• .Jump No Overflow/Jump No Floating Underflow/Jump No Floating Overflow/Jump No Divide
Fault,

4.2.2.4. Use of the j- and a-Fields to Specify GRS Control Register Address

For the Jump On Greater And Decrement instruction, the values in the j-field and a-field combine
to form a 7-bit address (the leftmost bit of the j-field is ignored). The 7-bit address specifies which
one of the 112 addressable GRS control registers is to be used as the counter for the instruction.

4.2.2.5. Use of the x-Field

An indexing operation which utilizes a ones complement subtractive adder occurs for every
instruction. If the A-. X-, and R-register set selector, 06, is equal to 0, each x-field value in the range
01 8 through 178 references one of the user X-registers at control register addresses 018 through
178, respectively. If 06 = 1, each x-field value in the range 018 through 178 references one of the
Executive X-registers at control register addresses 1418 through 1578, respectively. When the value
in the x-field is not zero, the value in the Xm-field of the X-register specified by the x-field is added
to the extended contents of the u-field to form the relative operand address or an operand. This
indexing operation is symbolized by the notation: u + Xm = U except for instructions which specify
the character addressing mode (see 4.2.2.2.2) and for most byte instructions. (See 4.1.17.) In these
cases it is symbolized by thp. notation u + Xm + Ow = U. Xm is an 18-bit field unless 24-bit indexing
is specified.

When the value in the x-field is zero, no index register is referenced. However, an indexing operation
does occur. It consists of adding an 18-bit half word of all zero bits to the extended u-field ·value
to form the relative operand address Qr operand. This indexing operation is symbolized by the
notation: u + 0 = U or u + 0 + Ow = U.

An indexing operation never produces a U value consisting of all one bits. This applies when U is
a relative address and also when U is extended with zero bits (j = 168) or with sign bits (j = 178)
for use as an immediate operand.

Example:

Example:

If j t 16 or 178, u = 000001 8, and Xm = 7777768

then

u + Xm = U = 0000018 + 7777768 = 0000008

If f = 10 - 678 (except 33 and 378), j = 16 or 178,

i = 0, u = 1777778, and Xm = 6000008,

then

u + Xm = U = 1717778 + 600000s = 0000008

8492
UP-HUMBER

Example:

SPERRY UNIVAC 1 100/80 S~m.
Processor and Storage Programmer Reference UPOA Tt LEVU

Iff= 10-678 (except 33 and 378),j = 160r 178,

h = i = 1, u = 177777~, and x = 0,

then

h, i, u + 0 = U = 7777778 = 0 = 0000008

4.2.2.6. Use of the h-Field

4-22
PAGE

If the x-field of an instruction contains a nonzero value, the h-bit determines whether or not the
contents of the X-register specified by the x-field of the instruction or the Ow- and Ob-fields of an
instruction specifying the character addressing mode are modified.

After the indexing operation is complete, if h = 1, and x t 0 for an instruction which does not specify
the character addressing mode, or an instruction which specifies the character addressing mode and
a J-register containing I = 0 (see 4.2.2.2.2), the contents of the Xi-field of the specified X-register
are added to the contents of the Xm-field of the same register and the sum is stored back in the
Xm-field. The process is Xm + Xi Xm. If 07 or i = 0, the addition is performed in an la-bit
ones complement subtractive adder. If 07 = i = 1, the addition is performed in a 24-bit ones
complement subtractive adder.

The only time index register modification produces an output of -0 occurs when both inputs are -0;
that is, -0 + -0 = -0.

After the indexing operation is complete for an instruction which specifies the character addressing
mode and a J-register containing I = 1, if h = 1, the contents of the Iw- and Ib-fields of the J-register
are added to the contents of the Ow- and Ob-fields, respectively, as explained in 4.2.2.2.2. In this
case Xm is not modified.

The modification of Xm or of Ow and Ob are performed without increasing instruction execution time.

If h =" 0, neither Xm nor the Ow- or Ob-field is modified; the I-bit is ignored in this case.

4.2.2.7. Use of the i-Field

The i-field can be used to specify normal addressing, indirect addressing, absolute addressing, or
to extend the u-field of an instruction.

If i = 1 and 07 = 0, indirect addressing occurs for a" instructions except when f = 018 through
068, 108 through 328, 348 through 368, 408 through 678 and j = 168 or 178, For the exception,
x t 0 is also a required condition for indirect addressing.

Indirect addressing wi" not occur if:

• i = 0

• f = 01 8 through 068, 108 through 328, 348 through 368, 408 through 67 8, j = 168 or 178
and x = O. (Then the i-field is used as and extension of the u-field.)

• 07 = 1 (Then i = 1 specifies absolute addressing, i = 0 specifies normal address generation
of u + Xm.)

8492 L SPERRY UNIVAC 1100/80 S~ms 4-23
UP-HUMe:R . Processor and Storage Programmer Reference UPDATE LEVU flAGE - ,-~--=----------'--~

The above cases are summarized in Table 4-9.

Table 4-9. Summary of Use of i-Field

Exceptions
i D7 All Instructions f is less than 70 (Except 07, 33 and 37) and

j = 16 or 17 and:
x t 0 X = 0

0 () Normal Addressing
Operand is (u + Xm)

0 'I Normal Addressing
Operand is h, i, u

1 0 Indirect Addressing Indirect Addressing

1 1 Absolute Addressing Operand is (u + Xm)
(Xm = 24 Bits)

When indirect addressing is specified, it is initiated after calculating the relative address and the
absolute address in the index subsection, even if U ~ 1778, The contents of bit positions 21 through
o of the main storage location addressed are transferred to the control section of the CPU, where
they replace the x-, h-, i-, and u-field values of the current instruction. The modified instruction is
then performed just as if the whole instruction word were initially obtained in its modified form from
main storage. Indexing and index register incrementation (if specified) are performed in the normal
manner for both the original and the modified instruction. If the modified instruction also specifies
indirect addressing, the whole process of indirect addressing is repeated. The repetition or cascading
of indirect addressing continues until the modified instruction contains a 0 bit in the i-field, or
contains all 0 bits in the x-field for the f, j combinations which lead to the use of i to extend the u-field,
at which time indirect addressing ceases and the modified instruction is performed.

If f = 01 8 through 678 (except 078, 338, and 37 8), j = 168 or 178, and x = 0 in an instruction as
it is initially obtained from main storage or as it is modified as a result of an indirect addressing
operation, indirect addressing does not occur even if i = 1. In this case, the i-field is used as an
extension of the u-field.

4.2.2.8. Description of the u-Field

The ultimate ~se of the u-field depends on the values in the f and j-fields of the instruction.

For most f, j combinations, u is used to form an operand address. The indexed extension of the value
in the u-field of the instruction is used as the relative address of a main storage location or as the
address of a GRS location.

For certain f, j combinations, the indexed extension of the value in the u-field of the instruction (or
of a modified instruction in the case of indirect addressing) is used as the operand for some
instructions, as a count in the case of shift instructions. For other f, j combinations, the value in the
u-field has no effect on the result of the instruction.

8492
UP-NU

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference

4.2.2.8. 1. Use of the u-Field as an Operand Address Designator

UPOA T£ lEVEL
4-24

PAGE

When the value in the u-field of an instruction is an operand address designator because of the f,
j combination or the specifying of indirect addressing, the 16-bit u value is extended to 18 bits with
two high order zero bits to form one input to the index adder. Xm is the other input. U, the 18-bit
output of the index adder, is used as the relative address of a main storage location if U ~ 200a.

If U < 200a, U is normally used as the absolute address of a GRS location. However, if U < 200a
and the instruction specifies indirect addressing, {) jump to address, or the address for an ExeC'u'e
instruction (see 5.13.3), U is the relative address of a main storage location rather than the absolute
address of a GRS location.

For any given u-field value, a value can be chosen for the Xm portion of the specified index register
which will produce any desired value of U in the range OOOOOOa through 777776a. (It is not possible
to produce the value 777777 a.)

Certain instructions use U to reference both U and U + 1 as a double-length (72-bit) word. In this
case, U is the address of the most significant 36 bits and U + 1 is the address of the least significant
36 bits.

4.2.2.8.2. Use of the u-Field as an Operand Designator

The value in the u-field of an instruction (or a modified instruction) is an operand ingredient rather
than an operand address ingredient if indirect addressing is not specified and

• f=07a andj=14a

• f = 108 through 67 a (except 33a and 37 a) and j = 16a or 17 a; or

• 73a and j = OOa through 05 a or 10a through 13a (all shift instructions).

When the value in the u-field of an instruction (or a modified instruction resulting from an indirect
addressing sequence) is an operand designator, the 16-bit value in the u-field is extended to 18 bits
to provide one of the inputs to the index adder for an indexing operation. This 18-bit value normally
consists of 0 bits in the two leftmost bit positions and the 16-bit value from the u-field in the
remaining bit positions. However, if f = 10a through 67 a (except 33a and 37 a), j = 16a or 17 a' and
x = 0, the bits in the h and i-fields are used in the two leftmost bit positions in place of the 0 bits.
When hand i are both 1 bits and they are used to extend a u-field whose value is all 1 bits, the output
of the index adder is all 0 bits rather than all 1 bits.

The 18-bit index adder output is normally sent to the arithmetic section where it is extended to
become a 36-bit operand by O-bit fill (j = 16a) or by filling with bits identical to the leftmost bit of
the index adder output (j = 178),

4.2.2.8.3. Use of the u-Field as a Shift Count Designator

The value in the u-field of an instruction (or a modified instruction) is a shift count designator if f =
738 and j = 00 through 05a or 10 through 13a. In these cases the 16-bit u-value is extended to
18 bits with high order zero bits and added to Xm to form the 18-bit value U. The appropriate low
order bits of U are used as the shift count.

UP-NUMBER Processor and Storage Programmer ".ference uPDAn LIWL
8492 L S .. Eft"Y UNrvAC 1100/10 S~."'.

_ , ____ ----1------'----

4.2.~~.8.4. Restrictions on the Use of the u-Field

When indirect addressing is not specified, certain instructions require the value in the u-field to be
zero. These instructions are:

• ilnitiate Interprocessor Interrupt

• Enable Day Clock

• Disable Day Clock

If this restriction is violated, the results produced are undefined.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S'{Stems
Processor and Storage Programmer Reference I UPDATt LlVEl

5. Instruction Repertoire

5. 1. INTRODUCTION

This section describes the operation performed by each instruction in the 1100/80 user repertoire.
These descriptions are grouped by types of instructions.

An introduction to each group presents information that is common to all instructions in the group.
The detailed descriptions of the individual instruction have the following format:

• Instruction name Mnemonic code Octal function code

• Symbolic description of the operation performed by the instruction. The symbology used is
defined in Appendix A.

• Textual description of the operation performed by the instruction.

• Sequentially numbered notes which provide special information related to the instruction, if
appropriate.

For all instructions, any possible value may be used in the a-, x-, h-, i-, and u-fields unless an
exception to this rule is stated in the notes. Any possible value may be used in the j-field except
when j is a minor-function-code designator or when an exception is stated in the notes.

If the value of the j-field is 016 and 017 (an immediate operand specification) and the value of the
x-fielld is zero, the h-bit, i-bit, and u-field make up the 18-bit operand. If the h- and i-bits are one
and 1the value of the u-field is 0177777, however, the resulting operand is zero, not all ones. A
negative zero can be generated as an immediate operand only by load negative instructions using
x-, h·-, i-, and u-fields of zero.

If the value of the a-field of the instruction is 017 (A 15) and the instruction makes use of more than
one ctrithmetic register (A+ 1 or A+2), those registers are located at GRS location 034 and 035, or
o 17 ~~ and 0175, depending on the value of 06. If automatic index register incrementation occurs,
the value of Aa or Xa are not affected. However, the value of U or U + 1 (if U < 0200) or A+ 1 (for
two pass instructions, which require both U and U + 1) may be affected; if Xx is referenced as one
of these operands, the updated index value is used.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~tem.
Processor and Storage Programmer Reference

5.2. LOAD INSTRUCTIONS

UPOATf LEVEL
5-2

PAGE

The single-precision load instructions transfer data to the arithmetic section where a 36-bit word
is always formed. The 36-bit word is then transferred to the register specified by the a-field of the
instruction. Single-precision data-word transfers from storage to the arithmetic section is controlled
by the value in the j-field.

For the double-precision load instructions, the j-field is a minor function code and full 72-bit data
transfers result.

5.2.1. Load A - L,LA 10

(U) - A

The contents of U is transferred unaer j-field control to the arithmetic section and then to Aa.

5.2.2. Load Negative A - LN,LNA 11

-(U) - A

The contents of U is transferred under j-field control to the arithmetic section. The ones complement
of the value in the arithmetic section is transferred to Aa.

5.2.3. Load Magnitude A - LM,LMA 12

1 (U) 1 - A

The contents of U is transferred under j-field control to the arithmetic section. If the sign bit (bit 35)
of the value in the arithmetic section is a 1 bit, it is complemented; if the sign bit is a 0 bit, it is not
complemented. The final value (always positive) is transferred from the arithmetic section to Aa.

For j-field values 3-7 (quarter word not set) and 17 sign bit 35 controled by sign extention.

1. This instruction is the same as Load A (see 5.2.1) for j = H 1, H2, 01-04, or S1-S6.

5.2.4. Load Negative Magnitude A - LNMA 13

-I (U) 1 - A

The contents of U is transferred under j-field control to the arithmetic section. If the sign bit (bit 35)
of the value in tbe arithmetic section is a 0 bit, it is complemented; if the sign bit is a 1 bit, it is not
complemented. The final value (always negative) is transferred from the arithmetic section to Aa.

For j-field values 3-7 (quarter word not set) and 17 sign bit 35 controled by sign extention.

t. This instruction may be used to load -0 into an A-register by using j = 168 or 178 , and x =
h = i = u = O.

2. This instruction is the same as Load Negative A (see 5.2.2) for j = H 1, H2, 01-04, or 51-56.

8492 L SPEPRY UNIVAC 1100/80 SY!ltems
UP-NUMBER Processor and Storage Programmer Reference _ ._----=-----=---_---L...-~

UPDATE lEVU
5-3

PAGE

5.2.5. Load R - L,LR 23

~U) - R a

The contents of U is transferred under j-field control to the arithmetic section and then to the
Ra-register specified by the a-field.

1. Ilf the processor is in user mode, an attempt to Load RO causes a Guard Mode interrupt.

5.2.6. Load X Modifier - LXM 26

(U) - Xa1l7-O; Xa35-18 unchanged

The contents of U is transferred under j-field control to the arithmetic section; the low-order 18 bits
of thEt value in the arithmetic section is transferred to the lower half (bits 17-0) of the X-register
specjjfjed by the a-field; the upper half (bits 35 through 18) of the X-register remains unchanged.

1. This instruction loads only.the low-order 18 bits of the specified X-register even if 07 = i =
1 to specify 24-bit indexing.

5.2.7. Load X - L,LX 27

(U) - Xa

The contents of U is transferred under j-field control to the arithmetic section and then to the
X-register specified by the a-field.

5.2.8. Load X Increment - LXI 46

(U) - Xa35-18; Xa 17-0 unchanged

The contents of U is transferred under j-field control to the arithmetic section; the low-order 18 bits
of the value in the arithmetic section is transferred to the upper half (bits 35-18) of the X-register
specified by the a-field. The lower half (bits 17-0) of the X-register remains unchanged.

1. This instruction loads the full high-order 18 bits of the specified X-register even if 07 = i =
11 to specify 24-bit indexing.

5.2.9. Double Load A DL f = 71 - 13

(IU,U+ 1) - A,A+ 1

The contents of U and U + 1 are transferred to the arithmetic section and then to Aa and Aa + 1,
respectively.

5.2.10. Double-Load Negative A - DLN 71,14

-iU,U+ 1) - A,A+ 1

The contents of U and U + 1 are transferred to the arithmetic section where the 72-bit value is
complemented and then transferred to Aa and Aa + 1, respectively.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~tem.
Processor and Storage Programmer Reference

5.2. 11. Double Load Magnitude A - DLM 71,15

I (U,U+ 1) I - A,A+ 1

UPOA T£ lEVEL
5-4

PAGE

The contents of U and U+ 1 are transferred to the arithmetic section. If the sign bit (bit 35) of U is
a 1 bit, the 72-bit value in the arithmetic section is complemented; if the sign bit is a 0 bit, the 72-bit
value is not complemented. The final value (always positive) is transferred from the arithmetic section
to Aa and Aa+ 1.

5.3. STORE INSTRUCTIONS

The single-precision store instructions transfer data from a control register specified by the a-field
to the storage location or control register addressed by U. Exceptions to ·this are the Store Constant
instructions. (See 5.3.5.)

Single-precision data-word transfers to storage are controlled by the j-field. If j = 168 or 178, no
data is stored. A Guard Mode interrupt will occur, however, if U < 2008 and an Executive register
is specified in user mode, or if U ~ 02008 and a storage-limits or write-protection violation occurs.

Indexing, index incrementation/decrementation, and indirect addressing function normally in D.U
cases.

5.3. 1. Store A - S,SA 01

(A) - U

The contents of Aa is transferred under j-field control to location U.

1. If j = 16a or 178 , no data is stored.

5.3.2. Store Negative A - SN,SNA 02

-(A) - U

The complement of the value of Aa is transferred under j-field control to location U.

1. If j = 168 or 178 , no data is stored.

5.3.3. Store Magnitude A - SM,SMA 03

I (A) 1- U

If the sign bit (bit 35) of the value of Aa is one, the value is complemented. The final value (always
positive) is transferred under j-field control to location U.

1. If j = 1 6a or 1 78 , no data is stored.

UP-NUMBER Processor and Storage Programmer Reference UPOATt LEVEL

8492 L SPERRY UNIVAC 1100/80 S~ems
_ , ____ -----L.-~,_

5.3.4. Store R - S,SR 04

(Ra) - U

The contents of the Ra-register specified by the a-field is transferred under j-field control to location
U.

1. If j = 168 or 178 , no data is stored.

5.3.5. Store Constant Instructions - XX 05; a = 00-07

Constant - U

A constant valiue specified by the a-field is transferred under j-field control to location U. The
following octaJ constant values may be stored:

SZ a = 0 000000 000000 Zero

SNZ a = 1 777777 777777 Ones

SPl a = 2 000000 000001 Plus One

SNl a = 3 777777 777776 Minus One

SFS a = 4 050505 050505 Fieldata Blanks

SFZ a = 5 606060 606060 Fieldata Zeros

SAS a = 6 040040 040040 ASCII Blanks

SAZ a = 7 060060 060060 ASCII Zeros

5.3.6. Store ,X - S,SX 06

(Xa) - U

The contents of the Xa-register specified by the a-field is transferred under j-field control to locatiOn
U.

1. If j = 168 or 178, no data is stored.

5.3.7. Double Store A - OS 71,12

(,A,A+ 1) -. U,U + 1

The contents of Aa and Aa+ 1 are transferred to locations U and U+ 1, respectively.

8492
UP..;.NUMBER

SPERRY UNIVAC 11 00/80 S~t.m.
Processor and Storage Programmer Reference UPOATE lEVEL

5.3.8. Block Transfer - BT 22

(Xx + u) - Xa + u, repeat k times; k = the initial count in the repeat count register

5-6
PAGE

A source word is transferred under j-field control to the arithmetic section, and then under j-field
control to a destination word-location. The repeat count is decreased by 1. The
source-to-destination transfer step is repetitively performed until the repeat count has been
decreased to O. The x-field specifies the X-register used with the u-field to determine the effective
source word-address. The a-field specifies the X-register used in determining the effective
destination word-address.

1. A word containing the desired repeat count in the rightmost 18-bit positions must be loaded
in the repeat count register (R 1) before performing the Block Transfer instruction.

2. If the initial repeat count is :t 0, no data is transferred. If - 0, then +0 is written into bits 17-0
of the repeat count.

3. If j = 168 or 178, no data is transferred; however, the repeat count is decreased to zero.

4. If the x-field is zero, no data is transferred. The contents of the X-register specified by the a-field
remain unchanged regardless of the contents of the a- and h-fields.

5. If an interrupt occurs before the repeat count has decreased to zero, the termination pass ocr.urs
at the conclusion of the currently active data transfor. The remnant repeat count is stored in
R 1. When the interrupt is honored, the captured P value is the address of the Block Transfer
instruction or the address of the Execute instruction which led to the Block Transfer instruction.
Thus, this address can be preserved and, when the interrupt has been processed, it is possible
to return to the Block Transfer instruction and continue executing this instruction at the point
where it was terminated for the interrupt. If the Block Transfer instruction was entered by means
of an Execute instruction, the h-field of the Execute instruction must be zero so that, when the
program returns to the Execute instruction, the effective U address will again lead to the Block
Transfer instruction. If the Block Transfer instruction specifies indirect addressing (i = 1), the
h-field must be zero to enable the program to return to the same effective U address and
complete the Block Transfer instruction in the event of an interrupt.

6. If there is no indirect addressing (i = 0), the h-field is normally one. If h = 0, no
incrementation/decrementation of the index registers occurs. When h = 0, thA source and
destination addresses are the initial contents of the index registers used repetitively for every
transfer performed. Thus, no more than one data transfer is effectively performed.

7. If the x-field is not zero, but the a-field is zero, the a-field references index register zero (XO),
and proper operation occurs.

5.4. FIXED-POINT ARITHMETIC INSTRUCTIONS

The fixed-point arithmetic instructions perform integer or fractional addition, subtraction,
mUltiplication, and division. In a single-precision arithmetic instruction, the transfer of data from
location U in storage to the arithmetic section is under the control of the contents of the j-field of
the instruction. For double-precision and parallel half-word and third-word arithmetic operations,
the value in the j-field is a minor-function code.

For all arithmetic instructions, indexing, index incrementation/decrementation, and indirect
addressing function normally.

8492 L SPERRY UNIVAC 1100/80 S~tems I I 5 7
UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE -

- ,-------'----~

The overflow alnd carry designators are set according to the results of the operation for all add and
add-negative instructions except add and add-negative halves and thirds.

The sign of the result is determined by the rules of algebra except for add and add-negative
instructions where both operands are zero. In this case, the result is positive zero, except for add
instructions where both operands are negative zero, and add-negative instructions where the
minuend (Aa) is negative zero and the subtrahend (U) is positive zero.

5.4.1. Add to A - A,AA 14

(A) + (U) ~ A

The contents of U is transferred under j-field control to the arithmetic section. The 36-bit value in
the arrithmetic section is added algebraically to the contents of Aa. The sum is stored in Aa.

5.4.2,. Add Negative to A - AN,ANA 15

(A) - (U) - A

The contents of U is transferred under j-field control to the arithmetic section. The 36-bit value in
the arithmetic section is subtracted algebraically from the contents of Aa. The difference is stored
in Aa"

5.4.3. Add Magnitude to A - AM,AMA 16

(A) + I (U) I ~ A

The contents of U is transferred under j-field control to the arithmetic section. If the sign bit (bit 35)
of the 36-bit value in the arithmetic is one, the value is complemented; if the sign bit is zero, the value
is not complemented. The final 36-bit value in the arithmetic section (always positive) is added
algebraically to the contents of Aa. The sum is stored in Aa.

Only valid for j = 3-7, 17.

1. This instruction is the same as Add To A (see 5.4.1) for j = H1, H2, 01-04, or 51-56.

5.4.4. Add Negative Magnitude to A - ANM,ANMA 17

(A) - I (U) I ~ A

The contents of U is transferred under j-field control to the arithmetic section. If the sign bit (bit 35)
of the 36-bit value in the arithmetic section is one, the value is complemented; if the sign bit is zero,
the value is not complemented. The final 36-bit value in the arithmetic section (always positive) is
subtnlcted algebraically from the contents of Aa. The difference is stored in Aa.

Only valid for j = 3-7, 17.

1. This instruction is the same as Add Negative To A (see 5.4.2) for j = H 1, H2, 01-04, or 51-56.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference

5.4.5. Add Upper - AU 20

(A) + (U) - A+ 1

UPOA TE LEVEL
5-8

PAGE

The contents of U is transferred under j-field control to the arithmetic section. The 36-bit value in
the arithmetic section is added algebraically to the contents of Aa. The sum is stored in Aa + 1. The
contents of U and Aa remain unchanged.

5.4.6. Add Negative Upper - ANU 21

(A) - (U) - A+ 1

The contents of U is transferred under j-field control to the arithmetic section. The 36-bit value in
the arithmetic section is subtracted algebraically from the contents of Aa. The difference is stored
in Aa + 1. The contents of U and Aa remain unchanged.

5.4.7. Add to X - A,AX 24

(Xa) + (U) - Xa

The contents of U is transferred under j-field control to the arithmetic section. The 36-bit value in
the arithmetic section is added algebraically to the contents of the Xa-register specified by the a-field.
The sum is stored in the Xa-register specified by the a-field.

5.4.8. Add Negative to X - AN,ANX 25

(Xa) - (U) - Xa

The contents of U is transferred under j-field control to the arithmetic section. The 36-bit value in
the arithmetic section is subtracted algebraically from the contents of the Xa-register specified by
the a-field. The difference is stored in the Xa-register specified by the a-field.

5.4.9. Multiply Integer - MI 30

(A) x (U) - A,A+ 1

The contents of U is transferred under j-field control to the arithmetic section. The contents of Aa
is multiplied algebraically by th 36-bit value in the arithmetic section, producing a 72-bit product.
The most significant 36 bits of the product (including sign bits) are stored in Aa. The least significant
36 bits of the product are stored in Aa+ 1.

1. Bit positions 71 and 70 of the product are always sign bits. The product of any two 35-bit
positive integers cannot exceed a 70-bit positive integer.

5.4.10. Multiply Single Integer - MSI 31

(A) x (U) - A

The contents of U is transferred under j-field control to the arithmetic section. The contents of Aa
is multiplied algebraically by the 36-bit value in the arithmetic section, producing a 72-bit product.
The least significant 36 bits of the product are stored in Aa. The most significant 36 bits of the
product are lost.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Swma I J 5 9
___ P_r_o_c_e_ss_o_r_a_n_d_S_t_o_r_a_g_e_r_o_g_r_a_m_m_e_r_R_e_f_e_re_n_c_e ___ ,~_ATt_L_EV£_L_ _~~GE - _, _____ _

1. The 36-bit result stored in Aa does not represent the product as a signed number if the leftmost
37 bits of the 72-bit product formed in the arithmetic section are not identical.

5.4. 11. Multiplv Fractional - MF 32

(A) x (U) - A,A+ 1

The contents of U is transferred under j-field control to the arithmetic section. The contents of Aa
is multiplied algebraica"y by the 36-bit value in the arithmetic section, producing a 72-bit product
which is shifted left circularly one bit position. The leftmost 36 bits of the shifted product, including
the sign bit, alre stored in Aa. The rightmost 36 bits are stored in Aa + 1.

1. This instruction performs an operation identical to the Multiply Integer instruction (see 5.4.9)
except that the 72-bit result of the multiplication process is shifted lett circularly one bit position
prior to storing it in Aa and Aa+ 1.

2. The rightmost bit of the result in Aa+ 1 is a sign bit and it is identical to the leftmost bit of the
result in Aa.

5.4. '12. Divide Integer - 01 34

(A,A+ 1) -;- (U) - A; - remainder - A+ 1

The contents of U is transferred under j-field control to the arithmetic section. The 72-bit signed
number in Aa and Aa+ 1 are divided algebraica"y by the 36-bit value in the arithmetic section. The
36-bit signed quotient is stored in Aa. The remainder retains the sign of the dividend (the leftmost
bit of the initial contents of Aa) and is stored in Aa + 1.

1. The absolute value of the 72-bit signed dividend (Aa,Aa + 1) should be less than the absolute
value of the divisor (j-determined portion of U) multiplied by 235. If this relationship is not
satisfied and 020 is zero, Aa and Aa+ 1 are cleared to zero and 023 is set to one. If this
relationship is not satisfied and 020 is one, Aa and Aa+ 1 remain unchanged, 023 is set to one,
and a Divide Check interrupt results. This includes the case in which the divisor equals zero.

5.4. 13. Divide Single Fractional - DSF 35

(A) ~ (U) '- A+ 1

The c:ontents of U is transferred under j-field control to the arithmetic section. The contents of Aa
is divided algebraica"y by the 36-bit value in the arithmetic section. The 36-bit signed quotient is
stored in Aa+ 1. The remainder is lost. The contents of Aa remain unchanged.

1. The absolute value of the dividend (Aa) should be less than the absolute value of the divisor
(i-determined portion of U). If this relationship is not satisfied and 020 is zero, Aa + 1 is cleared
to zero and 023 is set to one. If this relationship is not satisfied and 020 is one, Aa + 1 remains
unchanged, 023 is set to one, and a Divide Check interrupt results. This includes the case in
which the divisor equals zero.

2. This instruction performs an operation like that of divide integer except that the quotient appears
to be shifted one bit to the right.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S'l!Stems
Processor and Storage Programmer Reference

5.4. 14. Divide Fractional - OF 36

(A,A+ 1) ~ (U) - A; remainder - A+ 1

UPOA Tt lEVel
5-10

PAGE

The contents of U is transferred under j-field control to the arithmetic section. The 72-bit signed
number in Aa and Aa+ 1 are divided algebraically by the 36-bit value in the arithmetic section. The
36-bit signed quotient is stored in Aa. The remainder retains the sign of the dividend (the leftmost
bit of the original contents of Aa) and is stored in Aa+ 1.

1. The absolute value of the leftmost half of the dividend (Aa) should be less than the absolute value
of the divisor (j-determined portion of U). If this relationship is not satisfied and 020 is zero,
Aa and Aa+ 1 are cleared to zero and 023 is set to one. If this relationship is not satisfied and
020 is one, Aa and Aa+ 1 remain unchanged, 023 is set to one, and a Divide Check interrupt
results. This includes the case in which the divisor equals zero.

2. This instruction performs an operation identical to divide integer except that the quotient
appears to be shifted one bit-to the right.

5.4.15. Double-Precision Fixed-Point Add - DA 71,10

(A,A+ 1) + (U,U+ 1) - A,A+ 1

The 72-bit signed number from U and U+ 1 are added algebraically to the 72-bit signed number
from Aa and Aa+ 1. The 72-bit sum is stored in Aa and Aa+ 1.

5.4. 16. Double-Precision Fixed-Point Add Negative - DAN 71,11

(A,A+ 1) - (U,U+ 1) - A,A+ 1

The 72-bit signed number from U and U+ 1 are subtracted algebraically from the 72-bit signed
number from Aa and Aa+ 1. The 72-bit difference is stored in Aa and Aa+ 1.

5.4. 17. Add Halves - AH 72,04

(Ab5-18 + (U)35-18 - A35- 18

The contents of each half (18-bit portion) of U is added algebraically to the contents of the
corresponding half of Aa. The sums are stored in the corresponding halves of Aa.

1. There is no interaction between the upper and lower halves of the operands. A carry from bit
position 1,7 is propagated to bit 0 rather than bit 18. A carry from bit position 35 is propagated
to bit 18 rather than bit O.

5.4.18. Add Negative Halves - ANH

(A)35-18 - (Ub5-18 - A35- 18;

(A), 7-0 - (U)17-O - A17-O

72,05

8492 I SPERRY UNIVAC 1100/80 Sr,mo I 5 11
UP-NUMBER ~, _____ P_r_o __ c_8_ss_0_r_a_n_d_S_t_o_r_a_g_8_r_o_g_r_a_m_m_8_r _R_8_f_8_re_n_c_8 _____ -L-UP_D_A_TE_l_EV_E_l_l!A_G_E_-_~~ __ _

The contents of each half (18-bit portion) of U is subtracted algebraically from the contents of the
corresponding half of Aa. The differences are stored in the corresponding halves of Aa.

1. There is no interaction between the upper and lower halves of the operands. A borrow from
bit position 17 is propagated to bit 0 rather than bit 18. A borrow from bit position 35 is
propagated to bit 18 rather than bit O.

5.4.19. Add Thirds - AT 72,06

(Ahs-24 + (U)3S-24 -. A3S- 24;

(A)23-12 + (U)23-12 -. A23- 12;

(A), 1-0 + (U), 1-0 -. A 11 -O

The contents of each third (12-bit portion) of U is added algebraically to the contents of the
corresponding third of Aa. The sums are stored in the corresponding thirds of Aa.

1. A carry from bit position 11, 23, or 35 are propagated to bit 0, 12, or 24, respectively, rather
than to bit 12, 24, or O.

5.4.20. Add Negative Thirds - ANT 72,07

(A)23-12 - (U)23-12 -. A23- 12

(A), 1-0 - (U), 1-0 -. A 11 -O

The contents of each third (12-bit portion) of U is subtracted algebraically from the contents of the
corresponding third of Aa. The differences are stored in the corresponding thirds of Aa.

1. A borrow from bit position 11, 23, or 35 are propagated to bit 0, 121 or 24, respectively, rather
than to bit 12, 24, or O.

5.5. FLOATING-POINT ARITHMETIC

Floating-·point arithmetic operations allow for efficient computation involving numerical data with a
wide range of magnitudes. Indexing, index incrementation/decrementation, and indirect addressing
function normally in all floating-point arithmetic instructions.

The greatest precision is obtained in floating-point arithmetic operations when the floating-point
input operands are normalized numbers. Certain floating-point operations produce undefined results
if normalized input operands are not used. The supporting notes indicate which instructions are
affected.

5.5. 1. Floating Add - FA 76,00

(~) + (U) -. A; residue -. A+1 if 017 = 1

The single-precision floating-point number from location U is added to the single-precision
floating-point number from Aa. The resulting sum is normalized and then stored in single-precision

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference I 5-12

PAGE

floating-point format in Aa. If 017 = 1, the residue in single-precision floating-point format is stored
in Aa+ 1.

1. The result stored in Aa is a normalized number even if either or both of the input operands are
not normalized. No attempt is made to normalize the residue stored in Aa + 1.

2. A Floating-Point Characteristic Overflow/Underflow interrupt may occur.

3. If the mantissa of the most significant word of the result is ± 0, the word stored depends on
08.

4. The sign of the most significant word of the result is the sign of the large input operand. The
sign of the other operand is assigned to the residLle.

5.5.2. Floating Add Negative - FAN 76,01

(A) - (U) - A; residue - A+ 1 if 017 =

The single-precision floating-point number from location U is subtracted from the single-pre~ision
floating-point number from Aa. The resulting difference is normalized and then stored in
single-precision floating-point format in Aa. If 017 = 1, the residue in single-precision floating-point
format is stored in Aa + 1.

1. The result stored in Aa is a normalized number even if either or both of the input operands are
not normalized. No attempt is made to normalize the residue stored in Aa+ 1.

2. A Floating-Point Characteristic Overflow/Underflow interrupt may occur.

3. If the mantissa of the most significant word of the result is ± 0, the word stored depends on
08.

4. The Floating Add Negative operation is identical +" the Floating Add operation described in 5.5.1
except that the ones complement of the contents of location U is used as the second operand.

5. The sign of the most significant word of the result is the sign of the large input operand. The
sign of the other operand is assigned to the residue.

5.5.3. Double-Precision Floating Add - DFA 76,10

(A,A+ 1) + (U,U+ 1) - A,A+ 1

The double-precision floating-point number from locations U and U + 1 are added to the
double-precision floating-point number from Aa and Aa + 1. The resulting sum is normalized and
then stored in double-precision floating- point format in Aa and Aa+ 1.

1. The result stored is a normalized number even if either or both of the input operands are not
normalized.

2. A Floating-Point Characteristic Overflow/Underflow interrupt may occur.

3. If the exponent value of the sum is less than -1024 and 05 and 02 are one, a Floating-Point
Characteristic Underflow interrupt does not occur. Instead, +0 is stored in Aa and Aa+ 1. If
020 is zero, 05 is ignored.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~em.
Processor and Storage Programmer Reference I UPOA TE LEVEL

I 5-13
PAGE

4. If the mantissa produced is floating-point zero, the result stored is +0 regardless of the signs
and characteristics of the input operands.

5.5.4. Double-Precision Floating Add Negative - DFAN 76,11

(A,A+ 1) - (U,U+ 1) -+ A,A+ 1

The double-precision floating-point number from locations U and U+ 1 are subtracted from the
double-precision floating-point number from Aa and Aa+ 1. The resulting difference is normalized
and then stored in double-precision floating-point format in Aa and Aa+ 1.

1. The result stored is a normalized number even if either or both of the input operands are not
normalized.

2. A Floating-Point Characteristic Overflow/Underflow interrupt may occur.

3. If the exponent value of the difference is less than -1024 and 05 and 020 are one, a
Floating-·Point Characteristic Underflow interrupt dOfi:s not occur. Instead, +0 is stored in Aa
and Aa + 1. If 020 is one and 05 is zero, the interrupt occurs. If 020 is zero, 05 is ignored.

4. The Double-Precision Floating Add Negative operation is identical to the Double-Precision
Floating Add process described in 5.5.3 except that the ones complement of the contents of
U and U + 1 is used as the second operand.

5. If the mantissa produced is floating-point zero, the result stored is +0, regardless of the signs
and characteristics of the input operands.

5.5.5. Floating Multiply - FM 76,02

(A) x (U) -+ A (and A+ 1 if 017 = 1)

The single-precision floating-point number from Aa is multiplied by the single-precision
floating-point number from location U. The resulting double-length product is packed into two
sing~e-precision floating-point numbers. The most significant portion of the product in
single-precision floating-point format is stored in Aa. If 017 = 1, the least significant portion of the
product in single-precision floating-point format is stored in Aa + 1.

1. If either or both input operands are not normalized numbers, the results are undefined. The
following notes apply only if both input operands are normalized numbers.

2. A Floating-Point Characteristic Overflow/Underflow interrupt may occur.

3. The portion of the product stored in Aa is a normalized number. No attempt is made to normalize
the number stored in Aa+ 1.

4. The algebraic rule for signs applies to the portions of the product stored in Aa and Aa+ 1.

5. If the mantissa of either or both input operands is zero, the following applies:

a. A Floating-Point Characteristic Overflow/Underflow interrupt never occurs, regardless of
the values of the characteristics of the input operands.

b. If 08 is zero, the result stored in Aa is +0 regardless of the signs of the input operands.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~t.m.
Processor and Storage Programmer Reference I UPDATE LEVEl

I 5-14
PAGE

c. If 08 is one and if the exponent value is in the range -128 through + 127, the most
significant product-word will reflect the magnitude of the characteristic produced and the
sign produced by the mantissa arithmetic.

If the exponent value of the most significant product-word is greater than + 127 or less
than -128, the result stored in Aa is ± 0, whichever would reflect the signs of the input
operands.

6. The value of 08 has no effect on the least significant product-word. When the mantissa for the
least significant product-word is zero, it is packed with the appropriate characteristic. If the
characteristic of the residue is less than -128, the result stored in Aa + 1 is ± 0, whichever would
reflect the signs of the operands.

A characteristic overflow of the most significant word can occur; however, the characteristic of
the residue could be in the range 000 through 377. In this case, the result st')red in Aa is ±
o depending on the algebraic rule of the sign, and the residue is packed with the appropriate
characteristic and stored in Aa + 1.

7. If the characteristic of the nUfl)ber stored in Aa is greater than or equal to 27 then the
characteristic of the number stored in Aa + 1 is 27 less than the characteristic in Aa.

5.5.6. Double-Precision Floating Multiply - DFM 76,12

(A,A+ 1) x (U,U+ 1) - A,A+ 1

The double-precision floating-point number from Aa and Aa + 1 mUltiplied by the double-precision
floating-point number from locations U and U + 1. The product is normalized and stored in
double-precision floating-point format in Aa and Aa + 1.

1. If either or both input operands are not normalized numbers, the results are undefined. The
following notes apply only if both operands are normalized numbers. -

2. A Floating-Point Characteristic Overflow/Underflow interrupt may occur.

3. The result stored in Aa and Aa+ 1 are always a normalized number.

4. The algebraic rule for signs applies except for the special cases covered in notes 5b and 6.

5. If the mantissa of either or both input operands are zero, the following applies:

a. A Floating-Point Characteristic Overflow/Underflow interrupt never occurs, regardless of
the values of the characteristics of the input operands.

b. The result stored in Aa and Aa+ 1 are +0 regardless of the signs of the input operands.

6. If the exponent value of the product is less than -1024 and 05 and 020 are one, a Floating-Point
Characteristic Underflow interrupt does not occur. Instead +0, regardless of the signs of the
input operands, are stored in Aa and Aa+ 1. If 020 = 1 and 05 = 0, the interrupt occurs. If
020 = 0, 05 is ignored.

"",

8492 L SPERRY UNIVAC 1100/80 SY!Stems I I 5 15
UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE -_ ,_---------=--~ __ ___L_~

5.5.7. Floating Divide - FD 76,03

(A) .;. (U) - A; remainder - A+ 1 if 017 = 1

The single-precision floating-point number from Aa is divided by the single-precision floating-point
number from location U. The quotient is stored in Aa in single-precision floating-point format. If
017 = 1, the remainder is stored in Aa + 1 in single-precision floating-point format.

1. If either or both input operands are not normalized numbers, the results are not defined. The
following notes apply only if both operands are normalized numbers.

2. A Floating-Point Characteristic Overflow/Underflow interrupt may occur.

3. If the mantissa of the divisor (U) is zero, a Divide Check interrupt occurs.

4. The quotient stored in Aa is a normalized number. No attempt is made to normalize the
remainder that is stored in Aa + 1 when 017 = 1.

5. The algebraic rule for signs applies to the quotient stored in Aa. The sign of the dividend is
assigned to the remainder stored in Aa+ 1.

6. If the mantissa of the dividend (Aa) is zero but not the divisor (U), the following applies:

a. A Floating-Point Characteristic Overflow/Underflow interrupt never occurs, regardless of
the characteristics of the operands.

b. If 08 = 0, the quotient stored in Aa is +0 regardless of the signs of the operands.

c. If 08 = 1 and the exponent value of the quotient is greater than + 128 or less than -128,
the quotient stored in Aa is ± 0, whichever would reflect the signs of the input operands.

7. If the exponent value of the remainder is less than -128, the remainder stored in Aa+ 1 is ± 0,
whichever would reflect the sign of the divid~;~'" from Aa.

8. If the characteristic of the dividend from Aa is greater than or equal to 27, then the characteristic
of the number stored in Aa+ 1 for the remainder is 2'1 or 26 less than the characteristic of the
dividend.

5.5.S. Double-Precision Floating Divide - DFD 76,13

(A,A+ 1) "; (U,U+ 1) - A,A+ 1

The double-precision floating-point number from Aa and Aa+ 1 are divided by the double-precision
floating-point number from locations U and U+ 1. The quotient is stored in Aa and Aa+ 1 in
double-precision floating-point format. The remainder is not retained.

1. If either or both of the input operands are not normalized numbers, the results are undefined.
The following notes apply only if both operands are normalized numbers.

2. A Floating-Point Characteristic Overflow/Underflow interrupt may occur,

3. If the mantissa of the divisor is zero, a Divide Check interrupt occurs.

4. The result stored in Aa and Aa+ 1 are always a normalized number.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPDATE LEVEL

5-16
PAGE

5. The algebraic rule for signs applies except for the special cases explained in notes 6b and 7.

6. If the dividend mantissa (Aa, Aa + 1) is zero and the divisor mantissa (U,U + 1) is not zero, the
following applies:

a. A Floating-Point Characteristic Overflow/Underflow interrupt never occurs regardless of
the values of the characteristics of the input operands.

b. The result stored in Aa and Aa+ 1 are +0 regardless of the signs of the operands.

7. If the exponent value of the quotient is less than -1024, and 05 and 020 are one, a
Floating-Point Characteristic Underflow interrupt does not occur. Instead +0, regardless of the
signs of the input operands, are stored in Aa and Aa + 1. If 020 = 1 and 05 = 0, the interrupt
occurs. If 020 = 0, 05 is ignored.

5.5.9. Load and Unpack Floating - LUF 76,04

I (U) 134-27 - A7-o, zero fill;

(U)26-O - A+ 126-0' sign fill

The single-precision floating~point number from location U is transferred to the arithmetic section
and unpacked. The absolute value of the biased characteristic of the input operand is transferred
to bits 7 through 0 of Aa; bits 35 through 8 of the Aa is filled with 0 bits. The mantissa of the input
operand is transferred to bits 26 through 0 of Aa+ 1; bits 35 through 27 of Aa+ 1 are filled with bits
identical to the sign of the floating-point number in U.

1. No attempt is made to normalize the operand.

5.5.10. Double Load and Unpack Floating - DFU 76,14

1 (U,U+ 1h0-60 I - A 10-0' zero fill;

(U,U + 1)59-36 - A+ 123-0' sign fill;

The double-precision floating-point number from locations U and U + 1 are transferred to the
arithmetic section and unpacked. The absolute value of the biased characteristic of the input operand
is transferred to bits 10 through 0 of Aa; bits 35 through 11 of Aa are filled with 0 bits. The leftmosi
24 bits of the mantissa, (U)23-O' are transferred to bits 23 through 0 of Aa+ 1; bits 35 through 24
of Aa + 1 are filled with bits identical to the sign of the floating-point number in locations U and U + 1.
The rightmost 36 bits of the mantissas (U+ 1) are transferred to Aa+2.

1. No attempt is made to normalize the operand.

5.5.11. Load and Convert to Floating - LCF 76,05

if (U)35 = 0: (A)7-O ~ normalizing count - A+ 134- 27;

8492 L SPERRY UNIVAC 1100/80 S~ems I I 5 17
UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE -_ ,_~ ___ ---L.-~

if (U)35 =: 1: ones complement of [(Ah-O ± normalizing count] A+ 134- 27

The fixed-point number from iocation U is sent to the arithmetic section where it is shifted right or
left, as required, to normalize h. The normalizing shift count is added to the characteristic from the
rightmost eight bits of Aa if a normalizing right-shift is required. It is subtracted from the
characteristic if a normalizing left-shift is required. The adjusted characteristic (complemented if U
is negative) is packed with the normalized value from U to form a single-precision floating-point
number. The packed result is stored in Aa+ 1. The contents of Aa remain unchanged.

1. A Floating-Point Characteristic Overflow/Underflow interrupt may occur.

2. The 28 leftmost bits from Aa are ignored: (Aah-O must be prebiased.

3. Ilf the resultant mantissa is zero, the following applies:

a. If 08=0, the result stored in Aa is +0.

b. If DB = 1, and the resultant characteristic is in the range 000 through 377, the characteristic
is packed with the zero mantissa and stored in Aa.

C::. If 08 = 1, and the resultant characteristic is a negative number, ± 0 is stored in Aa
depending on the sign of the input operand.

5.5. 12. Double Load and Convert to Floating - DFP, DLCF 76,15

(U)35 A+ 135; [normalized (U,U+ 1)]59-0 A+ 123-0 and A+2;

if (U)35 = 0: (A),o-o ± normalizing count A+ 134- 24;

if (U)35 = 1: ones complement of [(A),o-o ± normalizing count] A+ 134- 24

The double-precision fixed-point number from locations U and U + 1 are sent to the arithmetic section
wherEt it is shifted right or left, if necessary, to normalize it. The normalizing shift count is added to
the characteristic from the rightmost 11 bits of Aa if a normalizing right-shift is required. It is
subtrclcted from the characteristic if a normalizing left-shift is required. The adjusted characteristic
(complemented if U is negative) is packed with the normalized value from U and U + 1 to form a
double-precision floating-point number and the packed result is stored in Aa+ 1 and Aa+2. The
contents of Aa remain unchanged.

1. A Floating-Point Characteristic Overflow/Underflow interrupt may occur.

2. The 25 leftmost bits from Aa are ignored; (Aa),o-o must be prebiased.

3. If the 72-bit input operand from U and U+ 1 are ±, the result stored is +0 regardless of the
sign of the 72-bit operand.

4. If the adjusted characteristic represents a negative number when 020 and 05 = 1, a
Floating-Point Characteristic Underflow Interrupt does not occur. Instead +0, regardless of the
sign of the 72-bit operand, is stored.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference

5.5.13. Floating Expand and load - FEl 76,16

If (U)35 = 0: (U)35-27 + 16008 --+ A35- 24;

if (U)35 = 1: (U)35-27 - 16008 --+ A35- 24;

(Uh-O --+ A+ 135- 33;

(U)35 --+ A+ 132-0

UPDATE LEVEL
5-18

PAGE

The single-precision floating-point input operand from location U is transferred to the arithmetic
section. The three fields of the operand are expanded to form a double-precision floating-point
number as follows:

a. The sign bit is stored in bits 71 and 32 through O.

b. The 8-bit characteristic which includes a bias of 2008 is modified to an ll-bit characteristic
which includes a bias of 20008 and it is stored in bits 70 through 60.

c. The 27-bit mantissa is stored in bits 59 through 33.

The result is transferred to Aa and Aa+ 1.

1. If the operand is not in the normalized single-precision floating-point format, the results stored
are undefined. The following notes apply only if the input operand is a normalized number.

2. If the mantissa of the input operand is ± 0, the result stored in Aa and Aa + 1 are +0 regardless
of the sign of the operand.

3. A Floating-Point Characteristic Overflow/Underflow interrupt will not occur as a result of this
instruction.

5.5. 14. Floating Compress and load - FCl 76, 17

If (U)35 = 0: (U)35-24"" 16008 --+ A35- 27;

if (U)35 = 1: (U)35-24 + 16008 --+ A35- 27;

(U)23-0 --+ A26-3;

The double precision floating-point operand fr'lm locations U and U + 1 are transferred to the
arithmetic section. The three fields of the operand are compressed to form a single-precision
floating-point number as follows:

a. The sign bit is stored in bit 35.

b. The l1-bit characteristic which includes a bias of 20008 is modified to an 8-bit characteristic
which includes a bias of 2008 and it is stored in bits 34 through 27.

c. The 27 leftmost bits of the mantissa (bits 23 through 0 from location U and bits 35 through
33 from location U + 1) are stored in bits 26 through O.

UPDATE LEVEL
5-19

PAGE
8492 L SPERRY UNIVAC 1100/80 S~.m.
UP-NUMBER Processor and Storage Programmer Reference - ,-------=--------'-~-

The result is transferred to Aa.

1. The following notes apply only if the operand is a normalized number.

2. If 020 = 1, a Floating-Point Characteristic Overflow interrupt occurs if the characteristic of the
operand is greater than + 127, and a Floating-Point Characteristic Underflow interrupt occurs
if the characteristic of the operand is less than -128. 021 is set when an underflow condition
is detected, and 022 is set when an overflow condition is detected.

3. The contents of U + 132-0 are ignored.

4. If the operand is not a normalized number or is equal to ± 0, the result stored in Aa is +0
regardless of the characteristic of the input operand.

5.5. 15. Magnitude of Characteristic Difference to Upper - MCDU 76,06

I 1 (AI 135-27 - 1 (UI 135-27 I A+ 18-0; zeros A+ '36-9

The absolute value of the characteristic of the single-precision floating-point number from location
U is subtracted from the absolute value of the characteristic of the single-precision floating-point
number from Aa.

The Clbsolute value of the 9-bit difference is stored in bits 8 through 0 of Aa+ 1. Bits 35 through
9 of Aa+ 1 are zero filled. The contents of Aa is not changed.

1. The mantissas from location U and from Aa are ignored.

5.5. 16. Characteristic Difference to Upper - CDU 76,07

i (A) 135-27 - 1 (U) 135-27 -. A+ 18-0; sign bits to A+ 135- 9

The absolute value of the characteristic of the single-precision floating- point number from location
U is lsubtracted from the absolute value of the characteristic of the single-precision floating-point
number from Aa. The 9-bit signed difference is stored in bits 8 through 0 of Aa+ 1. Bits 35 through
9 of the Aa+ 1 are filled with bits identical to the sign of the difference. The contents of Aa is not
changed.

1. The man1:issas from location U and from Aa are ignored.

5.6. SEARCH AND MASKED-SEARCH INSTRUCTIONS

TherEt are six search instructions, each of which compares the contents of either one or two
A-registers with the contents of storage locations or control registers. There are eight masked-search
instructions, each of which compares contents of predefined bit positions of either one or two
A-registers with the contents of the corresponding bit positions of storage locations or control
registers.

8492
UP~UMBER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPDATE LEVEL

6-20
PAGE

These are all multistage instructions. The various stages required to perform these instructions are
as follows:

• An initial stage

• Repeated test stages (any number from 0 to 262,143)

• Termination stage

If indirect addressing is specified, it proceeds prior to initiation of the first test stage.

The initial stage prepares the control section and the arithmetic section for the test stages. The
following steps are performed during the initial stage:

• The P-register is incremented: (P) + 1 -+ P

• The contents of the repeat count register (R 1) is transferred to the index subsection.

• The contents of the specified A-registers are transferred to the arithmetic section.

• The contents of the mask register (R2) is transferred to the arithmetic section for a
masked-search inst' uction.

These steps are performed only during the initial stage and are not repeated during the test stages.

The rightmost 18 bit positions of R 1 contain the repeat count; that is, the maximum number of test
stages to be performed. R 1 must be loaded with the desired repeat count prior to initiating a search
or masked search instruction. If the initial repeat-count is +0, the termination stage is initiated
immediately following the completion of the initial stage; there are no test stages. If the repeat count
is not zero, a series of one or more test stages is initiated.

During each test stage, the value U is formed in the index subsection. For the search instructions,
an input operand is transferred to the arithmetic section under j-field control. The inputs to the test
process are the values obtained using the effective U address and the A-register or registers specified
by the instruction.

For the masked-search instructions, the contents of the j-field is a minor-function code. The inputs
to the test process are:

• the logical product of the mask from R2 and the input operand addressed by U

• the logical products of the mask and the specified A-registers.

Each bit of the logical product is the logical product of the contents of corresponding bit positions
of the two words. The logical product of two bits gives the same results as the Logical ~.

The search and masked-search instructions include algebraic and alphanumeric comparisons.
During an algebraic comparison, the leftmost bit of each of the 36-bit values are considered to be
a sign bit; a positive number is always recognized as being greater than a negative number. During
an alphanumeric comparison, the leftmost bit of each of the 36-bit values are considered to be a
numeric bit rather than a sign bit.

If the test process shows that the specified conditions are met, the repeat count is decreased by one
and the termination stage is initiated. If the specified conditions are not met, the repeat count is
decreased by one and examined. If the decreased repeat count is zero, the termination stage is
initiated. If the decreased repeat count is not zero, another test stage is normally initiated. It should
be noted that if x = 0, Xi = 0, or h = 0, the same value for U will be formed in each test stage.

8492 L SPERRY UNIVAC 1100/80 S~8m. I I 5 21
UP-HUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE -_ ,_-----=-----=---__ ----L-~

As previously indicated, the termination stage is initiated if the initial repeat count is zero, if the repeat
count is decreased from one to zero during the test stage, or if the conditions specified by the search
or masked-search instruction are detected during a test stage. If an interrupt is detected during either
an initial stage or one of the test stages, the termination stage is initiated immediately following that
stage. The P-register is reset and the repeat count is stored so that the search instruction can be
resumed when the interrupt condition has been satisfied.

The termination stage is used to transfer the current repeat count from the index subsection to the
rightmost 18-bit positions of R 1. The contents of the P-register mayor may not be changed during
the termination stage, as follows:

• If the termination stage is entered as a result of detecting that the initial repeat count is zero
during the initial stage or detecting that the decreased repeat count is zero during a test stage
for which the specified conditions are not detected (no find), the contents of the P-register are
not changed during the termination stage. The P-register contains the address of the instruction
following the search or masked-search instruction, or the address of the instruction following
the Execute instruction which referenced the search or masked-search instruction (next
instruction condition).

• If the termination stage is entered as a result of detecting the specified conditions during a test
:stage (a find has been made), the P-register is incremented during the termination stage: (P)
+ 1 -. P. Since the P-register was also incremented during the initial stage, it now contains
the address of the search or masked-search instruction (or the address of the Execute instruction
which referenced it) + 2 (skip next instruction condition).

• Ilf the termination stage is entered as a result of recognizing an interrupt, the P-register is
decreased by 1 during the termination stage: (P) - 1 -. P. This decrease offsets the
iincrementation of the P-register performed during the initial stage; the P-register now contains
1the address of the search or masked-search instruction, or the address of the Execute instruction
which referenced it. This address can be preserved so that when the interrupt condition has
been satisfied, the search or masked-search can be resumed at the point where it was
terminated for the interrupt. If the search or masked-search instruction is entered by means
of an Execute instruction, the h-field of the Execute instruction should be zero (that is, no
incrementation) so that when the program returns to the Execute instruction after an interrupt,
the effective U address will again lead to the search or masked-search instruction.

If the search or masked-search instruction specifies indirect addressing (i-field = 1), the h-field
should be zero to enable the program to return to the same effective U address and resume the search
or masked search after an interrupt.

For equality searches (SE, SNE, MSE, MSNE), +0 does not equal -0; for arithmetic searches (SLE, SG,
SW, SNW, MSLE, MSE, MSW, MSNW), +0 is greater than -0; for alphanumeric searches (MASL,
MASCi), -0 is greater than +0.

When a search or masked-search is resumed after an interrupt, the initial stage is again performed
to prnpare the control section for the remaining test stages and to transfer the contents of the
specified A-register to the arithmetic section for the comparisons performed in the test stages. When
h = 1 (that is, index register incrementation is specified), if the a- and x-fields reference the same
control register, the contents of that register will have been altered by the index incrementation which
occurred before the search or masked search was interrupted. As a result, when the search or masked
search is resumed, the value referenced by the a-field to be used in the test stages are no longer
the original test value used before the interrupt occurred. Therefore, when h = 1, the a-field and
x-field should not specify the same control register so that the search or masked-search instruction
can be resumed in the event of an interrupt.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Syeteme
Processor and Storage Programmer Reference

5.6. 1. Search Equal - SE 62

Skip NI if (U) = (A), else repeat

UPDATE LEVEL
5-22

PAGE

During the initial stage, the contents of the repeat count register (R 1) are transferred to the index
subsection, the contents of Aa is transferred to the arithmetic section, and the P-register is
incr&mented.

If the initial repeat count is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat
count is decreased and the contents of U is transferred to the arithmetic section under j-field control.
This value from U is compared with the value from Aa and:

• If (U) = (Aa), the termination stage is initiated. This stage stores the remnant repeat count and
increments the P-register. (Skip to NI.)

• If (U) t (Aa) and the repeat ~ount is not zero, another test stage is initiated.

• If (U) t (Aa) and the repeat count is zero, the termination stage stores zero as the remnant
repeat-count and the P-register is not incremented.

1. +0 is not equal to -0.

5.6.2. Search Not Equal - SNE 63

Skip NI if (U) t (A), else repeat

During the initial stage, the contents of the repeat count register (R 1) is transferred to the index
subsection, the contents of Aa is transferred to the arithmetic section, and the P-register is
incremented.

If the initial repeat count is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat
count is decreased and the contents of U is transferred to the arithmetic section under j-field control.
The value from U is compared with the value from Aa and:

• If (U) t (Aa), the termination stage is initiated. The termination stage stores the remnant repeat
count and increments the P-register. (Skip NI.)

• If (U) = (Aa) and the repeat count is not zero, another test stage is initiated.

• If (U) = (Aa) and the repeat count is zero, the termination stage is initiated. The termination stage
stores zero as the remnant repeat count and the P-register is not incremented.

1. +0 is not equal to -0.

5.6.3. Search Less Than or Equal - Search Not Greater - SLE,SNG 64

Skip NI if (U) S (A), else repeat

During the initial stage, the contents of the repeat count register (R 1) is transferred to the index
subsection, the contents of Aa transferred to the arithmetic section, and the P-register is incremented.

_ _ ~ __ 4_9 ... _2-. _E~ ___ L __ S_P_E_R_R_Y_U_N_I_VA_C_1_1_00 __ /8-=O=--S~_._m.::... ____________ --'-_____ ---'-__ 5_-_23' , __ . ____ ,,_ vr-ftVIWIII .' ,_ Processor and Storage Programmer Reference UPDATE LEVEL 'AGE _ __

If thel initial repeat count is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat
count is decreased and the contents of U is transferred to the arithmetic section under j-field control.
The "alue from U is compared with the value from Aa and:

• If (U) ~ (Aa), the termination stage is initiated. The termination stage stores the remnant repeat
count and increments the P-register. (Skip NI.)

• If (U) > (Aa) and the repeat count is not zero, another test stage is initiated.

• If (U) > (Aa) and the repeat count is zero, the termination stage is initiated. The termination stage
:stores zero as the remnant repeat count and the P-register is not incremented.

1. +0 is greater than -0.

5.6.4. Search Greater - SG 65

Skip NI if (U) > (A), else repeat

During the initial stage, the contents of the repeat count register (R 1) is transferred to the index
subsection, the contents of Aa is transferred to the arithmetic section, and the P-register is
incremented.

If the initial repeat count is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat
count is decreased and the contents of U is transferred to the arithmetic section under j-field control.
The value from U is compared with the value from Aa and:

• If (U) > (Aa), the termination stage is initiated. The termination stage stores the remnant repeat
c::ount and increments the P-register. (Skip NI.)

• If (U) ~ (Aa) and the repeat count is not zero, another test stage is initiated.

• If (U) ~ (Aa) and the repeat count is zero, the termination stage is initiated. The termination stage
stores zero as the remnant repeat count and the P-register is not incremented.

'1. +0 is greater than -0.

5.6.5. Search Within Range SW 66

Skip NI if (A) < (U) ~ (A+ 1), else repeat

Durin\g the initial stage the contents of the repeat count register (R 1) is transferred to the index
subsection, the contents of Aa and Aa+ 1 are transferred to the arithmetic section, and the P-register
is incremented.

If the initial repeat count is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat
count is decreased and the contents of U is transferred to the arithmetic section under j-field control.
The value from U is compared with the value from Aa and:

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPDATE LEVEL

5-24
PAGE

• If (U) > (Aa) and (U) ~ (Aa+ 1), the termination stage is initiated. The termination stage stores
the remnant repeat count and increments the P-register. (Skip NI.)

• If (U) ~ (Aa) or (U) > (Aa + 1), and the repeat count is not zero, another test stage is initiated.

• If (U) ~ (Aa) or (U) > (Aa + 1), and the repeat count is zero, the termination stage is initiated. The
termination stage stores zero as the remnant repeat count and the P-register is not incremented.

1. +0 is greater than -0.

2. Normally, (Aa) < (Aa+ 1). However, if (Aa) ~ (Aa+ 1), there is no value from U which can
satisfy the conditions (Aa) < (U) ~ (Aa + 1).

5.6.6. Search Not Within Range - SNW 67

Skip NI if (U) ~ (A) or (U) > (A+ 1), else repeat

During the initial stage, the contents of the repeat count register (R 1) is transferred to the index
subsection, the contents of Aa and Aa+ 1 are transferred to the arithmetic section, and the P-register
is incremented.

If the initial repeat count is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat
count is decreased and the contents of U is transferred to the arithmetic section under j-field control.
The value from U is compared with the value from Aa and:

• If (U) ~ (Aa) or (U) > (Aa+ 1), the termination stage is initiated. The termination stage stores
the remnant repeat count and increments the P-register. (Skip NI.)

• If (U) > (Aa) and (U) ~ (Aa + 1), and the repeat count is not zero, another test stage is initiated.

• If (U) > (Aa) and (U) ~ (Aa + 1), and the repeat count is zero, the termination stage is initiated.
The termination stage stores zero as the remnant repeat count and the P-register is not
incremented.

1. Normally, (Aa) < (Aa+ 1). If, however, (Aa) ~ (Aa+ 1), there is no value from U which will
not satisfy the conditions (U) ~ (Aa) or (U) > (Aa + 1).

2. +0 is greater than -0.

5.6.7. Mask Search Equal - MSE 71,00

Skip NI if (U) ~ (R2) = (A) ~ (R2), else repeat

During the initial stage, the contents of the Repeat Count Register (R 1) is transferred to the index
subsection, the contents of Aa and R2 are transferred to the arithmetic section, the logical products
of the values from Aa and R2 are formed, and the P-register is incremented.

If the initial repeat count is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat
count is decreased and the contents of U is transferred to the arithmetic section. (U) ~ (R2) are
compared to (Aa) ~ (R2) and:

8492 L SPERRY UNIVAC 1100/80 sp;ems 5-25
uP~_U_M_BE_R___ . __ P_r_o_c_8_s_so_r_an_d---.S_t_o_ra....::g=-8 __ ro....,:g=-r_a_m_m_8_r _R_8_f8_r_8_n_c_8 ____ --'-_UPD_ATE_LEV_EL __ "-P_A_GE __ ' __ "~ _,_

• If (U) ~ (R2) = (Aa) ~ (R2), the termination stage is initiated. This stage stores the remnant
repeat count and increments the P-register (skip NI).

• If (U) ~ (R2) t (Aa) ~ (R2) and the repeat count is not zero, another test stage is initiated.

• If (U) ~ (R2) t (Aa) ~ (R2) and the repeat count is zero, the termination stage stores zero
as the remnant repeat count and the P-register is not incremented.

1. +0 is not equal to -0.

5.6.8. Mask Search Not Equal - MSNE 71,01

Skip NI if (U) ~ (R2) t (A) ~ (R2), else repeat.

Duringl the initial stage, the contents of the repeat count register (R 1) is transferred to the index
subsection, the contents of Aa and R2 are transferred to the arithmetic section, the logical products
of the values from Aa and R2 are formed, and the P-register is incremented.

If the iinitial repeat count is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each test stage, th8 repeat
count is decreased and the contents of U is transferred to the arithmetic section. (U) I8!m (R2) are
compared to (Aa) ~ (R2) and:

• If (U) ~ (R2) t (Aa) ~ (R2), the termination stage is initiated. This stage stores the remnant
repeat count and increments the P-register (skip NI).

• If (U) ~ (R2) = (Aa) ~ (R2) and the repeat count is not zero, another test stage is initiated.

• If (U) ~ (R2) = (Aa) ~ (R2) and the repeat count is zero, the termination stage stores zero
as the remnant repeat count and the P-register is not incremented.

1., +0 is not equal to -0.

5.6.9. Mask Search Less Than or Equal - Mask Search Not Greater - MSLE,MSNG 71,02

Skip NI if (U) ~ (R2) S (A) I8!m (R2), else repeat

During the initial stage, the contents of the repeat count register (R 1) is transferred to the index
subsection, the contents of Aa and R2 are transferred to the arithmetic section, the logical products
of the values from Aa and R2 are formed, and the P-register is incremented.

If the initial repeat count is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat
count is decreased and the contents of U is transferred to the arithmetic section. (U) I8!m (R2) are
compared to (Aa) I8!m (R2) and:

• If (U) ~ (R2) S (Aa) ~ (R2), the termination stage is initiated. This stage stores the remnant
repeat count and increments the P-register (skip NI).

• If (U) I8!m (R2) > (Aa) I8!m (R2) and the repeat count is not zero, another test stage is initiated.

8492
UP~UMBER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPDATE LEVEL

5-26
PAGE

• If (U) ~ (R2) > (Aa) ~ (R2) and the repeat count is zero, the termination stage stores zero
as the remnant repeat count and the P-register is not incremented.

1. +0 is greater than -0.

5.6.10. Mask Search Greater - MSG 71,03

Skip NI if (U) ~ (R2) > (A) ~ (R2), else repeat

During the initial stage, the contents of the repeat count register(R 1) is transferred to the index
subsection, the contents of Aa and R2 are transferred to the arithmetic section, the logical products
of the values from Aa and R2 are formed, and the P-register is incremented.

If the initial repeat count is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero; the first test stage is initiated. During each test stage, the repeat
count is decreased and the contents of U is transferred to the arith.metic section. (U) ~ (R2) are
compared to (Aa) ~ (R2) and:

• If (U) ~ (R2) > (Aa) ~ (R2), the termination stage is initiated. This stage stores the remnant
repeat count and increments the P-register. (Skip NI.)

• If (U) ~ (R2) S (Aa) ~ (R2) and the repeat count is not zero, another test stage is initiated.

• If (U) ~ (R2) S (Aa) ~ (R2) and the repeat count is zero, the termination stage stores zero
as the remnant repeat count and the P-register is not incremented.

1. +0 is greater than -0.

5.6. 11. Masked Search Within Range - MSW 71,04

Skip NI if (A) ~ (R2) < (U) ~ (R2) S (A+ 1) ~ (R2), else repeat.

During the initial stage, the contents of the repeat count register (R 1) is transferred to the index
subsection, the contents of Aa, Aa+ 1, and R2 are transferred to the arithmetic section, the logical
products of the values from Aa and R2 and the values from Aa+ 1 and R2 are formed, and the
P-register is incremented, If the initial repeat count is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat
count is decreased and the contents of U is transferred to the arithmetic section. The logical products
are compared and:

• If (U) ~ (R2) > (Aa) ~ (R2) and (U) ~ (R2) S (Aa + 1) ~ (R2) the termination stage is
initiated .. This stage stores the remnant repeat count and increments the P-register. (Skip NI.)

• If (U) ~ (R2) S (Aa) ~ (R2) or (U) ~ (R2) > (Aa + 1) ~ (R2) and the repeat count is not
zero, another test stage is initiated.

• If (U) ~ (R2) S (Aa) ~ (R2) or (U) ~ (R2) > (Aa + 1) ~ (R2) and the repeat count is zero,
the termination stage stores zero as the remnant repeat count and the P-register is not
incremented.

1. Normally, (Aa) ~ (R2) < (Aa+ 1) ~ (R2). If, however, (Aa} ~ (R2) ~ (Aa+ 1) ~ (R2),
no possible value of U will satisfy the search condition.

UPDATE LEVEL
5-27

PAGE
8492 L SPERRY UNIVAC 1100/80 S~.m.
U .. -NUM8ER Processor and Storage Programmer Reference ._ , ________ ---L-~_

2. +0 is greater than -0.

5.6. 12. Masked Search Not Within Range - MSNW 71,05

Skip NI if (U) ~ (R2) S (A) ~ (R2) or (U) ~ (R2) > (A+ 1) ~ (R2), else repeat

During the initial stage, the contents of the repeat count register (R 1) is transferred to the index
subsec:tion, the contents of Aa and R2 are transferred to the arithmetic section, the logical products
of the values from Aa and R2 and the values from Aa+ 1 and R2 are formed, and the P-register is
incremented.

If the initial repeat count is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat
count is decreased and the contents of U is transferred to the arithmetic section. The logical products
are compared and:

• If (U) ~ (R2) S (Aa) ~ (R2) or (U) ~ (R2) > (Aa + 1) ~ (R2) the termination stage is
initiated. This stage stores the remnant repeat count and increments the P-register. (Skip NI.)

• If (U) ~ CR2) > (Aa) ~ (R2) and (U) ~ (R2) S (Aa + 1) ~ (R2) and the repeat count is
not zero, another test stage is initiated.

• If (U) ~ (R2) > (Aa) ~ (R2) and (U) ~ (R2) S (Aa-1) ~ (R2) and the repeat count is zero,
the termination stage stores zero as the remnant repeat count and the P-register is not
incremented.

1. Normally, (Aa) ~ (R2) < (Aa + 1) ~ (R2). If, however, (Aa) ~ (R2) 2 (Aa + 1) ~ (R2),
every possible value of U will satisfy at least one of the following conditions:

(U) ~ (R2) S (Aa) ~ (R2)

(U) ~ (R2) > (Aa+ 1) ~ (R2)

2. +0 is greater than -0.

5.6. 13. Masked Alphanumeric Search Less Than or Equal - MASL 71,06

Skip NI if (U) ~ (R2) S (A) ~ (R2), else repeat

During the initial stage, the contents of the repeat count register (R 1) is transferred to the index
subsection, the contents of Aa and R2 are transferred to the arithmetic section, the logical products
of the values from Aa and R2 are formed, and the P-register is incremented.

If the initial repeat count is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat
count is decreased and the contents of U is transferred to the arithmetic section. (U) ~ (R2) are
compared alphanumerically to (Aa) ~ (R2), and:

• If (U) ~ (R2) S (Aa) ~ (R2), the termination stage is initiated. This stage stores the remnant
repeat count and increments the P-register. (Skip NI.)

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~em.
Processor and Storage Programmer Reference UPDATE LEVEL

5-28
PAGE

• If (U) ~ (R2) > (Aa) ~ (R2) and the repeat count is not zero, another test stage is initiated.

• If (U) ~ (R2) > (Aa) ~ (R2) and the repeat count is zero, the termination stage stores zero
as the remnant repeat count and the P-register is not incremented.

1. -0 is greater than +0.

5.6.14. Masked Alphanumeric Search Greater - MASG 71,07

Skip NI if (U) ~ (R2) > (A) ~ (R2), else repeat

During the initial stage, the contents of the repeat count register (R 1) is transferred to the index
subsection, the contents of Aa and R2 are transferred to the arithmetic section, the logical products
of the value from Aa and R2 are formed, and the P-register is incremented.

If the initial repeat count is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat
count is decreased and the contents of U is transferred to the arithmetic section. (U) ~ (R2) are
compared alphanumerically to (Aa) ~ (R2), and:

• If (U) ~ (R2) > (Aa) ~ (R2), the termination stage is initiated. This stage stores the remnant
repeat count and increments the P-register (skip NI).

• If (U) ~ (R2) S (Aa) ~ (R2) and the repeat count is not zero, another test stage is initiated.

• If (U) ~ (R2) S (Aa) ~ (R2) and the repeat count is zero, the termination stage stores zero
as the remnant repeat count and the P-register is not incremented.

1. -0 is greater than +0.

5.7. TEST (OR SKIP) INSTRUCTIONS

Test instructions are used to read one or more words from storage or control registers and test for
certain conditions. The result of the test is used to determine whether the instruction addressed by
the incremented contents of the P-register (next instruction) should be performed or skipped.

The next instruction (NI) is always read from storage. If the decision is made to skip NI, it is discarded,
the P-register is incremented a second time, and the contents of the P-register is then used to address
the following instruction.

Indirect addressing, indexing, and index register incrementation/decrementation operate normally.

5.7.1. Test Even Parity - TEP 44

Skip NI if (U) ~ (A) has even parity.

The value from U is transferred to the arithmetic section under j-field control, where it is used with
the contents of Aa to form a 36-bit logical product.

If (U) ~ (Aa) has an even number of 1 bits, the next instruction (NI) is skipped and the instruction
following NI is performed.

8492 L SPERRY UNIVAC 1100/80 S~.m. I I 6 29
UP~UM8ER Processor and Storage Programmer Reference UPDATE LEVEL PAGE -- ,----=---=----------'---~--

If (U) ~ (Aa) has an odd number of 1 bits, NI is performed.

5.7.2. Test Odd Parity - TOP 45

Skip NI if (A) ~ (U) has odd parity.

The contents of U is transferred to the arithmetic &ection under "j-field control, where they are used
with the contents of Aa to form a 36-bit logical product.

If (U) I~ (Aa) has an odd number of 1 bits, the next instruction (NI) is skipped and the instruction
following NI is performed.

If (U) 1l8!ill (Aa) has an even number of 1 bits, NI is performed.

5.7.3. Test Less Than or Equal to Modifier - TLEM 47

Test Not Greater Than Modifier - TNGM

Skip NI if (U),7-O S (Xa),7-O; always (Xa),7-O + (Xa) 36-18 -+ Xa17-O

The contents of U is transferred to the arithmetic section under j-field control. The contents of the
index register addressed by the a-field (Xa) is transferred to the arithmetic section. The rightmost
18 bits of the value from U is subtracted from the rightmost 18 bits of the value from Xa (this is
performed as if the leftmost 18 bits of each operand were zeros).

If (Uh 7-0 S (Xah 7-0 (the sign of the difference is positive), the next instruction is skipped and the
instruction following NI is performed.

If (U), 7-0 > (Xa), 7-0 (the sign of the difference is negative), NI is performed.

In either case, the leftmost 18 bits from Xa are added to the rightmost 18 bits from Xa, and the sum
is stored in the rightmost 18 bit positions of Xa. The leftmost 18 bit positions of Xa are not changed.

1. lif a = 0, index register zero (XO) is referenced.

2. +0 is less than -0.

3. Both Xa 17.-0 and the value from U is considered to be l8-bit numeric values with a positive sign
implied.

4. Only the rightmost 18 bits of the value from U are involved in the operation. , Values of 0, 1,
or 3 in the j-field yield the same results. Values of 168 or 178 in the j-field yield the same result.

5. If h = 1 and a = x, the specified index register is incremented or modified only once.

5.7.4" Test Zero - TZ 50

Skip NI if (U) = :!: 0.

The contents of U is transferred to the arithmetic section under j-field control.

If the value transferred is :!: 0, the next instruction is skipped and the instruction following NI is
performed.

8492
UP-NUM8ER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPDATE LEVEL

If the value transferred is not ± 0, NI is performed.

1. The contents of the a-field are ignored.

5.7.5. Test Nonzero - TNZ 51

Skip NI if (U) t ± O.

The contents of U is transferred to the arithmetic section under j-field control.

6-30
PAGE

If the value transferred is not ± 0, the next instruction is skipped and the instruction following NI is
performed.

If the value transferred is ± 0, NI is performed.

1. The contents of the a-field are ignored.

5.7.6. Test Equal - TE 52

Skip NI if (U) = (A).

The contents of U is transferred to the arithmetic section under j-field control. The contents of Aa
is also transferred to the arithmetic section.

If (U) = (Aa), the next instruction is skipped and the instruction following NI is performed.

If (U) t (Aa), NI is performed.

1. +0 is not equal to -0.

5.7.7. Test Not Equal - TNE 53

Skip NI if (U) t (A).

The contents of U is transferred to the arithmetic section under j-field control. The contents of Aa
is also transferred to the arithmetic section.

If (U) t (Aa), the next instruction is skipped and the instruction following NI is performed.

If (U) = (Aa), NI is performed.

1. +0 is not equal to -0.

5.7.8. Test Less Than or Equal - Test Not Greater - TLE,TNG 54

Skip NI if (U) ~ (A).

The contents of U is transferred to the arithmetic section under j-field control. The contents of Aa
is also transferred to the arithmetic section.

If (U) 5 (Aa), the next instruction is skipped and the instruction following NI is performed.

8492 L SPERRY UNIVAC 1100/80 Syttema 5-31
UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE - .----=-----==-----~.&....---.-

If (U) :> (Aa), NI is performed.

1. +0 is greater than -0.

5.7.9. Test Greater - TG 55

Skip NI if (U) > (A).

The contents of U is transferred to the arithmetic section under j-field control. The contents of Aa
is also transferred to the arithmetic section.

If (U) > (Aa), the next instruction is skipped and the instruction following NI is performed.

If (U) ~~ (Aa), NI is performed.

1. +0 is greater than -0.

5.7.10. Test Within Range - TW 56

Skip NI if ~'A) < (U) ~ (A+ 1).

The co,ntents of U is transferred to the arithmetic section under j-field control. The contents of Aa
and Acl+ 1 are also transferred to the arithmetic section.

If (Aa) < (U) ~ (Aa+ 1), the next instruction is skipped and the instruction following NI is performed.

If (U) S (Aa) or (U) > (Aa+ 1), NI is performed.

1. +0 is greater than -0.

2. Normally, (Aa) < (Aa+ 1). If, however, (Aa) ~ (Aa+ 1), there is no value of U that can satisfy the
condition (Aa) < (U) ~ (Aa + 1).

5.7.111. Test Not Within Range - TNW 57

Skip NI if ~U) ~ (A) or (U) > (A+ 1).

The contents of U is transferred to the arithmetic section under j-field control. The contents of Aa
and Aa + 1 are also transferred to the arithmetic section.

If (U) ~ (Aa) or (U) > (Aa+ 1), the next instruction is skipped and the instruction following NI is
performed.

If (U) > (Aa) and (U) ~ (Aa+ 1), NI is performed.

1. +0 is greater than -0.

2. Normally, (Aa) < (Aa+ 1). If, however, (Aa) ~ (Aa+ 1), every possible value of U will satisfy at
least one of the following conditions:

(U) ~ (Aa)

8492
UP-HUMBER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Refere.nce UPDATE LEVEL

or

(U) > (Aa+ 1)

5.7. 12. Test Positive - TP 60

Skip NI if (U)35 = o.

The contents of U is transferred to the arithmetic section under j-field control.

6-32
PAGE

If the sign bit (bit 35) of the value from U is a 0 bit, the next instruction is skipped and the instruction
following NI is performed.

If the sign bit is a 1 bit, NI is performed.

1. The contents of the a-field are ignored.

2. Always skip when j= H1, H2, 01-04, or 51-56.

5.7.13. Test Negativ'!.t - TN 61

Skip NI if (U)35 = 1.

The contents of U is transferred to the arithmetic section under j-field control.

If the sign bit (bit 35) of the value from U is a 1 bit, the next instruction is skipped and the instruction
following NI is performed.

If the sign bit is a 0 bit, NI is performed.

1. The contents of the a-field are ignored.

2. Never skip when j = H1, H2, 01 - 04, or 51 - 56.

5.7.14. Double-Precision Test Equal - DTE 71,17

Skip NI if (U, U+ 1) = (A, A+ 1).

The contents of U, U+1, Aa, and Aa+1 are transferred to the arithmetic section. U, U+1 and Aa,
Aa + 1 are 72-bit operands.

If (U, U + 1) = (Aa, Aa + 1), the next instruction is skipped and the instruction following NI is performed.

If (U, U+ 1) t (Aa, Aa+ 1), NI is performed.

1. +0 is not equal to -0.

UPDATE LEVEL
5-33

PAGE
8492 L SPERRY UNIVAC 1100/80 S~.m.
UP UUBER Processor and Storage Programmer Reference
---~-----I-~'------,

5.8. SHIFT INSTRUCTIONS

Each shift instruction transfers either one or two words to the arithmetic section, moves or shifts the
bits of the words, and stores the shifted word or words in one or two control registers.

The following basic types of shifts are provided for both single-word (36-bit input operand) and
doub~e-word (two 36-bit words treated as a 72-bit input operand) operations:

• rtiight circular

for a right-circular shift, a shift count of n moves the contents of all bit positions of the register
holding the input operand n bit positions to the right. Bits shifted out the right end of the register
appear in the leftmost bit positions vacated by the shift.

• Left circular

For a left-circular shift, a shift count of n moves the contents of all bit positions of the register
holding the input operand n places to the left. Bits shifted out the left end of the register appear
in the rightmost bit positions vacated by the shift.

For example: A shift count of 6 for;:j right-circular shift applied to 7654321012348 as the input
()perand produces 3476543210128 as the result. The same result is produced using a shift
count of 30 for a left- circular shift.

For a single-word circular shift, a shift count of 72 or 36 produces the same result as a shift
count of 0 (no shift). A shift count of 37 produces the same effect as a shift count of 1, a shift
(:ount of 38 produces the same effect as a shift count of 2, and so on.

• night logical

For a right-logical shift, a shift count of n moves the contents of all bit positions of the register
holding the input operand n places to the right. Bits shifted out the right end of the register
are lost. The leftmost bit positions vacated by the shift are zero filled.

For example: A shift count of 6 for a right-logical shift applied to 7654321012348 as the input
operand produces 0076543210128 as the result.

• l.eft Logical

For a left-logical shift, a shift count of n moves the contents of all bit positions of the input
operand register n places to the left. Bits shifted out the left end of the register are lost. The
rightmost bit positions vacated by the shift are zero filled.

For example: A shift count of 6 for a left-logical shift applies to 7654321012348 as the input
operand produces 5432101234008 as the result.

• Right algebraic

For an algebraic shift (right only, since no left algebraic shift is provided), a shift count of n moves
the contents of all bit positions of the register holding the input operand n places to the right.
Bits shifted out the right end of the register are lost. The bit positions vacated by the shift are
fOIled with bits identical to the leftmost bit (sign bit) of the original input operand.

For example: A shift count of 6 for an algebraic shift applied to 7654321012348 as the input
operand produces 7776543210128 as the result.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPDATE LEVEL

5-34
PAGE

The two Load Shift and Count instructions are basically left circular shift instructions. The shift count
is determined by the configuration of the bits of the input operand. If the two leftmost bits are not
identical, the shift count is zero. If the two leftmost bits are identical, the operand is shifted left
circular by the minimum amount to position the bits of the input operand so that the two leftmost
bits are not identical. The shift count is the count of the number of bit positions shifted. If all bits
of an input operand are identical, no amount of circular shifting will position its bits so that the two
left-most bits are not identical. In this instance, the shift count is 35 (single-word operand) or 71
(double-word operand). The shift count is stored in a control register.

For all shift instructions, except the two Load Shift and Count instructions, the input operands are
specified by one or two A-registers, and the shift count is specified by bits 6 through 0 of the effective
U. Indirect addressing, indexing, and index register incrementation/decrementation operate normally
for all shift instructions.

The shift count can be any number between 0 and 72. If a shift count of 73 to 1 27 (1118 through
1778) is specified, the result produced is undefined. The value in the u-field of the shift instruction
and the value of Xm (if x t 0) must be chosen accordingly.

For the two Load Shift and Count instructions, the effective U specifies the input operand address
just as for the other load instructions. The scaled result is loaded in the specified A-register (A, A+ 1
for Double Load Shift And Count instruction). The number of shifts required for scaling is stored in
the next consecutive register A+ 1 (or A+ 2 for Double Load Shift And Count instruction).

5.B.1. Single Shift Circular - SSC 73,00

Shift (A) right circularly U places.

The contents of Aa is transferred to the arithmetic section. The shift count from bits 6 through 0
of U is transferred to the arithmetic section. The value from Aa is shifted right circularly by the number
of bit positions specified by the shift count. The shifted value is stored in Aa.

1. The result stored is not defined for shift counts greater than 72.

2. If 36 ~ n ~ 72, a shift count of n produces the same result as a shift count of n-36.

5.B.2. Double Shift Circular - DSC 73,01

Shift (A, A+ 1) right circularly U places.

The contents of Aa and Aa+ 1 are transferred to the arithmetic section. The shift count from bits
6 through 0 of U is transferred to the arithmetic section. The 72-bit value fro~'l Aa and Aa+ 1 is shifted
right circularly the number of bit positions specified by the shift count. The shifted value is stored
in Aa and Aa+ 1.

1. The result stored is not defined for shift counts greater than 72.

5.B.3. Single Shift Logical - SSL 73,02

Shift (A) right U places, zero fill.

The contents of Aa is transferred to the arithmetic section. The shift count from bits 6 through 0
of U is transferred to the arithmetic section. The value from Aa is right shifted the number of bit
positions specified by the shift count. Bits shifted out of the rightmost bit positions are lost; the
vacated leftmost bit positions are zero filled. The shifted value is stored in Aa.

8492
UP-MJMBER Processor and Storage Programmer Reference UPDATE LEVEL

5-35
PAGE L SPERRY UNIVAC 1100/80 Systems

._-----'------'---

1. The result stored is not defined for shift counts greater than 72.

2. ~f 36 ~ U ~ 72, the result stored in Aa is +0.

5.8.4. Double Shift Logical - DSL 73,03

Shift (A,A+ 1) right U places, zero fill.

The contents of Aa and Aa + 1 are transferred to the arithmetic section. The shift count from bits
6 through 0 of U is transferred to the arithmetic section. The 72-bit value from Aa and Aa+ 1 is right
shifted the number of bit positions specified by the shift count. Bits shifted out of the rightmost bit
positions are lost; the vacated leftmost bit positions are zero filled.

1. The result stored is not defined for shift counts greater than 72.

5.8.5. Single Shift Algebraic - SSA 73,04

Shift (A) right U places, sign fill.

'-he contents of Aa is transferred to the arithmetic section. The shift count from bits 6 through 0
of U ns transferred to the arithmetic section. The value from Aa is right shifted the number of bit
positi,ons specified by the shift count. Bits shifted out of the rightmost bit positions are lost; bits
identical to the content of bit 35 of the initial value from Aa appear in the vacated leftmost bit
positions. The shifted count is stored in Aa.

1. The result stored is not defined for shift counts greater than 72.

2. If 35 ~ U ~ 72, all bits of the result stored in Aa are identical to the leftmost bit of the input
()perand from Aa.

5.8.6. Double Shift Algebraic - DSA 73,05

Shift (A, A+ 1) right U places, sign fill.

The contents of Aa and Aa+ 1 are transferred to the arithmetic section. The shift count from bits 6
through 0 of U is transferred to the arithmetic section. The 72-bit value from Aa and Aa+ 1 is right
shifted the number of bit positions specified by the shift count. Bits shifted out of the rightmost bit
positions are lost; bits identical to the contents of bit 35 of the initial value from Aa appear in the
vacated leftmost bit positions. The shifted value is stored in Aa and Aa+ 1.

1. The result stored is not defined for shift counts greater than 72.

5.8.7. Load Shift and Count - LSC 73,06

(U) - A; shift (A) left circularly until (A)36 t (Ab4; number of shifts - A+ 1.

The c(ontents of location U is transferred to a nonaddressable 36-bit register in the arithmetic section
and then shifted left circularly the minimum number of bit positions which will make bit 35 unequal
to bit 34. The resultant scaled number is transferred to Aa and the shift count to Aa+ 1.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference UPDATE LEVEL

5-36
PAGE

1. If bit 35 of the vaiue from location U is not equal to bit 34, the number is already scaled and
no shift occurs: (U) -+ Aa; + 0 -+ A, A+ 1.

2. If the value from location U is :t 0: (U) -+ Aa, the shift count is 35, and 438 -+ Aa+ 1.

5.S.S. Double Load Shift and Count - DLSC 73,07

(U, U+ 1) -+ A, A+ 1; shift (A, A+ 1) left circularly until (A, A+ 1h1 t (A,A+ 1ho; number of shifts
-+ A+2.

The contents of U and U+ 1 are transferred to a nonaddressable 72-bit register in the arithmetic
section and then shifted left circularly the minimum number of bit positions which will make bit 7 1
unequal to bit 70. The resultant scaled number is transferred to Aa and Aa + 1 and the shift count
to Aa+2.

1. If bit 71 of the value from U and U + 1 are not equal to bit 70, the double length number is already
scaled and no shift occurs: (U) -+ Aa; (U+ 1) -+ Aa+ 1; +0 -+ Aa+2.

2. If the double-length value from locations U and U + 1 are :t 0: (U) -+ Aa; (U + 1) ~ Aa + 1; the
shift count is 71; 1078 -+ Aa+2.

5.S.9. Left Single Shift Circular - LSSC 73,10

Shift (A) left circularly U places.

The contents of Aa is transferred to the arithmetic section. The shift count from bits 6 through 0
of U is transferred to the arithmetic section. The value from Aa is shifted left circularly the number
of bit positions specified by the shift count. The shifted value is stored in Aa.

1. The result stored is undefined for shift counts greater than 72.

2. If 36 S n S 72, a shift count of n produces the same result as a shift count of n-36.

5.S. 1 O. Left Double Shift Circular - LDSC 73,11

Shift (A, A+ 1) left circularly U places.

The contents of Aa and Aa + 1 are transferred to the arithmetic section. The shift count from bits
6 through 0 of U is transferred to the arithmetic section. The 72-bit value from Aa and Aa+ 1 is shifted
left circularly the number of bit positions specified by the shift count. The shifted value is stored in
Aa and Aa+ 1.

1. The result stored is undefined for shift counts greater than 72.

5.S.11. Left Single Shift Logical - LSSL 73,12

Shift (A) left U places, zero fill.

The contents of Aa is transferred to the arithmetic section. The shift count from bits 6 through 0
of U is transferred to the arithmetic section. The value from Aa is left shifted the number of bit
positions specified by the shift count. Bits shifted out of the leftmost bit positions are lost; the vacated
rightmost bit positions are zero filled. The shifted value is stored in Aa.

8492 L SPERRY UNIVAC 1100/80 S~.m. I I 6 37
UP~UMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE -- ,-----=-----=---------'--~-

1. The result stored is undefined for shift counts greater than 72.

2. If 36 ~ U ~ 72, the result stored in Aa is +0.

5.8. ~ 2. Left Double Shift Logical - LDSL 73,13

Shift (A, A+ 1) left U places, zero fill.

The contents of Aa and Aa+ 1 are transferred to the arithmetic section. The shift count from bits 6
through 0 of U is transferred to the arithmetic section. The 72-bit value from Aa and Aa + 1 is left
shifted the number of bit positions specified by the shift count. Bits shifted out of the leftmost bit
positnons are lost; the vacated rightmost bit positions are zero filled. The shifted value is stored in
Aa and Aa+ 1.

1. The result stored is undefined for shift counts greater than 72.

5.9. UNCONDITIONAL JUMP INSTRUCTION

A jump is a change in the sequenCG in which instructions are executed. It is accomplished by placing
a new value in the P-register. Each unconditional jump ;nstruction performs a unique operation in
additnon to the common operation of placing a new value in the P-register.

If the relative "jump to" address is less than 2008, the next instruction is taken from the storage
location addressed by the value rather than from a control register.

The Jump Keys instruction can be used to specify either a conditional or an unconditional jump. The
Halt Jump/Halt Keys And Jump instruction specifies an unconditional jump, but the halt portion is
conditional. Both of these instructions are included in the section on conditional jump instructions
(see 5.11).

5.9. 1. Store Location and Jump - SW 72,01

Relative P+ 1 - U 17-O; jump to U+ 1

The P-register is incremented. An 18-bit relative return address is stored in the rightmost 18 bits
of thn location specified by the operand address. The value of the operand address plus one is
transf:erred to the P-register as the "jump to" address. The upper half of the operand is unchanged.

1. The contents of the a-field are ignored.

2. If U < 2008 , the 18-bit relative return address is stored in the rightmost 18 bits of the control
register addressed by U and the leftmost 18 bit positions of that control register are unchanged.

3. The relative return address is stored in the low-order 18 bits of a word. If this 18-bit relative
return address is larger than 16 bits, the two high order bits will be interpreted as hand i bits
if the address is used in an instruction. The instruction may produce erroneous results.

8492
UP-NUMBER

SPERRY UNIVAC 1 100/80 S~.m.
Processor and Storage Programmer Reference

5.9.2. Load Modifier and Jump - LMJ 74,13

Relative P+ 1 - Xa17-O; jump to U

UPDATE LEVEL
5-38

PAGE

The P-register is incremented. An 18-bit relative return address is stored in the rightmost 18 bits
of the index register specified by the a-field. The leftmost 18 bits of that index register are not
affected. The value of the operand is transferred to the P-register as the "jump to" address.

1. If 06 = 0 and the value in the a-field is zero, the relative return address is stored in index register
zero (XO).

2. If index register incrementation is specified, the -relative return address is stored in the index
register specified by the a-field after the new value for Xm is stored in the index register
specified by the x-field. As a consequence, if the value in the a-field is not zero and it is the
same as the value in the x-field, it makes no difference whether the value in the h-field is zero
or one.

5.9.3. Allow All Interrupts and Jump - AAIJ 74,07

Allow all interrupts and jump to U.

This instruction allows interrupts prevented by the occurrence of an interrupt or the execution of a
Prevent All Interrupts And Jump instruction.

1. The contents of the a-field are ignored.

2. The Allow All Interrupts And Jump instruction does not affect the Dayclock interrupt when it
is disabled by the Disable Dayclock instruction and enabled by the Enable Dayclock instruction.

5.10. BANK DESCRIPTOR SELECTION INSTRUCTIONS

Each program may be composed of or associated with a large number of program or data segments;
of these, up to four may be active at any given time. Bank Descriptor selection instructions allow
a program to select which segments are among the four that are currently active.

5. 10.1. Load Bank and Jump - LBJ 07, 17

The LBJ instruction loads the bank descriptor register selected in bit positions 34 and 33 of the index
register specified by the a-field of the instruction word (Xa) with a new bank descriptor, stores the
old bank descriptor specifications and program address in Xa as return information, and then jumps
to the location specified by the operand address. An Addressing Exception interrupt occurs if the
bank descripJor register named in Xa is not available for use as defined by the designator register.
The new bank descriptor is located by adding the bank descriptor index contained in bit positions
18 through 29 of Xa to the bank descriptor table pointer selected in bit position 35 of Xa; if bit 35
is zero, the user pointer and table are selected, and if bit 35 is one, the Executive pointer and table
are selected if 019 is one. An Addressing Exception interrupt occurs if the bank descriptor index
value exceeds the length of the table, or if bit 35 of Xa is one and 019 is zero.

When the new bank descriptor is located, the associated use count field is increased by one under
storage lock, and an Addressing Exception interrupt occurs if the R-flag of the bank descriptor is one,
if there is a V-flag violation, or if the use-count field is increased from all ones to zero.

8492
lJII-NUM8ER UPDATE LEVEL

5-39
PAGE L SPERRY UNIVAC 1100/80 S~.m.

Processor and Storage Programmer Reference , ____ --L----~

BefOlre the new bank descriptor values are actually loaded, the old bank descriptor is located and
the use-count field is decreased by one under storage lock. An Addressing Exception interrupt occurs
if the C-flag of the old bank descriptor is one and the use count is decreased to zero, or if the use
count is decreased from zero to all ones. The new bank descriptor is loaded in the bank descriptor
register, the P·-flag is transferred to designator register bit 2 (02), and the W-flag of the new bank
desClriptor is placed in the appropriate write-protection bit of the designator register (013 through
016).

The specifications of the old bank descriptor is copied from the GRS processor-state storage area
into the upper half of Xa, the relative program address is copied into the lower half of Xa, and the
specifications of the new bank descriptor is then stored in GRS. The operand address is formed and
a jump to that location is effected. If both an address exception and jump address guard mode limits
violation occur during the execution of this instruction, the address exception will be taken.

The following are the formats of Xa before and after execution of the instruction:

Xa Before Execution

~BDRI a-o __ ~I ________ N_e_w __ B_O_I ______ ~ ______________ N_o_t_U_s_e_d _________ ~
35 34 33 32 30 29 18 17 o

Xa After Execution

~BDRI O-~_~ _________ O_I_d_B_O __ I ________ L-________ R_e_la_ti_v_e_p_r_o_g_ra_m __ A __ d._d_re_s_s ______ ~
35 34 33 32 30 29 1817 o

5.10.2. Load I-Bank Base and Jump - LlJ 07, 13

The LlJ instruction is executed as a special case of the LBJ instruction. Bit positions 34-33 of Xa
is ignored; if 012 is zero, BORO is selected, and if 012 is one, BOR 1 is selected.

5.10.3. Load D-Bank Base and Jump - LDJ 07, 12

The L.OJ instruction is executed as a special case of the LBJ instruction. Bit positions 34-33 of Xa
is ignored; if 012 is zero, BOR2 is selected, and if 012 is one, BOR3 is selected.

8492
UP-MUMBER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference

5. 11. CONDITIONAL JUMP INSTRUCTIONS

UPDATE LEVEL
5-40

PAGE

Each olthe conditional jump instructions performs a test for a specific condition (or set of conditions).
If the condition is satisfied, the value U is transferred to the P-register and the instruction addressed
by U is performed next. If the condition is not satisfied, the next instruction (NI) is performed.

5. 11. 1. Jump Greater and Decrement - JGD 70

Jump to U if (control register) > 0; go to NI if (control register) ja S 0; always (control register)
ja -1 ~ control register ja'

If the 36-bit signed number in the control register addressed by the rightmost 7 bits of the ja-field
is greater than zero (bit 35 contains a 0 bit and the number does not consist of all 0 bits), the
instruction at location U is executed next. If the number is less than, or equal to, zero (bit 35 contains
a 1 bit or the number consists of all 0 bits), the next instruction is performed. In either case, the
number is decreased by one and the difference is stored in the control register addressed by the
ja-field.

1. A Guard Mode interrupt occurs (if guard mode is set) when the ja-field specifies a value in the
range 408 through 1008, or 1208 through 1778 when 02 = 1. This is true regardless of the
value of 06 (A-, X-, and R-register set selector).

2. The leftmost bit in the j-field is ignored.

5. 11.2. Double-Precision Jump Zero - DJZ 71, 16

Jump to U if (A,A+ 1) = ± 0; go to NI if (A,A+ 1) t. ± O.

If the 72-bit operand contained in Aa and Aa+ 1 is ± 0, the instruction at location U is performed
next. If the operand is not ± 0, the next instruction (NI) is performed. .

5. 11.3. Jump Positive and Shift - JPS 72,02

Jump to U if (A)35 = 0; go to NI if (A)a5 = 1; always shift (A) left circularly one bit position.

If bit 35 of Aa contains a 0 bit, the instruction at location U is performed next. If bit 35 contains
a 1 bit, the next instruction is performed. The contents of Aa is always shifted left circularly one bit
position.

1. The bit shifted out of bit 35 of Aa is shifted to bit 0 of Aa.

5. 11.4. Jump Negative and Shift - JNS 72,03

Jump to U if (A)35 = 1; go to NI if (A)35 = 0; always shift (A) left circularly one bit position.

If bit 35 of Aa is a 1 bit, the instruction at location U is performed next. If bit 35 is a 0 bit, the next
instruction is performed. The contents of Aa is always shifted left circularly one bit position.

1. The bit shifted out of bit 35 of Aa is shifted to bit 0 of Aa.

8492 L SPERRY UNIVAC 1100/80 S~.m. 6-41
UJl...NUUBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE

- ,~~~_~----1..-.--~

5. 11.5. Jump Zero - JZ 74,00

~Iump to U if (A) = ± 0; go to NI if (A) 1. ± O.

If (Aa) is ± 0, the instruction at location U is performed next. If Aa does not contain ± 0, the next
instrwction is performed.

5. 11.6. Jump Nonzero - JNZ 74,01

J1ump to U if (A) 1. ± 0; go to NI if (A) = ± O.

If (Aa) is not ± 0, the instruction at location U is performed next. If (Aa) is ± 0, the next instruction
is periormed.

5. 11.'7. Jump Positive - JP 74,02

Jump to U if (A)35 = 0; go to NI if (A)35 = 1.

If bit ~~5 of Aa is a 0 bit, the instruction at location U is performed next. If bit 35 is a 1 bit, the next
instruction is performed.

5. 11.8. Jump Negative - JN 74,03

Jump to U if (A)35 = 1; go to NI if (A)35 = O.

If bit 35 of Aa is a 1 bit, the instruction at location U is performed next. If bit 35 is a 0 bit, the next
instruction is performed.

5. 11.9. Jump - Jump Keys - J,JK 74,04

Jump to U if a = 0 or if a = set SELECT JUMPS switch; go to NI if neither is true.

If the a-field contains all 0 bits, the instruction at location U is performed next. If the a-field contains
a valu~a in the range of 1 through 15 (18 through 1 78) and the correspondingly numbered SELECT
JUMPS switch/indicator is set, the instruction at location U is performed next; if the correspondingly
numbered SELECT JUMPS switch/indicator is not set, the next instruction is performed.

1. The indicator for each of the 15 SELECT JUMPS switch/indicators is turned on by pressing th&t
SELECT JUMPS switch/indicator. Each is turned off by pressing thq associated clear switch.
Either can be done while the processor is running.

2. Care should be exercised in using a value other than all 0 bits in the a-field if the program is
to run concurrently with one or more other programs. Any other program may include a Jump
Keys instruction with the same value in the a-field and specify that it is to be run with the
corresponding SELECT JUMPS switch/indicator set.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference

5. 11. 10. Halt Jump - Halt Keys and Jump - HJ,HKJ 74,05

UPDATE lEVEL
5-42

PAGE

Stop if [a =0 IQB] if (a ~ set SELECT STOPS switches) t 0] ~ 02 = 0; on restart or
continuation jump to U.

If the a-field contains all 0 bits, the execution of program instruction halts. If the a-field contains
a 1 bit in a bit position which corresponds to a lit SELECT STOPS switch/indicator, the program halts.

In either case, a manual restart causes the instruction at location U to be performed next.

If neither of the conditions described above is fulfilled, the instruction at location U is performed and
the program does not halt.

1. Unless the processor is operating in privileged mode (02=0) when a halt condition is satisfied
for a Halt Keys And Jump instruction, it does not actually halt. Instead, it proceeds with the jump.

2. The indicator for each of the four SELECT STOPS switch/indicators is turned on by pressing one
of the SELECT STOPS swi~ch/indicators. They are turned off by pressing the associated clear
switch.

3. If the program address register is manually changed while the processor is halted, program
execution will resume at the new address when the processor is restarted.

5.11.11. Jump No Low Bit - JNB 74,10

Jump to U of (A)o = 0; go to NI if (A)o = 1.

If bit 0 of Aa is a 0 bit, the instruction at location U is performed next. If bit 0 is a 1 bit, the next
instruction is performed.

1. If the Jump No Low Bit instruction is used to determine whether the value in Aa is an even or
an odd integer, consideration must be given to the sign of the value.

5.11.12. Jump Low Bit - JB 74,11

Jump to U if (A)o = 1; go to NI if (A)o = o.

If bit 0 of Aa is a 1 bit, the instruction at location U is performed next. If bit 0 is a 0 bit, the next
instruction is performed.

1. If a Jump Low Bit instruction is used to determine whether the value in Aa is an even or an odd
integer, consideration must be given to the sign of the value.

5. 11. 13. Jump Modifier Greater and Increment - JMGI 74,12

Jump to U if (Xa), 7-0 > 0; go to NI if (Xa), 7-0 ~ 0; always (Xa), 7-0 + (Xa)35-18 -. Xa 17-0'

If the signed number in bits 17 through 0 of the X-register specified by the a-field is greater than
zero (bit 1 7 is a 0 bit and the number does not consist of all 0 bits), the instruction at location U is
performed next. If the number is less than or equal to zero (bit 17 is a 1 bit or the number consists
of all 0 bits), the next instruction is performed. In either case, the signed number in bits 35 through
18 of the X-register is added to the signed number in bits 17 through 0 and the sum is stored in
bits 17 through 0 of the X-registor.

8492 L SPERRY UNIVAC 1100/80 S~.ml 5-43
_U_P-N_UM_8_E_R ___ , __ P_r_o_c_8_ss_o_r_an_d_S_t_o_ra_g_8 __ r_o_g_ra_m_m_8_r_R_8_f_8_r8_n_C_8 _____ -'--UPD_ATt_l_EVE_l __ -'--PA_G_E _____ " , __ _

1. The number in Xa 17-0 before the addition is tested rather than the number resulting from the
addition.

2. If a = x and h = 1, the specified index register is effectively modified only once for each
execution of the instruction.

5. 11. '14. Jump Overflow - JO 74,14;a=0

Jump to U if 01 = 1; go to NI if 01 = O.

Where a-field is an extention of f- and 'j-field .

•
If the overflow indicator (01) is one, the instruction at location U is performed next. If 01 is zero,
the next instruction is performed.

1. Performing the Jump Overflow instruction does not change 01.

5. 11. '15. Jump Floating Underflow - JFU 74,14; a - 1

Jump to U if 021 = 1, clear 021; go to NI if 021 = O.

If the characteristic underflow indicator (021) is one, the instruction at location U is performed next
and 0:21 is cleared by the instruction. If 021 is zero, the next instruction is performed.

5. 11. 16. Jump Floating Overflow - JFO 74,14; a = 2

Jump to U if 022 = 1, clear 022; go to NI if 022 = O.

If the characteristic overflow indicator (022) is one, the instruction at location U is performed next
and 022 is cleared by the instruction. If 022 is zero, the next instruction is p~rformed.

5. 11. 117. Jump Divide Fault - JDF 74,14; a = 3

Jump to U if 023 = 1, clear 023; go to NI if 023 = O.

If the divide fault indicator (023) is one, the instruction at location U is performed next and 023 is
cleared by the instruction. If 023 is zero, the next instruction is performed.

5. 11. 18. Jump No Overflow - JNO 74,15; a = 0

JumptoUif01 =O;gotoNlif01 = 1.

If the overflow iindicator (01) is zero, the instruction at location U is performed. If 01 is one, the
next instruction is performed.

1. Executing the Jump No Overflow instruction does not change 01.

8492
UP-HUMBER

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference

5. 11. 19. Jump No Floating Underflow - JNFU 74,15; a = 1

Jump to U if 021 = 0; go to NI if 021 = 1; clear 021.

UPDATE LEVEL
5-44

PAGE

If the characteristic underflow indicator (021) is zero, the instruction at location U is performed next.
If 021 is one, the next instruction is performed. 021 is cleared by the instruction.

5.11.20. Jump No Floating Overflow - JNFO 74, 15; a - 2

Jump to U if 022 = 0; go to NI if 022 = 1; clear 022.

If the characteristic overflow indicator (022) is zero, the instruction at location U is performed next.
If 022 is one, the next instruction (NI) is performed. 022 is cleared by the instruction.

5. 11.21. Jump No Divide Fault - JNDF 74, 15; a = 3

Jump to U if 023 = 0; go to NI if 023 = 1; clear 023.

If the divide fault indicator (023) is zero, the instruction at location U is performed next. If 023 is
one, the next instructior is performed next. 023 is cleared by the instruction.

5. 11.22. Jump Carry - JC 74,16

Jump to U if DO = 1; go to NI if DO = O.

If the carry indicator (DO) is one, the instruction at location U is performed next. If DO is zero, the
next instruction is performed.

1. The contents of the a-field are ignored.

2. Performing the Jump Carry instruction does not change ~O.

5.11.23. Jump No Carry - JNC 74, 17

Jump to U if DO = 0; go to NI if DO = 1.

If the carry indicator (~O) is zero, the instruction at location U is performed next. If DO is one, the
next instruction is performed.

1. The contents of the a-field are ignored.

2. Performing the Jump No Carry instruction does not change ~O.

5. 12. LOGICAL INSTRUCTIONS

The three logical operations are the Logical Inclusive OR (referred to as the Logical OR and symbolized
by [QBJ), the Logical Exclusive OR (symbolized by ~); and the Logical AND (symbolized by lAfm). Each
of these instructions uses two input operands. One input operand is obtained from location U and
the other from an A-register. Table 5-1 lists the four possible combinations of the two bits from any
bit position of the two input operands and the result produced for that bit position for each of the
three basic operations.

8492 L SPERRY UNIVAC 1100/80 S~.m.
UP-NUMBER Processor and Storage Programmer Reference _ ,_---=---=-----_--L--~_

UPDATE LEVEL
5-45

PAGE

Table 5-1. Truth Table for Logical OR, XOR, and AND

Input Bits Output (Result) Bit
First Operand Second Operand OR XOR AND

0 0 0 0 0
0 1 1 1 0
1 0 1 1 0
1 1 1 0 1

The Masked Load Upper instruction performs a compound logical operation; the contents of selected
bit po~;itions of one operand are merged with the contents of the remaining bit positions of a second
operand.

5. 12. 1. logical OR - OR 40

(A) [QBI (U) -+ A+ 1

The c()ntents of Aa is transferred to the arithmetic section. The contents of U is transferred to the
arithmetic section under j-field control. A 36-bit result is formed in the arithmetic section, as follows:

• The result contains a 1 in each bit position for which the corresponding bit position of either
()r both) of the input operands contains a 1.

• The result contains a 0 in each bit position for which the corresponding bit position of both input
operands contains a O.

The relsult is stored in Aa+ 1.

5. 12.2. logical Exclusive OR - XOR 41

(A) lEQEJ (U) -+ A+ 1

The c()ntents of: Aa is transferred to the arithmetic section. The contents of U is transferred to the
arithmetic section under j-field control. A 36-bit result is formed in the arithmetic section, as follows:

• The result contains a 1 in each bit position for which the corresponding bit position of either
(but not b()th) of the input operands contains a 1.

• The result contains a 0 in each bit position for which the contents of the corresponding bit
position of the input operands are both 0 or both 1.

The result is stored in Aa+ 1.

5.12.:J. logical AND - AND 42

(A) ~ (U) -+ A+ 1

The contents of Aa is transferred to the arithmetic section. The contents of U is transferred to the
arithmetic section under j-field control. A 36-bit result is formed in the arithmetic section, as follows:

8492
UI4«IMBER

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference UPDATE LEVEL

5-46
PAGE

• The result contains a 1 in each bit position for which the corresponding bit position of both input
operands contains a 1.

• The result contains a 0 in each bit position for which the corresponding bit position of either
(or both) of the input operands contains a O.

The result is stored in Aa+ 1.

5. 12.4. Masked Load Upper - MLU 43

[(U) ~ (R2)] [QBJ [(A) AND NOT (R2) A+ 1

The contents of Aa and R2 are transferred to the arithmetic section. The contents of U is transferred
to the arithmetic section under j-field control. A 36-bit result is formed in the arithmetic section,
as follows:

• The result contains a 1 in each bit position for which the corresponding bit position of the
operand from U and the operand from R2 both contain 1 bits.

• The result contains a 1 in each bit position for which the corresponding bit position of the
operand from Aa and the ones complement of the operand from R2 both contain 1 bits.

• The result contains 0 bits in the remaining bit positions.

The result is stored in Aa + 1.

1. The desired value must be loaded in R2 (mask register) by an instruction preceding the Masked
load Upper instruction.

5. 13. MISCELLANEOUS INSTRUCTIONS

Each of the eight following instructions is classed as miscellaneous.

5. 13. 1. Load DR Designators - LPD 07, 14

U7- 5,3-0 Designator register:

Bit 0 - 04 Bit 3 - 010

Bit 1 - 05 Bit 5 - 017

Bit 2 - 08 Bit 6 - 020

Bits 0, 1, 2, 3, 5, 6, and 7 of U are transferred to the designator register bits; 04, 05, 08, 010, 017,
and 020, respectively. These are the only designator bits which can be changed by a user program.

5. 13.2. Store DR Designators - SPD 07, 15

Designator register bits - U7-o; zeros - U 17-8

04 - Bit 0 012 - Bit 4

8492 L SPERRY UNIVAC 1100/80 Syatems I I 5 47
UP-NUMBER Processor and Storage Programmer Reference UPDATE lEVEL PAGE -- ,-----~--'----

os - Bit 1 01 7 - Bit 5

08 - Bit 2 020 - Bit 6

D10 - Bit 3

020, [) 17, 012, 010, 08, OS, and 04 of the designator register are transferred to bit positions 7-0
of U, respectively. The upper half of the operation location is unaffected.

5. 13.3. Execute - EX 72,10

E;l(ecute the instruction at U.

The P--register is incremented provided the instruction was addressed by the contents of the
P-regif.ter. The instruction at location U is transferred to the control section to replace the Execute
instruction as the next instruction to be performed.

1. The contents of the a-field are ignored.

2. The remote instruction, specified by U, is always obtained from a storage location.

3. ElCecute instructions may be cascaded; that is, the instruction in the remote location may be an
ElCecute instruction.

4. The P-register is incremented only once, when the original Execute instruction is obtained for
execution.

S. G,enerally, an interrupt cannot occur between the time an Execute instruction is started and the
instruction (or instructions) it leads to has been completed except when an Execute instruction
leads to a repeated instruction (see S.3.8 and 5.6). An interrupt cannot occur between the start
of: the Execute instruction and the completion of the initial stage of the repeated instruction. The
interrupt, however, can cause initiation of a termination stage immediately following completion
of: the initial stage or any time thereafter in order to permit the interrupt to occur.

6. If an Execute instruction leads to a repeated instruction, index register incrementation should
not be specified for the Execute instructions or for any indirect addressing sequence involved
(see 5.3.8. note 6, and 5.6).

5.13.4,. Executive Request - ER 72,11

Generate Executive Request interrupt

An Executive Request interrupt is generated.

1. A Guard Mode/Storage Limits interrupt will occur if indirect addressing is specified (i = 1, 07
= 0) and the operand address causes a storage limits violation.

2. The contents of the a-field are ignored.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference

5.13.5. Test and Set - TS 73,17; a = 0

If (U)30 = 1, Generate Test and Set interrupt; if (U)30 = 0, go to NI;

always 01 8 - U35- 30; (U)29-O unchanged.

UPDATE LEVEL
5-48

PAGE

A storage cycle is initiated to read and then write the operand specified by the operand address. If
bit 30 of the operand is one, a Test and Set interrupt occurs. If bit 30 of the operand is zero, the
next instruction is performed. The write portion of the storage cycle includes writing ones in bits
35 through 30 of the storage operand. Bits 29 through 0 at location U are neither examined nor
altered.

1. If U < 2008 , always interrupt.

5. 13.6. Test and Set and Skip - TSS 73,17; a = 1

If (Ubo = 0, skip NI; if (U)30 = 1, go to NI; always 01 8 - U35- 30; (Uh9-O unchanged.

A storage cycle is initiated to read and then write the operand specified by the operand address. If
bit 30 of the operand is zero, the next instruction is skipped. If bit 30 of the operand is one, the next
instruction is performed. The write portion of the storage cycle includes writing ones in bits 35
through 30 of storage location U. Bits 29 through 0 at location U are neither examined nor altered.

1. If U < 2008, always execute NI.

5.13.7. Test and Clear and Skip - TCS 73,17; a = 2

If (U)30 = 0, perform NI; if (U)30 = 1, skip NI; always clear (U) 35-30; (U)29-O unchanged.

A storage cycle is initiated to read and then write the operand specified by the operand address. If
bit 30 of the operand is zero, the next instruction is performed. If bit 30 of the operand is one, the
next instruction is skipped. The write portion of the storage cycle includes writing zeros in bits 35
through 30 of storage location U. Bits 29 through 0 at location U are neither examined nor altered.

1. If (U) < 2008, always execute Nt.

5.13.8. No Operation - NOP 74,06

Proceed to next instruction.

This instruction ensures that there is an interval between the end of the instruction that precedes it
and the start of the one that follows it.

1. The contents of the a-field are ignored.

2. The only effects that the values in the x-, h-, i-, and u-fields can have on the operation is the
index register incrementation obtained when x t 0 and h = 1, and the indirect addressing delay
introduced when i = 1 and 07 = O.

UPDATE LEVEL
6-49

PAGE
8492 L SPERRY UNIVAC 1100/80 S~.m.
UP-NUMBER Processor and Storage Programmer Reference _ _----=-------=--------L--~--

5. 13.9. Store Register Set - SRS 72,16

Aa cOlntains an address and count for each of two GRS areas. These areas are stored consecutively,
starting at the location specified by the operand address of the instruction. If either or both count
values are zero, no transfer occurs to the respective area(s).

The ffollowing is the format of Aa for this instruction:

ea 2 0-0
Area 2 0-0

Area 1 0-0
Area 1

ount Address Count Address

353<41 33 27 28 25 24 18 17 1815 98 78 o

5. 13. 1 O. Load Register Set - LRS 72,17

The format of Aa and the operation of the instruction are like that of SRS, except that information
is transferred from the location specified by the operand address to the area specified by Aa.

5.13.11. Test Relative Address - TRA 72,15

This instruction provides a means to determine whether a specific relative address is within a given
relative addressing range. The operand address is the first word of a four-word packet defining an
addressing environment to be used in testing the relative address. The packet contains a designator
register, bank descriptor table pointer, four bank descriptor indexes, and E bits, in the following
format:

Designator Register
Word 0

Bank Descriptor Table Pointer
Word 1

ignored BDI 0 E ignored BDI 2
Word 2 2

ignored BDI 1 E ignored BDI 3
Word 3 3

3534 3029 18 17 18 12 11 o

8492
Ul4tUMBER

SPERRY UNIVAC 1100/80 SyReml
Processor and Storage Programmer Reference UPDATE lEVEL

5-50
PAGE

The relative address to be tested is contained in Xa 17-00. This relative address is translated into an
absolute address within the addressing environment specified by the above packet. Relative
addresses less than 2008 are treated as a storage address, not GRS addresses. The four E bits within
the packet determine whether the BOT pointer in the packet (E=O) or the- EXEC BOT pointer (E= 1)
contained in GRS 408 is to be used to reference the respective bank descriptor. The TRA instruction
ignores 019, does not check table length violations, does not cause MSR basing, and will not produce
a Guard Mode interrupt as a result of a relative address out of limits.

Prior to fetching of packet Word 0, the designator register is stored in GRS 448 . A check for EXEC
GRS area storage is not made on this store. This store has the effect of making the current designator
state, specifically 012, available for use by a user who is normally expected to execute the TRA
instruction with an operand address of 448 . At the same time, this allows use of some pre-set
designator state to be used if the operand address is other than 44.

The results of this instruction are stored in Xa and indicated by skip or no skip. If the relative address
tested is within limits, the number of the bank descriptor register within whose limits the relative
address exists, is stored in Xa 34-33' and the absolute address produced is stored in Xa23-00. If the
relative address does not fall within any limits, Xa is cleared to zero and the next instruction is
executed. If the relative address tested is within limits, the write protect bit of the Bank Descriptor
within whose limits the relative address exists is tested. If it is zero, the next instruction is Jkipped;
if it is one, the next instruction is executed.

5.13. 12. Increase Instructions - XX 05; a = 10-17

The operand specified by the operand address is transferred under j-field control to the arithmetic
section, increased by a value specified by the a-field control to the arithmetic section, increased by
a value specified by the a-field, and stored under j-field control in the location specified by the
operand address; the operation is performed under storage lock (test and set). If the initial operand
or the result is zero, the next instruction is executed; otherwise, the next instruction is skipped. The
following values may be selected by the a-field:

mnemonic a-field increase value

INC 10 + 1 plus one

DEC 11 -1 minus one

INC2 12 +2 plus two

DEC2 13 -2 minus two

ENZ· 14 - 17 o zero (-0 is changed to +0 for sign -extended
operands)

The increase and zero test operations depend on the j-field values to some degree. Certain j-field
,values extend or interpret the sign of the operand (W, XH1-XH2, T1-T3); for these values, the increase
is a ones complement, sign-extended operation, and either positive zero or negative zero satisfies
the zero test. The remaining j-field values do not consider the sign of the operand (H 1-H2, 01-04,
S 1-S6); for these values, the increase is a twos complement, field-size operation, and only positive
zero satisfies the zero test.

_ ~:~.~.~ ___ L __ S_PE_RR_Y_U_N_IV_A_C_1_100_"_8..:.0_S_yst_ •,:m:..... ____________ ~ _____ --",-__ S-_S~ 1 "~ ,_ Processor and Storage Programmer Reference UPDATE lEVEL PAGE

5. 14. BYTE INSTRUCTIONS

This class of instructions is designed to permit transference, translation, comparison, testing, and
arithmetic computation of data in the form of predetermined bit patterns (e.g., half words, third words,
quarter words, and sixth words) referred to as bytes.

There are a total of 15 distinct instructions that perform the various multiword (byte string) operations
noted above. These instructions may be arranged under three functional groups:

1. instrucitons that involve byte transfers and manipulations between one storage location and
,mother.

2. instructions that permit the mutual transference and manipulation of data among storage and
various control and arithmetic registers.

3. instructions that perform decimal arithmetic addition and subtraction operations.

These instructions operate on strings of characters (byte strings) under control of J-registers and
staging registers. The J-registers are implicitly addressed by the instruction and are used to index
through the byte strings. One J-register is provided for each of four possible byte strings used by
an instruction. These registers, JO through J3, are located in GRS addresses 1068 - 1118 for user
programs, or 1268 - 131 8 for Executive programs. Figure 5-1 shows the J-register format including
the function of the various fields.

Staging and control information necessary to handle the byte strings are held in staging registers.
Three R-registers (Ra, R4, and Rs of GRS), designated as SR 1, SR2, and SR3, respectively, are used
for this purpose. The information stored in these registers provide the capability of interrupting the
performance of certain instructions. The actual information stored may vary from one instruction to
the next. See the individual instructions for use of the staging registers.

Byte string addressing is accomplished through use of the instruction's u-field, index registers
specified by the x-field of the instruction, and the OW (offset in words) field of the appropriate
J-register. The address of byte string 0 (designated SJO), for example, is given by summing the
contents of u, Xx, and the OW field of JO (U + Xx + JOow). The address of byte string 1 (SJ 1) would
be given by (U + Xx + 1 + J 1 ow), etc. A particular byte within the word of a byte string is pointed
to by the Ob field (offset in bytes) of the J-register. Byte strings may begin on any word-fraction
boundary compatible with byte size; i.e., strings of 6-bit bytes must be located on sixth-word
boundaries, 9-bit bytes on quarter-word boundaries, etc. The length of a byte string, in number of
bytes, is stored in staging register SR3. The length of byte string 0 (designated WO) is stored in bit
locations 35-27 of SR3, the length of byte string 1 (W 1) is bit locations 26-18 of SR3, and the length
of byte string 2 (W2) in bit locations 17-9 of SR3. Any, all or none of these values may apply for
a partncular instruction.

~ __________ I_W ___________ ~ __ lb ___ ~ _______________ O_W ________________ ~_O_b~
35 34 33 32 31! 21 20 18 17 3 2 0

FigurB 6- t. J-RBgistBr Format

8492
UP-NUMBER

Field

M

W

E

Iw

Ib

Ow

Ob

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference

Function

UPDATE LEVEL
5-62

PAGE

J-register modifier bit; used with the h-bit of the instruction to control J
(1= 1) or X{I=O) register modification.

Mode 6/9-bit modulus: 0 = 9-bit mode (ASCII)
1 = 6-bit mode (Fieldata)

Width 6-1 2 or 9-1 a bits: 0 = 6/9 bits
1 = 1 211 a bits

a) for 33,03
E = Translate:

o = translation

1 = no translation

b) for all other byte instructions E must be zero.

c) for character addressing (non-byte instructions):
o = no sign extension

1 = sign extension

Increment in words

Increment in bytes

Offset in words

Offset in bytes

The direction in which each instruction progresses through its operand byte strings is specified per
instruction in the J-register. The increment word (Iw) and increment byte (Ib) fields of the J-register
are used during instruction execution to update the effective byte address. The effective value of
Iw and Ib may be either ± 1, the actual value loaded into the register by the program depends on
the byte length being used. The value of Iw must be ± 0 and have the same sign as lb. Therefore
Iw is effectively Iwb sign extended (Iwb).

Table 5-2 gives the values of Iwb for + 1 and -1 effective increments for 6, 9, 12 and la-bit bytes.

Some of the extended-sequence byte-manipulation instructions are designed to permit their
interruption during their execution. However, interrupts are accepted only following the store or
compare phase of the instruction. As the instruction completes each of these phases, a check is made
to see if an interrupt is waiting to be processed. If an interrupt request is current, it is acknowledged
and processed immediately. When the instruction is again activated, the interrupt control bits are
decoded, and control is returned to the appropriate phasd of execution. There are three bits (29-27)
in SR 1 that are available for interrupt control, thus providing up to 7 types of interrupt classification
within an instruction.

.. _8_4_9_2___ I ____ S_P_E_RR_Y_U_N_IV_A_C_'_'00_/_8-=O_S_~_._=m:..... ____________ -'--________ 5-53 , __ ,_ .. __ « _UP-NUMBER ~_ Processor and Storage Programmer Reference UPDATE LEVEL PAGE __

Table 5-2. J-Register Increment Field Values

For a Byte Length And an Effective Increment of The Value of I Must be
of

6 bits +1 +1
6 - 1 - 1
9 +1 +2
9 - 1 -2

12 +1 +2
12 - 1 -2
18 +1 +4
18 - 1 -4

There are seven restrictions on byte addressing that should be noted:

1. The result of an instruction performed on overlapping byte strings is undefined.

2. A byte string may not wrap around its J-register offset field; i.e., Ow cannot be incremented
through its maximum value of 777778 or decremented through its minimum value of 000008,

3. Normal address limits violation detection and interrupt will be in effect.

4. All instructions utilizing the J-registers must have their operands located in storage.

5. The h-field of all byte instructions must be set to 1. This is set automatically by the assembler
when a byte mnemonic is encountered.

6. The I-field of all J-registers used must be set to 1.

7. The E-field of all J-registers used must be set to 0 for all byte instructions except 33,03.

The 33,03-04; 33, 10-11; 33, 14-17; and 37, 06-07 instruction will store a 7-bit status word in
SR3 ,7_9 either upon successful completion of the instruction or upon detection of an error condition
which prevents completion of the instruction. A definition of the 7 status bits is contained in Table
5-3.

Successful completion of an instruction will result in the storing of an all-zero word except for the
cases of a decimal-add overflow (27, 06-07) or a missing mantissa field (33, 14-15).

When dealing with 9-bit bytes, the ASCII format shall be accepted and only ASCII is generated when
uS~td for operations involving signed numeric-byte strings. An ASCII byte is the eight lowest-order
bits in a quarter word. The byte is divided into a 4-bit zone and a 4-bit digit; the zone is the most
significant part of the byte. The sign convention adopted for a byte string is called "trailing-included
sign format,"' i.e., the sign of the byte string is contained in the zone (Z) portion of the least significant
byte.

There are three exceptions to the "trailing-included sign convention".The Byte-ta-Single Floating
COlnversion (fj = 33, 15) instructions use a separate non-included sign byte with the byte string. This
byte is simply a "+" or "-" character.

Table 5-4 gives the binary coding for the plus and minus signs to be used in ASCII and Fieldata
coding. The hardware checks for a minus sign in arithmetic operations. If the sign of the arithmetic
opf:trations is not minus, then the result is assumed to be plus. The types of signs accepted and
generated by each of the byte-manipulation instructions are listed in the table.

Status Bit Type of Error
Bit 0 Set Format Error 33-10,11

37~6,07

33-14,15

Bit 1 Set Underflow 33-15

33-14,15

Bit 2 Set Overflow 33-10

33-11

37~6,07

33-14

33-15

33-14,15

Bit 3 Set Decimal Point Error 33-14,15

Bit 4 Set No Significant Character 33-14,15

Found-

Bit 5 Set Exponent Found or Byte 33-14,-15

Roundup

33-16-17

Bit 6 Set Mode Error 33-10,11

33-14,15

Bit 7 Set Byte Compare 33,0~4

r.ble 5-3. Byte St.tu6 Word

Instruction and Condition Detected
Byte not digit or blank (checked on all but last byte) or least significant 4 bitl of last byte
greater than 9.

Byte not digit (checked on all but first byte) or least significant 4 bits or first bytes greater than
9.

a. Two signs in string not separated by at least one non-blank character.
b. Two decimal points in mantissa

c. Significant character not found.

d. Illegal character in string.

e. Illegal character in exponent.

f. Decimal point last character and no digit in string.

Magnitude of input too small to represent in double-precision floating-point number.

Exponent negative and power of ten too small to represent double-precision floating-point

format.

Magnitude of input too large to represent in 35 binary bits.

Magnitude of input too large to represent in 71 binary bits.

Decimal-add overflow.

Magnitude of input too large to represent in single-precision floating-point.

Magnitude of input too large to represent in double-precision floating-point.

Mantissa interpreted as integer too large to represent in 60 binary bits.

a. Decimal point count greater than 31.

b. Two decimal points in mantissa.

c. Decimal point last character and no digit in string.

a. Bits 0, 3, or 6 set and significant character not read yet.

b. Mantissa field does not contain at least one digit (note that a blank following a decimal

point is considered a digit).

c. String does not contain at least one nonblank and nonsign character.

a. Bits 0, " 2, 3, or 6 set and exponent field detected.

b. Byte 10 (33,16) or 19 (33,17) is greater than four.

6- or 9-bit mode not selected rN bit) on one of the following instructions.

Compare encountered during instruction.

!

c CX)

! S
I

-0 en
a~
n:D
:~
C.c
~!
C»~ an
(I)::
g~
C»CD co
CD en

~ o· c3
~.

3
3
CD ...
:::D

;. ...
CD
::I
n
CD

c
CJ
~
m

§
r-

~
mOl

I
U'I
~

8492 ~ SPERRY UNIVAC 1100/80 S~.m. I I 5-55
UP-HUM8ER Processor and Storage Programmer Reference UPDATE LEVEL PAGE - .,----=-----=------~~

Table 5-4. Byte String Sign Codes

Sign Conventions
Character Code Formats + -

'I. ASCII Included (Zone portion) 1010
2. Fieldata Included 11
~J. ASCII Separated (Entire byte) 00101011
4. Fieldata Separate 100010

5.14.1. Byte Move - BM 33,00

Transfer LJ 1 bytes from source string to receiving string. Truncate or fill.

1

00101
100

011
10

101
001

This instruction transfers LJ 1 bytes from a source string starting at address SJO to a receiving string
starting at address SJ 1. The byte string at address SJO contains LJO bytes; the byte string at address
SJI1 contains LJ 1 bytes. If LJ 1 is less than LJO, the move will be truncated when LJ 1 bytes have
been transferred. If LJ 1 is greater than LJO, then (LJ 1-LJO) fill bytes will be added in the trailing
positions of the byte string located at address SJ 1. The contents of SR2 17-O are used as the fill byte.

When byte strings of different byte size are transferred, the receiving string determines how many
bits from each source string byte will be accepted. For example, if SJ 1 is in the nine-bit mode and
W- is in six- bit mode, the three leading bits of the SJ 1 byte are made zero. If SJ 1 is in the six-bit
mode and SJO is in the nine-bit mode, only the six least significant bits of the SJO byte are accepted,
the rest being lost.

Both the values LJ 1 and LJO are reduced by one following each byte move. Ths instruction is
terminated when the value of LJ 1 equals zero (LJ 1 = 0).

1. This instruction is interruptible after each store operation.

2. The Iwb fields in JO and J 1 must be loaded with effective values of ± 1 wb, depending on mode
and width.

3. The desired fill byte must be loaded in SR2 17-O'

5. 14.2. Byte Move With Translate - BMT 33,01

Translate and transfer LJ 1 bytes from source string to receiving string. Truncate or fill.

This instruction translates and transfers W 1 byte from byte string SJO tp byte string SL 1. The
translation and transfer process uses byte string SJ2 as a translation table for byte string LO. That
is, each byte of the string SJO is used as an index to a byte in string SJ2. The SJ2 byte thus addressed
is 1transferred to the byte string SJ 1. If the value of W 1 is less than WO, the transfer terminates when
LJ 1 bytes have been processed. If the value W 1 is greater than LJO, then (LJ 1-LJO) translated fill
bytes are placed in the trailing positions of SJ 1. The contents of SR2 17-O are used to index the fill
byte.

When byte strings of different byte size are transferred, the receiving string determines how many
bits from each byte of the source string will be accepted. If SJ 1 is in the six-bit mode and SJ2 is
in the nine-bit mode, only the six least significant bits of SJ2 byte are accepted, the rest being lost.

8492
UI4IUMBER

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference UPDATE lEVEL

5-56
PAGE

The translation table pointer register, J2, must be in the 9- or 1 a-bit mode. This restriction does
not prevent FIELDATA translations, but it requires that the translation table bytes are either 9- or
1 a-bit entries. Both the values W 1 and WO are decreased by one following each byte translation.
When the value of W 1 is equal to zero (W 1 = 0), the instruction is terminated.

The fill byte referenced by SR2 ,7-O must be preloaded left shifted one bit if MW = 0 in JO (see Figure
5-1), indicating the source string is 9-bit bytes, and must be preloaded left shifted two bits if BL =
1 in JO, indicating the source string is 1 a-bit bytes.

1. This instruction is interruptible after each byte store operation.

2. The Iwb fields of JO and J 1 must be loaded with effective values of ±, depending on mode and
width (see Table A3).

5. 14.3. Byte Translate and Compare - BTC 33,03

Optionally, translate and compare WO bytes from SJO with W 1 bytes from SJ 1; terminate the
instruction on not equal or when both WO and W 1 equal zero; when:

(A) > 0; string SJO > SJ 1

(A) = 0; string SJO = SJ 1

(A) < 0; string SJO < SJ 1

This instruction optionally translates and compares WO bytes of string SJO with the optionally
translated W 1 bytes of string SJ 1. String SJ2, starting at address (u+(X+2)+J2ow)' is used as the
translation table for strings SJO and SJ 1 when the corresponding E bit is zero. A one in the
corresponding E bit inhibits translation. Thus a translation can be made on either or both strings.
If no translation is desired, the Byte Compare instruction (33,04) should be used. The comparison
is made by subtracting the optionally translated SJ 1 byte from the optionally translated SJO byte and
storing the result in registtfr Aa. If the contents of Aa is zero (Aa = 0), then the next pair of bytes
are translated or not, according to the content of (E) and compared. If the contents of Aa is not zero
(Aa = to), or if both of the strings SJO and SJ 1 have a value of W 1 = 0 and LJO = 0, then the
instruction is terminated. The values of W 1 and WO are always decreased by one, and the JO- and
J 1-registers are increased or decreased by one, depending upon the direction addressed.

When the instruction termination occurs, the relative value of an SJO string in respect to the value
of an SJ 1 string may be determined as follows:

• If the contents of the Aa-register is positive (A > 0), then the SJO string is greater than the SJ 1
string (after optional translations).

• If the contents of the Aa-register is zero (Aa = 0), then the SJO string is equal to the SJ 1 string
(after optional translations).

• If the contents of the Aa-register is negative (Aa < 0), then the SJO string is less than the SJ 1
string (after optional translations).

1. If either string SJO or string SJ 1 is depleted before the other, trailing fill characters are
added to the shorter string.

2. The fill byte for string SJO is contained in SR ' ,7- 9 and the fill byte for string SJ 1 is
contained in SR235_18.

8492 ~
UP-NUMBER __ ~,_.____ . ___________________________ --L... _____ ---'-_. __ ._-.. "----

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference

5-57
UPDATE LEVEL PAGE

3. The fill bytes in SR2 must be preloaded left shifted one bit if MW = 0 in JO indicating the
source string is 9-bit bytes and must be preloaded left shifted two bits if MW = 1 in JO
indicating the source string is 1 a-bit bytes (see Figure 5-1).

5,.14.4. Byte Compare - BC 33,04

Compare UO bytes from string SJO with U 1 bytes from string SJ 1; terminate instruction on
not equal or when both UO and U 1 are zero.

The corresponding string SJ 1 byte is subtracted from the string SJO byte, the result is stored in Aa,
and a zero test is performed. The value of U 1 and UO are always decreased by one, and the JO-and
J 11-registers are updated. If the contents of the Aa is zero, the next pair of bytes are tested. If the
vallue of Aa is nonzero, or both U 1 and UO are zero (i.e., the longer string has been depleted), the
in'struciton is terminated.

When the instruction termination occurs, the relative value of an SJO string in respect to the value
of an SJ 1 string may be determined as follows:

• If the contents of the Aa-register is positive (Aa > 0), then the SJO string is greater than the
SJ 1 string.

• If the contents of the Aa-register is zero (Aa = 0), then the SJO string is equal to the SJ 1 string.

• If the contents of the Aa-register is negative (Aa < 0), then the SJO string is less than the SJ 1
string.

1. If either string SJO or string SJ 1 are depleted before the other, trailing fill characters are
added to the shorter string. The fill byte for the string SJO is contained in SR2 17-O and
the fill byte for string SJ 1 is contained in SR235- 1S '

2. This instruction is interruptible after each compare.

3. The Iwb-fields of JO and J 1 must be loaded with effective values of ± 1 wb, depending on
mode and width (see Table 6-2).

5. 14.5. Edit - EDIT 33,07

Edit byte string SJO and transfer to string SJ 1 under the control of string SJ2.

A source byte string (string SJO) specified by the u-field of the instruction, utilizing registers Xx and
JO, are edited into a receiving byte string (string SJ 1) specified by the u-field of the instruction, Xx
+ 1, and J 1. Specific editing commands Clre coded within a control byte string (string SJ2) whose
location is designated by the J2 register, the u-field of the instruction, and the register Xx + 2. The
control stream commands are designed to duplicate all of the functions of the PICTURE clause of the
COBOL compiler. Therefore, the main use of the Edit instruction is to make the appropriate editing
changes to a numeric byte string for output to the printer. For example, blanking-out the leading
zel'OS, adding a "$" character or the appropriate sign code, inserting commas or a decimal point within
the number, or appending a descriptor word such as "CR" or "DB".

The following information describes and summarizes the basic operational steps of the Edit
instruction.

A typical field in the control strean. (string SJ2) will contain the following elements:

8492
UP-MJMIJER

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference

Function Byte Skip Count Subfunction Subfunction
(Table 5-5) (optional) (Table 5-6) (or Text)

-

UPDATE LEVEL
5-58

PAGE

Flag Byte
(End-of-Field)

The function byte specifies control information for the whole field, following it (see Table 5-5). One
function of this byte is to specify whether there is a skip count or not. If there is a skip count it is
given in the next byte. The rest of the field contains a series of subfunction bytes and text bytes.
The subfunction bytes are those described in Table 5-6 and ,specify operations to be performed as
the source string is edited into the receiving string. The text bytes are bytes similar to the source
string bytes which may be edited into the receiving string. The last subfunction byte in the field is
the flag byte which establishes the end-of-file action. The flag byte may be followed by another field
starting with a function byte, or a second flag byte indicating termination of the Edit instruction.

Operation of the Edit instruction is based on performing a sequence of field "microprograms" defined
by the control string. A field scan is established when the instruction is initiated or when the initiation
of a new field occurs and results in certain "function initiation" actions based on the contents of the
function byte. The first control stream byte must be the function byte. It will be stored in staging
register SR 126-18' If a skip count is required, as indicated by the function byte, the second control
stream byte contains the skip count and is transferred from the 0 control stream to staging register
SR 117- 9, Next, the J 1-register is saved in J3. This saves the position of the first byte of the receiving
string for use if the "blank-if-zero" command (bit 0 of function byte is set) is required when the end
of the field is encountered. Finally, the skip count (SR 117- 9) is used to skip the indicated number
of bytes in the receiving string. This is done by updating J 1 position Owb as many times as the value
in SR 117- 9 (skip count). At this point the edit is established.

When the function initiation actions are completed for this field, the first subfunction byte is
transferred from the control stream to SR 18-0 for interrogation. The subfunction byte is transferred
from the control stream to SR 18-0 for interrogation. The subfunction and text bytes are sequentially
interrogated until a "flag" (end-of-field) subfunction byte is encountered. At this point the end-of-field
action is completed and another function is initiated. This process continues until two "flag" bytes
are encountered together indicating termination of the instruction. A detailed description of the
function byte, subfunction, and text bytes follows.

5. 14.5. 1. Function Byte

The interpretation of the function byte is given in Table 5-5. A more detailed descripton of each bit
position follows:

Tllblll 5-5. Function Bytll Intllrprllt8tion

Function Byte

Bit Q 1

5 No Skip Count Skip Count Follows
4 Fixed Sign Floating Sign
3 Fixed Symbol Floating Symbol
2 Sign = Minus or Fill Sign = Minus or Plus
1 Edit - No Sign Action Sign Action on Edit

8492 ~ SPERRY UNIVAC 1100/80 System. 5-59
UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE ____________ , _______________________ ~ ____ ~ ________________________ L_ __________ ~_

Table 5-5. Function Byte Interpretation (continued)

[_'--___ O ____ -L _________ N_o_rm_a_I_E_d_it ___ F_u_n_c_t_io_n __ B.Llyt,_e ____ ··_-_-'-_-·_-_ .. -_~-_ .. -~B_I-a_-n_·k_·~~if~'z~e_=r~-o_·--~_·_···-~_-_·_· __ J
• Function Bit 5 - A skip mechanism is included that allows the programmer the option of ignoring

a series of bytes in the receiving string. The skip count is placed in position SR 117- 9 during
function initiation and specifies the number of bytes to be skipped in the receiving string before
the first subfunction byte is interrogated. The maximum value allowed is 63 10 for either the
6 or 9 bit mode.

• Functilon Bit 4 - If fixed sign is indicated, an appropriate sign byte (as specified by function bit
2) is placed in the receiving string position specified by SR235_18. SR235_18 must be loaded
by the subfunction "sign-position indicator" discussed in 5. 14.5.2. If floating sign is indicated,
an appropriate sign bv1e is placed in the receiving string position specified by SR2 17-O.

SR2 11-O is loaded by the subfunctions "digit select" or "significance start indicator" as discussed
in 5.14.5.2. In either case, a fill byte is transferred to the receiving string where the sign will
be. The sign bytes are specified by the programmer in SR3 and are transferred to the receiving
string when a "flag" subfunction byte is interrogated (end-of-field action). This bit has no
meaning unless function bit 2 (sign action on edit) is set to 1.

• Function Bit 3 - If this bit is a 1 bit, the symbol specified by the programmer in SR38-O is
transferrred to the receiving string at the position specified by SR2 17-O. Position SR2 17-O is
loaded the same way as for "floating sign" above. If both function bits 3 and 4 are set to one,
the floating sign will be inserted and tho floating symbol ignored. As with the sign codes the
symbol is actually inserted during end-of-field action. If function bit 3 is a zero there is no symbol
inserted during end-of-field action. A symbol may still be inserted into the receiving string
during subfunction interrogation with a "symbol-position indicator" subfunction (described in
5.14.5.2).

• Function Bit 2 - If function bit 2 is a 0, the sign code inserted into the receiving string is either
a minus or a fill as appropriate. If function bit 2 is a 1 bit, the sign code is either a minus or
a plus. The plus, minus, and fill bytes are specified by the programmer in SR3 17_9, SR326-18'
or SR335-27' respectively. This bit has no meaning unless function bit 1 (sign action on edit)
is set to one.

• Function Bit 1 - If function bit 1 is a 1, the sign action indicated by bits 4,2 and the sign of the
source string is taken (i.e., a plus, minus, or fill byte is inserted into the receiving string). If bit
1 is zero, no plus or minus bytes are inserted into the receiving string. The only effect bit 4
(floating sign) would have is to insert a fill byte in the position where the floating sign byte should
be.

• Function Bit 0 - The programmer has the option of leaving an all-zero receiving field or replacing
it with fill bytes. The field is considered to be all-zero until a nonzero byte has been transferred
from the source string by a "digit select" subfunction. Position SR 131 is set to one when the
first nonzero digit is transferred. SR 131 is not set to one by any subfunction other than "digit
select". The entire receiving string field is replaced with fill bytes during end-of-field action (see
"flag" subfunction in 5.14.5.2) if function bit 0 and SR 131 are both set to 1. The start and end
of the field are indicated by J3 (loaded during function initiation) and J 1, respectively.

8492
UP-NUMBEA

SPERRY UNIVAC 11 00/80 S~m.
Processor and Storage Programmer Reference

5. 14.5.~. Subfunction Byte

UPDATE LEVEL
5-60

PAGE

The interpretation of the subfunction byte is given in Table 5-6 and discussed in the following
paragraphs.

Table 5-6. Subfunction Byte Interpretaion

Byte Function Fieldata Symbol

000 000 011 Pass Byte #
000 101 111 Significance Start Indicator \
000 100 110 Digit Select &
000 111 110 Symbol Position Indicator []

000 111 010 Sign Position Indicator . (apostrophe)
000 101 001 Trailing Text Start Indicator (
000 111 111 Flag (End-of-Field) t b

• Pass Byte - If the control byte is a "pass byte", the byte currently pointed at by the source field
pointer is transferred to the receiving string intact.

• Significance Start Indicator - If the control byte is a "significance start byte," the "significance
trigger" SR 134 is set to one. Also, if either floating sign (function bit 4 set) or a floating symbol
(function bit 3 set) will be require, then the receiving field pointer, J 1-register, is stored in
SR2 ,7-O' and a fill byte SR335_27 is inserted in the receiving field. This fill byte is replaced by
the appropriate sign byte in end-of-field processing as indicated by the function byte bit
settings. If the "significant trigger" has already been set to one, this byte is ignored.

• Digit Select -If the control byte is a "digit select byte," the byte currently pointed at by the source
field pointer and t"'e significance trigger are examine, according to the following criteria:

1. If the significance trigger is off, and the source byte has a zero digit portion, the receiving
field will have a fill character (SR335_27) inserted into it.

2. If the significance trigger is off and the source byte is not a zero,

a. the significance trigger is set on, and

b. if either floating sign or floating symbol will be required, the receiving field pointer
(J 1) is stored in SR2 ,7-O' and a fill byte, (SR335_27) is inserted in the receiving string.
This fill byte is replaced by the appropriate sign byte in end-of-field processing as
indicated by the function byte bit settings. The receiving field pointer (J 1) is
incremented, and

c. the source byte is transforred to the receiving string.

3. If the significance trigger is "on," then the source byte is transferred to the receiving field.

4. If this is the first nonzero digit to be transferred from the source string, SR 131 is set to one
for use when interrogating the "blank-if-zero" function bit in end-of-field processing.

5. The appropriate zone code, as prescribed by the reE:eiving string pointer (J 1), is always
written into the receiving string.

UP-HUMBER Processor and Storage Programmer Reference UPDATE LEVEL
5-61

PAGE
8492 ~ SPERRY UNIVAC 1100/80 S~.m.

- ,----~~.-

An e)(:ception to the above "digit-select" transmission exists if the zone portion of the byte is
negative sign (sign overpunch). In this case, the "N" bit is turned "on" (SR 132) and the negative
sign bits are replaced by the appropriate zone code.

• Symbol Position Indicator - If the control byte is a "symbol position indicator", the symbol byte
(SR38-o) is stored in the receiving field. The setting of function bit 3 does not affect the operation
of this subfunction byte.

• Sign Position Indicator - If the control byte is a "sign position indicator," the receiving field
pointer, contained in the J 1-register, is copied into the fixed-sign position pointer (SR235_18)

and the fill character (SR335-27) is transmitted to the receiving field. This fill byte is replaced
by thEt appropriate sign byte in end-of-field processing as indicated by the function byte bit
settings. This subfunction byte must be used to indicate the position of the fixed sign if the
function bit 4 is 0 (fixed sign).

• Trailing Text Start Indicator - If the control byte is a "trailing text start" byte, the trailing text
trigger (SR 133) is set to one. If a negative sign has been detected in the source string scan
(SR 132 set to one), any text information encountered in the control string is now transferred to
the receiving string. If SR 132 equals zero, fill bytes (SR335_27) are transferred to the receiving
field rather than the text bytes.

• Flag Byte (End-of-Field) - If the control byte is a "flag" byte, then the end-of-field action will be
established. At this point the appropriate sign insertion and "blank-if-zero" command actions
are done as indicated by the function byte. The net control stream byte is either a function byte
starting a new field or another flag byte terminating the Edit instruction.

If the control byte is none of the subfunction bytes of Table 5-6, it is assumed to be a text byte. If
either SR1 33 and SR1 32 are set (see Table 5-7) or SR1 34 is set and SR1 33 is not set, the text will
be transferred to the receiving field. In all other cases, the fill byte (SR335_27) will be transferred to
the receiving field.

A summary of staging register (SR1-SR3) and J-register (JO-J3) usage are given in Table 5-7.

1. The Iwb-fields of JO, J 1, and J2 must be loaded with effective values of + 1 wb, depending on
values of + 1wb, depending on mode and width (see Table 5-2).

2. SR3 must be loaded with the desired codes.

3. This instruction is interruptible.

5. 14.6. Byte to Binary Single Integer Convert - BI 33,10

Convert LJO byte in string SJO into a signed binary integer in register A.

This instruction converts byte string SJO composed of LJO bytes, coded in either ASCII or Fieldata,
into a signed binary integer in the Aa-register. The JO-register initially points to the leftmost byte
in the string and is set for left-to-right incrementation" The sign must be represented in the zone
of the least significant byte.

Field

CMP (Complement Mode)
ST (Significance Trigger)
T (Trailing Text Trigger)
N (Negative Bit)
C (Control Bit)

l (Skip Bit)
I (Interrupt Bits)
Function

, Skip Count
I Subfunction
I Fixed-Position Pointer

Floating-Position Pointer

Fill Byte
Negative-Sign Byte
Plus-Sign Byte
Symbol Byte
Source Pointer

~
eceiVing Pointer

Control Pointer
Start-of-Field Pointer

Table 5-1. Summ.ry of St.ging R~i."r .nd J-R.g'.t.r FI.ld.

Position

SR1 35 (BTO)
SR1 34 (BT1)
SR1 33 (BT2)
SR1 32 (BT3)
SR1 31 (BT4)

SR1 30 (BT5)
SR 129-27 (BT6-8)
SR 126-18 (BS2)
SR1 ,7_9 (BS3)
SR 18-0 (8S4)
SR235_18 (BHO)

SR2 ,7-O (BH1)

SR3 35-27 (BBO)
SR326-18 (BB 1)
SR3 ,7_9 (BB2)
SR38-o (BB3)
JO
J1
J2
J3

Function

No complement if 0, complement if 1.
set to 1 if the control byte is a "significant start: byte.
Set to 1 when a trailing text start indicator has been detected.
Set to 1 when a nt;~ative sign has been detected.
Set to 1 when the first nonzero digit is transferred from the source string
by the "digit select" subfunction.
Set to 1 if a skip is in progress.
Controls return after instruction interrupt.
Contains active Edit field function.
Contains skip count to bypass receiving field.
Contains active Edit subfield function or text.
Acts as index modifier for pointing to byte in receiving string which will
receive fixed sign or symbol. Receives contents of J 1-register position
Owb.
Acts as index modifier for pointing to byte in receiving string which will
receive floating sign or symbol. Receives contents of J 1-register position
Owb.
Byte used when fill is called for.
Byte used when negative sign insertion is specified.
Byte used for positive sign insertion.
Byte used for symbol insertion.
Points at source byte for Edit action.
Points at byte to receive edited byte.
Acts as index modifier for pointing to control string (byte).
Copy of contents of J 1-register at start of field. Used to control
blank-if-zero action.

i e

....CUl)

a~
n::lt
:~
fltc
~~
I»~ &.n
en::
g~
I»CD co
CD en
:vi
0-c3
I»
3
3
CD
::D
CD
;'
CD
::l
n
CD

c

~
§
r-

~
mUl

I
0)
N

8492
IJP-MIMBER

SPERRY UNIVAC 1100/80 Systems
Processor and Storage· Programmer Reference UPDATE LEVEL

5-63
PAGE

A 7-bit status word is stored in the low-order bits of SR3 17_9. An all zero word indicates successful
completion of the instruction. Bit 0 set indicates a Format error and is set if one of the input bytes
is not a digit or a blank (checked on all but the last byte) or the least significant 4 bits of the last
byte are greater than 9. Bit 1 set indicates an overflow condition and is set if the magnitude of the
input string SJO is too large to be represented by 35 binary bits.

1. If the arithmetic section detects a register overflow, an interrupt (to MSR + 2508 is {,enerated.

2. The Iwb-field of JO must be loaded with effective value of + 1 depending on mode and width
(see Table 5-2).

3. J 1, J2 and J3 are not used in this instruction.

5. 14.7. Byte to Binary Double Integer Convert - BDI 33,11

Convert WO bytes in string SJO into a signed binary integer in registers A and A+ 1.

This instruction converts byte string SJO composed of WO bytes, coded in either ASCII or Fieldata,
into a signed binary integer in the Aa- and Aa+ 1-register. The JO-register initially points to the
leftmost byte in the string and is set for left-to-right incrementation. The sign must be represented
in the zone of the least significant byte.

A 7-bit status word is stored in the low-order bits of SR3 17_9. An all zero word indicates successful
completion of the instruction. Bit 0 set indicates a Format error and is set if one of the input bytes
is not a digit or a blank (checked on all but the last byte) or the least significant 4 bits of the last
byte are greater than 9. Bit 1 set indicates an overflow condition and is set if the magnitude of the
input string SJO is too large to be represented by 72 binary bits.

1.. If the arithmetic section detects a register overflow, an interrupt (to MSR + 2508) is generated.

2. The Iwb-field of JO must be loaded with effective value of + 1, depending on mode and width
(see Table 5-l).

3. J 1, J2 and J3 are not used in this instruction.

5. 14.8. Binary Single Integer to Byte Convert - IB 33,12

Convert the binary integer in A to byte format and store in string SJO.

This instruction converts the binary integer contained in the Aa-register to a byte format and stores
the results in string SJO. String SJO is WO bytes long and the rightmost byte has the sign in the
zone portion.

The converted number is right-justified and zero-filled in the string. If string SJO is not long enough
to accommodate the converted number, the remaining bytes will be truncated. The JO-register must
bf~ set for negative incrementation and point to the rightmost byte.

1. The Iwb-field of JO must be loaded with effective value of -1, depending on mode and width
(see Table 5-2).

2. J 1, J2 and J3 are not used in this instruction.

8492
UP-NUMIER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPDATE lEVEL

5.14.9. Binary Double Integer to Byte Convert - DIB 33, 13

Convert the binary integer in A and A+ 1 to byte format and store in string SJO.

5-64
PAGE

This instruction converts the binary integer contained in the Aa- and A+ 1-registers to a byte format
in string SJO. String SJO is WO bytes long and the rightmost byte has the sign in its zone portion.

The converted number is right-justified and zero filled in the string. If string SJO is not long enough
to accommodate the converted number, the remaining bytes will be truncated. The JO-registers must
be set for negative incrementation and point to the rightmost byte of string SJO.

1. Iwb-field of JO must be loaded with effective value of -1, depending on mode and width (see
Table 5-2).

2. J 1, J2 and J3 are not used in this instruction.

5. 14. 10. Byte to Single Floating Convert - BF 33, 14

Convert WO bytes in string SJO into a single-length floating-point format in register A.

This instruction converts byte string SJO composed of WO bytes, coded in either ASCII or Fiel~ata,
into a single floating-point number in register Aa.

String SJO may have either a leading plus-sign character (+) or a leading minus-sign character (-)
that indicates the sign of the mantissa. In the absence of either a plus or minus sign, the mantissa
is assumed to be positive. The mantissa must be representable in 30 binary bits if interpreted as
an integer and mayor may not contain a decimal point character. If the mantissa does not contain
a decimal point character, this character is assumed and its position is contained in SR3 26-18' If the
decimal point character is present, this condition overrides the effect of SR326-18'

The exponent, if present, follows the least significant digit of the mantissa. An exponent is indicated
by an E or 0 character followed by a minus sign and then the digits, if the exponent is negative. If
the exponent is positi"e the E or 0 character is followed by the digits alone or by a plus sign followed
by the digits. The E or 0 character may be optionally omitted. In this case, either a plus sign or a
minus sign must precede the digits of the exponent. The exponent must be limited to two digits. If
an exponent is not present, 100 will be assumed.

A 7-bit status word is stored in the low-order bits of SR3 ,9-O' An all zero word indicates successful
completion of the instruction. For possible error conditions and status word indications see Table
5-3.

1. Floating-point interrupts (characteristic underflow/overflow) may occur during the instruction.

2. Iwb-field of JO must be loaded with effective value of + 1, depending on mode and width (see
Table 5-2).

3. J 1, J2 and J3 are not used in this instruction.

4. SR3 positions 26-18 are the number of digits to the right of the decimal point.

8492 ~ SPERRY UNIVAC 1100/80 S~.m. 5-65
UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE ________ , ________________________ ~ __ ~ ________________________ _L __________ ~ __

5 •. 14. 11. Byte to Double Floating Convert - BDF 33,15

Convert LJO bytes in string SJO into a double-length floating-point format in registers A and
A+1.

This instruction converts byte string SJO composed of LJO bytes, coded in either ASCII or Fieldata,
into a double-precision floating-point number in registers Aa and Aa+ 1.

The SJO string may have either a leading plus-sign character (+) or a leading minus-sign character
(_.) that indicates the sign of the mantissa. In the absence of either a plus or minus sign, the mantissa
is assumed to be positive. The mantissa must be 'representable in 60 binary bits if interpreted as
aln integer and mayor may not contain a decimal point character. If the mantissa does not contain
a decimal point character, this character is assumed and its position is contained in SR326-18' If the
decimal point character is present, this condition overrides the effect of SR326-18'

If the exponent is present, it follows the least significant digit of the mantissa. The exponent is formed
according to the same rules that apply to the Byte to Single Floating-Point instruction (see 5. 14. 10),
except that there may be up to three digits in the exponent.

A 7-bit status word is stored in the low-order bits of SR3 19_7. An all zero word indicates successful
completion of the instruction. For possible error conditions and status word indications see Table 5-3.

1. Floating-point interrupts (characteristic underflow/overflow) may occur during the instruction.

2. Iwb-field of JO must be loaded with effective value of + 1, depending on mode and width. (See
Table 5-2.)

3. J 1, J2: and J3 are not used in this instruction.

4. SR3 position 26-18 is the number of digits to the right of the decimal point.

5. 14. 1 2. Single Floating to Byte Convert - FB 33,16

Convert the single-length floating-point number in A to byte format and store in string SJO.

This instruction converts a single-length floating-point number contained in the Aa-register to a byte
string starting at address SJO. The format of the resulting string SJO contains two numbers. The
first number is a nine-byte decimal fraction that has its sign in the zone part of the least significant
byte. The second number is a two-byte exponent with its sign in the zone portion of the least
significant byte.

1. the Iwb-field of JO must be loaded with effective value of + 1, depending on mode and width.
(See Table 5-2.)

2. J 1, J2 and J3 are not used in this instruction.

5. 14. 13. Double Floating to Byte Convert - DFB 33,17

Convel1 the double-length floating-point number in A and A+ 1 to byte format and store in string
SJO.

This instruction conv~rts a double-length floating-point number contained in the Aa- and
Aa + 1-registers to a byte string starting at address SJO. The format of the resulting string is similar
to that of the Single Floating to Byte Convert (see 5.14. 12.) instruction except that the first number

8492
Ul4«JMBER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference I 5-66

PAGE

is equivalent to an la-byte string and the second number is equivalent to a three-byte string. The
first number is the mantissa and thd second number is the exponent. Each number has its sign in
the zone porticn of the least significant byte.

1. The Iwb-field of JO must be loaded with effective value of + 1, depending on mode and width.
(See Table 5-2.)

2. J 1, J2, and J3 are not used in this instruction.

5.14.14. Byte Add - BA 37,06

Add the LJO bytes in string SJO to the LJ 1 bytes in string SJ 1 and place the results in string
SJ2.

This instruction adds byte string SJO (of length LJO) to byte string SJ 1 (of length LJ 1) and stores the
results in byte string SJ2 (of length LJ2). Only 6-bit Fieldata or 9-bit ASCII formats may be used.
The sign of the SJO and SJ 1 strings must be stored in the zone portion of the least significant byte.
If the length of the resultant byte string is smaller that LJ2 digits, then the SJ2 string will be zero
filled. The J-registers must point to the least significant digit and should be set for right-to-Ieft
incrementation.

1. This instruction is interruptible.

2. The Iwb-fields of JO, J 1, and J2 must be loaded with the effective value of -1, depending on
mode and width. (See Table 5-2.)

5. 14. 15. Byte Add Negative - BAN 37,07

Subtract the LJO bytes in string SJO from the LJ 1 bytes in string SJ 1 and place the results in
string SJ2.

This instruction subtracts byte string SJO (of length LJO) from byte string SJ 1 (of length LJ 1) and
stores the results in byte string SJ2 (of length LJ2). Only 6-·bit Fieldata or 9-bit ASCII format may
be used. The sign of the SJO and SJ 1 strings should be stored in the zone portion of the least
significant byte. If the length of the resultant byte string is smaller that LJ2 digits, then string SJ2
will be zero filled. The J-registers must point to the least significant digit and should be set for
right-ta-Ieft incrementation.

1. This instruction is interruptible.

2. The Iwb-fields of JO, J 1, and J2 must be loaded with effective value of -1, depending on mode
and width. (See Table 5-2.)

5. 15. EXECUTIVE INSTRUCTION REPERTOIRE

The instructions in this group are intended for use by the Executive system. When designator register
bits 35 and 2 are zero, the Executive repertoire is selected. This allows execution of all Executive
(privileged) instructions in addition to those of the user repertoire. The Executive repertoire includes
instructions for control of the processor state, interrupts, input/output, and instrumentation.

The Executive control instructions defined for the processor are described in the following
paragraphs. They are listed in Appendix B.

UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL
5-67

PAGE
8492 ~ SPERRY UNIVAC 1100/80 SY.Stema

- , _____ ----1.-----'--_

5. 15. 1. Prevent All Interrupts and Jump - PAIJ 72,13

The processor will not recognize certain interrupt requests received following the completion of the
instruction nor will it react to interrupt requests received following the start of the execution of the
instruction.

The following interrupts may. be prevented by this instruction:

• All 1/0 interrupts, including those for normal status, tabled status, and machine check interrupts.

This instruction causes the internal dayclock register value of the processor to be replaced at the start
o'f the next update cycle with the value in the dayclock location in fixed storage.

5. 15.2. Enable/Disable Dayclock - EDC,DDC 73,14, 11-12

These instructions enable and disable, respectively, the internal dayclock of the processor. When
a dayclock is enabled, if the dayclock is also selected the dayclock value is stored in the dayclock
location in fixed storage during each update cycle, and a dayclock interrupt request may be generated
by the dayclock.

5,. 15.3. Select Dayclock - SOC 73,14, 13

Each processor contains an internal dayclock. One dayclock in each application may be selected at
any given time to store its value in the dayclock location in fixed storage. The operand address of
the instruction specifies the processor number whose dayclock is selected for this function; note that
the selected dayclock must also be enabled (via EDC).

5 .. 15.4. Select Interrupt Locations - SIL 73,10, 00

Bits 22 through 16 of the operand are transferred to the module select register (MSR) specified by
bit 23. If bit 23= 1, transfer is to MSR in SIU upper half; if bit 23=0, transfer is to MSR in SIU lower
half.

MSR is used as the base for all fixed address assignment references, and there is a separate MSR
for the lower half of the addressing range (0-8M) and the upper half of the addressing range (8-16M);
the load path selection of the system transition unit determines which is to be used for fixed
references.

5. 15.5. Load Breakpoint Register - LBX 73,15,02

The operand specified by the operand address is transferred to the breakpoint register. This
establishes the modes of operation for the breakpoint mechanism, and activates and establishes the
mlodes of operation for the jump history stack.

5. 15.6. Store Processor 10 - SPID 73,15,05

The binary serial number is stored in the first third of the operand, the two character fieldata revision
level is stored in the second third of the operand, the processor features provided are stored in the
fifth sixth of the operand (bit 8 byte-oriented instructions, bit 7 floating-point instructions) and the
birnary processor number is stored in the last sixth of the operand.

8492
UP-HUMBER

SPERRY UNIVAC 1 100/80 S~m.
Processor and Storage Programmer Reference UPDATE LEVEL

5. 15.7. Load Quantum Timer - LQT 73, 15, 03

The full-word operand specified by the operand address is placed in the quantum timer.

5. 15.8. Load Base - LB 73, 15 10

5-68
PAGE

Bits 17 through 0 of the operand specified by the operand address are placed in the base-value field
of the bank descriptor register specified by bits 34 and 22 of Xx. If the x-field of the instruction
is zero, BORO is implicitly specified.

5.15.9. Load Limits - LL 73,15, 11

Bits 35 through 24 and 23 through 15 of the operand specified by the operand address are placed
in the upper and lower limits fields, respectively, of the bank descriptor register specified by bits
34-33 of Xx. If the X-field of the instruction is zero, BORO is implicitly specified.

5.15.10. Load Addressing Environment - LAE 73,15, 12

The double-word operand specified by the operand address contains four bank descriptor
specifications in the following format:

E XX ign- BOlO E ign- BOl2
0 ored 2 XX ored

E XX ign- BOl1 E XX ign- BOl3
1 ored 3 ored

35 34 33 32 30 29 18 17 18 16 14 1211 o

This operand is placed in GRS locations 046 and 047, and the limits and base values of the four bank
descriptors specified by this operand are placed in the respective bank descriptor registers. The bank
descriptor table length check is not performed on the bank descriptor index supplied by the
instruction. Bank descriptor flags and use counts are neither interpreted nor altered by LAE.

5.15.11. Store Quantum Time - SQT 73,16, 13

The current value of the quantum timer is stored at the operand address, which may be in GRS or
storage. Execution of this instruction has no effect on 029.

6. 15. 12. Load Designator Register - LD 73,16, 14

The full-word operand specified by the operand address is placed in the designator register. All
designator register specifications are in effect at the completion of this instruction.

8492 ~ SPERRY UNIVAC 1100/80 S~.m. 5-69
lJILNUMBER Processor and Storage Programmer Reference UPDATE LEVEL 'AGE

--------- -----------------------~------------------------------~----------~-

5. 15. 13. Store Designator Register - SO 73,15,15

The contents of the designator register is stored at the location by the operand address.

5. 15. 14. User Return - UR 73,15,16

This instruction provides an orderly mechanism for returning to a user program. The instruction
effectively combines LO and jump except that the component operations are performed with the
correct repertoire, addressing, and register set.

The double-word operand specified by the operand address contains the relative program address
arnd designator register value that establish the user operating state.

The second word of the operand is placed in the designator register, and all specifications are put
in effect. The lower 24 bits of the first word of the operand then becomes the relative program
address. If the relative program address i~ subsequently found to be out of limits, the interrupt will
ci3pture the new P-value.

Bit positions 23 through 18 of the relative address and the A-flag (bit position 35 of the same word)
should be zero, unless base register suppression (035 = 0, 07 = i = 1) is intended or was in effect
when the address was stored as the result of an interrupt.

5,.15.15. Reset Auto-Recovery Timer - RAT 73,15, 06

This instruction resets the timer in the auto-recovery section of the partitioning unit. This must be
done within an interval specified by the auto-recovery design in order to prevent an automatic intia!
load from being initiated.

5.15.16. Toggle Auto-Recovery Path - TAP 73,5,07

The system allows for two auto-recovery paths (processor/IOU/SIU Half combinations). Each time
an auto-recovery is attempted, the path selection is toggled. When a successful recovery does occur,
this instruction allows the software to return the auto-recovery selection to the successful path.

5. 1 5. 17. Store System Status - SSS 73,15,17

This instruction stores two words of system status at the location specified by the operand address.
System status includes partitioning information relating to each processor IOU, SIU, and MSU.

5.15.18. Diagnotics - 73,14, 14 - 17

These instructions are provided to test a large portion of the arithmetic hardware and a smaller portion
of the control section hardware. They generate specific operands, cause arithmetic to exercise its
logic, and place results in GRS. The results may be then tested via TEITNE instructions to verify
operation. If an error is found it is recommended that diagnostic procedures using scan and/or test
routines be used. Detail instructions are:

MIDA 73, 14, 14 - Generates A and A+ 1 operands of 0707---07, a U operand of 070707070622,
and a U+ 1 operand of 2525-25. The result, A=00372706711, A+ 1 =256171354400 is stored
in GAS addresses 62 and 63.

8492
Ul4ft.lM8ER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPDATE lEVEL

6-70
PAGE

MOB 73, 14, 15 - Generates an A operand of 0707-07, an A+ 1 operand of 070707070701, a
U operand of 070707070600, and a U+ 1 operand of 0707-07. The result, A= 771177117711,
A+ 1 = 777777776677 is stored in GRS addresses 62 and 63.

73, 14, 16, and 17 - are undefined and will not operate.

5. 15. 19. Input/Output Instructions

The I/O instructions are described in detail in Section 6.

For each I/O instruction, the operand address specifies the IOU, channel, and device number, if
applicable. For certain instructions, the index register specified by the a-field of the instruction (Xa)
contains a parameter associated with the operation, generally an address. Each I/O instruction skips
the next instruction if the operation was initiated properly, and a condition code of zero is stored in
the upper sixth-word of register Xa.

If the next instruction is executed, the upper sixth-word of register Xa contains a code that describes
one of four conditions: 000 = operation initiated, 020 = status is available, 040 = busy, and 060
= not operational; the remainder of Xa is not disturbed.

The Input/Output instructions are:

• Sense Release (SRL-75,00)

• SIO Fast Release (SIOF-75, 11): Xa contains the first CCW address.

• Test I/O (T10-75, 02)

• Test Subchannel (TSC-75, 03)

• Halt Device (HDV-15, 04)

• Halt Channel (HCH-75, 05)

• Load Channel Register (LCR-75, 10): Xa contains the value to be loaded.

• Load Table Control Words (LTCW-75, 11): Xa contains the first CCW address.

NOTE:

Because of the single IA Wand CSW locations for a processor, I/O instructions that may alter these
locations must be executed with interrupts locked out.

8492 ~ SPERRY UNIVAC 1100/80 S~.m. I I 6-1
lJII-NUMIER Processor and Storage Programmer Reference UPDATE LEVEL PAGE _ , __ ---=-----~ __ -------L-----'----

6. Input/Output

6. 1. INTRODUCTION

The input/output unit (IOU) provides a means of communications between the processor and its
external media. Under processor control the IOU handles all transfer of data and status between
peripherals and main storage. It minimizes processor involvement in input/output operations, yet
provides a flexible method of controlling and interrogating input/output activity. This section
describes t"e IOU's system philosophy. functional characteristics, various hardware and software
options, and overall operation.

6.2. FUNCTIONAL CHARACTERISTICS

The IOU has three interfaces: a storage interface, a processor interface, and a control u'nit or
peripheral interface. Each IOU consists of one control module and from two to eight channel modules.
(See Figure 6-1.) The control module handles all the interfacing with the storage unit and either one
olr two processors. The control module to processor(s) interface initiates instructions and handles
interrupts. The control module to storage interface transfers data, input/output control words, and
status between the channel modules and the storage interface. The control module establishes a
diata handling and interrupt priority among the eight channel modules.

TRANSITION UNIT STORAGE INTERFACE UNIT
. 1. Partitioning 1. All Data Transfers

2. Initial Load Path 2. All Control Word Transfers

PROCESSOR 0
INTERFACE

PROCESSOR 1
CONTROL
MODULE

MAl NT.
SECTION

-< _1~IEBE.A~g ___ -; _ !!>~t~!!aJ) ____ _

,
, __________ J

, , , r .J , .---, ,

, , ,
L __ ...,

,
(OPT.) (OPT.) (OPT.) (OPT.) COPT.) (OPT.)

,(:---, '-C---, '-C---, '-C---, '-C---, '-C---,
'H M, 'H M, 'H M, 'H M, 'H M, 'H MI
IA 0, 'A 01 IA 0 1 IA 0, 'A 0 1 IA 0 1
IN 01 IN 01 IN 01 IN 01 IN 01 IN 01
I UI I UI I UI I UI I UI I U,
IN LI IN LI IN LI IN LI IN LI IN LI
IE EI IE E' IE EI IE EI IE E' IE EI
IL "L I IL IlL IlL IlL 1 --f- ---f- --r- --f[- --f[- --f[-

C
H
A
N
N
E
L

·····C·,·············i·············l·············I·············1···························

0 1 I I I ,
I

NIN
TIT
RI E
OIR
LI F

IA
UIC
N' E
II
TI ,
~ ~ ~ ~ ~ ~

Figure 6-1. 1100/80 Input/Output Unit

M
0
0
U
L
E

C
H
A
N
N
E
L

C
o
N
T
R
o
L

U
N
I
T

M

81
U
L
E

I
N
T
E
R
F
A
C
E

MAINTENANCE
PROCESSOR

1100/80 IOU

MODULAR
APPROACH

i ~

"'Del)
a;l
0:11

:~
·c
~z
.~ g,n
(I):::
~~ ...
coo
CD en

11
co3 a;-
3
3
CD
~

::a ;.
;
:I
(')
CD

c
i!
~

~

~ me»
I

N

UPDATE LEVEL
6-3

PAGE
8492 ~ SPERRY UNIVAC 1100/80 S~.m.
~ Processor and Storage Programmer Reference _, __ ~_-----1.._--'----

6.:Z.1. Channels

A channel is defined as a channel module. The channel handles all interfacing with the control units.
The channel executes input/output instructions, formats and transfers data, generates interrupts and
status, and establishes priority among input/output instructions, data transfers, and interrupts. Each
channel is designated by feature to be either a byte multiplexer channel, a block multiplexer channel,
or an 1100 series compatible word channel.

A channel provides a standard interface for communicating with control units. A control unit provides
the logical capability necessary to adapt the standard form of control provided by the channel to the
characteristics of an input/output device. A control unit may be housed separately and connected
to ~one or many devices, or it may be physically and logically integrated with an input/output device.
Input/output devices provide external storage and a means of communications for a processing
system. Magnetic tape units, printers, storage devices such as disks and drums, consoles, and card
readers are examples of input/output devices.

Pri~ority among devices is established by the control units. Priority among control units is determined
by their physical connection to the channel. Each 1100/80 word channel has a maximum of four
parallel input/output interfaces, each with an assigned priority. (See Figure 6-2.) Each byte or block
multiplexer channel has one input/output interface, and many control ",nits are physically connected
to the interface, but only one control unit at a time is logically connected to the channel. (See Figure
6-2.) The channel polls the control units serially, and the highest priority control unit requiring service
logically connects to the channel. A byte multiplexer connects to a control unit for the length of time
to transfer one byte of data. A block multiplexer connects to a control unit for the length of time
to transfer a block of data. No other device can communicate over the interface during the time a
block is being transferred.

CONTROL

UNIT

A

CONTROL

UNIT

C

CONTROL

UNIT

E

CHANNEL

MODULE

BYTE OR BLOCK

MULTIPLEXER

CHANNEL

CONTROL

UNIT

B I I

CONTROL

UNIT

D

CONTROL

UNIT

CONTROL I L-£
UNIT

G CONTROL

UNIT

H

CHANNEL MODULE

1100/80

WORD CHANNEL

I CONTROL CONTROL t;ROL UNIT UNIT UNIT

A B C

Figure 6-2. Byte or Block Multiplexer Channel Compared to 1100/80 Word Channel

CONTROL

UNIT

D

i 3
i N

m

-"en
~."
Om n::D
:~
CIte
~l:
eI~ an
(I)::

~~
elm
CDO
CD en
:¥! o·
CD3
Ql-
3
3
CD
~

:::D
CD cr
~

CD
::J
n
CD

c
~
~

~

i .mf ..

UPDATE LEVEL
6-5

PAGE
8492 ~ SPERRY UNIVAC 1100/80 Systems
UP-NUMBER Processor and Storage Programmer Reference _ , __ --=-----=--__ ---L-.-----L---

6.:2.2. Subchannels

A .;;ubchannel is defined as a set of control words that manages input/output operations. Each set
of control words contains a data address, a data count, the mode of the subchannel, the storage
address of the next control word, and special flags. Subchannels may be either shared or nonshared.
A subchannel is referred to as shared if two or more devices use the same subchannel for input/output
operations. On a shared subchannel only one device at a time can transfer data. A subchannel is
referred to as nonshared if it is associated and can be used only with a single input/output device.
On a 1100/80 word channel, lSI subchannels are shared and ESI subchannels are nonshared.

An IOU channel has the capability of maintaining eight resident subchannels. The basic word channel
provides that all eight (four in word channel) resident subchannels are shared. In word channel
modules with the subchannel expansion feature (F 1654-00) and option 0 (C 1655-00), there are four
resident shared subchannels, four resident nonshared subchannels, and 124 nonresident nonshared
subchannels. With the subchannel expansion feature and option 1 (C 165501), there are eight
resident nonshared subchannels and 120 nonresident nonshared subchannels. Nonresident,
nonshared subchannels are kept in main storage. With the subchannel expansion feature and option
1, the eight .!11ost recently active nonshared subchannels are held in the channel. The remaining 120
subchannels are held in main storage. If the channel receives a request for a nonshared subchannel
that is not resident in the channel, the least recently used resident nonshared subchannel is
determined and then moved into main storage. The requested nonshared subchannel is then moved
from main storage to the channel, and the request is handled. With the subchannel expansion feature
and option 0, each channel has four shared subchannels and 128 nonshared subchannels. The four
most recently active nonshared subchannels are kept resident in the channel, and the remaining 124
nOllshared subchannels are held in main storage.

6.:·" CONTROL OF INPUT/OUTPUT DEVICES

Th.~ processor controls liD operations by means of eight liD instructions: Sense Release (SRL), Start
1/0 Fast Release (SIOF), Test liD (TID), Test Subchannel (TSC), Halt Device (HDV), Halt Channel (HCH),
Load Channel Hegister (LCR), and Load Table Control Words (L TCW). The instruction Load Channel
Register addresses either the control module or a channel. The instructions Halt Channel and Load
Table Control Words address only a channel; they do not address an liD device. All other instructions
address a channel and subchannel. On a byte or block multiplexer channel, the Sense Release, Test
liD, and Halt Device instructions may also address the device.

6.3. 1. Input/Output Device Addressing

An liD device and its associated channel module and control module are designated by a 13 bit liD
address. The liD address has an 8 bit device address in bits 00-07, a channel address in bits 08-11,
and an IOU number in bit 12. Because the maximum configuration allows for only eight channel
modules, bit 11 of the channel address is ignored and bits 08-10 are used to select a channel module.
Of the 8 bit device address, bit 07 specifies whether the selected subchannel is shared or nonshared.
Device addresses with bit 7 equal to zero specify nonshared subchannels and device addresses with
bit 7 equal to one specify shared subchannels. Each nonshared subchannel, regardless of channel
type, is identified by a unique device address allowing a maximum of 128 nonshared subchannels
per channel. Dna word nonshared subchannel bit 06 of the device address specifies the ESI
intEtrface. If bit 06 equals zero, ESI interface 0 is selected and if bit 6 equals one, ESI interface 1
is selected.

For shared subchannels on a byte or block multiplexer channel, bits 04-06 of the device address
select one of eight shared subchannels and its associated control unit. Bits 00-03 select one of a
maximum of 16 devices. This allows a maximum of eight shared sllbchannels and 128 devices per
byte or block multiplexer channel. There is a maximum of four shared subchannels and four

8492
UP-HUMBER

SPERRY UNIVAC 1100/80 SYJteml
Processor and Storage Programmer Reference UPDATE lEVEL

6-6
PAGE

associated lSI interfaces on a word channel. Bits 05-06 of the device address select the subchannel
and the lSI interface. Bit04 must be zero and bits 00-03 are ignored. On word channels, the device
address selects only a subchannel and an interface. The device is selected by an external function
word.

Each channel can accommodate a different number of devices depending upon the type of channel
(byte or block multiplexer or 1100 Series) and the option selected (all shared, subchannel expansion
feature - option 0, or subchannel expansion feature - option 1) (See Table 6-1). Except for the rules
described, the assignment of channel and device addresses is arbitrary.

6.3.2. States of the Input/Output System

The result of an I/O instruction is determined by the collective state of the channel, subchannel, and
device selected by the 1/0 address. Depending on the type of channel and the I/O instruction being
executed, different combinations of the states of the channel, subchannel, and device will be
interrogated to determine the response to an 1/0 instruction. When the response to an I/O instruction
is determined by the state of the channel, the subchannel and device are not interrogated. If the
response to an 1/0 instruction is determined by the state of the subchannel, the device is not
interrogated. On a word channel the device is never interrogated to determine an 1/0 instruction
response.

The channel, subchannel, and device can each be in one of four states. (See Table 6-2.) There are
13 composite states that cover all the conditions detected by an 1/0 instruction. In the following
paragraphs each composite st9te is identified by three letters. The first letter identifies the state of
the channel, the second letter identifies the state of the subchannel, and the third letter identifies the
state of the device. The three letters indicate the state of the channel, subchannel, and device
selected by the 1/0 address of thb I/O instruction. There are two exceptions:

1. For the L TCW instruction, the second letter indicates the state of the status table subchannel.

2. For the LCR instruction, the second letter indicates whether the channel has the feature installed
to handle the LCR instruction.

r.bI. 6- t. /hwc. Addreuing

Word Channel (1100 Series)
Device Byte Multiplexer Block Multiplexer Eight Shared Subchannel Subchannel
Addresses Channel Eight Channel 128 Subchannels Expansion Expansion
(Hexadecimal) Shared Nonshared Feature Option 0 Feature Option 1

Subchannels Subchannels
00-3F,6 Not used Nonshared Not Used Nonshared ESI Nonshared ESI

Interface A* I nterface A *
40-7F,6 Not Used Nonshared Not Used Nonshared ESI Nonshared ESI

Interface B* Interface B*
80-8F,6 Shared 0** Not Used Shared 0 lSI Not Used Not Used

Interface A
90-9F,6 Shared 1 Not Used Not Used Not Used Not Used
AO-AF,6 Shared 2 Not Used Shared 2 lSI Not Used Not Used

Interface B
BO-BF,6 Shared 3 Not Used Not Used Not Used Not Used
CO-CF'6 Shared 4 Not Used Shared 4 lSI Shared 4 lSI Not Used

Interface C Interface C
DO-DF16 Shared 5 Not Used Not Used Not Used Not Used
EO-EF,6 Shared 6 Not Used Shared 6 lSI Shared 6 lSI Not Used

Interface 0 Interface 0
FO-FF16 Shared 7 Not Used Not Used Not Used Not Used
Number of 8 Shared o Shares 4 Shared 2 Shared o Shared
Subchannels o Nonshared 128 Nonshared o Nonshared 128 Nonshared 128 Nonshared

* ESI Interface A has 64 device addresses 00-3F, and ESI Channel B has 64 device addresses 40-7F.

** This number designates which of the eight channel hardware registers are associated with which device addresses. For
nonshared subchannels, option 0 uses hardware registers 0, 1, 2, and 3, and option 1 uses hardware registers 0, 1, 2, 3,
4,5,6 and 7.

i s

~
"'1:1 en
a~ n:g
:~
·e
~z
I»~ an
CI)~
88
~'" I»e. co
CD en n
c3 ;-
3
3
CD

"" ::D
CD
i'
~

CD
~
n
CD

c

~
§
r-

i
I"'~
I ~
I

8492
UP-NUMBER

Channel

Available

Interrupt Pending

Working

Not Operational

Subchannel

Available

Interrupt Pending

Working

Not Operational

Device

Available

Interrupt Pending

Working

Not Operational

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPDATE LEVEL

6-8
PAGE

Table 6-2. Channel, Subchannel, and Device States

Abbreviation

A

w

N

Abbreviation

A

W

N

Abbreviation

A

w

N

Definition

Ready to accept a non penetrating or
penetrating instruction.

Not defined.

Operating in burst mode (block multiplexer
channel only), and can accept and execute
only penetrating instructions.

Not installed or offline.

Definition

Ready to accept new command.

Holding status.

Busy executing previous command.

Not installed.

Definition

Ready to accept new command.

Holding status.

Busy executing previous command.

Not installed or not operational.

The symbol X in place of a letter indicates that the state of the corresponding component is not
significant for the execution of an instruction. Unless specifically noted, the composite state applies
to any type of channel.

Channel Available (AXX): (Byte and block multiplexer channels only.) The channel is available.
The states of the subchannel and device are not significant. This condition is detected only by
a Halt Channel (HCH) instruction.

Subchannel Available (AAX): The addressed channel and subchannel are operational, not busy
executing a previous command, and not holding status. Tha state of the device is not significant.
On a word channel a device is ~ interrogated to determine the response to an I/O instruction.

8492
U U ... Eft UPDATE LEVEL ~ SPERRY UNIVAC 1100/80 S~.m.

Processor and Storage Programmer Reference
,--~------!.-~-

Device Available (AAA): (Byte and block multiplexer channels only) The addressed channel,
subchannel, and device are operational, not busy executing a previous command, and not
holding status.

Interrupt Pending in Device (AAI) or Device Working (AAW): (Byte and block multiplexer
channels only) The addressed channel and subchannel are available. The addressed control
unit or I/O device is executing a previously initiated operation or is holding status. The following
situations are possible:

1. The control unit is executing an operation on the addressed device or on another device
associated with the same control unit.

2. The device or control unit is executing an operation on another channel or subchannel.

3. The device or control unit is holding status for the addressed device or another device
associated with the same control unit.

Device Not Operational (AAN): (Byte and block multiplexer channels only) The addressed
channel and subchannel are available. The addressed I/O device is not operational. This occurs
when the control unit for the addressed device is not installed or not on line.

Interrupt Pending in Subchannel (AIX): The addressed channel is available. The addressed
subchannel is holding status from either a previously initiated operation or the present
instruction attempting to be initiated. The subchannel is ready to store its status in a channel
status word (CSW). The status can be for the addressed device or another device on the
subchannel. The state of the addressed device is not significant unless a Test I/O instruction
is issued to a byte or block multiplexer channel, and the addressed subchannel is holding status
for the addressed device. In this case a Test I/O command is issued by the channel, and the
channel status word always contains device status.

Subchannel Working (AWX): The addressed channel is available. The addressed subchannel
is busy executing a previously executed operation. The state of the device is not significant.

~annel Not Operational (ANX): The addressed channel is available. The addressed
subchannel is not operational. This occurs when the channel is not equipped to handle that
subchannel because of the particular type of channel and features selected.

Interrupt Pending in Channel (IXX): This condition is never detected because channel status is
reported by an independent interrupt mechanism. Channel status is not detectable or retrievable
by way of I/O instruction. (See Machine Check interrupts.)

Channel Working (WXX): (Block multiplexer channel only) The addressed channel is operating
in burst mode (transferring a block of data). The states of the subchannel and device are not
significant. The TIO, TSC, and LCR instructions do not penetrate a channel in a working state
and are not executed. A Halt Device (HDV) instruction penetrates a working channel only if the
channel is working with the addressed device. The HCH instruction always penetrates a working
channel and halts the device that has control of the channel interface at the time that the HCH
instruction is received. The Start I/O Fast Release (SIOF) instruction always penetrates a working
channel. The response to the SIOF instruction is determined by the state of the subchannel.

Channel Not Operational (NXX): An addressed channel is not operational when it is not installed
in the system or is not on line. The states of the addressed subchannel and device are not
significant.

Hardware Fault (XXX): If the IOU detects a hardware fault before the channel is selected, the
instruction is terminated and a machine check interrupt is generated. The state of the I/O system
is insignificant.

8492
UP-NUM8ER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPDATE LEVEL

6-10
PAGE

Software Fault (XXX): (Byte and Block multiplexer channel only) If an SRL instruction is issued
to a block multiplexer channel that had not previously presented unit check device status, the
instruction is not executed regardless of the state of the I/O system.

6.3.3. Condition Codes

The result of an I/O instruction is reported by a two bit condition code. The condition code is stored
by the processor in bits 34-35 of the Xa register at the time the execution of the instruction is
completed. The condition code is determined by the composite state of the I/O system selected by
the I/O instruction. Tables 6-3, 6-4, and 6-5 show the relationship between the condition code for
each instruction and the composite state of the I/O system. Special conditions affecting the condition
code are also indicated.

6.3.4. Instruction Format and Channel Address Word

AU I/O instructions have an f = 758. The j value specifies the particular I/O instruction to be initiated:

j = 008 = Sense Release

j = 018 = Start I/O Fast Release

j = 028 = Test I/O

j = 038 = Test Subchannel

j = 048 = Halt Device

j = 058 = Halt Channel

j = 108 = Load Channel Register

j = 118 = Load Table Control Words

(SRL)

(SIOF)

(TID)

(TSC)

(HDV)

(HCH)

(LCR)

(LTCW)

8492
UI4tUMBER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference

Table 6-3. I/O System Composite StBte vs Condition Codes

Composite Condition Byte Mux Channel Block Mux Channel
State Code

AAA* 0, 1 HDV, TIO HDV, SRL, TIO, SRL
AAI 1 HDV, TIO HDV, TIO

AAW 1 HDV, TIO HDV, TIO
AAN 3 HDV, TIO HDV, TIO
AAX 0,0,1 LCR, L TCW, TSC LCR, TSC, SIOF

AIX 1, 2 (a) HDV, L TCW, SIOF, HDV, SIOF, TIO, TSC
TIO, TSC

AWX 0, 1,2 HDV, L TCW, HDV, HDV, HDV, SIOF, TIO,
SIOF, TIO, TSC TSC

ANX 3 HDV, LCR, L TCW, DHV, LCR, SIOF, TIO,
SIOF, TIO, TSC TSC

AXX 0 HCH HCH
IXX - (2) (2)

WXX 0, 2 (3) HCH, HCV, TIO, TSC,
LCR

WAX 0 (3) SIOF
WIX 1,2 (3) SIOF, SIOF, HEV, TIO,

TSC
WWX 0, 2 (3) HDV, HDV, SIOF, TIO,

TSC
WNX 3 (3) HDV, LCR, SIOF, TIO,

TSC
NXX 3 HCH, HDV, LCR, HCH, HDV, LCR,

L TCW, SIOF, TIO, TSC LTCW, SIOF, TIO, TSC

XXX 2, 3 HCH, HDV, LCR, HCH, HDV, LCR,
L TCW, SRL, SIOF, TIO, L TCW, SRL, SIOF, TIO,

TSC,SRL TSC,SRL

A = Available I = Interrupt Pending W = Working

x = Any of the above states

UPDATE LEVEL
6-11

PAGE

Word Channel

.-
(1)
(1)
(1)
(1)

HDV, LCR, LTCW,
TIO, TSC, SIOF

HDV, LTCW, SIOF,
TIO, TSC

HDV, L TCW, SIOF,
TIO, TSC

HDV, LCR, L TCW,
SIOF, TIO, TSC

(2)
(2)
(4)

(3)
(3)

(3)

(3)

HCH, HDV, LCR,
L TCW, SRL, SIOF,

TIO, TSC
HCH, HDV, LCR,

L TCW, SRL, SIOF,
TIO, TSC .--

N = Not Available

* The three letters, from left to right, indicate the state of the channel, subchannel, and device
se~ected by the I/O address with two exceptions: a) For the LCR instruction, the second letter indicates
whether the channel has the feature installed to handle the LCR instruction, b) For the L TCW
instruction, the second letter indicates the state of the status table subchannel.

a. Special conditions in the channel determine whether a condition code of 1 or 2 will be
presented. These special conditions are covered in Table 6-4.

1. A word channel!!§YI! interrogates a device to determine a response to an I/O instruction.

2. This condition is not detectable by any I/O instruction.

3. Byte channels and word channels do not transfer blocks of data, only bytes or words, and
thus can never be in the working state.

4. The word channel is never in the working state.

r.ble 6-4. I/O Instruction Condition Codes for Byte or Block Ch.nne'

State* Channel Conditions SRL (a) SIOF (b) TIO TSC HDV HCH
AAA Block - 0/1 (c) - 0 - 0 -
AAI Byte, Block - - - 1 - 1 -
AAW Byte, Block - - - 1 - 1 -
AAN Byte, Block - - - 3 - 3 -
AAX Byte, Block - - O/l(e) - 0 0 -
AIX Byte, Block (1) and (3) - 1 1 1 1 -
AIX Byte, Block (1) and (4) - 2 2 2 2 -
AIX Byte, Block (2) - 2 2 1 2 -
AWX Byte, Block - - 2 2 2 1 -
ANX Byte, Block - - 3 3 3 3 -
AXX Byte, Block - - - - - - 0
IXX Byte, Block - - - - - - -
WXX Block - - - 2 2 - 0
WAX Block - - 0/1 (e) - - 2 -
WIX Block (1) and (3) - 1 - - 2 -
WIX Block (2) or (4) - 2 - - 2 -
WWX Block - - 2 - - 1/2 (d) -
WNX Block - - 3 3 3 3 -
NXX Byte, Block - - 3 3 3 3 3
XXX Byte, Block (5) 2 2 2 2 2 2

I XXX Block (6) 3 - - - - -
I Byte, Block (7) - 2 - - - -

- - _L-- -

States: A = Available I = Interrupt Pending W = Working N = Not Available X = Any of above states

Footnotes for table are as follows:

LCR LTCW
- -
- -
- -
- -
0 0
- 1
0 2
- -
- 0
3 3
- -

10 - -
- -
2 -
- -
- -
- -
3 -
3 3
2 2
- -
- - --

i s

"'0 en
a;R
n::D
CD::D
cn<
CIte
~i!
CD~ an
(I)::
~@
CD CD
CDO
CD en n
CD3
~.

3
3
CD ...
::D
CD
i'
;
:::s
n
CD

c: * The three letters, from left to right, indicate the state of the channel, subchannel, and device selected by the I/O address with two ~
exceptions: a) for the LCR instruction, the second letter indicates whether the channel has the feature installed to handle the LCR ;;t
instruction, b) for the L TCW instruction, the second letter indicates the state of the status table subchannel. §

. r

~
m~

I
~

J\.)

UPDATE LEVEL
6-13

PAGE
8492 ~ SPERRY UNIVAC 1100/80 S~.m.
UP-MIMBER Processor and Storage Programmer Reference - ,----=------=---~--'---

Footnotes for Table 6-4.

a. The Sense Release instruction will respond with a condition code of 0 or 1 only if Unit Check
device status has been presented via interrupt or previous instruction. Only one Sense Release
instruction per Unit Check device status byte will be accepted. In all other cases a condition
code of 3 will be returned.

b. If the SIOF queue is full, or the channel is in contingent connection mode, the SIOF instruction
will unconditionally receive a condition code of 2.

c. For an immediate command, the condition code may equal 1. For any other command, the
condition code equals O.

d. If the channel is working (operating in burst mode) with the addressed device, the operation is
terminated and the condition code equals 1. If the channel is working, but not with the
addressed device, the condition code equals 2.

e. If a hardware or software error is detected when retrieving the second word of the CAW, a CSW
is stored and the instruction receives a condition code of 1. If no hardware or software error
is detected, the instruction receives a condition code of O.

(1) Subchannel is holding status for addressed device.

(2) Subchannel is holding status for a device other than the addressed device.

(3) Interrupt cancellation was not attempted or was attempted and completed successfully.

(4) Interrupt car.cellation was attempted and was unsuccessful.

(5) Hardware fault was detected when reading first word of the CAW and Machine Check
interrupt was generated.

(6) Unit Check status had not been presented via interrupt or instruction.

(7) The channel is in contingent connection mode.

r.bI. 6-6. I/O Instruction Condition Cod.s for Word Ch.nn./s

State* Channel Conditions SRL SIOF TIO TSC HDV HCH
AAX Word - - 0 0 0 0 -
AIX Word (1) - 1 1 1 1 -
AIX Word (2) - 2 2 2 2 -
AWX Word - - 2 2 2 0 -
ANX Word - - 3 3 3 3 -
AXX Word - - - - - - -
IXX Word - - - - - - -
WXX Word - - - - - - -
NXX Word - - 3 3 3 3 -
XXX Word (3) 2 2 2 2 2 2
XXX Word (4) 3 - - - - 3

States

A = Available

I = Interrupt Pending

W = Working

N = Not Available

X = Any of the above statements

* The three letters, from left to right, indicate the state of the channel, subchannel, and device respectively.

(1) Interrupt cancellation was not attempted or was attempted and completed successfully.

(2) Interrupt cancellation was attempted unsuccessfully.

(3) Hardware fault was detected when reading first word of the CAW and Machine Check interrupt was generated.

(4) The Sense Release and Halt Channel instructions are not accepted on a word channel.

LCR LTCW
0 0
- 1
- 2
9 0
3 3
- -
- -
- -
3 3
2 2 i

- ~

i s

"Utn
a;R
n:ll
:~
Be ... z
.~ in
(I)::
@~ co
eD tn n
c3
a;-
3
3
CD ...
:u
~
~
~ n
CD

c
i:1
~

i

~
C) mf -.110

8492 I SPERRY UNIVAC 1100/80 S~.m. I I e 15
__ Ul4tUMBER _____ ~, ___ P_ro_c_e_s_s_o_r_a_n_d_S_to_r_a,_g_e __ prr0_g_r_8_m_m_e_r _R __ e_fe_r_e_n_c_e _____ .a...u_PO_A_TE_LEVE_L __ .&..._,A_G_E -__ _

Bits 00-12 of u + Xm specify the 1/0 address (the IOU, channel, and device numbers). Bits 00-23
of Xa consist of either the starting address of the CCW or STCW list or the register input data for
the LCR instruction. Upon detection of an 1/0 instruction, the processor builds a channel address word
(CA.W) in a fixed location of low-order storage. The CAW is for hardware use only and consists of
two 36-bit words, CAW 0 and CAW 1. The j-value is stored in CAW 0 bits 26-29. Bits 00-12 of
u Xm (the I/O address) are stored in CAW 0 bits 00-12. Bits 00-23 of Xa (the first CCW or STCW
addlress or register input data) are stored in CAW 1 bits 00-23. The IOU refers to the CAW only during
the execution of an I/O instruction. The pertinent information thereafter is stored in the channel.

lLQ Instruction Format

[f = 75 a x 1+1 u

35 3029 2825 2221 18 17 18 15 o

Specifies 1/0 instruction

a Address of register holding first CCW address

x u + Xm bits 0-12 equal 1/0 address

8492
Uf4tUM8ER

35

71

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPDATE LEVEL

CAW

Not III Used Not Used CA DA

3029 2825 13 12 11 87

1/0 instruction

IOU number

CA Channel Address

DA Device Address

CAW 1

Not Used Address of first CCW or STCW

8059

6-16
PAGE

0

38

UPDATE LEVEL
8-17

PAGE
8492 ~ SPERRY UNIVAC 1100/80 S~.m.
I.II'-NUMaER Processor and Storage Programmer Reference - ,----=------~---'---

6.:~.5. Instruction Operation

Upon detection of an I/O instruction, the processor builds the CAW and then initiates the IOU via
the processor/IOU interface. The IOU establishes instruction priority between the two processors
(Processor 0 has priority over Processor 1) and reads CAW O. If the IOU detects a hardware fault
in reading CAW 0, the instruction is immediately terminated, a Machine Check interrupt is generated,
and a condition code of 2 is presented to the processor.

If InO hardware fault is detected, the IOU then executes the instruction. Depending on the I/O
instruction, the IOU uses the state of the channel, the states of the channel and subchannel, or the
states of the channel, subchannel, and device to determine the condition code. When the IOU has
completed the I/O instruction, the processor clears bits 30-33 of Xa and stores the condition code
in bits 34-35 of Xa. Bits 00-29 of Xa are left unchanged. If the condition code equals 0, the
processor skips the next instruction in the program. If the condition code equals 1, 2, or 3, the
processor executes the next instruction.

6.4. I/O INSTRUCTIONS

Programming Note: An I/O instruction may cause a Channel Status Word (CSW) to be stored. To
prevent the contents of the CSW stored by the instruction from being destroyed by an immediately
following I/O interrupt, interrupts must be locked out before issuing the I/O instruction and must
renllain locked out until the information in the CSW provided by the instruction has been acted upon
or stored elsewhere for later use.

Use Tables 6-4 and 6-5 to determine what the condition code response to an I/O instruction means.
The I/O instructions can be classified as penetrating or nonpenetrating. A penetrating I/O instruction
is always ex,ecuted even if the channel is in a working state. (Note that only a block multiplexer
chctnnAI can be in a working state.) A nonpenetrating I/O instruction always receives a busy response
(condition code = 2) when attempted on a channel in a working state. The Start I/O Fast Release
and Halt Channel instructions are penetrating instructions and are always executed even on working
chctnnels. A Halt Device instruction is executed only if: a) the channel is working with the addressed
de\fice, or b) the channel is in the available state.

For any I/O instruction a condition code of zero indicates that the instruction was completed
suc:cessfully.. A condition code of one always indicates that a valid CSW has been written into
low-order storage. A subchannel is always returned to the available state after being relieved of
status by an instruction or an' interrupt. A condition code of two indicates that the I/O instruction
was not executed. A condition code of 3 indicates that the instruction was not executed because
either the channel, subchannel, or device was not operational.

After each instruction, the condition codes and the conditions causing each condition code are listed.

6.4. 1. Sense Release - SRL 76,00

A Sense Release instruction initiates the execotion of a CCW list on the IOU, channel, subchannel,
and device specified by the I/O address. A Sense Release instruction is accepted only on a block
or byte multiplexer channel and only if the addressed channel has previously presented Unit Check
device status via interrupt or previous instruction. In all other cases the instruction is not accepted
and a condition code of 3 is returned.

When the block multiplexer channel receives Unit Check status from a device, all further channel
operations are temporarily halted. The handling of any further device requests and the execution of
queued SIOFs are halted by the block multiplexer channel until an SRL instruction is received.
However, alii I/O instructions are still executed.

8492
\JI4tUIII8ER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPDATE LEVEL

6-18
PAGE

When the byte multiplexer channel receives Unit Check device status, the execution of queued SIOFs
is halted by the channel until an SRL instruction is executed by the channel. The byte multiplexer
channel continues to handle all device requests for data transfers and status transfers except for
another Unit Check device status indication. Device status containing Unit Check status is stacked
in the control unit until an SRL instruction that relieves the first Unit Check status indication is
executed by the channel.

The channel is halted when Unit Check device status is received to eliminate the possibility of
destruction of sense data in the control units that save sense data per control unit rather than per
device. The execution of an SRL instruction unconditionally unlocks the interface and the SIOF stack.

6.4. 1. 1. Byte or Block Multiplexer Channel Operation

Condition Code = 0

1. The channel had previously presented Unit Check status via interrupt or previous instruction.
The first CCW address and first CCW were read, and the operation specified by the CCW was
initiated successfully. The subchannel and device are now in a working state, and channel
operations are no longer halted. Device requests are being handled, and queued SIOFs are being
executed.

Condition Code = 1

1. The channel had previously presented Unit Check status via interrupt or previous instruction.
The first CCW address and first CCW were read, and the operation specified by the CCW was
initiated successfully. An immediate command was specified in the first CCW with either no
command chaining specified or chaining suppressed because of unusual conditions detected
during the operation (check the device and subchannel status fields of the CSW).

2. The channel had previously presented Unit Check status via interrupt or previous instruction.
A software or hardware error was detected when attempting to execute the instruction (check
the device and subchannel status fields of the CSW).

Condition Code - 2

1. A hardware fault was detected when fetching the first word of the CAW.

2. The channel or subchannel was busy.

Condition Code - 3

1. The channel, subchannel, or device was not operational.

2. Unit Check device status had not been presented via interrupt or previous instruction. The
instruction was rejected and not executed.

6.4. 1.2. Word Channel Operation

Condition Code - 0

Impossible

8492 ~ SPERRY UNIVAC 1100/80 System. I I 6 19
Uf4UIBER Processor and Storage Programmer Reference Uf'DATE LEVEL 'AGE -_ , __ ----=---------L..----4--

Condition Code =

Impossible

Condition Code = 2

1. A hardware fault was detected when reading the first word of the CAW.

C()ndition Code = 3

1. A Sense Release instruction was issued to a word channel.

6.4.2. Start I/O Fast Release - SIOF 75,01

If the addressed subchannel of an SIOF instruction is available, the second word of the CAW that
contains the address of the first CCW is retrieved and stored in the subchannel. If the channel is
nCJlt in contingent connection mode and no hardware or software errors are detected, the device
address is placed in an SIOF queue, and a condition code of zero is presented to the processor. If
a software or hardware error is detected during retrieval of the address of the first CCW, subchannel
status is generated, a CSW is stored, and a condition code of 1 is presented to the processor.

Whenever the channel becomes available, the device addresses of successfully executed SIOFs
(c()ndition code of zaro) are fetched from the queue on a first inlfirst out basis. When a device address
is fetched from the queue, the first CCW specified for that device address is retrieved from storage
and the operation specified by that CCW is initiated at the device if the device is available. If the
device is not available, the operation is not initiated, and the software is notified via interrupt.

The subchannel is set to an active state at the time that the device address associated with that
subchannel is placed in the SIOF queue. The subchannel remains in an active state until either
termination status is detected or the operation is terminated by an 1/0 instruction. Only one SIOF
instruction per subchannel and 64 SIOF instructions per channel can be held in the queue at one
time.

6.4.2. 1. Byte or Block Multiplexer Channel Operation

~ndition Code - 0

1. The channel was operational and the subchannel was available. The first CCW address was read
from the CAW and stored in the subchannel successfully, and the device address was loaded
in the SIOF queue.

~ndition Code - 1

1. The subchannel was holding status from a previous operation on the addressed device (check
the device and subchannel status fields of the CSW).

2. A software or hardware error was detected when attempting to fetch the address of the first
CCW from the CAW (check the subchannel status field of the CSW).

Ccmdition Code = 2

8492
UP-ftUMBER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPDATE LEVEL

6-20
PAGE

1. The subchannel was holding status for the addressed device, but was busy presenting the status
by way of interrupt.

2. The subchannel was busy holding status for or executing a previously initiated operation on a
device other than the addressed device.

3. The subchannel was busy executing a previously initiated operation with the addressed device.

4. The SIOF queue was full. The channel had 64 pending SIOFs to be initiated at the device level.

5. A hardware fault was detected when fetching the first word of the CAW.

Condition Code = 3

1. The addressed channel or subchannel was not operational.

6.4.2.2. Word Channel Operation

Condition Code = 0

1. The channel was operational, and the subchannel was available. The first CCW address was
read from the CAW and stored in the subchannel successfully, and the subchannel address was
loaded in the SIOF queue.

Condition Code = 1

1. The subchannel was holding status from a previous operation (check the device and subchannel
status fields of the CSW).

2. A software or hardware error was detected when attempting to fetch the address of the first
CCW from the CAW (check the subchannel status field of the CSW).

Condition Code = 2

1. The subchannel was holding status, but was busy presenting the status by way of interrupt.

2. The subchannel was busy executing a previously initiated operation.

3. The SIOF queue was full. The channel had 64 pending SIOFs to be initiated at the device level.

4. A hardware fault was detected when fetching the first word of the CAW.

Condition Code - 3

1. The channel or subchannel was not operational.

6.4.3. Test I/O - TIO 76,02

The TIO instruction interrogates the channel, subchannel, and device specified by the 1/0 address
for status conditions. The subchannel and device are not interrogated if the channel is in the working
state. The device is not interrogated if the subchannel is in the working state. The TIO instruction
interrogates the device only on a byte or block multiplexer channel. On a word channel the TIO
instruction is performed as a Test Subchannel instruction.

UPDATE LEVEL
6-21

'AGE

8492 ~ SPERRY UNIVAC 1100/80 Systems
UP-NUMBER Processor and Storage Programmer Reference - ,--~----------~-,

6.4.3. 1. Byte or Block Multiplexer Channel Operation

Condition Code = 0

1" The channel, subchannel, and device are available.

Clondition Code = 1

1. The control unit was busy executing or holding status for a previously initiated operation on
either the addressed device or another device (check the device status field of the CSW).

2. The subchannel was holding status from a previous operation on the addressed device (check
the device and subchannel status fields of the CSW).

Condition Code = 2

1. The subchannel was holding status for the addressed device, but was busy presenting the status
by way of interrupt.

2. The subchannel was busy holding status for or executing a previously initiated operation on a
device other than the addressed device.

3. The subchannel was busy executing a previously initiated operation on the addressed device.

4. On a block multiplexer channel, the channel was busy operating in burst mode.

5. A hardware fault was detected when fetching the first word of the CAW.

Condition Code = 3

1. The channel, subchannel, or device was not operational.

6.4.3.2. Word Channel Operation

See the Test Subchannel instruction. On a word channel a Test I/O instruction is executed as a Test
SlJb~hannel instruction.

6.4.4. Test Subchannel - TSC 75,03

The Test Subchannel instruction interrogates the channel and subchannel specified by the I/O
address. The addressed device is not affected. The subchannel is not interrogated if the channel
is in a working state.

6.4.4. 1. Byte or Block Multiplexer Channel

Condition Code = 0

1. The channel and subchannel are available.

8492 SPERRY UNIVAC 1100/80 Swteml
UP-NUMHR Processor and Storage Programmer Reference

--~~~----~----------------------

Condition Code = 1

UPDATE LEVEL
6-22

PAGE

1. The subchannel was holding status from a previously initiated operation (Check the device and
subchannel status fields of the CSW).

Condition Code = 2

1. The subchannel was holding status, but was busy presenting the status by way of interrupt.

2. The subchannel was busy executing a previously initiated operation.

3. On a block multiplexer channel only, the channel was busy operating in burst mode.

4. A hardware fault was detected in fetching the first word of the CAW.

Condition Code = 3

1. The channel or subchannel was not operational.

6.4.4.2. Word Channel Operation

Condition Code = 0

1. The channel and subchannel are available.

Condition Code =1

1. The subchannel was holding status from a previously initiated operation (Check the device and
subchannel status fields of the CSW).

Condition Code = 2

1. The subchannel was holding status, but was busy presenting the status by way of interrupt.

2. The subchannel was busy executing a previously initiated operation.

3. On a block multiplexer channel only, the channel was busy operating in burst mode.

4. A hardware fault was detected in fetching the first word of the CAW.

Condition Code = 3

1. The channel or subchannel was not operational.

6.4.6. Halt Device - HDV 76,04

The Halt Device instruction terminates the current operation on the channel and subchannel specified
by the 1/0 address. The operation on the specified subchannel is terminated immediately and the
device is notified of the termination when the device references the channel.

Programming Note: The Halt Device instruction is intended for use only as a recovery mechanism
for software or hardware faults because the capability of an HDV instruction is limited for two reasons:

8492 ~I SPERRY UNIVAC 1100/80 S~m. 6-23
Processor and Storage Programmer Reference UPDATE LEVEL 'AGE ~~_ .. __ a___ _ __________________ ~ __ ~ ____________________ ~~ ________ ~ _______ __

1. A Halt Device instruction does not penetrate a working block multiplexer channel and is rejected
unless the channel is working with the addressed device.

2. The resultant state of the device on a byte or block multiplexer channel after receiving a Halt
Device instruction is unpredictable. The device mayor may not still be active and mayor may
not eventually present status via interrupt or instruction.

6.4.5. 1. Byte or Block Multiplexer Channel Operation

Condition Code = 0

1. The channel, subchannel, and device were in the available state.

2. The channel was available. The operation that was being executed by the subchannel with either
the addressed device or another device on that subchannel has been terminated. The device
has been signaled to terminate the operation. At a later time the device, after having completed
termination of the operation, ~ present status by way of interrupt or instruction. The
subchannel has been returned to the available state.

Condition Code = 1

1. The channel and subchannel were available. The control unit was busy executing a previously
initiated operation on either the addressed device or another device (check the device status
field of the CSW).

2. The subchannel was holding status from a previous operation on the addressed device (check
the device and subchannel status fields of the CSW).

3. The channel and subchannel were busy operating in burst mode with the addressed device. The
operation has been terminated and the device has been signaled to terminate the operation. At
a later time the device, after having completed termination of the operation, may present status
by way of interrupt or instruction. The subchannel has been returned to the available state.

Condition Code = 2

1. The subchannel was holding status for the addressed device, but was busy presenting the status
by way of interrupt.

2. The subchannel was holding status for a device other than the addressed device.

3. On a block multiplexer channel, the channel was operating in burst mode with a device other
than the addressed device.

4. A hardware fault was detected when fetching the first word of the CAW.

Condition Code = 3

1. The channel, subchannel, or device was not operational.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference

6.4.5.2. Word Channel Operation

Condition Code = 0

UPDATE LEVEL
6-24

PAGE

1. The addressed channel was operational and the addressed subchannel was in the available
state.

2. The addressed channel was operational. The operation that was being executed by the
addressed subchannel has been terminated. The subchannel has been returned to the available
state.

Condition Code =

1. The subchannel was holding status from a previously initiated operation (check the device and
subchannel status fields of the CSW).

Condition Code = 2

1. The subchannel was holding status, but was busy presenting the status by way of interrupt.

2. A hardware fault was detected when fetching the first word of the CAW.

Condition Code = 3

1. The channel or subchannel was not operational.

6.4.6. Halt Channel - HCH 75,05

The Halt Channel instruction terminates the current operation on the channel specified by the 1/0
address. The Halt Channel instruction is intended to be used to recover a byte or block multiplexer
channel that has become inoperative during peripheral interface sequencing because of a control unit
interface error. The Halt Channel instruction is not accepted on a word channel.

6.4.6. 1. Byte or Block Multiplexer Channel Operation

Condition Code = 0

1. The channel was available.

2. The channel was busy operating in burst mode or was in a hung condition because an interface
error has resulted in the suspension of normal sequencing. The operation on the subchannel
that had control of the channel interface has been terminated, and the device has been signaled
to terminate the operation. At a later time when the device has completed terminating the
operation, it ron present status by way of interrupt. The subchannel has been returned to the
available state.

Condition Code =

Impossible

8492 ~ SPERRY UNIVAC 1100/80 S~.m. 8-25
UP-HUMBER Processor and Storage Programmer Reference UII'OATE LEVEL 'AGE - ,--=-----=------'--~-

COlndition Code = 2

1. A hardware fault was detected when fetching the first word of the CAW.

Condition Code = 3

1. The channel was not operational.

6.4.6.2. Word Channel Operation

Condition Code = 0

Impossible

Condition Code =

Impossible

Condition Code = 2

1. A hardware fault was detected when fetching the first word of the CAW.

~ndition Code = 3

1. The channel was a word channel.

6.4.7. Load Channel Register - LCR 75,10

The Load Channel Register instruction is used to load the interrupt mask register in the IOU control
module or the channel base register in the channel specified by the 1/0 address. The operation to
be performed is specified by bit 00 of the 1/0 address field. If bit 00 of the CAW is a zero, the channel
base register of the addressed channel is loaded with the contents of bits 36 through 50 of the CAW.
If bit 00 of the CAW is a one, the interrupt mask register is loaded with the contents of bits 36-71
of the CAW. The use of the channel base register is described in 6.21 and the use of the interrupt
malsk register is described in 6.22.

6.4.7. 1. Byte and Block Multiplexer Channel

~ndition Code = 0

1. The interrupt mask register or channel base register was loaded successfully.

~ndition Code -

Impossible

~ndition Code = 2

1. A hardware fault was detected when fetching the first word of the CAW.

2. The channel was operating in burst mode (loading the channel base register on a block
multiplexer channel only).

8492
Uf"-MJMBER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference

Condition Code = 3

UPDATE LEVEL
6-26

PAGE

1. The channel was not operatio"nal or did not have the subchannel expansion feature installed
(loading the channel base register only).

6.4.7.2. Word Channel Operation

Condition Code = 0

1. The interrupt mask register or channel base register was loaded successfully.

Condition Code =

Impossible

Condition Code = 2

1. A hardware fault was detected when fetching the first word of the CAW.

2. The channel was operating in burst mode (loading the channel base register on a block
multiplexer channel only).

Condition Code = 3

1. The channel was not operational or did not have the subchannel expansion feature instailed
(loading the channel base register only).

6.4.8. Load Table Control Words - LTCW 75,11

The load Table Control Words instruction loads the status table subcharinel in the IOU and channel
specified by the 1/0 address. The status table subchannel controls the tabling of communication
interrupt status as described in Section 16. The L TCW instruction initiates the execution of a CCW
list by the status table subchannel on the IOU and channel selected by the 1/0 address. Bits 36-59
of the CAW contain the address of the first Status Table Control Word (STCW) of the STCW list. A
STCW contains the data count and the starting address for the status table. Even if the status table
subchannel is active (has a valid data count), a new L TCW instruction is accepted, a new STCW list
is initiated, and the status table subchannel is loaded with the first STCW of the new list.

6.4.8. 1. Byte and Block Multiplexer Channel

Condition Code = 0

1. The addressed channel was operational and the status table subchannel was available or active.
The first STCW has been fetched and the status table subchannel has been initiated
successfully.

Condition Code -

1. The status table subchannel was holding status because of a software or hardware error on a
previous operation (check the subchannel status field of the CSW).

2. A software or hardware error was detected when attempting to fetch either the address of the
first STCW from the CAW or the first STCW from storage (check the subchannel status field
of the CSW).

_
_ 8_4_92___ I ____ SPE_R_RY_U_N_IV_A_C_11_00_{8...:0=--S_~_m=_. ___________ __'_ _____ --,-_6. __ -2_7 __ . __ ._._uMBER ~_ Processor and Storage Programmer Reference UPDATE LEVEL PAGE

Condition Code = 2

1. The status table subchannel was holding status from a previous operation, but was busy
presenting the status by way of interrupt.

2. A hardware fault was detected when fetching the first word of the CAW.

C()ndition Code = 3

1. The channel was not operational or did not have the feature installed allowing it to handle
communication interrupt status or was a block multiplexer channel.

6.4.8.2. Word Channel Operation

Condition Code = 0

1. The addressed channel was operational and the status table subchannel was available or active.
The first STCW has been fetched and the status table subchannel has been initiated
successfully.

Condition Code = 1

1. The status table subchannel was holding status because of a software or hardware error on a
previous operation (check the subchannel status field of the CSW).

2. A software or hardware error was detected when attempting to fetch either the address of the
first STCW from the CAW or the first STCW from storage (check the subchannel status field
of the CSW).

Condition Code - 2

1. The status table subchannel was holding status from a previous operation, but was busy
presenting the status by way of interrupt.

2. A hardware fault was detected when fetching the first word of the CAW.

~ndition Code = 3

1. The channel was not operational or did not have the feature installed allowing it to handle
communication interrupt status or was a block multiplexer channel.

6.15. EXECUTION OF I/O OPERATIONS

A channel can execute seven commands: write, read, read backward (only on a byte or block
multiplexer channel), sense (only on a byte or block multiplexer channel), control, transfer in channel
(TIC), and store subchannel status. Each command except transfer in channel and store subchannel
status initiates a corresponding 1/0 operation. The initiation and execution of a command issued to
a 8ubchannel and device is termed an "1/0 operation".

A series of I/O operations on the same device (byte or block multiplexer channels) or on the same
su\t)channel (word channel) is executed under control of a set of channel command words (CCW·s).
The execution of a set of channel command words (CCW list) is initiated by a Start 1/0 Fast Release
instruction. For a Start 1/0 Fast Release instruction, the address of the first CCW is stored in the
channel, and a condition code is presented to the processor. At an idle time in the channel

8492
UP-NUM8ER

SPERRY UNIVAC 1100/80 System.
Processor and Storage Programmer Reference UPDATE LEVEL

6-28
PAGE

sequencing, the first CCW is fetched and the specified 1/0 operation is initiated. The CCWs can be
located anywhere in main storage. Fetching of a CCW by the channel does not affect the contents
of the location in main storage. Each additional CCW in the CCW list is obtained when the operation
has progressed to the point where the additional CCW is needed.

6.5. 1. Channel Command Word

A channel command word specifies the command to be executed, and for commands initiating 1/0
operations it designates the storage area associated with the operation, the amount of data to be
transferred, the formatting of data that is to be done, and the action to be taken when the operation
is completed.

The CCW has the following format:

Byte or Block Multiplexer Channel CCW

35

71

Not
Used

Not
Used

Command C'ode

3231 2423

CCW Flags Format
Flags

CCSSPTDD
DClKCSAA E ABC

I I o l

88 87 88 85 84 83 82 81 80 59 58 57 58 55

Data Address

o

Not Data Count
Used

5251 38

8492 ~ SPERRY UNIVAC 1100/80 S~.m. I I 6-29
UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE _ ,_~~ __ -----L.-----J--__

""ord Channel CCW

Not Command Code Data Address 1
Used
L-----L-_~ __ _

35 3231 2423 o

Not CCW Flags Not Used Data Count
Used

CCESPMDD
DCIKCOAA

C I N 0 L

71 68 87 88 85 84 83 82 81 80 69 6261 38

The fields in the CCW are allocated for the following purposes:

Data Address: Bits 00-23 contain the storage address of the first data word to be transferred
unless the command code is Transfer in Channel or Store Subchannel Status. For the Transfer in
Channel command, the field contains the new CCW address, and for the Store Subchannel Status
command the field contains the address where status is to be stored.

Command Code: Bits 24-31 specify the operation to be performed by the subchannel and device.

Data Count: Bits 36-51 specify the number of bytes to be transferred on a byte or block multiplexer
channel, or the number of 30- or 36-bit words transferred on a word channel lSI interface, or the
number of quarter words or half words transferred on a word channel ESI interface.

Special FlAJD: Bits 52-67 contain flags that specify data formats, special handling of an operation
by the channel, and the action to be taken once the present operation is completed.

Chain Data (CD): Bit 67 specifies that upon completion of the portion of a data transfer operation
being controlled by the current CCW, a new CCW is to be read from storage and the operation is
to be continued under control of the new CCW.

Chain Command (CC): Bit 66 specifies that upon completion of the operation, a new CCW is to
be read from storage and the operation specified by the new command code is to be initiated. If
th., chain data flag is set, the Chain Command flag is ignored.

Suppress Length Indication (SLl): (Byte and block multiplexer channels only. Bit 65) - Specifies
that if command chaining conditions are fJresent, a command chain operation be initiated regardless
of the residual byte count. The absence of the Suppress Length Indication bit specifies that if
command chaining conditions are present, a command chain operation be initiated only if the residual
byte count equals zero. If the command chaining conditions are present, and the Suppress Length
Indication bit is not set, and the residual byte count does not equal zero, the execution of the CCW
list is terminated, subchannel status is generated, and an interrupt is presented to the processor. The
suppress length indication flag is ignored if the truncated search flag is set in the same CCW.

8492
UP-NUM8ER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference

NOTE

UPDATE LEVEL
6-30

PAGE

Command chaining conditions are defined as Channel End and Device End status, the command chain
flag set, and the data chain flag clear in the active CCW.

EI Chain (EIC): (Word channel only and ESI subchannels only) - Bit 65 specifies that upon
completion of the operation at the ESI word channel device, the operation specified by the new
command is to be initiated. The external interrupt presented by the device is stored in the status
table prior to chaining, and a tabled interrupt request is presented to the processor.

The external interrupt chain is not executed if:

a. The status table subchannel is not active,

b. A hardware error is detected when entering the external interrupt in the status table,

c. A hardware or software error is detected during the retrieval of the new CCW from storage, or

d. The subchannel was not in an active state before receiving the external interrupt.

The EI chain flag is not interpreted on 151 word channels.

Skip Data (SK): Bit 64 specifies that data will not be written in storage for input operations.
However, the device and subchannel are handled in the same manner as during conventional input
operation. For all other operations, the skip data flag is ignored.

Program Controlled Interrupt (PCI): Bit 63 specifies that the channal shall store a PCI subchannel
status indication and generate an interrupt as soon as possible after a CCW containing this flag is
obtained.

Truncated Search ITS): (Block multiplexer channel only) - Specifies that a special chaining
operation is to be executed. The channel saves the command in the CCW with the truncated search
flag and also saves the command from the preceding CCW. These two commands are then reissued
to the control unit during a truncated search operation. See 6.8.4. for a detailed description of
truncated search operations.

Monitor (MaN): (Word channel only Bit 62) - Specifies that the channel shall store subchannel
status and generate an interrupt when the data count in the final CCW has been exhausted.

Data Address Decrement (DAD): Bit 61 specifies that the data address be decreased by one for
each full data word transferred under control of the current CCW. This flag is ignored if the data
address lock (DAl) flag is set. !f neither the DAD or DAl flags are set, the data address will be
incremented bYL one for each full data word transferred.

Data Address lock (DAl): Bit 60 specifies that the contents of the data address field remain
unchanged for each word transferred under control of the current CCW.

Emulation Mode (E, bit 59): - On byte and block multiplexer channels only E equals zero specifies
1100 Series mode for data transfer operations and the 36-bit data packing format is selected. E
equals one if invalid.

On word channels the E bit is ignored and the mode of operation is specified by patch wire. Each
word channel 1100 Series ESI interface operates via patch wire in either quarter-word mode or
half-word mode. .

8492 I SPERRY UNIVAC 1100/80 S~.m. I I 6 31
___ ~ ________ ~ ______ P __ ro_c_e_s_s_o_r_a_n_d __ S_t_o_ra_g_e __ p_rr_o_g_ra_m __ m_e_r __ R_e_fe_r_e_n_c_e __________ ~_u~ __ An __ ~ ___ L __ ~~~_A_GE_-____ _

Format Flags (A, bit 58; B, bit 57; and C, bit 56): (Byte and block multiplexer channels only) -
Specifiy the packing format of data bytes. (See Tables 6-6, 6-7, and 6-8.) Format A or format B
must be selected on the byte multiplexer channel. The format flags are ignored on a word channel.

The contents of bit positions 32-35, 52-55, and 68-71 of the CCW are ignored.

6.!).2. CCW Completion

A C:CW operation can be terminated by the channel or by the device. A CCW operation may also
be terminated by the HDV or HCH instructions. Termination by the HCH and HDV instructions is
covered in the instruction descriptions. A channel terminates the operation when the data count is
exhausted. A device terminates the operation by presenting status. When a CCW operation is
terminated, either a new CCW is fetched and a new operation is initiated, or an interrupt is generated.
Unfortunately, a subchannel on a word channel may, instead of fetching a new CCW or generating
an interrupt, return to the available state with no other action being taken. This occurs when the data
count for the current operation is exhausted, the data chain, command chain, and monitor flags are
all cleared, and the device does not present an external interrupt. This condition can be prevented
by setting the monitor flag. The monitor flag set and the data chain and command chain flags cleared
specify that an interrupt is to be generated when the data count of the present operation is exhausted.

When an operation is terminated, the action taken by the subchannel is determined by the condition
that caused the operation to be terminated and by the chain data, chain command, truncated search,
SU, EI chain, PCI, and monitor flags of the CCW flag field. Tables 6-9 and 6-10 illustrate the
relcltionship between the CCW flags and the action taken.

8492
UP-NUM8ER

*

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference

Tab/e 6-6. MSU Data Format - 36-Bit Format, Forward Operation

Format A

34 32 30 28 26 24 22 20 18 16 14 12 10 8

Format B

34 32 30 28 26 24 22 20

Format C

34 32 30 28 26 24 22 20 18 16 14 12 10 8

Format C.

UPDATE LEVEL

6 4 2

6 4 2

o

o

6-32
PAGE

For input operations, bits with an asterisk will be written to zero by the IOU. For output
operations, bits with an asterisk are ignored.

The letters indicate the order in which bits are transferred. A indicates the first byte transferred,
D. indicates the second byte transferred, ~ indicates the third byte transferred, etc. Numbers
indicate the bit position in the byte. A I is the most significant bit in the byte, a .§. is the second
most significant bit in the byte, a .§. is the third most significant bit in the byte, etc.

UJIOATE LEVEL
6-33

JlAGE
8492 ~ SPERRY UNIVAC 1100/80 S~.m.
UJl__...ER Processor and Storage Programmer Reference

_ , __ ~_------J'-----.L----

*

Table 6-7. MSU 06ta Format - 36-Sit Format, Ssckw6rd Oper6tion

FormstA

Formst S

Formst C

Formst C

For input operations, bits with an asterisk will be written to zero by the IOU. For output
operations, bits with an asterisk are ignored.

The letters indicate the order in which are transferred. A indicates the first byte transferred,
It indicates the second byte transferred, ~ indicates the third byte transferred, etc. Numbers
indicate the bit position in the byte. A I is the most significant bit in the byte, a §. is the second
most significant bit in the byte, a .Q. is the third most significant bit in the byte, etc.

8492
UP-HUMBER

Emulate Format
A

x X

o

o o

o o

X o

SPERRY UNIVAC 1100/80 SYfteml
Processor and Storage Programmer Reference

6-34
PAGE

Format
B

X

o

o

o

UPDATE LEVEL

Table 6-8. Format Flags vs Type of Channel

Format
C

X

o

o

Type of
Channel

Word

Result

The E, A, B, and C flags are ignored on a
word channel. The mode (36-bit) is
determined by hardware feature.

Byte/Block 36-bit quarter-word format (4 bytes per
word)

Byte/Block 36-bit six-bit packed format (6 bytes per
word)

Block only

Byte only

36-bit eight-bit packed format (4 1/2
bytes per word)

The operation is not initiated and the
Program Check subchannel status bit is
set.

All other combinations The operation is not initiated and the
Program Check subchannel status bit is
set.

X Can be either 0 or 1 (don't care).

r.bI. 6-9. CCW FI.(Js vs r.rmin.tion Conditions on Byt. or Block Multip/.x., Ch.nn.1

CC I CC Chain I TS I SLI
Chain Command T~~:_~t~d Suppress
UCIlO ..,CClI \;11 Length

Indication

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Data
Count

I Exhausted I

- No
Device
Status

Stop
Stop
Stop
Stop
Wait

Wait

Wait

Wait

Data
Chain
Data

Chain
Data
Chain
Data
Chain
Data

Chain
Data
Chain
Data
Chain
Data

Chain

Data Count
Exhausted -

Chaining
Status

End
End
End
End

Command
Chain

Command
Chain

Command
Chain

Command
Chain

*
*
*
*
*
*
*
*

Data Count
Exhausted -

I Terminate Status .

End
End
End
End
End

End

End

End

*
*
*
*
*
*
*
*

Data Count Not
Exhausted -

Chaining Status

End,IL
End

Truncated Search
Truncated Search

End,IL

Command Chain

Truncated Search

Truncated Search

End,IL

End,IL

Truncated Search

Truncated Search

End, II Search

End,IL

Truncated Search

Truncated Search

Data
Count

Not
Exhausted

-
Terminate

Status
End,IL

End
End,IL

End
End,IL

End

End,IL

End

End, iL

End,IL

End,IL

End,IL

End,IL

End,IL

End,IL

End,IL

i s
!H

~
'1Jen
a;R
n:D
:~
we
g~
t»~ an
en::
g~
lieD ceo
CD en n ce3
~.

3
3
CD .,
::g

!.
CD
;
~
n
CD

c
~
~
§
r-

i
"'01

I
W
01

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~em.
Processor and Storage Programmer Reference UPDATE LEVEL

6-36
PAGE

Footnotes for Table 6-9

End

Stop

Wait

Il

Chain Command

Truncated Search

Chain Data

The operation is terminated. If the operation is immediate and has been
specified by the first CCW associated with a Sense Release instruction, a
condition code of 1 is set, and the status portion of the CSW is stored as
part of the execution of the Sense Release instruction. In all other cases,
an interrupt is generated in the subchannel when the channel accepts
device status.

The device is signaled to terminate transfer of data, but the subchannel
remains in the working state until device status is accepted; at this time an
interrupt is generated in the subchannel.

The device is signaled to terminate transfer of data, but the subchannel
remains in the working state until device status is accepted; if the device
status is chaining status, a command chain operation is initiated; if the
device status is terminate status, an interrupt is generated.

Incorrect length subchannel status is indicated with the interrupt or
condition code of 1.

The channel initiates a command chain operation upon receipt of Device
End.

The channel initiates a truncated search operation.

The channel immediately fetches a new CCW for the same operation.

The situation where the count is zero but data chaining is indicated at the
time the device provides status cannot validly occur. When data chaining
is indicated, the channel fetches the new CCW after transferring th~ last
byte of data designated by the current CCW but before the device provides
the next request for data or status transfer. As a result, the channel
recognizes the status from the device only after it has fetched the new
CCW, which cannot contain a count of zero unless a programming error has
been made.

8492 ~ SPERRY UNIVAC 1100/80 System. 6-37
Uf4ftJMaER Processor and Storage Programmer Reference UPDATE lEVEL 'AGE

_ ,_~~~_--'----L--.-

Table 6-10.

C C E M P
h h I o C
a a n I

i C
n n h t

a 0

D D i r
a a n
t t * a a
o 0 X 0 0
o 0 X X 1
o 0 X 1 X
1 X X X X
0 1 X X X

X X 0 X X
X X 1 X X

CCW Flags vs Term; na t; 0" Cond; t; ons on Word Channel

Data Count Exhausted
(1)
(2)
(2)

Data Chain
Command Chain

Data Count Not Exhausted
and External Interrupt **

(2)
EI Chain and Tabled Interrupt

1. No action is taken. The subchannel is returned to the available state.

2. The operation is terminated and an interrupt is generated

* EI Chain Flag is valid only on ESI subchannels.

*--1- The situation where the data count is zero and an external interrupt is detected cannot validly
occur. When the data count is exhausted, the flags are immediately inspected and the
appropriate action is taken before the external interrupt is accepted.

6.6. COMMAND CODE

The command code specifies to the channel, and on a byte or block multiplexer channel also to the
device, the operation to be performed. The command code assignment is listed in Table 6-11. The
symbol X indicates that the bit position is ignored; M identifies a modifier bit used by the control unit
or device on the byte or block multiplexer channels. The M bits are ignored on a word channel.

8492
UI4«JM8ER

SPERRY UNIVAC 11 00/80 S~m.
Processor and Storage Programmer Reference UPDATE LEVEL

Table 6-11. CCW Command Code

Byte or Block Multiplexer Channel.

Command Code Command

Invalid XXXX 0000 Invalid

Sense MMMM 0100 Invalid

Transfer in Channel (TIC) XXXO 1000 Transfer in Channel (TIC)

Store Subchannel Status XXX 1 1000 Store Subchannel Status

Read Backward MMMM 1100 Invalid

Write MMMM MMOl Write

Read Forward MMMM MM10 Read

Control MMMM MMll Forced External Function

x = Not Used M = Not Used (Word Channel)
M = Modifier (Byte or Block Multiplexer Channel)

6-38
PAGE

On a byte or block multiplexer channel, commands that initiate 1/0 operations (Write, Read, Read
Backward, Control, and Sense) cause all eight bits of tho command code to be transferr'ed to the I/O
device. The modifier bits specify to the device how the operation is to be performed.

Whenever the channel detects an invalid command code during the initiation of a command, the
Program Check bit in the subchannel status field is set and the operation is terminated. If the first
CCW designated by the CAW contains an invalid command, the operation is terminated, the Program
Check subchannel status bit is set and reported by either a condition code of one and an associated
CSW or an interrupt. When the invalid code is detected during command chaining, the new operation
is not initiated, and an interrupt is presented with the Program Check bit in the subchannel status
field set. The command code is ignored during data chaining, unless the Transfer in Channel
command is specified.

6.6.1. Transfer in Channel Command - TIC

The Transfer in Channel command provides a branching function in the channel. The TIC command
provides for chaining between CCWs not located in sequential storage locations. This allows
command and buffer loops. A new CCW is fetched from the location designated by the data address
field of the TIC command. A new CCW and CCW list are immediately initiated. The TIC command
can occur during data chaining or command chaining. The data count field, the format flags, and
the CCW flags of a TIC command are not interpreted. The data chain or command chain operation
is carried through the Transfer in Channel CCW to the new CCW.

If consecutive TIC commands are detected or if the CCW address of a TIC command is not on a double
word boundary, the execution of the CCW list is terminated, and an interrupt is presented with the
Program Check bit of the subchannel status field set.

8492
UP-NUMBER ~ SPERRY UNIVAC 1100/80 S~.m. 6-39

Processor and Storage Programmer Reference UPDATE LEVEL 'AGE ___________________________ -L-_____ ---'-_._' _______ -

6.6.2. Store Subchannel Status Command - SST

The Store Subchannel Status command provides a means of obtaining the data count of a subchannel
within a CCW list without having to terminate the execution of the CCW list. When an SST command
is detected, a double word CSW is stored at the location specified by the data address field of the
Store Subchannel Status CCW. The device and subchannel status fields of the CSW will always be
invalid. The device number and next CCW address of the CSW will be valid, and the data count will
be' the residue data count from the previous CCW. After storing the CSW, the execution of the CCW
list is continued.

The data count field, the format flags, and all the CCW flags of an SST command are not interpreted.
The SST command is detected only during command chaining.

If the data address field does not specify a double word boundary, the execution of the CCW list is
terminated. The Program Check bit of the subchannel status field is set and reported by either a
condition code of one and an associated CSW or an interrupt.

6.7. DATA TRANSFER

Data transfers are controlled by the data address and data count fields of the CCW. The data address
field contains the storage address of the first data to be transferred. The data count field of a CCW
specifies the number of bytes or words to be transferred. On a byte or block multiplexer channel,
thEt data count specifies the number of bytes to be transferred. On a word channel lSI interface, the
da1ta count specifies the number of 36-bit words to be transferred. On a word channel ESI interface,
thE! data count specifies the number of quarter words or half words to be transferred.

6.7. 1. Format Flags (E, A, B, and C)

On a word channel the format flags E, A, 8, and C are not interpreted. Emulation mode on a word
channel is determined on a channel basis by hardware patch wire. No formatting of data is done
on a word channel. All transfers of lSI and ESI data are compatible with 1100 Series 1/0 data
transfers for 36-bit operations.

On a byte or block multiplexer channel, the emulation flag (E) and the format flags (A, 8, and C) control
the formatting of data. If the emulation flag is zero, the data word width is 36 bits. An emulation
flalJ of one is invalid.

The format flags select either the quarter-word format (A), the six-bit packed format (8), or the eight
bit--packed format (C). Tables 6-6 and 6-7 illustrate the data formats for forward and backward
operations with the 36-bit mode.

Unused bits in format A are zero filled on input operations. With the 36-bit mode of operation, when
bytes are transferred to bits 00-07, 09-16, 18-25, and 27-34, the respective bits 08, 17, 26, and
35 will be written to zero.

If an input operation is not completed on an address boundary, leftover bytes and bits within a word
are not affected in format A. On the block multiplexer channel with formats 8 and C, leftover bytes
and partial bytes within a full word are zero filled and only full words are written into storage. On
the byte multiplexer channel with format 8, leftover bytes and bits within a word are left unchanged.
Wi1th format A individual quarter words (9 bits) are written for the 36-bit mode of operation.

Formats A and 8 (36-bit mode) are the only valid formats on a byte multiplexer channel. If format
C is selected on a byte multiplexer channel or if more than one format is selected, the operation is
terminated and the Program Check bit in the subchannel status field is set.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference

6.7.2. Skip Data - SK

UPDATE LEVEL
6-40

PAGE

The skip data flag in the CCW when set specifies that no data is to be transferred to storage. The
skip data flag is defined only for read, read backward, and sense operations. The skip data flag is
ignored in all other operations. Skipping affects only the handling of data by the channel. The
operation at the I/O device proceeds normally, and data is transferred to the channel. The channel
keeps updating the data count, but does not place the information in main storage. When the data
count is exhausted, a new CCW is obtained if either the command chain or the data chain flag is set.

Each CCW is controlled by its individual skip data flag. Thus skipping, when combined with data
chaining, permits the program to place throughout storage selected portions of a block of data from
an I/O device.

6.7.3. Data Address Decrement - DAD

The data address decrement flag in the CCW when set specifies that the data address when being
updated is to be decremented rather than incremented. The DAD flag is valid for all data transfer
operations. The DAD flag affects only the handling of data by the channel. The operation at the I/O
device proceeds normally. When the data count is exhausted, a new CCW is obtained if either the
command chain or the data chain flag is set, and the new CCW is under the control of its DAD flag.

6.7.4. Data Address Lock - DAL

The data address lock flag in the CCW when set specifies that the data address is never updated.
The DAL flag is valid for all data transfer operations. The DAL flag affects only the handling of data
by the channel. The operation at the I/O device proceeds normally. When the data count is exhausted,
a new CCW is obtained if either the command chain or the data chain flag is set, and the new CCW
is under the control of its DAL flag.

6.8. CHAINING OPERATIONS

When a channel has performed the transfer of data specified by a CCW, it can continue the activity
initiated by the SIOF instruction by fetching a new CCW (chaining). Chaining occurs only between
CCWs located in successive double word locations in storage. A CCW list is executed in an ascending.
order of addresses. The address of a new CCW is obtained by adding two to the address of the current
CCW. Two CCW lists in noncontiguous storage locations can be connected for chaining purposes
by a TIC command. On a byte or block multiplexer channel, all CCWs of a CCW list apply to the I/O
device specified in the original SIOF instruction. On a word channel all CCWs of a CCW list apply
to the subchannel specified in the original SIOF.

Three types of chaining are provided: data chaining, command chaining, and EI chaining (valid only
on an ESI subchannel). The specification of chaining is effectively propagated through a TIC
command. When in the process of chaining a TIC command is detected, the CCW designated by
the TIC is used for the type of chaining specified in the CCW preceding the TIC CCW.

A chaining operation is initiated when the operation on the present CCW is completed. A CCW
operation is completed when either the data count is exhausted or the device presents status. The
combination of the data count, device status, chain data flag, chain command, and EI chain flags
determine what type of chaining, if any, occurs. Tables 6-9 and 6-10 outline what action is taken
under all the combinations of CCW flags and termination conditions.

8492 I SPERRY UNIVAC 1100/80 Sr."'" I I 6-41
__ U_P_'-H_U_M_BER __ ~, ____ p_r_o_c_8_s_s_0_r_a_n_d_S_to_r_a....,:g:-8 __ ro_g_ra_m_m_8_.r_R_8f_8_r_8_n_c_8 _____ "-U_PD_ATE_LEVE_L __A_P_~~_,." ____ _

6.8. 1. Data Chaining

Data chaining provides software with the capability of changing the data address at any time during
the transfer of a block of data. Data chaining may be used to rearrange information as it is transferred
between main storage and an I/O device. Data chaining permits blocks of information to be
tr,ansferred to or from noncontiguous areas of storage, and when used with the skip data flag, data
chaining allows the software to place selected portions of a block of data in main storage.

For data chaining, the new CCW fetched by the channel defines a new storage area for the original
I/O operation. Execution of the operation at the I/O device is not affected. The contents of the
command code field of the new CCW is ignored unless it specifies a TIC command.

Data chaining on the byte multiplexer channel and on word ESI subchannels is executed immediately
after the last byte or partial word under control of the current CCW has been transferred to storage
or to the device. The old CCW is replaced by the new CCW before another data request from the
dnvice is handled. If the device presents status after exhausting the count of the current CCW, but
before transferring any data to or from the storage area designated by the n8W CCW, th8 action taken
b,f the channel is controlled by the new CCW flags. If a hardware or software error is detected when
fetching the new CCW, the operation is terminated and an interrupt is generated. The channel status
word (CSW) or tabled status word (TSW) associated with the interrupt will indicate why the operation
was terminated.

On the block multiplexer channel and on word 151 subchannels data chain CCWs are prefetched by
the channel hardware. Each block multiplexer channel and each word 151 subchannel has an eight
word data buffer in the channel hardware to decrease the probability of data overruns. During output
operations a data chain is executed immediately after the last byte or word under control of the
cUlrrent CCW has been transferred to the data buffer. The old CCW is replaced by the new CCW and
the data buffer is now kept full under control of the new CCW. During input operations the channel
hardware prefetches one data chain CCW ahead during channel idle time. After the last byte or word
under control of the current CCW has been transferred from the device to the data buffer, the channel
continues to accept data under control of the new CCW if the new CCW has been prefetched. If
a Ihardware or software error is detected when fetching the new CCW, the operation is terminated
and an interrupt is generated. The CSW associated with the interrupt will indicate why the operation
WelS terminated.

During data chaining the channel hardware prefetches only one CCW ahead and the data associated
with that CCW. If the byte count or word count in a data chain CCW is smaller than the data buffer
(8 words), the buffering provided is limited to the size of the byte count or word count. For example,
if ,a data chain CCW contains a byte count of one, only one byte of data buffering will be provided
fOIr that CCW. When transferring data to or from time dependent devices, the use of data counts
smaller than the buffer size increases the probability of data overruns and the smaller the data count
the higher the probability of a data overrun.

6.8.2. Command Chaining

A subchannel executes a command chain operation by retrieving a new CCW and beginning
execution of the command specified by that CCW. The subchannel is activated and begins executing
the new command. On a byte or block multiplexer channel the new command is also passed directly
to the device.

Command chaining makes it possible for software to initiate the transfer of mUltiple blocks of data
by means of a single SIOF instruction. It also allows a subchannel to initiate the execution of auxili"ry
functions and data transfer operations without software interference at the end of each operation.
On a byte or block multiplexer channel, command chaining, in conjunction with the status modifier
condition, allows the channel to modify the normal sequence of operations in response to signals
provided by the 1/0 device.

8492
UP~UM8ER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPDATE LEVEL

6-42
PAGE

During command chaining, the new CCW fetched by the channel specifies a new I/O operation. On
a byte or block multiplexer channel, command chaining occurs only when the I/O device presents
chaining status, the command chain flag is set, and the data chain flag is not set, and either the byte
count equals zero or the SU flag is set. On a word channel, command chaining occurs only when
the data count of the current operation is exhausted, the command chain flag is set, and the data
chain flag is not set. When command chaining takes place, the completion of the current operation
does not cause an interrupt. The data count indicating the amount of data transferred during the
current operation can be obtained by using an SST command as part of the command chain.

Command chaining takes place, and the new operation is initiated only if no hardware error has been
detected during the current operation. If a hardware error has been detected, the operation is
immediately terminated and an interrupt is generated. Also, if a hardware or software error is
detected when trying to initiate the new CCW of a command chain, the operation is terminated, and
an interrupt is generated.

An exception to the sequential chaining of CCWs occurs on a byte or block multiplexer channel when
the I/O device presents the status modifier condition along with chaining status. When command
chaining is specified, the combination of chaining status and the status modifier condition causes
the channel to fetch and chain to the CCW whose main storage address is four higher than that of
the current CCW.

6.8.3. EI Chaining (ESI Word Interface Only)

The EI chaining flag is interpreted only on an ESI subchannel. A subchannel executes an EI chain
operation by placing the external interrupt in the status table if the status table subchannel is active,
retrieving a new CCW from a storage address four higher than the storage address of the current
CCW, and executing the command specified by that CCW. An EI chain is executed only if all of the
following conditions are met:

1. The EI chain CCW flag is set.

2. An ESI external interrupt is presented.

3. The status table subchannel is active.

4. No hardware error is detected when making an entry into the status table for the external
interrupt.

5. The subchannel is active.

NOTE:

If the data count on a word subchannel is exhausted and neither data chaining nor command
chaining is specified, the subchannel is immediately changed from active mode to either status
pending or idle mode.

6. No hardware or software error is detected when retrieving the new CCW.

Extreme care must be taken if the EI chain flag is set along with the chain data and/or chain command
flags. If the channel detects exhaustion of the data count first, the data chain or command chain
will be performed, and any subsequent EI chain will be under the control of the EI chain flag in the
new CCW. If the channel detects the external interrupt first, an EI chain will be performed if the EI
chain flag in the current CCW is set. The new CCW used by the channel is different depending on
whether the chain is an EI chain, a data chain, or a command chain. If a data chain or command
chain is executed, a new CCW whose storage address is two higher than that of the current CCW

_ _ 8_4_9_2___ 1 ____ S_PE_R_RY_U_N_'V_A_C_1_1_00_"_8-=O:....S_~_._m_=_. ____________ --L-_____-L_6.-_4_3 ... __ ~._._ UP-HUMBER ~ Processor and Storage Programmer Reference UPDATE LEVEL PAGE _

is f:txecuted. If an EI chain is executed, a new CCW whose storage address is four higher than that
of the current CCW is executed.

If at software or hardware error is detected when trying to initiate the new CCW during an EI chain,
the operation is terminated, a TSW indicating why the operation was terminated is stored in the status
table, and a tabled interrupt request is generated. The subchannel is returned to the available state.

6.8.4. Truncated Search

The truncated search capability provides software with a simple yet effective method of reading or
writing mUltiple records on a disk control unit. A truncated search operation is executed under control
of the truncated search CCW flag. A block multiplexer channel executes a truncated search operation
by reissuing the commard in the preceding CCW and the command in the current CCW when proper
status is received from the device before the data count is exhausted.

The following is an example of a truncated search operation:

COMMAND

Search command (This CCW has the CC flag set.)

2 TIC command (TIC back to CCW 1.)

3 Read or Write command (This and only this CCW must have the truncated search flag
set.)

The channel retrieves CCW 1 and issues the Search command and search bytes to the device. If
the device does not make a compare on the search bytes, device status of Channel End and Device
End is presented to the channel. The channel executes a command chain, retrieves the TIC command,
andl then retrieves the Search command and reissues the Search command to the device. This loop
continues until the device makes a compare (finds the correct record) and presents device status of
Channel End, Device End, and Status Modifier. Because of the special device status, the channel skips
n the next CCW (CCW 2) and executes CCW 3. The Read or Write command is issued to the device
and! the device begins transferring data.

When the device detects the end of a record, device status of Channel End and Device End is
presented to the channel. The channel checks the device status, and detects the truncated search
CCW flag. The channel begins the truncated search operation by reissuing the previous command
(the Search command from CCW 1) and responding to the first request for data with the "command
out" interface line. The device automatically makes a compare and presents device status of Channel
End, Device End, and Status Modifier. The channel reissues the Read or Write command and data
transfer is initiated startmg with the residual data count and data address from the previous
read/write operation. This procedure is repeated at the end of each record until the byte count is
exhausted.

Data chaining after the byte count is exhausted is allowed; however, further truncated search
operations ar'e executed only if the active CCW has the truncated search flag set. Command chaining
after the byte count is exhausted is also allowed. See Table 6-9 to determine what action the channel
takes when either the byte count is exhausted or device status is presented.

The channel unconditionally sets the most significant bit (the M bit) of the Search command every
time the Search command is issued to the device as part of a truncated search operation. The M
bit set allows the disk device to switch heads when an index mark is detected.

8492
UP-NUM8ER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference

6.8.5. Truncated Search Restrictions

UPDATE LEVEL
6-44

PAGE

There are several programming restrictions for truncated search operations:

1. The truncated search flag is valid only for the block multiplexer channel. If the truncated search
flag is set in a CCW for a byte multiplexer channel, the operation is terminated and program
check subchannel status is presented to the software.

2. Split status from the control unit (only Channel End for device status) immediately terminates
execution of the subchannel program. If the truncated search flag is set and a control unit splits
status, the channel does not execute the truncated search operation.

3. In any CCW the suppress length indication flag is ignored if the truncated search flag is set.
When the truncated search flag is set in a CCW, a command chaining operation is initiated only
if the chain data flag is clear, the chain command flag is set, and the byte count for that CCW
has been exhausted. .

4. Presentation of any unexpected or abnormal device status immediately terminates execution of
the truncated search operation. The execution of the subchannel program is also immediately
terminated and the status is presented to the software by way of instruction or interrupt.

5. Truncated search is treated as a strictly byte operation. The formatting and packing is
unaffected by truncated search operations. There is one exception that is described in item 6.

6. Truncated search is not treated as a strictly byte operation if the record length in bytes is on
a word boundary for format C; Le., the record length in bytes is one of the following counts:

Format Byte Counts

Format C - 36 bit 3 5,9,14,18,23,27,32,36,40,45

General Formula

9x/2 + 5y For x = 0,2,4,6,8,10
... (any even number)
and y = 0 or 1

If the record length in bytes is on a word boundary for format C, the first byte of data transferred
after a truncated search operation is stored or read from the initial byte position for format C.
This ensures that each record begins on a word boundary.

If the record length in bytes is on a word boundary in format C, the data is treated as words,
not bytes, and the only valid byte counts are byte counts that fit the general formula listed above.

6.9. INTERRUPT GENERATION FLAGS

The program controlled interrupt (PCI) flag and the monitor (MON) flag (word channel only) are
interrupt generation flags that cause the subchannel to generate an interrupt. The PCI flag generates
an interrupt with the PCI bit set in the subchannel status field and the MON flag generates an interrupt
with the MON bit set in the subchannel status field.

6.9. 1. Program Controlled Interruption - PCI

The program controlled interruption provides the software with a means of causing an I/O interrupt
during the execution of a CCW list. The PCI flag can be in any CCW of a CCW list, but is ignored
on a TIC command or an SST command. Neither the PCI flag nor the associated interrupt affects
the execution of the CCW list.

8492 ~ SPERRY UNIVAC 1100/80 S~.m. 6-45
UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE

----------------------------------~----------------------------~----------~~-

The channel attempts to interrupt the program whenever the PCI bit of the CCW flags is detected
during a data transfer. On all shared subchannels and nonshared block multiplexer subchannels, if
the channel is presenting an interrupt for another subchannel, no action is taken. The channel will
thc3n interrupt the program when the PCI flag is detected during a data transfer and no channel
interrupt request is outstanding. Nonshared subchannels on a byte multiplexer or word channel will
attempt to table the interrupt after a data transfer. If the status table is valid, a TSW for that
subchannel is stored in the status table. If the status table is not valid, no status is presented and
the PCI flag is cleared.

A ICSW containing the PCI bit may be stored by an interrupt while the operation is still proceeding
or by a completion interrupt. Also, the PCI bit of the subchannel status field may accompany other
vallid subchannel and device status. The PCI condition cannot be detected by an instruction while
the subchannel is in the working state.

If chaining occurs before the interrupt due to the PCI flag has been handled, the PCI condition is
carried over to the new CCW. This carry-over occurs on both data and command chaining, and in
either case, the condition is propagated through the TIC and SST commands. The PCI conditions
arn not stacked; if another CCW is fetched with the PCI flag set before the interrupt due to the PCI
flag of the previous CCW has been handled, only one interrupt takes place. Thus, multiple PCI flags
in a CCW list may result in only one interrupt.

6.9.2. Monitor - MON (Word Channel Only)

The monitor (MON) flag specifies that an interrupt be generated with the Monitor subchannel status
bit set. The interrupt is not presented until the CCW operation with the monitor flag is completed.
The Monitor bit of the subchannel status field may accompany other valid subchannel and device
status. The monitor flag is interpreted only in the final CCW of a CCW list. If the data chain or
command chain flag is set in a CCW, the monitor flag is ignored and no interrupt is presented. If
the EI chain and monitor flags are set in a CCW or an ESI subchannel, the execution of the operation
determines the subchannel's response. If the data count is exhausted before the external interrupt
is received, an interrupt with Monitor subchannel status is generated. If an external interrupt is
presented later, the external interrupt will be stored in the status table, but t:he EI chain will not be
executed. If the data count is not exhausted when the external interrupt is received, the external
interrupt will be stored in the status table and the EI chain will be executed.

6.'10. STATUS

I/O status can be separated into the following four categories:

1. Channel Status - Hardware error that cannot be associated with a particular device or
subchannel.

2. Status for Noncommunications Subchannels - Status caused by a device, CCW flags, or a
hardware or software error on block multiplexer subchannels, byte multiplexer shared
subchannels, and word lSI subchannels.

3. Status for Communications Subchannels - Status caused by a device, CCW flags, hardware
error, or software error on byte multiplexer nonshared subchannels, and word ESI subchannels.

4. Status for Status Table Subchannel - Status caused by the PCI CCW flag, hardware error, or
software error on the status table subchannel.

I/O status is presented either by instruction, SST command, status table, or interrupt. (See Table
6-12.) A standard Channel Status Word (CSW) or Tabled Status Word (TSW) is generated in all five
cases. The format is:

8492
UP~UMBER

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference UPDATE LEVEL

CSW or TSW

Not
Used Device Address Next CCW Address

36 3231 2423

Not
Used Device Status Subchannel Status Residual Data Count

71 8887 8069 6261

External Interrupt Status Word (Word Channels Only)

107

Subchannel Status

52 SIOF Check (Byte and block multiplexer channels only)

53 Interface Check

54 Control Check

55 Data Check

56 Not Used

57 Program Check

6-46
PAGE

o

38

72

58 Monitor (Word channel only)/lncorrect Length (Byte and block multiplexer channels only)

59 Program Controlied Interrupt

r.bl8 6-12. IOU St.tus

Type of Status Status Generated By

Channel Status 1. Hardware error on the channel to
device interface that cannot be associated
with a particular device or subchannel.
2. Storage error that cannot be
associated with a particular device or
subchannel.

Status for Noncommunications 1. Device
Subchannels 2. CCW flags (PCI or MON)
a. All block multiplexer subchannels 3. Software error
b. Byte multiplexer shared subchannels 4. Hardware error

c. Word channel lSI subchannel 1. Store subchannel status command

Status for Communications Subchannels 1. Device
a. Byte multiplexer nonshared 2. CCW flags (PCI or MON)

subchannels 3. Software error
b. Word channel ESI subchannels 4. Hardware error

1. Store subchannel status command

Status for Status Table Subchannel 1. CCW flag (PC I)
2. Software error
3. Hardware error

------ ---------- - ---- ----------

Status Presented to Software I

1. Machine Check interrupt

1. Instruction, or
2. Normal interrupt

1. Store subchannel status open

1. I nstruction, or
2. Status Table Entry and Table

interrupt

1. Store subchannel status operation

1. L TCW Instruction, or
2. Normal interrupt with bit 24 the lAW

set

c: 0)

! S
I

r
~(I)
~."
Om
n::ll
:~
Ute
~!
C»~ &,n
en:
~~
C»O)
<co
CD en
:n o·
<c3
~.

3
3
CD
~

:::D
CD
i'
i
::s
n
CD

c:

~
§ ,..

~
mO)

I
~

8492
UP~UMBER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPDATE LEVEL

Device Status

60 Unit Exception Byte and block multiplexer channels only

61 Unit Check Byte and block multiplexer channels only

62 Device End Byte and block multiplexer channels only

63 Channel End Byte and block multiplexer channels only

64 Busy Byte and block multiplexer channels only

65 Control Unit End Byte and block multiplexer channels only

66 Status Modifier Byte and block multiplexer channels only

67 Attention

6-48
PAGE

On a byte or block multiplexer channel, the device status field contains the actual status presented
by the device. On a word channel the only valid device status bit is the Attention bit (bit 67). On
a word channel the Attention bit set indicates that bits 72-107 of the CSW contain an exterhal
interrupt status word. The Attention bit cleared indicates that bits 72-107 of the CSW are invalid.

When an 1/0 interrupt is acknowledged by the processor, an interrupt address word (lAW) is stored
in a fixed location of low order storage. For any I/O interrupt the standard lAW format is:

Not Used MCI bits

35 252423

S Status Table Indicator

MCI Machine Check Indicator Bits

IOU Number

CM Channel Module Number

DA Device Address

Not
Used

18 15 131211

CM DA
I

87 o

Each one of a possible four processors has one reserved address for the lAW and three reserved
addresses for the CSW (See Table 6-13). Status is presented to the processor that caused a CSW
or lAW to be stored. For example, if processor 0 executes an I/O instruction and receives a condition
code of 1, the CSW is stored in the reserved CSW address locations of processor O. Or if processor
3 acknowledges an 1/0 interrupt, the lAW and CSW are stored in the reserved lAW and CSW address
locations of processor 3. Status is reported only once and only through one path. If a subchannel
that is holding status and presenting an interrupt request is then interrogated by an 1/0 instruct.on,
it will present that status to either the interrupt or the 1/0 instruction, but not both. The channel
attempts to cancel the interrupt. If the interrupt cancellation is successful, the status will be presented
to the instruction and the condition code will equal 1. If the interrupt cancellation fails, the status
will be presented to the interrupt. The 1/0 instruction will then receive a condition code of 2.

8492 I SPERRY UNIVAC 1100/80 S~8m. 6-49
__ U_P-N __ UM_B_ER __ ~, __ -.--..:..p...:...ro.:.c=-e:.:s:.:s~o..:...r--=a~n....:.d-S..::....::...to-r_a.::g_e_P_rr_o.=g_ra_m_m_e_r_R_e_f_e_re_n_c_e ____ ----'_U_PD_A_TE_LEV_E_L _~P.AGE _____ _

XXXXX 240
XXXXX 241
XXXXX 242
XXXXX 243
XXXXX 244
XXXXX 245
XXXXX 246
XXXXX 247
XXXXX 250
XXXXX 251
XXXXX 252
XXXXX 253
XXXXX 254
XXXXX 255
XXXXX 256
XXXXX 257
XXXXX 260
XXXXX 261
XXXXX 262
XXXXX 263
XXXXX 264
XXXXX 265
XXXXX 266
XXXXX 267
XXXXX 270
XXXXX 271
XXXXX 272
XXX XX 273
XXXXX 274
XXXXX 275
XXXXX 276
XXXXX 277

6.11. INSTRUCTION STATUS

Table 6-13. IOU Fixed Addresses

PROCESSOR 0 CAW WORD 0
PROCESSOR 0 CAW WORD 1

PROCESSOR 1 CAW WORD 0
PROCESSOR 1 CAW WORD 1

PROCESSOR 0 lAW
PROCESSOR 0 CSW WORD 0
PROCESSOR 0 CSW WORD 1
PROCESSOR 0 CSW WORD 2
PROCESSOR 1 lAW
PROCESSOR 1 CSW WORD 0
PROCESSOR 1 CSW WORD 1
PROCESSOR 1 CSW WORD 2

-

--

--

-

-

-
--

---.

.-..

-

-

-'
--

If the addressed subchannel or, in the case of a TIO or HDV instruction, the addressed device is in
the unterrupt pending state for an I/O instruct i on, or if the execution of the I/O instruction generates
status conditions, the channel stores a CSW in the proper reserved storage addresses and presents
a condition code of 1. There are two exceptions: a CSW is not stored for a subchannel in the interrupt
pending state if an interrupt request for that subchannel has been presented to the processor and
cancellation of that interrupt request was unsuccessful. Also, a CSW is not stored if the addressed
subc;hannel is holding status for a device other than the addressed device. Note that a TSC instruction
addresses only a subchannel and not a device.

The response of a condition code of 1 to an I/O instruction always indicates that a CSW has been
stored by the channel, and that the addressed subchannel has been set to the available state. The
status in the CSW may pertain to either a previous operation or the attempted execution of the present
instruction.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference UPDATE LEVEL

CSW for I/O Instruction

Not
Used Device Address Next CCW Address

35 3231 2423

Not
Used Device Status Subchannel Status Residual Data Count

71 6867 6059 6251

o

36

6-50
PAGE

On word channels bits 60-66 will be cleared. Bit 67 will be set only if bits 72-107 of the CSW contain
an external interrupt.

External Interrupt Status Word (Word Channel Only)

107 72

6.12. STATUS TABLE

The status table subchannel controls the status table. The status table subchannel is loaded by an
L TCW instruction. An L TCW instruction initiates the execution of a status table control word (STCW)
list by the status table subchannel. Bits 36-59 of the CAW contain the address of the first STCW
of the STCW list. An STCW contains the data count and the starting address for the status table.
The command code field is checked only for a TIC command. Any other command code value
activates the status table subchannel. The chain data (CD) and program controlled interruption (PCI)
flags are the only valid flags in an STCW. All the other STCW flags are ignored. Even if the status
table subchannel is active, a new L TCW instruction is accepted, a new STCW list is initiated, and the
status table subchannel is loaded with the first STCW of the new list.

After each entry (TSW) stored in the status table, the data address field of the status table is
incremented by two (byte multiplexer channel) or four (word channel) and the data count is
decremented by two (byte multiplexer channel) or four (word channel). If the status table subchannel
detects a data count of zero or a hardware error when attempting to make an entry in the status table,
the operation of the status table subchannel is terminated and a normal interrupt request is generated.

TSW for Nonshared Byte Multiplexer Subchannels

Not
Used Device Address Next CCW Address

35 3231 2423 o

8492 ~ SPERRY UNIVAC 1100/80 S~.m. 6-51
UP-NUMIEft Processor and Storage Programmer Reference UPDATE LEVEL PAGE

------------ ,------~--------------~--~~----------------------~~----------~--

[Not
Residual Data Count Used Device Status Subchannel Status

6867 6069 6261 36

ThW for ESI Word Subchannels

[
Not

Used Device Address Next CCW Address

36 3231 2423 o

[Not

I Used EI 0000000 Subchannel Status Residual Data Count

"1 686766 6069 6261 36

EI 0 means bits 72-107 are meaningless

1 means bits 72-107 contain external interrupt status word

[, ___________________ E_x_t_e_rn_a_I_I_n_t_e_rr_u_p_t_S_t_a_t_u_s_W __ o_r_d._i_f_B_i_t_6_7 __ is __ S_e_t _______________ ~ __ ~
107 72

[Not Used

,--------
144 108

On a word channel the status table subchannel must be active before any ESI device requests for
either data or status are handled. This restriction prevents ESI device requests from corrupting initial
load operations.

Staltus from the status table subchannel is reported via 1/0 instruction or normal interrupt. The device
status field of a status table subchannel CSW will always be zero filled. The only valid subchannel
status bits and the conditions generating the particular subchannel status bit are the following:

8492
UP-fitUMBER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPDATE LEVEL

6-52
PAGE

1. Channel Control Check (Bit 54)

a. A hardware fault was detected during retrieval of a status table control word.

2. Channel Data Check (Bit 55)

a. A hardware fault was detected when making an entry in the status table.

3. Program Check (Bit 57)

a. The status table CAW first STCW address did not specify a double word boundary.

b. The original STCW data count field equaled zero and the command was not Transfer in
Channel.

c. The Transfer in Channel command was specified in succes,sive STCWs.

d. The STCW address specified by a TIC command is not on a double word boundary.

e. The byte multiplexer channel STCW data address did not specify a double word boundary.

f. The ESI word channel status table CCW data address did not specify a quadruple word
boundary.

g. The byte multiplexer channel STCW data count was not a multiple of two.

h. The ESI word channel STCW data count was not a multiple of four.

i. The channel attempted to read STCW from a location outside of available storage.

j. The STCW data address specified a location outside the available storage.

k. The STCW data count field was decreased to zero and data chaining was not indicated.

6.13. STORE SUBCHANNEL STATUS - SST

The only useful status resulting from an SST command will be the residual data count. The device
and subchannel status fields will always be zero. Valid device status, subchannel status, or external
interrupt status cannot be presented by way of an SST command. This status is reported only by
way of interrupt, instruction, or the status table.

CSW for the Store Subchannel Status Command

Not
Used Device Address Next CCW Address

35 3231 2423 o

Not
Used 00000000 00000000 Residual Data Count

11 6861 6069 6262 36

8492 ~ SPERRY UNIVAC 1100/80 S~.m. . I I 6 53
UP-HUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE -_ ._--=-----=--__ ---L--..~_

6.14. SUBCHANNEL STATUS

The subchannel status bits are set when particular CCW flags are set or when a hardware or software
error is detected by the channel. Subchannel status indications are presented to the software in the
sulbchannel status field of a CSW or TSW.

6. '14. 1. SIOF Device Check (Bit 52) (Byte or Block Multiplexer Channel Only)

The SIOF Device Check subchannel status bit indicates that a device that was to be initiated by a
previously issued SIOF instruction is not operational (not installed or offline).

6. '14.2. Interface Control Check (Bit 53)

Thle Interface Control Check subchannel status bit indicates that a hardware error in the channel to
device interface was detected by the channel. The hardware error was detected during one of the
following operations:

1. A byte or block multiplexer channel detected a device interface parity error during the transfer
of device status.

2. A word channel detected a device interface parity error during the transfer of an external
interrupt status word.

3. A byte peripheral device responded with an address other than the address specified by the
channel during a channel initiated selection sequence.

4. A byte peripheral device became non-operational during a command chaining.

5. A byte peripheral interface control signal sequence error was detected.

6. 114.3. Channel Control Check (Bit 54)

Th~:t Channel Control Check subchannel status bit indicates that a hardware error was detected by
the channel when attempting to read or write a control word from storage. The hardware error was
detected during one of the following operations:

1. The channel was attempting to read the second word of the CAW for an SIOF instruction.

2. The channel was attempting to read a CCW or STCW.

3. The channel was attempting to store a status word for the store subchannel status command.

4. The channel was attempting to read from main storage a control word for one of the 128
nonshared subchannels.

6. 14.4. Channel Data Check (Bit 55)

Th~~ Channel Data Check subchannel status bit indicates that a hardware error was detected during
the transfer of data from the device to the channel, from the channel to main storage, or from main
storage to the channel.

8492
UP~

SPERRY UNIVAC 1 1 00/80 S~m.
Processor and Storage Programmer Reference

6. 14.5. Not Used (Bit 56)

6. 14.6. Program Check (Bit 57)

UPDATE lEVEL
6-54

PAGE

The Program Check subchannel status bit indicates that software error was detected by the channel.
The software error was one of the following:

1. The CAW first CCW address did not specify a double word boundary.

2. The status table CAW first STCW address did not specify a double word boundary.

3. A CCW or STCW contained an invalid command for an operation other than a data chain.

4. The CCW or STCW data count equaled zero and the command was neither Transfer in Channel
nor Store Subchannel Status.

5. The Transfer in Channel command was specified in successive CCWs or STCWs.

6. An ESI word channel CCW contained the Forced EF command with a data count not equal to
one.

7. The CCW or STCW address specified by a TIC command was not on a double word boundary.

8. The Store Subchannel Status command data address field did not specify a double word
boundary.

9. The truncated search (TS) flag was specified in a byte multiplexer CCW.

10. Any byte multiplexer channel CCW or a block multiplexer channel command CCW did not
specify only one format.

11. A byte multiplexer channel CCW specified format C.

12. The byte multiplexer channel STCW data address field did not specify a double word boundary.

13. The ESI word channel status table CCW data address field did not specify a quadruple word
boundary.

14. The byte mUltiplexer channel STCW data count field was not a multiple of two.

15. The ESI word channel STCW data count field was not a mUltiple of four.

16. The channel attempted to read a CCW or STCW from a location outside of available storage.

1 7. A CCW ~or STCW data address specified a location outside the available storage.

18. The STCW data count field was decreased to zero and data chaining was not indicated.

6. 14.7. Monitor (Bit 58) (Word Channel Only)

The Monitor subchannel status bit indicates that a CCW list on a word subchannel has bevn
completed. The Monitor subchannel status bit is set and an interrupt is generated when an operation
is completed on a CCW that has the monitor CCW flag set and does not have either the data chain
flag set or the command chain flag set. If a CCW has either the data chain or the command chain
flag set, the monitor flag is not interpreted and no interrupt is generated.

8492 ~ SPERRY UNIVAC 1100/80 S~.m. 6-55
UP~UMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE

------------ --~~----------~--

6. 14.8. Incorrect Length (Bit 58) (Byte and Block Multiplexer Channels Only)

Thu Incorrect Length subchannel status bit indicates that the number of bytes specified in the CCWs
for an I/O operation was not equal to the number of bytes requested or offered by the device. The
incorrect length indication is presented only if the active CCW has neither the truncated search flag
nor' the suppress length indication flag set and the data chain flag is not set. Detection of an incorrect
length condition causes the operation to be terminated and an interrupt to be generated. See Table
6-9 for the affect of the CD, CC, SLI, and TS flags on the indication of incorrect length.

6. 14.9. Program Controlled Interrupt (Bit 59)

When the channel detects the PCI flag during a data transfer, an interrupt and/or a table entry in
the status table is attempted for that subchannel. The PCI subchannel status bit indicates that a PCI
flag had been detected in a CCW or STCW list. Because the program controlled interruption does
not affect the execution of a CCW or STCW list, the detection of several PCI flags in a CCW or STCW
list may result in only one interrupt with the PCI subchannel status bit set. However, each PCI flag
never generates more than one interrupt or one TSW entry.

6.15. DEVICE STATUS

If the device presents termination status on a byte multiplexer shared subchannel or a block
multiplexer subchannel, the operation is terminated and an interrupt is generated if an interrupt from
another subchannel is not already being presented. If an interrupt is being presented, the status is
stacked in the device. When the interrupt mechanism becomes available, the status is accepted from
the device, and an interrupt is generated. If the device presents termination status on a byte
multiplexer nonshared subchannel, the operation is terminated, and a status table entry is executed
if the status table subchannel is active. If the status table subchannel is inactive, no status table entry
is made, and the device status is lost.

When a device on a byte or a block multiplexer channel presents chaining status, a command chain
is performed only if the command chain flag is set and the data chain flag is not set. Otherwise, the
operation is terminated, and an interrupt is presented as previously explained.

On a word channel lSI interface an external interrupt terminates the operation and generates an
interrupt. On a word channel ESI interface an external interrupt terminates the operation and
generates a status table entry if the status table is active. If the status table is inactive, no table entry
is made, and the external interrupt is lost. There is one exception for terminating an operation. An
external interrupt will generate an entry into the status table and cause an EI chain to be performed
if the operation is still active, the EI chain flag is set, and the status table subchannel is active.

The byte or block multiplexer channel device status bits are:

Status Codes ~I

1000 0000 Attention

0100 0000 Status Modifier

0010 0000 Control Unit End

0001 0000 Busy

0000 1000 Channel End

8492
UP~UMBER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference

0000 0100 Device End

0000 0010 Unit Check

0000 0001 Unit Execption

UPDATE LEVEL
6-56

PAGE

For the word channel the device status field will always be zero with the exception of bit 67. If bit
67 of the CSW or TSW is set, bits 72-107 contain an external interrupt status word. If bit 67 is
cleared, bits 72-107 of the CSW or TSW are meaningless.

After presenting an interrupt with any device status or any subchannel status other than the PCI bit,
the subchannel is returned to the available state. The associated device, however, may not be
available because device status may have split or the device may have not presented status by the
time the interrupt was acknowledged. After initiating a CCW list, the software may have to handle
any numb.er of interrupts before both the subchannel and device are' available.

Programming Note: All bits of the subchannel status and device status fields must be
investigated for each CSW or TSW because several device status bits and/or several subchannel
status bits may be set in one CSW or TSW.

6.16. DATA CHAINING PRECAUTIONS

There are several precautions that should be taken during data chaining operations. Data chaining
with small data counts on high-speed devices that are capable of data overruns should be avoided.
Also, the following precautions should be noted when data chaining on the byte or block multiplexer
channels:

1. On the byte multiplexer channel switching of the byte packing formats (the E, A, B, and C CCW
flags) is allowed between data chained CCWs and command chained CCWs. On the block
multiplexer channel the format flags in the command CCW specify the format for the entire data
chained CCW list. On the block multiplexer channel the format flag field in all data chained
CCWs is ignored and the format flags can only be changed by executing a command chained
CCW.

2. Format A (36-bit mode) - If a CCW byte count for an operation is not completed on a full word
boundary, leftover bytes in the final data word are unaffected.

3. Byte multiplexer channels - Format B (36-bit mode) -If a CCW byte count for an input operation
is not completed on a full word boundary, leftover bytes in the final data word are unaffected.

4. Block multiplexer channels - Format B (36-bit mode) -If a CCW byte count for an input operation
is not completed on a full word boundary, leftover bytes in the final data word are zero filled.
Only full 36-bit words are transferred to main storage in format B on the block multiplexer
channel.

5. Formats A and B (36-bit mode) - If a CCW byte count is not completed on a full word boundary
and data chaining is indicated, the first byte transferred under control of the new CCW is stored
in or read from the initial byte position for that format.

6. Format C (36-bit mode) - If a CCW byte count for an input operation is not completed on a full
word boundary, the leftover bytes and partial bytes to complete only that word are zero filled.
Only full words are transferred to storilge in format C. The one exception is partial byte
remainders. See item 7.

8492 I SPERRY UNIVAC 1100/80 Systems I I 6 57
___ U_P~_U_M_I_ER ___ ~ ______ P_r_o_c_e_s_s_o_r_a_n_d __ S_to __ ra_g~e __ P_rro_g __ ra_m __ m_e_r __ R_ef_e_r_e_n_c_e __________ ~U_~ __ An __ uv __ EL ____ ~_P_AG_E_-____ _

7. Format C (36-bit mode) - If a CCW byte count is exhausted on a partial byte boundary (a
boundary that requires the final byte to be split into two words for input or a boundary that
require~s part of the final byte to be taken from another word for output) and data chaining is
not indicated, the partial byte remainder is thrown away on input. On output a new word is n.ot
retrieved from storage and the final byte is formed by concatenating the partial byte with
unpredictable data.

8. Format C (36-bit mode) - If a CCW byte count is not completed on a full word boundary and
data chaining is indicated, the first byte transferred under control of the new CCW is stored or
read from the initial byte position for format C. There is one exception. If a CCW byte count
is exhausted on a partial byte boundary and data chaining is indicated, the packing or unpacking
of data continue~ as if the data chain never occured. For example, on input the first part of the
final byte (the byte that is on the partial byte boundary) is transferred to storage under control
of the original CCW. The partial byte remainder is then transferred to storage under control of
the new CCW.

9. Block multiplexer channel and lSI word interfaces - Because the channel prefetches one CCW
ahead during data chaining, there is one restriction on dynamically modifying CCW lists during
input data chaining operations. If a channel is executing CCW A and data chaining to CCW B
is specified, CCW B cannot be part of the data buffer being retrieved by CCW A because the
channel may have prefetched CCW B before CCW B was transferred to storage as part of the
data buffer of CCW A.

10. Word channels - Certain chaining operations can be executed by either a data chain or
command chain. In these situations always use data chaining.

See Table 6i-14 for examples of the above items.

8492
UP-HUMBER

SPERRY UNIVAC 11 00/80 S~.m.
Processor and Storage Programmer Reference UPDATE LEVEL

Table 6-14. Byte Data Packing on Abnormal Boundaries

36-Bit Format A - Forward Operation

Storage Address Specified by CCW 1

34 32 30 2d 26 24 22 20 18 16 14 12 10 8 6 4 2

Byte count = 4

Storage Address Specified by CCW 1

34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2

Storage Address Specified by CCW2

Byte count = 2 Data chained to a byte count of 2

Storage Address Specified by CCW 1

34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2

Byte count = 2 or status after 2 bytes

* Bit positions with an asterisk will be written into on input and ignore on output.

o These bit positions set to zero by hardware on input and ignored on output.

o

o

o

6-58
PAGE

The letters indicate the order in which bits are transferred. ~ indicates the first byte transferred,
.e. indicates the second byte transferred, ~ indicates the third byte transferred, etc. Numbers
indicate the bit position in the byte. A I is the most significant bit in the byte, a §. is the second
most significant bit in the byte, a ~ is the third most significant bit in the byte, etc.

8492 I SPERRY UNIVAC 1100/80 S~m. I I 6 59
__ U_P-N_U_MI_ER __ ~, ___ p_ro_c_8_s_s_0_r_8_"_d_S_to_r_8_g_8 __ prrco_g_r_8_rn_rn_8_r_R __ 8_f_8_r8_"_C_8 _____ U_PD_A_TE_LEV_EL __ .. _PA_G_E -__ _

Table 6-14. Byte D6t6 P6cking on Abnorm61 Bound6ritls (continutld)

36-Bit Format B - Forward Operation

Storage Address Specified by CCW 1

34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 o

Storage Address Specified by CCW2

~E.IEo IF.IF.IF.IF2IF.IFo 10 10 I 0 10 I 0 I 0 10 I 0 10 I 0 I 0 10 I 0 10 10 I 0 10 I 0 10 I 0 I 0 10 I 0 10 1

Byte count = 4 Data chain to byte count = 2

Stor6ge Address Specified by CCW 1

34 32

Byte count = 2 or status after 2 bytes

o These bit positions are set to zero by hardware on input and ignored on output.

8492
UP UMBER

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference UPDATE LEVEL

Table 6-14. Byte Data Packing on Abnormal Boundaries (continued)

36-Bit Format C - Forward Operation

Storage Address Specified by CCW 1

Data count = 4 or status after 4 bytes

Storage Address Specified by CCWI

34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2

Data count = 5

E3 to Eo are thrown away on input and created from A7 to A4 on output.

Storage Address Specified by CCWI

34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2

Storage Address Specified by CCW 1

Status after 5 bytes with data count greater than 5
E3 to Eo is stored on input, E3 to Eo is transferred to the device.
o These bit positions set to zero by hardware on input and are ignored on output.

o

o

6-60
PAGE

8492 ~ SPERRY UNIVAC 1100/80 S~.m. 6-61
UP~UM.E" Processor and Storage Programmer Reference UPDATE LEVEL PAGE

--~----------~---

Table 6-14. Byte Data Packing on Abnormal Boundaries (continued)

36-Bit Format C - Forward Operation

Storage Address Specified by CCW 1

34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 o

Storage Address Specified by CCW2

Data count = 9

Storage Address Specified by CCW 1

34 32 30

Storage Address Specified by CCW2

18 16 14 12 10 8 6 4 2 o

Storage Address Specified by CCW2

Data count = 4 Data chain to data count = 9

o These bit positions are set to zero by hardware on input and ignored on output.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference

Table 6-14. Byte Data Packing on Abnormal Boundaries (continued)

36-Bit Format C - Forward Operation

Storage Address Specified by CCW 1

34 32 30 28 26 24 22 20 18 16 14 12 10 8 6

Storage Address Specified by CCW2

Data count = 5 Data chained to data count = 4

Storage Address Specified by CCW 1

34 32 30 28 26 24 22 20 18 16 14 12 10 8 6

Storage Address Specified by CCW 1

Storage Address Specified by CCW2

Data count = 6 Data chained to data count = 4

UPDATE LEVEL

4 2

4 2

o

o

6-62
PAGE

U.-oATE L!VEl
8-63

~AG£

8492 ~ SPERRY UNIVAC 1100/80 S~m.
UP-NUMBER Processor and Storage Programmer Reference

- ,----=.--~~,-

6.17. SUBCHANNEL EXPANSION FEATURE AND CHANNEL BASE REGISTER

As described in 6.2.2 and 6.3.1, the subchannel expansion feature enables the channel to maintain
thEt control words for the four or eight (depending on the option) most recently active subchannels
in the channel while storing the control words of the remaining 120 or 124 subchannels in main

,storage. Four storage addresses per subchannel and 51 2 addresses per channel must be reserved
for each channel with the subchannel expansion feature. These addresses are a hardware scratch
pad and are for hardware use only and should not be interrogated or changed by software except
during initialization or error recovery. During system initialization the software must initialize these
addresses by setting equal to 116 bits 24-27 of every fourth address (each address with bits 00-01
eqlUal to 0). The format of the control words held in storage is shown in Table 6-15.

If the mode bits 27-24 = 0001 2, all four words are not used. All other values of the mode bits
indicate a hardware fault.

Each channel that has the subchannel expansion feature has a channel base register that consists
of 15 bits. The channel base register specifies the location of the 512 addresses that are the
channel's scratch pad. The channel base register provides bits 09 through 23 of the storage
addresses that are used when swapping subchannel control words between main storage and the
channel.

6. 18. MASK REGISTER

The interrupt mask register is loaded with the contents of bits 36-71 of the CAW during an LCR
instruction that has bit 00 of the CAW set. One interrupt mask register is provided in each IOU. This
register provides the capability of determining which channel modules are allowed to present
communications or noncommunications interrupts. It also provides a means of selecting which
processor or processors the interrupts are to be sent. The register is broken into four bytes. Two
bytes for each processor. These two bytes are then separated into communiCation or
nOl1communication interrupts. The interrupt mask register has the format shown in Table 6-16. A
set bit suppresses interrupts of the specified type from the corresponding channel module to the
cOHesponding processor; Le., a one bit in position 39 suppresses the reporting of
nOl1communications interrupts on channel module 3 to processor zero. If bit position 57 is also set,
the reporting of noncommunications interrupts on channel module 3 is completely suppressed. An
interrupt that is completely suppressed will be reported when either of the corresponding mask bits
is later changed to zero. Any interrupts that are currently being presented to the processor when
an LCR instruction is received will be reported before the interrupt mask takes effect. In a unit
processor system, software must mask out both communications and noncommunications interrupts
to 1the nonexistent processor during system initialization and each time the LCR instruction is used.

8492
UP-NUMBER

35

35

35

35

35

35

35

36

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPDATE LEVEL

Table 6-15. Scratch Pad Formats for Subchannel Expansion Feature

Not Format
Used Control Mode Data Address

3231 2827 2423

Not CCW Flags Format Not
Used Flags Used Data Count

3231 2423 2019 18 16

Not Device
Used Address Next CCW Address

3231 2423

Not Used

Format above for:

Mode Bits 27-24 = 00102 or 10002 or 1001 2 or 10102 or 11002

Not Not Device
Used Used Mode Address Not Used

3231 2827 2423 18 16

Not Subchannel
Used Device Status Status Data Count

3231 2423 18 15

Not Device
Used Address Next CCW Address

3231 2423

Not Used

Format above for:

Mode Bits 27-24 = 00002 or 0011 2

o

o

o

6-84
PAGE

o

o

o

o

o

8492 ~ SPERRY UNIVAC 1100/80 S~.m. 6-65
UP-NUMIEft Processor and Storage Programmer Reference UPDATE LEVEL PAGE - ,----=----=---~---'----

Tllble 6-16. Interrupt Mask Register

-

Processor 1

Bit Positions of the 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54
CAW

Channel Module * 7 6 5 4 3 2 1 0 * 7 6 5 4 3 2 1 0
Number

,-

Ilnterrupt Type Communications Noncommunications

Processor 0

Bit Position of the 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36
CAW

Cnannel Module * 7 6 5 4 3 2 1 0 * 7 6 5 4 3 2 1 0
Number

Interrupt Type Communications Noncom m u nications

8. 19. INITIAL LOAD

The initial load capability is included in each channel. The initial load operation is performed in only
the 36-bit mode of operation. On a byte or block multiplexer channel, format C (8-bit packed) is
specified, the starting data address is set to MSR, and the byte count is set to 4608 10, On a word
channel, the starting data address is set to MSR and the word count is set to 1024 10, The size of
the initial load boot block is determined by the channel and the device. The channel will terminate
the operation after 1024 10 full 36-bit words have been loaded into storage. If the device presents
status before 1024 10 words have been loaded, the channel immediately terminates the operation and
pr(9Sents an interrupt to the processor.

6.20. BACK-TO-BACK OPERATION (Word Channel Only)

The word channel back-to-back capability is installed by hardware feature and allows the software
to execute block transfers or scatter/gather operations via an I/O channel. Two 151 interfaces on the
same channel are required, an output interface and an input interface. The back-to-back interfaces
must be initialized after the IOU is master cleared, after any hardware or software error on the
back-to-back interfaces, or after a back-to-back operation that did not have the output buffer data
count equal to th~ input buffer data count. The back-to-back interfaces are initialized by using the
following procedure:

1. To the output interface, issue an SIOF instruction that initiates the execution of one CCW. The
CCW must have a forced external function command and a data count of one.

2. Handle the external interrupt from the input interface. This external interrupt was generated
by the forced external function operation on the output interface.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference UPDATE LEVEL

To execute a back-to-back operation the following procedure must be followed:

1. Issue an SIOF instruction to the input interface to activate the input buffer.

2. Issue an SIOF instruction to the output interface to activate the output buffer.

6-66
PAGE

Once the back-to-back interfaces are initialized, many back-to-back operations may be performed
by following the above procedure for each operation. Data chaining is allowed on both the output
and input interfaces for each back-to-back operation, but the total output buffer data count must
equal the total input buffer data count. The use of the DAD, SK, DAL, PCI, and MON CCW flags is
allowed, but command chaining is prohibited.

6.21. PRIORITIES

The control module establishes data handling priority among the eight channel modules. Channel
module 0 has the highest priority and channel module 7 has the lowest priority. The channel module
gives highest priority to data transfers, second highest priority to interrupts, and lowest priority to
instructions. Word channel data handling priority is a homing priority with interface A having the
highest priority, then interfaces B, C, and D with interface D having the lowest priority.

6.22. BASIC PROGRAMMING PROCEDURE

The programmer should use the following basic procedure in order to execute a series of operations
on a byte or block multiplexer device or a word subchannel:

1. Build the list of CCWs, making sure that the correct flags in each CCW are set. Also, build any
necessary external function words or data buffers.

2. Load the address of the first CCW in Xa bits 00-23.

3. Load the u and Xm registers such that u + Xm bits 00-12 specifies the IOU, channel, and device
numbers.

4. Disable I/O interrupts.

5. Issue the SIOF instruction.

6. Test the condition code to determine the result of the SIOF instruction. (Note that the next
instruction is skipped if the condition code equaled 0 and the processor did not time out the
instruction.)

7. If the instruction is not timed out by the processor and a condition code of 0 is received, enable
I/O interrupts and continue with the processor program. If another condition code is received
or the instruction is timed out, the appropriate action should be taken.

8. Wait for the I/O interrupt or interrupts. Use the resultant status to determine if the CCW list
was executed successfully. If the CCW list was terminated before it was completed, the status
will contain enough information to determine how much of the CCW list was executed, and why
the CCW list was terminated before it was completed.

8492 I SPERRY UNIVAC 1100/80 S~.m. I I 6 67
__ UP-NUM8E ___ R __ ~, ___ p_r_o_c_8_ss_o_r_8_n_d_S_t_o_r_8...::.g_8_p_rr_O_g_r_8_m_m_8_r __ R_8_f_8_r8_n_C_8 _____ -IL-U_PD_A_TE_LEVE_L __ ...L._PA_G_E ~ __ .• " _, .

6.23. PROGRAMMING EXAMPLES

For an example of the block multiplexer channel CCW list see Figure 6-3. The execution of this CCW
list is initiated by an SIOF instruction with a CCW address of B0 16. The CCW list is executed as
follows:

1. The channel reads the first CCW and issues the read command to the device.

2. Nine bytes are transferred from the device to the channel, but none of the bytes are written into
storage because the skip data flag is set.

3. The device presents Channel End and Device End status (chaining status).

4. The channel initiates the command chain and issues the Write command to the device.

5. Thirty-six bytes are transferred from the channel to the device. All the bytes are transferred from
the same storage address because the data address lock flag is set.

6. The channel executes a data chain and transfers two bytes from storage address FO 16 and two
bytes from storage address EF 16 because the data address decrement flag is set.

7. The device presents Channel End and Device End status (chaining status).

8. The channel initiates the command chain and executes the Store Subchannel Status command.
A two word CSW is stored at storage address 44 16, In the CSW the next CCW address field
equals 88, the data count field equals zero, and the subchannel and device status fields equal
zero.

9. The channel continues the command chain and issues the read backward command to the
device and then terminates the operation because an illegal combination of format flags is
detected.

10. The device presents Channel End and Device End status.

11. The channel accepts the device status and presents an interrupt request to the processor.

12. The interrupt is acknowledged and a CSW is written with the next CCW address field equal to
BA16, the data count field equal to 116, the Program Check and PCI subchannel status bits set,
and the Channel End and Device End device status bits set.

8492
UP-MUM8ER

~
[><

rx
IX

~ X
~ X

[X X
~ X

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference

Modifier Bits

1

Modifier Bits
~ Write Command

~ o 1 1 0 o 0 o 1 o 0 o 0 o 0 o 0 0 o· 0 0 0 0

[X X 1 0 [X O~ ~ 1 1 1 0 O~ X ~ ~ 0 0 0 0 0 0

t Data Chain
I\~ Format A

30 bit

- Data Address Lock

Checked only for TIC Command
__ --.....;A------..

0 0 1

0 0 0

UPDATE LEVEL
6-68

PAGE

1 0 0 0 0

0 1 0 o 1

Storage
Address

1 1

0 0

o 0 0 0 0 0 0 0 1 1 0 0 0 0 B4
16

o 0 0 () 0 0 0 0 0 0 0 0 0 1 0 0 B5
16

Data Address Decrement
. Command Chain

.- Store Subchannel Status Command
r--~

Modifier Bits
ad Backward Command

[X1 1 1 o 1 1 0 0 0 0 0 o 0 0 o 1 1 0 0 0 0 1

[X 0 0 0 0 0 0 1 0 1 1~ [X X ~ 0 0 0 0 0 0

0 0 1 1 1 1

0 0 0 0 0 0

1 1 1

0 0 0

1

1

B8
16

B9',6

~ Don't care bit
~ Illegal because two Formats are specified

Figure 6-3. Block MultiplBXBr Ch8nnBI

UPDATE LEVEL
6-69

PAGE
8492 ~ SPERRY UNIVAC 1100/80 S~em.
UP-NUMBER Processor and Storage Programmer Reference _ _---=-__ ~----L--._

The interrupt mechanism was assumed to be busy during the execution of this CCW list causing the
PCl's to be overlaid.

For an example of the word channel lSI interface CCW list see Figure 6-4. The execution of this CCW
lis1t is initiated by an SIOF instruction with a CCW address of A2. The CCW list is executed as follows:

1. The channel reads the first CCW and issues the forced external function to the device. The
forced external function contains a Write command for the device.

2. The channel then executes the command chain. The TIC command is executed and the CCW
address field is changed to 54 16.

3. The channel continues the command chain and executes the Write command by activating the
output data buffer.

4. Four words are transferred from the channel to the device. All the words are transferred from
the same storage address because the data address lock flag is set.

5. The channel executes a data chain and transfers three words from storage addresses 29,6'
28 16, and 27 16 because the data address decrement flag is set.

6. The channel executes a command chain and issues a forced external function to the device. The
forced external function contains a Read command for the device.

7. The channel executes the Read command by activating the input buffer.

8. Two words are transferred from the device to the channel but not to storage because the skip
data flag is set.

9. The channel terminates the operation and presents an interrupt request to the processor when
the interrupt mechanism is free.

10. The interrupt is acknowledged and a CSW is written with the next CCW address field equal to
62 16, the data count field equal to zero, and the Monitor and PCI subchannel status bits set.

The interrupt mechanism was assumed to be busy during the execution of the CCW list causing the
PCls to be overlaid. The device was assumed to be non-interrupting. On an 151 interface an external
interrupt immediately terminates the execution of a CCW list.

8492
UP-NUM8ER

SPERRY UNIVAC 1100/80 S~.
Procellor and Storage Programmer Reference UPDATE LEVEL

6-70
PAGE

CDccCfSK~~~~
I N D l

Command Chain

TIC Command
~

Write Command
r-"---.

o 0 0 0 0 0 0 0 0 0 1 001

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A3

A4

A5

o 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 54

o 0 0 0 0 0 0 0 0 0 0 0 0 o 0 55

A Checked only for TIC Command

o 0 0 0 0 0 0 000 o o 0 56

o 0 0 0 0 0 0 0 0 0 0 0 0 0 57

Forced EF Command
~

0 0 0 0 0 0 0 o 1 0

0 0 0 0 0 0 0 0 0 0 0 0

Command Chain

Read Command
r-"---.

~ Don't Care Bit

Figure 6-4. Word Channel 151 Interface Example CCW List

0 0 0

0 0 0

0

1

58

59

60

61

8492 ~ SPERRY UNIVAC 1100/80 Systems 7-1
UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE

--~----------~---

7. Interrupts

7. 11. INTRODUCTION

An interrupt causes the current instruction sequence to be suspended and an instruction sequence
starting at a fixed storage location to be initiated; the fixed address replaces the value in the program
address register. The fixed storage address is associated with the event or condition that caused
the interrupt to be generated, and thereby allows switching to a program to respond to that condition
or event. Excepting those instructions that are explicitly named as interruptible, such as repeated
instructions like BLOCK TRANSFER, the Processor honors interrupts only after the current instruction
is completed and only if the interrupt to be honored is allowed. See Table 7-1 for interrupt priorities.
ThE~ following interrupts are always allowed:

• All p'rogram exception interrupts, including Guard Mode and Addressing Exception interrupts.

• All arithmetic exception interrupts, including Characteristic Overflow, Characteristic Underflow,
and Divide Check interrupts.

• Certain program initiated interrupts, including Executive Request, Test and Set, Quantum Timer,
Breakpoint, and Emulation interrupts.

• Storage Check interrupts caused as the result of transfers between the processor and SIU.

Cer1ain interrupts are disallowed between the execution of a Prevent All Interrupts and Jump (PAIJ)
ins1truction or the occurrence of an interrupt, and the execution of an Allow All Interrupts and Jump
(AAIJ) instruction or User Return (UR) or Load Designator Register (LD) instruction that sets 03. These
incllude the following:

• All I/O interrupts, including those for Normal status, Tabled status, and Machine Check
interrupts. *

• Jump History Stack interrupts.

• Interprocessor interrupts. *
• Dayclock and Real-Time Clock interrupts.

• Storage Check interrupts caused as the result of transfers from the SIU to storage units.

• Power Check interrupts. *

8492 SPERRY UNIVAC 1100/80 Sytrtema I 7 2
___ U_P~ __ UM8 __ E_R ____ ~~ ________ P_r_o_ce_s_s_o_r_a_n_d __ S_t_o_ra_g_e ___ Prro_g_r_a_m_m __ e_r_R_e_f_e_re_n_c_e __________ ~u_~ __ A,nL~EL~ ______ _

* Note that if interrupts are locked out and the processor is stopped via HJ, interprocessor
interrupts and Power Check restoration interrupts are allowed; and if the processor is
stopped in the cleared state, in addition to interprocessor interrupts, I/O normal status
interrupts are allowed if the processor has been select~d for initial load.

Table 7-1. Interrupt Priority

Priority Interrupt Type
0 Immediate Storage Check (Oper Port)

Immediate Storage Check (inst port)
1 Guard Mode (oper port)

Guard Mode (inst port)
2 Addressing Exception

Invalid Instruction
Executive Request
Test and Set
Characteristic Overflow
Characteristic Underflow
Divide Check

3 Emulation
4 Breakpoint
5 Quantum Timer
6 Jump History Stack
7 Power Restored

Power Loss
8 Real Time Clock
9 Dayclock
10 Delayed Storage Check Lower

Delayed Storage Check Upper
11 IOU 0 Machine Check
12 IOU 1 Machine Check
13 IOU 0 Normal Status
14 IOU 1 Normal Status
15 IOU 0 Tabled Status
16 IOU 1 Tabled Status
17 IPI P
18 IPI P+ 1/P-3
19 IPI P+2/P-2
20 IPI P+3/P-1

NOTE:

Priority levels 0 through 5 are internal interrupts, which can be neither locked
out nor deferred (always allowed).

Priority levels 6 through 20 are external interrupts, which can be both locked
out and deferred.

P is the processor number for Interprocessor Interrupts.

8492 ~ SPERRY UNIVAC 1100/80 S~.m. 7-3
UP-HUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE

--~------------~-

7.2. INTERRUPT SEQUENCE

When the central processor unit (CPU) honors an interrupt request, the following events occur:

• The processor state is stored in GRS in three groupings: program status (041-044, 050-052),
addressing status (040, 045-047), and interrupt status (053-055).

• All designator register bits are set to zero except 06 and 07, which are set to one, and 012,
which is not altered.

• External interrupts are prevented from occurring until allowed by an AAIJ or UR or LD instruction.

• Control is transferred to the associated interrupt location. Note that this instruction must be
unconditional jump.

7.2. 1. Pro'gram Status

Program status is stored for all interrupts, and includes the following information:

• Program Return Address - GRS Location 043 for Normal interrupts

GRS Location 051 for Guard Modes

GRS Location 041 for Immediate Storage Checks

• Quantum Timer Value - GRS location 050 for all interrupts.

• Designator Register Value - GRS Location 044 for Normal interrupts

GRS Location 052 for Guard Modes

GRS Location 042 for Immediate Storage Checks

A program return address is the address of the instruction following the last instruction that was fully
eXl9cuted; program control would normally be returned at this point for recoverable errors. The
program return address stored in GRS location 041 or 043 is in the following format:

~ NotUsed

36 34 24 23

Program Return Address

o

The program return address value will vary depending on the operation being performed at the time
of interrupt:

• If an incomplete Block Transfer, search instruction or byte instruction is interrupted, the return
address will be P.

• If a satisfied skip instruction is interrupted, the return address will be P+2.

• If a satisfied jump instruction is interrupted, the return address will be U.

8492
UP-JfUMBER

SPERRY UNIVAC 11 00/80 S~m.
Processor and Storage Programmer Reference UPDATE lEVEL

• If an instruction other than the above is interrupted, the return addre~s will be P+ 1.

7-4
PAGE

The contents of the program address register are changed only by a jump instruction (including User
Return) or interrupt. Instruction references following a jump instruction are made under the same
addressing constraints that conditioned the operand address of the jump instruction that began the
straight line instruction stream.

Bit position 35 of the first word of the two-word packet contains a flag that identifies the correct
program addressing mode. T'he two modes of program address generation include absolute (A= 1),
corresponding to 035=0 and 07=i= 1, and relative (A=O), corresponding to 07=0 or i=O.

Bit positions 18 through 23 of the relative program address are zero unless absolute 24-bit indexing
mode is selected. For straight line instruction sequencing, the relative program address is increased
by one for each instruction that is executed or skipped. This increase is accomplished by twos
complement addition with wraparound at 18 or 24 bits, depending on the value of the A flag.

7.2.2. Addressing Status

Addressing status is not actually stored during the interrupt sequence. The information within this
group is placed in GRS by the software either directly (load, store) or indirectly (LBJ, LAE) and is used
from GRS by the processor for addressing operations. Addressing status includes the following
information:

• Executive bank descriptor table pointer.

• User bank descriptor table pointer.

• Bank descriptor specifications in the following format:

~o 0-0 0-0 BOlO E21 o 0 - 0 BOI 2

~1 0 1 0 - 0 BOI 1 E31 1 0 - 0 BOI 3

36 34 33 32 30 29 18 17 16 16 14 12 11 o

7.2.3. Interrupt Status

Interrupt status is information associated with a particular type of interrupt, and is stored only when
its type of interrupt occurs. Immediate Storage Check status is stored in GRS location 054, Guard
Mode status is stored in GRS location 053, all other processor generated interrupt status is stored
in the Normal status location, GRS 055. Interrupt status is associated with the following types of
interrupts:

• Immediate Storage Check interrupts

• Guard Mode interrupt

UPDATE LEVEL
7-5

PAGE
8492 ~ SPERRY UNIVAC 1100/80 S~em.
UP-NUMBER Processor and Storage Programmer Reference

_ __~_-------L---'----

• Executive Request, Test and Set, and Invalid Instruction interrupts

• Delayed Storage Check interrupts

• Breakpoint and Emulation interrupts

• Power Check interrupt

• Addressing Exception interrupt

• Interprocessor interrupt

7.3. INTERRUPT TYPES

The processor provides twenty interrupt priorities. The interrupt types are shown in Table 7-1.

7.~1.1. Program Exception Interrupts

Invialid Instruction - This interrupt occurs when the processor attempts to execute an instruction with
an invalid function code. The operand address of the instruction (24 bits of U) is stored in GRS as
interrupt status.

Guard Mode - This interrupt occurs in the following cases:

• When 02 equals one, and the execution of a privileged instruction is attempted.

• When violating the storage limits when designator register bit 07 is zero.

• When any reference is made to an SIU that has its interface to the processor disabled.

• When attempting to store in GRS locations other than those allowed for the user (406 through
10°8 and 1208 through 1778 when the designator register bit 2 (02) is one.

• When attempting to write into a storage area specified by bank descriptor register (BORO, 1,
2, or 3) for which the corresponding Write Protect designator bit (013 through 016) is one.

SeEl Figure 7-1 for the format of the Guard Mode interrupt status stored in GRS during the interrupt
sequence.

Addressing Exception - This interrupt occurs in the following cases:

• E bit violation - If the E bit (bit 35) from Xa of an LBJ, LlJ or LoJ instruction is one and 019
is zero.

• Table length violation - If a bank descriptor index value from Xa of an LBJ, LlJ or LOJ instruction
is greater than the selected BOT pionter length value.

• Residency interrupt - If the R flag of the new bank descriptor is one.

• Entry point violation - If the V flag of the new bank descriptor is one.

• Use count overflow on LBJ, LlJ, or LOJ new bank descriptor.

8492
UP-HUMBER

SPERRY UNIVAC 1100/80 SY.Stems
Processor and Storage Programmer Reference

• Use count underflow on LBJ, LlJ, or LOJ old bank descriptor.

• Use count decreased to zero and C flag was one.

UPDATE LEVEL
7-6

PAGE

See Figure 7-2 for the format of the Addressing Exception interrupt stored in GRS during the interrupt
sequence. The program return address stored for this interrupt is P + 1 for E bit or table length
violations, and the jump to address for all other violations.

7.3.2. Arithmetic Exception Interrupts

An interrupt occurs in the following cases only if designator register bit 20 (020) is one.

Characteristic Overflow - Occurs when the exponent value of a floating-point result is greater than
+ 127 10 (single precision) or + 1023 10 (double precision). When this condition is detected, 022 is
set to one.

Characteristic Underflow - Occurs when the exponent value of a floating-point result is less than
-128 10 (single precision) or -1024 10 (double precision). When this condition is detected, 021 is set
to one.

Divide Check - Occurs when the magnitude of the quotient exceeds the range of the specified register.
When this condition is detected, 023 is set to one.

Zeros

36 34 33 32 31 30 29 28 27 26 o

Bit 35 Write protection violation.

Bits 34-33 BOR number associated with write protection violation.

Bit 32 Storage limits violation.

Bit 31 Reference to disabled storage.

Bit 30 Is zero.

Bit 29 Interrupt lockout exceeded.

Bit 28 Control register violation.

Bit 27 Privileged instruction violation

Bit 26-0 Are zeros.

Figure 7-1. Format of Guard Mode Interrupt Status

8492 ~ SPERRY UNIVAC 1100/80 Systems I I 7-7
UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE _ . ,---=-------...:--==----=-----,.------'-----'----

I ~ I V I E I R,.l.I_~.L1 T----LI ____ N_e_w_BD_I ____ -LI_~LI B_D_R-1M_°-L~_iL~--L--_'--_-"~~~_-_O_I_d_B_D_I_ ·-1
35 34 33 32 31 30 29

Bit 35

Bit 34

Bit 33

Bit 32

Bit 31

Bit 30

Bits 29-18

Bit 17

IBits 16-15

IBit 14

IBit 13

IBit 12

IBits 11-0

NOTE:

18 17 16 16 14 13 12 11 o

New bank descriptor E flag specification from Xa.

The V flag indicates an entry point violation on the new bank descriptor.

The E flag indicates an E bit violation on the new bank descriptor.

The R flag indicates the residency flag of the new bank descriptor was one.

The CO flag indicates a use count overflow on the new bank descriptor.

The T flag indicates a table length violation on the new bank descriptor.

New bank descriptor BDI specification from Xa.

Old bank descriptor E flag specification from GRS.

The bank descriptor register specification from Xa.

Is zero.

The CU flag indicates a use count underflow on the old bank descriptor.

The CZ flag indicates the old bank descriptor use count was decreased from one
to zero and the C flag was one.

Old bank descriptor BDI specification from GRS.

This interrupt results only from the execution of an LBJ, LlJ or LDJ instruction. The new bank
descriptor specifications are contained in Xa before execution; the old bank descriptor specifications
are contained in GRS locations 046 and 047, and are placed in Xa during execution.

Figure 7-2. Format of Addressing Exception Interrupt Status

7 .~ •. 3. Program-Initiated Interrupts

Executive Request - This interrupt occurs as a result of executing an Executive Request (ER)
instruction. This instruction allows a worker program to release control of the processor to ~he
EXEtcutive System. The operand address of the instruction (24 bits of U) is stored in GRS (0222) as
int~arrupt status.

Test and Set - This interrupt occurs as a result of executing a Test and Set (TS) instruction if bit 30
of the operand is one, or as a result of executing a Test and Set Alternate (TSA) instruction. The
operand address of the instruction (24 bits of U) is stored in GRS (0224) as interrupt status.

8492
UP-HUMBER

SPERRY UNIVAC 1100/80 SYltem8
Processor and Storage Programmer Reference UPDATE LEVEL

7-8
PAGE

Breakpiont - This interrupt occurs when an equality comparison is made between the contents of
the breakpoint register and an instruction or operand address. The breakpoint interrupt condition
will be discarded if a higher priority internal interrupt occurs within the same instruction. See Figure
7-3 for the format of the Breakpoint interrupt status.

Jump History Stack - This interrupt occurs when the jump history stack is full, if the S flag (bit 34)
of the breakpoint register is one.

Absolute Breakpoint Address

35 33 32 31 30 29 2423 o

Bits 35-33 Are zeros.

Bit 32 The P flag indicates an instruction address breakpoint.

Bit 31 The R flag indicates an operand address breakpoint during a read operation.

Bit 30 The W flag indicates an operand address breakpoint during a write operation.

Bit 29-24 Are zeros.

Bits 23-0 The absolute breakpoint address.

NOTE:

For both instruction address breakpoints (P flag) and operand address breakpoints (R or W flags), the
instruction is executed and the program return address is captured.

FigurB 7-3. Format of BrBakpoint IntBrrupt Status

7.3.4. Interprocessor Interrupt

This interrupt occurs when a processor in a system executes an Initiate Interprocessor Interrupt (III)
instruction. The interrupting processor number can be determined from the status word stored in
GRS during the interrupt sequence. (See Figure 7-4 for format of the status word.)

35

Zeros

Bits 35 - 2
Bits 1 - 0

Are zeros.
Interrupting Processor Number

Figure 7-4. Format of InterproCBssor IntBrrupt Status

210

8492 ~ SPERRY UNIVAC 1100/80 Systems 7-9
UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE _____________ , _____________________ ~~ __ ~ ________________________ _L __________ ~ __ _

7.3.5. Clock Interrupts

Ouantum Timer - A Ouantum Timer interrupt occurs when the quantum timer value reaches zero.

Re,al-Time Clock - This interrupt occurs when the contents of the lower 18 bits of the real-time clock
(RTC) register (GRS address 1008) is decreased through zero. The value contained in the RTC is
decreased by one every 200 microseconds. The RTC oscillator is accurate to :!: 0.02 percent.

Dayclock - This interrupt request is made to all processors in the system once every 6.5536 seconds.
Only one processor may honor each request. The dayclock value is increased by one every 200
microseconds.

7.3.6. Storage Check Interrupts

Storage Check interrupts are caused by conditions that are divided into two groups: immediate
interrupt conditions, which are related to the current processor storage reference, and delayed
interrupt conditions, which mayor may not be related to the current operation. Immediate interrupt
conditions include check conditions that occur on transfers between the processor and SIU. They
may terminate the instruction and cannot be prevented by an interrupt or PAIJ instruction. Delayed
interrupt conditions include internal SIU checks and check conditions that occur on transfers from
the StU to main storage units. These conditions do not affect the current instruction and may be
deferred by an interrupt or PAIJ instruction.

7.3.6. 1. Immediate Storage Checks

Immediate Storage Check interrupt status word is shown in Figure 7-5. An immediate check interrupt
occurs:

• If the SIU detects a parity error on the address, controls, or write data from the processor.

• If the processor detects a parity error on the read data from the SIU.

• If the SIU detects an address that references a non-available storage location.

The Immediate Storage Check interrupt status word provides information to assist in performing
software instruction retry (no retry is actually done by hardware). The retry information is provided
only as a result of an Immediate Storage Check interrupt. On all Immediate Storage Checks the P
value captured is P of the instruction having the error plus one, regardless of whether the error
occurred on the instruction or on its operand(s). Two bits are used to define retry status, bit 25 defines
whether the check occurred on an instruction fetch or an operand read/write. If bit 25 = 1, the check
occurred on an instruction fetch and retry can be done by decrementing P by one and returning to
that point without further analysis. If bit 25 = 0, the check occurred on an operand read/write and
further analysis is required.

In general, bit 25 = 0 analysis must determine if the instruction on whose operand cycle the check
occurred had the indirect bit or incrementation bit set. If indirection was specified retry will not be
successful since one or more cycles of indirection may have occurred. If h was set, incrementation
will have occurred, and will occur again if retry is attempted.

Bit 24 defines the state of execution at the point of Immediate check on an operand cycle. If bit 24
= 0, the initial values are intact (except as described above for indirect and increment) and retry can
be attempted. If bit 24 = 1 execution will have proceeded to a state where retry is not possible.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference

F A W W R N R R
A 0 P C D 0 A 0 0 0 1 2 Absolute Address

35 34 33 32 31 30 29 28 27 28 25 24 23

UPDATE LEVEL

o

7-10
PAGE

Bit 35 Indicates that the Immediate Storage Check occurred while fetching an
instruction from any interrupt entrance fixed address.

Bit 34 Is zero.

Bit 33 Indicates an address parity check.

Bit 32 Indicates a control parity check.

Bit 31 Indicates a write data parity check.

Bit 30 Indicates a parity check on read data received by the processor.

Bit 29 Specifies that the addressed storage is not available.

Bit 28-26 Are zero.

Bit 25 (Retry 1) = 0 Immediate check on operand.

= 1 Immediate check on instruction.

Bit 24 (Retry 2) = 0 Retry possible on operand check.

= 1 Retry not possible

Bit 23-0 * Absolute address associated with check condition.

* When Bit 35 is a 1, the absolute address does not contain the MSR value, but is the fixed
address relative to MSR.

Figure 7-6. Format of Immediate Storage Check Interrupt Status

7.3.6.2. Delayed Storage Check Interrupts

Delayed Storage Check interrupts occur when errors are detected either within the SIU or during data
transfer between the SIU and MSU. This error condition is reported to the processor by a Storage
Check Interrupt Status Request and a status word.

7.3.6.2. 1. SIU/MSU Errors and Internal SIU Errors

Any time an error occurs in a transfer between the SIU and an MSU, a Storage Check interrupt status
request will be sent to the processors. The first error condition is retained in a Storage Check interrupt
status format word (Figure 7-6) until read at which time the next condition will be loaded into the
format word. The handling of errors is as follows:

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference

SIU/MSU Errors

UPDATE LEVEL
7-11

PAGE

• SIU to MSU address parity error (read cycle) - MSU read data is not loaded and a "not available"
is sent to the requestor.

• SIU to MSU write data parity error - The MSU will write even if a write data parity error has
occurred.

• SIU to MSU address parity error (write cycle) - The MSU will abort the write cycle, and abort
the request which forced the write.

• MSU to SIU read data error (detected at the SIU) - The data is loaded in error into the buffer
segments.

• Request to MSU that is not available - The requester's cycle is aborted and a "not available" is
sent to that requester.

• MSU data check (corrected data) - Corrected data has been sent to the SIU.

• MSU data check (uncorrected data) - Uncorrected data has been sent from the MSU to SIU.

Sit) Internal Errors

• SIU control is unable to match the block address in both segments. - The requester's cycle is
aborted and a "not available" is sent to that requester. A Storage Check interrupt status request
is sent to the processors. The absolute address in the status format (Figure 7-6) contains the
least recently used (LRU) block-and-set address of the buffer segment which caused the miss.

• Duplicate age detected - This error condition is displayed on the SIU maintenance panel and
a Storage Check interrupt status request is sent to the processor. This error condition could
result in the SIU control being unable to match the block address in both segments.

• Parity error in the block-set-writeback-validity bits during a match reference to the buffer access
section. - This error results in a Storage Check interrupt status request being sent to the
processor and a Storage Check interrupt status format word. An MSU writeback will be aborted
if the error occurred during an SIU control read.

Request attempts after detection of an SIU internal error will not be honored until the affected SIU
half has been cleared via a check reset, clear with initialize, or any clear from the exerciser. Before
clearing the SIU half, the manual read tag buffer capability of the exerciser should be utilized.

Fail-Soft requirements can be met by utilizing the second SIU half via an auto recovery or manual
reboot.

When an address or data parity error occurs between the SIU and MSU, the SIU will perform a retry.
The Storage Check interrupt status request is sent to the processor and the Storage Check interrupt
status word is loaded in the SIU register after the retry.

7.3.6.2.2. Storage Check Interrupt Status

Storage Check interrupt status is used to report SIU to MSU parity checks, MSU to SIU parity checks,
offline or not installed MSUs, retry conditions on the SIU/MSU interface, and internal SIU errors.
Figure 7-6 shows the format of the Storage Check interrupt status word as presented to the processor
by the SIU.

8492
UP~UMBER

SPERRY UNIVAC 1100/10 S~m.
Processor and Storage Programmer Reference UPDATE LEVEL

The error conditions which affect the Storage Check interrupt status are as follows:

• Unsuccessful Retry

7-12
PAGE

A check condition was detected during the retry operation. Bit 35 in the Storage Check interrupt
status is set to the active state.

• Parity Check in Tag Buffer

A writeback operation (if needed) will not be initiated. A retry operation is not initiated. Bit 34
in the Storage Check interrupt status is set to the active state.

• Duplicate Age Detected

A retry operation is not initiated. Bit 33 in the Storage Check interrupt status is set to the active
state.

• SIU Unable to Match lRU Address in Both Segments

An Address Not Available is sent to the requester. A retry operation is not initiated. Bit 32 in
the Storage Check interrupt status is set to the active state.

• Request to MSU that is Not Available

An Address Not Available is sent to the requester. A retry operation is not initiated. Bit 31 in
the Storage Check interrupt status is set to the active state.

• SIU to MSU Write Address Check

A retry operation is initiated. Bit 29 in the Storage Check interrupt status is set to the active
state.

• SIU to MSU Read Address Check

A retry operation is initiated. An Address Not Available is sent to the requester if the retry fails.
Bit 28 in the Storage Check interrupt status is set to the active state.

• MSU to SIU Read Data Check (Detected at SIU Interface)

A retry operation is initiated. The data is loaded parity incorrect into the SIU Buffer. If the parity
check pertains to the word being addressed, the requester will detect a parity check at his
interface. Bit 27 in the Storage Check interrupt status is set to the active state.

• MSU to SIU Connection interrupt

A retry operation is n.2! initiated. Bit 26 in the Storage Check interrupt status is set to the active
state.

• MSU to SIU Multiple Uncorrected Error

A retry operation is initiated. The data is loaded into the SIU data buffer as it was received from
the MSU. Bit 25 in the Storage Check interrupt status is set to the active state.

More than one status bit can be set for one operation; i.e., the retry bit will augment original status
if the retry was unsuccessful.

UP-NUMBER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPDATE LEVEL

7-13
'AGE

8492 ~
- ,----~~-

Only one Storage Check interrupt status request (SCISR) is sent to the processors for each
requester-initiated operation. The SCISR is not raised until after the retry operation has been
attempted.

A retry operation is initiated for all check conditions detected on the interface between the SIU and
MSU if the addressed MSU is available.

The Storage Check interrupt status is not cleared until a processor acknowledges the request.
Additional storage check status conditions are lost if they are detected after the Storage Check
int(errupt status request is made and before the SIU receives the acknowledge from a processor.

R T A LM W W R RM M S
E P G R 0 0 A A 0 C U 0 Absolute Address FGI E
T C E U L C C C C 0 0 G

35 34 33 32 31 30 29 28 27 26 25 24 23 3 2 1 0

Bit

:35 RET Unsuccessful Retry

:34 TPC Parity Check in Tag Buffer

:33 AGE Duplicate Age Detected

32 LRU SIU Unable to Match LRU Address in Both Segments

:31 MOL Request to MSU that is Not Available

30 WDC SIU to MSU Write Data Check

29 WAC SIU to MSU Write Address Check

28 RAC SIU to MSU Read Address Check

27 ROC MSU to SIU Read Data Check

26 MCD MSU

25 MUD MSU

() SEG Segment Designator for Internal SIU Checks (TPC, AGE, and LRU)

Bits 1 and 2 MSU Failing Group Indentification (MSU Read Data Only)

00 First Double Word Check

01 Second Double Word Check

10 Third Double Word Check

1 1 Fourth Double Word Check

Figure 7-6. Storage Check Interrupt Status Word

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPDATE LEVEL

7-14
PAGE

7.3.7. Power Check Interrupt

A Power Check occurs when a system or processor power check condition is detected due to a power
service interruption or failure. Power Check interrupt status is stored in GRS during the interrupt
sequence.

The format of the Power Check interrupt status word is shown in Figure 7-7 and provides for early
warning power loss detection and power restoration indication.

35

Bits 35-2

Bit 1

Bit 0

NOTE:

Zeros

2 1 0

Are zeros.

The L bit indicates that a power loss condition has been detected and processor
power will drop after a lOOms grace period, unless within that period the power
loss condition is removed (power restoration has occurred).

The R bit indicates that power has been restored following a power loss
indication, but within the lOOms grace period. This interrupt condition is not
locked out when the processor is stopped following a Power Check power loss
interrupt.

If both Land R are one, it means that another power loss that had not yet been reported occurred
after a recovery.

Figure 7-7. Power Check Interrupt Status

7.3.8. Byte status Code

A 7-bit status code is stored in the BB2 field of Staging Register 3 (SR3) either upon successful
completion of the instruction or upon detection of an error condition which prevents completion
during the execution of the following instructions: Byte to Binary Single Integer Convert (33, 10),
Byte to Binary Double Integer Convert (33, 11), Byte to Single Floating Convert (33, 14), Byte to
Double Floating Convert (33, 15), Byte Add (37, 06) and Byte Add Negative (37, 07). Table 7-2
contains a definition of the seven status bits. Table 7-3 shows a general input format which is
acceptable to the byte-to-floating instructions 37, 14 and 37, 1 5.

Successful completion of an instruction results in the storing of an all-zero status word except for
a decimal overflow for the byte add and add negative instructions (37, 06 and 37, 07) or a missing
mantissa field for the byte-to-floating instructions (33, 14, and 33, 15).

8492 SPERRY UNIVAC 1100/80 sp;ems I I 7 15
....:UP-N:.:......:.=U=MI=ER:..:......._---1 _____ P_ro_c_8_s_s_o_r_8_n_d_S_t_o_r_8..:..g_8_r_o..:g:....r_8_rn_rn_8_r _R_8_f_8_r8_n_c_8 _____ ...1_U_PD_A_TE_LEV_E_L __ .L.p_A_GE_~ ___ ~ __

Table 7-2. Byte Status Code Definition

BB2 - Bit 0 - Format Error

Set for instructions 33, 10 and 33, 11 if:

Set for instructions 37,06 and 37, 07 if:

Set for instructions 33, 14 and 33, 15 if:

BB2 - Bit 1 - Underflow

Set for instruction 33, 14 if:

Set for instruction 33, 15 if:

Set for instructions 33, 14 and 33, 15 if:

BB2 - Bit 2 - Overflow

Set for instruction 33, 10 if:

Set for instruction 33, 11 if:

Set for instructions 37, 06 and 36, 07 if:

Set for instruction 33, 14 if:

Byte not digit or blank (checked on all
but last byte) or least significant four
bits of last byte greater than nine.

Byte not digit (checked on all but first
byte) or least significant four bits or
first bytes (E and F) greater than nine.

a. Two signs in string not separated
by at least one nonblank
character.

b. Two decimal points in mantissa.

c. Significant character not found.

d. Illegal character in string.

e. Illegal character in exponent.

f. Decimal point last character and
no digit in string.

g. Sign last character in string.

Magnitude of input too small to
represent in single-precision floating
point format.

Magnitude of input too small to
represent in double-precision floating
point format.

Exponent negative and power of ten
too small to represent in
double-precision floating point format.

Magnitude of input too large to
represent in 35 binary bits.

Magnitude of input too large to
represent in 71 binary bits.

Decimal add overflow.

Magnitude of input too large to
represent in single-precision floating
point format.

8492
UP-NUMBER

SPERRY UNIVAC 1100/10 8YJtemI
Proc ••• or and Storage Programmer Reference UPDATE LEVEL

7-16
PAGE

r.bI. 7-2. B~ Stlltu. Code Dtlf1nltion (continutHIJ

Set for instruction 33, 15 if:

Set for instructions 33, 14 and 33, 15 if:

BB2 - Bit 3 - Decimal Point Error

Set for instructions 33, 14 and 33, 15 if:

BB2 - Bit 4 - Not Signifi~ant Character Found

Set for instructions 33, 14 and 33, 15 if:

BB2 - Bit 5 - Exponent Found

Set for instructions 33, 14 and 33, 15

BB2 - Bit 6 - Mode Error

Set for instructions 33, 10; 33, 11; 33,
14; and 33, 15 if:

Magnitude of input too large to
represent in double-precision floating
point format.

Mantissa interpreted as integer too
large to represent in 60 binary bits.

a. Decimal point count greater than
31.

b. Tw~ decimal points in mantissa.

c. Decimal point last character and
no digit in string.

a. Bits 0, 3, or 6 set and significant
character not read yet.

b. Mantissa field does not contain at
least one digit (a blank following
a decimal point is considered a
digit).

c. String does not contain at least
one nonblank and "onsign
character.

Bits 0, 1, 2, 3, or 6 set and exponent
field detected.

Six or nine bit mode not selected rN
bit) on one of the byte strings.

T.bl. 7-3. Gener.1 Input Format for BytlJ-to-Floating Instructions

Byte String

Fields: B MS M ED ES E

Valid Characters: 666 ... :!: Digit, Dl.\l.\l.\ ... :! Digits or
Decimal or El.\l.\l.\ ... l.\l.\l.\ ...
Point, or
6l.\6 ...

UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL
7-17

PAGE
8492 ~ SPERRY UNIVAC 1100/80 S~.m.

- ,----~~-

T.blll 7-3. Gllnllr."nput Form.t for Byts-to-Fl06tinl1ln6tructlon6 (continutHI)

B Leading blank ~) characters. Blanks in this field will be ignored.

MS Mantissa sign: field may include one plus (+) or minus (-) character.

M Mantissa: first digit or decimal point character indicates start of field. Blanks in this field
will be interpreted as zeros.

ED Exponent delineator: field may include either a 0 or E character followed by blanks. Blanks
in this field will be ignored.

ES Exponent sign: field may include one plus (+) or minus (-) character.

E Exponent: field may include digits or blanks. Blanks in this field will be interpreted as zeros.

NOTE:

Any of the fields may be included or omitted in the input byte string subject only to the limitations
listud below:

1. The valid characters indicated for each field are the only allowable characters.

2. The Mantissa Sign (MS) and the Exponent Sign (ES) must be separated by at least one
nonblank character.

3. The last character in the string cannot be a sign character.

4. Overflow will occur if the number is too large to represent in single-precision format for
the Byte to Single Floating Convert (j=33, 14) instruction or double-precision format for
the Byte to Double Floating Convert (j=33, 15) instruction.

5. Underflow will occur if the number is too small to represent in single-precision format for
the Byte to Single Floating Convert (j=33, 14) instruction or double-precision format for
the Byte to Double Floating Convert (j=33, 15) instruction.

6. Underflow will occur if the exponent alone is too small to represent in double-precision
floating-point format.

7. The mantissa must be representable in 60 binary bits when it is interpreted as an integer;
Le., ignoring the decimal point.

8. The decimal point count (number of digits or blanks to the right of the decimal point) must
not be greater than 31.

9. Two decimal points in the mantissa will be detected as an error.

10. At least one nonblank and one nonsign character must be included in the string.

11. If the last character is a decimal point, it must be preceded by at least one nonblank and
one nonsign character.

8492
ur-NUII8ER

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference

7.3.9. Multi-Processor-Interrupt Synchronization

UPDATE lEVEL
1-18

PAGE

All external interrupt requests; for example, those generated by 10Us, are presented to each processor
in the System. Therefore, an interlocked synchronization mechanism is provided to assure that only
one processor actually accepts the interrupt request. This interlock is provided as part of the
interprocessor interrupt network and consists of four lines: one incoming select line, one incoming
select acknowledge, one outgoing select line, and one outgoing select acknowledge:

Incoming Select Outgoing Select
.. "-

.... / ,

CPU
In Select Ack Out Select Ack

" It"

"' I'

The outgoing lines of one processor are connected to the incoming select lines of another processor,
forming a ring. A processor is allowed to honor an interrupt request between the time the incoming
select is acknowledged and the time the outgoing select is propagated. The time available for
honoring interrupt requests shall be a function of processor design: sufficient to allow examination
of requests but not so long that system interrupt response time is impaired. An acceptable value
might range between 800 and 2000 nanoseconds per processor. If a decision is made by a processor
to honor an interrupt request, the propagation of the outgoing select is delayed until the interrupt
request is acknowledged and the interrupt request is dropped.

A processor will retain the interrupt interlock by not passing the interrupt select in a unit processor
system; also in a multiprocessor system where the other processor is off line or powered down, and
if, during initial load, that processor is selected for taking the initial load interrupt. The system
transition unit will provide this information to each unit.

7.4. INPUT/OUTPUT INTERRUPTS

There are three classes of 1/0 interrupts: normal interrupts, tabled interrupts, and machine check
interrupts. status conditions for the status table subchannel, all shared subchannels, and nonshared
subchannels on a block multiplexer channel are reported by the normal interrupt mechanism. Status
conditions for nonshared subchannels on a byte multiplexer channel or word channel are reported
by the tabled interrupt mechanism. IOU or channel status conditions are reported by the machine
check interrupt mechanism. IOU or channel status is any status not associated with a particular
subchannel gr device.

7.4.1. Machine Check Interrupts

If the control module or a channel detects status not associated with a particular device or
subchannel, a Machine Check interrupt request is generated. When the Machine Check interrurt is
acknowledged, an lAW is stored in the fixed lAW address of the processor that acknowledged the
interrupt. Bits 00-07, 13-15, and 24-35 of the lAW are meaningless. Bits 08-12 of the lAW specify
the IOU and channel number associated with the Machine Check interrupt. Bits 16-23 of the lAW
are master bitted to indicate the condition or conditions that caused the Machine Check intern,:pt to
be generated.

8492 ~ SPERRY UNIVAC 1100/80 S~.m.
UP-NUM8ER Processor and Storage Programmer Reference _ ,~----=-----=---_--L--~-

7-19
PAGE UPDATE LEVEL

Machine Check lAW

Not Used
Not II I Not use:-] MCI Bits Used CM

35 25 24 23 16 15 13 12 11 8 7 0

Machine Check Indicator Bits

CM Bits 8-11 Channel module number

1 Bit 12

Bit 16

Bit 17

Bit 18

Bit 19

Bit 20

Bit 21

Bit 22

Bit 23

IOU number

An interface control signal error or device address parity error prevented subchannel
identification during a control unit initiated selection sequence. This bit is not used
on a word channel.

A storage error occurred when the channel attempted to read the second word of the
CAW during a Load Channel Register operation.

A storage error occurred when the channel attempted to write a channel status word
for a Non-Tabled interrupt or an I/O instruction.

A storage error occurred when the channel attempted to write a channel status word
for a Tabled interrupt.

A storage error occurred when the channel was attempting to write the preceding
interrupt address word.

A storage error occurred when the channel module attempted to write a control word
for one of the 128 nonshared subchannels into storage.

A storage error occurred when the IOU control module attempted to read the second
word of the CAW during a Load Channel Register operation.

A storage error occurred when the IOU control module attempted to read the first
word of the CAW.

7 .~~.2. Normal Interrupts

If the status table subchannel, any shared subchannel, or a block multiplexer nonshared subchannel
detects status conditions, a Normal interrupt request is generated. When the Normal interrupt is
acknowledged, an lAW and CSW are stored in the fixed lAW and CSW addresses of the processor
that acknowledged the interrupt. Bits 13-23 and 25-35 of the lAW are meaningless for a Normal
intE.rrupt. If bit 24 of the lAW is set, the interrupt is for the status table subchannel in the IOU and
channel specified by bits 08-12 of the lAW. The device address field (bits 00-07) is not interpreted.
ThEt associated CSW contains status from the status table subchannel. If bit 24 of the lAW is not
set" bits 00-12 contain the IOU and channel address associated with the interrupt. On a byte or block
multiplexer channel, the device address field (bits 00-07) specifies the device. On a word channel,
the device address field specifies only the subchannel. The as!l;ociated CSW contains status for the
device or subchannel specified by the device address field of the lAW.

8492
UP-NUMBER

SPERRY UNIVAC 11 00/80 S~m.
Processor and Storage Programmer Reference UPDATE LEVEL

Normal Interrupt lAW and CSW for a Byte or Block Multiplexer Channel

lAW

Not Used Not Used Not Used

35 26 24 23 13 12 11 8 7

IOU Number

CM Channel Module Number

CSW

Not
Used Device Address Next CCW Address

35 32 31 24 23

Not
Used Device Status Subchannel Status Residual Data Count

71 68 67 60 69 62 61

Not Used

107

o

o

36

72

7-20
PAGE

UPDATE LEVEL
7-21

PAGE
8492 ~ SPERRY UNIVAC 1100/80 System.
UP-NUMBER Processor and Storage Programmer Reference - ,----=-------'--~-

Normal Interrupt lAW and CSW for Word Channel

35

lAW

Not Used H Not Used DA J
25 24 23 13 12 11 8 7 o

IOU Number

CM Channel Module Number

DA Device Address

151 bits 4-7 contain the subchannel address and bits 0-3 are meaningless.
ESI bits 0-7 contain the device address.

CSW

[
Not

Used Device Address Next CCW Address

[

35 32 31

Not

24 23 o

151 bits 28-31 contain subchannel address and bits 24-27 are meaningless.
ESI bits 24-31 contain device address.

Used EI 0000000 Subchannel Status Residual Data Count

71 68 87 86 80 59 52 51 36

EI 0 means bits 72 to 107 are meaningless

1 means bits 72 to 107 contain external interrupt status word

[External Interrupt Status Word if Bit 67 is Set

------------1
107 72

8492
ur-MJM8ER

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference UPDATE LEVEL

Normal Interrupt lAW and CSW for Status Table Subchannel

lAW

Not Used Not Used Not Used

35 25 24 23 13 12 11 8 7

IOU Number

CM Channel Module Number

CSW

Not
Used Not Used Next CCW Address of the Status Table Subchannel

35 32 31

Not
Used

24 23

0000000

71 88 87 80 59

SC

52 51

SC Subchannel status of the status table subchannel

ROC Residual data count of the status table subchannel

Not Used

107

7.4.3. Tabled Interrupts

ROC

o

o

38

7-22
PAGE

72

Status for a nonshared subchannel on a byte multiplexer channel or word channel (communications
status) is stored in a status table under the control of the status table subchannel. There is one status
table subchannel per channel. If the status table subchannel is not active when the nonshared
subchannel status conditions are detected, the status is lost and the communications subchannel is
returned to the available state. If the status table subchannel is active, a TSW containing the
communications subchannel status is stored at the address specified by the status table and a Tabled
interrupt request is generated. If another communications subchannel detects status conditions
before the Tabled interrupt is acknowledged, its status is stored in a TSW at the address specified
by the status table. The Tabled interrupt request is reset. Thus, a single Tabled interrupt request

8492 I SPERRY UNIVAC 1100/80 S~m* I 7 23
__ UP-MJMBER ____ ~. ___ P_r_o_c_e_ss_o_r_8_n_d_S_t_o_ra_g_e __ r_o_g_r8_m_m_e_r_R_e_f_e_re_n_c_e _____ ...L.-..uPO_ATE_LEVE_L __ ~-___ ._._._

may report several entries (TSWs) in the status table. When the Tabled interrupt is acknowledged,
an lAW and CSW are stored in the fixed lAW and CSW addresses of the processor that acknowledged
the interrupt. Bits 13-35 of the lAW are meaningless for a Tabled interrupt. Bits 08-12 specify the
IOU and channel. Bits 00-07 specify the device address of the last entry in the status table. The
as!~ociated CSW contains the status of the status table. The subchannel status field of the CSW is
cleared.

Tabled interrupt lAW and CSW

lAW

Not Used DA

35 13 12 11 8 7 o

IOU Number

CM Channel Module Number

DA Device address of device that most recently made an entry in the status table.

CSW

Next CCW Address of the Status Table Subchannel [Not Used
__ -------L ___ ------.-.J

36 24 23 o

[
Not

Used 0000000 0000000 RDC

71 88 87 80 69 62 61 36

ROC Residual data count of the status table subchannel

[Not Used
- ________ -.----l

107 72

8492 ~ SPERRY UNIVAC 1100/80 S~em. I I 8 1
UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE-_ _ __ -=----=----------L-----'-

8. Executive Control

8. 1. GENERAL

The 1100/80 Processor operates under the control of an Executive program which controls and
coordinates the activities of the combined hardware and software systems and has exclusive use of
certain control capabilities. By the use of bank descriptors, it can relocate any program in main
storage. It provides storage protection through the use of storage limits registers. The bank
descriptor specifications are contained in the general register stack (GRS). The bank descriptors are
controlled by the Executive program for itself and for user programs. However, the user programs,
through the LBJ, LlJ and LDJ instructions, are allowed to modify part of the designator register from
a table prepared by the Executive program. The user programs are also allowed to modify several
of the control bits by using the Load DR Designators instruction (LPD, see 5.13.1). The operations
related to and affected by the contents of the bank descriptors are explained in this section.

8.:Z. PROCESSOR STATE

Th,e processor state is defined as information contained in the processor and required to describe
a program activity. This includes the bank descriptor information, the designator register, the relative
program address and the general register stack (GRS). The processor state is automatically saved
in GRS when an interrupt occurs. The designator register and relative program address, can also
be stored by instruction. Each element of the program state can be loaded by instruction, and certain
elelments may be loaded in groups to facilitate the orderly sequencing of program control.

8.:Z.1. Designator Register

Th'9 designator register contains information controlling functional characteristics of the processor~
Th'9 designator register may be loaded by instruction, although certain bit combinations are not valid
or may not be available to the user. In general, no hardware checks are made for these invalid
combinations. When an interrupt occurs, the Ci .rrent value of the designator register is stored in GRS,
and the register is cleared, unless otherwise specified in the following paragraphs, to establish the
proper interrupt handling environment. The format of the designator register is:

035 -- 029 Reserved 023 -------------------- DO

35 29 28 24 23 o

8492
UP-NUMBER

035-
034

033

032-
030

029

028-
024

023

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference

Must be zero

Reserved

Must be zero

Quantum Timer Enable

UPDATE LEVEL
8-2

PAGE

When this designator is one, the quantum timer value is decreased by one for every
one hundred nanosecond period that the processor is actually executing instructions.
Whgn the quantum timer value is zero, a Quantum Timer interrupt is generated. When
029 is zero, the quantum timer value is not altered.

Reserved

Divide Check Designator

This designator is set to one when the magnitude of the quotient exceeds the range
of the specified register.

022 Characteristic Overflow Designator

This designator is set to one when the characteristic of a floating-point result is
greater than 1 778 (single-precision) or 1 7778 (double-precision).

021 Characteristic Underflow Designator

This designator is set to one when the characteristic of a floating-point result is less
than -2008 (single-precision) or -20008 (double-precision).

020 Arithmetic Exception Interrupt Designator

When this designator is zero, if an arithmetic exception occurs (023, 022 or 021 set
to one), the specified A-registers are cleared to zero and no interrupt occurs. When
020 is one, if an arithmetic exception occurs, the specified A-registers are left
unchanged (except as specified by 05), and an interrupt occurs. When 020 is one,
all instructions that can cause an arithmetic exception are executed without
instruction overlap (Le., completely executed prior to beginning the execution of the
next instruction).

019 EXEC Bank Descriptor Table Pointer Enable

When this designator is zero, only the user bank descriptor table (BOn pointer may
be selected during execution of the LBJ, LlJ or LDJ instructions. If an attempt is made
to reference the EXEC bank descriptor table, an Addressing Exception interrupt is
generated. When 019 is one, either the EXEC or user BOT pointer may be selected
during execution of an LBJ, LlJ, or LOJ instruction.

01 8 Reserved

017 Enable residue store for single-precision floating-point instructions.

UP-MJMBER Processor and Storage Programmer Reference UPDATE LEVEL
8-3

PAGE
8492 ~ SPERRY UNIVAC 1100/80 Systems

- ,----_..&.---~-

016 BOR3 Write Protection

When this designator is one, a Guard Mode interrupt will occur if an attempt is made
to write into the storage area specified by BOR3 and either 07 or the i-bit is zero.

015 BOR 1 Write Protection

When this designator is one, a Guard Mode interrupt will occur if an attempt is made
to write into the storage area specified by BOR 1 and either 07 or the i-bit is zero.

014 BOR2 Write Protection

When this designator is one, a Guard Mode interrupt will occur if an attempt is made
to write into the storage area specified by BOR2 and either 07 or the i-bit is zero.

013 BORO Write Protection

When this designator is one, a Guard Mode interrupt will occur if an attempt is made
to write into the storage area specified by BORO and either 07 or the i-bit is zero.

012 BOR Selector

When this designator is one, BOR 1 and BOR3 are selected as the primary pair of bank
descriptor registers; when 012 is zero, BORO and BOR2 are selected as the primary
pair. The primary pair is selected over the secondary pair if the storage limits overlap.
012 will be toggled during the execution of a jump instruction if the jump operand
address falls exclusively within the limits of the secondary pair. 012 is not altered
when an interrupt occurs.

011 Reserved

010 Quarter-Word Mode Designator

When this designator is zero, for instructions with function codes less than 708 (not
including 07,33, and 37), the j-field values of 4, 5, 6, and 7 are interpreted as follows:

j = 4

j = 5

j = 6

j = 7

Specifies half-word (18-bit) transfers to or from bits 35 through 18 of the
operand.

Specifies third-word (12-bit) transfers to or from bits 11 through 0 of the
operand.

Specifies third-word (12-bit) transfers to or from bits 23 through 12 of the
operand.

Specifies third-word (12-bit) transfers to or from bits 35 through 24 of the
operand.

When 010 is one, for instructions with function codes less than 708 (not including
07, 33, and 37), the j-field values of 4, 5, 6, and 7 are interpreted as follows:

j = 4

j = 5

Specifies quarter-word (9-bit) transfers to or from bits 26 through 18 of
the operand.

Specifies quarter-word (9-bit) transfers to or from bits 8 through 0 of the
operand.

8492
UP-HUMBER

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference UPDATE LEVEL

8-4
PAGE

j = 6 Specifies quarter-word (9-bit) transfers to or from bits 17 through 9 of the
operand.

j = 7 Specifies quarter-word (9-bit) transfers to or from bits 35 through 27 of
the operand.

The value of 010 has no effect on an instruction in the following circumstances:

• When the f-field of the instruction contains a value in the range 708 through
778, or 07,33, or 37.

• When 04 is one.

• When the j-field contains a value other than 4, 5, 6, or 7.

09 Reserved

08 Floating-Point Zero Format Selection

This designator affects Floating Point Add, Floating Point Add Negative, Floating Point
Multiply, Floating Point Divide, and Load and Convert to Floating (only single
precision) instructions. When 08 is zero, and if the mantissa of the most significant
word of a single-precision floating point result is ± 0, the entire word is stored as all
zero. When 08 is one, and if the mantissa of the most significant word of a
single-precision floating-point result is ± 0, the most significant word is packed and
stored with the appropriate characteristic.

07 Relocation and Storage Suppression

07 controls 1100 mode index register length, relocatability, and limit violation
checking. If 07 =0, index registers are 18 bits long, relocation is performed through
basing, and a limits violation will cause a Guard Mode interrupt. If 07 = 1, the same
functions are dependent upon the i-bit of the instruction currently executing: If i=O,
operation proceeds as if 07 =0; if i= 1, index registers are 24 bits long, relocation is
not performed (a base value is not added to the relative address), and relative
addresses (which are not identical to absolute addresses) are not checked for limit
violations.

Program addresses following a jump instruction are formed under the same 07 and
i-bit conditions that were in effect for the jump instruction. That is, if an absolute jump
occurred (035=0, 07=i= 1), subsequent instruction references will be absolute; if a
relative jump occurred (07 or i=O), subsequent instruction references will be
relocated according to the current addressing control designators and BOR values.
07 is set to one on Master Clear or when an interrupt occurs.

06 General Register (GRS) Selection Designator

When 06 is zero, the GRS addresses below are assigned for use by the user program
and can be referenced by the a- and x-fields of the instruction.

Index (X) Registers

Accumulators (A-Registers)

Special (R) Registers

0001 8 - 001 78

00148 - 00338

0101 8 - 01178

8492 ~ SPERRY UNIVAC 1100/80 S~.m. I I 8 5
UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE -- ._---=-----=-----'------'----

When 06 is one, the GRS addresses below are assigned for use by the EXEC program
and can be referenced by the a- and x-fields of the instruction. 06 is set to one when
an interrupt occurs.

Index (X) Registers

Accumulators (A-Registers)

Special (R) Registers

05 Double-Precision Underflow Designator

01418 - 01578

01548 - 01738

01208 - 01378

When 05 is zero, a Floating-Point Characteristic Underflow interrupt occurs if
characteristic underflow is detected during the execution of a double-precision
floating- point instruction the contents of the specified A-registers remain
unchanged. When 05 is one, the interrupt does not occur; however, the contents of
the specified A registers are clearod to zeros and the normal instruction sequence is
continued.

04 Character Addressing Mode

When 04 is one, character addressing may be used by instructions for which the
j-field is an operand qualifier (01 - 06, 10-32, 34-36, 40-67). Character addressing
involves the utilization of J-registers which are selected by j-field values of 4, 5. 6,
or 7. Note that character addressing for byte-oriented instructions that use
J-registers (33 and 37, 06-07) does not depend on 04. The J-field functions
specified by 034 and 010 are overridden by 04.

03 Allow Interrupts Designator

When 03 is one, external interrupts are allowed; when 03 is zero, external interrupts
are locked out. 03 may be altered by UR and Lo, is set by AAIJ, and is cleared by
PAIJ and the interrupt sequence.

02 Privileged Instruction. GRS Protect. and Interrupt Lockout Detect

When 02 is one, a Guard Mode interrupt will occur if an attempt is made to execute
a privileged (Executive) instruction, or to store into an Executive GRS location.

02 equal to one also enables checking the length of the period during which interrupts
are locked out by 03 equal to zero (whether 03 became zero by instruction execution
or by taking an interrupt) or by a string of Execute Remotes or Indirects. 256 storage
references (only those made by the processor are counted) are allowed during this
locked-out period. Additional references will cause a Guard Mode interrupt. This
checking occurs whether or not an interrupt is actually being locked out.

01 & DO Overflow Designator (01) and Carry Designtor (DO)

These designators are similar and so are defined together.

For the following instructions, DO and 01 are cleared and then set according to the
results of the operation:

A (14) Add to A

8492
UP-MUMBER

0

35

35

0

36

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPDATE LEVEL

AN (15) Add Negative to A

AM (16) Add Magnitude to A

ANM (17) Add Negative Magnitude to A

AU (20) Add Upper

ANU (21) Add Negative Upper

AX (24) Add to X

ANX (25) Add Negative to X

OA (71, 10) Double-Precision Fixed Point Add

DAN (71, 11) Double-Precision Fixed Point Add Negative

8-6
PAGE

01 is set to one if an overflow condition is detected during execution of any of the
above instructions, and DO is set to one if a carry condition is detected. When DO
or 01 are set, they remain so until another one of the above instructions is executed,
or until the designator bits are directly altered by the program.

Figure 8-1 shows three basic conditions of the Designator Register.

NOTE'

o 16-0 13 are independent of 02.

User Mode

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 Reserved ~3 ~2 21 ~C 19 0 17 16 13 12 0 10 0 8 0 0 5 4 1 1 1 0

30 29 28 24 23 22 21 20 19 18 17 18 13 12 11 10 9 8 7 6 6 4 3 2 1 0

interrupt Mode

o

29 28 24 23 13 12 11 10 9 8 7 6 6 o

Executive Mode

0
0

Reserved 023 020 1 0
0 0 0 0 0 0 0 0

0
0 0 0 0 0 0

0
0 0

29 17 16 15 14 13 12 11 10 8 7 6 5 4 3 1 0

30 29 28 24 23 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 8-1. Bllsic Designator Register States

8492 ~ SPERRY UNIVAC 1100/80 S~m. 8-7
UP-MJM8ER Processor and Storage Programmer Reference UPDATE LEVEL PAGE ------------ ,----------------------~----~------------------------~----------~--

8.3. INTRODUCTION TO ADDRESSING

Thle CPU's hardware provides for relocating the instructions and/or data for any program in main
storage. Also provided is the ability to specify that all area of main storage not assigned to a program
are locked out to that program for read, write, and jump references. The main storage areas which
may be assigned to a program are specified in 64-word granules beginning on any 512 word
boundary and ending on any 64 word boundary.

8.~1. 1. Main Storage Organization

The SPERRY UNIVAC 1100/80 System is designed as a modular system, permitting a variety of main
storage configurations. The minimum main storage configuration comprises one 524K word basic
module. The storage capacity can be expanded to eight MSUs in 262K word increments to a
maximum of 4,194,304 words.

Th't two word bank descriptor register (BDR) provides the CPU with the flexibility for allocating
storage for a program segment. The base value in conjunction with a relative address determines
the absolute storage location. The upper and lower limits define the range of relative addresses within
a program segment with the upper limit specified in 64 word increments and the lower limit specified
in 5 1 2 word increments.

8.3.2. Program Segmentation

A program may be written in segments which may be relocated in main storage. When the program
is loaded into main storage, the executive program determines the number of 512 word granules and
assigns them in contiguous blocks. Any unfilled portion of a granule is unavailable to another
program if it: is to be run with guard mode/storage limits protection.

8.3.3. General Theory of 1100/80 Addressing

Normal 1100/80 programs are constructed without consideration for the physical area of storage
they will occupy during execution. As the program is constructed, each address is mapped into a
set of addresses called relative addresses. A relative address is actually used in an instruction within
the program which references other locations or words in the program. Proper conversion from these
relative addresses to the physical locations of the program will occur during execution using the bank
descriptor register mechanism of the 1100/80. The range of relative addresses is from 0 to 262,143.

Rel~Cltive address (U) is composed of the sum of the u-field of the instruction, the modifier field of the
Xx-·register, and in certain cases, the word offset (Ow) field of the Jj-register. A negative zero (all
ones) cannot be generated as a relative address. For shift instructions, I/O instructions, or immediate
operands (j = 1 6 or 17), the relative address is generally used directly as an operand. If a relative
address is less than 0200, it is generally used to reference GRS. If the relative address is greater
than 0200, it is converted to an absolute address and used to reference storage.

An .absolute address is normally composed of the sum of a relative address and a base value selected
from one of the four available bank descriptor registers. It is also possible to have U generated as
an absolute address and used directly to reference storage without being altered by addition of a
base.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference

8.3.4. Bank Descriptor

UPDATE LEVEL
8-8

PAGE

A bank descriptor (BO) is a two word set of data defining storage allocation for a program segment.
Bank descriptors are held in a bank descriptor table (BOT) which is located and defined by the bank
descriptor table pointer (BOTP). The table address in the BOTP is the absolute address of the first
word of the first BO in the BOT. The table length in the BOTP is in units of descriptors, not words.
The BOs within the BOT are located by adding a bank descriptor index (BOI) to the table address in
the BOTP. The BOI is also in units of descriptors. A table length value of zero defines a BOT containing
only one BO. The BOT has a maximum length of 4K BOs (8K words). The BOT is expected to reside
in storage (i.e., not in GAS). The BOTP and BO formats are shown in Figure 8-2.

8.3.5. Limits

The upper and lower limits define the range of relative addresses within a program segment. The
check of a relative address against limits is inclusive, i.e., a relative address is within limits if it is
greater than, or equal to, the lower limit; or less than, or equal to, the upper limit. The lower limit is
in increments of 512 words, the upper limit is in increments of 64 words. Therefore, a program may
contain any multiple of 64 words, beginning on any 512 word boundary and ending on any 64 word
boundary.

8.3.6. Control Information

The flag and use count fields of the BO provide control pertaining to the relative space (segment)
defined by the BD and a count of the activity or usage of this BD.

The B-flag indicates that an addressing exception interrupt is to occur if a reference is made to the
segment through the new bank descriptor of an LlJ, LOJ, or LBJ instruction.

The W-flag indicates that a Guard Mode interrupt indicating write protection violation is to occur if
a write is attempted into the segment.

The P-flag value is transferred to designator register bit 2 (02 - privileged instruction and GAS
protection designator) during the execution of an LBJ, LlJ, or LOJ instruction.

The V-flag indicates that entry point validation must be performed. This is accomplished by assuring
that the relative operand address of the LBJ, LlJ, or LOJ instruction (jump address) that references
the bank descriptor is equal to the bank descriptor lower limit value extended with low-order zeros
(bits 8 through 0) .. This relative operand address must also select the BOA that is being loaded. If
these conditions are not met and V is one, an addressing exception interrupt will occur. If the relative
operand address is not within any limits a Guard Mode interrupt will occur.

The C-flag indicates that an interrupt is to occur if the use count is decreased to zero.

8.3.7. Bank Descriptor Registers

A bank descriptor register (BOA) contains the upper limit, lower limit, and base of a bank descriptor;
these allow relative address limits checking for protection, base selection, and absolute address
formation. Four bank descriptor registers; BOAO, BOA 1, BOA2, and BOA3; are provided 'in the
processor. The BOAs are loaded by the LAE, LL, or LB instructions. These instructions do not test
the flags or change the use count.

8492 I SPERRY UNIVAC 11 00/80 S~.m. I I 8 9
__ U_P-N_U_M_8_ER __ ~, ____ P_ro_c_8_s_s_o_r_a_n_d_S_t_o_ra_g:...8_P_rr_o_g_ra_m_m_8_r __ R_8_f8_r_8_n_c_8 _____ ...L_UPD_A_TE_LEVE __ L ___ P_A_GE_-__ _

Bank Descriptor Tab/e Pointer Format

Crable Length

35 24 23

Table Address

Bits 35-24 Bank Descriptor Table Length (in Descriptors)

Bits 23-0 Bank Descriptor Table Address (Absolute)

Reserved for Software

Upper Limit

35 24 23

First Word: Bits 35-18
Bits 17-0

Second Word: Bits 35-24
Bits 23-15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bits 8- 0

Bank Descriptor Format

Base Value

Lower Limit RW PV * C

18 17 15 14 13 12 11 10 9 8

Reserved for software
Base value for relocation

Storage protection upper limit value
Storage protection lower limit value
Residency flag
Write protection flag
Privileged protection flag
Validate entry point flag
Reserved for software
Use count interrupt on zero flag
Use count value

Figure 8-2. Bank Descriptor and BOT Pointer Formats

o

Use Count

o

9492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference

8.3.8. Address Generation

UPDATE LEVEL
8-10

PAGE

If base suppress conditions exist, the relative address is used as the absolute address, otherwise an
absolute address is generated. To generate an absolute address, a relative address is added to a
base value selected from those available in the four bank descriptor registers. To select which of
the base values to use, a limits check is made between the relative address and the upper and lower
limits. Designator 012 determines the order of BOR use as follows:

Selector Use (in order of preference)

012 = 0 BORO, BOR2, BOR1, BOR3

012 = 1 BOR1, BOR3, BORO, BOR2

The lower limit (9 bits) of a BOR is checked against U 17-9 and the upper limit (12 bits) is checked
against U 17-6. The first BOR passing the limits check is used for absolute address generation. Figure
8-3 shows the base value selection in flow chart form. If a relative address is not within limits of
any BOR a storage limits violation occurs. If a relative address is within limits then the base
corresponding to those limits is used to convert the relative address to an absolute address with which
to reference storage. Base values may be assigned in 64 word increments.

The base addition is done with base and relative address alignments shown below:

Relative address zeroes 17 -- 6 5 -- 0

Base value 1 7 - 1 2 11 -- 0 zeroes

Absolute address 23 ----------- 0

The base addition is end off; i.e., a carry produced out of bit 23 is not propogated into bit O.

8492 ~ SPERRY UNIVAC 1100/80 S~.m. I I 8 11
UP-HUMSER Processor and Storage Programmer Reference UPDATE lEVEL PAGE -_ , _____ ~------L--_

No

Relative
Address

Define "Base Suppress" as:

No

07 = 1 AND i= 1 AND NOT P-Fetch OR A-Flag AND P-Fetch

Figurll 8-3. 86$11 V61ue SlIllIction

-,

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference

8.3.9. P-Capturing Instructions

UPOATE LEVEL
8-12

PAGE

The absolute address of each instruction read from main storage is normally held in a P-value register
associated with the register holding the instruction. An exception is the case of an instruction read
from an interrupt location when the CPU generates an interrupt: in this case the P-value register holds
the absolute address of the most recently completed instruction rather than the absolute address of
the interrupt location. When one of the P-capturing instructions (Store Location and Jump - SlJ,
or Load Modifier And Jump - LMJ) is performed, the "relative P+ 1" is formed by subtracting either
BI-1 or Bo-1 from the contents of the associated P-value register. This relative P+ 1 address is stored
by the SW or LMJ instruction.

When a program is operating with base register suppression (07 = i = 1), the base register
suppression applies to pach absolute address developed using the value in the u-field, but not to the
captured relative address derived from the contents of the P-register. Base register suppression
applies to the calculation of the absolute address at which the captured relative address is stored
for the SW instruction. The jump to addresses for the LMJ and SW instructions are also calculated
with base register suppression. The jump to address for the LMJ instruction is developed except that
BI and Bo are effectively zero so that (u + BI) + Xm and (u + Bo) + Xm reduce to u + Xm. The
jump to address for the SW instruction is developed except that BI and Bo are effectively zero so
that (0 + BI) + U + 1 and (0 + Bo) + U + 1 reduce to U + 1.

If the SW instruction is u~ed to capture the relative jump from address and transfer control to another
sequence of instructions, the procedure for returning to the first sequence of instructions is simplified
if the relative value captured is less than 2000008. If the relative value captured is 2000008 or
greater, it contains a 1 bit in bit 16 or 17 (or both). If this relative address is used as the right half
of an instruction, a 1 bit in these positions will be interpreted for index register incrementation (Xm
is modified) or indirect addressing (or base register suppression) rather than as bits used in developing
an absolute address. However, if all the instructions for a program have relative addresses of
1777778 or less, this situation will not arise.

8492 SPERRY UNIVAC 1100/80 S~.m.
UP-NUM8ER Processor and Storage Programmer Reference

A-1
UPDATE LEVEL PAGE

--~~~----~----------------------~----~--------------------~----------~---------

A

Aa

A+2
Aa+2

Absolute
Address

a-field

ASCII

Bank

B[)

BDI

Appendix A. Glossary

An arithmetic register. GRS addresses 14 - 338 and 154 - 1738, Registers at
addresses 34, 35, 174, and 1758 can be used either as general purpose
registers or as extensions of the sets of A-registers. In some cases A is used
to mean Aa.

The A-register specified explicitly by the a-field of an instruction word.

An A-register having an address one greater than the address of the A-register
specified by the a-field of an instruction word.

An A-register having an address of two greater than the address of the
A-register specified by the a-field of an instruction word.

A 36-bit address which identifies a specific location in main storage, as opposed
to the relative address.

A-register designator (bits 25-22) of an instruction word. The a-field is
interpreted in one of several ways depending on the instruction word function
code. The a-field may specify an A-register, an R-register, or an X-register. For
the function code 708 (JGD instruction), the j-field and a-field are combined to
specify a GRS address. The a-field also is used to specify the I/O channels, a
jump key, stop keys, or as an extension of the function code of the instruction.

Logical product

American Standard Code for Information Interchange (seven bits)

A set of main storage locations having consecutive addresses. Defined by a bank
descriptor word (BOW). Bank addressing is achieved by loading a base value
in a DR to be added to each bank relative address to produce the corresponding
absolute address.

Bank descriptor is a two word set of data defining storage allocation for a
program segement.

Bank descriptor index. An integer value used as an index into a BOT.

8492
UP-HUMBER

BDI Registers

BOT

BDTP

Block
Multiplexer

Byfp.

Byte Count

Byte Multiplexer

CAW

CCW

Channel

Channel Base
Register

Characteristic

Condition Code

Control Word

Control Module

Command
Chaining

CPU

CSW

Data Chaining

D-Bank

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPDATE LEVEL

A-2
PAGE

The two locations in the GRS which contain the BOis (total of 4) for the banks
currently addressable by the CPU. GRS locations 46 and 47 s.

Bank descriptor table.

Bank descriptor table pointer

A block multiplexer channel has multiple subchannels and always forces the 1/0
device to transfer data in mult-byte mode.

A unit of information which consists of eight bits data.

The number of bytes of data to be transferred to or form storage.

The byte multiplexer channel contains multiple subchannels and operates in
either single or multi-byte mode.

The Channel A.ddress Word contains the instruction, IOU and CPU number,
channel address, device address and the address of the first CCW.

Channel command word. A control word located anywhere in storage (location
specified by the CAW) used for channel operations. The CCW specifies the
device command, data address, CCW flags, format flag and data count.

An I/O channel provides the hardware control and data paths required to direct
the flow of data between a peripheral device and storage.

The contents of the channel base register are used to address control words in
upper storage.

Biased exponent portion of a floating-point number.

Indicates the channels response during the execution of an instruction.

Refer to CAW and CCW.

The control module handles all 1/0 instructions and resolves storage request and
interrupt conflicts for up to eight channel modules.

Allows execution of a new channel command word whenever the present
operation is complete at the device level. This will result in the specification of
a new operation with the same device without program intervention.

Central processor unit.

Channel status word

Specifies a new buffer area in storage and permits continuous operation of the
device without program intervention.

A bank based on BD.

8492
lJII-NUM8ER

Designator Bits
Obits

Device

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPDATE lEVEL

A-3
PAGE

These bits are used to establish and provide control of the processor operations
and to report status. (See 8.2.1)

DO

01

02

03

04

05

06

07

08

09

010

011

012

013

014

015

016

017

018

019

020

021

022

023

029

carry indicator

overflow indicator

guard mode and storage protection selector

write-only storage protection selector

character addressing mode selector

double-precision underflow control (ignored if
020 = 0)

A-, X-, and R-register set selector

base register suppression control

floating point zero control

Reserved

quarter-word mode selector

Reserved

BOR Selector

BORO write protection

BOR2 write protection

BOR 1 write protection

BOR3 write protection

floating-point residue store control

Reserved

BOTP selection control

arithmetic exception interrupt control

characteristic underflow indicator

characteristic overflow indicator

divide fault indicator

quantum timer enable

A basic peripheral unit from or to which data is transferred in a system.

8492
UP-NUMBER

Device Address

Double Word
Boundary

E bit

EF

EI

ESI

ESI Interface

f-field

Granule

GRS

h-field

Ib

I bank

i-field

Immediate
Command

Increment

Instruction
Word

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference UPDATE LEVEL

A-4
PAGE

An address gererated in the processor during an 1/0 instruction and by the
control unit to indicate the address of the currently selected device. This is used
to associate a particular device with a subchannel operation.

Any even numbered storage address.

Bit 35 of the word in Xa for an LlJ/LDJ instruction and bits 35 and 17 of the
BDI registers.

External function. A control signal sent by an IOU to a peripheral control unit
to identify the word on the output data lines as a function word rather than an
output data word.

External interrupt. A control signal sent to an IOU by a peripheral control unit
which identifies the word on the input word lines as a status word rather than
an input data word.

Externally specified index.

Word channel interface capable of addressing up to 64 communications devices
on one .1/0 interface.

Function code designator (bits 35-30) of an instruction word. The f-field
specifies the particular type of operation or function to be performed. The j- and
a-fields serve as minor function codes on certain instructions.

Any group of 512 contiguous words in main storage having addresses in the
range XXXXX0008 through XXXXX7778 .

General register stack. A group of 112 addressable 36-bit control registers. The
CpU uses these high-speed registers for holding intermediate results, indexing,
and a variety of special functions such as repeat counting and holding status
words.

Index register incrementation designator (bit 17) of an instruction word. The
h-field controls index register modification and J-register modification.

Increment in bytes. Bits 20-18 of a J-register. Used by byte instruction and
other instructions operating in the character addressing mode (04 = 1).

A bank based on BI.

Indirect addressing designator (bit 16) of an instruction word. The i-field
normally controls indirect addressing. However, it may be used instead to
specify base register suppression/24-bit indexing or use of the utility base for
operands, depending on the values of 07, 09, and 011.

An operation which will result in the sudsystem generating an immediate status
condition upon receipt of the command code.

The leftmost 18 bits (12 bits if 09 = 07 =- i = 1) of an index register. SymboHzed
by Xi.

A statement that specifies an operation and the values or locations of its
operands.

8492 ~ SPERRY UNIVAC 1100/80 S~em. A-5
UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE __________ , ______________________ ~~ __ ~ ________________________ _L __________ ~ __

I/O

IOU

lSI

lSI Interface

I""

J

j-field

K

UlO
Ull
Ul2
Main Storage

Major Function
Code

Mantissa

Minor Function
Code

MMA

Modifier

MSR

Multi-Byte Mode

NI

Nonresident
Subchannel

Input/output

Input/output unit

Internally specified index

A word channel interface which communicates with one peripheral control unit.

Increment in words. Bits 31-21 of a J-register. Used by byte instructions and
by instructions operating in the character addressing mode (04 = 1).

J-register (JO-J3) at GRS addresses 106-111 8 or 126-131 8 Used by byte
instructions and by instructions operating in the character addressing mode (04
= 1).

Operand qualifier, partial GRS address, or minor function code designator (bits
29-26) of an instruction word.

Used for notational convenience to replace the three low order digits of an
intergral power of 2 or an integral multiple thereof. Thus 262K is used to
represent 262,144(2 18).

Indicates the number of bytes in string SJO, SJ 1, and SJ2, respectively. Stored
in SR335_27, SR3 26-18' and SR3 17_8, respectively. Maximum value is 511.

The storage other than GRS registers that can be accessed directly by a CPU and
IOU; it consists of primary storage and extended storage.

The f-field of an instruction word.

The fractional part of a floating-point number.

A portion of an instruction word used with the f-field to specify the operation
to be performed. For all instructions for which f = 07, 33, or 378 or for which
f is greater than 708' the j-field contains a minor function code. For some
instructions for which f is greater than 708' the a-field also contains a minor
function code.

Multiple module access unit.

The rightmost 18 bits (24 bits if 09 = 07 = i = 1) of an index register.
Symbolized by Xm. It is added to the 16-bit address in the u-field of an
instruction to produce a relative address (Xm is 18 bits) or absolute address (Xm
is 24 bits).

Module select register

A type of operation available on the byte channel which permits a control unit
to transfer several bytes of data before releasing the channel.

Next instruction

A set of control words held in reserve storage.

8492
Uf4IUMBER

Nonshared
Subchannel

Normalize

Ob

Option 0

Option 1

Ow

P
P Value
Register

Parity Bit

PCI

Program
Contorlled
Interrupt

R

Ra

Relative Address

Relative P + 1

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPDATE LEVEL

A-6
PAGE

A subchannel intended to operate with communications type peripheral devices.
These sudchannels allow concurrent access in an interleaving manner by a
multiple number of devices through a multiplexing control unit to main storage.

To normalize a number in floating point format, the mantissa is shifted left or
right until the leftmost bit of the mantissa is not identical to the sign bit.

Offset in bytes. Bits 2-0 of a J-register. Used by byte instructions and by
instructions operating in the character addressing mode (04 = 1).

Used with the subchannel expansion feature to provide four resident
subchannels, four resident nonshared subchannels and 124 nonresident
nor~shared subchannels.

Provides 128 nonshared subchannels. The eight most recently active are held
in the channel. The remaining 120 subchannels are held in main storage.

Logical inclusive OR

Offset in words. Bits 17-3 of a J-register. Used by byte instructions and by
instructions operating in the character addressing mode (04 = 1).

P is the absolute address of the current instruction. It is loaded in a P-value
register associated with the instruction register which receives an instruction
read from main storage and accompanies the instruction as it flows through the
instruction stack. The contents of the P-value register are not changed when
an instruction is read from an interrupt location or when an instruction is read
for an Execute instruction.

A binary digit appended to a group of bits to make the number of one bits always
odd or always even.

Program controled interrupt. (See 6.5.1.)

A program setable bit in a CCW. When set, an interrupt and/or a table entry
in the status table is made for that subchannel.

A special purpose control register specified explicitly or implicitly by an
instruction word. GRS addresses 1008 - 1178 and 1208 - 1378,

The R-register specified by the a-field of an instruction word.

Normally, the address (U9 formed by the addition of u, the address field of an
instruction, and Xm, the modifier portion of the index register specified by the
instruction (U = u + Xm). For byte instructions and instructions performed in
the character addressing mode, the relative address is U = u + Xm + Ow. A
relative address is not produced for instructions performed with base register
su ppression.

An 18-bit relative address captured by certain jump instructions. Formed by
subtracting the active PSRs BI or BO value which corresponds to the value 'Jsed
to develop the absolute jump to address for the most recent previous jump
instruction from the address of the instruction following the current jump
instruction.

_8_4_92___ 1~ ___ S_PE_R_R_Y_U_N_I_V_A_C_1_1_00_"_8_0_S_~_._m_. ____________ L--_____ -'-- A-7 _____ " __ , UP-HUMBER ~_ Processor and Storage Programmer Reference UPDATE LEVEL PAGE

Resident
Subchannel

REtsidue

RTe

RO

R11

R2

R3 - RS

RS - R9

5

S[)

Shared
Subchannel

SI

SIOF Queue

SIIJ

SJO

SJ1

SJ2

SK,

SAl1

SAl2

A set of control word held in the channel module.

The least significant result word produced by a single-precision Floating Add or
Floating Add Negative instruction.

Real time clock

Real-time clock register at GRS address 1008 , or the control register at GRS
address 1208 ,

Repeat count control registers at GRS addresses 101 and 121 8 , They are used
during Block Transfer, search, and masked search instructions.

Mask control registers at GRS addresses 102 and 1228 , They are used during
masked search instructions and the Masked Load Upper instruction.

Staging Register 1-3 (SR 1 - SR3). Used by byte instructions.

J-registers JO - J3. One or more of these registers are used by byte instructions
and by instructions operating in the character addressing mode (04 = 1).

Sign bit or bit poshion

The 24-bit O-bank absolute address developed through addition: SO = (u + BO)
+ Xm or SO = (u + BO) + Xm + Ow.

A subchannel is shared if two or more devices use the same subchannel for 1/0
operations. On a shared subchannel only one device at a time can transfer data.

The 24-bit I-bank absolute address developed through addition: 51 = (u + BI)
+ Xm or SI = (u + BI) + Xm + Ow.

Used for storing the device address for SIOF instructions presented by the
processor but not yet excuted by the IOU.

Buffer storage

A byte string whose starting word address is formed by summing the u-field of
the instruction, the modifier of the index register specified by the instruction
word, and the Ow field of register JO. The Ob-field of JO points to a byte within
a word.

A byte string based on J 1, X+ 1, and Ow in the same manner as SJO is based
on JO, X, and Ow.

A byte string based on J2, X+2, and Ow in the same manner as SJO is based
on JO, X, and Ow.

Skip data (See 6.5.1)

Staging register 1 (R3), GRS addresses 1038 or 1238 ,

Staging register 2 (R4), GRS addresses 1048 or 1248 ,

8492
UP~UMBER

SR3

STCW

STU

Subchannel

Subchannel
Expansion
Feature

Subsystem Clear

System Reset

TIC

TIO

TSW

U

u-field

V-field

W-field

Word Interface

x

X+2

Xa

Xi

SPERRY UNIVAC 1100/80 S~m.
Processor arid Storage Programmer Reference

Staging register 3 (R5), GRS addresses 1058 or 1258.

Status table control word

System transition unit

UPDATE LEVEL
A-8

PAGE

A subchannel is an organization of uniquely addressable access paths which are
capable of independently sustaining a single 1/0 operation concurrent with other
1/0 operations; i.e., a set of control words.

Provides the capability for a channel module to operate with nonshared
subchannels. (Refer to Option 0 and Option 1 for an explanation.)

An 1/0 Clear signal originating at the IOU goes out on all 24 channels of that
IOU.

Clears all IOU registers and control designators, resets all peripheral subsystems
and initializes all resident subchannels to idle mode.

Transfer in Channel. A command stored as part of the CCW to perform a branch
between noncontiguous CCWs.

Test 1/0

Tabled Status Word

The 18-bit value produced in the index subsection by adding the rightmost 1 8
bits (Xm-field) of the index register specified by the x-field of the instruction (or
by adding 0 if X = 0) to the 16-bit value in the u-field of the instruction (u-field
is extended to 18 bits). U = u + Xm or U = u + Xm + Ow.

The contents of bit positions 1 5-0 of an instruction word.

The relative address contained in bits 17-0 of an lSI or ESI access control word.

The count field of an access control word. For lSI operations, the W-field is bits
33-18. For half-word ESI operations, the W-field is bits 32-18. For
Quarter-word ESI operations, the W-field is bits 29-18.

A set of cable drivers and receivers for communicating with one peripheral
control unit.

Index register. GRS addresses 18 - 178 and 1418 - 1578.

An index register having an address one greater than the address of the index
register specified by the x-field of an instruction word.

An index register having an address two greater than the address of the index
register specified by the x-field of an instruction word.

The X-register specified by the a-field of an instruction word.

Normally, bits 35-18 of an index register (bits 35-24 when 09 = 07 = i = 1).
Used to increment or decrement Xm (the modifier) when specified by the
instruction word.

UP-HUMBER
SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPDATE LEVEL

A-9
PAGE

8492 ~
- ,-----~~,

x-1field

Xnn

Xx

+0

-0

()

(r

(),.-m

Index register designator (bits 2 1-18) of an instruction word.

Normally, bits 17-0 of an index register (bits 23-0 when 09 = 07 = i = 1).

Logical exclusive OR

The X-register specified by the x-field of instruction word. In some cases X is
used to mean Xx.

Two words, one word, or a-field consisting of all 0 bits.

Two words, one word, or a-field consisting of all 1 bits.

The contents of the register or location identified by the symbol within the
parentheses.

The ones complement of the register or location identified by the symbol within
the parentheses.

The contents of bit position n of the register or location identified by the symbol
within the parentheses. For example, (A)35 means the contents of bit position
35 of A.

The contents of bit positions n through m of the register or location identified
by the symbol within the parentheses. For example, (X), 7-0 means the contents
of bit position 17 through 0 of X.

Absolute value or magnitude

Direction of data flow

8492 I SPERRY UNIVAC 1100/80 S~m. I I B 1
__ U_P_'-N_U_M_BE_R_~ ___ -p-r-O-C-8-S-S_0-r-8_"-d-S-t_o_r-8.:.9_8_P_rrcO_g;;..r_8_m_m_8_r._R_8_f8_r_8_"_C_8 _____ ...J_U_PD_A_TE_LEVE_L __I '_AG_E_-__

Appendix B. Summary Of Word Formats

See 4.1.8 for the following:

Single-Precision Floating-Point Format

~ Characteristic Mantissa J
35 34 27 26 o

S4~e 4. 1.8 for the following:

Double-Precision Floating-Point Format

r;r- Charact8ristic LL __ --L--____ -...I
Mantissa

71 70 6059 36

r- Mantissa
~--------...I
315 o

S4~e 4.2.1 for the following:

Instruction Word Format

:35 3029 2626 22 21 18 17 16 16 o

8492
IJP-.HUM8ER

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference

See 4.2.2.2.2 for the following:

J-Register Format For Character Addressing Mode

Iw Ib Ow

3534 333231 21 20 18 17

See 5. 10. 1 for the following:

Load Bank And Jump

Xa Before Execution

New BDI Not Used

35 34 33 32 30 29 18 17

Xa After Execution

UPDATE LEVEL

3 2 0

B-2
PAGE

o

E BDR 0-0 Old BDI Relative Program Address

36 34 33 32 30 29 18 17 o

See 5.13.9 for the following:

Aa Format For Store Register Set

0 0
Area 2

0 0
Area 2

0 0
Area 1

0 0
Area 1

Count Address Count Address

35 34 33 27 28 25 24 18171816 98 78 o

UPDATE LEVEL
8-3

PAGE

8492 l SPERRY UNIVAC 1100/80 S~.m.
UP-NUMBER Processor and Storage Programmer Reference _ ,_--=-__ ----L---~-

SeE~ 5.13.11 for the following:

Test Relative Address

Designator Register
Word 0

._._-

Bank Descriptor Table Pointer
Word 1

* ignored !3010 E ignored BOI 2
Word 2 2

---- .,---_._._. -

* ignored BOI 1 E ignored BOI 3
Word 3 3

-

3634 3029 18 17 16 12 11 0

* Not Used

See 5.14 for the following:

J-Register Format

[M Iw Ib Ow Ob

316 34 33 32 31 2120 18 17 3 2 0

See 5.15. 10 for the following:

LOlld Address En~iornment

IE XX ign- BOlO E ign- BOl2
0 orad 2 XX ored

E XX ign.;... BOl1 E XX ign- BOl3
1 ored 3 ored

:15 34 33 32 30 29 18 17 16 1614 12 11 o

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference

See 6.3.4 for the following:

I/O Instruction Formst

f = 75 a x 1+1
35 3029 2625 2221 18 17 16 15

See 6.3.4 for the following:

CAW

UPDATE LEVEL

u

o

8-4
PAGE

~_N_o_t_u_s_e_d __ ~ ______ ~ ________ N_o_t_u_s_e_d ________ ~I_'~I __ ._C_A __ ~ _______ O_A ____ ~I .
35 3029 2625 131211 87

See 6.3.4 for the following:

CAW 1

Not Used Address of first CCW or STCW

71 6059

See 6.5.1 for the following:

Bytll Or Block Muitiplllxllr Chsnnlll CCW

35

71

Not
Used

Not
Used

Command Code

3231 2423

CCW Flags Format
Flags

CCSSPTDD
DCLKCSAA E ABC

I I o L

68 67 66 65 64 63 62 61 60 59 58 67 66 66

Data Address

Not Data Count
Used

15251

o

o

o

o

8492 I SPERRY UNIVAC 1100/80 S~.m. I I 8-5
___ U_P_~_U_M_BE_R ___ ~, ______ p_r_o_c_e_s_so_r __ a_n_d_S __ to_r_a~g~e ___ prro_g~r_a_m_m __ e_r_.R_e_f_e_r_e_n_c_e __________ ~U_~_A_n __ ~ __ L ____ ~_PA_G_E ____ __

Sel~ 6.5. 1 for the following:

Word Channel CCW

Not
Used Command Code Data Address]

:35 3231 2423 o

Not CCW Flags Not Used Data Count
Used

CCESPMDD
DCIKCOAA

C I N D L

',71 88 87 88 85 84 83 82 81 80 59 5251 o

See 6.10 for the following:

CSWor TSW

[
Not I.

Used ~evice Address Next CCW Address

3231 2423 o

[Not
Used Device Status Subchannel Status Residual Data Count

'71 8887 8059 5251 38

External Interrupt Status Word (Word Channels Only)

107 72

Sel~ 6.10 for the following:

lAW

Not Used MCI bits DA --]

35 2624 23 18 15 13 12 11 87 o

8492
UP-HUMBER

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference UPOATE LEVEL

See 6. 11 for the following:

CSW For I/O Instruction

Not
Used Device Address Next CCW Address

35 3231 2423

Not
Used Device Status Subchannel Status Residual Data Count

71 8887 8069 6261

External Interrupt Status Word (Word Channel Only)

107

See 6. 12 for the following:

TSW for Non-shllred Byte Mux Subchllnne/s

Not
Used Device Address Next CCW Address

35 3231 2423

Not
Used Device Status Subchannel Status Residual Data Count

71 8887 8069 6261

See 6. ~ 2 for the following:

TSW for ESI Word Subchllnnels

Not
Used Device Address Next CCW Address

36 3231 2423 o

o

o

8-6
PAGE

72

o

38

8492 I SPERRY UNIVAC 1100/80 S~.m. I I 8-7
___ U_P~ __ UM_B_E_R __ ~ _______ P_ro_c_e_s_s_o_r_a_n_d __ S_t_o_r_ag __ e_P_rr_o_g_r_a_m_m __ e_r __ R_e_f_e_re_n_c_e __________ ~_U_~_A_n_~ __ E_L ____ ~P_A_GE _____ _

I U~:~ .-LE_I __ O __ O_O __ O __ O __ O_O __ ~S __ u_bc_h_a_n_n_e_I_S_t_a_t_u_s~ _______ R_e_s_id_u_a_I_D __ at_a __ c_o_u_n_t ______ ~
71 686766 6069 5261 36

r--- External Interrupt Status Word if Bit 67 is Set

~.-------
107 72

r--- Not Used

~.-------I
144 108

See 6. 13 for the following:

CSW For The Store Subchanne/ Status Command

Not
Used Device Address Next CCW Address

35 3231 2423 o

I U~:~ .~_O_O __ O __ O_O __ O __ O_O __ ~O __ O_O __ O __ O_O __ O __ O~ ________ R_e_s_id_u_a_,_D_a_ta __ C_o_u_n_t _______ l
71 6867 6069 6252 36

8492
UP-NUMBER

SPERRY UNIVAC 11 00/80 S~m.
Processor and Storage Programmer Reference UPOATE LEVEL

See 6. 1 7 for the following:

Scratch Pad Formats for Subchanne/ Expansion Feature

Not Format Mode Data Address
Used Control

35 3231 2827 2423

Not CCW Flags I Format Not Data Count
Used Used Flags

35 3231 2423 2019 16 15

Not Device Next CCW Address
Used Address

35 3231 2423

Not Used

35

Not Not Mode Device Not Used
Used Used Address

35 3231 2827 2423 16 15

Not Device Status Subchannel Data Count
Used Status

35 3231 2423 1615

Not Device Next CCW Address
Used Address

35 3231 2423

Not Used

35

8-8
PAGE

, I
I

0

0

o

o

o

o

o

o

UPDATE LEVEL
8-9

PAGE
8492 ~ SPERRY UNIVAC 1100/80 S~.m.
UP-NUMBER Processor and Storage Programmer Reference ___--=-----==------_--1----1.-.-

See 7.2.1 for the following:

Program Return Address

~ _____ u_n_u_se_d ________ ~ ________________ p_ro __ g_ra_m ___ R_e_tu_r_n __ A_d_d_r_e_s_s ________ _ J
35 34 2423 o

See 7.2.2 for the following:

Addressing Status

--

E 0-0 0-0 BDI 0 E 1 o 0 - 0 BDI 2
0 2

E 0 1 0 - 0 BDI 1 E 1 1 0 - 0 BDI 3
1 3

35 34 33 32 30 29 18 17 16 '16 14 12 11 o

SIBe 7.3.2 for the following:

Format of Gusrd Mode Interrupt Status

Zeros

35 34 33 32 31 30 29 28 27 26 o

SIBe 7.3.2 for the following:

Formst of Addressing Exception Interrupt Status

1~lv[EI.~R[~~[T~[___ N_ew_BD_I __ ~[~~[B_D_R~[O[~~[~~[____ Old_BD_I_"-_~~-J
35 34 33 32 31 30 29 18 17 16 15 14 13 12 11 o

See 7.3.2 for the following:

Formst Of Breakpoint Interrupt Status

Absolute Breakpoint Address

35 33 32 31 30 29 24 23 o

8492
UP-NtJMBER

SPERRY UNIVAC 1100/80 Syateml
Processor and Storage Programmer Reference

See 7.3.3 for the following:

Formllt of IntBrprocBssor IntBrrupt Stlltus

Zeros

35

See 7.3.6. 1 for the following:

Formllt of ImmBdilltB StorllgB ChBCk IntBrrupt Stlltus

F A W W R N R R
A 0 P C 0 0 A 0 0 0 1 2 Absolute Address

35 34 33 32 31 30 28 28 27 28 26 24 23

See 7.3.6.2.2 for the following:

StorllgB ChBCk IntBrrupt Stlltus Word

R T A L M W W R R M M
E P G R 0 0 A A 0 C U 0 Absolute Address
T C E U L C C C C 0 0

35 34 33 32 31 30 28 28 27 28 25 24 23

See 7.3.8 for the following:

POWBr ChBCk IntBrrupt Stlltus

Zeros

36

See 7.4. 1 for the following:

MllchinB ChBCk IA W

Not Used Mel Bits

36 24 23 16 16 13 12 11 8 7

UPOATE LEVEL

2 1 0

o

S
FGI E

G

32 1 0

2

Not Used

o

8-10
PAGE

o

8492 I SPERRY UNIVAC 11 00/80 S~.m. I I B 11
___ U_P~ __ UM_B_ER ___ ~, _______ P_r_o_c_e_s_so __ r_a_n_d __ S_to __ ra~g~e __ P_rr_o~g_ra_m __ m __ e_r._R_e_f_e_re_n_c_e __________ ~_U~ __ An __ UNt ___ L ____ LP_A_G_E_-____ __

SEte 7.4.2 for the following:

35

Not
Used

35

Not
Used

71

Normal Interrupt lAW and CSW for a Byte or Block Multiplexe, Ch.nnel

lAW

Not Used H Not Used Not Used

25 24 23 131211 8 7

CSW

Device Address Next CCW Address

32 31 2423

Device Status Subchannel Status Residual Data Count

8887 8059 52 51

o

o

I
36

~ Not Used

~-----------I
107 72

See 7.4.2 for the following:

Normal Interrupt IA WAnd CSW For Word Channel

lAW

Not Used Not Used DA

35 25 24 23 13 12 11 8 7 o

CSW

Not
Used Device Address Next CCW Address

35 32 31 24 23 o

8492
UP-HUMBER

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference UPDATE LEVEL

Not
Used EI 0000000 Subchannel Status Residual Data Count

71 6867 66 8059 62 51

External Interrupt Status Word if Bit 67 is Set

107

See 7.4.2 for the following:

35

35

Not
Used

71

Normal Interrupt lAW and CSW for Status Table Subchannel

lAW

Not Used Not Used Not Used

2524 23 131211 8 7

CSW

Not Used Next CCW Address of the Status Table Subchannel

24 23

0000000 SC ROC

8887 8069 62 61

38

72

B-12
PAGE

o

o

36

l Not Used
- __ . __ -------1

107 72

8492 I SPERRY UNIVAC 1100/80 Systems I I B 13
___ U_~ __ UM_8_ER ___ ~, _______ p_ro_c_e_s_s_o_r_a_n_d __ S_t_o_ra_g~e __ P_rr_o~g_ra_m __ m_e_r __ R_e_fe_r_e_n_c_e __________ ~_U~ __ A_n_UW __ E_L ____ ~P_M_E_-______ __

SEte 7.4.3 for the following:

Tabled Interrupt lAW and CSW

lAW

~ ___________ N_o_t_U_se_d ________________ ~II~I ___ C_M __ ~ _____ O_A ____ ~
35 131211 8 7 o

CSW

Not Used Next CCW Address of the Status Table Subchannel

35 2423 o

Not
Used 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ROC

71 88 87 80 69 62 61 36

Not Used

107 72

See 8.2.1 for the following:

Designator Register

E 029 Reserved 023 _____________________________________ 00

36 2928 24 23 o

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference

See 8.2. 1 for the following:

Basic Designator Register States

User Mode

0 0 0 0 0 0 0 0 0
0 0 1 Reserved r23 r22 21 ~O 19 0 17 16 13 12 0

0 0
10 0 8 0 0

UPDATE LEVEL

0 0
5 4 1 1

8-14
PAGE

35 30 29 28 24 23 22 21 20 19 18 17 16 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Interrupt Mode

o o 0 o

35 2928 2423 13 12 11 10 9 8 7 6 5 o

Executive Mode

10 0 ~~ Reserved I 023 020111011~ 0 0 0 0 0 0 0
0

0 0 0 0 0 0
0

0 0
16 15 14 13 12 11 10 8 7 6 5 4 3 1 0

35 302928 2423 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

See 8.3.7 for the following:

Bank Descriptor Table Pointer Format

Table Length Table Address

35 2423 o

See 8.3.7 for the following:

Bank Descriptor Format

Reserved for Software Base Value

Upper Limit Lower Limit R W P V * C Use Count

35 24 23 1817 1514131211109 8 o

UP-NUMBER

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference UPDATE lEVEL

C-1
PAGE

8492 ~
______ --L-----O"-'-

Appendix C. User Instruction Repertoire

Table C-I. Mnemonic/Function Code Cross-Reference

Mnemonic/Function Code Cross-Reference Mnemonic/Function Code Cross-Reference (continu~d)

Function Function
Code (Octal) Code (Octal)

Mnemonic f j Paragraph Mnemonic f j Paragraph
Reference Reference

A,AA 14 5.4.1 CDU 76 07 5.5.16
A,AX 24 5.4.7 DA 71 10 5.4.15
,4~IJ 74 07 5.9.3 DAN 71 11 5.4.16
AH 72 04 5.4.17 DOC 73 14 5.15.2
AM,AMA 16 5.4.3 a = 12
AN,ANA 15 5.4.2 OF 36 5.4.14
AN,ANX 25 5.4.8 DFA 76 10 5.5.3
AND 42 5.12.3 DFAN 76 11 5.5.4
ANH 72 05 5.4.18 DFB 33 17 5.14.13
A,NM,ANMA 17 5.4.4 DFD 76 13 5.5.8
ANT 72 07 5.4.20 DFM 76 12 5.5.6
A.NU 21 5.4.6 DFP,DLCF 76 15 5.5.12
AT 72 06 5.4.19 DFU 76 14 5.5.10
AU 20 5.4.5 01 34 5.4.12
BA 37 06 5.14.14 DIB 33 13 5.14.9
BAN 37 07 5.14.15 DJZ 71 16 5.11.2
BC 33 04 5.14.4 DL 71 13 5.2.9
BDF 33 15 5.14.11 DLM 71 15 5.2.11
BDI 33 11 5.14.7 DLN 71 14 5.2.10
BF 33 14 5.14.10 DLSC 73 07 5.8.8
BI 33 10 5.14.6 05 71 12 5.3.7
BM 33 00 5.14.1 DsA 73 05 5.8.6
BMT 33 01 5.14.2 DSC 73 01 5.8.2
BT 22 5.3.8 DSF 35 5.4.13
BTC 33 03 5.14.3 DSL 73 03 5.8.4

8492
UP,,""UMBER

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPDATE LEVEL

C-2
PAGE

Mnemonic/Function Code Cross-Reference (continued) Mnemonic/Function Code Cross-Reference (continued)

Function Function
Code (Octal) Code (Octal)

Mnemonic f j Paragraph Mnemonic f j Paragraph
Reference Reference

DTE 71 17 5.7.14 L,LX 27 5.2.7
EDC 73 14 5.15.2 LAE 73 15 5.15.10

a= 11 a = 12
EDIT 33 07 5.14.5 LB 73 15 5.15.8
ER 73 14 5.13.4 a = 10
EX 72 10 5.13.3 LBJ 07 17 5.10.1
FA 76 00 5.5.1 LBX 73 15 5.15.5
FAN 76 01 5.5.2 a = 02
FB 33 16 5.14.12 LCF 76 05 5.5.11
FCL 76 17 5.5.14 LCR 75 10 6.4.7
FD 76 03 5.5.7 LD 73 15 5.15.12
FEL 76 16 5.5.13 a = 14
FM 76 02 5.5.5 LDJ 07 12 5.10.3
HCH 75 05 6.4.6 LDSC 73 11 5.8.10
HDV 75 04 6.4.5 LDSL 73 13 5.8.12
HJ 74 05 . 5.11.10 LlJ 07 13 5.10.2
IB 33 12 5.14.8 LL 73 15 5.15.9
J 74 04 5.11.9 a = 11
JB 74 11 5.11.12 LM,LMA 12 5.2.3
JC 74 16 5.11.22 LMJ 74 13 5.9.2
JDF 74 14 5.11.17 LN,LNA 11 5.2.2

a = 3 LNM,LNMA 13 5.2.4
JFO 74 14 5.11.16 LPD 07 14 5.13.1

a = 2 LOT 73 15 5.15.7
JFU 74 14 5.11.15 a = 03

a= 1 LRS 72 17 5.13.10
JGD 70 5.11.1 LSC 73 06 5.8.7
JMGI 74 12 5.11.13 LSSC 73 10 5.8.9
IN 74 03 5.11.8 LSSL 73 12 5.8.11
JNB 74 10 5.11.11 LTCW 75 11 6.4.8
JNC 74 17 5.11.23 LUF 76 04 5.5.9
JNDF 74 15 5.11.21 LXI 46 5.2.8

a = 3 LXM 26 5.2.6
JNFO 74 15 5.11.20 MASG 71 07 5.6.14

a = 2 MASL 71 06 5.6.13
JNFU 74 15 5.11.19 MCDU 76 06 5.5.15

a = 1 MF 32 5.4.11
JNO 74 15 5.11.18 MI 30 5.4.9

a = 0 MLU 43 5.12.4
JNS 72 03 5.11.4 MSE 71 00 5.6.7
JNZ 74 01 5.11.6 MSG 71 03 5.6.10
JO 74 14 5.11.14 MSI 31 5.4.10

a = 0 MSLE,MSNG 71 02 5.6.9
JP 74 02 5.11.7 MSNE 71 01 5.6.8
JPS 72 02 5.11.3 MSNW 71 05 5.6.12
JZ 74 00 5.11.5 MSW 71 04 5.6.11
L,LA 10 5.2.1 NOP 74 06 5.13.8
L,LR 23 5.2.5 OR 40 5.12.1

SPERRY UNIVAC 1100/80 Systems
UP-NUMBER UPDATE LEVEL

C-3
PAGE

8492 ~
- ._------'-------'----

Processor and Storage Programmer Reference

Mnemonic/Function Code Cross-Reference (continued) Mnemonic/Function Code Cross-Reference (continued)

Function Function
Code (Octal) Code (Octal)

Mnemonic f j Paragraph Mnemonic f j Paragraph
Reference Reference

IPAIJ 72 13 5.15.1 TP 60 5.7.12
IRAT 73 15 5.15.15 TRA 72 15 5.13.11

a= 15 TS 73 17 5.13.5
:S,SA 01 5.3.1 a=O
:S,SR 04 5.3.4 TSC 75 03 6.4.6
:S,SX 06 5.3.6 TSS 73 17 5.13.6
SO 73 15 5.15.13 a= 1

a = 15 TW 56 5.7.10
SOC 73 14 5.15.3 TZ 50 5.7.4
SE 62 5.6.J UR 73 15 5.15.14
SG 65 5.6.4 a = 16
SIL 73 15 5.15.4 XOR 41 5.12.2
SIOF 75 01 6.4.2 XX 05 00-17 5.3.5.
SLE,SNG 64 5.6.3 a = 00-07
SLJ 72 01 5.9.1 XX 05 00-17 5.13.12
SM,SMA 03 5.3.3 a = 10-17
SN,SNA 02 5.3.2 - 73 14 5.15.20
SNE 63 5.6.2
SNW 67 5.6.6
SPO 07 15 5.13.2
SPIO 73 15 5.15.6

a = 0
SaT 73 15 5.15.11

a = 13
SRL 75 00 6.4.1
SRS 72 16 5.13.9
SSA 73 04 5.8.5
SSC 73 00 5.8.1
SSL 73 02 5.8.3
SSS 73 15 5.15.17

a= 17
SW 66 5.6.5
TAP 73 15 5.15.16

a =
07

TCS 73 17 5.13.7
a = 2

TE 52 5.7.6
TEP 44 5.7.1
TG 55 5.7.9
TIO 75 02 6.4.3
TLE,TNG 54 5.7.8
TLEM,TNGM 47 5.7.3

'TN 61 5.7.13
TNE 53 5.7.7
TNW 57 5.7.11
TNZ 51 5.7.5
(OP 45 5.7.2

8492
UP-NUMBER

Function
Code

(Octal)

f j

00 0-17

01 0-15

02 0-15

03 0-15

04 0-15

05 00-1]

05 00-1]

05 00-17

05 00-17

05 00-17

05 00-1]

05 00-1]

05 00-1 j

05 00-1]

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPDATE LEVEL

C-4
PAGE

Table C-2. Instruction Repertoire

Mnemonic Instruction Description

- Illegal Operation Causes Illegal Operation Fault interrupt to MSR

+ 241 8

S,SA Store A (Aa) - U

SN,SNA Store Negative A - (Aa) - U

SM,SMA Store Magnitude I (Aa) 1- U
A

S,SR Store R (Ra) - U

XX Increase Constant - U
Instructions

SZ Store Zero Store constant 000000 000000, Zeros, in
a = 00 location specified by operand address

SNZ Store Negative Store constant 777777 777777, all Ones, in
a = 01 Zero location specified by operand address

SP1 Store Postive Store constant 000000 000001, postive One,
a = 02 One in location specified by operand address

SN1 Store Negative Store constant 777777 777776, negative One,
a = 03 One in location specified by operand address

SFS Store Fieldata Store constant 050505 050505, Fieldata
a = 04 Spaces Spaces, in location specified by operand

address

SFZ Store Fieldata Store constant 606060 606060, Fieldata
a = 05 Zeros Zeros, in location specified by operand address

SAS Store ASCII Store constant 040040 040040, ASCII
a = 06 Spaces Spaces, in location specified by operand

address

SAZ Store ASCII Store constant 060060 060060, ASCII Zeros,
a = 07 Zeros in location specified by operand address

UII-NUMIER Processor and Storage Programmer Reference UPDATE LEVEL
C-5

PAGE
8492 ~ SPERRY UNIVAC 1100/80 S~m.

_ , _____ --L..---. _______

Table C-2. Instruction Repertoire (continued)

Function
Code

(Octal)

f j Mnemonic Instruction Description

05 00-17 XX Increase
Instructions

05 00-17 INC Increase Operand Increase operand byone. If initial operand or
a= 10 by one result is zero, execute NI; if not zero, skip NI.

05 00-17 DEC Decrease Decrease operand by one. If initial operand or
a = 11 Operand by one result is zero, execute NI; if not zero, skip NI.

05 00-1] INC2 Increase Operand Increase operand by two. If initial operand or
a = 12 by two result is zero, execute NI; if not zero, skip NI.

05 00-1] DEC2 Decrease Decrease operand by two. If initial operand or
a = 13 Operand by two result is zero, execute NI; if not zero, skip NI.

05 00-17 ENZ Increase Operand Increase operand by zero. If initial operand or
a= 14-17 by zero result is zero execute NI; if not zero, skip NI.

06 0-15 S,SX Store X (Xa) U

07 12 LDJ Load D-Bank Ignore Xa bit positions 34-33; if 012 = 0,
Base and Jump select BDR2; if 012 = 1, select BDR3

07 13 LlJ Load I-Bank Ignore Xa bit positions 34-33; if 012 = 0,
Base And Jump select BDRO; if 012 = 1, select BDR 1

07 14 LPD Load PSR Ue,5,3-O PSRM
Designators Bit 6 020 Bit 2 08

Bit 5 017 Bit 1 05
Bit 3 010 Bit 0 04

07 15 SPD Store PSR PSRM D-bits Us-o
Designators 020 Bit 6 08 Bit 2

017 Bit 5 05 Bit 1
012 Bit 4 04 Bit 0
010 Bit 3

07 17 LBJ Load Bank And Load BDR; jump to location specified by the
Jump operand address

10 0-17 L,LA Load A (U) - A

8492
UP-HUMBER

Function
Code

(Oclal)

f j

11 0-17

12 0-17

13 0-17

14 0-17

15 0-17

16 0-17

17 0-17

20 0-17

21 0-17

22 0-15

23 0-17

24 0-17

25 0-17

26 0-17

27 0-17

30 0-17

31 0-17

32 0-17

33 00

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference UPDATE LEVEL

Table C-2. Instruction Repenoire (continued)

Mnemonic Instruction Description

LN,LNA Load Negative A - (U) A

LM,LMA Load Magnitude 1 (U) I A
A

LNMA Load Negative -I (U) 1 A
Magnitude A

A,AA Add to A (A) + (U) A

AN,ANA Add Negative To (A) - (U) A
A

AM,AMA Add Magnitude (A) + 1 (U) 1 A
To A

ANM,ANMA Add Negative (A) - 1 (U) 1 A
Magnitude to A

AU Add Upper (A) + (U) A+ 1

ANU Add Negative (A) - (U) A + 1
Upper

BT Block Transfer (Xx) + u) Xa + u; repeat k times

L,LR Load R (U) Ra

A,AX Add to X (Xa) + (U) Xa

AN,ANX Add Negative to (Xa) - (U) Xa
X

LXM Load X Modifier (U) Xa 17-0; Xa35-18 unchanged

L,LX Load X (U) Xa

MI Multiply Integer (A) x (U) A, A+ 1

MSI Multiply Single (A) x (U) A
Integer

MF Multiply (A) x (U) A, A+ 1, left circular one bit
Fractional

BM Byte Move Transfer WO bytes from source string to
receiving string. Truncate or fill receiving

C-6
PAGE

8492 ~ SPERRY UNIVAC 1100/80 S~.m. C-7
UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE _ . __ ---=--------.:=----------L-----'----

Table C-2. Instruction Repertoire (continued)

Function
Code

(Octal)

f j Mnemonic Instruction Description

string as required

33 01 BMT Byte Move With Translated and transfer WO bytes from source
Translate string to receiving string. Truncate or fill

receiving string as required

:33 03 BTC Byte Translate Translate and compare WO bytes from string
and Compare SJO to W 1 bytes from string SJ 1; terminate

instruction on not equal or if both LJO and LJ 1
are zero, when:
(Aa) + ; string SJO > SJ 1
(Aa) 0 ; string SJO = SJ 1
(Aa) .- ; string SJO < SJ 1

33 04 BC Byte Compare Compare WO bytes from string SJO to LJ 1
bytes from string SJ 1; terminate instruction on
not equal or if both LJO and LJ 1 are zero

33 07 EDIT Edit Edit string SJO and transfer to string SJ 1
under the control of string SJ2

:33 10 BI Byte to Binary Convert LJO bytes in string SJO to a signed
Single Integer binary integer in register A
Convert

:J3 11 BDI Byte to Binary Convert LJO bytes in string SJO to a signed
Double Integer binary integer in registers A and A+ 1
Convert

=J3 12 IB Binary Single Convert signed binary integer in A to byte
Integer to Byte format and store in string SJO
Convert

~J3 13 DIB Binary Double Convert the binary integer in A and A+ 1 to
Integer to Byte byte format and store in string SJO
Convert

33 14 BF Byte to Single Convert LJO bytes in string SJO to a single
Floating Convert length floating point format in register A

=~3 15 BDF Byte to Double Convert LJO bytes in string SJO to a double
Floating Convert length floating point format in registers A and

A+1

~~3 16 FB Single Floating Convert the single length floating point number
to Byte Convert in A to byte format and store in string SJO

8492
lJIII-MIMBER

Function
Code

(Octal)

f J

33 17

34 0-17

35 0-17

36 0-17

37 06

37 07

40 0-17

41 0-17

42 0-17

43 0-17

44 0-17

45 0-17

46 0-17

47 0-17

50 0-17

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPDATE LEVEL

C-8
PAGE

Table C-2. Instruction Repenoire (continued)

Mnemonic Instruction Description

DFB Double Floating Convert double length floating point number in
to Byte Convert A and A+ 1 to byte format and store in string

SJO

01 Divide Integer (A, A+ 1) divided by (U) -+ A; REMAINDER -+

A+1

DSF Divide Single [(A, 36 sign bits) right algebraic shift 1 place]
Fractional divided by (U) -+ A+ 1

OF Divide Fractional [(A, A+ 1) right algebraic shift 1 place] divided
by (U) -+ A; REMAINDER -+ A+ 1

BA Byte Add Add the WO bytes in string SJO to the LJ 1
bytes in string SJ 1 and store the results in
string SJ2

BAN Byte Add Subtract the WO bytes in string SJO from the
Negative W 1 bytes in string SJ 1 and store the results in

string SJ2

OR Logical OR (A) [Q8J (U) -+ A+ 1

XOR Logical Exclusive (A) lKQEI (U) -+ A + 1
OR

AND Logical AND (A) IAtm (U) -+ A + 1

MLU Masked Load [(U) IAtm (R2)] [Q8J
Upper [(A) AND NOT (R2)] -+ A+ 1

TEP Test Even Parity Skip NI if (U) IAtm (A) has even parity

TOP Test Odd Parity Skip NI if (U) IAtm (A) has odd parity

LXI Load X (U) - (Xa)35-18; (Xa), 7-0 unchanged
Increment

TLEM Test Less Than Skip NI if (U), 7-0 ~ (Xa), 7-0; always (Xa), 7-0 +
or Equal to (Xa)35-18 - Xa 17-0
Modifier

TNGM Test Not Greater
Than Modifier

TZ Test Zero Skip NI if (U) = ± 0

8492 ~ SPERRY UNIVAC 1100/80 S~.m. I I C 9
UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE -- ,-----=-------=-----"-----~

Table C-2. Instruction Repertoire (continued)

Function
Code

(Octal)

f j Mnemonic Instruction Description

!) 1 0-17 TNZ Test Nonzero Skip NI if (U) t ± 0

!)2 0-17' TE Test Equal Skip NI if (U) = (A)

Ei3 0-17' TNE Test Not Equal Skip NI if (U) t (A)

Ei4 0-17 TLE Test Less Than Skip NI if (U) S (A)
or Equal

TNG Test Not Greater

f.5 0-17 TG Test Greater Skip NI if (U) > (A)

56 0-17 TW Test Within Skip NI if (A) < (U) S (A+ 1)
Range

Si7 0-17 TNW Test Not Within Skip NI if (U) S (A) or (U) > (A+ 1)
Range

60 0-17 TP Test Positive Skip NI if (U)35 = 0

61 0-17 TN Test Negative Skip NI if (U)35 = 1

62 0-17 SE Search Equal Skip NI if (U) = (A), else repeat

63 0-17 SNE Search Not Equal Skip NI if (U) t (A), else repeat

64 0-17 SLE Search Less Skip NI if (U) S (A), else repeat
Than or Equal

SNG Search Not
Greater

6~5 0-17 SG Search Greater Skip NI if (U) > (A), else repeat

6i6 0-17 SW Search Within Skip NI if (A) < (U) S (A+ 1), else repeat
Range

67 0-17 SNW Search Not Skip NI if (U) S (A) or (U) > (A+ 1), else repeat
Within Range

70 JGD Jump Greater Jump to U if (Control Register)ja > 0; go to NI
And Decrement if (Control Register)ja S 0; always (Control

Register)ja -1 ~ Control Registerja

71 00 MSE Mask Search Skip NI if (U) IAm1 (R2) = (A) IAm1 (R2), else
Equal repeat

R492
UP-MJMBER

Function
Code

(Octal)

f j

71 01

71 02

71 03

71 04

71 05

71 06

71 07

71 10

71 11

71 12

71 13

71 14

71 15

71 16

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference UPDATE lEVEL

C-10
PAGE

Table C-2. Instruction Repertoire (continued)

Mnemonic Instruction Description

MSNE Mask Search Not Skip NI if (U) ~ (R2) t (A) I!fm (R2), else
Equal repeat

MSLE Mask Search Skip NI if (U) I!fm (R2) ~ (A) I!fm (R2), else
! Less Than or repeat

Equal
MSNG Mask Search Not

Greater

MSG Mask Search Skip NI if (U) I!fm (R2) > (A) I!fm (R2), else
Greater repeat

MSW Masked Search Skip NI if (A) I!fm (R2) < (U) I!fm (R2) ~ (A+ 1)
Within Range I!fm (R2), else repeat

MSNW Masked Search Skip NI if (U) I!fm (R2) ~ (A) I!fm (R2) or (U)
Not Within I!fm (R2) > (A+ 1) I!fm (R2), else repeat
Range

MASL Masked Skip NI if (U) ~ (R2) ~(A) ~ (R2), else
Alphanumeric repeat
Search Less
Than or Equal

MASG Masked Skip NI if (U) ~ (R2) > (A) ~ (R2), else
Alphanumeric repeat
Search Greater

DA Double-Precision (A, A + 1) + (U, U + 1) A, A + 1
Fixed-Point Add

DAN Double-Precision (A, A + 1) - (U, U + 1) A, A + 1
Fixed-Point Add
Negative

OS Double Store A (A, A + 1) U, U + 1

DL Double Load A (U , U+ 1) A, A+ 1

DLN Double Load - (U, U + 1) A, A+ 1
Negative A

DLM Double Load I (U, U + 1) I A, A+ 1
Magnitude A

DJZ Double-Precision Jump to U if (A, A+ 1) = :!: 0; go to NI if (A,
Jump Zero A+1)t:!:0

8492 ~ SPERRY UNIVAC 1100/80 S~.m. C-l1
UP-NUM8ER Processor and Storage Programmer Reference UPDATE LEVEL PAGE - .-~---=-----==----------'----~

Table C-2. Instruction Repertoire (continued)

Function
Code

(Octal)

f j Mnemonic Instruction Description

:71 17 DTE Double-Precision Skip NI if (U < U+ 1) = (A, A+ 1)
Test Equal

72 00 IMI Initiate Send Attention Interrupt to Maintenance
Maintenance Processor. If in Maintenance Mode, otherwise
Interrupt NO-OP

12 01 SW Store Location Relative P+ 1 U 17-O; jump to U+ 1
And Jump

72 02 JPS Jump Positive Jump to U if (A)35 = 0; go to NI if (A)35 = 1;
And Shift always shift (A) left circularly one bit position

12 03 JNS Jump Negative Jump to U if (A)36 = 1; go to NI if (A)36 = 0;
And Shift always shift (A) left circularly one bit position

7'2 04 AH Add Halves (A)35--18 + (U)35-18; (A)35-18; (A), 7-0 +
(U), 7-0 A 17-O

7'2 05 ANH Add Negative (A)36-18 - (U)35-18 (A)35-18; (Ah7-O - (Uh7-O
Halves A 17-O

72 06 AT Add Thirds (A)36-24 + (U)35-24 A35- 24; (Ah3-12 +
(U)23-12 A23- 12; (A), 1-0 + (U), 1-0 A 11-O

72 07 ANT Add Negative (A)36-24 - (U)35-24 A35- 24; (A)23-12 -
Thirds (U)23-12 A23- 12; (A), 1-0 - (U), 1-0 A 11-O

72 10 EX Execute Execute the instruction at U

72 11 ER Executive Interrupt to MSR + 2428
Request

72 13 PAIJ Prevent All I/O Prevent all I/O interrupts and jump to U
Interrupts And
Jump

72 15 TRA Test Relative Used to determine whether a relative address
Address is within a given relative addressing range

72 16 SRS Store Register Aa contains address and count for each of two
Set GRS areas

72 17 LRS Load Register Move specified storage area to GRS area(s)
Set

8492
UP-NUMBER

Function
Code

(Octal)

f j

73 00

73 01

73 02

73 03

73 04

73 05

73 06

73 07

73 10

73 11

73 12

73 13

73 14

73 14

73 14

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference UPDATE LEVEL

Table C-2. Instruction Repertoire (continued)

Mnemonic Instruction Description

SSC Single Shift Shift (A) right circularly U places
Circular

DSC Double Shift Shift (A, A+ 1) right circularly U places
Circular

SSL Single Shift Shift (A) right U places, zero fill
Logical

DSL Double Shift Shift (A, A+ 1) right U places, zero fill
Logical

SSA Single Shift Shift (A) right U places, sign fill
Algebraic

DSA Double Shift Shift (A, A+ 1) right U places, sign fill
Algebraic

LSC Load Shift And (U) -+ A; shift (A) left circularly until (A)35 t
Count (A)34; number of shifts -+ A+ 1

DLSC Double Load (U, U+1) -+ A, A+1; shift (A, A+1) left
Shift and Count circularly until (A, A+ 1 h 1 t (A, A+ 1 ho;

number of shifts -+ A+ 2

LSSC Left Single Shift Shift (A) left circularly U places
Circular

LDSC Left Double Shift Shift (A, A+ 1) left circularly U places
Circular

LSSL Left Single Shift Shift (A) left U places, zero fill
Logical

LDSL Left Double Shift Shift (A, A+ 1) left U places, zero fill
Logical

C-12
PAGE

EDC Enable Day Clock Enable dayclock in IOAU having channels 0-23
a = 11

DOC Disable Day Disable dayclock
a = 12 Clock

SOC Select Day Clock Select internal dayclock
a = 13

8492 ~ SPERRY UNIVAC 1100/80 S~.m. C-13
UP-HUMBER Processor and Storage Progr~mmer Reference UPDATE LEVEL PAGE _ . __ ~~_---'-----L--.-

Table C-2. Instruction Repertoire (continued)

Function
Code

(Octal)

f j Mnemonic Instruction Description

73 15 Sil Select Interrupt (U)8-O ~ MSR
a = 00 locations

7'3 15 lBX load Breakpoint Transfer operand to Breakpoint Register
a = 02 Register

73 15 lQT load Quantum Place full-word operand in Quantum Timer
a = 03 Timer

73 15 IIiX Initiate Interrupt processor specified by operand
a = 04 Interprocessor address value

Interrupt

73 15 SPID Store Processor Store: binary serial number in first third;
a = 05 10 2-character Fieldata revision level in second

third; processor in last sixth of operand

73 15 RAT Reset Reset auto-recovery timer in system transition
a = 06 Auto-Recovery unit

Timer

73 15 TAP Toggle Toggle path selection after each auto-recovery
a = 07 Auto-Recover attempt

Path

73 15 lB load Base Place operand bits 0 through 17 in base value
a = 10 field of BDR specified by bits 33 and 34 of Xx

7.3 15 LL load Limits Place operand bits 15 through 23 and 24
a= 11 through 35 in BDR limits fields specified by Xx

bits 33 and 34

7:3 15 LAE load Addressing Place the double-word operand in GRS
a = 12 Environment location 046 and 047 and the four respective

Bank Descriptor Registers

7:3 15 SQT Store Quantum Store Quantum Timer value at GRS location
a = 13 Time 050 or at the storage location specified by

operand address. Executing this insturction
has no effect on 029

7:3 15 LO load Designator Place full-word operand in Designator Register
a = 14 Register

8492
I.JII4ItUMBER

Function
Code

(Octal)

f j

73 15

73 15

73 15

73 16

73 17

73 17

73 17

73 17

73 17

74 00

74 01

74 02

74 03

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPDATE LEVEL

C-14
PAGE

Table C-2. Instruction Repertoire (continued)

Mnemonic Instruction Description

SO Store Designator Store Designator Register contents at location
a= 15 Register specified by operand address

UR User Return Provides an orderly return to a user program
a = 16

SSS Store System Store two system status words at the location
a = 17 Status specified by operand address

LCR Load Channel (U)s-o -+ CSR; if (U)9 = 1, select back-to-back
a = 00 Select Register transfer mode

TS Test And Set If (U)30 = 1, interrupt to MSR + 2448; if (Uho
a = 00 = 0, go to NI; always 01 8 -+ U3s-o

TSS Test And Set if (Uho = 0, skip NI; if (U)30 = 1, go to NI;
a = 01 And Skip always 01 8 -+ U3S- 30

TCS Test and Clear If (Uho = 0, go to NI; if (U)30 = 1, skip NI;
a = 02 And Skip always clear (U)3S-30

TSA Test and Set Test bit position 14;
Alternate if (U), 4 = 1, interrupt;

if (U)14 = 0, take next instruction and set
bits 00 through 14 to one

TSSA Test and Set and If (U), 4 = 1, take next instruction;
Skip Alternate if (U), 4 = 0, skip the next instruction and set

bits 00 through 1 4 to one

JZ Jump Zero Jump to U if (A) = ± 0 go to N I if (A) t ± 0

JNZ Jump Nonzero Jump to U if (A) t ± 0; go to NI if (A) = ± 0

JP Jump Positive Jump to U if (A)3S = 0; go to NI if (A)3S = 1

JN Jump Negative Jump to U if (A)3S = 1; go to NI if (A)35 = 0

UPDATE LEVEL
C-15

PAGE

8492 ~ SPERRY UNIVAC 1100/80 S~m.
UP-HUMBER Processor and Storage Programmer Reference _ . __ -------=--__ --1...----'-----

Function
Code

(Octal)

f

74 04

74 05

14 06

7'4 07

74 10

74 11

74 12

74 13

74 14

74 14

74 14

74 14

74 15

74 15

Mnemonic

J
JK

HJ
HKJ

NOP

AAIJ

JNB

JB

JMGI

LMJ

JO
a = 00

JFU
a = 01

JFO
a = 02

.:JOF
a = 03

JNO
a = 00

JNFU
a = 01

Table (;-2. Instruction Repertoire (continued)

Instruction

Jump
Jump Key

Halt Jump
Halt Keys And
Jump

No Operation

All All 1/0
Interrupts And
Jump

Jump No Low Bit

Jump Low Bit

Jump Modifier
Greater and
Increment

Load Modifier
and Jump

Jump Overflow

Jump Floating
Underflow

Jump Floating
Overflow

Jump Divide
Fault

Jump No
Overflow

Jump No
Floating
Underflow

Description

Jump to U if a = 0 or if a = set SELECT
JUMPS control circuit n go to NI if neither is
true
Stop if a = 0 or if [a field ~ set SELECT
STOPS control circuits] t 0; on restart or
continuation jump to U

Proceed to next Instruction

Allow all 1/0 interrupts and jump to U

Jump to U if (A)o = 0; go to NI if (A)o = 1

Jump to U if (A)o = 1; go to NI if (A)o = 0

Jump to U if (Xah 7-0 > 0; go to NI if (Xah 7-0
~ 0; always (Xah7-O + (Xa)35-18 -+ Xa17-O

Relative P + 1 -+ (Xa), 7-0; jump to U

Jump to U if 01 = 1; go to NI if 01 = 0

Jump to U if 021 = 1, clear 021; go to NI if
021 = 0

Jump to U if 022 = 1, clear 022; go to NI if
022 = 0

Jump to U if 023 = 1, clear 023; go to NI if
023 = 0

Jump to U if 01 = 0; go to NI if 01 = 1

Jump to U if 021 = 0; go to NI if 021 = 1;
clear 021

8492
UP-NUMBER

Function
Code

(Octal)

f j

74 15

74 15

74 16

74 17

75 00

75 01

75 02

75 03

75 04

75 05

75 10

75 11

76 00

76 01

76 02

76 03

76 04

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference UPDATE LEVEL

C-16
PAGE

Table C-2. Instruction Repertoire (continued)

Mnemonic Instruction Description

JNFO Jump No Jump to U if 022 = 0; go to NI if 022 = 1 ;
a = 02 Floating Overflow clear 022

JNDF Jump No Divide Jump to U if 023 = 0; go to NI if 023 = 1 ;
a = 03 Fault clear 023

JC Jump Carry Jump to U ;f DO = 1; go to N I if DO = 0

JNC Jump No Carry Jump to U if DO = 0; go to NI if DO = 1

SRL Select Release Initiates the execution of a CCW list

SIOF Start I/O Fast Initiates operation specified by bit 00 through
Release 15 of CAW

TIO Test I/O Interrogates the channel, subchannel and
device

TSC Test Subchannel Interrogates the channel an~ subchannel

HDV Halt Device Terminates current operation on channel and
subchannel

HCH Halt Channel Terminates current operation on channel

LCR Load Channel Load the interrupt mask register
Register

I LTCW Load Control Loads the status table subchannel
Words

FA Floating Add (A) + (U) - A; RESIDUE - A+ 1 if 017 = 1

FAN Floating Add (A) - (U) - A; RESIDUE - A+ 1 if 017 = 1
Negative

FM Floating Multiply (A) x (U) - A (and A+ 1 if 017 = 1)

FD Floating Divide (A) divided by (U) - A; REMAINDER - A+ 1 if
017 = 1

LUF Load and Unpack 1 (U) 134-27 - A7-o' zero fill
Floating (U)26-00 - A+ 126-00' sign fill

(U)36 - A+ 136;

UPDATE lEVEL
C-17

PAGE
8492 ~ SPERRY UNIVAC 1100/80 S~.m.
UP-HUM8ER Processor and Storage Programmer Reference
---------=-----'----~

Table C-2. Instruction Repertoire (continued)

Function
Code

(Octal)

f j Mnemonic Instruction Description

76 05 LCF Load and (U)35 ~ A+ 135, [NORMALIZED (U)h~ ~
Convert To A+ 12~; if (U)35 = 0, (Ah-O ± NORMALIZING
Floating COUNT ~ A+ 134- 27; if (U)35 = 1, ones

complement of [(A) 7-0 ± NORMALIZING
COUNT] ~ A+ 134- 27

16 06 MCDU Magnitude of II (A) 135-27 -I (U) 135-27 I ~ A+ 18-0; ZEROS -
Characteristic A+ 135-9
Difference To
Upper

7'6 07 CDU Characteristic I (A) 135-27 - I (U) 135-27 ~ A+ 18-0 SIGN BITS
Difference To ~ A+1 35-9
Upper

76 10 DFA Double-Precision (A, A+ 1) + (U, U+ 1) ~ A, A+ 1
Floating Add

76 11 DFAN Double-Precision (A, A + 1) - (U I U + 1) ~ A, A + 1
Floating Add
Negative

76 12 DFM Double-Precision (A, A+ 1) x (U, U + 1) ~ A, A+ 1
Floating Multiply /

76 13 DFD Double-Precision (A, A+ 1) divided by (U, U+ 1) - A, A+ 1
Floating Divide

76 14 DFU Double Load and I (U, U + 1) 170-60 ~ A 10-0' zero fill; (U,
Unpack Floating U+ 1)59-36 ~ A+ 123-0' sign fill; (U, U+ 1)36-0

~A+2

76 15 DLCF, DFP Double Load and (U)35 - A+ 135; [NORMALIZED (U < U +
Convert To 1)]59-0 ~ A+ 123-0 and A+2; if (U)35' (A),o-o ±
Floating NORMALIZING COUNT ~ A+ 134- 24; if (U)35 =

1, ones complement of [(A) 1 0-0 ±
NORMALIZING COUNT] ~ A+ 134- 24

76 16 FEL Floating Expand If (U)35 = 0; (U)35-27 + 16008 - A35- 24
and Load

If (U)35 = 1; (U)35-27 - 16008 - A35- 24
(U)26-3 - A23-O; (U)2-O - A+ 135- 33; (U)35 -
A+ 132-0

--

8492
UP-MJM8ER

Function
Code

(Octal)

f j

76 17

UPDATE LEVEL
SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference

Table C-2. Instruction Repenoire (continued)

Mnemonic Instruction Description

FCL Floating If (U)36 = 0; (U)36-24 - 16008 -+ A 36- 27; if

C-18
PAGE

Compress and (U)36 = 1; (U)36-24 + 16008 -+ A 35- 27 (Uh3-O
Load -+ A 26-3; (U + 1)36-33 -+ A 2-o

UPDATE LEVEL
0-1

PAGE
8492 ~ SPERRY UNIVAC 1100/80 S~.m.
UP~UM8ER Processor and Storage Programmer Reference _ , __ ---=-------=-__ L..--..L.-.--

Appendix D. Character Codes

Table 0-1. Fieldata To ASCII Code Conversion

ASCII
Fieldata Code 80-Column High Speed Octal Code Symbol

(Octal) Card Code Printer Symbol

00 7-8 @ 100 @

01 12-5-8 [133 [.
02 11-5-8] 135]
03 12-7-8 # 43 #
04 11-7-8 6. 136 A

05 (blank) (space) 40 (space)
06 12-1 A 101 A
07 12-2 B 102 B

10 12-3 C 103 C
11 12-4 0 104 0
12 12-5 E 105 E
13 12-6 F 106 F

14 12-7 G 107 G
15 12-8 H 110 H
16 12-9 I 111 I
17 11-1 J 112 J

20 11-2 K 113 K
21 11-3 L 114 L
22 11-4 M 115 M
23 11-5 N 116 N

24 11-6 0 117 0
25 11-7 P 120 P
26 11-8 a 121 a
27 11-9 .R 122 R

8492
UP-NUMBER

Fieldata Code
(Octal)

30
31
32
33

34
35
36
37

40
41
42
43

44
45
46
47

50
51
52
53

54
55
56
57

60
61
62
63

64
65
66
67

70
71 ~

60
61
62
63

64

SPERRY UNIVAC 1100/80 S~.m.
Processor and Storage Programmer Reference UPDATE LEVEL

Table 0-1. Fieldata To ASCII Code Conversion (continued)

ASCII
80-Column High Speed Octal Code Symbol
Card Code Printer Symbol
0-2 S 123 S
0-3 T 124 T
0-4 U 125 U
0-5 V 126 V

0-6 W 127 W
0-7 X 130 X
0-8 y 131 y

0-9 Z 132 Z

12-4-8) 51)
11 - 55 -
12 + 53 +
12-6-8 < 74 <

3-8 = 75 =
6-8 > 76 >
2-8 & 46 &
11-3-8 $ 44 $

11-4-8 * 52 * 0-4-8 (50 (
0-5-8 % 45 %
5-8 72

12-0 ? 77 ?
11-0 I 41 I
0-3-8 ,(comma) 54 ,(comma)
0-6-8 \ 134 \

0 0 60 0
1 1 61 1
2 2 62 2
3 3 63 I 3

4 4 64 4
5 5 65 5
6 6 66 6
7 7 67 7

8 8 70 8
9 9 71 9

0 0 60 0
1 1 61 1
2 2 62 2
3 3 63 3

4 4 64 4

0-2
PAGE

UPDATE LEVEL
0-3

PAGE

8492 ~ SPERRY UNIVAC 1100/80 S~.m.
lJII-HUMBER Processor and Storage Programmer Reference - ,----=------=---~~-

Table 0-1. Fieldata To ASCII Code Conversion (continued)

ASCII
Fieldata Code 80-Column High Speed Octal Code Symbol

(Octal) Card Code Printer Symbol
65 5 5 65 5
66 6 6 66 6
67 7 7 67 7

70 8 8 70 8
71 9 9 71 9

I 72 4-8 '(apostrophe) 47 '(apostrophe)
: 73 11-6-8 , 73 ,
:

74 0-1 / 57 /
75 12-3-8 .(period) 56 .(period)
76 0-7-8 IJ 42 "
1"7 0-2-8 t or stop 137 -100 @ 00 @

101 A 06 A
102 B 07 B
103 C 10 C
104 0 11 0
105 E 12 E
106 F 13 F
107 G 14 G
110 H 15 H
111 I 16 I
112 J 17 J
113 K 20 K
114 L 21 L
115 M 22 M
116 N 23 N
117 a 24 a
120 p 25 P
121 a 26 a
122 R 27 R
123 S 30 S
124 T 31 T
1,25 U 32 U
126 V 33 V
127 W 34 W
130 X 35 X
131 Y 36 y
132 Z 37 Z
133 [01 [
134 \ 57 \
135] 60]
136 04
137 - 77 t
140 00 @

141 a* 06 A**
through through through through

172 z* 37 z**

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S~m.
Processor and Storage Programmer Reference UPDATE LEVEL

Tab/e 0- T. Fie/data To ASCII Code Conversion (continued)

Fieldata Code· 80-Column
(Octal) Card Code

173
174
175
176
177

* Lower case alphabet
** Upper case alphabet

High Speed Octal Code
Printer Symbol

54
57
55
04
77

Codes, which also represent collating sequence, are given in octal.

ASCII
Symbol

0-4
PAGE

ASCII codes from OOa to 378 are for communications, format, and separator control characters.
These are not converted into Fieldata.

The ASCII symbols represented by codes 40a to 137 a are converted into the identical Fieldata
symbols, except that the quotation marks symbol (42a) is converted into a lozenge (76a), the
circumflex (136a) is converted into a delta (04a), underscore (137 a) is converted into a not equal sign
(77 a).

There are no remaining unique Fieldata symbols into which to convert the balance of the ASCII
symbols, represented by codes 140a to 1 77 a, so most of these codes are "folded" over codes 100a
to 1378 (by clearing bit 5, which amounts to subtracting 40a). This means that ASCII codes /10 1a
(A) and 141a (a), for example, are both translated as if they were code 101 8 (converted to Fieldata
068 for A). Two execptions to this general rule are the ASCII opening brace (173a) and closing brace
(175a) which are converted to Fieldata question mark (54a) and exclamation point (55a), respectively,
to satisfy overpunch sign considerations. This is the conversion provided by the Fieldatal ASCII
translator (F 1325-00), as explained in the UNIVAC 1100 Series Multi-Subsystem Adapter
Programmer Reference, UP-7890 (current version).

The Special Characters In ASCII

SP designaters space, which is normally nonprinting.
DEL designaters delete, and has a code of all 1 bits. This code obliterates any unwanted

previous character - ever on paper tape or other nonerasable medium.

Definitions of the 32 ASCII control characters, codes OOa to 37 a:
00 NUL Null - all zero character which may serve as time fill
01 SOH Start of heading
02 STX Start of text
03 ETX End of text
04 EaT End of transmission
05 ENQ Enquire - "Who Are You?"
06 ACK Acknowledge - "Yes"
07 BEL Bell - human attention required

8492 I SPERRY UNIVAC 1100/80 S~.m. 0-5
___ ~ __ , ______ ~ _______ P_ro_c_e_s_s_o_r_a_n_d __ S_to_r_a~g_e_p_rr_o~g~r_a_m_m __ e_r_R_e_fe_r_e_n_c_e __________ ~U_~_A_n __ ~_E_L ____ ~'_AG __ E ______ __

10 BS
1 ~ HT
12 LF
13 VT
1.:11 FF
15 CR
16 SO
17 SI
20 OLE
21 DCl
2:2~ DC2
23DC3
24DC4
25 NAK
26 SYN
27 EBT
301 CAN
31 EM
32 SUB
33 ESC
34 FS
35 GS
36 RS
37 US

Backspace
Horizontal tabulation
Line feed
Vertical tabulation
Form feed
Carriage return

format effectors for
printing or punching

Shift out - nonstandard code follows
Shift in - return to standard code
Data link escape - change limited data communication control

} Device control for turning on or off ancillary devices

Negative acknowledge - "No"
Synchronous idle - from which to achieve synchronism
End of transmission block - relate to physical communication block
Cancel previous data
End of medium - end of used, or wanted portion of information
Substitute character for one in error
Escape - for code extension - change some character interpretations
File separator } These information separators are ordered in
Group separator descending hierarchy. They are followed by
Record separator ASCII 408 (space), which can also be thought
Unit separator of as a word separator.

	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	6-61
	6-62
	6-63
	6-64
	6-65
	6-66
	6-67
	6-68
	6-69
	6-70
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06

