
§1 ANNOYANCE-FILTER INTRODUCTION 1

1. Introduction.

The Annoyance Filter

by John Walker

This program is in the public domain.

Business propaganda must be obtrusive and blatant. It is its aim to attract the attention of slow
people, to rouse latent wishes, to entice men to substitute innovation for inert clinging to traditional
routine. In order to succeed, advertising must be adjusted to the mentality of the people courted.
It must suit their tastes and speak their idiom. Advertising is shrill, noisy, coarse, puffing, because
the public does not react to dignified allusions. It is the bad taste of the public that forces the
advertisers to display bad taste in their publicity campaigns.

—Ludwig von Mises, Human Action

This program implements an adaptive Bayesian filter which distinguishes junk mail from legitimate mail
by scanning archives of each and calculating the probability for each word which appears a statistically
significant number of times in the body of text that the word will appear in junk mail.

After building a database of word probabilities, arriving mail is parsed into a list of unique words which
are looked up in the probability database. A short list of words with extremal probability (most likely to
identify a message as legitimate or as junk) is used to compute an aggregate message probability with Bayes’
theorem. This probability is then tested against a threshold to decide whether the message as a whole is
junk. Mail determined to be junk or legitimate can be added to the database to refine the probability values
and adapt as the content of mail evolves over time. Ideally, this could be triggered to a button in a mail
reader which dispatched a message to the appropriate category.

The technique and algorithms used by this program are as described in Paul Graham’s “A Plan for
Spam1”. This C++ program was developed based on the model Common Lisp code in his document which,
in turn, was modeled on the original code in the “Arc” language he is developing.

The concept of an adaptive advertising filter and the name of this program first appeared in my 1989
science fiction story “We’ll Return, After This Message”.

A complete development log giving the detailed history of this program appears at the end of this document.

#define REVDATE "2003−09−24"

#define Xfile string("X−Annoyance−Filter")

1 SPAM R© is a registered trademark of Hormel Foods Corporation. Use of the word to denote unsolicited
commercial E-mail is based on the Monty Python skit in which a bunch of Vikings sing a chorus of “SPAM,
SPAM, SPAM,” drowning out all civil discourse. To avoid confusion with processed meat products, I use the
term “junk mail” in this document. Besides, if “spam” is strictly defined as unsolicited commercial E-mail,
the mandate of this program covers the much broader spectrum of undesired mail regardless of provenance
and motivation.

http://www.fourmilab.ch/
http://www.paulgraham.com/spam.html
http://www.paulgraham.com/spam.html
http://www.fourmilab.ch/documents/sftriple/gpic.html
http://www.spam.com/

2 USER GUIDE ANNOYANCE-FILTER §2

2. User Guide.

annoyance−filter is invoked with a command line as follows:

annoyance−filter options

where options specify processing modes as defined below and are either long names beginning with two
hyphens or single letter abbreviations introduced by a single hyphen.

§3 ANNOYANCE-FILTER GETTING STARTED 3

3. Getting started.
The Annoyance Filter is organised as a toolbox which can be used to explore content-based mail filtering.

It includes diagnostic tools and output which will eventually be little used once the program is tuned and
put into production.

The program is normally run in two phases. In the training phase, collections of legitimate and junk mail
stored in UNIX mail folders are read and used to build a dictionary in which the probability of a word’s
identifying a message as junk is computed. This dictionary is then exported to be used in subsequent runs
to classify incoming messages based on the word probabilities determined from prior messages.

3.1. Building

If you have a more or less standard present-day UNIX system, you should be able to build and install the
program with the commands:

./configure
make
make check
make install

3.2. Training

Now you must train the program to discriminate legitimate junk and mail by showing it collections of
such mail you’ve hand sorted into a pile of stuff you want to receive and another which you don’t. Assuming
you have mail folders containing collections of legitimate mail and junk named “m−good” and “m−junk”
respectively, you can perform the training phase and create a binary dictionary file named “dict.bin” and
a fast dictionary “fdict.bin” for classifying messages with the command:

annoyance−filter --mail m-good --junk m-junk --prune \
--write dict.bin --fwrite fdict.bin

The arguments to the −−mail and −−junk options can be either UNIX “mail folders” consisting of one
or more E-mail messages concatenated into a single file, or the name of a directory containing messages in
individual files. In either case, the files may be compressed with gzip—annoyance−filter will automatically
expand them. You can supply as many −−mail and −−junk options as you like on a command line; the
contents added cumulatively to the dictionary.

It is absolutely essential that the collections of legitimate and junk mail used to train annoyance−filter

be completely clean—no junk in the −−mail collection or vice versa. Pollution of either collection by messages
belonging in the other is very likely to corrupt the calculation of probabilities, resulting in messages which
belong in one category being assigned to the other. The utilities/splitmail.pl program can help in
manually sorting mail into the required two piles, and I hope some day I will have the time to adequately
document it.

You may find it worthwhile to add an archive of mail you’ve sent to the legitimate category with −−mail.
In many cases, the words you use in mail you send are an excellent predictor of how worthy an incoming
message is of your attention. I’ve found this works well with my own archives, but I haven’t tested how
effective it is for a broader spectrum of users.

When you compile the collections of junk and legitimate mail to train annoyance−filter, it’s important to
include all the copies of similar or identical messages you’ve received in either category. annoyance−filter
bases its classifications on the frequency of indicative words in the entire set of mail you receive. An obscure
string embedded in a mail worm spewed onto the net may not filter it out if you train annoyance−filter

with only one copy, but will certainly consign it to the junk heap if you train annoyance−filter with the
twenty or thirty you receive a day.

3.3. Scoring

Dictionary in hand, you can now proceed to the scoring phase, where the dictionary is used, along with
the list of words appearing in a message, to determine its overall probability of being junk. If you have a
mail message in a file “mail.txt”, you can compute and display its junk probability with:

annoyance−filter --fread fdict.bin --test mail.txt

4 GETTING STARTED ANNOYANCE-FILTER §3

The probability is written to standard output. The closer the probability is to 1, the more likely the mail is
junk.

3.4. Plumbing

To use annoyance−filter as a front-end to another mail filtering program, specify the −−transcript op-
tion before −−test—the junk probability and classification will be appended to the message header and writ-
ten to the designated transcript destination, standard output if “−”. For example, to use annoyance−filter
as a front-end to a mail sorting program such as Procmail, you might invoke it with the command:

annoyance−filter --fread fdict.bin --transcript - --test -
which reads the message to be classified from standard input and writes the transcript, classification included,
to standard output. Note that since the command line options are processed as commands, not stateless
mode specifications, you must request the −−transcript before designating the message to −−test.

3.5. Progressive Refinement

Junk mail evolves, but annoyance−filter evolves with it. As incoming mail arrives and annoyance−filter

sorts it into legitimate and junk categories, there will doubtless be the occasional error. The classification
defaults used by annoyance−filter have been chosed that the vast majority of such error are in the direction
of considering junk mail legitimate as opposed to the opposite, whose consequences are much more serious.

As annoyance−filter sorts your incoming mail, you’ll amass folders of junk and non-junk it’s classified,
including the occasional error. If you take the time to go through these folders and sort out the occasional
mis-classified messages, then add them to the annoyance−filter dictionary, the precision with which it
classifies incoming messages will be increasingly refined. For example, suppose your current dictionary is
dict.bin and you have sorted out folders of legitimate mail new−good and junk new−junk which have arrived
since you built the dictionaty. You can update the dictionary based on new messages with the command:

annoyance−filter --read dict.bin --mail new-good --junk new-junk \
--prune --write dict.bin --fwrite fdict.bin

Perhaps some day a mail client will provide a “Delete as junk” button which automatically discards the
offending message and forwards it to annoyance−filter to further refine its criteria for identifying junk.

§4 ANNOYANCE-FILTER OPTIONS 5

4. Options.
Options are specified on the command line. Options are treated as commands—most instruct the program

to perform some specific action; consequently, the order in which they are specified is significant; they are
processed left to right. Long options beginning with “−−” may be abbreviated to any unambiguous prefix;
single-letter options introduced by a single “−” without arguments may be aggregated.

−−annotate options
Add the annotations requested by the characters in options to the transcript generated by
the −−transcript option. Upper and lower case options are treated identically. Available
annotations are:

d Decoder diagnostics
p Parser warnings and error messages
w Most significant words and their probabilities

−−autoprune n
As the dictionary is bring built by appending mail to it with the −−mail and −−junk

options, unique words will automatically be pruned from it whenever the dictionary
exceeds approximately n bytes. This is particularly handy when loading large collections
of messages with −−phrasemax set greater than one, as a very large number of unique
phrases may clutter the dictionary being built and exceed the memory capacity of your
computer. You could split the mail collection into multiple parts and explicitly −−prune

after each part, but −−autoprune is much more convenient.
−−biasmail n

The frequency of words appearing in legitimate mail is inflated by the floating point
factor n, which defaults to 2. This biases the classification of messages in favour of
“false negatives”—junk mail deemed legitimate, while reducing the probability of “false
positives” (legitimate mail erroneously classified as junk, which is bad). The higher the
setting of −−biasmail, the greater the bias in favour of false negatives will be.

−−binword n
Binary character streams (for example, attachments of application-specific files, including
the executable code of worm and virus attachments) are scanned and contiguous sequences
of alphanumeric ASCII characters n characters or longer are added to the list of words
in the message. The dollar sign (“$”) is considered an alphanumeric character for these
purposes, and words may have embedded hyphens and apostrophes, but may not begin or
end with those characters. If −−binword is set to zero, scanning of binary attachments is
disabled entirely. The default setting is 5 characters.

−−bsdfolder
The next −−mail or −−junk folder will be parsed using “classic BSD” rules for identifying
the start of individual messages in the folder. In BSD-style folders, the text “From ” as the
leftmost characters of a line always denotes the start of a new message: any appearance of
this text in any other context is always quoted, often by prefixing a “>” character. In the
default UNIX folder syntax, “From ” only marks the start of a new message if it appears
following one or more blank lines. Note that you must specify −−bsdfolder before each
folder to be read with BSD rules; it is not a modal setting.

−−classify fname
Classify mail in fname. If it equals or exceeds the junk threshold (see −−threshjunk),
“JUNK” is written to standard output and the program exits with status code 3. If the
message scores less than or equal to the mail threshold (see −−threshmail), “MAIL” is
written to standard output and the program exits with status 0. If the message’s score
falls between the two thresholds, its content is deemed indeterminate; “INDT” is written
to standard output and the program exits with a status of 4. The output can be used
to set an environment variable in Procmail to control the disposition of the message. If
fname is “−” the message is read from standard input.

6 OPTIONS ANNOYANCE-FILTER §4

−−clearjunk
Clear appearances of words in junk mail from database. Used when preparing a database
of legitimate mail.

−−clearmail
Clear appearances of words in legitimate mail from database. Used when preparing a
database of junk mail.

−−copyright

Print copyright information.
−−csvread fname

Import a dictionary from a comma-separated value (CSV) file fname. Records are assumed
to be in the format written by −−csvwrite but need not be sorted in any particular order.
Words are added to those already in memory.

−−csvwrite fname
Export a dictionary as a comma-separated value (CSV) fname with this option. Such files
can be loaded into spreadsheet or database programs for further processing. Words are
sorted first in ascending order of probability they denote junk mail, then lexically.

−−fread, −r fname
Load a fast dictionary (previously created with the −−fwrite option) from file fname.

−−fwrite fname
Write a dictionary to the file fname in fast dictionary format. Fast dictionaries are
written in a binary format which is not portable across machines with different byte order
conventions and cannot be added incrementally to assemble a larger dictionary, but can
be loaded in a small fraction of the time required by the format created by the −−write

command. Using a fast dictionary for routine classification of incoming mail drastically
reduces the time consumed in loading the dictionary for each message.

−−help, −u
Print how-to-call information including a list of options.

−−junk, −j fname
Add the mail in folder fname to the dictionary as junk mail. These folders may be
compressed by a utility the host system can uncompress; specify the complete file name
including the extension denoting its form of compression. If fname is “−” the mail folder
is read from standard input.

−−list

List the dictionary on standard output.
−−mail, −m fname

Add the mail in folder fname to the dictionary as legitimate mail. These folders may be
compressed by a utility the host system can uncompress; specify the complete file name
including the extension denoting its form of compression. If fname is “−” the mail folder
is read from standard input.

−−newword n
The probability that a word seen in mail which does not appear in the dictionary (or
appeared too few times to assign it a probability with acceptable confidence) is indicative
of junk is set to n. The default is 0.2—the odds are that novel words are more likely to
appear in legitimate mail than in junk.

−−pdiag fname
Write a diagnostic file to the specified fname containing the actual lines the parser pro-
cessed (after decoding of MIME parts and exclusion of data deemed unparseable). Use
this option when you suspect problems in decoding or pre-parser filtering.

§4 ANNOYANCE-FILTER OPTIONS 7

−−phraselimit n
Limit the length of phrases assembled according to the −−phrasemin and −−phrasemax

options to n characters. This permits ignoring “phrases” consisting of gibberish from mail
headers and un-decoded content. In most cases these items will be discarded by a −−prune

in any case, but skipping them as they are generated keeps the dictionary from bloating
in the first place. The default value is 48 characters.

−−phrasemin n
Calculate probabilities of phrases consisting of a minumum of n words. The default of 1
calculates probabilities for single words.

−−phrasemax n
Calculate probabilities of phrases consisting of a maximum of n words. The default of 1
calculates probabilities for single words. If you set this too large, the dictionary may grow
to an absurd size.

−−plot fname
After loading the dictionary, create a plot in fname.png of the histogram of words, binned
by their probability of appearance in junk mail. In order to generate the histogram the
GNUPLOT and NETPbm utilities must be installed on the system; if they are absent, the
−−plot option will not be available.

−−pop3port n
The POP3 proxy server activated by a subsequent −−pop3server option will listen for
connections on port n. If no −−pop3port is specified, the server will listen on the default
port of 9110. On most systems, you’ll have to run the program as root if you wish the
proxy server to listen on a port numbered 1023 or less.

−−pop3server server[:port]
Activate a POP3 proxy server which relays requests made on the previously specified
−−pop3port or the default of 9110 if no port is specified, to the specified server, which
may be given either as an IP address in “dotted quad” notion such as 10.89.11.131 or a
fully-qualified domain name like pop.someisp.tld. The port on which the server listens
for POP3 connections may be specified after the server prefixed by a colon (“:”); if no
port is specified, the IANA assigned POP3 port 110 will be used. The POP3 proxy server
will pass each message received on behalf of a requestor through the classifier and return
the annotated transcript to the requestor, who may then filter it based on the classification
appended to the message header. You must load a dictionary before activating the POP3
proxy server, and the −−pop3server option must be the last on the command line. The
server continues to run and service requests until manually terminated.

−−pop3trace
Write a trace of POP3 proxy server operations to standard error. Each trace message
(apart from the dump of the body of multi-line replies to clients) is prefixed with the label
“POP3: ”.

−−prune
After loading the dictionary from −−mail and −−junk folders, this option discards words
which appear sufficiently infrequently that their probability cannot be reliably estimated.
One usually −−prunes the dictionary before using −−write to save it for subsequent runs.

−−ptrace
Include a token-by-token trace in the −−pdiag output file. This helps when adjusting
the parser’s criteria for recognising tokens. Setting this option without also specifying a
−−pdiag file will have no effect other than perhaps to exercise your fingers typing it on
the command line.

−−read, −r fname
Load a dictionary (previously created with the −−write option) from file fname.

8 OPTIONS ANNOYANCE-FILTER §4

−−sigwords n
The probability that a message is junk will be computed based on the individual proba-
bilities of the n words with extremal probabilities; that is, probabilities most indicative of
junk or mail. The default is 15, but there’s no obvious optimal setting for this parameter;
it depends in part on the average length of messages you receive.

−−statistics
After loading the dictionary from −−mail and −−junk folders, print statistics of the
distribution of junk probabilities of words in the dictionary. The statistics are written
to standard output.

−−test, −t fname
Test mail in fname and write the estimated probability it is junk to standard output unless
the −−transcript option is also specified with standard output (“−”) as the destination,
in which case the inclusion of the probability and classification in the transcript is adjudged
sufficient. If the −−verbose option is specified, the individual probabilities of the “most
interesting” words in the message will also be output. If fname is “−” the message is read
from standard input.

−−threshjunk n
Set the threshold for classifying a message as junk to the floating point probability value
n. The default threshold is 0.9; messages scored above −−threshjunk are deemed junk.

−−threshmail n
Set the threshold for classifying a message as legitimate mail to the floating point prob-
ability value n. The default threshold is 0.9, with messages scored below −−threshmail

deemed legitimate. Note that you may leave a gap between the −−threshmail and
−−threshjunk values (although it makes no sense to set −−threshmail higher). Mail
scored between the two thresholds will then be judged of uncertain status.

−−transcript fname
Write an annotated transcript of the original message to the specified fname. If fname is
“−”, the transcript is written to standard output. At the end of the message header, an
X−Annoyance−Filter−Junk−Probability header item giving the computed probability
and an X−Annoyance−Filter−Classification item which gives the classification of the
message according to the −−threshmail and −−threshjunk settings; the classification is
given as “Mail”, “Junk”, or “Indeterminate”.

−−verbose, −v
Print diagnostic information as the program performs various operations.

−−version

Print program version information.
−−write fname

Write a dictionary to the file fname. The dictionary is written in a binary format which
may be loaded on subsequent runs with the −−read option. Binary dictionary files are
portable among machines with different architectures and byte order.

§5 ANNOYANCE-FILTER PHRASE-BASED CLASSIFICATION 9

5. Phrase-based classification.
annoyance−filter has the ability to classify messages based upon occurrences of multiple-word phrases

as well as individual words. Here are results from an empirical test of classifying messages by single word
frequencies compared to considering both individual words, phrases of 1–2 and 1–3 words, and phrases of two
to three words. With this test set (compiled by hand sorting three years of legitimate and junk mail), adding
classification by two word phrases reduces the number of false negatives (junk mail erroneously classified as
legitimate) by more than 90%, while preserving 100% accuracy in identifying legitimate mail.

Folder −−phrasemin −−phrasemax Total Mail Junk Prob
Junk 1 1 8957 37 8920 0.9970
Mail 1 1 2316 2316 0 0.0000

Junk 1 2 8957 3 8954 0.9997
Mail 1 2 2316 2316 0 0.0000

Junk 1 3 8957 9 8948 0.9983
Mail 1 3 2316 2316 0 0.0000

Junk 2 3 8957 9 8948 0.9981
Mail 2 3 2316 2316 0 0.0000

There’s no need to overdo it, however. Note that extending classification to phrases of up to three words
actually slightly reduced the accuracy with which junk was recognised. In most circumstances, classifying
based on phrases of one and two words will yield the best results.

10 INTEGRATING WITH PROCMAIL ANNOYANCE-FILTER §6

6. Integrating with Procmail.
Many UNIX users plagued by junk mail already use the Procmail program to filter incoming mail.

Procmail makes it easy to define a “whitelist” of senders whose mail is always of interest and a “blacklist”
of known perpetrators of junk mail. Although Procmail includes a flexible weighted scoring mechanism
for evaluating mail based on content, this has limitations in coping with real world junk mail. First of all,
choosing keywords and their scores is a completely manual process which requires continual attention as the
content of junk mail evolves. Trial and error is the only mechanism to avoid “false positives” (legitimate
mail erroneously considered junk) and “false negatives” (junk which makes it through the filter). Further,
Procmail looks only at the raw message received by the mail agent, and contains no logic to decode
attachments, parse HTML, or interpret encoded character sets. Present-day junk mail has these attributes
in profusion, and often deliberately employs them in the interest of “stealth”—evading keyword based filters
such as Procmail.
annoyance−filter has been designed to work either stand-alone or in conjunction with a filter like

Procmail. Integrating annoyance−filter and Procmail provides the best of both worlds—hand-crafted
Procmail filtering of the obvious cases (whitelists, blacklists, and routine mail filing) and annoyance−filter

evaluation of the unclassified residua. Here’s how you can go about integrating annoyance−filter and
Procmail. In the examples below, we’ll use “blohard” as the user name of the person installing annoyance−filter.

6.1. Installing annoyance−filter

First of all, you need to build annoyance−filter for your system, create a dictionary from collections of
legitimate and junk mail, and install the lot in a location where the mail transfer agent (Sendmail on most
UNIX systems) can access it. This can be any directory owned by the user, but I recommend you use the
default of .annoyance−filter in your home ($HOME) directory; this is the destination used by the install

target in the Makefile.
After you’ve built your custom dictionary, copy it to the .annoyance−filter directory as dict.bin.

6.2. Installing Procmail

Obviously, if you’re going to be using Procmail, it needs to be installed on your system. Fortunately,
many present-day Linux distributions come with Procmail already installed, so all the user need do is place
the filtering rules (or “recipes”) in a .procmailrc file in the home directory. If Procmail is not installed
on your system, please visit Procmail for details on how to remedy that lacuna. If you do need to install
Procmail, note that it can be installed either system-wide, filtering all users’ mail (this is how the Linux
distributions generally install it), or on a per-user basis, which does not require super-user permissions to
install. Fortunately, the configuration file is identical regardless of how Procmail is installed.

6.3. Procmail Configuration

The next few paragraphs will look at typical components of a Procmail configuration file which, by default,
is .procmailrc in the user’s home directory. To make the script more generic and portable, we’ll start by
defining a few environment variables which specify where Procmail files mail and writes its log.
MAILDIR=$HOME/mailbox # Be sure this directory exists
LOGFILE=$MAILDIR/logfile # Write a log of Procmail’s actions

6.3.1. Filtering with annoyance−filter

annoyance−filter integrated with Procmail as a filter. As each message arrives, Procmail feeds it
through annoyance−filter, which appends its estimation of the probability the message is junk to the
header of the message. Subsequent Procmail recipes then test this field and route the message accordingly.

Assuming you’ve installed annoyance−filter in the $HOME/annoyance−filter directory, you activate
the filtering by adding the following lines to your .procmailrc file. If you make this the first recipe, any
subsequent recipe will be able to test for the annoyance−filter header fields.

:0 fw

| $HOME/.annoyance−filter/annoyance−filter \
−−fread $HOME/.annoyance−filter/fdict.bin −−trans − −−test −

http://www.procmail.org/
http://www.sendmail.org/
http://www.procmail.org/

§6 ANNOYANCE-FILTER INTEGRATING WITH PROCMAIL 11

The action line which pipes the message to annoyance−filter is continued onto a second line here in order
to fit on the page. Procmail permits continuations of this form, but will equally accept the command all on
one line with the backslash removed.

6.3.2. Routing by annoyance−filter classification
Once the message has been filtered by annoyance−filter, subsequent rules can test for its classification

and route the message accordingly. The following rules dispatch messages it classifies as junk to a junk

folder used by the blacklist, while messages judged to be legitimate mail and those with an intermediate
probability are sent to the user’s mailbox. (With the default settings, annoyance−filter will always classify
a message as mail or junk, but if the −−threshjunk and −−threshmail settings are changed to as to create
a gap between them, intermediate classification can occur.) Actually, the latter two recipes could be omitted
since any message which fails to trigger any Procmail rule is sent to the user’s mailbox by default. The
variable $ORGMAIL is defined by Procmail as the user’s mailbox; using it avoids using the specific path name
which is dependent on the user name and mail system configuration.
:0 H:
* ^X-Annoyance-Filter-Classification: Junk
junk

:0 H:
* ^X-Annoyance-Filter-Classification: Mail
$ORGMAIL

:0 H:
* ^X-Annoyance-Filter-Classification: Indeterminate
$ORGMAIL

Even if you set the mail and junk probabilities so that messages can be classified as “Indeterminate”,
you’re unlikely to see many so categorised—as long as the collections of mail and junk you used to train
annoyance−filter are sufficiently large and representative, the vast majority of messages will usually be
scored near the extremes of probability. If you’re seeing a lot of Indeterminate messages, you should sort
them manually, add them to the appropriate collection, and re-train annoyance−filter.

If you have other Procmail recipes for handling specific categories of mail, you would normally place
the annoyance−filter related recipes after them, at the very end of the procmailrc file. That way
annoyance−filter’s evalution is used as the final guardian at the gate before a message is delivered to
your mailbox.

6.3.3. Other useful .procmailrc rules
The following subsections have nothing at all to do with annoyance−filter, really. You can set up a

.procmailrc file based exclusively on annoyance−filter classifications as described above. Still, in many
cases a few Procmail rules are worthwile in addition to annoyance−filter filtering. Here are some frequently
used categories. You would normally place these rules before the annoyance−filter rules discussed in section
3.2.

6.3.3.1. Whitelist
Most people have a short list of folks with whom they correspond regularly. It’s embarrassing if the content

of a message from one of them is mistakenly identified as junk mail. To prevent this, define a “whitelist” as
the first rule in your Procmail configuration after the filter command; messages which match its patterns
avoid further scrutiny and are delivered directly to your mailbox. You should generally include your own
address in the whitelist, as well as addresses of administrative accounts on machines you’re responsible for,
but be careful: junk mailers increasingly use sender addresses such as root to exploit whitelists. Here’s
user blohard’s whitelist definition. Multiple Procmail rules are normally combined with a logical AND (∧)
operation. Since the whitelist requires an OR (∨) operation, we manufacture one by a trivial application of
Procmail’s weighted scoring facilities. Procmail patterns are regular expressions identical to those used by
egrep, so metacharacters such as “.” must be quoted to be treated literally in patterns.

12 INTEGRATING WITH PROCMAIL ANNOYANCE-FILTER §6

:0
* 0^0
* 1^1 ^From.*blohard@spectre\.org
* 1^1 ^From.*auric@spectre\.org
* 1^1 ^From.*bond@universal-impex\.co\.uk
* 1^1 ^From.*root@spectre\.org
$ORGMAIL

6.3.3.2. Blacklist

A “blacklist” works precisely like the whitelist, except that anything which matches one of its patterns
is dispatched to the junk mail folder (or, if you’re particularly confident there will be no false positives, to
oblivion at /dev/null). Here we list some egregious spewers and unambiguous earmarks of junk mail. Note
that in some cases it makes sense to match on header fields other than “From”. By default, Procmail’s
pattern matching is case-insensitive.
:0
* 0^0
* 1^1 ^From.*@link3buy\.com
* 1^1 ^From.*@lowspeedmediaoffers\.com
* 1^1 ^Subject:.*Let’s be friends
* 1^1 ^X-Advertisement
* 1^1 ^X-Mailer.*RotMailer
* 1^1 ^To:.*Undisclosed.*Recipient
* 1^1 ^Subject:.*\[ADV\]
* 1^1 ^Subject:.*\(ADV\)
* 1^1 ^Reply-to:.*remove.*@
* 1^1 ^To.*friend
junk

At first glance, blacklists look like a good idea, but junk mail senders constantly change their domain names,
and trigger words continually evolve protective colouration, making blacklist maintenance an never-ending
process.

6.3.3.3. Automatic Filing

If you receive routine mail which you prefer to review as a batch from time to time, for example, messages
from a mailing list to which you subscribe, you can have Procmail recognise them and file them in a folder
for your eventual perusal. Obviously, you’ll need to identify a pattern which matches all the messages in the
category you wish to file but no others.
:0:
* ^From.*SUPER-VILLAINS +mailing +list
villains

:0 H:
* ^Subject.*Bacula: Backup OK
backups

Here, the user has provided a rule which files messages from a mailing list in a folder and notifications of
successful backup completions (but not error notifications) from Bacula in a second folder.

http://www.bacula.org/

§7 ANNOYANCE-FILTER OPERATING A POP3 PROXY SERVER 13

7. Operating a POP3 proxy server.
On systems where it’s inconvenient or impossible to interpose annoyance−filter to filter incoming mail,

you may be able to use annoyance−filter as a proxy server for the “Post Office Protocol” used to deliver
mail from your mail host.

The program you use to read E-mail, for example, Netscape, Mozilla, or Microsoft Outlook, normally re-
trieves messages from a mail server using Post Office Protocol as defined by Internet RFC 1939. annoyance−filter
has the ability to act as a proxy for this protocol, running on your local machine, and filtering messages
received from your mail server to classify them as legitimate mail or junk. Let’s assume you currently receive
incoming mail from a POP server at site mail.myisp.net. Once you’ve created a fast dictionary from
your collection of legitimate and junk mail, you can establish a proxy server directed at that site with the
command:

annoyance−filter --fread fdict.bin --pop3server mail.myisp.net
Now you need only configure your mail program to request incoming mail from your local machine (usually

called “localhost”) on the default proxy port of 9110. (You can change the proxy port with the −−pop3port
option if required.)

Messages retrieved through the proxy server will be annotated with annoyance−filter’s
X−Annoyance−Filter−Classification header item, which may be tested in your mail client’s filtering
rules to appropriately dispose of the message.

POP3 proxy server support is primarily intended for an individual user running on a platform which
doesn’t permit programmatic filtering of incoming mail. The proxy server is, however, completely general
and can support any number of individual mailboxes on a mail server, but with only a single dictionary
common to all mailboxes. Since accurate mail classification depends upon individual per-user dictionaries,
this is a capability best undeployed.

If you’re installing a POP3 proxy server on a Windows machine, you may wish to create a “.pif” file to
launch the program from the directory in which it resides with the correct options. A skeleton pop3proxy.pif

file is included in the Windows distribution archives which you can edit to specify parameters appropriate
for your configuration. (To edit the file, right click on it in Explorer and select the “Properties” item from
the pop-up menu.)

http://www.ietf.org/rfc/rfc1939.txt?number=1939

14 TO-DO LIST ANNOYANCE-FILTER §8

8. To-do list.

• Translation of Chinese and Japanese characters currently decoded by the GB2312 and Big5 interpreters
into their Unicode representations would permit uniform recognition of characters across the encodings.

• “Chinese junk” also sails into the harbour in the form of HTML in which the only indication of the
character set is in a charset= declaration in the HTML itself, usually in a http−equiv="Content−Type"

declaration. We ought to try to spot these and invoke the appropriate interpreter.

• Audit the MIME parsing code against RFCs 2045–2049 and subsequent updates (2231, 2387, 2557, 2646,
and 3032, plus doubtless others). Examine various messages in the training collections which report MIME
parsing and/or decoding errors to determine whether the messages are, indeed, malformed or are indicative
of errors in this program.

8.1. Belling the cat

Most of the items on the above list require expertise I have not had the opportunity to acquire and/or
research and experimentation I’ve lacked the time to perform. If you’ve the requisite knowledge for one
or more of these jobs and are willing to put coding stick to magnetic domains, please get in touch.
You can contact me by sending E-mail to bugs@fourmilab.ch with annoyance−filter in the Subject

line.tmp/af.html

§9 ANNOYANCE-FILTER A BRIEF HISTORY OF ANNOYANCE-FILTER 15

9. A Brief History of annoyance-filter.

In a real sense, this program has been twenty-five years in the making. The seed was planted in the 1970’s
while thinking about Jim Warren’s concept of ”datacasting”. He envisioned using subcarriers of FM stations
(or perhaps data encoded in the vertical retrace interval of television signals) to transmit digital information
freely accessible to all. Not Xanadu or the Internet, mind you . . . this remained a one-to-many broadcast
medium, but one capable of providing information in a form which the then-emerging personal computers
could receive, digest, and present in a customised fashion to their users.

“But who pays?” Well, that detail, which played a large part in the inflation and demise of the recent
.com bubble, was central to the feasibility of datacasting as well. Jim Warren’s view was that the primarily
advertiser-supported business model adopted by most U.S. print and broadcast media would be equally
applicable to bits flung into the ether from a radio antenna. As I recall, he cited the experience of suburban
weekly newspapers, which discovered their profits increased when they moved from a paid subscription/per-
copy readership to free distribution—circulation went up, advertising rates rose apace, and the bottom line
changed from red to green.

Intriguing . . . but still I had my doubts. When you read a newspaper or magazine, you can’t avoid the
advertising—you can flip past it, to be sure, but you still have to look at it, at least momentarily, so there’s
always the possibility a sufficiently clever image or tag line may motivate you to read the rest. I asked Jim
why, once a document was in an entirely digital form, folks couldn’t develop filters to remove the advertising
before it ever reached their eyes. This would destroy the free distribution model and render an advertising-
supported digital broadcasting service unworkable. Jim wasn’t too concerned about this. In his estimation,
discriminating advertising from editorial content would require artificial intelligence which did not exist and
wasn’t remotely on the horizon.

That’s when von Mises’ words on advertising came back to me. Advertising is advertising—perforce,
it speaks with a different vocabulary than the sports page, letters to the editor, police blotter, national
and international news, and commentary (aside, perhaps, from Maureen Dowd’s columns in The New York
Times). Given a sufficiently large collection of known editorial copy and advertising, might it not be possible
to extract a signature, in the sense of radar signatures to discriminate warheads from decoys in ballistic
missile defence, with which a sufficiently clever program could identify advertising and remove it, with a
high level of confidence, before the reader ever saw it?

Fast forward—or, more precisely, pause. . . . By the late 1970’s I’d concluded the best strategy to make the
most of the ambient malaise was to amass a huge pile of money. Money may not buy happiness, but at the
very least it would mitigate many of the irritations of that bleak, collectivist era. Being a nerd, I immediately
turned to technology for a quick fix, and what should I espy but an exploding market in affordable home video
cassette recorders—-VCRs—which were, in those days, becoming a fixture in more and more households.
Many VCRs were purchased to play rented movies, but, being also able to automatically record programs
off-the-air on a preset schedule, they could be used for “time-shifting”—recording broadcast programs for
later viewing. But why, thought I, sit though all those tedious commercials you’ve recorded along with the
programs you intend to watch? Certainly, people quickly learned to “zip”—use the fast forward to skip past
commercials—but what if you could detect commercials and “zap” them—never record them in the first
place? It occurred to me that inventing a device which accomplished this might be lucrative indeed.

The concept couldn’t have been simpler—a little box which monitors the video and audio of the channel
you’re recording and, based on real-time analysis of the signal, pauses and resumes recording of the program
on your VCR, yielding a tape free of advertising. It was easy to imagine such a gizmo succeeding like the
contemporary “Demon Dialer” telephone speed dialer add-on, selling in the tens of millions in a matter of
months.2 Imagine the dismay of advertisers and my own contented avarice as I watched the money bin fill

2 Well of course it occurred to me that widespread adoption of such a device would motivate advertisers to
disguise the tags that discriminated commercials from programs. But hey—by the time that happened I’d
have already cashed the customers’ checks and blown the joint. There was bit of the Ferengi in me then.
Truth be told, there still is.

http://www.fourmilab.ch/documents/ferengi/palm/

16 A BRIEF HISTORY OF ANNOYANCE-FILTER ANNOYANCE-FILTER §9

deep enough for high diving. No more laps round the worry room for me!

I must confess to some inside information in this regard. While working for a regrettable employer in an
odious swamp, I’d twigged to the fact that network television advertisers tagged their commercials with a
signature in the vertical retrace interval to permit audit bureaux to measure how many network affiliates
actually broadcast each commercial. This tag appeared to me the Achilles’ heel of television advertising.
As long as one could distinguish tagged commercials from an un-tagged program, it would be more or less
straightforward to detect when a commercial was being transmitted and pause the VCR until the program
resumed.

If only. . . . In reality, only nationally broadcast commercials bore the tag, and only some of them. Local
commercials were never tagged. This created a difficult marketing dilemma for my grand scheme. While it
might have been possible to block some of the most ubiquitous and irritating commercials on mass-market
network series, the bottom feeders who watch those shows probably enjoyed the commercials and wouldn’t
be prospects for my gadget, while those like myself, infuriated by incessant commercials interrupting late
night movies, would find the device ineffective since local commercials on independent stations were never
tagged. Real-time analysis of video or even audio in the 1970’s and early 80’s was technologically out of
the question for a product aimed at a mass consumer market. So, I put the idea of an annoyance filter for
television aside and occupied myself with other endeavours.

We now arrive at the late 1980’s. I’d spent the last decade or so filling up the money bin more or less flat
out, and having reached a level I judged more than adequate, I began to turn my attention to matters I’d
neglected during those laser-focused years.

Writing science fiction, for one thing. There was something about the advertising filter which had dug its
way into my brain so deeply that nothing could dislodge it. The year is 1989; the Berlin Wall is about to
tumble; and I’m scribbling a story about two programmers spending the downtime between Christmas and
New Year’s Day (the period when I’d accomplished about half of my own productive work over the previous
half decade) prowling the nascent Internet for evidence of an extraterrestrial message already received, but
not recognised as such. In

We’ll Return, After this Message,
it is an annoyance filter which recognises an extraterrestrial message for what it is, advertising, and as
von Mises observed, distinguishable by its own strident clamouring for attention.

A decade later, in the very years in which I set my science fiction story, I launched my own search for a
message from our Creator hidden in the most obvious of locations—no results so far. Yet still I scour the
Net.

Which brings us, more or less, to the present. The idea of an annoyance filter continued to intermittently
occupy my thoughts, especially as the volume of junk arriving in my mailbox incessantly mounted despite
ongoing efforts to filter it with increasingly voluminous and clever Procmail rules. Then, in August 2002, my
friend and colleague Kern Sibbald brought to my attention Paul Graham’s brilliant design for an adaptable,
Bayesian filter to discriminate junk and legitimate mail by word frequencies measured in actual samples of
mail pre-sorted into those categories. Now that sounded promising! Here was a design which was simple in
concept, theoretically sound, and best of all, it seemed to work. Graham implemented his prototype filter in
the “Arc” Lisp dialect used in his research. I decided to build a deployable tool in industrial-strength C++,
founded on his design, and handling all the details required so the filter could, as much as possible, interpret
mail the same way a human would—decoding, translating, and extracting wherever necessary to defeat the
techniques junk mailers adopt to hide their content from nave filtering utilities.

This is not a simple task. Consider—you can probably sort out a message you’re interested in reading
from unsolicited junk in a fraction of a second, but that assumes it’s presented to you after all of the mail
transfer and content encodings have been peeled away to reveal the true colours of the content. Long gone
are days when E-mail was predominantly ASCII text. Today, it’s more than likely to be HTML (if not a
Flash animation or some other horror), often transmitted in Quoted−Printable or Base64 encodings largely
in the interest of “stealth”—to hide the content from filters not equipped with the decoding facilities of a
full-fledged mail client.

http://www.fourmilab.ch/autofile/
http://www.fourmilab.ch/documents/sftriple/nwab.html
http://www.fourmilab.ch/documents/sftriple/nwab.html
http://www.fourmilab.ch/autofile/www/section2unhbox voidb@x kern .06em vbox {hrule width.3em}115unhbox voidb@x kern .06em vbox {hrule width.3em}3.html
http://www.fourmilab.ch/documents/sftriple/gpic.html
http://www.fourmilab.ch/goldberg/
http://www.sibbald.com/
http://www.paulgraham.com/spam.html

§9 ANNOYANCE-FILTER A BRIEF HISTORY OF ANNOYANCE-FILTER 17

The annoyance−filter is based on Graham’s crystalline vision of Bayesian scoring of messages by
empirically determined word probabilities. It includes the tedious but essential machinery required to parse
MIME multi-part mail attachments, decode non-plain-text parts, and interpret character sets in languages
the user isn’t accustomed to reading. This makes for great snowdrifts of software, but fortunately few details
about which the typical user need fret.

Preliminary tests indicate annoyance−filter is inordinately effective in discriminating legitimate from
junk mail. But this entire endeavour remains very much an active area of research and, consequently,
annoyance−filter has been implemented as a toolkit intended to facilitate experiments with various filtering
strategies and measuring the characteristics which best identify mail worth reading. You’re more than
welcome to build and install the program using the cookbook instructions but, if you’re inclined to delve
deeper, feel free to jump in—the programming’s fine! Everyone is invited to contribute their own wisdom
and creativity toward bringing to an end this intellectual pollution. Remember, when nobody ever sees junk
mail, nobody will bother to send it. Let us commence rowing toward that happy landfall.

18 DICTIONARY WORD ANNOYANCE-FILTER §10

10. Dictionary Word.
A dictionaryWord represents a unique token found in an input stream. The text field is the string value

of the token.
〈Class definitions 10 〉 ≡

class dictionaryWord {
public:

static const unsigned int nCategories = 2;
enum mailCategory {

Mail = 0, Junk = 1,Unknown
};
string text ; /∗ The word itself ∗/
unsigned int occurrences [nCategories]; /∗ Number of occurrences in Mail and Junk ∗/
double junkProbability ; /∗ Probability this word appears in Junk ∗/
dictionaryWord(string s = "")
{

set(s);
}
void set(string s = "",unsigned int s Mail = 0,unsigned int s Junk = 0,double jProb = −1)
{

text = s;
occurrences [Mail] = s Mail ;
occurrences [Junk] = s Junk ;
junkProbability = jProb ;

}
string get (void) const
{

return text ;
}
unsigned int n mail (void) const
{

return occurrences [Mail];
}
unsigned int n junk (void) const
{

return occurrences [Junk];
}
unsigned int n occurrences (void) const
{

unsigned int o = 0;
for (unsigned int i = 0; i < nCategories ; i++) {

o += occurrences [i];
}
return o;

}
void add (mailCategory cat ,unsigned int howMany = 1)
{

assert(cat ≡ Mail ∨ cat ≡ Junk);
occurrences [cat] += howMany ;

} /∗ Reset occurrences in category. Returns number of occurrences remaining in other categories.
∗/

§10 ANNOYANCE-FILTER DICTIONARY WORD 19

unsigned int resetCat (mailCategory cat)
{

assert(cat ≡ Mail ∨ cat ≡ Junk);
occurrences [cat] = 0;
return occurrences [Mail] + occurrences [Junk];

}
void computeJunkProbability (unsigned int nMailMessages ,unsigned int nJunkMessages ,double

mailBias = 2,unsigned int minOccurrences = 5);
double getJunkProbability (void) const
{

return junkProbability ;
}
unsigned int length (void) const
{ /∗ Return length of word ∗/

return text .length ();
}
unsigned int estimateMemoryRequirement (void) const
{ /∗ Estimate memory consumed by word ∗/

return (((length () + 3)/4) ∗ 4) + sizeof (string ::size type) + /∗ Word text ∗/
(sizeof (unsigned int) ∗ nCategories) + /∗ Category counts ∗/
sizeof (double) + /∗ Junk probability ∗/
(sizeof (int) ∗ 8); /∗ Overhead ∗/

}
void toLower (void)
{ /∗ Convert to lower case ∗/

transform (text .begin (), text .end (), text .begin (),&dictionaryWord ::to iso lower);
}
void describe (ostream &os = cout);
void exportCSV (ostream &os = cout);
bool importCSV (istream &is = cin);
static string categoryName (mailCategory c)
{

return (c ≡ Mail) ? "mail" : ((c ≡ Junk) ? "junk" : "unknown");
}
void exportToBinaryFile (ostream &os);
bool importFromBinaryFile (istream &is);

protected:
〈Transformation functions for algorithms 18 〉;

};
See also sections 19, 32, 40, 46, 47, 48, 58, 68, 71, 73, 75, 80, 81, 83, 85, 88, 91, 92, 93, 95, 96, 98, 100, 114, 125, 129, 170, 173,

183, 186, and 194.

This code is used in section 254.

20 DICTIONARY WORD ANNOYANCE-FILTER §11

11. In order to store dictionaryWord objects in ordered containers such as map, we must define the <
operator. It ranks objects by lexical comparison of their text fields.
〈Class implementations 11 〉 ≡

bool operator < (dictionaryWord a,dictionaryWord b)
{

return a.get () < b.get ();
}

See also sections 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 33, 34, 35, 38, 39, 41, 42, 44, 45, 49, 56, 57, 59, 61,

64, 65, 69, 70, 72, 74, 76, 82, 84, 86, 89, 90, 94, 97, 99, 101, 102, 103, 104, 105, 106, 107, 109, 115, 126, 130, 131, 136, 137,

163, 164, 165, 166, 167, 168, 169, 171, 172, 174, 181, 185, 192, 197, 198, and 215.

This code is used in section 254.

12. The computeJunkProbability procedure determines the probability a given dictionaryWord appears
in junk mail. Words with a high probability (near 1) are almost certain to be from junk, while low probability
words (near 0) are highly likely to appear in legitimate mail. The probability is computed based on the
following parameters:

m occurrences [Mail] Occurrences of word in legitimate mail
j occurrences [Junk] Occurrences of word in in junk mail
nm nMailMessages Number of legitimate mail messages in database
nj nJunkMessages Number of junk mail messages in database
b mailBias Bias in favour of words in legitimate messages
s minOccurrences Significance: discard words with (m× b + j) < s

p =

{
−1, if (m× b + j) < s;
min(0.99,max(0.01,

min(j/nj ,1)
min((m×b)/nm,1)+min(j/nj ,1))) otherwise.

A word which appears so few times its probability is deemed insufficiently determined is assigned a notional
probability of −1 and ignored in subsequent tests. To avoid dividing by zero when incrementally assembling
dictionaries, if no messages in a category have been loaded, we arbitrarily set the count to 1.
〈Class implementations 11 〉 +≡

void dictionaryWord ::computeJunkProbability (unsigned int nMailMessages ,unsigned int
nJunkMessages ,double mailBias ,unsigned int minOccurrences)

{
double nMail = occurrences [Mail] ∗mailBias , nJunk = occurrences [Junk];
nMailMessages = max (nMailMessages , 1U);
nJunkMessages = max (nJunkMessages , 1U);
if ((nMail + nJunk) ≥ minOccurrences) {

assert(nMailMessages > 0);
assert(nJunkMessages > 0);
junkProbability = min (0.99,max (0.01,min (nJunk /nJunkMessages ,

1.0)/(min (nMail /nMailMessages , 1.0) + min (nJunk /nJunkMessages , 1.0))));
}
else {

junkProbability = −1;
}

}

§13 ANNOYANCE-FILTER DICTIONARY WORD 21

13. The describe method writes a human-readable description of the various fields in the object to the
designated output stream, which defaults to cout .
〈Class implementations 11 〉 +≡

void dictionaryWord ::describe (ostream &os)
{

os � text � " Mail: " � n mail () � ", Junk: " � n junk () � ", Probability: " �
setprecision (5) � junkProbability � endl ;

}

14. The exportCSV method creates a comma-separated value (CSV) file containing all fields from the
dictionary word. This permitting verification and debugging of the dictionary compilation process.
〈Class implementations 11 〉 +≡

void dictionaryWord ::exportCSV (ostream &os)
{

os � setprecision (5) � junkProbability � "," � occurrences [Mail] � "," � occurrences [Junk] �
",\"" � text � "\"" � endl ;

}

22 DICTIONARY WORD ANNOYANCE-FILTER §15

15. The importCSV method reads the next line from a comma-separated value (CSV) dictionary dump
and stores the values parsed from it into the dictionaryWord. If this is the special sentinel pseudo-word
used to store the message counts, junkProbability will be set to −1. If the record is not a well-formed CSV
dictionary word, junkProbability will be set to −2 and text to the actual line from the CSV file; this may be
used to discard title records. Records which begin with “;” or “#” are ignored as comments. When the end
of file is encountered, false is returned and junkProbability is set to −3.

Note that this is not a general purpose CSV parser, but rather one specific to the format which exportCSV
writes. In particular, general string quoting is ignored since none of the difficult cases arise in the CSV we
generate.
〈Class implementations 11 〉 +≡

bool dictionaryWord :: importCSV (istream &is)
{

while (true) {
string s;
if (getline (is , s)) {

string ::size typep, p1 , p2 ;
for (p = 0; p < s.length (); p++) {

if (¬isISOspace (s[p])) {
break;

}
}
if ((p ≥ s.length ()) ∨ (s[p] ≡ ’#’) ∨ (s[p] ≡ ’;’)) {

continue; /∗ Blank line or comment delimiter—ignore ∗/
}
if ((s[p] ≡ ’−’) ∨ isdigit (s[p])) {

p = s.find (’,’);
if (p 6= string ::npos) {

p1 = s.find (’,’, p + 1);
if (p1 6= string ::npos) {

p2 = s.find (’,’, p1 + 1);
if (p2 6= string ::npos) {

junkProbability = atof (s.substr (0, p).c str ());
occurrences [Mail] = atoi (s.substr (p + 1, p1 − p).c str ());
occurrences [Junk] = atoi (s.substr (p1 + 1, p2 − p).c str ());
p = s.find (’"’, p2 + 1);
if (p 6= string ::npos) {

p1 = s.find last of (’"’);
if ((p1 6= string ::npos) ∧ (p1 > p)) {

text = s.substr (p + 1, (p1 − p)− 1);
return true ; /∗ A valid record, hurrah! ∗/

}
}

}
}

}
}
junkProbability = −2; /∗ Ill-formed record ∗/
text = s;
return true ;

}
junkProbability = −3; /∗ End of file ∗/
return false ;

§15 ANNOYANCE-FILTER DICTIONARY WORD 23

}
}

16. This method writes a binary representation of the word to an output stream. This is used to create
the binary word database used to avoid rebuilding the letter and character category counts every time. Each
entry begins with the number of characters in the word followed by its text. After this, the count and
probability fields are output in portable big-endian format. We do assume IEEE floating point compatibility
across platforms, but auto-detect floating point byte order.
〈Class implementations 11 〉 +≡

void dictionaryWord ::exportToBinaryFile (ostream &os){ unsigned char c;
const unsigned char ∗fp ;
const double k1 = −1.0;

#define outCount (x)assert(x ≤ 255);
c = (x); os .put (c)

#define outNumber (x)os .put ((x � 24) & #FF);
os .put ((x � 16) & #FF);
os .put ((x � 8) & #FF); os .put (x & #FF)
outCount (text .length ());
os .write (text .data (), text .length ());
outNumber (n mail ());
outNumber (n junk ());
fp = reinterpret cast〈const unsigned char ∗〉(&k1);
if (fp [0] ≡ 0) {

fp = reinterpret cast〈unsigned char ∗〉(&junkProbability);
for (unsigned int i = 0; i < (sizeof junkProbability); i++) {

outCount (fp [((sizeof junkProbability)− 1)− i]);
}

}
else { /∗ Big-endian platform ∗/

os .write (reinterpret cast〈const char ∗〉(&junkProbability), sizeof junkProbability);
}

#undef outCount
#undef outNumber

}

24 DICTIONARY WORD ANNOYANCE-FILTER §17

17. Importing a word from a binary file is the inverse of the export above. Once again we figure out the
byte order of double on the fly by testing a constant and decode the byte stream accordingly.
〈Class implementations 11 〉 +≡

bool dictionaryWord :: importFromBinaryFile (istream &is)
{

unsigned char c;
char sval [256];
unsigned char ibyte [4];
unsigned char fb [8];
unsigned char ∗fp ;
const double k1 = −1.0;
const unsigned char ∗kp ;

#define iNumber ((ibyte [0] � 24) | (ibyte [1] � 16) | (ibyte [2] � 8) | ibyte [3])
if (is .read (reinterpret cast〈char ∗〉(&c), 1)) {

if (is .read (sval , c)) {
text = string(sval , c);
is .read (reinterpret cast〈char ∗〉(ibyte), 4);
occurrences [Mail] = iNumber ;
is .read (reinterpret cast〈char ∗〉(ibyte), 4);
occurrences [Junk] = iNumber ;
kp = reinterpret cast〈const unsigned char ∗〉(&k1);
if (kp [0] ≡ 0) {

is .read (reinterpret cast〈char ∗〉(fb), 8);
fp = reinterpret cast〈unsigned char ∗〉(&junkProbability);
for (unsigned int i = 0; i < (sizeof junkProbability); i++) {

fp [((sizeof junkProbability)− 1)− i] = fb [i];
}

}
else {

is .read (reinterpret cast〈char ∗〉(&junkProbability), sizeof junkProbability);
}
return true ;

}
}
return false ;

#undef iNumber
}

18. The following are simple-minded transformation functions passed as arguments to STL algorithms for
various manipulations of the text.
〈Transformation functions for algorithms 18 〉 ≡

static char to iso lower (char c)
{

return toISOlower (c);
}
static char to iso upper (char c)
{

return toISOupper (c);
}

This code is used in section 10.

§19 ANNOYANCE-FILTER DICTIONARY 25

19. Dictionary.
A dictionary is a collection of dictionaryWord objects, organised for rapid look-up. For convenience and

efficiency, we derive dictionary from the STL map container, thereby making all of its core functionality
accessible to the user. It would be more efficient and cleaner to use a set, but objects in a set cannot be
modified; values in a map can.
〈Class definitions 10 〉 +≡

class dictionary : public map〈string,dictionaryWord〉 {
public:

unsigned int memoryRequired ;
void add (dictionaryWord w,dictionaryWord ::mailCategory category); void
include (dictionaryWord &w) ;
void exportCSV (ostream &os = cout);
void importCSV (istream &is = cin);
void computeJunkProbability (unsigned int nMailMessages ,unsigned int nJunkMessages ,double

mailBias = 2,unsigned int minOccurrences = 5);
void purge (unsigned int occurrences = 0);
void resetCat (dictionaryWord ::mailCategory category);
void printStatistics (ostream &os = cout) const;

#ifdef HAVE_PLOT_UTILITIES

void plotProbabilityHistogram (string fileName ,unsigned int nBins = 20) const;
#endif

void exportToBinaryFile (ostream &os);
void importFromBinaryFile (istream &is);
unsigned int estimateMemoryRequirement (void) const
{

return memoryRequired ;
}
dictionary()
: memoryRequired (0) { } } ;

20. The add method looks up a dictionaryWord in the dictionary. If the word is already present, its
number of occurrences in the given category is incremented. Otherwise, the word is added to the dictionary
with the occurrence count for the category initialised to 1.
〈Class implementations 11 〉 +≡

void dictionary ::add (dictionaryWord w,dictionaryWord ::mailCategory category)
{

dictionary :: iterator p;
if ((p = find (w.get ())) 6= end ()) {

p~second .add (category);
}
else {

insert (make pair (w.get (), w)).first~second .add (category);
memoryRequired += w.estimateMemoryRequirement ();

}
}

26 DICTIONARY ANNOYANCE-FILTER §21

21. The include method is used when merging dictionaries, for example when performing an importFromBinaryFile .
It looks up the argument word in the dictionary. If present, its occurrence counts are added to those of the
existing word. Otherwise, a new word is added with the occurence counts of the argument.
〈Class implementations 11 〉 +≡

void dictionary :: include (dictionaryWord &w)
{

dictionary :: iterator p;
if ((p = find (w.get ())) 6= end ()) {

p~second .occurrences [dictionaryWord ::Mail] += w.occurrences [dictionaryWord ::Mail];
p~second .occurrences [dictionaryWord ::Junk] += w.occurrences [dictionaryWord ::Junk];

}
else {

insert (make pair (w.get (), w));
}

}

22. The exportCSV method exports the dictionary in comma-separated value (CSV) format for debugging.
To simplify analysis, the dictionary is re-sorted by junkProbability . The byProbability comparison function
is introduced to permit this sorting of the dictionary. A pseudo-word is added at the start of the CSV file
to give the number of mail and junk messages scanned in preparing it.
〈Class implementations 11 〉 +≡

bool byProbability (const dictionaryWord ∗w1 , const dictionaryWord ∗w2)
{

double dp = w1~getJunkProbability ()− w2~getJunkProbability ();
if (dp ≡ 0) {

return w1~get () < w2~get ();
}
return dp < 0;

}
void dictionary ::exportCSV (ostream &os)
{

if (verbose) {
cerr � "Exporting dictionary to CSV file." � endl ;

}
vector〈dictionaryWord ∗〉 dv ;
for (iterator p = begin (); p 6= end (); p++) {

dv .push back (&(p~second));
}
sort (dv .begin (), dv .end (), byProbability);
os � "; Probability,Mail,Junk,Word" � endl ;
dictionaryWord pdw ;
pdw .set(pseudoCountsWord ,messageCount [dictionaryWord ::Mail],

messageCount [dictionaryWord ::Junk],−1);
pdw .exportCSV (os);
for (vector〈dictionaryWord ∗〉 :: iterator q = dv .begin (); q 6= dv .end (); q++) {

(∗q)~exportCSV (os);
}

}

§23 ANNOYANCE-FILTER DICTIONARY 27

23. We import a dictionary from a CSV file by importing successive records into a dictionaryWord,
which is then appended to the dictionary. When the pseudo-word containing the number of mail and junk
messages used to assemble the dictionary is encountered, those quantities are added to the running totals.
Note that the CSV input file may be in any order—it need not be sorted in the order exportCSV creates,
nor need the message count pseudo-word be the first record of the file.
〈Class implementations 11 〉 +≡

void dictionary :: importCSV (istream &is)
{

if (verbose) {
cerr � "Importing dictionary from CSV file." � endl ;

}
dictionaryWord dw ;
while (dw .importCSV (is)) {

if (dw .getJunkProbability () ≡ −1 ∧ (dw .get () ≡ pseudoCountsWord)) {
messageCount [dictionaryWord ::Mail] += dw .n mail ();
messageCount [dictionaryWord ::Junk] += dw .n junk ();

}
else if (dw .getJunkProbability () ≥ −1) {

include (dw) ;
}
else {

if (verbose) {
cerr � "Ill−formed record in CSV import: \"" � dw .get () � "\"" � endl ;

}
}

}
}

28 DICTIONARY ANNOYANCE-FILTER §24

24. The purge method discards words in the dictionary which occur sufficiently infrequently that no
probability has been assigned them. If the optional occurrences argument is nonzero, words with that
number of fewer occurrences in the dictionary will be purged instead of words with undefined probability.

May I say a few words about how we accomplish this? Yes, it looks absurd to move the elements we wish
to preserve to a separate queue, then transfer them back once we’re done emptying the map. “Why not
just walk through the items and erase any which don’t make the cut?”, you ask. Because you can’t, I reply.
Performing an erase on a map invalidates all iterators to it, so once you’ve removed an item, you’re forced
to restart the scan from the begin () iterator; with a large dictionary to purge, that takes forever.

Now STL purists will observe that I ought be using the remove if algorithm rather than iterating over
the container myself. Well, if you can figure out how to make it work, you’re a better man than I. I defined
a predicate to perform a less test on the probability of the dictionaryWord in the second part of the
pair, and this contraption makes it past the compiler intact. But when I attempt to pass that predicate to
remove if I get half a page of gibberish from the bowels of STL complaining about not being able to use the
default assignment operator on string pair〈const string,dictionaryWord〉 ::first or some such. If you
can figure out how to make this work, be my guest—I’ll be glad to replace my code with yours with complete
attribution. I’ve left my remove if code (which doesn’t make it through the compiler) below, disabled on
the tag PURGE_USES_REMOVE_IF. Good luck—me, I’m finished.

“A man is not finished when he is defeated. He is finished when he quits.”
—Richard M. Nixon

〈Class implementations 11 〉 +≡
#ifdef PURGE_USES_REMOVE_IF

class dictionaryWordProb less : public unary function < pair〈string,dictionaryWord〉 , int >
{

int p;
public:

explicit dictionaryWordProb less (const int pt)
: p(pt) { }
bool operator()(const pair〈string,dictionaryWord〉 &dw) const
{

return dw .second .getJunkProbability () < p;
}

}
;

#endif

void dictionary ::purge (unsigned int occurrences)
{

if (verbose) {
cerr � "Pruning rare words from database: " � flush ;

}
memoryRequired = 0;

#ifdef PURGE_USES_REMOVE_IF

remove if (begin (), end (), dictionaryWordProb less (0));
#else

queue〈dictionaryWord〉 pq ;
while (¬empty ()) {

if (((occurrences > 0) ∧ (begin ()~second .n occurrences () >
occurrences)) ∨ (begin ()~second .getJunkProbability () ≥ 0)) {

pq .push (begin ()~second);
}
erase (begin ());

§24 ANNOYANCE-FILTER DICTIONARY 29

}
while (¬pq .empty ()) {

insert (make pair (pq .front ().get (), pq .front ()));
memoryRequired += pq .front ().estimateMemoryRequirement ();
pq .pop();

}
#endif

if (verbose) {
cerr � size () � " words remaining." � endl ;
cerr � " Dictionary size " � estimateMemoryRequirement () � " bytes." � endl ;

}
}

25. The resetCat method resets the count for all words for the given mailCategory.
〈Class implementations 11 〉 +≡

void dictionary ::resetCat (dictionaryWord ::mailCategory category)
{

if (verbose) {
cerr � "Resetting counts for category " � dictionaryWord ::categoryName (category) �

endl ;
}
for (iteratormp = begin (); mp 6= end (); mp ++) {

mp~second .resetCat (category);
}

}

30 DICTIONARY ANNOYANCE-FILTER §26

26. Compute and print statistical measures of the probability distribution of words in the dictionary.
Words with negative probability are ignored, so there is no need to purge before computing statistics.
〈Class implementations 11 〉 +≡

void dictionary ::printStatistics (ostream &os) const{
if (verbose) {

cerr � "Computing dictionary statistics." � endl ;
}
os � "Dictionary statistics:" � endl ; dataTable < double > dt ;
for (const iteratormp = begin (); mp 6= end (); mp ++) {

if (mp~second .getJunkProbability () ≥ 0) {
dt .push back (mp~second .getJunkProbability ());

}
}
os � "Mean = " � dt .mean () � endl ;
os � "Geometric mean = " � dt .geometricMean () � endl ;
os � "Harmonic mean = " � dt .harmonicMean () � endl ;
os � "RMS = " � dt .RMS() � endl ;
os � "Median = " � dt .median () � endl ;
os � "Mode = " � dt .mode () � endl ;
os � "Percentile(0.5) = " � dt .percentile (0.5) � endl ;
os � "Quartile(1) = " � dt .quartile (1) � endl ;
os � "Quartile(3) = " � dt .quartile (3) � endl ;
os � "Variance = " � dt .variance () � endl ;
os � "Standard deviation = " � dt .stdev () � endl ;
os � "CentralMoment(3) = " � dt .centralMoment (3) � endl ;
os � "Skewness = " � dt .skewness () � endl ;
os � "Kurtosis = " � dt .kurtosis () � endl ; }

§27 ANNOYANCE-FILTER DICTIONARY 31

27. Plot a histogram of the distribution of words in the dictionary by probability. Words with negative
probability are ignored, so there is no need to purge before plotting.
〈Class implementations 11 〉 +≡
#ifdef HAVE_PLOT_UTILITIES

#define PLOT_DEBUG

void dictionary ::plotProbabilityHistogram (string fileName ,unsigned int nBins) const
{

if (verbose) {
cerr � "Plotting probability histogram to " � fileName � ".png" � endl ;

}
ofstream gp((fileName + ".gp").c str ()), dat ((fileName + ".dat").c str ());
〈Build histogram of word probabilities 28 〉;
〈Write GNUPLOT data table for probability histogram 29 〉;

/∗ Create GNUPLOT instructions to plot data ∗/
gp � "set term pbm small color" � endl ;
gp � "set ylabel \"Number of Words\"" � endl ;
gp � "set xlabel \"Probability\"" � endl ;
gp � "plot \"" � fileName � ".dat\" using 1:2 title \"\" with boxes" � endl ;
string command ("gnuplot ");
command += fileName + ".gp | pnmtopng >" + fileName + ".png";

#ifdef PLOT_DEBUG

cout � command � endl ;
#else

command += " 2>/dev/null";
#endif

gp .close ();
dat .close ();
system (command .c str ());

#ifndef PLOT_DEBUG /∗ Delete the temporary files used to create the plot ∗/
remove ((fileName + ".gp").c str ());
remove ((fileName + ".dat").c str ());

#endif
}

#endif /∗ HAVE_PLOT_UTILITIES ∗/

28. Walk through the dictionary and bin the probabilities of words into nBins equally sized bins and
compute a histogram of the numbers in each bin.
〈Build histogram of word probabilities 28 〉 ≡

vector〈unsigned int〉 hist (nBins);
for (const iteratormp = begin (); mp 6= end (); mp ++) {

if (mp~second .getJunkProbability () ≥ 0) {
unsigned int bin = static cast〈unsigned int〉(mp~second .getJunkProbability () ∗ nBins);
hist [bin]++;

}
}

This code is used in section 27.

32 DICTIONARY ANNOYANCE-FILTER §29

29. Write the GNUPLOT data file for the probability histogram. The first field in each line is the binned
probability and the second is the number of words which fell into that bin.
〈Write GNUPLOT data table for probability histogram 29 〉 ≡

for (unsigned int j = 0; j < nBins ; j++) {
dat � (static cast〈double〉(j)/nBins) � " " � hist [j] � endl ;

}
This code is used in section 27.

30. When the dictionary has been modified, recompute the junk probability of all the words it
contains. This simply applies the computeJunkProbability method to all the dictionaryWords in the
container.
〈Class implementations 11 〉 +≡

void dictionary ::computeJunkProbability (unsigned int nMailMessages ,unsigned int
nJunkMessages ,double mailBias ,unsigned int minOccurrences)

{
for (dictionary :: iterator p = begin (); p 6= end (); p++) {

p~second .computeJunkProbability (nMailMessages ,nJunkMessages ,mailBias ,minOccurrences);
}

}

§31 ANNOYANCE-FILTER DICTIONARY 33

31. Exporting or importing a dictionary to or from a binary file is more or less a matter of iterating
through the dictionary and delegating the matter to each individual word. One detail we must deal
with, however, is adding a pseudo-word at the head of the dictionary to record the number of mail and
junk messages which contributed the words to the dictionary. These counts are needed to subsequently
recompute the probability for each word.

When loading a dictionary with importFromBinaryFile this pseudo-word is recognised and the values
it contains are added to the messageCount for each category. Note that importing a file is logically an
addition to an existing dictionary—you may import any number of binary dictionary files, just as you
can add mail folders with the −−mail and −−junk options.
#define pseudoCountsWord " COUNTS "

〈Class implementations 11 〉 +≡
void dictionary ::exportToBinaryFile (ostream &os)
{

if (verbose) {
cerr � "Exporting dictionary to binary file." � endl ;

}
dictionaryWord pdw ;
pdw .set(pseudoCountsWord ,messageCount [dictionaryWord ::Mail],

messageCount [dictionaryWord ::Junk],−1);
pdw .exportToBinaryFile (os);
for (dictionary :: iterator p = begin (); p 6= end (); p++) {

p~second .exportToBinaryFile (os);
}

}
void dictionary :: importFromBinaryFile (istream &is)
{

if (verbose) {
cerr � "Importing dictionary from binary file." � endl ;

}
dictionaryWord dw ;
if (dw .importFromBinaryFile (is)) {

assert(dw .get () ≡ pseudoCountsWord);
messageCount [dictionaryWord ::Mail] += dw .n mail ();
messageCount [dictionaryWord ::Junk] += dw .n junk ();
while (dw .importFromBinaryFile (is)) {

include (dw) ;
}

}
}

34 FAST DICTIONARY ANNOYANCE-FILTER §32

32. Fast dictionary.
A fastDictionary sacrifices portability and generality on the altar of speed. A dictionary exported

as a fastDictionary can be loaded into memory (or, even better, memory mapped if the system permits),
and accessed directly without the need to allocate or initialise any objects. The price one pays for this
is that fast dictionaries may not be shared among platforms with different byte order or floating point
representation, but such incompatibilities are detected and yield error messages, not Armageddon.
#define fastDictionaryVersionNumber 1
#define fastDictionaryVoidLink static cast〈u int32 t 〉(−1)
#define fastDictionarySignature "AFfd"

#define fastDictionaryFloatingTest (1.0/111)
〈Class definitions 10 〉 +≡

class fastDictionary {
private:

static const u int16 t byteOrderMark = #FEFF;
static const u int16 t doubleSize = sizeof (double);
static const u int16 t versionNumber = fastDictionaryVersionNumber ;
unsigned char ∗dblock ; /∗ Monolithic dictionary block pointer ∗/
u int32 t totalSize ; /∗ Total dictionary size in bytes ∗/
u int32 t hashTableOffset ; /∗ Offset of hash table in file ∗/
u int32 t hashTableBuckets ; /∗ Number of buckets in hash table ∗/
u int32 twordTableSize ; /∗ Word table size in bytes ∗/
u int32 t ∗ hashTable ; /∗ Pointer to hash table in memory ∗/
unsigned char ∗wordTable ; /∗ Pointer to word table in memory ∗/

#ifdef HAVE_MMAP

char ∗dp ; /∗ Pointer to memory mapped block ∗/
int fileHandle ; /∗ File handle to memory mapped dictionary ∗/
long fileLength ; /∗ Length of memory mapped block ∗/

#endif

void regen (void) const
{

cerr � "You should re−generate the fast dictionary on this machine." � endl ;
}
static unsigned int nextGreaterPrime (unsigned int a);
static u int32 t computeHashValue (const string &s);
static void Vmemcpy (vector〈unsigned char〉 &v,vector〈unsigned char〉 ::size typeoff , const

void ∗buf , const unsigned int bufl)
{

const unsigned char ∗bp = static cast〈const unsigned char ∗〉(buf);
for (unsigned int i = 0; i < bufl ; i++) {

v[off ++] = ∗bp ++;
}

}
public:

fastDictionary()
: dblock (Λ) {

#ifdef HAVE_MMAP

dp = Λ;
#endif

}
∼fastDictionary()

§32 ANNOYANCE-FILTER FAST DICTIONARY 35

{
#ifdef HAVE_MMAP

if (dp 6= Λ) {
munmap(dp ,fileLength);
close (fileHandle);

}
#else

if (dblock 6= Λ) {
delete dblock ;

}
#endif

}
bool load (const string fname);
bool isDictionaryLoaded (void)
{

return dblock 6= Λ;
}
double find (const string &target) const;
void describe (ostream &os = cout) const
{

if (dblock 6= Λ) {
os � "Total size of fast dictionary is " � totalSize � endl ;
os � "Hash table offset: " � hashTableOffset � endl ;
os � "Hash table buckets: " � hashTableBuckets � endl ;
os � "Word table size: " � wordTableSize � endl ;

}
else {

os � "No fast dictionary is loaded." � endl ;
}

}
static void exportDictionary (const dictionary &d,ostream &o);
static void exportDictionary (const dictionary &d, const string fname);

};

36 FAST DICTIONARY ANNOYANCE-FILTER §33

33. The load method brings a fastDictionary into memory, either by reading it into a dynamically
allocated buffer or by memory mapping the file containing it. Even when we’re memory mapping the
dictionary, we read the header using an istrstream bound to the memory mapped block in the interest
of code commonality—the real win in memory mapping is shared access to the hash and word tables;
the overhead in reading the header fields from a memory stream is negligible.
〈Class implementations 11 〉 +≡

bool fastDictionary :: load (const string fname){
#ifdef HAVE_MMAP

fileHandle = open (fname .c str (), O_RDONLY);
if (fileHandle ≡ −1) {

cerr � "Cannot open fast dictionary file " � fname � endl ;
return false ;

}
fileLength = lseek (fileHandle , 0, 2);
lseek (fileHandle , 0, 0);
dp = static cast〈char ∗〉(mmap((caddr t)0,fileLength , PROT_READ,

MAP_SHARED | MAP_NORESERVE,fileHandle , 0));
istrstream is (dp ,fileLength);

#else
ifstream is (fname .c str (), ios :: in | ios ::binary);
if (¬is) {

cerr � "Cannot open fast dictionary file " � fname � "." � endl ;
return false ;

}
#endif

char signature [4];
is .read (signature , 4);
if (memcmp(signature , fastDictionarySignature , 4) 6= 0) {

cerr � "File " � fname � " is not a fast dictionary." � endl ;
fdlbail : ;

#ifdef HAVE_MMAP

munmap(dp ,fileLength);
close (fileHandle);
dp = Λ;

#endif
return false ;

}
u int16 t s;
is .read (reinterpret cast〈char ∗〉(&s), sizeof s);
if (s 6= byteOrderMark) {

cerr � "Fast dictionary file " � fname �
" was created on a platform with incompatible byte order." � endl ;

regen ();
goto fdlbail ;

}
is .read (reinterpret cast〈char ∗〉(&s), sizeof s);
if (s 6= versionNumber) {

cerr � "Fast dictionary file " � fname � " is version " � s � ". Version " �
versionNumber � " is required." � endl ;

regen ();
goto fdlbail ;

§33 ANNOYANCE-FILTER FAST DICTIONARY 37

}
double d;
is .read (reinterpret cast〈char ∗〉(&s), sizeof s);
u int16 t filler ;
is .read (reinterpret cast〈char ∗〉(&filler), sizeof filler);

/∗ Two byte filler for alignment ∗/
if (s ≡ doubleSize) {

is .read (reinterpret cast〈char ∗〉(&d), sizeof d);
}
if ((s 6= doubleSize) ∨ (d 6= fastDictionaryFloatingTest)) {

cerr � "Fast dictionary file " � fname �
" was created on a machine with incompatible floating point format." � endl ;

regen ();
goto fdlbail ;

}
is .read (reinterpret cast〈char ∗〉(&totalSize), sizeof totalSize);
is .read (reinterpret cast〈char ∗〉(&hashTableOffset), sizeof hashTableOffset);
is .read (reinterpret cast〈char ∗〉(&hashTableBuckets), sizeof hashTableBuckets);
is .read (reinterpret cast〈char ∗〉(&wordTableSize), sizeof wordTableSize);

#ifdef HAVE_MMAP

dblock = reinterpret cast〈unsigned char ∗〉(dp) + is .tellg ();
#else

u int32 t fdsize = (hashTableBuckets ∗ sizeof (u int32 t)) + wordTableSize ;
try {

dblock = new unsigned char[fdsize];
}
catch(bad alloc)
{

cerr � "Unable to allocate memory for fast dictionary.";
return false ;

}
is .read (reinterpret cast〈char ∗〉(dblock), fdsize);
is .close ();

#endif
hashTable = reinterpret cast 〈 u int32 t ∗> (dblock);
wordTable = dblock + (hashTableBuckets ∗ sizeof (u int32 t));
if (verbose) {

cerr � "Loaded fast dictionary from " � fname � "." � endl ;
}
return true ; }

38 FAST DICTIONARY ANNOYANCE-FILTER §34

34. The find method looks up the word target (assumed to have been already placed in canonical
form) in the dictionary. The junk probability of the word is returned, or −1 if the word is not found
in the dictionary. The reason for all the memcpy calls is that the word table are byte packed and we
don’t want to worry about whatever alignment issues the platform may have.
〈Class implementations 11 〉 +≡

double fastDictionary ::find (const string &target) const
{

assert(dblock 6= Λ);
u int32 t bucket = computeHashValue (target) % hashTableBuckets ;
if (hashTable [bucket] 6= fastDictionaryVoidLink) {

u int16 twlen = target .length ();
unsigned int sOffset = sizeof (u int32 t) + sizeof (double);
unsigned char ∗cword = wordTable + hashTable [bucket];
while (true) {

u int16 twl ;
memcpy (&wl , cword + sOffset , sizeof wl);
if ((wl ≡ wlen)∧ (memcmp(target .data (), cword + sOffset + sizeof (u int16 t),wlen) ≡ 0)) {

double jp ;
memcpy (&jp , cword + sizeof (u int32 t), sizeof (double));
return jp ;

}
u int32 t lnk ;
memcpy (&lnk , cword , sizeof lnk);
if (lnk ≡ fastDictionaryVoidLink) {

break;
}
cword = wordTable + lnk ;

}
}
return −1;

}

§35 ANNOYANCE-FILTER FAST DICTIONARY 39

35. The exportDictionary method writes a dictionary to a file in fastDictionary format. We provide
implementations which accept either an ostream of the name of a file to which the fastDictionary
is written. If you pass an ostream, make sure it’s opened in binary mode on platforms where that
matters.
〈Class implementations 11 〉 +≡

void fastDictionary ::exportDictionary (const dictionary &d,ostream &o)
{

u int32 t hashSize = nextGreaterPrime (d.size ());
vector〈u int32 t 〉 hashTable (hashSize , fastDictionaryVoidLink);
vector〈unsigned char〉 words ;
for (dictionary ::const iteratorw = d.begin (); w 6= d.end (); w++) {

u int32 th = computeHashValue (w~first);
unsigned int slot = h % hashSize ;
〈Link new word to hash table chain 36 〉;
〈Add new word to word table 37 〉;

}
o � fastDictionarySignature ;
u int16 t b;
b = byteOrderMark ;
o.write (reinterpret cast〈const char ∗〉(&b), sizeof b); /∗ Byte order mark ∗/
b = versionNumber ;
o.write (reinterpret cast〈const char ∗〉(&b), sizeof b); /∗ File version number ∗/
b = doubleSize ;
o.write (reinterpret cast〈const char ∗〉(&b), sizeof b); /∗ Size of double in bytes ∗/
b = 0;
o.write (reinterpret cast〈const char ∗〉(&b), sizeof b); /∗ 88 Filler size is 2 bytes ∗/
double td = fastDictionaryFloatingTest ;
o.write (reinterpret cast〈const char ∗〉(&td), sizeof td);

/∗ double compatibility test: 1
111 ∗/

u int32 t headerSize = 4 + (4 ∗ sizeof (u int16 t)) + sizeof (double) + (4 ∗ sizeof (u int32 t));
u int32 twordTableSize = words .size ();
u int32 t totalSize = headerSize + (hashTable .size () ∗ sizeof (u int32 t)) + wordTableSize ;
o.write (reinterpret cast〈const char ∗〉(&totalSize), sizeof totalSize);

/∗ Total size of file ∗/
o.write (reinterpret cast〈const char ∗〉(&headerSize), sizeof headerSize);

/∗ Hash table offset ∗/
o.write (reinterpret cast〈const char ∗〉(&hashSize), sizeof hashSize);

/∗ Number of buckets in hash table ∗/
o.write (reinterpret cast〈const char ∗〉(&wordTableSize), sizeof wordTableSize);

/∗ Word table size in bytes ∗/
#ifdef OLDWAY

o.write (hashTable .begin (), hashTable .size () ∗ sizeof (u int32 t)); /∗ Hash table ∗/
o.write (words .begin (),words .size ()); /∗ Word table ∗/

#else
for (vector〈u int32 t 〉 ::const iterator htp = hashTable .begin (); htp 6= hashTable .end (); htp ++) {

u int32 t hte = ∗htp ;
o.write (reinterpret cast〈const char ∗〉(&hte), sizeof hte);

}
for (vector〈unsigned char〉 ::const iteratorwtp = words .begin (); wtp 6= words .end (); wtp ++) {

o.put (∗wtp);

40 FAST DICTIONARY ANNOYANCE-FILTER §35

}
#endif

if (verbose) {
cerr � "Exported " � d.size () � " words to fast dictionary." � endl ;

}
}
void fastDictionary ::exportDictionary (const dictionary &d, const string fname)
{

ofstream of (fname .c str (), ios ::out | ios ::binary);
if (of) {

exportDictionary (d, of);
of .close ();

}
else {

cerr � "Unable to create fast dictionary file " � fname � endl ;
}

}

36. Having determined which bucket in the hash table this word falls into, we can link it to the hash
table itself (if the bucket is empty), or to the end of the chain of words already sorted into this bucket.
All links are relative to the start of the words vector.
〈Link new word to hash table chain 36 〉 ≡

if (hashTable [slot] ≡ fastDictionaryVoidLink) {
hashTable [slot] = words .size ();

}
else {

u int32 tp = hashTable [slot];
u int32 t l;
while (true) {

memcpy (&l, &(words [p]), sizeof l);
if (l ≡ fastDictionaryVoidLink) {

break;
}
p = l;

}
l = words .size ();
memcpy (&(words [p]),&l, sizeof l);

}
This code is used in section 35.

§37 ANNOYANCE-FILTER FAST DICTIONARY 41

37. Add a new word to the word vector. As this is a new word, we know that its forward link is
fastDictionaryVoidLink . The balance of the fields are transcribed from the dictionaryWord we’re
adding.
〈Add new word to word table 37 〉 ≡

vector〈unsigned char〉 ::size typewl = words .size ();
words .resize (words .size () + sizeof (u int32 t) + sizeof (double) + sizeof

(u int16 t) + w~second .get ().length ());
u int32 t vl = fastDictionaryVoidLink ;

#ifdef OLDWAY

memcpy (words .begin () + wl ,&vl , sizeof vl);
#else

Vmemcpy (words ,wl ,&vl , sizeof vl);
#endif

wl += sizeof vl ;
double jp = w~second .getJunkProbability ();

#ifdef OLDWAY

memcpy (words .begin () + wl ,&jp , sizeof jp);
#else

Vmemcpy (words ,wl ,&jp , sizeof jp);
#endif

wl += sizeof jp ;
u int16 twlen = w~second .get ().length ();

#ifdef OLDWAY

memcpy (words .begin () + wl ,&wlen , sizeof wlen);
#else

Vmemcpy (words ,wl ,&wlen , sizeof wlen);
#endif

wl += sizeof wlen ;
#ifdef OLDWAY

memcpy (words .begin () + wl , w~second .get ().data (),wlen);
#else

Vmemcpy (words ,wl , w~second .get ().data (),wlen);
#endif
This code is used in section 35.

42 FAST DICTIONARY ANNOYANCE-FILTER §38

38. This is just about3 the dumbest way to generate prime numbers one can imagine. We simply
start with the next odd number greater than the argument and try dividing it by all the odd numbers
from 3 through the square root of the candidate. If none divides it evenly, it’s prime. If not, bump the
candidate by two and try again. In defence of this “method”, allow me to observe this this method is
called only when creating a fastDictionary file (to determine the size of the hash table) and then only
once.
〈Class implementations 11 〉 +≡

unsigned int fastDictionary ::nextGreaterPrime (unsigned int a)
{

unsigned int sqlim = static cast〈unsigned int〉(sqrt (static cast〈double〉(a)) + 1);
if ((a & 1) ≡ 0) {

a++;
}
while (true) {

unsigned int remainder = 0;
a += 2;
for (unsigned int n = 3; n ≤ sqlim ; n += 2) {

if ((remainder = (a % n)) ≡ 0) {
break;

}
}
if (remainder 6= 0) {

break;
}

}
return a;

}

39. Compute a 32 bit unsigned hash value from a string. This value is used to determine the hash
table slot into which a word is placed. It’s simple, but it gets you there—tests with a typical dictionary
yield 62% occupancy for a hash table the next greater prime than the number of words in the dictionary.
〈Class implementations 11 〉 +≡

u int32 t fastDictionary ::computeHashValue (const string &s)
{

u int32 t hash = 1;
for (unsigned int i = 0; i < s.length (); i++) {

hash = (hash ∗ 17)⊕ s[i];
}
return hash ;

}

3 Why just about? Well, we could have tested all the even numbers and divisors, couldn’t we?

§40 ANNOYANCE-FILTER MIME DECODERS 43

40. MIME decoders.
MIME decoders process parts of multi-part messages in various MIME encodings such as base64 and

Quoted−Printable. They read encoded lines from an istream and return decoded binary values with
the getchar method. The decoder terminates when the current MIME partBoundary is encountered.

MIMEdecoder is the parent class of all specific decoders.
〈Class definitions 10 〉 +≡

class mailFolder;
class MIMEdecoder {
public:

istream ∗is ; /∗ Stream from which encoded lines are read ∗/
string partBoundary ; /∗ Part boundary sentinel ∗/
bool atEnd ; /∗ At end of part or stream ? ∗/
bool eofHit ; /∗ Was decoder terminated by end of file ? ∗/
unsigned int nDecodeErrors ; /∗ Number of decoding errors ∗/

protected:
string inputLine ; /∗ Current encoded input line ∗/
string ::size type ip ; /∗ Input line pointer ∗/
unsigned encodedLineCount ; /∗ Number of encoded lines read ∗/
bool lookAhead ; /∗ Have we looked ahead ? ∗/
int lookChar ; /∗ Look-ahead character ∗/
string endBoundary ; /∗ Terminating part boundary ∗/
list〈string〉 ∗tlist ; /∗ Transcript list ∗/
mailFolder ∗mf ; /∗ Parent mail folder ∗/

public:
MIMEdecoder(istream ∗i = Λ,mailFolder ∗m = Λ, string pb = "", list〈string〉 ∗tl = Λ)
{

set(i, m, pb , tl);
resetDecodeErrors ();
tlist = Λ;

}
virtual ∼MIMEdecoder()
{ }
;
void set(istream ∗i = Λ,mailFolder ∗m = Λ, string pb = "", list〈string〉 ∗tl = Λ)
{

is = i;
mf = m;
partBoundary = pb ;
inputLine = "";
ip = 0;
encodedLineCount = 0;
lookAhead = false ;
atEnd = false ;
eofHit = false ;
tlist = tl ;

}
virtual string name (void) const = 0;
virtual void resetDecodeErrors (void)
{

nDecodeErrors = 0;

44 MIME DECODERS ANNOYANCE-FILTER §40

}
virtual unsigned int getDecodeErrors (void) const
{

return nDecodeErrors ;
}
virtual string getTerminatorSentinel (void) const
{

return endBoundary ;
}
virtual bool isEndOfFile (void) const
{

return eofHit ;
}
virtual unsigned int getEncodedLineCount (void) const
{

return encodedLineCount ;
}
virtual int getDecodedChar (void) = 0; /∗ Return next decoded character, < 0 if EOF ∗/
virtual bool getDecodedLine (string &s);

/∗ Return next decoded line, return false for EOF ∗/
virtual void saveDecodedStream (ostream &os); /∗ Write decoded text to an ostream ∗/
virtual void saveDecodedStream (const string fname);

/∗ Write decoded text to file fname ∗/
protected:

virtual bool getNextEncodedLine (void);
};

§41 ANNOYANCE-FILTER MIME DECODERS 45

41. The getNextEncodedLine method is called by specific decoders to obtain the next line (all
encodings are line-oriented, being intended for inclusion in mail messages). The line is stored into
inputLine and tested against the MIME part boundary sentinel. A logical end of file is reported when
the part boundary is encountered. The method is declared virtual so derived decoders may override it
if different behaviour is required.

One subtlety is that decoders may also be activated to decode the main body of a message. In this
case, the partBoundary is set to the null string and body content is decoded until the start of the next
message is encountered.
〈Class implementations 11 〉 +≡

bool MIMEdecoder ::getNextEncodedLine (void)
{

if (¬atEnd) {
if (getline (∗is , inputLine) 6= Λ) {

if (inputLine .substr (0, (sizeof messageSentinel)− 1) ≡ messageSentinel) {
endBoundary = inputLine ;
if (partBoundary 6= "") {

assert(mf 6= Λ);
mf~reportParserDiagnostic("Unterminated MIME sentinel at end of message.");
mf~setNewMessageEligiblity ();

}
atEnd = true ;

}
if ((partBoundary 6= "") ∧ (inputLine .substr (0, 2) ≡ "−−") ∧ (inputLine .substr (2,

partBoundary .length ()) ≡ partBoundary)) {
if (Annotate (’d’)) {

ostringstream os ;
os � "Part boundary encountered: " � inputLine ;
mf~reportParserDiagnostic(os);

}
endBoundary = inputLine ;
atEnd = true ;

}
else {

if (tlist 6= Λ) {
tlist~push back (inputLine);

}
ip = 0;
encodedLineCount ++;

}
}
else {

atEnd = true ;
eofHit = true ;

}
}
if (atEnd) {

inputLine = "";
ip = 0;

}
return ¬atEnd ;

}

46 MIME DECODERS ANNOYANCE-FILTER §42

42. We provide a default implementation of getDecodedLine for derived classes. This forms lines from
calls on getDecodedChar , accepting (and discarding) end of line sequences.
〈Class implementations 11 〉 +≡

bool MIMEdecoder ::getDecodedLine (string &s)
{

int ch ;
s = "";
while (true) {

if (lookAhead) {
ch = lookChar ;
lookAhead = false ;

}
else {

ch = getDecodedChar ();
}
if (ch < 0) {

break;
}
〈Check for and process end of line sequence 43 〉;
s += ch ;

}
return s.length () > 0;

}

43. In order to support all plausible end of line sequences, we need to look ahead one character at end
of line; if the caller intends to intermix calls on getDecodedLine and getDecodedChar (a pretty dopey
thing to do, it must be said), the getDecodedChar implementation in the derived class must be aware
that look ahead may have happened and properly interact with the lookAhead flag.
〈Check for and process end of line sequence 43 〉 ≡

if (ch ≡ ’\r’ ∨ ch ≡ ’\n’) {
int cht = getDecodedChar ();
if (¬(((ch ≡ ’\r’) ∧ (cht ≡ ’\n’)) ∨ ((ch ≡ ’\n’) ∧ (cht ≡ ’\r’)))) {

lookAhead = true ;
lookChar = cht ;

}
return true ;

}
This code is used in section 42.

44. We may want to export a decoded part to a file or, perhaps, save it as a string stream for further
examination. This method writes decoded bytes to its ostream argument.
〈Class implementations 11 〉 +≡

void MIMEdecoder ::saveDecodedStream (ostream &os)
{

int ch ;
while ((ch = getDecodedChar ()) ≥ 0) {

os .put (ch);
}

}

§45 ANNOYANCE-FILTER MIME DECODERS 47

45. We also provide a flavour of saveDecodedStream which exports the decoded stream to a named
file.
〈Class implementations 11 〉 +≡

void MIMEdecoder ::saveDecodedStream (const string fname)
{

ofstream of (fname .c str ());
if (¬of) {

if (verbose) {
cerr � "Cannot create MIMEdecoder dump file: " � fname � endl ;

}
}
else {

saveDecodedStream (of);
of .close ();

}
}

48 IDENTITY MIME DECODER ANNOYANCE-FILTER §46

46. Identity MIME decoder.
The identityMIMEdecoder is a trivial MIME decoder which simply passes through text in the part

without transformation. It is provided as a test case and template for genuinely useful decoders. It may
also come in handy should the need arise for the interposition of an obligatory decoder even for MIME
parts which can be read directly as text.
〈Class definitions 10 〉 +≡

class identityMIMEdecoder : public MIMEdecoder {
public:

string name (void) const
{

return "Identity";
}
int getDecodedChar (void)
{

while (¬atEnd) {
if (ip < inputLine .length ()) {

return inputLine [ip ++] & #FF;
}
if (getNextEncodedLine ()) {

continue;
}

}
return −1;

}
bool getDecodedLine (string &s)
{

if (ip < inputLine .length ()) {
s = inputLine .substr (ip);
ip = inputLine .length ();
return true ;

}
if (getNextEncodedLine ()) {

s = inputLine ;
ip = inputLine .length ();
return true ;

}
return false ;

}
};

§47 ANNOYANCE-FILTER SINK MIME DECODER 49

47. Sink MIME decoder.
The sinkMIMEdecoder simply discards lines from the MIME part the first time getDecodedChar or

getDecodedLine is called. It is used for skipping parts in which we aren’t interested.
〈Class definitions 10 〉 +≡

class sinkMIMEdecoder : public MIMEdecoder {
public:

string name (void) const
{

return "Sink";
}
int getDecodedChar (void)
{

if (¬atEnd) {
while (getNextEncodedLine ()) ;
assert(atEnd);

}
return −1;

}
};

50 BASE64 MIME DECODER ANNOYANCE-FILTER §48

48. Base64 MIME decoder.
The base64MIMEdecoder decodes an input stream encoded as MIME base64 per RFC 1341. This is

based on my stand-alone base64 decoder.
〈Class definitions 10 〉 +≡

class base64MIMEdecoder : public MIMEdecoder {
private:

unsigned char dtable [256]; /∗ Decoding table ∗/
void initialiseDecodingTable (void); /∗ Initialise decoding table ∗/
deque〈unsigned char〉 decodedBytes ; /∗ Decoded bytes queue ∗/

public:
base64MIMEdecoder()
{

initialiseDecodingTable ();
}
string name (void) const
{

return "Base64";
}
int getDecodedChar (void);
static string decodeEscapedText (const string s,mailFolder ∗m = Λ);

};

49. The getDecodedChar returns decoded characters from the decodedBytes queue, refilling it with
triples of bytes decoded from the input stream as required. When the end of the stream is encountered,
−1 is returned.
〈Class implementations 11 〉 +≡

int base64MIMEdecoder ::getDecodedChar (void)
{
〈Check for look ahead character 55 〉;
if (decodedBytes .size () ≡ 0) {
〈Refill decoded bytes queue from input stream 50 〉;

}
if (decodedBytes .size () > 0) {

unsigned char v = decodedBytes [0];
decodedBytes .pop front ();
return v;

}
return −1;

}

http://www.fourmilab.ch/webtools/base64/

§50 ANNOYANCE-FILTER BASE64 MIME DECODER 51

50. This is the heart of the base64 decoder. It reads the next four significant (non-white space)
characters from the input stream, extracts the 6 bits encoded by each, and assembles the bits into
three 8 bit bytes which are added to the decodedBytes queue. Although the current decoder always
immediately empties the queue, in principal any sequence of the encoded content up to its entire length
may be decoded by repeated invocations of this code.
〈Refill decoded bytes queue from input stream 50 〉 ≡

unsigned char a[4], b[4], o[3];
int j, k;
〈Decode next four characters from input stream 51 〉;
〈Assemble the decoded bits into bytes and place on decoded queue 54 〉;

This code is used in section 49.

51. Read the next four non-blank bytes from the input stream, checking for end of file, and place
their decoded 6 bit values into the array b. We save the original encoded characters in array a to permit
testing them for the special “=” sentinel which denotes short sequences at the end of file.
〈Decode next four characters from input stream 51 〉 ≡

for (int i = 0; i < 4; i++) {
int c;
〈Get next significant character from input stream 52 〉;
〈Check for end of file in base64 stream 53 〉;
if (dtable [c] & #80) {

nDecodeErrors ++;
ostringstream os ;
os � "Illegal character ’" � c � "’ in Base64 input stream.";
mf~reportParserDiagnostic(os .str ()); /∗ Ignoring errors: discard invalid character. ∗/
i−−;
continue;

}
a[i] = (unsigned char) c;
b[i] = dtable [c];

}
This code is used in section 50.

52 BASE64 MIME DECODER ANNOYANCE-FILTER §52

52. Read the encoded input stream and return the next non-white space character. This code does
not verify whether characters it returns are valid within a base64 stream—that’s up to the caller to
determine once the character is returned.
〈Get next significant character from input stream 52 〉 ≡

while (true) {
c = −1;
while (ip < inputLine .length ()) {

if (inputLine [ip] > ’ ’) {
c = inputLine [ip ++];
break;

}
ip ++;

}
if (c ≥ 0) {

break;
}
if (¬getNextEncodedLine ()) {

break;
}

}
This code is used in section 51.

53. An end of file indication (due to encountering the MIME part separator sentinel) is valid only after
an even number of four character encoded sequences. Validate this and report any errors accordingly.
If an unexpected end of file is encountered, any incomplete encoded sequence is discarded.
〈Check for end of file in base64 stream 53 〉 ≡

if (c ≡ EOF) {
if (i > 0) {

nDecodeErrors ++;
mf~reportParserDiagnostic("Unexpected end of file in Base64 decoding.");

}
return −1;

}
This code is used in section 51.

54. Once we’ve decoded four characters from the input stream, we have four six-bit fields in the b
array. Now we extract, shift, and ∨ these fields together to form three 8 bit bytes. One subtlety arises
at the end of file. The last one or two characters of an encoded four character field may be replaced by
equal signs to indicate that the final field encodes only one or two source bytes. If this is the case, the
number of bytes placed onto the decodedBytes queue is reduced to the correct value.
〈Assemble the decoded bits into bytes and place on decoded queue 54 〉 ≡

o[0] = (b[0] � 2) | (b[1] � 4);
o[1] = (b[1] � 4) | (b[2] � 2);
o[2] = (b[2] � 6) | b[3];
j = a[2] ≡ ’=’ ? 1 : (a[3] ≡ ’=’ ? 2 : 3);
for (k = 0; k < j; k++) {

decodedBytes .push back (o[k]);
}

This code is used in section 50.

§55 ANNOYANCE-FILTER BASE64 MIME DECODER 53

55. Since we rely on the parent class default implementation of getNextEncodedLine , if we wish to
permit intermixed calls on getNextEncodedLine and getNextEncodedChar we must cope with the fact
that the last getNextEncodedLine call may have peeked ahead one character. If so, clear the look ahead
flag and return the look ahead character.
〈Check for look ahead character 55 〉 ≡

if (lookAhead) {
lookAhead = false ;
return lookChar ;

}
This code is used in sections 49 and 59.

56. The initialiseDecodingTable method fills the binary encoding table with the characters the 6 bit
values are mapped into. The curious and disparate sequences used to fill this table permit this code to
work both on ASCII and EBCDIC systems.

In EBCDIC systems character codes for letters are not consecutive; the initialisation must be split to
accommodate the EBCDIC consecutive letters:

A–I J–R S–Z a–i j–r s–z
This code works on ASCII as well as EBCDIC systems.

〈Class implementations 11 〉 +≡
void base64MIMEdecoder :: initialiseDecodingTable (void)
{

int i;
for (i = 0; i < 255; i++) {

dtable [i] = #80;
}
for (i = ’A’; i ≤ ’I’; i++) {

dtable [i] = 0 + (i− ’A’);
}
for (i = ’J’; i ≤ ’R’; i++) {

dtable [i] = 9 + (i− ’J’);
}
for (i = ’S’; i ≤ ’Z’; i++) {

dtable [i] = 18 + (i− ’S’);
}
for (i = ’a’; i ≤ ’i’; i++) {

dtable [i] = 26 + (i− ’a’);
}
for (i = ’j’; i ≤ ’r’; i++) {

dtable [i] = 35 + (i− ’j’);
}
for (i = ’s’; i ≤ ’z’; i++) {

dtable [i] = 44 + (i− ’s’);
}
for (i = ’0’; i ≤ ’9’; i++) {

dtable [i] = 52 + (i− ’0’);
}
dtable [’+’] = 62;
dtable [’/’] = 63;
dtable [’=’] = 0;

}

54 BASE64 MIME DECODER ANNOYANCE-FILTER §57

57. The static method decodeEscapedText decodes text in its string argument, returning a string
with escape sequences replaced by the encoded characters. Note that, notwithstanding this being a
static method which can be invoked without reference to a base64MIMEdecoder object, we in fact
actually instantiate such an object within the method, supplying its input from an istringstream
constructed from the argument string.
〈Class implementations 11 〉 +≡

string base64MIMEdecoder ::decodeEscapedText (const string s,mailFolder ∗m)
{

string r = "";
base64MIMEdecoder dc ;
istringstream iss (s);
int dchar ;
dc .set(&iss ,m, "");
while ((dchar = dc .getDecodedChar ()) ≥ 0) {

r += static cast〈char〉(dchar);
}
return r;

}

§58 ANNOYANCE-FILTER QUOTED-PRINTABLE MIME DECODER 55

58. Quoted-Printable MIME decoder.
The quotedPrintableMIMEdecoder decodes an input stream encoded as MIME “Quoted-Printable”

per RFC 1521. This is based on my stand-alone Quoted-Printable decoder.
〈Class definitions 10 〉 +≡

class quotedPrintableMIMEdecoder : public MIMEdecoder {
public:

quotedPrintableMIMEdecoder()
{

atEndOfLine = false ;
}
string name (void) const
{

return "Quoted−Printable";
}
int getDecodedChar (void);
static string decodeEscapedText (const string s,mailFolder ∗m = Λ);

protected:
bool atEndOfLine ;
int getNextChar (void);
static int hex to nybble (const int ch);

};

59. Get the next decoded character from the stream, expanding “=” escape sequences.
〈Class implementations 11 〉 +≡

int quotedPrintableMIMEdecoder ::getDecodedChar (void)
{

int ch ;
〈Check for look ahead character 55 〉;
while (true) {

ch = getNextChar ();
if (ch ≡ ’=’) {
〈Decode equal sign escape 60 〉;

}
else {

return ch ;
}

}
}

http://www.fourmilab.ch/webtools/qprint/

56 QUOTED-PRINTABLE MIME DECODER ANNOYANCE-FILTER §60

60. When we encounter an equal sign in the input stream there are two possibilities: it may introduce
two characters of ASCII representing an 8-bit octet in hexadecimal or, if followed by an end of line
sequence, it’s a “soft end-of-line” introduced to avoid emitting a line longer than the maximum number
of characters prescribed by the RFC.
〈Decode equal sign escape 60 〉 ≡

int ch1 = getNextChar ();
〈 Ignore white space after soft line break 63 〉;
if (ch1 ≡ ’\n’) {

continue;
}
else {

int n1 = hex to nybble (ch1);
int ch2 = getNextChar ();
int n2 = hex to nybble (ch2);
if (n1 ≡ −1 ∨ n2 ≡ −1) {

ostringstream os ;
os � "Invalid escape sequence ’=" � static cast〈char〉(ch1) �

static cast〈char〉(ch2) � "’ in Quoted−Printable MIME part.";
mf~reportParserDiagnostic(os .str ());
nDecodeErrors ++;

}
ch = (n1 � 4) | n2 ;

}
return ch ;

This code is used in section 59.

§61 ANNOYANCE-FILTER QUOTED-PRINTABLE MIME DECODER 57

61. Return the next character from the encoded input stream. Since end of line sequences have been
stripped, we append our own new-line character to the end of each line. This indicates that in the
absence of a soft line break (trailing equal sign), we should emit a line break to the output stream.
〈Class implementations 11 〉 +≡

int quotedPrintableMIMEdecoder ::getNextChar (void)
{

while (true) {
if (atEndOfLine) {

atEndOfLine = false ;
return ’\n’;

}
if (ip < inputLine .length ()) {

if (ip ≡ (inputLine .length ()− 1)) {
atEndOfLine = true ;

}
return inputLine [ip ++];

}
if (¬getNextEncodedLine ()) {

break;
}
if (inputLine .length () ≡ 0) {

atEndOfLine = true ;
}

}
return −1;

}

62. There are lots of ways of defining “ASCII white space,” but RFC 1521 explicitly states that only
ASCII space and horizontal tab characters are deemed white space for the purposes of Quoted-Printable
encoding. However, we must also cope with POP3 messages where the lines are terminated with CR/LF,
so we extend the definition to allow a carriage return before the line feed. This is easily accomplished
by broadening the definition of white space to include carriage return.
〈Character is white space 62 〉 ≡

((ch1 ≡ ’ ’) ∨ (ch1 ≡ ’\t’) ∨ (ch1 ≡ ’\r’))
This code is cited in section 256.

This code is used in section 63.

58 QUOTED-PRINTABLE MIME DECODER ANNOYANCE-FILTER §63

63. Some systems pad text lines with white space (ASCII blank or horizontal tab characters). This
may result in a line encoded with a “soft line break” at the end appearing, when decoded, with white
space between the supposedly-trailing equal sign and the end of line sequence. If white space follows
an equal sign escape, we ignore it up to the beginning of an end of line sequence. Non-white space
appearing before we sense the end of line is an error; these erroneous characters are ignored.
〈 Ignore white space after soft line break 63 〉 ≡

while (〈Character is white space 62 〉) {
ch1 = getNextChar ();
if (ch1 ≡ ’\n’) {

continue;
}
if (¬〈Character is white space 62 〉) {

nDecodeErrors ++;
ostringstream os ;
os � "Invalid character ’" � static cast〈char〉(ch1) �

"’ after soft line break in Quoted−Printable MIME part.";
mf~reportParserDiagnostic(os .str ());
ch1 = ’ ’; /∗ Fake a space and soldier on ∗/

}
}

This code is used in section 60.

64. The hex to nybble method converts a hexadecimal digit in the sequence “0123456789ABCDEF” or
the equivalent with lower case letters to its binary value. If an invalid hexadecimal digit is supplied, −1
is returned.
〈Class implementations 11 〉 +≡

int quotedPrintableMIMEdecoder ::hex to nybble (const int ch)
{

if ((ch ≥ ’0’) ∧ (ch ≤ (’0’ + 9))) {
return ch − ’0’;

}
else if ((ch ≥ ’A’) ∧ (ch ≤ (’A’ + 5))) {

return 10 + (ch − ’A’);
}
else if ((ch ≥ ’a’) ∧ (ch ≤ (’a’ + 5))) {

return 10 + (ch − ’a’);
}
return −1;

}

§65 ANNOYANCE-FILTER QUOTED-PRINTABLE MIME DECODER 59

65. The static method decodeEscapedText decodes text in its string argument, returning a string
with escape sequences replaced by the encoded characters.
〈Class implementations 11 〉 +≡

string quotedPrintableMIMEdecoder ::decodeEscapedText (const string s,mailFolder ∗m)
{

string r = "";
string ::size typep;
for (p = 0; p < s.length (); p++) {

bool decoded = false ;
if (s[p] ≡ ’=’) {

if (p > (s.length ()− 3)) {
if (verbose) {

cerr � "decodeEscapedText: escape too near end of string: " � s � endl ;
}

}
else {

int n1 = hex to nybble (s[p + 1]), n2 = hex to nybble (s[p + 2]);
if ((n1 < 0) ∨ (n2 < 0)) {

if (verbose) {
cerr � "decodeEscapedText: invalid escape sequence \"" � s.substr (p,

3) � "\"" � endl ;
}

}
else {

r += static cast〈char〉((n1 � 4) | n2);
decoded = true ;
p += 2;

}
}

}
if (¬decoded) {

r += s[p];
}

}
return r;

}

60 MULTIPLE BYTE CHARACTER SET DECODERS AND INTERPRETERS ANNOYANCE-FILTER §66

66. Multiple byte character set decoders and interpreters.
To support languages with character sets too large to be encoded in a single byte, a bewildering variety

of multiple byte character sets are employed. In a rational world, there would be a single, universal, and
uniform encoding of every glyph used in human written encoding, and a unique way of representing this
in byte-oriented messages.

Rather amazingly, there is such a representation: ISO/IEC 10646 and its UTF-8 encoding. Not
surprisingly, hardly anybody uses it—it’s an international standard, after all. So, we must cope with
a plethora of character sets and byte encodings, than that’s the lot in life of the MBCSdecoder and
MBCSinterpreter . These abstract classes are the parent of specific decoders for various encodings and
interpreters for the motley crowd of character sets.

First, let’s define our terms. A decoder is charged with chewing through a byte stream and identifying
the logical characters within it, in all their various lengths. Decoders must cope with encoding such as
EUC, shift-JIS, and UTF-8. An interpreter’s responsibility is expressing the character codes delivered
by the decoder in a form comprehensible to those not endowed with the original language character set
or knowledge of how to read it. This usually means encoding ideographic languages where each character
more or less corresponds to a word as space-separated tokens uniquely identifying the character code
(by its hexadecimal code, for example), and characters in word-oriented languages as unique strings
which meet the downstream rules for tokens. For example, one might express a sequence of Chinese
characters in the “Big5” character set as:

big5−A2FE big5−E094 big5−F3CA

or a two words in a Cyrillic font as:
cyr−A0cyr−98cyr−81cyr−FE cyr−84cyr−D3cyr−EAcyr−A7

(These examples were just made up off the cuff—if they represent something heroically obscene in some
representation of a language, it’s just my lucky day.)

Note that because of what we’re doing here, we don’t have to remotely comprehend the character
set or read the language to be highly effective in accomplishing our mission. Like cryptographers
who broke book codes without knowing the language of the plaintext, we’re concerned only with the
frequency with which various tokens, however defined, occur in legitimate and junk mail. As long as
our representations are unique and more or less correspond to tokens in the underlying language, we
don’t need to understand what it means.

§67 ANNOYANCE-FILTER DECODERS 61

67. Decoders.

62 DECODER PARENT CLASS ANNOYANCE-FILTER §68

68. Decoder parent class.
This is the abstract parent class of all specific decoders. Albeit abstract in the details, we provide a

variety of services to derived classes.
〈Class definitions 10 〉 +≡

class MBCSdecoder {
protected:

const string ∗src ;
string ::size typep;
mailFolder ∗mf ;

public:
MBCSdecoder(mailFolder ∗m = Λ)
: src(Λ), p(0), mf (Λ) { }
virtual ∼MBCSdecoder()
{ }
virtual string name (void) = 0; /∗ Name of decoder ∗/
virtual void setSource (const string &s)
{ /∗ Set input source line ∗/

src = &s;
p = 0;

}
virtual void setMailFolder (mailFolder ∗m = Λ)
{

mf = m;
}
virtual void reset (void)
{ /∗ Reset stateful decoder to ground state ∗/
}
virtual int getNextDecodedChar (void) = 0; /∗ Get next decoded character ∗/
virtual int getNextEncodedByte (void)
{

if (p ≥ src~ length ()) {
return −1;

}
return ((∗src)[p++]) & #FF;

}
protected:

virtual int getNextNBytes (const unsigned int n);
virtual int getNext2Bytes (void)
{

return getNextNBytes (2);
}
virtual int getNext3Bytes (void)
{

return getNextNBytes (3);
}
virtual int getNext4Bytes (void)
{

return getNextNBytes (4);
}

§68 ANNOYANCE-FILTER DECODER PARENT CLASS 63

virtual void discardLine (void)
{

p = src~ length ();
}
virtual void reportDecoderDiagnostic(const string s) const;
virtual void reportDecoderDiagnostic(const ostringstream &os) const;

};

69. Return a character assembled by concatenating the next n bytes in most significant byte to least
significant byte order. If the end of input is encountered, −1 is returned. A multiple byte character
equal to −1 triggers an assertion failure in debug builds.
〈Class implementations 11 〉 +≡

int MBCSdecoder ::getNextNBytes (const unsigned int n)
{

assert((n ≥ 1) ∧ (n ≤ 4));
int v = 0;
for (unsigned int i = 0; i < n; i++) {

int b = getNextEncodedByte ();
if (b < 0) {

return b;
}
v = (v � 8) | b;

}
assert(v 6= −1);
return v;

}

70. If the decoder encounters an error, we usually report it as a parser diagnostic to the parent mail
folder. If there is no such folder (since a decoder can be invoked stand-alone), we report the diagnostic
to standard error if the −−verbose option is specified.
〈Class implementations 11 〉 +≡

void MBCSdecoder ::reportDecoderDiagnostic(const string s) const
{

if (mf 6= Λ) {
mf~reportParserDiagnostic(s);

}
else {

if (verbose) {
cerr � s � endl ;

}
}

}
void MBCSdecoder ::reportDecoderDiagnostic(const ostringstream &os) const
{

reportDecoderDiagnostic(os .str ());
}

64 EUC DECODER ANNOYANCE-FILTER §71

71. EUC decoder.
This decoder extracts logical characters from byte streams encoded in EUC encoding. In EUC, if a byte

in the input stream is in the range #A1–#FE and the subsequent byte in the range #80–#FF, then the
variant fields encoded in the two bytes define the character code. A byte not within the range of the first
byte of a two byte character is interpreted as a single byte character with ASCII/ISO-8859 semantics.
〈Class definitions 10 〉 +≡

class EUC MBCSdecoder : public MBCSdecoder {
public:

virtual string name (void)
{

return "EUC";
}
virtual int getNextDecodedChar (void); /∗ Get next decoded byte ∗/

};

72. Bytes are parsed from the input stream as follows. Any bytes with values within the range
#A1–#FE denote the first byte of a two byte character, whose second byte must be within the range
#80–#FF. Any violation of the constraints on the second byte indicates an invalid sequence. Characters
outside the range of initial characters are considered single byte codes. We return −1 when the end of
the encoded line is encountered.
〈Class implementations 11 〉 +≡

int EUC MBCSdecoder ::getNextDecodedChar (void)
{

int c1 = getNextEncodedByte ();
if ((c1 ≥ #A1) ∧ (c1 ≤ #FE)) {

int c2 = getNextEncodedByte ();
if ((c2 ≥ #80) ∧ (c2 ≤ #FF)) {

return (c1 � 8) | c2 ;
}
if (c2 ≡ −1) {

ostringstream os ;
os � name () � "_MBCSdecoder: Premature end of line in two byte character.";
reportDecoderDiagnostic(os);
return −1;

} /∗ Odds are that once we’ve encountered an invalid second byte, the balance of the
encoded line will be screwed up as well. To avoid such blithering, discard the line after
such an error. ∗/

discardLine ();
ostringstream os ;
os � name () � "_MBCSdecoder: Invalid second byte in two byte character: ""0x" �

setiosflags (ios ::uppercase) � hex � c1 � " " � "0x" � c2 � ".";
reportDecoderDiagnostic(os);
return c1 ;

}
return c1 ;

}

§73 ANNOYANCE-FILTER BIG5 DECODER 65

73. Big5 decoder.
This decoder extracts logical characters from byte streams encoded in Big5 encoding. In Big5, bytes

in the range #00–#7F are single ASCII characters. Bytes with the #80 bit set are the first byte of a two
byte character, the second byte of which may have any value.
〈Class definitions 10 〉 +≡

class Big5 MBCSdecoder : public MBCSdecoder {
public:

virtual string name (void)
{

return "Big5";
}
virtual int getNextDecodedChar (void); /∗ Get next decoded byte ∗/

};

74. Decode the next logical character. We return −1 when the end of the encoded line is encountered.
〈Class implementations 11 〉 +≡

int Big5 MBCSdecoder ::getNextDecodedChar (void)
{

int c1 = getNextEncodedByte ();
if ((c1 ≥ 0) ∧ ((c1 & #80) 6= 0)) {

int c2 = getNextEncodedByte ();
if (c2 ≡ −1) {

ostringstream os ;
os � name () � "_MBCSdecoder: Premature end of line in two byte character.";
reportDecoderDiagnostic(os);
return −1;

}
return (c1 � 8) | c2 ;

}
return c1 ;

}

66 SHIFT-JIS DECODER ANNOYANCE-FILTER §75

75. Shift-JIS decoder.
Shift-JIS is used to encode Japanese characters on MS-DOS, Windows, and the Macintosh (which adds

four additional one-byte characters which we support here). The encoding uses code points #21–#7E
for ASCII/JIS-Roman single byte characters, code points #A1–#DF for single byte hald width katakana,
plus two-byte characters introduced by first bytes in the ranges #81–#9F, #E0–#EF, and, for user-defined
characters, #F0–#FC. The second byte of a valid two-byte character will always be in one of the ranges
#40–#7E and #80–#FC.
〈Class definitions 10 〉 +≡

class Shift JIS MBCSdecoder : public MBCSdecoder {
protected:

string pending ;
public:

Shift JIS MBCSdecoder()
: pending ("") { }
virtual ∼Shift JIS MBCSdecoder()
{ }
virtual string name (void)
{

return "Shift_JIS";
}
virtual int getNextDecodedChar (void); /∗ Get next decoded byte ∗/

};

76. Decode the next logical character. We return −1 when the end of the encoded line is encountered.
An invalid second byte of a two byte character terminates processing of the line, as it’s likely to be
gibberish from then on.
〈Class implementations 11 〉 +≡

int Shift JIS MBCSdecoder ::getNextDecodedChar (void)
{
〈Check for pending characters and return if so 78 〉;
int c1 = getNextEncodedByte ();
if (c1 ≥ 0) {
〈Check for Shift-JIS two byte character and assemble as required 77 〉;
〈Check for Macintosh-specific single byte characters and translate 79 〉;

}
return c1 ;

}

§77 ANNOYANCE-FILTER SHIFT-JIS DECODER 67

77. We test for the first byte we’ve read being in the range which denotes a two byte character. If
so, read the second byte of the character, validating that it is within the ranges permitted for second
bytes, and assemble the 16 bit character from the two bytes.
〈Check for Shift-JIS two byte character and assemble as required 77 〉 ≡

if (((c1 ≥ #81) ∧ (c1 ≤ #9F)) ∨ ((c1 ≥ #E0) ∧ (c1 ≤ #EF)) ∨ ((c1 ≥ #F0) ∧ (c1 ≤ #FC))) {
int c2 = getNextEncodedByte ();
if (c2 ≡ −1) {

ostringstream os ;
os � name () � "_MBCSdecoder: Premature end of line in two byte character.";
reportDecoderDiagnostic(os);
return −1;

}
if (¬(((c2 ≥ #40) ∧ (c2 ≤ #7E)) ∨ ((c2 ≥ #80) ∧ (c2 ≤ #FC)))) {

ostringstream os ;
os � name () � "_MBCSdecoder: Invalid second byte in two byte character: ""0x" �

setiosflags (ios ::uppercase) � hex � c1 � " " � "0x" � c2 � ".";
reportDecoderDiagnostic(os);
return −1;

}
return (c1 � 8) | c2 ;

}
This code is used in section 76.

78. To permit expansion of Macintosh-specific characters to multiple character replacements, we have
the ability to store the balance of a multiple character sequence in the pending string. If there are any
characters there, return them before obtaining another character from the input stream.
〈Check for pending characters and return if so 78 〉 ≡

if (¬pending .empty ()) {
int pc = pending [0];
pending = pending .substr (1);
return pc ;

}
This code is used in section 76.

68 SHIFT-JIS DECODER ANNOYANCE-FILTER §79

79. The four additional characters added by the Macintosh are #80 (backslash), #FD (copyright
symbol), #FE (trademark symbol), and #FF (ellipsis). We check for them and translate them into
plausible ISO 8859 replacements, expanding as necessary into multiple character sequences via the
pending string mechanism.
〈Check for Macintosh-specific single byte characters and translate 79 〉 ≡

switch (c1) {
case #80:

c1 = ’\\’; /∗ Macintosh backslash ∗/
break;

case #FD:
c1 = #A9; /∗ ISO 8859 c© symbol ∗/
break;

case #FE: c1 = ’T’; /∗ Trademark (TM) symbol ∗/
pending = "M";
break;

case #FF: /∗ Ellipsis (“. . .”) ∗/
c1 = ’.’;
pending = "..";
break;

}
This code is used in section 76.

80. Unicode decoders.
The Unicode character set (itself a subset of the 32 bit ISO 10646 character set), uses a variety of

encoding schemes. The Unicode MBCSdecoder is the parent class for all specific Unicode decoders and
provides common services for them.
〈Class definitions 10 〉 +≡

class Unicode MBCSdecoder : public MBCSdecoder {
public:

virtual string name (void)
{

return "Unicode";
}
virtual int getNextDecodedChar (void) = 0; /∗ Get next decoded byte ∗/

};

http://www.unicode.org/

§81 ANNOYANCE-FILTER UCS-2 UNICODE DECODER 69

81. UCS-2 Unicode decoder.
UCS-2 encoding of Unicode is simply a sequence of 16 bit quantities, which may be stored in either

little-endian or big-endian order; usually identified by a Unicode Byte Order Mark at the start of the
file. Here we do not attempt to auto-sense byte order; it must be set by the setBigEndian method before
the decoder is used.
〈Class definitions 10 〉 +≡

class UCS 2 Unicode MBCSdecoder : public Unicode MBCSdecoder {
protected:

bool bigEndian ;
public:

UCS 2 Unicode MBCSdecoder(bool isBigEndian = true)
{

setBigEndian (isBigEndian);
}
void setBigEndian (bool isBigEndian = true)
{

bigEndian = isBigEndian ;
}
virtual string name (void)
{

return "UCS_2_Unicode";
}
virtual int getNextDecodedChar (void); /∗ Get next decoded byte ∗/

};

82. Decode the next logical character. We return −1 when the end of the encoded line is encountered.
〈Class implementations 11 〉 +≡

int UCS 2 Unicode MBCSdecoder ::getNextDecodedChar (void)
{

int c1 = getNextEncodedByte ();
int c2 = getNextEncodedByte ();
if (c2 ≡ −1) {

ostringstream os ;
os � name () � "_MBCSdecoder: Premature end of line in two byte character.";
reportDecoderDiagnostic(os);
return −1;

}
if (bigEndian) {

c1 = (c1 � 8) | c2 ;
}
else {

c1 |= (c2 � 8);
}
return c1 ;

}

70 UTF-8 UNICODE DECODER ANNOYANCE-FILTER §83

83. UTF-8 Unicode decoder.
The UTF-8 encoding of Unicode is an ASCII-transparent encoding into a stream of 8 bit bytes. The

length of encoded character is variable and forward-parseable.
〈Class definitions 10 〉 +≡

class UTF 8 Unicode MBCSdecoder : public Unicode MBCSdecoder {
public:

virtual string name (void)
{

return "UTF_8_Unicode";
}
virtual int getNextDecodedChar (void); /∗ Get next decoded byte ∗/

};

§84 ANNOYANCE-FILTER UTF-8 UNICODE DECODER 71

84. Decode the next logical character. We return −1 when the end of the encoded line is encountered.
〈Class implementations 11 〉 +≡

int UTF 8 Unicode MBCSdecoder ::getNextDecodedChar (void)
{

int c1 = getNextEncodedByte ();
if (c1 < 0) {

return c1 ; /∗ End of input stream ∗/
}
string ::size typenbytes = 0;
unsigned int result ;
if (c1 ≤ #7F) { /∗ Fast track special case for ASCII 7 bit codes ∗/

result = c1 ;
nbytes = 1;

}
else {

unsigned char chn = c1 ;
/∗ N.b. You can dramatically speed up the determination of how many bytes follow the
first byte code by looking it up in a 256 byte table of lengths (with duplicate values as
needed due to value bits in the low order positions. Once the length is determined, you can
use a table look-up to obtain the mask for the first byte rather than developing the mask
with a shift. The code which assembles the rest of the value could also be unrolled into
individual cases to avoid loop overhead. Of course none of this is worth the bother unless
you’re going to be doing this a lot. ∗/

while ((chn & #80) 6= 0) {
nbytes ++;
chn �= 1;

}
if (nbytes > 6) {

ostringstream os ;
os � name () � "_MBCSdecoder: Invalid first byte " � "0x" �

setiosflags (ios ::uppercase) � hex � c1 � " in UTF−8 encoded string";
reportDecoderDiagnostic(os);
return −1;

}
result = c1 & (#FF� (nbytes + 1)); /∗ Extract bits from first byte ∗/
for (string ::size type i = 1; i < nbytes ; i++) {

c1 = getNextEncodedByte ();
if (c1 < 0) {

ostringstream os ;
os � name () � "_MBCSdecoder: Premature end of line in UTF−8 character.";
reportDecoderDiagnostic(os);
return −1;

}
if ((c1 & #C0) 6= #80) {

ostringstream os ;
os � name () � "_MBCSdecoder: Bad byte 1−−n signature in UTF−8 encoded sequ\

ence.";
reportDecoderDiagnostic(os);

}
result = (result � 6) | (c1 & #3F);

72 UTF-8 UNICODE DECODER ANNOYANCE-FILTER §84

}
}
return result ;

}

85. UTF-16 Unicode decoder.
The UTF-16 encoding of Unicode encodes logical characters as sequence of 16 bit codes. Most Unicode

characters are encoded in a single 16 bit quantity, but character codes greater than 65535 are encoded in
a pair of 16 bit values in the surrogate range. Naturally, this encoding can be either big- or little-endian
in byte sequence; we handle either, as set by the setBigEndian method or the constructor.
〈Class definitions 10 〉 +≡

class UTF 16 Unicode MBCSdecoder : public Unicode MBCSdecoder {
protected:

bool bigEndian ;
int getNextUTF 16Word (void)
{

int c1 = getNextEncodedByte ();
if (c1 < 0) {

return c1 ;
}
int c2 = getNextEncodedByte ();
if (c2 < 0) {

ostringstream os ;
os � name () � "_MBCSdecoder: Premature end of line in UTF−16 character.";
reportDecoderDiagnostic(os);
return −1;

}
if (bigEndian) {

c1 = (c1 � 8) | c2 ;
}
else {

c1 |= (c2 � 8);
}
return c1 ;

}
public:

UTF 16 Unicode MBCSdecoder(bool isBigEndian = true)
{

setBigEndian (isBigEndian);
}
void setBigEndian (bool isBigEndian = true)
{

bigEndian = isBigEndian ;
}
virtual string name (void)
{

return "UTF_16_Unicode";
}
virtual int getNextDecodedChar (void); /∗ Get next decoded byte ∗/

};

§86 ANNOYANCE-FILTER UTF-16 UNICODE DECODER 73

86. Decode the next logical character. We return −1 when the end of the encoded line is encountered.
〈Class implementations 11 〉 +≡

int UTF 16 Unicode MBCSdecoder ::getNextDecodedChar (void)
{

string ::size typenwydes = 0;
int w1 , w2 , result ;
w1 = getNextUTF 16Word ();
if (w1 < 0) {

return w1 ;
}
if ((w1 ≤ #D800) ∨ (w1 > #DFFF)) {

result = w1 ;
nwydes = 1;

}
else if ((w1 ≥ #D800) ∧ (w1 ≤ #DBFF)) {

w2 = getNextUTF 16Word ();
if (w2 < 0) {

ostringstream os ;
os � name () � "_MBCSdecoder: Premature end of line in UTF−16 two word char\

acter.";
reportDecoderDiagnostic(os);
return −1;

}
nwydes = 2;
if ((w2 < #DC00) ∨ (w2 > #DFFF)) {

ostringstream os ;
os � name () � "_MBCSdecoder: Invalid second word surrogate " � "0x" �

setiosflags (ios ::uppercase) � hex � w2 � " in UTF−16 encoded string.";
reportDecoderDiagnostic(os);
return −1;

}
result = (((w1 & #3FF) � 10) | (w2 & #3FF)) + #10000;

}
else {

ostringstream os ;
os � name () � "_MBCSdecoder: Invalid first word surrogate " � "0x" �

setiosflags (ios ::uppercase) � hex � w1 � " in UTF−16 encoded string.";
reportDecoderDiagnostic(os);
return −1;

}
return result ;

}

74 INTERPRETERS ANNOYANCE-FILTER §87

87. Interpreters.

88. Interpreter parent class.
This is the abstract parent class of all concrete interpreters. We provide the services common to most

decoders, while permitting them to be overridden by derived classes.
〈Class definitions 10 〉 +≡

class MBCSinterpreter {
protected:

const string ∗src ;
MBCSdecoder ∗dp ;
string prefix , suffix ;

public:
virtual ∼MBCSinterpreter()
{ }
virtual string name (void) = 0; /∗ Name of decoder ∗/
virtual void setDecoder (MBCSdecoder &d)
{

dp = &d;
}
virtual void setSource (const string &s)
{ /∗ Set input source line ∗/

assert(dp 6= Λ);
dp~setSource (s);

}
virtual void setPrefixSuffix (string pre = "", string suf = "")
{

prefix = pre ;
suffix = suf ;

}
virtual string getNextDecodedChar (void);
virtual string decodeLine (const string &s);

};

§89 ANNOYANCE-FILTER INTERPRETER PARENT CLASS 75

89. We provide this default implementation of getNextDecodedChar for derived classes. They’re free
to override it, but this may do the job for most. A logical character is obtained from the decoder.
If its character code is less than or equal to 256, it is taken as a single byte character and returned
directly. Otherwise, a character name is concocted by concatenating the character set name and the
hexadecimal character code, with the prefix and suffix at either end. Character sets in which each
ideograph is logically a word will typically use a prefix and suffix of a single blank, while sets in which
characters behave like letters will use a void prefix and suffix.
〈Class implementations 11 〉 +≡

string MBCSinterpreter ::getNextDecodedChar (void)
{

assert(dp 6= Λ);
int dc = dp~getNextDecodedChar ();
if (dc < 0) {

return ""; /∗ End of input stream ∗/
}
if (dc < 256) {

string r(1, static cast〈char〉(dc));
return r;

}
ostringstream os ;
os .setf (ios ::uppercase);
os � prefix � name () � "−" � hex � dc � dec � suffix ;
return os .str ();

}

90. The default implementation of decodeLine sets the source to the argument string, then assembles
a line by concatenating the results of successive calls to getNextDecodedChar .
〈Class implementations 11 〉 +≡

string MBCSinterpreter ::decodeLine (const string &s)
{

string r = "", t;
setSource (s);
while ((t = getNextDecodedChar ()) 6= "") {

r += t;
}
return r;

}

76 GB2312 INTERPRETER CLASS ANNOYANCE-FILTER §91

91. GB2312 Interpreter class.
This interpreter class parses GB2312 ideographs into tokens which downstream parsers can compre-

hend.
〈Class definitions 10 〉 +≡

class GB2312 MBCSinterpreter : public MBCSinterpreter {
public:

GB2312 MBCSinterpreter()
{

setPrefixSuffix (" ", " ");
}
virtual string name (void)
{

return "GB2312";
}

};

92. Big5 Interpreter class.
This interpreter class parses Big5 ideographs into tokens which downstream parsers can comprehend.

〈Class definitions 10 〉 +≡
class Big5 MBCSinterpreter : public MBCSinterpreter {
public:

Big5 MBCSinterpreter()
{

setPrefixSuffix (" ", " ");
}
virtual string name (void)
{

return "Big5";
}

};

93. Shift-JIS Interpreter class.
This interpreter class parses Shift-JIS ideographs into tokens which downstream parsers can compre-

hend.
〈Class definitions 10 〉 +≡

class Shift JIS MBCSinterpreter : public MBCSinterpreter {
public:

Shift JIS MBCSinterpreter()
{

setPrefixSuffix (" ", " ");
}
virtual string name (void)
{

return "Shift_JIS";
}
string getNextDecodedChar (void);

};

§94 ANNOYANCE-FILTER SHIFT-JIS INTERPRETER CLASS 77

94. Our getNextDecodedChar implementation is a bit more complicated than the default provided by
the parent class. In addition to handling ASCII and two byte character codes, we also wish to interpret
Katakana single byte characters, which are emitted without spaces between them.
〈Class implementations 11 〉 +≡

string Shift JIS MBCSinterpreter ::getNextDecodedChar (void)
{

assert(dp 6= Λ);
int dc = dp~getNextDecodedChar ();
if (dc < 0) {

return ""; /∗ End of input stream ∗/
}
if (dc < #A1) {

string r(1, static cast〈char〉(dc)); /∗ ASCII character ∗/
return r;

}
ostringstream os ;
os .setf (ios ::uppercase);
if ((dc ≥ #A1) ∧ (dc ≤ #DF)) {

os � "SJIS−K" � hex � dc � dec ; /∗ Katakana—don’t space around characters ∗/
}
else {

os � prefix � "SJIS−" � hex � dc � dec � suffix ; /∗ Kanji–space on both sides ∗/
}
return os .str ();

}

95. Korean Interpreter class.
This interpreter class parses Korean characters into tokens which downstream parsers can comprehend.

This type (usually expressed as a charset of euc−kr) is uncommon, but we handle it to illustrate an
interpreter for an alphabetic non-Western language.
〈Class definitions 10 〉 +≡

class KR MBCSinterpreter : public MBCSinterpreter {
public:

virtual string name (void)
{

return "KR";
}

};

78 UNICODE INTERPRETER CLASS ANNOYANCE-FILTER §96

96. Unicode Interpreter class.
This interpreter class parses Unicode characters into a form which can be comprehended by the parser.

〈Class definitions 10 〉 +≡
class Unicode MBCSinterpreter : public MBCSinterpreter {
public:

Unicode MBCSinterpreter()
{

setPrefixSuffix (" ", " ");
}
virtual string name (void)
{

return "Unicode";
}
string getNextDecodedChar (void);

};

97. Our getNextDecodedChar implementation attempts to represent the Unicode characters in a fash-
ion which will best enable the parser to classify them. Characters in the first 256 code positions, which
are identical to ISO-8859 are output as ISO characters. Other codes are represented as “UCS−nnnn”
where nnnn is the Unicode code value in hexadecimal. Codes representing iedographs are output sepa-
rated by spaces while codes for alphanumeric characters are not space-separated.
〈Class implementations 11 〉 +≡

string Unicode MBCSinterpreter ::getNextDecodedChar (void)
{

assert(dp 6= Λ);
int dc = dp~getNextDecodedChar ();
if (dc < 0) {

return ""; /∗ End of input stream ∗/
}
if (dc ≤ #FF) {

string r(1, static cast〈char〉(dc)); /∗ ASCII character ∗/
return r;

}
ostringstream os ;
os .setf (ios ::uppercase);
if (((dc ≥ #3200) ∧ (dc < #D800)) ∨ ((dc ≥ #F900) ∧ (dc < #FAFF))) {

os � prefix � "UCS−" � hex � dc � dec � suffix ; /∗ Ideographic–space on both sides ∗/
}
else {

os � "UCS−" � hex � dc � dec ; /∗ Alphabetic—don’t space around characters ∗/
}
return os .str ();

}

§98 ANNOYANCE-FILTER APPLICATION STRING PARSERS 79

98. Application string parsers.
An application string parser reads files in application-defined formats (for example, word processor

documents, spreadsheets, page description languages, etc.) and returns strings included in the file.
Unlike tokenParser in “byte stream” mode, there is nothing heuristic in the operation of an application
string parser—it must understand the structure of the application data file in order to identify and
extract strings within it.

The applicationStringParser class is the virtual parent of all specific application string parsers. It
provides common services to derived classes and defines the external interface. When initialising an
applicationStringParser , the caller must supply a pointer to the mailFolder from which it will be
invoked, through which the folder’s nextByte method will be called to return decoded binary bytes of
the application file. It would be much cleaner if we could simply supply an arbitrary function which
returned the next byte of the stream we’re decoding, but that runs afoul of C++’s rules for taking the
address of class members. Consequently, we’re forced to make applicationStringParser co-operate with
mailFolder to obtain decoded bytes.
〈Class definitions 10 〉 +≡

class applicationStringParser {
protected:
bool error , eof ; /∗ Error and end of file indicators ∗/
mailFolder ∗mf ;
virtual unsigned char get8 (void);
virtual void get8n (unsigned char ∗buf , const int n)
{ /∗ Store next n bytes into buf ∗/

for (int i = 0; (¬eof) ∧ (i < n); i++) {
buf [i] = get8 ();

}
}
public:
applicationStringParser(mailFolder ∗f = Λ) : error (false) , eof (false),mf (Λ)
{

setMailFolder (f);
}
virtual ∼applicationStringParser()
{ }
virtual string name (void) const = 0;
void setMailFolder (mailFolder ∗f)
{

mf = f ;
}
virtual bool nextString (string &s) = 0;
virtual void close (void){ error = eof = false ; } bool isError (void) const { return error ; }

bool isEOF (void) const

{
return eof ;

}
bool isOK (void) const
{

return (¬isEOF ()) ∧ (¬isError ());
}
} ;

80 APPLICATION STRING PARSERS ANNOYANCE-FILTER §99

99.

〈Class implementations 11 〉 +≡
unsigned char applicationStringParser ::get8 (void)
{ /∗ Get next byte, unsigned ∗/

assert(mf 6= Λ);
int ch = mf~nextByte ();
if (ch ≡ EOF) {

eof = true ;
}
return ch & #FF;

}

§100 ANNOYANCE-FILTER FLASH STREAM DECODER 81

100. Flash stream decoder.
The flashStream is a specialisation of applicationStringParser which contains all of the logic needed

to parse a Macromedia Flash script (.swf) file. This class remains abstract in that it does not implement
the nextString method; that is left for the flashTextExtractor class, of which this class is the parent.

This decoder is based on the swfparse.cpp program written by David Michie, which is available on
the OpenSWF.org site.
〈Class definitions 10 〉 +≡

class flashStream : public applicationStringParser {
protected:
〈Flash file tag values 110 〉;
〈Flash file action codes 111 〉;
〈Flash text field mode definitions 112 〉;
〈Flash file data structures 113 〉; /∗ Header fields ∗/
unsigned char sig [3]; /∗ Signature: “FWS” in ASCII ∗/
unsigned char version ; /∗ Version number ∗/
unsigned int fileLength ; /∗ Length of entire file in bytes ∗/
rect frameSize ; /∗ Frame size in TWIPS ∗/
unsigned short frameRate ; /∗ Frames per second (8.8 bit fixed) ∗/
unsigned short frameCount ; /∗ Total frames in animation ∗/

/∗ Current tag information ∗/
tagType tType ; /∗ Tag type ∗/
unsigned int tDataLen ; /∗ Length of data chunk ∗/ /∗ Bit stream decoder storage ∗/
unsigned int bitBuf , bitPos ;

public:
flashStream(mailFolder ∗f = Λ)
: applicationStringParser(f) { }
void readHeader (void); /∗ Read header into memory ∗/
void describe (ostream &os = cout); /∗ Describe stream ∗/
bool nextTag (void); /∗ Read next tag identifier and length of tag data ∗/

/∗ Retrieve properties of current tag ∗/
tagTypegetTagType (void) const
{

return tType ;
}
unsigned int getTagDataLength (void) const
{

return tDataLen ;
}
void ignoreTag (unsigned int lookedAhead = 0);

/∗ Ignore data for tag we aren’t interested in ∗/
virtual void close (void)
{

applicationStringParser ::close ();
}

protected:
〈Read 16 and 32 bit quantities from Flash file 108 〉; /∗ Skip n bytes of the input stream ∗/
void skip8n (const int n)
{

for (int i = 0; (¬eof) ∧ (i < n); i++) {

http://www.openswf.org/

82 FLASH STREAM DECODER ANNOYANCE-FILTER §100

get8 ();
}

}
void getString (string &s, int n = −1); /∗ Bit field decoding methods ∗/
void initBits (void);
unsigned int getBits (int n);
int getSignedBits (const int n);
void getRect (rect ∗ r); /∗ Read a Rectangle specification ∗/
void getMatrix (matrix ∗mat); /∗ Read a Matrix definition ∗/

};

101. Read the header of the Flash file into memory, validating its signature.
〈Class implementations 11 〉 +≡

void flashStream ::readHeader (void){ sig [0] = get8 ();
sig [1] = get8 ();
sig [2] = get8 (); if (isEOF () ∨ (memcmp(sig , "FWS", 3) 6= 0)) { error = true ;
if (verbose) {

cerr � "Invalid signature in Flash animation file." � endl ;
}
return; } version = get8 ();
fileLength = get32 ();
getRect (&frameSize);
frameRate = get16 ();
frameCount = get16 (); }

102. Write a primate-readable description of the Flash header on the output stream argument os ,
which defaults to cout .
〈Class implementations 11 〉 +≡

void flashStream ::describe (ostream &os)
{

os � "Flash animation version " � static cast〈unsigned int〉(version) � endl ;
os � " File length: " � fileLength � " bytes." � endl ;
os � " Frame size: X: " � frameSize .xMin � " − " � frameSize .xMax � " Y: " �

frameSize .yMin � " − " � frameSize .yMax � endl ;
os � " Frame rate: " � setprecision (5) � (frameRate/256.0) � " fps." � endl ;
os � " Frame count: " � frameCount � endl ;

}

§103 ANNOYANCE-FILTER FLASH STREAM DECODER 83

103. Read the header for the next tag. Each tag begins with a 16 bit field which contains 10 bits
of tag identifier and a 6 bit field specifying the number of argument bytes which follow. For tags with
arguments of 0 to 62 bytes, the 6 bit field is the data length. For longer tags, the 6 bit length field is set
of #3F and a 32 bit quantity giving the tag data length immediately follows. Regardless of the format
of the tag header, we store the tag type in tType and the number of data bytes in tDataLen .
〈Class implementations 11 〉 +≡

bool flashStream ::nextTag (void)
{

unsigned short s = get16 ();
unsigned long l;
if (isOK ()) {

tType = static cast〈tagType 〉(s � 6);
l = s & #3F;
if (l ≡ #3F) {

l = get32 (); /∗ Long tag; read 32 bit length ∗/
}
if (isOK ()) {

tDataLen = l;
return tType 6= stagEnd ;

}
} /∗ In case of error dummy up end tag for sloppy callers ∗/
tType = stagEnd ;
tDataLen = 0;
return false ;

}

104. Having read the tag header, if we decide we aren’t interested in the tag, we can simply skip
past tDataLen argument bytes to advance to the next tag header; ignoreTag performs this. If you’ve
read into the tag data before deciding you wish to skip the tag, call ignoreTag with the lookedAhead
argument specifying how many bytes of the tag data you’ve already read.
〈Class implementations 11 〉 +≡

void flashStream :: ignoreTag (unsigned int lookedAhead)
{

if (isOK ()) {
/∗ assert(lookedAhead ¡= tDataLen); // (This assertion will fail if −−bsdfolder is set) ∗/

for (unsigned int i = lookedAhead ; isOK () ∧ (i < tDataLen); i++) {
get8 ();

}
}

}

84 FLASH STREAM DECODER ANNOYANCE-FILTER §105

105. Flash files are a little schizophrenic when it comes to the definition of strings. Sometimes they’re
stored with a leading count byte followed by the given number of bytes of text, while in other places
they’re stored C style, with a zero terminator byte marking the end of the string. The getString method
handles both kinds. If called with no length argument, it reads a zero terminated string, otherwise it
reads a string of n characters. It’s up to the caller to first read the length and pass it as the n argument,
〈Class implementations 11 〉 +≡

void flashStream ::getString (string &s, int n)
{

s = "";
char ch ;
if (n ≡ −1) {

while ((ch = get8 ()) 6= 0) {
s += ch ;

}
}
else {

while (n > 0) {
ch = get8 ();
s += ch ;
n−−;

}
}

}

106. A rectangle is stored as a 5 bit field which specifies the number of bits in the extent fields which
follow, which are sign extended when extracted.
〈Class implementations 11 〉 +≡

void flashStream ::getRect (rect ∗ r)
{

initBits ();
int nBits = static cast〈int〉(getBits (5));
r~xMin = getSignedBits (nBits);
r~xMax = getSignedBits (nBits);
r~yMin = getSignedBits (nBits);
r~yMax = getSignedBits (nBits);

}

§107 ANNOYANCE-FILTER FLASH STREAM DECODER 85

107. A transformation matrix is stored as separate scale, rotation/skew, and translation terms, each
represented as a signed fixed-point value. The scale and rotation/skew terms are optional and are
omitted if they are identity—an initial bit indicates whether they are present.
〈Class implementations 11 〉 +≡

void flashStream ::getMatrix (matrix ∗mat)
{

initBits (); /∗ Scale terms ∗/
if (getBits (1)) {

int nBits = static cast〈int〉(getBits (5));
mat~a = getSignedBits (nBits);
mat~d = getSignedBits (nBits);

}
else {

mat~a = mat~d = #00010000L; /∗ Identity: omitted ∗/
} /∗ Rotate/skew terms ∗/
if (getBits (1)) {

int nBits = static cast〈int〉(getBits (5));
mat~b = getSignedBits (nBits);
mat~c = getSignedBits (nBits);

}
else {

mat~b = mat~c = 0; /∗ Identity: omitted ∗/
} /∗ Translate terms ∗/
int nBits = static cast〈int〉(getBits (5));
mat~ tx = getSignedBits (nBits);
mat~ ty = getSignedBits (nBits);

}

86 FLASH STREAM DECODER ANNOYANCE-FILTER §108

108. 16 and 32 bit quantities are stored in little-endian byte order. These methods, declared within
the class so they’re inlined in the interest of efficiency, use the get8 primitive byte input method to
assemble the wider quantities. The get16n and get32n methods read a series of n consecutive values of
the corresponding type into an array.
〈Read 16 and 32 bit quantities from Flash file 108 〉 ≡

unsigned short get16 (void)
{

unsigned short u16 ;
u16 = get8 ();
u16 |= get8 () � 8;
return u16 ;

}
unsigned int get32 (void)
{

unsigned int u32 ;
u32 = get8 ();
u32 |= get8 () � 8;
u32 |= get8 () � 16;
u32 |= get8 () � 24;
return u32 ;

}
void get16n (unsigned short ∗buf , const int n)
{

for (int i = 0; (¬eof) ∧ (i < n); i++) {
buf [i] = get16 ();

}
}
void get32n (unsigned int ∗buf , const int n)
{

for (int i = 0; (¬eof) ∧ (i < n); i++) {
buf [i] = get32 ();

}
}

This code is used in section 100.

§109 ANNOYANCE-FILTER FLASH STREAM DECODER 87

109. Flash files include quantities packed into bit fields, the width of some of which are specified
by other fields in the file. The following methods decode these packed fields. Call initBits to initialise
decoding of a bit field which begins in the next (as yet unread) byte. Then call getBits or getSignedBits
to return an n bit field without or with sign extension respectively.
〈Class implementations 11 〉 +≡

void flashStream :: initBits (void)
{ /∗ Reset the bit position and buffer. ∗/

bitPos = 0;
bitBuf = 0;

} /∗ Get n bits from the stream. ∗/
unsigned int flashStream ::getBits (int n)
{

unsigned int v = 0;
while (true) {

int s = n− bitPos ;
if (s > 0) { /∗ Consume the entire buffer ∗/

v |= bitBuf � s;
n −= bitPos ; /∗ Get the next buffer ∗/
bitBuf = get8 ();
bitPos = 8;

}
else { /∗ Consume a portion of the buffer ∗/

v |= bitBuf � −s;
bitPos −= n;
bitBuf &= #FF� (8− bitPos); /∗ mask off the consumed bits ∗/
return v;

}
}

} /∗ Get n bits from the string with sign extension. ∗/
int flashStream ::getSignedBits (const int n)
{

signed int v = static cast〈int〉(getBits (n)); /∗ Is the number negative? ∗/
if (v & (1 � (n− 1))) { /∗ Yes. Extend the sign. ∗/

v |= −1 � n;
}
return v;

}

88 FLASH STREAM DECODER ANNOYANCE-FILTER §110

110. After the header, a Flash file consists of a sequence of tags, each of which begins with a 10 bit
tag type and a field specifying the number of bytes of tag data which follow. Since each tag specifies its
length, unknown tags may be skipped.
〈Flash file tag values 110 〉 ≡ /∗ Tag values that represent actions or data in a Flash script. ∗/

typedef enum { stagEnd = 0, /∗ End of Flash file—this is always the last tag ∗/
stagShowFrame = 1,
stagDefineShape = 2,
stagFreeCharacter = 3,
stagPlaceObject = 4,
stagRemoveObject = 5,
stagDefineBits = 6,
stagDefineButton = 7,
stagJPEGTables = 8,
stagSetBackgroundColor = 9,
stagDefineFont = 10,
stagDefineText = 11,
stagDoAction = 12,
stagDefineFontInfo = 13,
stagDefineSound = 14, /∗ Event sound tags. ∗/
stagStartSound = 15,
stagDefineButtonSound = 17,
stagSoundStreamHead = 18,
stagSoundStreamBlock = 19,
stagDefineBitsLossless = 20, /∗ A bitmap using lossless zlib compression. ∗/
stagDefineBitsJPEG2 = 21, /∗ A bitmap using an internal JPEG compression table. ∗/
stagDefineShape2 = 22,
stagDefineButtonCxform = 23,
stagProtect = 24, /∗ This file should not be importable for editing. ∗/

/∗ These are the new tags for Flash 3. ∗/
stagPlaceObject2 = 26, /∗ The new style place w/ alpha color transform and name. ∗/
stagRemoveObject2 = 28,

/∗ A more compact remove object that omits the character tag (just depth). ∗/
stagDefineShape3 = 32, /∗ A shape V3 includes alpha values. ∗/
stagDefineText2 = 33, /∗ A text V2 includes alpha values. ∗/
stagDefineButton2 = 34, /∗ A button V2 includes color transform, alpha and multiple actions ∗/
stagDefineBitsJPEG3 = 35, /∗ A JPEG bitmap with alpha info. ∗/
stagDefineBitsLossless2 = 36, /∗ A lossless bitmap with alpha info. ∗/
stagDefineEditText = 37, /∗ An editable Text Field ∗/
stagDefineSprite = 39, /∗ Define a sequence of tags that describe the behavior of a sprite. ∗/
stagNameCharacter = 40, /∗ Name a character definition, character id and a string, (used for

buttons, bitmaps, sprites and sounds). ∗/
stagFrameLabel = 43, /∗ A string label for the current frame. ∗/
stagSoundStreamHead2 = 45, /∗ For lossless streaming sound, should not have needed this... ∗/
stagDefineMorphShape = 46, /∗ A morph shape definition ∗/
stagDefineFont2 = 48 ,
} tagType ;

This code is used in section 100.

§111 ANNOYANCE-FILTER FLASH STREAM DECODER 89

111. Executable actions are encoded in a Flash script as a stagDoAction tag, which contains a
sequence of action codes, terminated by a zero (sactionNone) action. Action codes in the range #00–
#7F are single byte codes with no arguments. Action codes from #80 to #FF are followed by a 16 bit
field specifying the number of argument bytes which follow. Unknown actions, like tags, may hence be
skipped.
〈Flash file action codes 111 〉 ≡

typedef enum {
sactionNone = #00,
sactionNextFrame = #04,
sactionPrevFrame = #05,
sactionPlay = #06,
sactionStop = #07,
sactionToggleQuality = #08,
sactionStopSounds = #09,
sactionAdd = #0A,
sactionSubtract = #0B,
sactionMultiply = #0C,
sactionDivide = #0D,
sactionEqual = #0E,
sactionLessThan = #0F,
sactionLogicalAnd = #10,
sactionLogicalOr = #11,
sactionLogicalNot = #12,
sactionStringEqual = #13,
sactionStringLength = #14,
sactionSubString = #15,
sactionInt = #18,
sactionEval = #1C,
sactionSetVariable = #1D,
sactionSetTargetExpression = #20,
sactionStringConcat = #21,
sactionGetProperty = #22,
sactionSetProperty = #23,
sactionDuplicateClip = #24,
sactionRemoveClip = #25,
sactionTrace = #26,
sactionStartDragMovie = #27,
sactionStopDragMovie = #28,
sactionStringLessThan = #29,
sactionRandom = #30,
sactionMBLength = #31,
sactionOrd = #32,
sactionChr = #33,
sactionGetTimer = #34,
sactionMBSubString = #35,
sactionMBOrd = #36,
sactionMBChr = #37,
sactionHasLength = #80,
sactionGotoFrame = #81, /∗ frame num (WORD) ∗/
sactionGetURL = #83, /∗ url (STR), window (STR) ∗/
sactionWaitForFrame = #8A, /∗ frame needed (WORD), ∗/

/∗ actions to skip (BYTE) ∗/

90 FLASH STREAM DECODER ANNOYANCE-FILTER §111

sactionSetTarget = #8B, /∗ name (STR) ∗/
sactionGotoLabel = #8C, /∗ name (STR) ∗/
sactionWaitForFrameExpression = #8D, /∗ frame needed on stack, ∗/

/∗ actions to skip (BYTE) ∗/
sactionPushData = #96,
sactionBranchAlways = #99,
sactionGetURL2 = #9A,
sactionBranchIfTrue = #9D,
sactionCallFrame = #9E,
sactionGotoExpression = #9F

} actionCode;
This code is used in section 100.

112. Here we define the various mode bits which occur in font and text related tags. Many of these
bits are irrelevant to our mission of string parsing, but we define them all anyway.
〈Flash text field mode definitions 112 〉 ≡

typedef enum { /∗ Flag bits for DefineFontInfo ∗/
fontUnicode = #20,
fontShiftJIS = #10,
fontANSI = #08,
fontItalic = #04,
fontBold = #02,
fontWideCodes = #01

} fontFlags;
typedef enum { /∗ Flag bits for text record type 1 ∗/

isTextControl = #80,
textHasFont = #08,
textHasColor = #04,
textHasYOffset = #02,
textHasXOffset = #01

} textFlags;
typedef enum { /∗ Flag bits for DefineEditText ∗/

seditTextFlagsHasFont = #0001,
seditTextFlagsHasMaxLength = #0002,
seditTextFlagsHasTextColor = #0004,
seditTextFlagsReadOnly = #0008,
seditTextFlagsPassword = #0010,
seditTextFlagsMultiline = #0020,
seditTextFlagsWordWrap = #0040,
seditTextFlagsHasText = #0080,
seditTextFlagsUseOutlines = #0100,
seditTextFlagsBorder = #0800,
seditTextFlagsNoSelect = #1000,
seditTextFlagsHasLayout = #2000

} editTextFlags;
This code is used in section 100.

§113 ANNOYANCE-FILTER FLASH STREAM DECODER 91

113. The following data structures are used to represent rectangles and transformation matrices. We
don’t do anything with these quantities, but we need to understand their structure in order to skip over
them while looking for fields we are interested in.
〈Flash file data structures 113 〉 ≡

typedef struct {
int xMin , xMax , yMin , yMax ;

} rect;
typedef struct {

int a;
int b;
int c;
int d;
int tx ;
int ty ;

} matrix;
This code is used in section 100.

92 FLASH TEXT EXTRACTOR ANNOYANCE-FILTER §114

114. Flash text extractor.
The flashTextExtractor extends flashStream to parse tags containing text fields and return them

with the nextString method. We define this as a separate class in order to encapsulate all of the string
parsing machinery in one place, while leaving flashStream a general-purpose .swf file parser adaptable
to other purposes.
〈Class definitions 10 〉 +≡

class flashTextExtractor : public flashStream {
protected: map〈unsigned short,vector〈unsigned short〉 ∗〉 fontMap ;

map〈unsigned short,unsigned short〉 fontGlyphCount ;
map〈unsigned short, fontFlags〉 fontInfoBits ;
queue〈string〉 strings ;
bool initialised ; /∗ Options ∗/
bool textOnly ; /∗ Return only text (not font names, URLs, etc.) ∗/

public: flashTextExtractor(mailFolder ∗f = Λ)
: flashStream(f), initialised (false), textOnly (false) { }
∼flashTextExtractor()
{

close ();
}
virtual string name (void) const
{

return "Flash";
}
void setTextOnly (const bool tf)
{

textOnly = tf ;
}
bool getTextOnly (void) const
{

return textOnly ;
}
bool nextString (string &s); /∗ Return next string from Flash file ∗/
virtual void close (void)
{

while (¬fontMap .empty ()) {
delete fontMap .begin ()~second ;
fontMap .erase (fontMap .begin ());

}
fontGlyphCount .clear ();
fontInfoBits .clear ();
while (¬strings .empty ()) {

strings .pop();
}
initialised = textOnly = false ;
flashStream ::close ();

}
};

§115 ANNOYANCE-FILTER FLASH TEXT EXTRACTOR 93

115. Return the next string (which may contain any number of tokens) from the Flash file. If the
strings queue contains already-parsed strings, return and delete the the item at the head of the queue.
Otherwise, we parse our way through the Flash file, adding any strings which appear in tags to the
strings queue. If, after parsing a tag, we find strings non-empty, we return the first item in the queue.
The method returns true if a string was stored and false when the end of the Flash file is encountered.

The first time this method is called, we read the Flash file header and validate it. If an error occurs
in the process, we treat the event as a logical end of file.
〈Class implementations 11 〉 +≡

bool flashTextExtractor ::nextString (string &s)
{

if (¬initialised) {
initialised = true ;
readHeader ();
if (¬isOK ()) {

if (verbose) {
cerr � "Invalid header in Flash application file." � endl ;
close ();
while (¬isEOF ()) {

get8 (); /∗ Discard contents after error ∗/
}
return false ;

}
}

}
while (true) {
haveStrings :
〈Check for strings in the queue and return first if queue not empty 116 〉;
while ((¬isEOF ()) ∧ (¬isError ()) ∧ nextTag ()) {

unsigned int variant = 0; /∗ Twiddley-puke variant type for tags ∗/
switch (tType) {
case stagDefineFont :
〈Parse Flash DefineFont tag 117 〉;
break;

case stagDefineFont2 :
〈Parse Flash DefineFont2 tag 118 〉;
break;

case stagDefineFontInfo :
〈Parse Flash DefineFontInfo tag 119 〉;
break;

case stagDefineText2 : /∗ Like stagDefineText , but colour is RGBA ∗/
variant = 2; /∗ Note fall-through ∗/

case stagDefineText :
〈Parse Flash DefineText tags 120 〉;
break;

case stagDefineEditText :
〈Parse Flash DefineEditText tag 122 〉;
break;

case stagFrameLabel :
〈Parse Flash FrameLabel tag 123 〉;
break;

case stagDoAction :
〈Parse Flash DoAction tag 124 〉;

94 FLASH TEXT EXTRACTOR ANNOYANCE-FILTER §115

break;
default:

#ifdef FLASH_PARSE_DEBUG

cout � "nextString ignoring tag type " � getTagType () � " data length: " �
getTagDataLength () � endl ;

#endif
ignoreTag ();
break;

}
if (¬strings .empty ()) {

goto haveStrings ;
}

}
if (strings .empty ()) {

break;
}

}
while (isOK ()) {

get8 ();
}
return false ;

}

116. Since a single tag may contain any number of strings, we place strings extracted from a tag in
the strings queue. Then, after we’re done digesting the tag, if the queue is non-empty, we return the
first string from it. Subsequent calls return strings from the queue until it’s empty, at which time we
resume scouring the Flash file for more strings.
〈Check for strings in the queue and return first if queue not empty 116 〉 ≡

if (¬strings .empty ()) {
s = strings .front ();
strings .pop();
return true ;

}
This code is used in section 115.

§117 ANNOYANCE-FILTER FLASH TEXT EXTRACTOR 95

117. The DefineFont tag actually contains only one thing of interest to us: the number of glyphs in
the font. We save the glyph count in the fontFlyphCount map, tagged by the font ID.
〈Parse Flash DefineFont tag 117 〉 ≡
{

#ifdef FLASH_PARSE_DEBUG

cout � "DefineFont" � endl ;
#endif

unsigned short fontID = get16 ();
unsigned int offsetTable = get16 ();

#ifdef FLASH_PARSE_DEBUG

cout � " Font ID: " � fontID � endl ;
cout � " Glyph count: " � (offsetTable/2) � endl ;

#endif
fontGlyphCount .insert (make pair (fontID , offsetTable/2));
ignoreTag (2 ∗ 2);

}
This code is used in section 115.

118. The DefineFont2 tag adds a font name to the fields in the original DefineFont tag. We consider
this font name as an eligible string if the textOnly constraint isn’t true .
〈Parse Flash DefineFont2 tag 118 〉 ≡
{

#ifdef FLASH_PARSE_DEBUG

cout � "DefineFont2" � endl ;
#endif

unsigned short fontID = get16 ();
get16 (); /∗ Flag bits ∗/ /∗ Parse the font name ∗/
unsigned int fontNameLen = get8 ();
string fontName ;
getString (fontName , fontNameLen);
if (¬textOnly) {

strings .push (fontName);
} /∗ Get the number of glyphs. ∗/
unsigned int nGlyphs = get16 ();
fontGlyphCount .insert (make pair (fontID ,nGlyphs));
ignoreTag (2 + 2 + 1 + fontNameLen + 2);

}
This code is used in section 115.

96 FLASH TEXT EXTRACTOR ANNOYANCE-FILTER §119

119. The DefineFontInfo tag is crucial to decoding Flash text strings. Text in Flash files is stored a
glyph indices within a font. The font can, in the general case, be defined by an arbitrary stroked path
outline, independent of any standard character set. For fonts which employ standard character sets, the
optional DefineFontInfo identifies the character set and provides the mapping from the glyph indices to
characters in the font’s character set. We save these in maps indexed by the font ID so we can look
them up when we encounter text in that font.
〈Parse Flash DefineFontInfo tag 119 〉 ≡
{

#ifdef FLASH_PARSE_DEBUG

cout � "DefineFontInfo" � endl ;
#endif

unsigned short fontID = get16 ();
unsigned int fontNameLen = get8 ();
string fontName ;
getString (fontName , fontNameLen);
if (¬textOnly) {

strings .push (fontName);
}
fontFlags fFlags = static cast〈fontFlags〉(get8 ());
map〈unsigned short,unsigned short〉 :: iterator fp = fontGlyphCount .find (fontID);
if (fp ≡ fontGlyphCount .end ()) {

if (verbose) {
cerr � "DefineFontInfo for font ID " � fontID �

" without previous DefineFont." � endl ;
}
ignoreTag (4);

}
else {

unsigned nGlyphs = fp~second ;
vector〈unsigned short〉 ∗v = new vector〈unsigned short〉(nGlyphs);
fontMap .insert (make pair (fontID , v));
fontInfoBits .insert (make pair (fontID , fFlags));
for (unsigned int g = 0; g < nGlyphs ; g++) {

if (fFlags & fontWideCodes) {
(∗v)[g] = get16 ();

}
else {

(∗v)[g] = get8 ();
}

}
}

}
This code is used in section 115.

§120 ANNOYANCE-FILTER FLASH TEXT EXTRACTOR 97

120. Most of the text we’re really interested in will be found in the DefineText tag and its younger
sibling DefineText2. After spitting out the various wobbly green parts, we digest the list of glyphs
composing the text, going back to the font definition to claw them back into civilised language which
we can filter.
〈Parse Flash DefineText tags 120 〉 ≡
{

#ifdef FLASH_PARSE_DEBUG

unsigned short textID = get16 ();
cout � "DefineText. ID = " � textID � endl ;

#else
get16 (); /∗ Ignore textID ∗/

#endif

rect tr ;
getRect (&tr);
matrix tm ;
getMatrix (&tm);
unsigned short textGlyphBits = get8 ();
unsigned short textAdvanceBits = get8 ();
int fontId = −1;
map〈unsigned short,vector〈unsigned short〉 ∗〉 :: iterator fontp = fontMap .end ();
map〈unsigned short,unsigned short〉 :: iterator fgcp = fontGlyphCount .end ();
unsigned int fGlyphs = 0;
fontFlags fFlags = static cast〈fontFlags〉(0);
vector〈unsigned short〉 ∗fontChars = Λ; /∗ Now it’s a matter of parsing the text records ∗/
while (true) {

unsigned int textRecordType = get8 ();
if (textRecordType ≡ 0) {

break; /∗ 0 indicates end of text records ∗/
}
if (textRecordType & isTextControl) {

#ifdef FLASH_PARSE_DEBUG

cout � "Text control record." � endl ;
#endif

if (textRecordType & textHasFont) {
fontId = get16 ();

#ifdef FLASH_PARSE_DEBUG

cout � " fontId: " � fontId � endl ;
#endif

fgcp = fontGlyphCount .find (fontId);
if (fgcp ≡ fontGlyphCount .end ()) {

fontp = fontMap .end ();
if (verbose) {

cerr � "Flash DefineText item references undefined font ID " � fontId �
endl ;

}
}
else {

fGlyphs = fgcp~second ;
fontChars = fontMap .find (fontId)~second ;

98 FLASH TEXT EXTRACTOR ANNOYANCE-FILTER §120

fFlags = fontInfoBits .find (fontId)~second ;
}

}
if (textRecordType & textHasColor) {

#ifdef FLASH_PARSE_DEBUG

int r = get8 ();
int g = get8 ();
int b = get8 ();
if (variant ≡ 2) {

int a = get8 (); /∗ Alpha (transparency) channel ∗/
cout � " tfontColour: (" � r � "," � g � "," � b � "," � a � ")" � endl ;

}
else {

cout � " tfontColour: (" � r � "," � g � "," � b � ")" � endl ;
}

#else
skip8n (3); /∗ Skip R, G, B bytes ∗/

#endif
}
if (textRecordType & textHasXOffset) {

#ifdef FLASH_PARSE_DEBUG

int iXOffset = get16 ();
cout � " X offset " � iXOffset � endl ;

#else
get16 (); /∗ Skip text X offset ∗/

#endif
}
if (textRecordType & textHasYOffset) {

#ifdef FLASH_PARSE_DEBUG

int iYOffset = get16 ();
cout � " Y offset " � iYOffset � endl ;

#else
get16 (); /∗ Skip text Y offset ∗/

#endif
}
if (textRecordType & textHasFont) {

#ifdef FLASH_PARSE_DEBUG

int iFontHeight = get16 ();
cout � " Font Height: " � iFontHeight � endl ;

#else
get16 (); /∗ Skip text font height ∗/

#endif
}

}
else { /∗ Type 0: Glyph record ∗/

#ifdef FLASH_PARSE_DEBUG

cout � "Text glyph record." � endl ;
#endif

unsigned int nGlyphs = textRecordType & #7F;
initBits ();

§120 ANNOYANCE-FILTER FLASH TEXT EXTRACTOR 99

string s = "";
for (unsigned int i = 0; i < nGlyphs ; i++) {

unsigned int iIndex = getBits (textGlyphBits);
#ifdef FLASH_PARSE_DEBUG

unsigned int iAdvance = getBits (textAdvanceBits);
cout � "[" � iIndex � "," � iAdvance � "] " � flush ;

#else
getBits (textAdvanceBits); /∗ Ignore text advance distance ∗/

#endif
if (fontId < 0) {

if (verbose) {
cerr � "Flash DefineText does not specify font." � endl ;

}
}
else if (fgcp 6= fontGlyphCount .end ()) {

if (iIndex ≥ fGlyphs) {
if (verbose) {

cerr � "Flash DefineText glyph index " � iIndex �
" exceeds font size of " � fGlyphs � "." � endl ;

}
}
else {

if (fFlags & fontWideCodes) {
unsigned int wc = (∗fontChars)[iIndex];
s += static cast〈char〉((wc � 8) & #FF);
s += static cast〈char〉(wc & #FF);

}
else {

s += static cast〈char〉((∗fontChars)[iIndex]);
}

}
}

}
#ifdef FLASH_PARSE_DEBUG

cout � endl ;
cout � "Decoded: (" � s � ")" � endl ;

#endif
〈Decode non-ANSI Flash text 121 〉;
strings .push (s);

}
}

}
This code is used in section 115.

100 FLASH TEXT EXTRACTOR ANNOYANCE-FILTER §121

121. Text strings in a Flash file can be encoded in Shift-JIS and Unicode in addition to ANSI
characters. If the font if flagged as using one of those encodings, decode it into an ANSI representation.
〈Decode non-ANSI Flash text 121 〉 ≡

if (fFlags & fontUnicode) {
UCS 2 Unicode MBCSdecoder mbd ucs ; /∗ Unicode decoder ∗/
Unicode MBCSinterpreter mbi ucs ; /∗ Unicode interpreter ∗/
mbi ucs .setDecoder (mbd ucs);
s = mbi ucs .decodeLine (s);

}
else if (fFlags & fontShiftJIS) {

Shift JIS MBCSdecoder mbd sjis ; /∗ Shift-JIS decoder ∗/
Shift JIS MBCSinterpreter mbi sjis ; /∗ Shift-JIS interpreter ∗/
mbi sjis .setDecoder (mbd sjis);
s = mbi sjis .decodeLine (s);

}
This code is used in section 120.

§122 ANNOYANCE-FILTER FLASH TEXT EXTRACTOR 101

122. Of course, there isn’t just text, there’s editable text, where morons can type in their credit card
numbers after receiving “so cool a Flash”. We deem any initial text in the edit field a string, as well as
the variable name, unless textOnly is true .
〈Parse Flash DefineEditText tag 122 〉 ≡
{

#ifdef FLASH_PARSE_DEBUG

cout � "Edit text record." � endl ;
#endif

get16 ();
rect rBounds ;
getRect (&rBounds);
unsigned int flags = get16 ();

#ifdef FLASH_PARSE_DEBUG

cout � "DefineEditText. Flags = 0x" � hex � flags � dec � endl ;
#endif

if (flags & seditTextFlagsHasFont) {
#ifdef FLASH_PARSE_DEBUG

unsigned short uFontId = get16 ();
unsigned short uFontHeight = get16 ();
cout � "FontId: " � uFontId � " FontHeight: " � uFontHeight � endl ;

#else
get16 ();
get16 ();

#endif
}
if (flags & seditTextFlagsHasTextColor) {

skip8n (4); /∗ Skip colour (including alpha transparency) ∗/
}
if (flags & seditTextFlagsHasMaxLength) {

#ifdef FLASH_PARSE_DEBUG

int iMaxLength = get16 ();
printf ("length:%d ", iMaxLength);

#else
get16 ();

#endif
}
if (flags & seditTextFlagsHasLayout) {

skip8n (1 + (2 ∗ 4));
}
string varname ;
getString (varname);
if (¬textOnly) {

strings .push (varname); /∗ Emit variable name as a string ∗/
}
if (flags & seditTextFlagsHasText) {

string s;
char c;
while ((c = get8 ()) 6= 0) {

s += c;
}

102 FLASH TEXT EXTRACTOR ANNOYANCE-FILTER §122

strings .push (s);
}

}
This code is used in section 115.

123. Frames in Flash files can have labels, which can be used to jump to them. If textOnly is not
set, we parse these labels and return them as strings, since they will frequently identify Flash files which
appear in junk mail.
〈Parse Flash FrameLabel tag 123 〉 ≡
{

string s;
getString (s);
if (¬textOnly) {

strings .push (s);
}

}
This code is used in section 115.

§124 ANNOYANCE-FILTER FLASH TEXT EXTRACTOR 103

124. Some of the DoAction tags contain string we might be interested in perusing. Walk through
the action items in a DoAction tag and push any relevant strings onto the strings queue.
〈Parse Flash DoAction tag 124 〉 ≡
{

#ifdef FLASH_PARSE_DEBUG

cout � "Do action:" � endl ;
#endif

actionCode ac ;
while (isOK () ∧ (ac = static cast〈actionCode〉(get8 ())) 6= sactionNone) {

unsigned int dlen = 0;
if ((ac & #80) 6= 0) {

dlen = get16 ();
}
switch (ac) {
case sactionGetURL:
{

string url , target ;
getString (url);
getString (target);
if (¬textOnly) {

strings .push (url);
}
strings .push (target);

}
break;

default:
if (dlen > 0) {

skip8n (dlen);
}

#ifdef FLASH_PARSE_DEBUG

cout � " Skipping action code 0x" � hex � ac � dec � " data length " � dlen �
endl ;

#endif
break;

}
}

}
This code is used in section 115.

104 PDF TEXT EXTRACTOR ANNOYANCE-FILTER §125

125. PDF text extractor.
The pdfTextExtractor decodes Portable Document File .pdf files by opening a pipe to the pdftotext

program. Since this program cannot read a PDF document from standard input, we transcribe the PDF
stream to a temporary file which is passed to pdftotext on the command line; the extracted text is
directed to standard output whence it can be read through the pipe. The temporary file is deleted after
the PDF decoding is complete. Natually, this facility is available only if the system provides pdftotext
and the machinery needed to connect to it.
〈Class definitions 10 〉 +≡
#ifdef HAVE_PDF_DECODER

class pdfTextExtractor : public applicationStringParser {
protected: bool initialised ;

#ifdef HAVE_FDSTREAM_COMPATIBILITY

fdistream is ;
#else

ifstream is ;
#endif

FILE ∗ip ;
#ifdef HAVE_MKSTEMP

char tempfn [256];
#else

char tempfn [L tmpnam + 2];
#endif

public: pdfTextExtractor(mailFolder ∗f = Λ)
: applicationStringParser(f), initialised (false), ip(Λ) { }
∼pdfTextExtractor()
{

close ();
}
virtual string name (void) const
{

return "PDF";
}
bool nextString (string &s);
virtual void close (void)
{

if (ip 6= Λ) {
#ifndef HAVE_FDSTREAM_COMPATIBILITY

is .close ();
#endif

pclose (ip);
remove (tempfn);
ip = Λ;

}
applicationStringParser ::close ();
initialised = false ;

}
};

#endif

http://www.foolabs.com/xpdf/

§126 ANNOYANCE-FILTER PDF TEXT EXTRACTOR 105

126. Since pdftotext cannot read a PDF file from standard input, we’re forced to transcribe the
content to a temporary file. We do this the first time nextString is called, setting the initialised flag
once the deed is done. Subsequent calls simply return the decoded text from the pipe, closing things
down when end of file is encountered.
〈Class implementations 11 〉 +≡
#ifdef HAVE_PDF_DECODER

bool pdfTextExtractor ::nextString (string &s)
{

if (¬initialised) {
initialised = true ;
〈Transcribe PDF document to temporary file 127 〉;
〈Create pipe to pdftotext decoder 128 〉;

}
if (ip ≡ Λ) {

return false ; /∗ Could not open pipe; fake EOF ∗/
}
if (getline (is , s) 6= Λ) {

return true ;
}
close ();
return false ;

}
#endif

127. Read the PDF document text and export to a temporary file whence pdftotext can read it.
We generate a unique name for the temporary file with mkstemp or, if the system doesn’t provide that
function, the POSIX tmpnam alternative.
〈Transcribe PDF document to temporary file 127 〉 ≡
#ifdef HAVE_MKSTEMP

strcpy (tempfn , "PDF_decode_XXXXXX");
mkstemp(tempfn);

#else
tmpnam (tempfn);

#endif

ofstream pdfstr (tempfn , ios ::out | ios ::binary); if (¬pdfstr) {
cerr � "Cannot create PDF temporary file " � tempfn � endl ; error =
eof = true ;

return false ; }
while (isOK ()) {

pdfstr � get8 ();
}
pdfstr .close ();

This code is used in section 126.

106 PDF TEXT EXTRACTOR ANNOYANCE-FILTER §128

128. Since pdftotext does all the heavy lifting here, we need only invoke it with popen , which is
bound to the C++ input stream we use to read the decoded text.
〈Create pipe to pdftotext decoder 128 〉 ≡

string pdfcmd = "pdftotext ";
pdfcmd += tempfn ;
pdfcmd += " −";
ip = popen (pdfcmd .c str (), "r"); if (ip ≡ Λ) { cerr � "Cannot open pipe to pdftotext." � endl ;

error = eof = true ;
return false ; } is .attach (fileno(ip));
is .clear ();

This code is used in section 126.

§129 ANNOYANCE-FILTER MAIL FOLDER 107

129. Mail folder.
The mailFolder class returns successive lines from a mail folder bound to an input stream.

〈Class definitions 10 〉 +≡
〈Configure compression suffix and command 132 〉

class mailFolder {
public:

istream ∗is ; /∗ Stream to read mail folder from ∗/
dictionaryWord ::mailCategory category ; /∗ Category (Mail or Junk) ∗/
unsigned int nLines ; /∗ Number of lines in folder ∗/
unsigned int nMessages ; /∗ Number of messages read so far ∗/
bool newMessage ; /∗ On first line of new message ? ∗/
bool expectingNewMessage ; /∗ Expecting start of new message ? ∗/
bool lastLineBlank ; /∗ Was last line in mail folder blank ? ∗/
bool BSDfolder ; /∗ Mail folder uses “pure BSD” message boundary semantics ∗/
bool inHeader ; /∗ Within message header section ∗/
string lookAheadLine ; /∗ Line to save look ahead while parsing headers ∗/
bool lookedAhead ; /∗ Have we a look ahead line ? ∗/
ifstream isc ; /∗ Input stream for (possibly compressed) input file ∗/

#if defined (COMPRESSED_FILES) ∧ defined (HAVE_FDSTREAM_COMPATIBILITY)
fdistream iscc ; /∗ Pipe input stream to read compressed input file ∗/

#endif
string fromLine ; /∗ “From ” line for diagnostics ∗/
string messageID ; /∗ Message ID for diagnostics ∗/
string lastFromLine ; /∗ Last “From ” line shown in diagnostics ∗/
string lastMessageID ; /∗ Last message ID shown in disgnostics ∗/

/∗ Compressed file decoding ∗/
#if defined (COMPRESSED_FILES) ∨ defined (HAVE_DIRECTORY_TRAVERSAL)

FILE ∗ip ; /∗ File handle used for popen pile to decompressor ∗/
#endif
#ifdef HAVE_DIRECTORY_TRAVERSAL /∗ Directory traversal ∗/

bool dirFolder ; /∗ Are we reading a directory folder ? ∗/
DIR ∗ dh ; /∗ Handle for readdir ∗/
string dirName , cfName ; /∗ Directory name and current file name in directory ∗/
string pathSeparator ; /∗ System path separator ∗/

#ifdef HAVE_FDSTREAM_COMPATIBILITY

fdistream ifcdir ; /∗ Stream to read compressed file in directory ∗/
#endif

ifstream ifdir ; /∗ Stream to read file in directory ∗/
istringstream nullstream ; /∗ Null stream for empty directory case ∗/

#endif /∗ Body encoding properties ∗/
string bodyContentType ; /∗ Content−Type ∗/
string bodyContentTypeCharset ; /∗ charset= ∗/
string bodyContentTypeName ; /∗ name= ∗/
string bodyContentTransferEncoding ; /∗ Content−Transfer−Encoding ∗/

/∗ MIME multi-part separators and status ∗/
string partBoundary ; /∗ Mime part boundary sentinel ∗/
bool multiPart ; /∗ Is message MIME multi-part ? ∗/
bool inPartHeader ; /∗ In MIME part header ? ∗/
unsigned int partHeaderLines ; /∗ Number of lines in part header ∗/

108 MAIL FOLDER ANNOYANCE-FILTER §129

stack〈string〉 partBoundaryStack ;
/∗ stack of part boundaries for multipart/alternative nesting ∗/
/∗ MIME properties of current part ∗/

string mimeContentType ; /∗ Content−Type ∗/
string mimeContentTypeCharset ; /∗ charset= ∗/
string mimeContentTypeName ; /∗ name= ∗/
string mimeContentTypeBoundary ; /∗ boundary= ∗/
string mimeContentTransferEncoding ; /∗ Content−Transfer−Encoding ∗/
string mimeContentDispositionFilename ; /∗ Content−Disposition filename= ∗/

/∗ MIME decoders ∗/
MIMEdecoder ∗mdp ; /∗ Active MIME decoder if any ∗/
identityMIMEdecoder imd ; /∗ Identity MIME decoder for testing ∗/
base64MIMEdecoder bmd ; /∗ Base64 MIME decoder for testing ∗/
sinkMIMEdecoder smd ; /∗ Sink MIME decoder ∗/
quotedPrintableMIMEdecoder qmd ; /∗ Quoted-Printable MIME decoder ∗/

/∗ Multi-byte character set decoding ∗/
MBCSinterpreter ∗mbi ; /∗ Active multi-byte character set interpreter or Λ ∗/
EUC MBCSdecoder mbd euc ; /∗ EUC decoder ∗/
GB2312 MBCSinterpreter mbi gb2312 ; /∗ GB2312 interpreter ∗/
Big5 MBCSdecoder mbd big5 ; /∗ Big5 decoder ∗/
Big5 MBCSinterpreter mbi big5 ; /∗ Big5 interpreter ∗/
KR MBCSinterpreter mbi kr ; /∗ Korean (euc−kr) interpreter ∗/
UTF 8 Unicode MBCSdecoder mbd utf 8 ; /∗ Unicode UTF-8 decoder ∗/
Unicode MBCSinterpreter mbi unicode ; /∗ Unicode interpreter ∗/

/∗ Application file string parsing ∗/
applicationStringParser ∗asp ; /∗ Application string parser or NULL if none ∗/
flashTextExtractor aspFlash ; /∗ Flash animation string parser ∗/

#ifdef HAVE_PDF_DECODER

pdfTextExtractor aspPdf ; /∗ PDF string parser ∗/
#endif /∗ Byte stream decoding ∗/

bool byteStream ; /∗ Extract probable strings from binary files ? ∗/
list〈string〉 ∗tlist ; /∗ Message transcript list ∗/
list〈string〉 ∗dlist ; /∗ Diagnostic message contents list ∗/
mailFolder(istream &i,

dictionaryWord ::mailCategory cat = dictionaryWord ::Unknown)
{

#if defined (COMPRESSED_FILES) ∨ defined (HAVE_DIRECTORY_TRAVERSAL)
ip = Λ;

#endif
#ifdef HAVE_DIRECTORY_TRAVERSAL

dirFolder = false ;
#endif

set(&i, cat);
}
mailFolder(string fname ,

dictionaryWord ::mailCategory cat = dictionaryWord ::Unknown)
{

#if defined (COMPRESSED_FILES) ∨ defined (HAVE_DIRECTORY_TRAVERSAL)
ip = Λ;

#endif
〈Check whether folder is a directory of messages 135 〉;

#ifdef HAVE_DIRECTORY_TRAVERSAL

§129 ANNOYANCE-FILTER MAIL FOLDER 109

if (¬dirFolder) {
#endif
#ifdef COMPRESSED_FILES

〈Check for symbolic link to compressed file 133 〉;
if (jname .rfind (Compressed file type) ≡ (jname .length () −

string(Compressed file type).length ())) {
〈Open pipe to read compressed file 134 〉;

}
else {

#endif
if (fname ≡ "−") {

is = &cin ;
}
else {

isc .open (fname .c str ());
is = &isc ;

}
#ifdef COMPRESSED_FILES

}
#endif
#ifdef HAVE_DIRECTORY_TRAVERSAL

}
#endif

if (¬(∗is)) {
cerr � "Cannot open mail folder file " � fname � endl ;
exit (1);

}
set(is , cat);

}
∼mailFolder()
{

#ifdef COMPRESSED_FILES

if (ip 6= Λ) {
pclose (ip);

}
#endif

}
void set(istream ∗i,dictionaryWord ::mailCategory cat = dictionaryWord ::Unknown)
{

is = i;
nLines = nMessages = 0;
lookedAhead = false ;
lookAheadLine = "";
category = cat ;
dlist = Λ;
tlist = Λ;
〈Reset MIME decoder state 142 〉;
bodyContentType = bodyContentTypeCharset = bodyContentTypeName =

bodyContentTransferEncoding = "";
expectingNewMessage = true ;
setNewMessageEligiblity ();
BSDfolder = false ;

110 MAIL FOLDER ANNOYANCE-FILTER §129

}
void setCategory (dictionaryWord ::mailCategory c)
{

category = c;
}
dictionaryWord ::mailCategory getCategory (void) const
{

return category ;
}
void setBSDmode (bool mode)
{

BSDfolder = mode ;
}
bool getBSDmode (void) const
{

return BSDfolder ;
}
void setNewMessageEligiblity (bool stat = true)
{

lastLineBlank = stat ;
}
void forceInHeader (bool state = true)
{

inHeader = state ;
}
bool nextLine (string &s);
int nextByte (void);

#ifdef HAVE_DIRECTORY_TRAVERSAL

bool findNextFileInDirectory (string &fname);
bool openNextFileInDirectory (void);

#endif
static void stringCanonicalise (string &s);
static bool compareHeaderField (string &s, const string target , string &arg);
static bool parseHeaderArgument (string &s, const string target , string &arg);
static bool isSpoofedExecutableFileExtension (const string &s);
bool isNewMessage (void) const
{

return newMessage ;
}
unsigned int getMessageCount (void) const
{

return nMessages ;
}
unsigned int getLineCount (void) const
{

return nLines ;
}
bool isByteStream (void) const
{

§129 ANNOYANCE-FILTER MAIL FOLDER 111

return byteStream ;
}
void describe (ostream &os = cout) const
{

os � "Mail folder. Category: " � dictionaryWord ::categoryName (category) �
endl ;

os � " Lines: " � getLineCount () � " Messages: " � getMessageCount () � endl ;
}
void setDiagnosticList (list〈string〉 ∗lp)
{

dlist = lp ;
}
void setTranscriptList (list〈string〉 ∗lp)
{

tlist = lp ;
}
unsigned int sizeMessageTranscript (const unsigned int lineOverhead = 1) const;
void writeMessageTranscript (ostream &os = cout) const;
void writeMessageTranscript (const string fname = "−") const;
void clearMessageTranscript (void)
{

assert(tlist 6= Λ);
tlist~clear ();

}
void reportParserDiagnostic(const string s);
void reportParserDiagnostic(const ostringstream &os);

};

112 MAIL FOLDER ANNOYANCE-FILTER §130

130. The nextLine method returns the next line from the mail folder to the caller, while parsing the
mail folder into headers, recognising MIME multi-part messages and their boundaries and encodings.
We wrap a grand while loop around the entire function so code within it can ignore the current input
line (which may, depending on where you are in the process, be the concatenation of header lines with
continuations), with a simple continue.
〈Class implementations 11 〉 +≡

bool mailFolder ::nextLine (string &s)
{

while (true) {
bool decoderEOF = false ;
if (lookedAhead) {

s = lookAheadLine ;
lookedAhead = false ;

}
else {

if (mdp 6= Λ) {
if ((asp 6= Λ) ? (¬asp~nextString (s)) : (¬(mdp~getDecodedLine (s)))) {

if (asp 6= Λ) {
if (Annotate (’d’)) {

ostringstream os ;
os � "Closing " � asp~name () � " application file decoder.";
reportParserDiagnostic(os);

}
asp~close ();
asp = Λ;

}
s = mdp~getTerminatorSentinel ();
decoderEOF = mdp~ isEndOfFile ();
if (decoderEOF) {

s = "";
}
if (Annotate (’d’)) {

ostringstream os ;
os � "Closing out " � mdp~name () � " decoder. " �

mdp~getEncodedLineCount () � " lines decoded.";
reportParserDiagnostic(os);
os .str ("");
os � "End sentinel: " � s;
reportParserDiagnostic(os);

}
〈Reset MIME decoder state 142 〉;
inPartHeader = ¬((s.substr (0, 2) ≡ "−−") ∧ (s.substr (2,

partBoundary .length ()) ≡ partBoundary) ∧ (s.substr (partBoundary .length () + 2,
2) ≡ "−−"));

if ((¬inPartHeader) ∧ (¬(partBoundaryStack .empty ()))) {
partBoundary = partBoundaryStack .top();
partBoundaryStack .pop();

}
}

}
else {

§130 ANNOYANCE-FILTER MAIL FOLDER 113

if (¬getline (∗is , s)) {
〈Advance to next file if traversing directory 138 〉;
return false ;

}
}

}
nLines ++;
if ((mdp ≡ Λ) ∧ (tlist 6= Λ) ∧ (¬decoderEOF)) {

tlist~push back (s);
}
〈Check for start of new message in folder 139 〉;
〈Eliminate any trailing space from line 140 〉;
〈Process message header lines 141 〉;
〈Parse MIME part header 149 〉;
〈Check for MIME part sentinel 151 〉;
〈Decode multiple byte character set 152 〉;
return true ;

}
}

131. The nextByte method is used by the tokenParser when scouring byte stream data for plausible
strings. It must only be used when byteStream is set. It returns the next byte from the stream or −1
at the end of the stream and cancels byteStream mode. How we get out of here depends on a fairly
intimate mutual understanding between mailFolder and tokenParser of each other’s innards.
〈Class implementations 11 〉 +≡

int mailFolder ::nextByte (void)
{

assert(mdp 6= Λ);
int c = mdp~getDecodedChar ();
if (c < 0) {

byteStream = false ;
if (Annotate (’d’)) {

ostringstream os ;
os � "End of byte stream. Deactivating byte stream parser.";
reportParserDiagnostic(os);

}
}
return c;

}

114 MAIL FOLDER ANNOYANCE-FILTER §132

132. The type of compression and command required to expand compressed files may differ from
system to system. The following code, conditional based on variables determined by the autoconf

process, defines the file suffix denoting a compressed file and the corresponding command used to
decode it. We only support one type of compression on a given system; if gzip is available, we use it in
preference to compress.
〈Configure compression suffix and command 132 〉 ≡
#ifdef HAVE_POPEN

#if (defined HAVE_GUNZIP) ∨ (defined HAVE_GZCAT) ∨ (defined HAVE_GZIP)
define COMPRESSED_FILES

static const char Compressed file type [] = ".gz";
static const char Uncompress command [] =
if (defined HAVE_GUNZIP)
"gunzip −c"
elif (defined HAVE_GZCAT)
"gzcat"

elif (defined HAVE_GZIP)
"gzip −cd"
endif
;

#elif (defined HAVE_ZCAT) ∨ (defined HAVE_UNCOMPRESS) ∨ (defined HAVE_COMPRESS)
define COMPRESSED_FILES

static const char Compressed file type [] = ".Z";
static const char Uncompress command [] =
if (defined HAVE_ZCAT)
"zcat"

elif (defined HAVE_UNCOMPRESS)
"uncompress −c"
elif (defined HAVE_COMPRESS)
"compress −cd"
endif
;

#endif
#endif
This code is used in section 129.

§133 ANNOYANCE-FILTER MAIL FOLDER 115

133. Before testing whether the input file is compressed, see if the name we were given is a symbolic
link. If so, follow the link and test the actual file. We only follow links up to 50 levels. We copy the
file name given us to jname , then attempt to interpret it as a symbolic link by calling readlink , which
will fail if the name is not, in fact, a symbolic link. If it is, we obtain the link destination as a C string,
which is copied into jname prior to the test for a compressed file extension.
〈Check for symbolic link to compressed file 133 〉 ≡
#ifdef HAVE_READLINK

int maxSlinks = 50;
string jname = fname ;
char slbuf [1024];
while (maxSlinks−− > 0) {

int sll = readlink (jname .c str (), slbuf , (sizeof slbuf)− 1);
if (sll ≥ 0) {

assert(sll < static cast〈int〉(sizeof slbuf));
slbuf [sll] = 0;
jname = slbuf ;

}
else {

break;
}

}
if (maxSlinks ≤ 0) {

cerr � "Warning: probable symbolic link loop for \"" � fname � "\"" � endl ;
}

#endif
This code is used in sections 129 and 137.

134. If our input file bears an extension which identifies it as a compressed file, we use popen to
create a file handle connected to a pipe to the appropriate decompression program. The pipe is then
screwed into the input stream from which we subsequently read.
〈Open pipe to read compressed file 134 〉 ≡

string cmd (Uncompress command);
cmd += ’ ’ + fname ;
ip = popen (cmd .c str (), "r");

#ifdef HAVE_FDSTREAM_COMPATIBILITY

iscc .attach (fileno(ip));
is = &iscc ;

#else
isc .attach (fileno(ip));
is = &isc ;

#endif
This code is used in section 129.

116 MAIL FOLDER ANNOYANCE-FILTER §135

135. Some mail systems define mail folders as directories containing individual messages as files. If
the folder name is in fact a directory, set up to retrieve the contents of all the files it contains logically
concatenated.
〈Check whether folder is a directory of messages 135 〉 ≡
#ifdef HAVE_DIRECTORY_TRAVERSAL

dirFolder = false ;
struct stat fs ;
if ((stat (fname .c str (),&fs) ≡ 0) ∧ S_ISDIR(fs .st mode)) {

dh = opendir (fname .c str ());
if (dh 6= Λ) {

dirFolder = true ;
dirName = fname ;
pathSeparator = ’/’; /∗ Should detect in configuration process ∗/
if (¬findNextFileInDirectory (fname)) {

nullstream .str ("");
is = &nullstream ; /∗ Doooh!!! No mail messages in directory ∗/

}
else {

if (verbose) {
cerr � "Processing files from directory \"" � dirName � "\"." � endl ;

}
}

}
else {

cerr � "Cannot open mail folder directory \"" � fname � "\"" � endl ;
exit (1);

}
}

#endif
This code is cited in section 256.

This code is used in section 129.

§136 ANNOYANCE-FILTER MAIL FOLDER 117

136. When we’re reading a mail folder consisting of a directory of individual mail messages, when we
reach the end of a message file we wish to seamlessly advance to the next file, logically concatenating
the files in the directory. This method, which should be called whenever the next file in the directory
is required, searches the directory for the next eligible file and opens it. We return true if the file was
opened successfully and false if the end of the directory was hit whilst looking for the next file.
〈Class implementations 11 〉 +≡
#ifdef HAVE_DIRECTORY_TRAVERSAL

bool mailFolder ::findNextFileInDirectory (string &fname)
{

assert(dirFolder);
if (dh ≡ Λ) {

return false ; /∗ End of directory already encountered ∗/
}
while (true) {

struct dirent ∗de ;
struct stat fs ;
de = readdir (dh);
if (de ≡ Λ) {

closedir (dh);
dh = Λ;
return false ;

}
cfName = dirName + pathSeparator + de~d name ;
if (stat (cfName .c str (),&fs) ≡ 0) {

if (S_ISREG(fs .st mode)) {
fname = cfName ;
return openNextFileInDirectory ();

}
}
else {

if (verbose) {
cerr � "Cannot get status of " � cfName � ". Skipping." � endl ;

}
}

}
}

#endif

118 MAIL FOLDER ANNOYANCE-FILTER §137

137. Open the next file in a directory of files which constitute a logical mail folder. findNextFileInDirectory
has already vetted and expanded the path name, certifying that (at least when it checked) the target
was an extant regular file.
〈Class implementations 11 〉 +≡
#ifdef HAVE_DIRECTORY_TRAVERSAL

bool mailFolder ::openNextFileInDirectory (void)
{

assert(dirFolder);
if (dh ≡ Λ) {

return false ;
}

#ifdef COMPRESSED_FILES

string fname = cfName ;
〈Check for symbolic link to compressed file 133 〉;
if (jname .rfind (Compressed file type) ≡ (jname .length ()−string(Compressed file type).length ()))
{
string cmd (Uncompress command);
cmd += ’ ’ + fname ;
ip = popen (cmd .c str (), "r");

#ifdef HAVE_FDSTREAM_COMPATIBILITY

ifcdir .attach (fileno(ip));
ifcdir .clear (); /∗ Stupid attach doesn’t reset ios ::eofbit ! ∗/
is = &ifcdir ;

#else
ifdir .attach (fileno(ip));
ifdir .clear (); /∗ Stupid attach doesn’t reset ios ::eofbit ! ∗/
is = &ifdir ;

#endif
}
else {

#endif
ifdir .open (cfName .c str ());
if (¬ifdir .is open ()) {

if (verbose) {
cerr � "Unable to open mail folder directory file \"" � cfName � "\"" � endl ;

}
return false ;

}
ifdir .clear (); /∗ Clean ios ::eofbit if open didn’t do so ∗/
is = &ifdir ;

#ifdef COMPRESSED_FILES

}
#endif

expectingNewMessage = true ; /∗ Expect file to contain a new message ∗/
setNewMessageEligiblity ();
return true ;

}
#endif

§138 ANNOYANCE-FILTER MAIL FOLDER 119

138. When we hit end of file, check whether we’re traversing a directory and, if so, advance to the
next file within it. When we reach the end of the directory, call it quits.
〈Advance to next file if traversing directory 138 〉 ≡
#ifdef HAVE_DIRECTORY_TRAVERSAL

if (dirFolder) {
if (ip 6= Λ) {

pclose (ip);
ip = Λ;

}
else {

ifdir .close (); /∗ Close previous file from directory ∗/
}
if (findNextFileInDirectory (cfName)) {

continue;
}

}
#endif
This code is cited in section 256.

This code is used in section 130.

120 MAIL FOLDER ANNOYANCE-FILTER §139

139. Each message in a folder begins with a line containing the text “From ” starting in the first
column. Well, more or less. . . . In the beginning there were BSD mail folders, in which messages were
simply concatenated together with the start of each message indicated by a line beginning with the
“From ” sentinel. In this scheme, any line in a message body which matches this pattern must be
quoted, usually by inserting a “>” character in column 1, but this is not universal. This was kind of
ugly, and could cause problems when messages began to contain content other than human-readable
text, so then there were Sun message folders, where each message header indicated the number of bytes
in the message with a “Content−Length” header item. You can imagine how disastrous this was in
the typical UNIX environment where people pass mail folders and messages through all kinds of text
filters—’nuff said; better forgotten. These days the most common form of text file mail folder is a
compromise in which the basic BSD scheme is used, but the “From ” sentinel only designates the start
of a message if it appears following a blank line. This avoids quoting many cases in body copy, while
remaining robust against editing and ease of parsing by simple programs.

If BSDfolder is set, we follow the original BSD semantics and recognise any “From ” as beginning a
new message. Otherwise, we only treat the sentinel as denoting the start of message if it follows a blank
line or appears at the start of the folder.

Upon finding the start of a message, we increment the number of messages in the folder, mark the
start of a new message, and set the inHeader flag to indicate we’re parsing the header section of the
message.

One complication is that some mail systems which store messages as files in a directory do not include
the “From ” sentinel at the start of message files. We use the expectingNewMessage flag to cope with
this. This flag gets set at the start of every new file we begin to read (whether a concatenated mail
folder or a file within a directory). When this flag is set, the first nonblank line in the file is considered
the start of message, even if it isn’t the “From ” sentinel.
#define messageSentinel "From " /∗ First line of each message in folder ∗/
〈Check for start of new message in folder 139 〉 ≡
#ifdef BSD_DIAG

if (s.substr (0, (sizeof messageSentinel)− 1) ≡ messageSentinel) {
if (¬BSDfolder ∧ ¬lastLineBlank) {

cerr � "*** NonBSD From line ditched: " � s � endl ;
}

}
#endif

if (((s.substr (0, (sizeof messageSentinel)− 1) ≡ messageSentinel)∧ (BSDfolder ∨ lastLineBlank))∨
(expectingNewMessage ∧ (s.length () > 0) ∧ (¬isISOspace (s[0])))) {

nMessages ++;
newMessage = true ;
expectingNewMessage = false ;
inHeader = true ;
multiPart = false ;
inPartHeader = false ;
partHeaderLines = 0;
bodyContentType = bodyContentTypeCharset = bodyContentTypeName =

bodyContentTransferEncoding = "";
fromLine = s; /∗ Save last “From ” line for diagnostics ∗/
lastFromLine = lastMessageID = messageID = "";
while (¬partBoundaryStack .empty ()) {

ostringstream os ;
os � "Orphaned part boundary on stack: \"" � partBoundaryStack .top() � "\"";
reportParserDiagnostic(os);
partBoundaryStack .pop();

§139 ANNOYANCE-FILTER MAIL FOLDER 121

}
〈Reset MIME decoder state 142 〉;

}
else {

newMessage = false ;
}

This code is cited in section 256.

This code is used in section 130.

140. To facilitate message parsing, we delete any white space from the ends of lines. Mail transfer
agents are explicitly permitted to do this, and all forms of encoding are proof against it. If the line is
blank after pruning trailing white space, we note this to use in testing for the start of the next message
for non-BSD folders.
〈Eliminate any trailing space from line 140 〉 ≡

while ((s.length () > 0) ∧ (isISOspace (s[s.length ()− 1]))) {
s.erase (s.length ()− 1);

}
setNewMessageEligiblity (s.empty ());

This code is used in section 130.

141. If we’re within the message header section, there are various things we want to be on the lookout
for. First, of course, is the blank line that denotes the end of the header. If the header declares the
content type of the body to be MIME multi-part, we need to save the part boundary separator for later
use. As it happens, this code works equally fine for parsing the part headers which follow the sentinel
denoting the start of new part in a MIME multi-part message.
〈Process message header lines 141 〉 ≡

if (inHeader ∨ inPartHeader) {
if (s ≡ "") {

if (inHeader) {
if ((¬multiPart) ∧ (bodyContentTransferEncoding 6= "")) {

mimeContentType = bodyContentType ;
mimeContentTypeCharset = bodyContentTypeCharset ;
mimeContentTypeName = bodyContentTypeName ;
mimeContentTransferEncoding = bodyContentTransferEncoding ;
multiPart = true ;
partBoundary = "";

}
}
inHeader = inPartHeader = false ;
〈Activate MIME decoder if required 153 〉;

}
〈Check for continuation of mail header lines 143 〉;
〈Save Message-ID for diagnostics 145 〉;
〈Process multipart MIME header declaration 150 〉;
〈Process body content type declarations 146 〉;
〈Check for encoded header line and decode 147 〉;

}
This code is used in section 130.

122 MAIL FOLDER ANNOYANCE-FILTER §142

142. At the end of a MIME part, switch off the decoder and reset the part properties to void.
〈Reset MIME decoder state 142 〉 ≡

mimeContentType = mimeContentTypeCharset = mimeContentTypeName =
mimeContentDispositionFilename = mimeContentTypeBoundary =
mimeContentTransferEncoding = "";

mdp = Λ;
mbi = Λ;
asp = Λ;
byteStream = false ;

This code is used in sections 129, 130, 139, and 162.

143. Statements in the message header section may be continued onto multiple lines. Continuations
are denoted by white space in the first column of successive continuations. To simplify header parsing,
we look ahead and concatenate all continuations into one single header statement. The twiddling with
lal in the following code is to ensure the integrity of transcripts. We delete trailing space from the look
ahead line before concatenating it, but if we in fact looked ahead to a line which is not a continuation,
we want to eventually save it in the transcript as it originally arrived, complete with trailing space, so
we replace it with the original line before deleting the trailing space.
〈Check for continuation of mail header lines 143 〉 ≡
〈Check for lines with our sentinel already present in the header 144 〉;
while ((inHeader ∨ inPartHeader) ∧ getline (∗is , lookAheadLine) 6= Λ) {

string lal = lookAheadLine ;
while ((lookAheadLine .length () > 0)∧ (isISOspace (lookAheadLine [lookAheadLine .length ()− 1])))
{
lookAheadLine .erase (lookAheadLine .length ()− 1);

}
if ((lookAheadLine .length () > 0) ∧ isISOspace (lookAheadLine [0])) {

string ::size typep = 1;
while (isISOspace (lookAheadLine [p])) {

p++;
}
s += lookAheadLine .substr (p);
if ((tlist 6= Λ) ∧ (¬isSpoofedHeader)) {

tlist~push back (lal);
}
continue;

}
lookedAhead = true ;
lookAheadLine = lal ;
break;

}
if (isSpoofedHeader) {

ostringstream os ;
os � "Spoofed header rejected: " � s;
reportParserDiagnostic(os .str ());
continue;

}
This code is cited in section 256.

This code is used in section 141.

§144 ANNOYANCE-FILTER MAIL FOLDER 123

144. A clever junk mail author might try to evade filtering based on the header items we include in
the −−transcript by including his own, on the assumption that a downstream filter would not detect
the multiple items and filter on the first one it found. To prevent this, and to make it more convenient
when feeding transcripts back through the program (for testing the effects of different settings or for
training on new messages), we detect header lines which begin with our Xfile sentinel and completely
delete them from the transcript. The isSpoofedHeader flag causes continuation lines, if any, to be deleted
as well. (At this writing we never use continuations of our header items, but better safe than sorry.)
〈Check for lines with our sentinel already present in the header 144 〉 ≡

bool isSpoofedHeader = false ;
if (inHeader) {

string sc = s, scx = Xfile ;
stringCanonicalise (sc);
stringCanonicalise (scx);
scx += ’−’;
if (sc .substr (0, scx .length ()) ≡ scx) {

if (tlist 6= Λ) {
tlist~pop back ();

}
isSpoofedHeader = true ;

}
}

This code is cited in section 256.

This code is used in section 143.

145. When processing mail folders in bulk, as when generating a dictionary, we want to identify parser
diagnostics with the message which they refer to. While processing the header, we save the Message−ID
tag, which which reportParserDiagnostic prefixes the message in its −−verbose mode output. Messages
which lack a Message−ID header item must be identified from the “From ” line. RFC 2822 specifies
that Message−ID should be present, but is an optional field.
〈Save Message-ID for diagnostics 145 〉 ≡
{

string arg ;
if (inHeader ∧ compareHeaderField (s, "message−id", arg)) {

messageID = arg ;
lastMessageID = "";

}
}

This code is used in section 141.

http://www.ietf.org/rfc/rfc2822.txt?number=2822

124 MAIL FOLDER ANNOYANCE-FILTER §146

146. It is possible for the main body of a message to be encoded with a Content−Transfer−Encoding

specification. While encoding is usually encountered in MIME multi-part messages, junk mail sometimes
takes advantage of encoding to hide trigger words from content-based filters. If the message body is
encoded, we need to interpose the appropriate filter before parsing it.
〈Process body content type declarations 146 〉 ≡
{

string arg , par ;
if (compareHeaderField (s, "content−type", arg)) {

if (parseHeaderArgument (s, "charset", par)) {
stringCanonicalise (par);
bodyContentTypeCharset = par ;

}
if (parseHeaderArgument (s, "name", par)) {

bodyContentTypeName = par ;
}
bodyContentType = arg ;

}
if (inHeader ∧ compareHeaderField (s, "content−transfer−encoding", arg)) {

bodyContentTransferEncoding = arg ;
}

}
This code is used in section 141.

§147 ANNOYANCE-FILTER MAIL FOLDER 125

147. Message header lines may contain sequences of characters encoded in Quoted−Printable or
Base64 form (since mail headers must not contain 8 bit characters). To better extract words from these
lines, we test for such subsequences and replace them with the encoded text. Due to the fact that, in
the fullness of time, this code will be fed every conceivable kind of nonconforming trash, it must be
completely bulletproof. The flailing around with p4 protects against falling into a loop when decoding
a sequence fails.
〈Check for encoded header line and decode 147 〉 ≡

if (inHeader) {
string sc = s;
string ::size typep, p1 , p2 , p3 , p4 ;
char etype ;
unsigned int ndecodes = 0;
string charset ;
stringCanonicalise (sc);
p4 = 0;
while (((p = sc .find ("=?", p4)) 6= string ::npos)) {

p4 = p + 2;
if (((p1 = sc .find ("?q?", p4)) 6= string ::npos) ∨ ((p1 = sc .find ("?b?", p4)) 6= string ::npos))
{
charset = sc .substr (p4 , p1 − p4);
etype = sc [p1 + 1];
p4 = p1 + 3;
if ((p2 = sc .find ("?=", p4)) 6= string ::npos) {

p1 += 3;
p3 = p2 − p1 ;
string drt ;
if (etype ≡ ’q’) {

drt = quotedPrintableMIMEdecoder ::decodeEscapedText (sc .substr (p1 , p3), this);
}
else {

assert(etype ≡ ’b’);
drt = base64MIMEdecoder ::decodeEscapedText (sc .substr (p1 , p3), this);

}
〈 Interpret header quoted string if character set known 148 〉;
sc .replace (p, (p2 − p) + 2, drt);
p4 = p + drt .length ();
ndecodes ++;

}
}

}
if (ndecodes > 0) {

s = sc ;
}

}
This code is cited in section 256.

This code is used in section 141.

126 MAIL FOLDER ANNOYANCE-FILTER §148

148. After decoding the Quoted−Printable or Base64 sequence from the header line, examine its
character set specification. If it is a character set we know how to decode and interpret, instantiate the
appropriate components and replace the decoded sequence with its interpretation. There is no need to
further process ISO−8859 sequences.
〈 Interpret header quoted string if character set known 148 〉 ≡

if (charset .substr (0, 6) ≡ "gb2312") {
EUC MBCSdecoder mbd euc ; /∗ EUC decoder ∗/
GB2312 MBCSinterpreter mbi gb2312 ; /∗ GB2312 interpreter ∗/
mbd euc .setMailFolder (this);
mbi gb2312 .setDecoder (mbd euc);
drt = mbi gb2312 .decodeLine (drt);

}
else if (charset ≡ "big5") {

Big5 MBCSdecoder mbd big5 ; /∗ Big5 decoder ∗/
Big5 MBCSinterpreter mbi big5 ; /∗ Big5 interpreter ∗/
mbd big5 .setMailFolder (this);
mbi big5 .setDecoder (mbd big5);
drt = mbi big5 .decodeLine (drt);

}
else if (charset ≡ "utf−8") {

UTF 8 Unicode MBCSdecoder mbd utf 8 ; /∗ Unicode UTF-8 decoder ∗/
Unicode MBCSinterpreter mbi unicode ; /∗ Unicode interpreter ∗/
mbd utf 8 .setMailFolder (this);
mbi unicode .setDecoder (mbd utf 8);
drt = mbi unicode .decodeLine (drt);

}
else if (charset ≡ "euc−kr") {

EUC MBCSdecoder mbd euc ; /∗ EUC decoder ∗/
KR MBCSinterpreter mbi kr ; /∗ Korean (euc−kr) interpreter ∗/
mbd euc .setMailFolder (this);
mbi kr .setDecoder (mbd euc);
drt = mbi kr .decodeLine (drt);

}
else if ((charset .substr (0, 8) ≡ "iso−8859") ∨ (charset ≡ "us−ascii")) {

/∗ No decoding or interpretation required for ISO-8859 or US-ASCII ∗/
}
else {

ostringstream os ;
os � "Header line: no interpreter for (" � charset � ") character set.";
reportParserDiagnostic(os .str ());

}
This code is used in section 147.

§149 ANNOYANCE-FILTER MAIL FOLDER 127

149. Here we parse interesting fields from a MIME message part header.
〈Parse MIME part header 149 〉 ≡

if (multiPart ∧ inPartHeader) {
string arg , par ;
partHeaderLines ++;
if (compareHeaderField (s, "content−type", arg)) {

if (parseHeaderArgument (s, "charset", par)) {
stringCanonicalise (par);
mimeContentTypeCharset = par ;

}
if (parseHeaderArgument (s, "boundary", par)) {

mimeContentTypeBoundary = par ;
}
if (parseHeaderArgument (s, "name", par)) {

mimeContentTypeName = par ;
}
mimeContentType = arg ;

}
if (compareHeaderField (s, "content−transfer−encoding", arg)) {

mimeContentTransferEncoding = arg ;
}
if (compareHeaderField (s, "content−disposition", arg)) {

if (parseHeaderArgument (s, "filename", par)) {
mimeContentDispositionFilename = par ;

}
}

}
This code is used in section 130.

128 MAIL FOLDER ANNOYANCE-FILTER §150

150. A multi-part message in MIME format will contain a declaration in the header which identifies
the body as being in that format and provides a part separator sentinel which appears before each
subsequent part. We test for the MIME declaration and save the part boundary sentinel for later use.
〈Process multipart MIME header declaration 150 〉 ≡

string ::size typep, p1 ;
string arg ;
if (inHeader ∧ compareHeaderField (s, "content−type", arg)) {

string sc = s;
stringCanonicalise (sc);
if ((p = sc .find ("multipart/", 13)) 6= string ::npos) {

if ((p = sc .find ("boundary=", p + 10)) 6= string ::npos) {
if (s[p + 9] ≡ ’\"’) {

p1 = sc .find ("\"", p + 10);
p += 10;

}
else {

p += 9;
p1 = sc .length ()− p;

}
multiPart = true ;
partBoundary = s.substr (p, (p1 − p));
if (Annotate (’d’)) {

ostringstream os ;
os � "Multi−part boundary: \"" � partBoundary � "\"";
reportParserDiagnostic(os);

}
}

}
}

This code is cited in section 256.

This code is used in section 141.

151. If we’re in the body of a MIME multi-part message, we must test each line against the
partBoundary sentinel declared in the “Content−type:” header statement. If the line is a part boundary,
we then must parse the part header which follows.
〈Check for MIME part sentinel 151 〉 ≡

if (multiPart ∧ (¬inHeader) ∧ (partBoundary 6= "") ∧ (s.substr (0, 2) ≡ "−−") ∧ (s.substr (2,
partBoundary .length ()) ≡ partBoundary) ∧ (s.substr (partBoundary .length () + 2) 6= "−−")) {

inPartHeader = true ;
mimeContentType = mimeContentTypeCharset = mimeContentTypeBoundary =

mimeContentTransferEncoding = "";
}

This code is used in section 130.

§152 ANNOYANCE-FILTER MAIL FOLDER 129

152. If we’re in the body of text encoded in a multiple-byte character set, pass the text through the
interpreter to convert it into a form we can better recognise.
〈Decode multiple byte character set 152 〉 ≡

if ((mbi 6= Λ) ∧ (¬inHeader) ∧ (¬inPartHeader)) {
s = mbi~decodeLine (s);

}
This code is used in section 130.

153. If we’ve just reached the end of a MIME part header, determine if the body which follows
requires decoding. If so, activate the appropriate decoder and place it in the pipeline between the raw
mail folder and our parsing code.
〈Activate MIME decoder if required 153 〉 ≡

if (multiPart) {
assert(mdp ≡ Λ);

#ifdef TYPE_LOG /∗ If TYPE_LOG is defined, we create a file containing all of the part properties
we’ve seen. You can obtain a list of things you may need to worry about by processing one of
the fields n of this file with a command like cut −fn /tmp/typelog.txt | sort | uniq. ∗/

typeLog � mimeContentType � "\t" � mimeContentTypeCharset � "\t" �
mimeContentTransferEncoding � endl ;

#endif
〈Check for change of sentinel within message 154 〉;
〈Check for application file types for which we have a decoder 155 〉;
〈Detect binary parts worth parsing for embedded ASCII strings 156 〉;
〈Test for Content-Types we always ignore 157 〉
〈Process Content-Types we are interested in parsing 158 〉;

}
This code is cited in section 256.

This code is used in section 141.

154. The sentinel which delimits parts of a multi-part message may be changed in the middle of the
message by a Content−Type of multipart/alternative specifying a new boundary=. Detect this and
change the part boundary on the fly. These parts usually seem devoid of content, but just in case fake
a content type of text/plain so anything which may be there gets looked at.
〈Check for change of sentinel within message 154 〉 ≡

if (mimeContentType ≡ "multipart/alternative") {
if (mimeContentTypeBoundary 6= "") {

partBoundaryStack .push (partBoundary);
partBoundary = mimeContentTypeBoundary ;

}
else {

if (Annotate (’d’)) {
ostringstream os ;
os � "Boundary missing from Content−Type of multipart/alternative.";
reportParserDiagnostic(os);

}
}

}
This code is used in section 153.

130 MAIL FOLDER ANNOYANCE-FILTER §155

155. We have decoders for certain application file types. Check the Content−Type for types we can
decode, and if it’s indeed one we can, splice the appropriate decoder into the pipeline.
〈Check for application file types for which we have a decoder 155 〉 ≡
#ifdef HAVE_PDF_DECODER

if (mimeContentType ≡ "application/pdf") {
asp = &aspPdf ;

}
else

#endif
if ((mimeContentType ≡ "application/x−shockwave−flash") ∨ (mimeContentType ≡

"image/vnd.rn−realflash")) {
asp = &aspFlash ;

}
if (asp 6= Λ) {

asp~setMailFolder (this);
if (Annotate (’d’)) {

ostringstream os ;
os � "Activating " � asp~name () � " application file decoder.";
reportParserDiagnostic(os);

}
}

This code is used in section 153.

156. Certain MIME Content−Type declarations denote binary files best classified by parsing them
for ASCII strings. Test for such files and invoke the requisite decoder unless binary stream parsing has
been disabled by setting streamMinTokenLength to zero or the file is already scheduled for parsing by
an application-specific string parser.

Thanks to a hideous design error in Microsoft Outlook, mail worms can spoof the test for executable
content by declaring an attachment as an innocuous file type such an image or audio file, and then
cause it to be executed simply by specifying a file name with one of the many Microsoft executable file
extensions. We check for such spoofed attachments and pass them through the byte stream parser as
well.
〈Detect binary parts worth parsing for embedded ASCII strings 156 〉 ≡

if ((asp ≡ Λ) ∧ (streamMinTokenLength > 0) ∧ ((mimeContentType .substr (0,
12) ≡ "application/") ∨ (((mimeContentType .substr (0,
6) ≡ "audio/") ∨ (mimeContentType .substr (0,
6) ≡ "image/")) ∧ (isSpoofedExecutableFileExtension (mimeContentTypeName) ∨
isSpoofedExecutableFileExtension (mimeContentDispositionFilename))))) { /∗ cout ¡¡ ”* *
* Content-type name = ”̈ ¡¡ mimeContentTypeName ¡¡ ””̈ ¡¡ endl; ∗/ /∗ cout ¡¡ ”* * *
Content-Disposition filename = ”̈ ¡¡ mimeContentDispositionFilename ¡¡ ””̈ ¡¡ endl; ∗/

if (Annotate (’d’)) {
ostringstream os ;
os � "Activating byte stream parser for \"" � mimeContentType � "\"";
reportParserDiagnostic(os);

}
byteStream = true ;

}
This code is used in section 153.

§157 ANNOYANCE-FILTER MAIL FOLDER 131

157. Test for Content-Types we are never interested in parsing, regardless of their encoding. This
includes images, video, and most application specific files which UNIX strings would make no sense
of. These parts are dispatched to the sink decoder for disposal. Note that some of these items may
be compressed files and/or archives (zip, gzip, tar, etc.) which might be comprehensible if we could
enlist the appropriate utilities, but we’ll defer that refinement for now.
〈Test for Content-Types we always ignore 157 〉 ≡

if (Annotate (’d’)) {
ostringstream os ;
reportParserDiagnostic("");
os � "mimeContentType: {" � mimeContentType � "}";
reportParserDiagnostic(os);
os .str ("");
os � "mimeContentTypeCharset: {" � mimeContentTypeCharset � "}";
reportParserDiagnostic(os);
os .str ("");
os � "mimeContentTransferEncoding: {" � mimeContentTransferEncoding � "}";
reportParserDiagnostic(os);

}
if ((asp ≡ Λ) ∧ (mimeContentType .substr (0, 6) ≡ "image/") ∨ (mimeContentType .substr (0,

6) ≡ "video/")) {
smd .set(is , this, partBoundary , tlist);
mdp = &smd ;
if (Annotate (’d’)) {

ostringstream os ;
os � "Activating MIME sink decoder with sentinel: \"" � partBoundary �

"\" due to Content−Type = " � mimeContentType ;
reportParserDiagnostic(os);

}
if (dlist) {

dlist~push back (Xfile + "−Decoder: Sink");
}

}
This code is used in section 153.

158. Next, check for content types we’re always interested parsing. This includes most forms labeled
as text and embedded mail messages. If the content is of interest but is encoded, make sure we have
the requisite decoder and, if so, plumb it into the pipeline.
〈Process Content-Types we are interested in parsing 158 〉 ≡

else
if (byteStream ∨ (asp 6= Λ) ∨ (mimeContentType ≡ "plain/txt") ∨ (mimeContentType .substr (0,

5) ≡ "text/") ∨ (mimeContentType ≡ "message/rfc822")) {
〈Test for multiple byte character sets and activate decoder if available 159 〉;
〈Verify Content-Transfer-Encoding and activate decoder if necessary 160 〉;
〈Cancel byte stream interpretation for non-binary encoded parts 161 〉;
〈Test for message/rfc822 embedded as part 162 〉;

}
This code is used in section 153.

132 MAIL FOLDER ANNOYANCE-FILTER §159

159. Just because we’re interested in the contents of this part, doesn’t necessarily mean we can
comprehend it. First of all, it must be encoded in a form we can either read directly or have a decoder
for, and secondly it must be in a character set we understand, not some Asian chicken tracks. First of
all, test the character set and accept only those we read directly or have interpreters for.
〈Test for multiple byte character sets and activate decoder if available 159 〉 ≡

bool gibberish = false ;
if (mimeContentTypeCharset .substr (0, 6) ≡ "gb2312") {

mbd euc .setMailFolder (this);
mbi gb2312 .setDecoder (mbd euc);
mbi = &mbi gb2312 ;

}
if (mimeContentTypeCharset ≡ "big5") {

mbd big5 .setMailFolder (this);
mbi big5 .setDecoder (mbd big5);
mbi = &mbi big5 ;

}
if (mimeContentTypeCharset ≡ "utf−8") {

mbd utf 8 .setMailFolder (this);
mbi unicode .setDecoder (mbd utf 8);
mbi = &mbi unicode ;

}
if (mimeContentTypeCharset ≡ "euc−kr") {

mbd euc .setMailFolder (this);
mbi kr .setDecoder (mbd euc);
mbi = &mbi kr ;

}
#ifdef CHECK_FOR_GIBBERISH_CHARACTER_SETS

if ((mimeContentTypeCharset .length () ≡ 0) ∨ (mimeContentTypeCharset ≡
"us−ascii") ∨ (mimeContentTypeCharset .substr (0,
8) ≡ "iso−8859") ∨ (mimeContentTypeCharset ≡ "windows−1251")) {

if (Annotate (’d’)) {
ostringstream os ;
os � "Accepting part in Content−Type−Charset: " � mimeContentTypeCharset �

" (" � mimeContentType � " " � mimeContentTransferEncoding � ")";
reportParserDiagnostic(os);

}
}
else {

if (Annotate (’d’)) {
ostringstream os ;
os � "Rejecting part in Content−Type−Charset: " � mimeContentTypeCharset �

" (" � mimeContentType � " " � mimeContentTransferEncoding � ")";
reportParserDiagnostic(os);

}
gibberish = true ;

}
#endif
This code is used in section 158.

§160 ANNOYANCE-FILTER MAIL FOLDER 133

160. If the contents appear to be in a character set we understand, we still aren’t home free—the part
may be encoded in a manner for which we lack a decoder. Analyse the Content−Transfer−Encoding

specification and select the appropriate decoder. If we lack a decoder, we must regretfully consign the
part to the sink decoder.

If we end up accreting any additional decoders, this should probably be re-written to look up the
decoder in a map〈string,MIMEdecoder ∗〉 and use common code for every decoder.
〈Verify Content-Transfer-Encoding and activate decoder if necessary 160 〉 ≡

if (¬gibberish) {
if ((mimeContentTransferEncoding .length () ≡ 0) ∨ (mimeContentTransferEncoding .substr (0,

4) ≡ "7bit") ∨ (mimeContentTransferEncoding .substr (0,
4) ≡ "8bit") ∨ (mimeContentTransferEncoding ≡ "ascii")) {

imd .set(is , this, partBoundary , tlist); /∗ Identity ∗/
mdp = &imd ;

}
else if (mimeContentTransferEncoding ≡ "base64") {

bmd .set(is , this, partBoundary , tlist); /∗ Base64 ∗/
mdp = &bmd ;

}
else if (mimeContentTransferEncoding ≡ "quoted−printable") {

qmd .set(is , this, partBoundary , tlist); /∗ Quoted−Printable ∗/
mdp = &qmd ;

}
else {

gibberish = true ;
smd .set(is , this, partBoundary , tlist); /∗ Sink ∗/
mdp = &smd ;

}
assert(mdp 6= Λ);
if (Annotate (’d’)) {

ostringstream os ;
os � (gibberish ? "Rejecting" : "Accepting") �

" part in Content−Transfer−Encoding: " � mimeContentTransferEncoding �
" (" � mimeContentTypeCharset � " " � mimeContentType � ")";

reportParserDiagnostic(os);
}
if (dlist) {

dlist~push back (Xfile + "−Decoder: " + mdp~name ());
}
if (Annotate (’d’)) {

ostringstream os ;
os � "Activating MIME " � mdp~name () � " decoder with sentinel: " � partBoundary ;
reportParserDiagnostic(os);

}
}

This code is cited in section 256.

This code is used in section 158.

134 MAIL FOLDER ANNOYANCE-FILTER §161

161. If we think we’re about to process a byte stream, but it isn’t actually encoded, think again and
treat the content as regular text, which it in all likelihood actually is.
〈Cancel byte stream interpretation for non-binary encoded parts 161 〉 ≡

if (byteStream ∧ (mdp ≡ Λ)) {
if (Annotate (’d’)) {

ostringstream os ;
os � "Canceling byte stream mode due to Content−Transfer−Encoding: {" �

mimeContentTransferEncoding � "} (" � mimeContentTypeCharset � " " �
mimeContentType � ")";

reportParserDiagnostic(os);
}
byteStream = false ;

}
This code is used in section 158.

162. The Content−Type of “message/rfc822” permits one MIME message to be embedded into
another. This is commonly used when forwarding messages and to return the original message when
sending a bounce back to the sender. Upon encountering an embedded message, we reset the MIME
decoder, then force the parser back into the state of processing a message header. This will cause any
Content−Type specifying a boundary in the embedded message to be parsed, permitting us to properly
decode MIME parts belonging to the embedded message.
〈Test for message/rfc822 embedded as part 162 〉 ≡

if (mimeContentType ≡ "message/rfc822") {
〈Reset MIME decoder state 142 〉;
forceInHeader ();

}
This code is used in section 158.

163. Canonicalise a string in place to all lower-case characters. This works for ISO-8859 accented
letters as well as ASCII, although such characters should appear as raw text within header items. This
is a static method and may be used without reference to a mailFolder object.
〈Class implementations 11 〉 +≡

void mailFolder ::stringCanonicalise (string &s)
{

for (unsigned int i = 0; i < s.length (); i++) {
if (isISOupper (s[i])) {

s[i] = toISOlower (s[i]);
}

}
}

§164 ANNOYANCE-FILTER MAIL FOLDER 135

164. To facilitate parsing of header fields, this static method performs a case-insensitive test for
header field target and, if it is found, stores its argument into arg , set to canonical lower case.
〈Class implementations 11 〉 +≡

bool mailFolder ::compareHeaderField (string &s, const string target , string &arg)
{

if (s.length () > target .length ()) {
string sc = s;
stringCanonicalise (sc);
if ((sc .substr (0, target .length ()) ≡ target) ∧ (sc [target .length ()] ≡ ’:’)) {

unsigned int i;
for (i = target .length () + 1; i < sc .length (); i++) {

if (¬isISOspace (sc [i])) {
break;

}
}
if (i < sc .length ()) {

int n = 0;
while ((i + n) < sc .length ()) {

if (isISOspace (sc [i + n]) ∨ (sc [i + n] ≡ ’;’)) {
break;

}
n++;

}
arg = sc .substr (i, n);

}
else {

arg = "";
}
return true ;

}
}
return false ;

}

136 MAIL FOLDER ANNOYANCE-FILTER §165

165. This static method tests for an argument to a header field and stores the argument, if present,
into arg . The argument name is canonicalised to lower case, but the argument is left as-is. Quotes are
deleted from quoted arguments.
〈Class implementations 11 〉 +≡

bool mailFolder ::parseHeaderArgument (string &s, const string target , string &arg)
{

if (s.length () > target .length ()) {
string sc = s;
string ::size typep, p1 ;
stringCanonicalise (sc);
if (((p = sc .find (target)) 6= string ::npos) ∧ (sc .length () >

(p + target .length ())) ∧ (sc [p + target .length ()] ≡ ’=’)) {
p += target .length () + 1;
if (p < s.length ()) {

if (s[p] ≡ ’"’) {
if ((p1 = s.find (’"’, p + 1)) 6= string ::npos) {

arg = s.substr (p + 1, p1 − (p + 1));
return true ;

}
}
else {

string ::size type i = p;
for (; i < s.length (); i++) {

if (¬isISOspace (s[i])) {
break;

}
}
if (i < s.length ()) {

int n = 0;
while ((i + n) < s.length ()) {

if ((isISOspace (s[i + n])) ∨ (s[i + n] ≡ ’;’)) {
break;

}
n++;

}
arg = s.substr (i, n);

}
else {

arg = "";
}
return true ;

}
}

}
}
return false ;

}

§166 ANNOYANCE-FILTER MAIL FOLDER 137

166. Certain versions of Microsoft Outlook contain a horrific bug where Outlook decides whether an
attachment is executable based on its “Content−Type” declaration, but then actually decides whether
to execute it based on its “file type” (the extension on the file name, for example “.EXE”). Predictably,
mail worm programs exploit this by tagging their payload as an innocuous file type such as an audio or
image file, but with an executable extension.

The static method tests an attachment’s name against a list of vulnerable extensions. If it matches,
this is almost certainly a worm, which we should filter through the byte stream parser rather than
process normally. This will crack out the strings embedded in the worm, which will help us to fingerprint
subsequent worms of the same type.

The list of vulnerable extensions was compiled empirically from examining mail worms collected over
a three year period. I do not know if the list is exhaustive; Microsoft vulnerability experts aware of any
I omitted are encouraged to let me know about them.
〈Class implementations 11 〉 +≡

bool mailFolder :: isSpoofedExecutableFileExtension (const string &s)
{

string sc = s;
stringCanonicalise (sc);
if ((sc .length () > 4) ∧ (sc [sc .length ()− 4] ≡ ’.’)) {

string ext = sc .substr (sc .length ()− 3);
stringCanonicalise (ext);
return ((ext ≡ "exe")∨ (ext ≡ "bat")∨ (ext ≡ "scr")∨ (ext ≡ "lnk")∨ (ext ≡ "pif")∨ (ext ≡

"com"));
}
return false ;

}

167. Calculate the size in bytes of the message transcript if written to a monolithic file with
lineOverhead bytes (by default 1) per line.
〈Class implementations 11 〉 +≡

unsigned int mailFolder ::sizeMessageTranscript (const unsigned int lineOverhead) const
{

assert(tlist 6= Λ);
unsigned int n = tlist~size (), totsize = 0;
if ((n > 1) ∧ (tlist~back ().substr (0, (sizeof messageSentinel)− 1) ≡ messageSentinel)) {

n−−;
}
list〈string〉 :: iterator p = tlist~begin ();
for (unsigned int i = 0; i < n; i++) {

totsize += p~ length () + lineOverhead ;
p++;

}
return totsize ;

}

138 MAIL FOLDER ANNOYANCE-FILTER §168

168. Write the message transcript saved in tlist to the designated file name fname . If fname is “−”,
the transcript is written to standard output. Depending upon their provenance, transcripts may or may
not contain the POP3 line end terminator CR at the end of lines. We append the line feed, which
automatically provides the correct line termination for UNIX mail folders and the CR/LF required for
POP3 messages.
〈Class implementations 11 〉 +≡

void mailFolder ::writeMessageTranscript (ostream &os) const
{

assert(tlist 6= Λ);
unsigned int n = tlist~size ();
if ((n > 1) ∧ (tlist~back ().substr (0, (sizeof messageSentinel)− 1) ≡ messageSentinel)) {

n−−;
}
list〈string〉 :: iterator p = tlist~begin ();
for (unsigned int i = 0; i < n; i++) {

os � ∗p++ � endl ;
;

}
}
void mailFolder ::writeMessageTranscript (const string fname) const
{

if (fname 6= "−") {
ofstream of (fname .c str ());
writeMessageTranscript (of);
of .close ();

}
else {

writeMessageTranscript (cout);
}

}

§169 ANNOYANCE-FILTER MAIL FOLDER 139

169. When we detect an error within the message, it’s reported to standard error if we’re in verbose
mode and appended to the parserDiagnostics for inclusion in the transcript if the “p” annotation
is selected. This method is public so higher-level parsing routines can use it to append their own
diagnostics. Since in many cases we compose the diagnostic in an ostringstream, we overload a
variant which accepts one directly as an argument.
〈Class implementations 11 〉 +≡

void mailFolder ::reportParserDiagnostic(const string s)
{

if (verbose) {
if ((lastFromLine 6= fromLine) ∨ (lastMessageID 6= messageID)) {

cerr � fromLine � endl ;
if (messageID 6= "") {

cerr � "Message−ID: " � messageID � ":" � endl ;
}
lastFromLine = fromLine ;
lastMessageID = messageID ;

}
cerr � " " � s � endl ;

}
if (Annotate (’p’) ∨Annotate (’d’)) {

parserDiagnostics .push (s);
}

}
void mailFolder ::reportParserDiagnostic(const ostringstream &os)
{

reportParserDiagnostic(os .str ());
}

140 TOKEN DEFINITION ANNOYANCE-FILTER §170

170. Token definition.
A tokenDefinition object provides the means by which the tokenParser (below) distinguishes tokens

in a stream of text. Tokens are defined by three arrays, each indexed by ISO character codes between 0
and 255. The first, isToken , is true for characters which comprise tokens. The second, notExclusively ,
is true for characters which may appear in tokens, but only in the company of other characters. The
third, notAtEnd is true for characters which may appear within a token, but not at the start or the end
of one.
〈Class definitions 10 〉 +≡

class tokenDefinition {
protected:

static const int numTokenChars = 256;
bool isToken [numTokenChars], notExclusively [numTokenChars], notAtEnd [numTokenChars];
unsigned int minTokenLength , maxTokenLength ;

public:
tokenDefinition()
{

clear ();
}
void clear (void)
{

for (int i = 0; i < numTokenChars ; i++) {
isToken [i] = notExclusively [i] = notAtEnd [i] = false ;

}
setLengthLimits (1, 65535);

}
void setLengthLimits (unsigned int lmin = 0,unsigned int lmax = 0)
{

if (lmin > 0) {
minTokenLength = lmin ;

}
if (lmax > 0) {

maxTokenLength = lmax ;
}

}
unsigned int getLengthMin (void) const
{

return minTokenLength ;
}
unsigned int getLengthMax (void) const
{

return maxTokenLength ;
}
bool isTokenMember (const int c) const
{

assert(c ≥ 0 ∧ c < numTokenChars);
return isToken [c];

}
bool isTokenNotExclusively (const int c) const
{

assert(c ≥ 0 ∧ c < numTokenChars);

§170 ANNOYANCE-FILTER TOKEN DEFINITION 141

return notExclusively [c];
}
bool isTokenNotAtEnd (const int c) const
{

assert(c ≥ 0 ∧ c < numTokenChars);
return notAtEnd [c];

}
bool isTokenLengthAcceptable (string ::size type l)const

{
return (l ≥ minTokenLength) ∧ (l ≤ maxTokenLength);

}
bool isTokenLengthAcceptable (const string t) const
{

return isTokenLengthAcceptable (t.length ());
}
void setTokenMember (bool v, const int cstart , const int cend = −1)
{

assert(cstart ≥ 0 ∧ cstart ≤ numTokenChars);
assert((cend ≡ −1) ∨ (cend ≥ cstart ∧ cend ≤ numTokenChars));
for (int i = cstart ; i ≤ cend ; i++) {

isToken [i] = v;
}

}
void setTokenNotExclusively (bool v, const int cstart , const int cend = −1)
{

assert(cstart ≥ 0 ∧ cstart ≤ numTokenChars);
assert((cend ≡ −1) ∨ (cend ≥ cstart ∧ cend ≤ numTokenChars));
for (int i = cstart ; i ≤ cend ; i++) {

notExclusively [i] = v;
}

}
void setTokenNotAtEnd (bool v, const int cstart , const int cend = −1)
{

assert(cstart ≥ 0 ∧ cstart ≤ numTokenChars);
assert((cend ≡ −1) ∨ (cend ≥ cstart ∧ cend ≤ numTokenChars));
for (int i = cstart ; i ≤ cend ; i++) {

notAtEnd [i] = v;
}

}
void setISO 8859defaults (unsigned int lmin = 0,unsigned int lmax = 0);
void setUS ASCIIdefaults (unsigned int lmin = 0,unsigned int lmax = 0); } ;

142 TOKEN DEFINITION ANNOYANCE-FILTER §171

171. Initialise a tokenDefinition for parsing ISO-8859 text with our chosen defaults for punctuation
embedded in such tokens. Any pre-existing definitions are cleared.
〈Class implementations 11 〉 +≡

void tokenDefinition ::setISO 8859defaults (unsigned int lmin ,unsigned int lmax)
{

clear ();
setLengthLimits (lmin , lmax);
for (unsigned int c = 0; c < 256; c++) {

isToken [c] = (isascii (c) ∧ isdigit (c)) ∨ isISOalpha (c) ∨ (c ≡ ’−’) ∨ (c ≡ ’\’’) ∨ (c ≡ ’$’);
notExclusively [c] = (isdigit (c) ∨ (c ≡ ’−’)) ? 1 : 0;

}
notAtEnd [’−’] = notAtEnd [’\’’] = true ;

}

172. Initialise a tokenDefinition for parsing US-ASCII text with our chosen defaults for punctuation
embedded in such tokens. Any pre-existing definitions are cleared.
〈Class implementations 11 〉 +≡

void tokenDefinition ::setUS ASCIIdefaults (unsigned int lmin ,unsigned int lmax)
{

clear ();
setLengthLimits (lmin , lmax);
for (unsigned int c = 0; c < 128; c++) {

isToken [c] = isalpha (c) ∨ isdigit (c);
notExclusively [c] = (isdigit (c) ∨ (c ≡ ’−’)) ? 1 : 0;

}
isToken [’_’] = notExclusively [’_’] = true ;
notAtEnd [’−’] = notAtEnd [’\’’] = true ;

}

§173 ANNOYANCE-FILTER TOKEN PARSER 143

173. Token parser.
A tokenParser reads lines from a mailFolder and returns tokens as defined by its active tokenDefinition.

Separate tokenDefinitions can be defined for use while parsing regular text and binary byte streams,
respectively. A tokenParser has the ability to save the lines parsed from a message in a messageQueue ,
permitting further subsequent analysis. Note that what is saved is “what the parser saw”—after MIME
decoding or elision of ignored parts.
〈Class definitions 10 〉 +≡

class tokenParser {
protected:

mailFolder ∗source ;
string cl ;
string ::size typeclp ;
bool atEnd , inHTML, inHTMLcomment ;
tokenDefinition ∗td ; /∗ Token definition for text mode ∗/
tokenDefinition ∗btd ; /∗ Token definition for byte stream parsing ∗/
bool saveMessage ; /∗ Save current message in messageQueue ? ∗/
bool assemblePhrases ; /∗ Are we assembling phrases ? ∗/
deque〈string〉 phraseQueue ; /∗ Phrase assembly queue ∗/
deque〈string〉 pendingPhrases ; /∗ Queue of phrases awaiting return ∗/

public:
list〈string〉 messageQueue ; /∗ Current message ∗/
tokenParser()
{

td = Λ;
}
void setSource (mailFolder &mf)
{

source = &mf ;
cl = "";
clp = 0;
atEnd = inHTML = inHTMLcomment = false ;
saveMessage = false ;
messageQueue .clear ();
phraseQueue .clear ();
pendingPhrases .clear ();
〈Check phrase assembly parameters and activate if required 179 〉;

}
void setTokenDefinition (tokenDefinition &t, tokenDefinition &bt)
{

td = &t;
btd = &bt ;

}
void setTokenLengthLimits (unsigned int lMax ,unsigned int lMin = 1,unsigned int

blMax = 1,unsigned int blMin = 1)
{

assert(td 6= Λ);
td~setLengthLimits (lMin , lMax);
assert(btd 6= Λ);
btd~setLengthLimits (blMin , blMax);

}

144 TOKEN PARSER ANNOYANCE-FILTER §173

unsigned int getTokenLengthMin (void) const
{

return td~getLengthMin ();
}
unsigned int getTokenLengthMax (void) const
{

return td~getLengthMax ();
}
void reportParserDiagnostic(const string s) const
{

assert(source 6= Λ);
source~reportParserDiagnostic(s);

}
void reset (void)
{

if (inHTML) {
reportParserDiagnostic("<HTML> tag unterminated at end of message.");

}
if (inHTMLcomment) {

reportParserDiagnostic("HTML comment unterminated at end of message.");
}
inHTML = inHTMLcomment = false ;
clearMessageQueue ();
phraseQueue .clear ();
pendingPhrases .clear ();

}
bool nextToken (dictionaryWord &d);
void assembleAllPhrases (dictionaryWord &d);
〈Message queue utilities 182 〉;
bool isNewMessage (void) const
{

return atEnd ∨ (source~ isNewMessage ());
}

private:
void nextLine (void)
{

while (true) {
if (¬(source~nextLine (cl))) {

atEnd = true ;
cl = "";
break;

}
if (saveMessage) {

messageQueue .push back (cl);
}
if (source~ isNewMessage ()) {

reset ();
}
break;

}

§173 ANNOYANCE-FILTER TOKEN PARSER 145

clp = 0;
}

};

146 TOKEN PARSER ANNOYANCE-FILTER §174

174. The nextToken method stores the next token from the input source into its dictionary word
argument and returns true if a token was found or false if the end of the input source was encountered
whilst scanning for the next token.
#define ChIx (c) (static cast〈unsigned int〉((c)) & #FF)
〈Class implementations 11 〉 +≡

bool tokenParser ::nextToken (dictionaryWord &d)
{

string token ;
while (¬atEnd) {
〈Check for assembled phrases in queue and return next if so 175 〉;
token = "";
string ::size typenecount = 0;
if (source~ isByteStream ()) {
〈Parse plausible tokens from byte stream 178 〉;

} /∗ Ignore non-token characters until start of next token ∗/
while ((clp < cl .length ()) ∧ (inHTMLcomment ∨ (¬(td~ isTokenMember (ChIx (cl [clp])))))) {
〈Check for HTML comments and ignore them 176 〉;
〈Check for within HTML content 177 〉;
clp ++;

} /∗ If end of line encountered before token start, advance to next line ∗/
if (clp ≥ cl .length ()) {

nextLine ();
continue;

} /∗ Check for characters we don’t accept as the start of a token ∗/
if (td~ isTokenNotAtEnd (ChIx (cl [clp]))) {

clp ++;
continue;

} /∗ First character of token recognised; store and scan balance ∗/
if (td~ isTokenNotExclusively (ChIx (cl [clp]))) {

necount ++;
}
token += cl [clp ++];
while ((clp < cl .length ())) {

if ((¬inHTMLcomment) ∧ (td~ isTokenMember (ChIx (cl [clp])))) {
if (td~ isTokenNotExclusively (ChIx (cl [clp]))) {

necount ++;
}
token += cl [clp ++];

}
else {
〈Check for HTML comments and ignore them 176 〉;
if (inHTMLcomment) {

clp ++;
continue;

}
break;

}
} /∗ Prune characters we don’t accept at the end of a token ∗/
while ((token .length () > 0) ∧ td~ isTokenNotAtEnd (ChIx (token [token .length ()− 1]))) {

token .erase (token .length ()− 1);
} /∗ Verify that the token meets our minimum and maximum length constraints ∗/

§174 ANNOYANCE-FILTER TOKEN PARSER 147

if (¬(td~ isTokenLengthAcceptable (token))) {
continue;

} /∗ We’ve either hit the end of the line or encountered a character that’s not considered
part of a token. Return the token, leaving the class variables ready to carry on finding
the next token when we’re called again. But first, if the token is composed entirely of
characters in the not entirely class, we discard it. ∗/

if (necount ≡ token .length ()) {
continue;

}
d.set(token);
d.toLower (); /∗ Convert to canonical form ∗/
〈Check for phrase assembly and generate phrases as required 180 〉;
if (pTokenTrace ∧ saveMessage) {

messageQueue .push back (string(" \"") + d.text + "\"");
}
return true ;

}
return false ;

}

175. If we’re assembling phrases, there may be one or more already assembled phrases sitting in the
pendingPhrases queue. If so, remove it from the queue and return it.
〈Check for assembled phrases in queue and return next if so 175 〉 ≡

if (¬pendingPhrases .empty ()) {
token = pendingPhrases .front ();
pendingPhrases .pop front ();
d.set(token);
d.toLower ();
if (pTokenTrace ∧ saveMessage) {

messageQueue .push back (string(" \"") + d.text + "\"");
}
return true ;

}
This code is used in section 174.

148 TOKEN PARSER ANNOYANCE-FILTER §176

176. We wish to skip comments in HTML inclusions in mail, as junk mail frequently uses void HTML
comments to break up trigger words for detectors. Strictly speaking, a space (or end of line) is required
after the HTML begin comment and before the end comment delimiters, but most browsers don’t enforce
this and real-world HTML frequently violates this rule. So, we treat any sequence of characters between
the delimiters as an HTML comment.
#define HTMLCommentBegin "<!−−" /∗ HTML comment start sentinel ∗/
#define HTMLCommentEnd "−−>" /∗ HTML comment end sentinel ∗/
〈Check for HTML comments and ignore them 176 〉 ≡

if (inHTML ∧ ¬inHTMLcomment ∧ (cl .substr (clp , 4) ≡ HTMLCommentBegin)) {
inHTMLcomment = true ;
clp += 4; /∗ Skip over first HTML comment sentinel ∗/

#ifdef HTML_COMMENT_DEBUG

cout � "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− HTML Comment begin: " � cl � endl ;
#endif

continue;
}
if (inHTML ∧ inHTMLcomment ∧ (cl .substr (clp , 3) ≡ HTMLCommentEnd)) {

inHTMLcomment = false ;
clp += 3;

#ifdef HTML_COMMENT_DEBUG

cout � "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− HTML Comment end: " � cl � endl ;
#endif

continue;
}

#ifdef HTML_COMMENT_DEBUG

if (inHTMLcomment) {
cout � cl [clp];
if (clp ≡ (cl .length ()− 1)) {

cout � endl ;
}

}
#endif
This code is used in section 174.

§177 ANNOYANCE-FILTER TOKEN PARSER 149

177. To avoid accidentally blundering into HTML comment discarding in non-HTML text, we look
for start and end HTML tags and only activate HTML comment detection inside something which is
plausibly HTML. Note that unclosed HTML tags and comments are automatically closed out when
reset is called at the start of a new message from the mail folder.
〈Check for within HTML content 177 〉 ≡

if (cl [clp] ≡ ’<’ ∧ (clp ≤ (cl .length ()− 6))) {
if ((cl [clp + 1] ≡ ’H’ ∨ cl [clp + 1] ≡ ’h’) ∧ (cl [clp + 5] ≡ ’>’ ∨ cl [clp + 5] ≡ ’ ’)) {

string tag ;
for (int i = 1; i < 5; i++) {

tag += (islower (cl [clp + i])) ? toupper (cl [clp + i]) : cl [clp + i];
}
if (tag ≡ "HTML") {

inHTML = true ;
#ifdef HTML_COMMENT_DEBUG

cout � "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− In HTML: " � cl � endl ;
#endif

}
}

}
if (cl [clp] ≡ ’<’ ∧ (clp ≤ (cl .length ()− 7))) {

if ((cl [clp + 1] ≡ ’/’) ∧ (cl [clp + 2] ≡ ’H’ ∨ cl [clp + 2] ≡ ’h’) ∧ (cl [clp + 6] ≡ ’>’)) {
string tag ;
for (int i = 2; i < 6; i++) {

tag += (islower (cl [clp + i])) ? toupper (cl [clp + i]) : cl [clp + i];
}
if (tag ≡ "HTML") {

inHTML = false ;
#ifdef HTML_COMMENT_DEBUG

cout � "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Out of HTML: " � cl � endl ;
#endif

}
}

}
This code is used in section 174.

150 TOKEN PARSER ANNOYANCE-FILTER §178

178. If the item being read from the mailFolder has been identified as a binary byte stream, read
it character by character and parse for probable strings. We use the byte stream tokenDefinition
btd to determine token composition, permitting stricter construction of plausible tokens in binary byte
streams.

We get here only when our source identifies itself as chewing through a byte stream with isByteStream .
While in a byte stream, the mailFolder permits calls to its nextByte method, which returns bytes
directly from the active stream decoder. At the end of the stream (usually denoted by the end sentinel
of the MIME part containing the stream), nextByte returns −1 and clears the byte stream indicator.
We escape from here when that happens, and go around the main loop in nextToken again, which will,
now that byte stream mode is cleared, resume dealing with the mail folder at the nextLine level, where
all of the housekeeping related to the end of the byte stream will be dealt with.

This code is so similar to the main loop it’s embedded in it should probably be abstracted out as
a token recogniser engine parameterised by the means of obtaining bytes and the token definition it
applies. I may get around to this when I’m next in clean freak mode, but for the nonce I’ll leave it as-is
until I’m sure no additional special pleading is required when cracking byte streams.
〈Parse plausible tokens from byte stream 178 〉 ≡

int b;
while ((b = source~nextByte ()) ≥ 0) {

/∗ Ignore non-token characters until start of next token ∗/
if (¬(btd~ isTokenMember (b))) {

continue;
} /∗ Check for characters we don’t accept as the start of a token ∗/
if (btd~ isTokenNotAtEnd (b)) {

continue;
} /∗ First character of token recognised; store and scan balance ∗/
if (btd~ isTokenNotExclusively (b)) {

necount ++;
}
token += static cast〈char〉(b);
while (((b = source~nextByte ()) ≥ 0) ∧ btd~ isTokenMember (b)) {

if (btd~ isTokenNotExclusively (b)) {
necount ++;

}
token += static cast〈char〉(b);

} /∗ Prune characters we don’t accept at the end of a token ∗/
while ((token .length () > 0) ∧ btd~ isTokenNotAtEnd (ChIx (token [token .length ()− 1]))) {

token .erase (token .length ()− 1);
} /∗ Verify that the token meets our minimum and maximum length constraints ∗/
if (¬(btd~ isTokenLengthAcceptable (token))) {

token = "";
continue;

} /∗ Verify that the token isn’t composed exclusively of characters permitted in a token but
not allowed to comprise it in entirety. ∗/

if (necount ≡ token .length ()) {
token = "";
continue;

}
d.set(token);
d.toLower (); /∗ Convert to canonical form ∗/
〈Check for phrase assembly and generate phrases as required 180 〉;
if (pTokenTrace ∧ saveMessage) {

messageQueue .push back (string(" \"") + d.text + "\"");

§178 ANNOYANCE-FILTER TOKEN PARSER 151

}
return true ;

}
continue;

This code is used in section 174.

179. If the user has so requested, we can assemble tokens into phrases in a given length range. The
default minimum and maximum length phrase is 1 word, which causes individual tokens to be returned
as they are parsed. When the maximum is greater than one word, consecutive tokens (but never crossing
a reset or setSource boundary) are assembled into phrases and output as pseudo-tokens of each length
from the minimum to maximum length phrase.

Here we examine the phrase length parameters, report any erroneous specifications, and determine
whether phrase assembly is required at all.
〈Check phrase assembly parameters and activate if required 179 〉 ≡

assemblePhrases = false ;
if ((phraseMin 6= 1) ∨ (phraseMax 6= 1)) {

if ((phraseMin ≥ 1) ∧ (phraseMax ≥ phraseMin)) {
if ((phraseLimit > 0) ∧ (phraseLimit < ((phraseMax ∗ 2)− 1))) {

cerr � "Invalid −−phraselimit setting. Too small for specified −−phrasemax." �
endl ;

}
else {

assemblePhrases = true ;
}

}
else {

cerr � "Invalid −−phrasemin/max parameters. Must be 1 <= min <= max." � endl ;
}

}
This code is used in section 173.

180. When assemblePhrases is set, each arriving token is used to generate all phrases including itself
and previous tokens within the specified phrase length limits. Check for phrase assembly and invoke
the assembleAllPhrases method if required.
〈Check for phrase assembly and generate phrases as required 180 〉 ≡

if (assemblePhrases) {
assembleAllPhrases (d);
continue;

}
This code is used in sections 174 and 178.

152 TOKEN PARSER ANNOYANCE-FILTER §181

181. If we’re assembling phrases, we take each token parsed (which has already been stored into the
dictionaryWord argument d in canonical form) and place it on the phraseQueue queue, removing
the element at the tail if the queue is longer than phraseMax . Then, if the queue contains phraseMin
elements or more, iterate over the range of phrase lengths we wish to generate, creating phrases and
storing them onto pendingPhrases for subsequent return.
〈Class implementations 11 〉 +≡

void tokenParser ::assembleAllPhrases (dictionaryWord &d)
{

phraseQueue .push back (d.text);
if (phraseQueue .size () > phraseMax) {

phraseQueue .pop front ();
assert(phraseQueue .size () ≡ phraseMax);

}
for (unsigned int p = phraseMin ; p ≤ phraseMax ; p++) {

if (p ≤ phraseQueue .size ()) {
deque〈string〉 ::const reverse iteratorwp = phraseQueue .rbegin ();
string phrase = "";
for (unsigned int i = 0; i < p; i++) {

phrase = (∗wp) + ((phrase ≡ "") ? "" : " ") + phrase ;
wp ++;

}
if ((phraseLimit ≡ 0) ∨ (phrase .length () ≤ phraseLimit)) {

pendingPhrases .push back (phrase);
}

}
}

}

§182 ANNOYANCE-FILTER TOKEN PARSER 153

182. The messageQueue can be used to store the lines of a message: “what the parser saw,” after
MIME decoding (but not elision of HTML comments or other processing in the parser itself). This is
handy when debugging the lower level stuff. To enable saving messages in the queue, call setSaveMessage
with an argument of true . The contents of messageQueue may be examined directly (it is a public
member of the class), or written to an ostream with writeMessageQueue . One little detail—if you
examine the messageQueue after the start of the next message in a folder has been detected, the first
line of the next message will be the last item in the message queue; writeMessageQueue understands
this and doesn’t write the line, but if you’re looking at the queue yourself it’s up to you to cope with
this.
〈Message queue utilities 182 〉 ≡

void setSaveMessage (bool v)
{

saveMessage = v;
source~setDiagnosticList (saveMessage ? (&messageQueue) : Λ);

}
bool getSaveMessage (void) const
{

return saveMessage ;
}
void clearMessageQueue (void)
{

if (saveMessage) {
string s;
if (isNewMessage ()) {

s = messageQueue .back ();
}
messageQueue .clear ();
if (isNewMessage ()) {

messageQueue .push back (s);
}

}
}
void writeMessageQueue (ostream &os)
{

list〈string〉 ::size type l = messageQueue .size (), n = 0;
for (list〈string〉 :: iterator p = messageQueue .begin (); p 6= messageQueue .end (); p++, n++) {

if (¬((n ≡ (l − 1)) ∧ (p~substr (0, (sizeof messageSentinel)− 1) ≡ messageSentinel))) {
os � ∗p � endl ;

}
}

}
This code is used in section 173.

154 CLASSIFY MESSAGE ANNOYANCE-FILTER §183

183. Classify message.
The classifyMessage class reads input from a mailFolder and returns the junk probability for

successive messages. The input mailFolder may contain only a single message.
〈Class definitions 10 〉 +≡

class classifyMessage {
public:

mailFolder ∗mf ;
tokenParser tp ;
unsigned int nExtremal ;
dictionary ∗d;
fastDictionary ∗fd ;
double unknownWordProbability ;
classifyMessage(mailFolder &m,dictionary &dt , fastDictionary ∗fdt = Λ,unsigned int

nExt = 15,double uwp = 0.2);
double classifyThis (bool createTranscript = false);

protected:
void addSignificantWordDiagnostics (list〈string〉 &l, list〈string〉 :: iteratorwhere ,

multimap〈double, string〉 &rtokens , string endLine = "");
};

184. The constructor initialises the classifier for the default parsing of ISO-8859 messages.
〈Global functions 184 〉 ≡

classifyMessage ::classifyMessage(mailFolder &m,dictionary &dt , fastDictionary
∗fdt ,unsigned int nExt ,double uwp)

{
mf = &m;
tp .setSource (m);
tp .setTokenDefinition (isoToken , asciiToken);
tp .setTokenLengthLimits (maxTokenLength ,minTokenLength , streamMaxTokenLength ,

streamMinTokenLength);
if (pDiagFilename .length () > 0) {

tp .setSaveMessage (true);
}
d = &dt ;
fd = fdt ;
nExtremal = nExt ;
unknownWordProbability = uwp ;

}
See also sections 229, 230, 231, and 242.

This code is used in section 254.

§185 ANNOYANCE-FILTER CLASSIFY MESSAGE 155

185. The classifyThis method reads the next message from the mail folder and returns the probability
that it is junk. If the end of the mail folder is encountered −1 is returned.
〈Class implementations 11 〉 +≡

double classifyMessage ::classifyThis (bool createTranscript)
{

dictionaryWord dw ;
double junkProb = −1;
if (createTranscript ∨ (transcriptFilename 6= "")) {

mf~setTranscriptList (&messageTranscript);
if (Annotate (’p’) ∨Annotate (’d’)) {

saveParserDiagnostics = true ;
}

}
〈Build set of unique tokens in message 187 〉;
〈Classify message tokens by probability of significance 188 〉;
〈Compute probability message is junk from most significant tokens 189 〉;
if (tp .getSaveMessage ()) {
〈Add classification diagnostics to parser diagnostics queue 190 〉;
ofstream mdump(pDiagFilename .c str ());
tp .writeMessageQueue (mdump);
mdump .close ();

}
if (createTranscript ∨ (transcriptFilename 6= "")) {
〈Add annotation to message transcript 191 〉;
if (transcriptFilename 6= "") {

mf~writeMessageTranscript (transcriptFilename);
}

}
return junkProb ;

}

186. Just one more thing. . . . We need to define an absolute value function for floating point
quantities. Make it so.
〈Class definitions 10 〉 +≡
#ifdef OLDWAY

double abs (double x)
{

return (x < 0) ? (−(x)) : x;
}

#endif

187. Read the next message from the mail folder and build the set utokens of unique tokens in the
message. set insertion automatically discards tokens which appear more than once.
〈Build set of unique tokens in message 187 〉 ≡

set〈string〉 utokens ;
while (tp .nextToken (dw)) {

utokens .insert (dw .get ());
}

This code is used in section 185.

156 CLASSIFY MESSAGE ANNOYANCE-FILTER §188

188. Once we’ve obtained a list of tokens in the message, we now wish to filter it by the significance of
the probability that a token appears in junk or legitimate mail. This is simply the absolute value of the
difference of the token’s junkProbability from 0.5—the probability for a token equally likely to appear
in junk and legitimate mail. We construct a multimap called rtokens which maps this significance
value to the token string; since any number of tokens may have the same significance, we must use a
multimap as opposed to a map.

We count on multimap being an ordered collection class which, when traversed by its reverse iterator,
will return tokens in order of significance. This assumption may be unwarranted, but it’s valid for all
the STL implementations I’m aware of (and is essentially guaranteed since the fact that multimap
requires only the < operator for ordering effectively mandates a binary tree implementation).
〈Classify message tokens by probability of significance 188 〉 ≡

multimap〈double, string〉 rtokens ;
for (set〈string〉 :: iterator t = utokens .begin (); t 6= utokens .end (); t++) {

double pdiff ;
dictionary :: iterator dp ;
if (fd~ isDictionaryLoaded ()) {

pdiff = fd~find (∗t);
if (pdiff < 0) {

pdiff = unknownWordProbability ;
}
pdiff = abs (pdiff − 0.5);

}
else {

if (((dp = d~find (∗t)) 6= d~end ()) ∧ (dp~second .getJunkProbability () ≥ 0)) {
pdiff = abs (dp~second .getJunkProbability ()− 0.5);

}
else {

pdiff = abs (unknownWordProbability − 0.5);
}

}
rtokens .insert (make pair (pdiff , ∗t));

}
This code is cited in section 256.

This code is used in section 185.

§189 ANNOYANCE-FILTER CLASSIFY MESSAGE 157

189. Given the list of most signficant tokens, we now use Bayes’ theorem to compute the aggregate
probability the message is junk. If pi is the probability word i of the most significant n (nExtremal)
words in a message appears in junk mail, the probability the message as a whole is junk is:

n∏
i=1

pi

n∏
i=1

pi +
n∏

i=1

(1− pi)

〈Compute probability message is junk from most significant tokens 189 〉 ≡
unsigned int n = min (static cast〈multimap〈double, string〉 ::size type 〉(nExtremal),

rtokens .size ());
multimap〈double, string〉 ::const reverse iterator rp = rtokens .rbegin ();
double probP = 1, probQ = 1;
if (verbose) {

cerr � "Rank Probability Token" � endl ;
}
for (unsigned int i = 0; i < n; i++) {

double p;
if (fd~ isDictionaryLoaded ()) {

p = fd~find (rp~second);
if (p < 0) {

p = unknownWordProbability ;
}

}
else {

dictionary :: iterator dp = d~find (rp~second);
p = ((dp ≡ d~end ()) ∨ (dp~second .getJunkProbability () < 0)) ? unknownWordProbability :

dp~second .getJunkProbability ();
}
if (verbose) {

cerr � setw (3) � setiosflags (ios ::right) � (i + 1) � " " � setw (9) � setprecision (5) �
setiosflags (ios :: left) � p � " " � rp~second � endl ;

}
probP ∗= p;
probQ ∗= (1− p);
rp ++;

}
junkProb = probP /(probP + probQ);
if (verbose) {

cerr � "ProbP = " � probP � ", ProbQ = " � probQ � endl ;
}

This code is used in section 185.

158 CLASSIFY MESSAGE ANNOYANCE-FILTER §190

190. When parser diagnostics are enabled, add lines to the header of the message in the diagnostic
queue to indicate the words we used, their individual probabilities, and the resulting classification of
the message as a whole.
〈Add classification diagnostics to parser diagnostics queue 190 〉 ≡

ostringstream os ;
list〈string〉 :: iterator p; /∗ Find the end of the header in the message. If this fails we simply

append the diagnostics to the end of the message. ∗/
for (p = tp .messageQueue .begin (); p 6= tp .messageQueue .end (); p++) {

if (p~ length () ≡ 0) {
break;

}
}
os � Xfile � "−Junk−Probability: " � setprecision (5) � junkProb ;
tp .messageQueue .insert (p, os .str ());
os .str ("");
addSignificantWordDiagnostics (messageTranscript , p, rtokens);

This code is used in section 185.

§191 ANNOYANCE-FILTER CLASSIFY MESSAGE 159

191. If we’re producing a message transcript, just before writing it add the annotations to the end of
the header which indicate the junk probability and classification of the message based on the threshold
settings. After these, other annotations requested by the −−annotate option are appended.

The test for the end of the message header where we insert the annotations is a little curious. When
we’re processing a message received from a POP3Proxy server, the transcript will contain the CR from
the CR/LF termination sequences as required by POP3. (The final line feed will have been stripped by
getline as the message was read.) Preserving these terminators allows us to use the standard mechanisms
of mailFolder without lots of special flags, so we deem a line the end of the header if it’s either zero
length (read from a UNIX mail folder with getline or if it contains a single CR (received from a POP3
server). In the latter case, we set transEndl so as terminate annotations we add to the transcript with
CR/LF as well.
〈Add annotation to message transcript 191 〉 ≡

ostringstream os ;
list〈string〉 :: iterator p;
string transEndl = ""; /∗ Find the end of the header in the message. If this fails simply append

the annotations to the end of the message. ∗/
for (p = messageTranscript .begin (); p 6= messageTranscript .end (); p++) {

if (p~ length () ≡ 0) {
break;

}
if (∗p ≡ "\r") {

transEndl = "\r";
break;

}
}
double jp = junkProb ; /∗ If the probability is sufficiently small it to be edited in scientific

notation, force it to zero so it’s easier to parse. ∗/
if (jp < 0.001) {

jp = 0;
}
os � Xfile � "−Junk−Probability: " � setprecision (3) � jp � transEndl ;
messageTranscript .insert (p, os .str ());
os .str ("");
os � Xfile � "−Classification: ";
if (junkProb ≥ junkThreshold) {

os � "Junk";
}
else if (junkProb ≤ mailThreshold) {

os � "Mail";
}
else {

os � "Indeterminate";
}
os � transEndl ;
messageTranscript .insert (p, os .str ());
if (Annotate (’w’)) {

addSignificantWordDiagnostics (messageTranscript , p, rtokens , transEndl);
}
if (Annotate (’p’) ∨Annotate (’d’)) {

while (¬parserDiagnostics .empty ()) {
ostringstream os ;

160 CLASSIFY MESSAGE ANNOYANCE-FILTER §191

os � Xfile � "−Parser−Diagnostic: " � parserDiagnostics .front () � transEndl ;
messageTranscript .insert (p, os .str ());
parserDiagnostics .pop();

}
}

This code is used in section 185.

192. Here’s the little function which adds the most signficant words and their probabilities to either
the parser diagnostics or the transcript. We break it out into a function to avoid duplicating the code.
〈Class implementations 11 〉 +≡

void classifyMessage ::addSignificantWordDiagnostics (list〈string〉 &l,
list〈string〉 :: iteratorwhere ,multimap〈double, string〉 &rtokens , string endLine)

{
unsigned int n = min (static cast〈multimap〈double, string〉 ::size type 〉(nExtremal),

rtokens .size ());
multimap〈double, string〉 ::const reverse iterator rp = rtokens .rbegin ();
for (unsigned int i = 0; i < n; i++) {

dictionary :: iterator dp = d~find (rp~second);
double wp = ((dp ≡ d~end ()) ∨ ((dp~second .getJunkProbability () < 0))) ?

unknownWordProbability : dp~second .getJunkProbability ();
ostringstream os ;
os � Xfile � "−Significant−Word: " � setw (3) � setiosflags (ios ::right) � (i + 1) �

" " � setw (8) � setprecision (5) � setiosflags (ios :: left) � wp � " \"" � rp~second �
"\"" � endLine ;

l.insert (where , os .str ());
os .str ("");
rp ++;

}
}

§193 ANNOYANCE-FILTER POP3 PROXY SERVER 161

193. POP3 proxy server.
If the system provides the required network access facilities, we can act as a POP3 proxy server,

mediating the protocol defined by RFC 1939. The POP3Proxy class manages this service when invoked
from the command line.

http://www.ietf.org/rfc/rfc1939.txt?number=1939

162 POP3 PROXY SERVER CLASS DEFINITION ANNOYANCE-FILTER §194

194. POP3 proxy server class definition.
We begin by defining the POP3Proxy class, which implements a general purpose POP3 proxy

capability.
#define POP_MAX_MESSAGE 512
#define POP_BUFFER ((POP_MAX_MESSAGE) + 2)
〈Class definitions 10 〉 +≡
#ifdef POP3_PROXY_SERVER

〈Declare signal handler function for broken pipes 216 〉
typedef void(∗POP3ProxyFilterFunction)(const string command , const string

argument , char ∗replyBuffer , int ∗replyLength , string &reply);
class POP3Proxy {
protected:

unsigned short popProxyPort ; /∗ Port on which POP proxy server listens ∗/
string serverName ; /∗ Domain name or IP address of POP server ∗/
unsigned short serverPort ; /∗ Port on which POP server listens ∗/
bool opened ; /∗ Have we established connection ? ∗/

private:
set〈string〉 multiLine , cMultiLine ; /∗ POP3 multi-line command lists ∗/
int listenSocket ; /∗ Socket on which we listen for connections ∗/
POP3ProxyFilterFunctionfilterFunction ; /∗ Filter function for replies from server ∗/

public:
POP3Proxy(unsigned short proxyPort = 9110, string serverN = "",unsigned short

serverP = 110,POP3ProxyFilterFunctionfilterF = Λ):
popProxyPort (proxyPort), serverName (serverN), serverPort (serverP), opened (false),

listenSocket (−1),filterFunction (filterF)
{
〈Define multi-line and conditional multi-line commands 195 〉;

}
∼POP3Proxy()
{

if (listenSocket 6= −1) {
close (listenSocket);
signal (SIGPIPE, SIG_DFL);

}
}
void setPopProxyPort (unsigned short p)
{
〈Check for POP3 connection already opened 196 〉;
popProxyPort = p;

}
void setServerName (string &s)
{
〈Check for POP3 connection already opened 196 〉;
serverName = s;

}
void setServerPort (unsigned short p)
{
〈Check for POP3 connection already opened 196 〉;
serverPort = p;

}

§194 ANNOYANCE-FILTER POP3 PROXY SERVER CLASS DEFINITION 163

void setFilterFunction (POP3ProxyFilterFunctionff)
{

filterFunction = ff ;
}
bool acceptConnections (int maxBacklog = 25);
bool serviceConnection (void);
bool operateProxyServer (int maxBacklog = 25);

};
#endif

195. Some of the POP3 protocol command return multiple-line responses, terminated with a line
containing a single “.” (text lines with this value are quoted by appending a single period). We
initialise the multiLine set with commands which always return multiple-line results and cMultiLine
with those which return multiple-line results when invoked with no arguments.
〈Define multi-line and conditional multi-line commands 195 〉 ≡

multiLine .insert ("capa"); /∗ Extension in RFC 2449 ∗/
multiLine .insert ("retr");
multiLine .insert ("top");
cMultiLine .insert ("list");
cMultiLine .insert ("uidl");

This code is used in section 194.

196. The requestor is supposed to define all the properties of the POP3 connection before it is opened.
Here we check for violations of this rule and chastise offenders.
〈Check for POP3 connection already opened 196 〉 ≡
#ifndef NDEBUG

if (opened) {
cerr � "Attempt to modify POP3 connection settings after connection opened." � endl ;
abort ();

}
#endif
This code is used in section 194.

http://www.ietf.org/rfc/rfc2449.txt?number=2449

164 POP3 PROXY SERVER CLASS DEFINITION ANNOYANCE-FILTER §197

197. In order to accept connections, we need to create a socket, listenSocket which is bound to the
port address on which we listen. We accept connections from any IP address. The acceptConnections
must be called to activate the socket before connections may be processed.
〈Class implementations 11 〉 +≡
#ifdef POP3_PROXY_SERVER

bool POP3Proxy ::acceptConnections (int maxBacklog)
{

struct sockaddr in name ;
listenSocket = socket (AF_INET, SOCK_STREAM, 0);
if (listenSocket < 0) {

perror ("POP3Proxy opening socket to listen for connections");
listenSocket = −1;
return false ;

} /∗ Create name with wildcards. ∗/
name .sin family = AF_INET;
name .sin addr .s addr = INADDR_ANY;
name .sin port = htons (popProxyPort);
if (bind (listenSocket , (struct sockaddr ∗) &name , sizeof name) < 0) {

close (listenSocket);
perror ("POP3Proxy binding socket to listen for connections");
listenSocket = −1;
return false ;

}
if (listen (listenSocket ,maxBacklog) < 0) {

close (listenSocket);
perror ("POP3Proxy calling listen for connection socket");
listenSocket = −1;
return false ;

}
signal (SIGPIPE, absentPlumber); /∗ Catch ”broken pipe” signals from disconnects ∗/
opened = true ;
return opened ;

}
#endif

198. The serviceConnection method waits for the next client connection to the listenSocket , accepts
it, and then conducts the dialogue with the client.
〈Class implementations 11 〉 +≡
#ifdef POP3_PROXY_SERVER

bool POP3Proxy ::serviceConnection (void)
{

assert(opened);
int clientSocket ; /∗ Socket for talking to client ∗/
struct sockaddr in from ; /∗ Client IP address ∗/
socklen t fromlen ; /∗ Length of client address ∗/
〈Wait for next client connection and accept it 199 〉;
〈Conduct dialogue with client 200 〉;
return true ;

}
#endif

§199 ANNOYANCE-FILTER POP3 PROXY SERVER CLASS DEFINITION 165

199. First of all, we have to camp on the listenSocket with accept until somebody connects to it. At
that point we obtain the clientSocket we’ll use to conduct the dialogue with the client.
〈Wait for next client connection and accept it 199 〉 ≡

errno = 0;
do {

fromlen = sizeof from ;
clientSocket = accept (listenSocket , (struct sockaddr ∗) &from ,&fromlen);
if (clientSocket ≥ 0) {

break;
}

} while (errno ≡ EINTR);
if (clientSocket < 0) {

perror ("POP3Proxy accepting connection from client");
return false ;

}
if (verbose) {

cout � "Accepting POP3 connection from " � inet ntoa (from .sin addr) � endl ;
}

This code is used in section 198.

200. Once a connection has been accepted, we use the clientSocket to conduct the dialogue until it’s
concluded.
〈Conduct dialogue with client 200 〉 ≡

int clientLength , serverLength ;
char clientBuffer [POP_BUFFER], serverBuffer [POP_BUFFER];
int serverSocket ;
u int32 t serverIP ;
struct hostent ∗h;
int cstat = −1;
bool ok = true ;
string command , argument , reply ;
〈Look up address of server 201 〉;
〈Open connection to server 202 〉;
〈Read the greeting from the server and relay to the client 203 〉;
〈Conduct client/server dialogue 204 〉;
〈Close the connection to the client and server 214 〉;

This code is used in section 198.

166 POP3 PROXY SERVER CLASS DEFINITION ANNOYANCE-FILTER §201

201. We need to obtain the IP address of the server host we’re supposed to be connecting to. This
can be specified by the user either in “dotted quad” notation, for example, “192.168.82.13” or as a
fully qualified domain name such as “pop3.fourmilab.ch”. If the former case, we convert the address
to binary with inet addr , in the latter, we invoke the resolver with gethostbyname to obtain the IP
address. We do not handle IPv6 addresses at the present time.
〈Look up address of server 201 〉 ≡

if (isdigit (serverName [0]) ∧ (serverIP = inet addr (serverName .c str ())) 6=
static cast〈u int32 t 〉(−1)) {

cstat = 0;
}
else {

h = gethostbyname (serverName .c str ());
if (h 6= Λ) {

memcpy (&serverIP , h~h addr , sizeof serverIP);
cstat = 0;

}
else {

cerr � "POP3Proxy: POP3 server " � serverName .c str () � " unknown." � endl ;
close (clientSocket);
return false ;

}
}

This code is used in section 200.

§202 ANNOYANCE-FILTER POP3 PROXY SERVER CLASS DEFINITION 167

202. Once we’ve determined the IP address of the POP3 server, we next need to open a socket
connection to it on the TCP/IP port on which it listens.
〈Open connection to server 202 〉 ≡

struct sockaddr in serverHost ;
serverHost .sin family = AF_INET;
serverSocket = socket (AF_INET, SOCK_STREAM, 0);
if (serverSocket < 0) {

perror ("POP3Proxy opening socket to POP server");
cstat = −1;

}
else {

if (popProxyTrace) {
cerr � "POP3: serverSocket opened." � endl ;

}
serverHost .sin port = htons (serverPort);
memcpy ((char ∗) &serverHost .sin addr .s addr , (char ∗)(&serverIP), sizeof

serverHost .sin addr .s addr);
errno = 0;
do {

cstat = connect (serverSocket , (struct sockaddr ∗) &(serverHost), sizeof serverHost);
if (popProxyTrace) {

cerr � "POP3: serverSocket connected." � endl ;
}
if (cstat ≡ 0) {

if (popProxyTrace) {
cerr � "POP3: Connected to POP server on " � inet ntoa (serverHost .sin addr) �

":" � ntohs (serverHost .sin port) � endl ;
}
break;

}
else {

perror ("POP3Proxy connection to POP server failed");
}

} while (errno ≡ EINTR);
if (cstat < 0) {

cerr � "POP3Proxy: Cannot connect to POP3 server " � serverName .c str () � endl ;
}

}
This code is used in section 200.

168 POP3 PROXY SERVER CLASS DEFINITION ANNOYANCE-FILTER §203

203. Read the greeting from the server and forward it to the client. We do this prior to the dialogue
loop to avoid tangled logic there when processing requests with multiple-line replies.
〈Read the greeting from the server and relay to the client 203 〉 ≡

serverLength = recv (serverSocket , serverBuffer , POP_MAX_MESSAGE, 0);
if (serverLength < 0) {

perror ("POP3Proxy reading greeting from server");
ok = false ;

}
else {

clientLength = send (clientSocket , serverBuffer , serverLength , 0);
if (clientLength < 0) {

perror ("POP3Proxy forwarding greeting to client");
ok = false ;

}
}

This code is used in section 200.

204. This is the main client/server dialogue loop. We read successive requests from the client, forward
them to the server, then receive the reply from the server (which, depending on the request, may contain
variable-length information after the obligatory status line). Before returning the reply to the client, we
check whether this is a mail body we wish to pass through the filtering step and proceed accordingly.
Finally, the results are written back to the client. If the command we’ve just completed is “QUIT”, we’re
done with this client.
〈Conduct client/server dialogue 204 〉 ≡

while (ok) {
〈Read request from client 205 〉;
〈Check for blank request and discard 206 〉;
〈Forward request to server 207 〉;
〈Parse request and argument into canonical form 208 〉;
〈Read status line from server 209 〉;
〈Read multi-line reply from server if present 210 〉;
〈Fiddle with the reply from the server as required 211 〉;
〈Relay the status line from the server to the client 212 〉;
〈Relay multi-line reply, if any, to the client 213 〉;
if (command ≡ "quit") {

break;
}

}
This code is used in section 200.

§205 ANNOYANCE-FILTER POP3 PROXY SERVER CLASS DEFINITION 169

205. Read the next request from the client. Requests are always a single line consisting of POP_MAX_MESSAGE
characters or fewer.
〈Read request from client 205 〉 ≡

if (popProxyTrace) {
cerr � "POP3: Reading request from client." � endl ;

}
clientLength = recv (clientSocket , clientBuffer , POP_MAX_MESSAGE, 0);
if (popProxyTrace) {

cerr � "POP3: Read " � clientLength � " request bytes from client." � endl ;
}
if (clientLength ≤ 0) {

break;
}

This code is used in section 204.

206. RFC 1939 is silent on the issue, but the POP3 server I tested with seems to silently discard
blank lines without issuing an “−ERR” response. Since this can hang up our proxy cycle, eat blank lines
without passing them on to the server. This shouldn’t happen with a properly operating client, but it’s
all too easy to do when testing with Telnet, and besides, we have to cope with screwball clients which
may do anything.
〈Check for blank request and discard 206 〉 ≡

if (isspace (clientBuffer [0])) {
continue;

}
This code is used in section 204.

207. Pass on the client request to the server.
〈Forward request to server 207 〉 ≡

serverLength = send (serverSocket , clientBuffer , clientLength , 0);
if (serverLength 6= clientLength) {

perror ("POP3Proxy forwarding request to server");
break;

}
This code is used in section 204.

170 POP3 PROXY SERVER CLASS DEFINITION ANNOYANCE-FILTER §208

208. In order to determine whether the server will respond with a multi-line reply in addition to a
status line, we must examine the command and its arguments. The command, which is case-insensitive,
is forced to lower case to facilitate comparisons. Note that since we’ve already forwarded the request to
the server, it’s OK to diddle clientBuffer here.
〈Parse request and argument into canonical form 208 〉 ≡

while ((clientLength > 0) ∧ isspace (clientBuffer [clientLength − 1])) {
clientLength−−;

}
command = argument = "";
int i;
for (i = 0; i < clientLength ; i++) {

if (isspace (clientBuffer [i])) {
break;

}
char ch = clientBuffer [i];
if (isalpha (ch) ∧ isupper (ch)) {

ch = tolower (ch);
}
command += ch ;

}
while ((i < clientLength) ∧ isspace (clientBuffer [i])) {

i++;
}
if (i < clientLength) {

argument = string(clientBuffer + i, clientLength − i);
}
if (popProxyTrace) {

cerr � "POP3: Client command (" � command � ") Argument (" � argument � ")" �
endl ;

}
This code is used in section 204.

§209 ANNOYANCE-FILTER POP3 PROXY SERVER CLASS DEFINITION 171

209. Now we’re ready to read the status line from the server. This will begin with “+OK” if the
request was successful and “−ERR” if now.
〈Read status line from server 209 〉 ≡

serverLength = 0;
int rl = −1;
while (true) {

rl = recv (serverSocket , serverBuffer + serverLength , 1, 0);
if (rl < 0) {

perror ("POP3Proxy reading request status from server");
break;

}
serverLength ++;
if (serverBuffer [serverLength − 1] ≡ ’\n’) {

break;
}
if (serverLength ≥ POP_MAX_MESSAGE) {

cerr � "POP3Proxy reply from server too long." � endl ;
rl = −1;
break;

}
}
if (rl < 0) {

break;
}
if (popProxyTrace) {

cerr � "POP3: Server reply is " � serverLength � " bytes" � endl ;
}

This code is cited in section 256.

This code is used in section 204.

172 POP3 PROXY SERVER CLASS DEFINITION ANNOYANCE-FILTER §210

210. If the status from the server is positive and the command is one which elicits a multiple-line
reply, read the reply from the server until the terminating sentinel, a single period followed by the
CR/LF line terminator. Any line in the reply which begins with a period is quoted by prefixing a
period.

We concatenate replies from the server into the reply string until the end sentinel is encountered.
〈Read multi-line reply from server if present 210 〉 ≡

reply = "";
if ((serverBuffer [0] ≡ ’+’) ∧ ((multiLine .find (command) 6= multiLine .end ()) ∨ ((argument ≡

"") ∧ (cMultiLine .find (command) 6= cMultiLine .end ())))) {
int bll ;
char bp [POP_BUFFER];
if (popProxyTrace) {

cerr � "POP3: Reading multi−line reply from server." � endl ;
}
do {

bll = recv (serverSocket , bp , POP_MAX_MESSAGE, 0);
if (bll < 0) {

perror ("POP3Proxy reading multi−line reply to request from server");
break;

}
#ifdef POP3_TRACE_TRANSFER_DETAIL

if (popProxyTrace) {
cerr � "POP3: Appending " � bll � " bytes to multi−line reply." � endl ;

}
#endif

reply += string(bp , bll);
} while ((reply .length () < 3) ∨ ((reply 6= ".\r\n") ∧ (reply .substr (reply .length () − 5) 6=

"\r\n.\r\n")));
}

This code is used in section 204.

211. Here’s where we permit the filterFunction to get into the act. If there’s a filterFunction , we
hand it everything it needs to modify the status line and reply from the server. Note that even though
we go to the effort to pass the canonicalised and parsed command and argument, it’s up to the filter
function to compose the rough-and-ready status string in the serverBuffer string, which must be zero
terminated.
〈Fiddle with the reply from the server as required 211 〉 ≡

if (popProxyTrace) {
cerr � "POP3: Calling filter function." � endl ;

}
if (filterFunction 6= Λ) {

serverBuffer [serverLength] = 0;
filterFunction (command , argument , serverBuffer ,&serverLength , reply);

}
if (popProxyTrace) {

cerr � "POP3: Returned from filter function." � endl ;
}

This code is used in section 204.

§212 ANNOYANCE-FILTER POP3 PROXY SERVER CLASS DEFINITION 173

212. Send the status line received from the server back to the client. Why wait so long? Because if
we’ve modified the multi-line reply, we also may wish to modify the status line to reflect the length of
the modified reply.
〈Relay the status line from the server to the client 212 〉 ≡

clientLength = send (clientSocket , serverBuffer , serverLength , 0);
if (clientLength 6= serverLength) {

perror ("POP3Proxy relaying status of request to client");
break;

}
if (popProxyTrace) {

cerr � "POP3: Relaying " � serverLength � " byte status line to client: " �
serverBuffer ;

if ((serverLength ≡ 0) ∨ (serverBuffer [serverLength − 1]) 6= ’\n’) {
cerr � endl ; /∗ “Can’t happen”—but just in case ∗/

}
}

This code is used in section 204.

174 POP3 PROXY SERVER CLASS DEFINITION ANNOYANCE-FILTER §213

213. If the server’s reponse included a multi-line reply, relay it to the client. We write it with a single
send unless POP3_MAX_CLIENT_WRITE is defined, in which case we write the reply in chunks of that size;
if you wish to be ultra-conservative, you might define it to be POP_MAX_MESSAGE.
〈Relay multi-line reply, if any, to the client 213 〉 ≡

if (reply 6= "") {
if (popProxyTrace) {

cerr � "POP3: Relaying " � reply .length () � " byte multi−line reply to client." �
endl ;

}
#ifdef POP3_MAX_CLIENT_WRITE

clientLength = 0;
int rpl = reply .length ();
while (clientLength < ((int) reply .length ())) {

int bcl , pcl ;
bcl = min (rpl , POP3_MAX_CLIENT_WRITE);

#ifdef POP3_TRACE_TRANSFER_DETAIL

if (popProxyTrace) {
cerr � "POP3: Writing " � bcl � " bytes of multi−line reply to client." � endl ;

}
#endif

pcl = send (clientSocket , reply .data () + clientLength , bcl , 0);
if (pcl 6= bcl) {

if (popProxyTrace) {
cerr � "POP3: Error writing " � bcl � " bytes: wrote " � pcl � " bytes." �

endl ;
}
break; /∗ Note that test below will error transfer ∗/

}
clientLength += pcl ;
rpl −= pcl ;

}
#else

clientLength = send (clientSocket , reply .data (), reply .length (), 0);
#endif

if (clientLength 6= static cast〈int〉(reply .length ())) {
perror ("POP3Proxy relaying multi−line reply to request to client");
break;

}
#ifdef POP3_TRACE_TRANSFER_DETAIL

if (popProxyTrace) {
cerr � "POP3: <<<<<< Relaying " � reply .length () �

" byte multi−line reply body to client. >>>>>>" � endl ;
cerr � reply ;
cerr � "POP3: <<<<<< End multi−line reply body. >>>>>>" � endl ;

}
#endif
}

This code is cited in section 256.

This code is used in section 204.

§214 ANNOYANCE-FILTER POP3 PROXY SERVER CLASS DEFINITION 175

214. We’re all done. Having relayed the reply to the “quit” command, or having something go blooie
in the processing loop, we close the client and server sockets and get ready to bail out from servicing
this connection.
〈Close the connection to the client and server 214 〉 ≡

close (clientSocket);
close (serverSocket);
if (verbose) {

cerr � "Closing POP3 connection from " � inet ntoa (from .sin addr) � endl ;
}

This code is used in section 200.

215. If you simply wish to run a POP3 proxy server until the end of time, you can invoke this method
which puts it all together. We return only if something blows up, after which the caller is well-advised
to destroy the POP3Proxy object and try again.
〈Class implementations 11 〉 +≡
#ifdef POP3_PROXY_SERVER

bool POP3Proxy ::operateProxyServer (int maxBacklog)
{

if (acceptConnections (maxBacklog)) {
while (serviceConnection ()) ;

}
return false ;

}
#endif

216. Various alarums and diversions will result in our receiving a SIGPIPE signal whilst acting as a
POP3 server. These may be safely ignored, as the following function does.
〈Declare signal handler function for broken pipes 216 〉 ≡

static RETSIGTYPEabsentPlumber (int)
{

if (popProxyTrace) {
cerr � "POP3: Caught SIGPIPE−−continuing." � endl ;

}
signal (SIGPIPE, absentPlumber); /∗ Reset signal just in case ∗/

}
This code is used in section 194.

176 POP3 PROXY SERVER IMPLEMENTATION ANNOYANCE-FILTER §217

217. POP3 proxy server implementation.
Using the POP3Proxy class defined above, the following code actually provides the proxying for

annoyance−filter, including running filtering retrieved messages and returning them to the client
annotated with their classification.

218. This is the entire proxy server! It is invoked by the main program after processing command
line options if popProxyServer has been set. It creates a POP3Proxy with the specified arguments
and puts it to work. There is no escape from here except through catastrophic circumstances.
〈Operate POP3 proxy server, filtering replies 218 〉 ≡

if (dict .empty () ∧ (¬fDict .isDictionaryLoaded ())) {
cerr � "You cannot operate a −−pop3proxy server ""unless you have fir\

st loaded a dictionary." � endl ;
return 1;

}
if (verbose) {

cerr � "Starting POP3 proxy server on port " � popProxyPort � " with server " �
popProxyServer � ":" � popProxyServerPort � endl ;

}
POP3Proxy pp(popProxyPort , popProxyServer , popProxyServerPort ,&popFilter);
pp .operateProxyServer ();

This code is used in section 223.

§219 ANNOYANCE-FILTER POP3 PROXY SERVER IMPLEMENTATION 177

219. The popFilter function handles the actual filtering of messages retrieved by the POP proxy
server. It takes the text of each message, creates mail folder to read it as an istringstream, then
classifies the message, generating a transcript annotated with the classification, which is returned to the
client in lieu of the raw message received from the server.
〈Utility functions 219 〉 ≡
#ifdef POP3_PROXY_SERVER

void popFilter (const string command , const string argument , char ∗replyBuffer , int
∗replyLength , string &reply)

{
if ((command ≡ "retr") ∧ ((∗replyLength) > 0) ∧ (replyBuffer [0] ≡ ’+’)) {
〈Create mail folder to read reply from POP3 server 220 〉;
〈Classify the message, generating an in-memory transcript of the results 221 〉;

#define not POPFILTER TRACE
#ifdef POPFILTER_TRACE

cerr � "Classification done." � endl ;
#endif
#ifdef OLDWAY

ostringstream os ;
#else

unsigned int mtl = mf .sizeMessageTranscript ();
#ifdef POPFILTER_TRACE

cerr � "Message transcript predicted size: " � mtl � endl ;
#endif

char ∗mtbuf = new char[mtl + 16];
ostrstream os (mtbuf ,mtl + 16);

#endif

mf .writeMessageTranscript (os);
#ifdef POPFILTER_TRACE

cerr � "Transcript written." � endl ;
#endif

mf .clearMessageTranscript ();
#ifdef POPFILTER_TRACE

cerr � "Transcript cleared." � endl ;
cerr � "Message transcript actual size: " � os .tellp() � endl ;

#endif
reply .erase ();

#ifndef OLDWAY

os � ’\0’;
#endif

reply = os .str ();
#ifdef POPFILTER_TRACE

cerr � "Reply string length: " � reply .length () � endl ;
#endif
#ifndef OLDWAY

delete mtbuf ;
#endif
#ifdef POPFILTER_TRACE

cerr � "Reply created." � endl ;
#endif

〈Modify POP3 reply message to reflect change in text length 222 〉;
#ifdef POPFILTER_TRACE

178 POP3 PROXY SERVER IMPLEMENTATION ANNOYANCE-FILTER §219

cerr � "Reply length modification done." � endl ;
#endif

}
}

#endif
See also sections 227 and 246.

This code is used in section 254.

220. We use the reply from the POP3 server to initialise an istringstream whence mailFolder can
read the message. As usual, POP3 throws us a curve ball. When returning message text with a “RETR”
command, the POP3 server (or at least the ones I’ve tested), does not return the initial “From ” line
which denotes the start of a message in a normal UNIX mail folder. In order to correctly parse the
message header, we must invoke forceInHeader on the mailFolder rather than rely on the “From ” to
set this state.
〈Create mail folder to read reply from POP3 server 220 〉 ≡

istrstream is (reply .data (), reply .length ());
mailFolder mf (is ,dictionaryWord ::Mail);
mf .forceInHeader ();

This code is cited in section 256.

This code is used in section 219.

221. Now we can classify the message in the mailFolder we’ve just created by instantiating a
classifyMessage object attached to the folder. We then call classifyThis with a true argument which
causes it to generate a transcript with the classification annotations included, leaving it in the in-memory
messageTranscript .
〈Classify the message, generating an in-memory transcript of the results 221 〉 ≡

classifyMessage cm (mf , dict ,&fDict , significantWords ,novelWordProbability);
double jp = cm .classifyThis (true);
if (verbose) {

cerr � "Message junk probability: " � setprecision (5) � jp � endl ;
}

This code is used in section 219.

222. Strictly speaking, the only part of the status reply to a successful “RETR” request is “+OK”,
but many POP3 servers actually suffix the length in octets of the multi-line data which follows (but
not including the three byte terminator of a period followed by CR/LF) at the end. As Russell Nelson
observes in RFC 1957, sometimes implementations are mistaken for standards, especially by those who
prefer telnet experiments to actually reading the RFCs. So, on the off chance that some misguided
POP3 client might be parsing this value to decide how many text bytes to read from the socket, we
go the trouble here to re-generate the reply with the actual length of the filtered reply, reflecting the
annotations we’ve added to the header.
〈Modify POP3 reply message to reflect change in text length 222 〉 ≡

ostringstream rs ;
rs � "+OK " � (reply .length ()− 3) � " octets\r\n";
memcpy (replyBuffer , rs .str ().data (), rs .str ().length ());
∗replyLength = rs .str ().length ();

This code is used in section 219.

http://www.ietf.org/rfc/rfc1957.txt?number=1957

§223 ANNOYANCE-FILTER MAIN PROGRAM 179

223. Main program.
The main program is rather simple. We initialise the global variables then chew through the command

line, doing whatever the options request.
〈Main program 223 〉 ≡
〈Global declarations used by component in temporary jig 253 〉;
int main (int argc , char ∗argv [])
{

int opt ;
〈 Initialise global variables 224 〉;
〈Process command-line options 243 〉;

#ifdef POP3_PROXY_SERVER

if (popProxyServer 6= "") {
〈Operate POP3 proxy server, filtering replies 218 〉;

}
#endif

return exitStatus ;
}

This code is used in section 254.

224.

〈 Initialise global variables 224 〉 ≡
memset (messageCount , 0, sizeof messageCount);
isoToken .setISO 8859defaults (minTokenLength ,maxTokenLength);
asciiToken .setUS ASCIIdefaults (streamMinTokenLength , streamMaxTokenLength);

This code is used in section 223.

225. The master dictionary is global to the main program and all of its support functions. It’s
declared after all the class definitions it requires. We also support a fastDictionary for classification
runs. If loaded, it takes precedence over any loaded dictionary.
〈Master dictionary 225 〉 ≡

static dictionary dict ; /∗ Master dictionary ∗/
static fastDictionary fDict ; /∗ Fast dictionary ∗/

See also section 249.

This code is used in section 254.

226.

〈Global variables 226 〉 ≡
static unsigned int messageCount [2]; /∗ Total messages per category ∗/
static list〈string〉 messageTranscript ; /∗ Message transcript list ∗/
static queue〈string〉 parserDiagnostics ; /∗ List of diagnostics generated by the parser ∗/
static bool saveParserDiagnostics = false ; /∗ Save parser diagnostics in parserDiagnostics ? ∗/

See also sections 241, 250, and 251.

This code is cited in section 241.

This code is used in section 254.

180 MAIN PROGRAM ANNOYANCE-FILTER §227

227. The addFolder procedure reads a mail folder and adds the tokens it contains to the master
dictionary dict with the specified category . The global messageCount for the given category is updated
to reflect the number of messages added from the folder.
〈Utility functions 219 〉 +≡

static void addFolder (const char ∗fname ,dictionaryWord ::mailCategory cat)
{

if (verbose) {
cerr � "Adding " � (bsdFolder ? "BSD " : "") � "folder " � fname � " as " �

dictionaryWord ::categoryName (cat) � ":" � endl ;
}
mailFolder mf (fname , cat);
mf .setBSDmode (bsdFolder);
bsdFolder = false ; /∗ Reset BSD folder semantics ∗/
tokenParser tp ;
tp .setSource (mf);
tp .setTokenDefinition (isoToken , asciiToken);
tp .setTokenLengthLimits (maxTokenLength ,minTokenLength , streamMaxTokenLength ,

streamMinTokenLength);
if (pDiagFilename .length () > 0) {

tp .setSaveMessage (true);
}
dictionaryWord dw ;
unsigned int ntokens = 0;
while (tp .nextToken (dw)) {

dict .add (dw ,mf .getCategory ());
ntokens ++;
〈Prune unique words from dictionary if autoPrune threshold is exceeded 228 〉;

}
messageCount [mf .getCategory ()] += mf .getMessageCount ();
if (verbose) {

cerr � " Added " � mf .getMessageCount () � " messages, " � ntokens �
" tokens in " � mf .getLineCount () � " lines." � endl ;

cerr � " Dictionary contains " � dict .size () � " unique tokens." � endl ;
cerr � " Dictionary size " � dict .estimateMemoryRequirement () � " bytes." � endl ;

}
}

§228 ANNOYANCE-FILTER MAIN PROGRAM 181

228. If −−autoprune is specified, the memory consumed by the dictionary is estimated as tokens
are added and, if the threshold is exceeded, all unique words are pruned from the dictionary. If, after
the prune is complete, the dictionary still exceeds 90of beginning to thrash, pruning over and over to
no effect. If this is the case, we automatically increase the −−autoprune setting by 25% to stave off
thrashing (while, of course, running the risk of paging thrashing if physical memory is exceeded.
〈Prune unique words from dictionary if autoPrune threshold is exceeded 228 〉 ≡

if ((autoPrune 6= 0) ∧ (dict .estimateMemoryRequirement () > autoPrune)) {
if (verbose) {

cerr � "Dictionary size " � dict .estimateMemoryRequirement () �
"; starting automatic prune." � endl ;

}
dict .purge (1);
if (dict .estimateMemoryRequirement () > ((autoPrune ∗ 9)/10)) {

cerr � "Dictionary size after −−autoprune is larger than 90%" � endl ;
cerr � "of −−autoprune setting of " � autoPrune � " bytes." � endl ;
autoPrune = static cast〈unsigned int〉(autoPrune ∗ 1.25);
cerr � "Increasing −−autoprune threshold 25% to " � autoPrune �

" to avoid thrashing." � endl ;
}

}
This code is used in section 227.

229. The updateProbability function recomputes word probabilities in the dictionary. It should be
called after any changes are made to the contents of the dictionary. Any operation which recomputes the
probabilities makes us ineligible for optimising out probability computation loading the first dictionary,
so we clear the singleDictionaryRead flag.
〈Global functions 184 〉 +≡

static void updateProbability (void)
{

dict .computeJunkProbability (messageCount [dictionaryWord ::Mail],
messageCount [dictionaryWord ::Junk],mailBias ,minOccurrences);

singleDictionaryRead = false ;
}

230. The printDictionary function dumps the dictionary in human-readable form to a specified output
stream,
〈Global functions 184 〉 +≡

static void printDictionary (ostream &os = cout)
{

updateProbability ();
os � "Dictionary contains " � dict .size () � " unique tokens." � endl ;
for (dictionary :: iterator dp = dict .begin (); dp 6= dict .end (); dp ++) {

dp~second .describe (os);
}

}

182 MAIN PROGRAM ANNOYANCE-FILTER §231

231. The classifyMessages function classifies the first message in the mail folder fname .
〈Global functions 184 〉 +≡

static double classifyMessages (const char ∗fname)
{

double jp ;
if (dict .empty () ∧ ¬fDict .isDictionaryLoaded ()) {

cerr � "You cannot −−classify or −−test a message ""unless you have fir\
st loaded a dictionary." � endl ;

jp = 0.5; /∗ Beats me–call it fifty-fifty junk probability ∗/
}
else {

mailFolder mf (fname ,dictionaryWord ::Mail);
classifyMessage cm (mf , dict ,&fDict , significantWords ,novelWordProbability);
jp = cm .classifyThis ();
if (verbose) {

cerr � "Message junk probability: " � setprecision (5) � jp � endl ;
}

}
nTested ++;
return jp ;

}

§232 ANNOYANCE-FILTER HEADER INCLUDE FILES 183

232. Header include files.
The following include files provide access to system and library components.

〈 Include header files 232 〉 ≡
#include "config.h" /∗ Configuration definitions from ./configure ∗/
〈Tweak configuration when building for Win32 238 〉
〈C++ standard library include files 233 〉
〈C library include files 234 〉
〈Conditional C library include files 235 〉

#ifdef WIN32

#define __GNU_LIBRARY__

#undef __GETOPT_H__

#endif
#include "getopt.h" /∗ Use our own getopt , which supports getopt long ∗/
#include "statlib.h" /∗ Statistical library ∗/
〈Configuration of conditional capabilities 237 〉
〈Network library include files 236 〉

This code is used in section 254.

233. We use the following C++ standard library include files. Note that current C++ theology
prescribes that these files not bear the traditional .h extension; since some libraries have gotten it into
their pointy little heads to natter about this, we conform. If you’re using an older C++ system, you may
have to restore the .h extension if one or more of these come up “not found”.
〈C++ standard library include files 233 〉 ≡
#include <iostream>

#include <iomanip>

#include <fstream>

#include <cstdlib>

#include <string>

#include <sstream>

#ifdef HAVE_FDSTREAM_COMPATIBILITY

#include "fdstream.hpp"

#endif
#ifdef HAVE_NEW_STRSTREAM

#include "mystrstream_new.h"

#else
#include "mystrstream.h"

#endif
#include <vector>

#include <algorithm>

#include <map>

#include <stack>

#include <deque>

#include <queue>

#include <list>

#include <set>

#include <bitset>

#include <functional>

#include <cmath>

using namespace std;
This code is used in section 232.

184 HEADER INCLUDE FILES ANNOYANCE-FILTER §234

234. We also use the following C library include files for low-level operations.
〈C library include files 234 〉 ≡
#include <stdio.h>

#include <stdlib.h>

#include <fcntl.h>

#include <ctype.h>

#include <string.h>

#include <assert.h>

This code is used in section 232.

235. Some C library header files are included only on platforms which support the facilities they
provide. This is determined by the ./configure script, which sets variables in config.h which we use
to include them if present.
〈Conditional C library include files 235 〉 ≡
#ifdef HAVE_STAT

#include <sys/stat.h>

#endif
#ifdef HAVE_UNISTD_H

#include <unistd.h>

#endif
#ifdef HAVE_DIRENT_H

#include <dirent.h>

#endif
#ifdef HAVE_MMAP

#include <sys/mman.h>

#endif
This code is used in section 232.

236. The following libraries are required to support the network operations required by the POP3
proxy server. If the minimal subset required to support the server are not present, it will be disabled.
〈Network library include files 236 〉 ≡
#if defined (HAVE_SOCKET) ∧ defined (HAVE_SIGNAL)
#define POP3_PROXY_SERVER

#endif
#ifdef POP3_PROXY_SERVER

#include <signal.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <netdb.h>

#include <errno.h>

#endif
This code is used in section 232.

§237 ANNOYANCE-FILTER HEADER INCLUDE FILES 185

237. Some capabilities of the program depend in non-trivial ways on the presence of certain system
features detected by the ./configure script. Here we test for the prerequisites and define an internal
tag to enable the feature if all are met.
〈Configuration of conditional capabilities 237 〉 ≡
#if defined (HAVE_GNUPLOT) ∧ defined (HAVE_NETPBM) ∧ defined (HAVE_SYSTEM)
#define HAVE_PLOT_UTILITIES

#endif
#if defined (HAVE_DIRENT_H) ∧ defined (HAVE_STAT)
#define HAVE_DIRECTORY_TRAVERSAL

#endif
#if defined (HAVE_PDFTOTEXT) ∧ defined (HAVE_POPEN) ∧ (defined (HAVE_MKSTEMP) ∨ defined

(HAVE_TMPNAM))
#define HAVE_PDF_DECODER

#endif
This code is used in section 232.

238. It’s a pain in the posterior to have to edit the config.h file to disable features not supported
on Win32 platforms. Since we can’t run ./configure there, the process can’t be automated. So, we
take the lazy way out and manually undefine features absent on Win32, even if they were auto-detected
on the platform which generated config.h. Tacky.
〈Tweak configuration when building for Win32 238 〉 ≡
#ifdef WIN32

#undef HAVE_MMAP

#endif
This code is used in section 232.

239. The following global variables are used to keep track of command line options.
#define Annotate (c) (annotations .test (c)) /∗ Test if annotation is requested ∗/
〈Command line arguments 239 〉 ≡

static double mailBias = 2.0; /∗ Bias for words in legitimate mail ∗/
static unsigned int minOccurrences = 5; /∗ Minimum occurrences to trust probability ∗/
static double junkThreshold = 0.9; /∗ Threshold above which we classify mail as junk ∗/
static double mailThreshold = 0.9; /∗ Threshold below which we classify as mail ∗/
static int significantWords = 15; /∗ Number of words to use in classifying message ∗/
static double novelWordProbability = 0.2;

/∗ Probability assigned to words not in dictionary ∗/
static bitset〈1 � (sizeof (char) ∗ 8)〉 annotations ; /∗ Annotations requested in transcript ∗/

#ifdef POP3_PROXY_SERVER

static int popProxyPort = 9110; /∗ POP3 proxy server listen port ∗/
static string popProxyServer = "";

/∗ POP3 server (IP address or fully-qualified domain name) ∗/
static int popProxyServerPort = 110; /∗ POP3 server port ∗/

#endif
static bool bsdFolder = false ; /∗ Does mail folder use pure BSD “From ” semantics ? ∗/

See also section 240.

This code is used in section 254.

240. These globals are used to check for inconsistent option specifications.
〈Command line arguments 239 〉 +≡

static unsigned int nTested = 0; /∗ Number of messages tested ∗/

186 HEADER INCLUDE FILES ANNOYANCE-FILTER §241

241. The following options are referenced in class definitions and must be placed in the 〈Global
variables 226 〉 section so they’ll be declared prior to references to them.
〈Global variables 226 〉 +≡

static bool verbose = false ; /∗ Print verbose processing information ∗/
#ifdef TYPE_LOG

static ofstream typeLog ("/tmp/typelog.txt");
#endif

static string pDiagFilename = ""; /∗ Parser diagnostic file name ∗/
static string transcriptFilename = ""; /∗ Message transcript file name ∗/
static bool pTokenTrace = false ; /∗ Include detailed token trace in pDiagFilename output ? ∗/
static unsigned int maxTokenLength = 64, minTokenLength = 1;

/∗ Minimum and maximum token length limits ∗/
static unsigned int streamMaxTokenLength = 64, streamMinTokenLength = 5;

/∗ Minimum and maximum byte stream token length limits ∗/
static bool singleDictionaryRead = true ;

/∗ Can we optimise probability computation after dictionary import ? ∗/
static unsigned int phraseMin = 1, phraseMax = 1;

/∗ Minimum and maximum phrase length in words ∗/
static unsigned int phraseLimit = 48; /∗ Maximum phrase length ∗/
static unsigned int autoPrune = 0;

/∗ Automatic prune based on dictionary memory consumption ∗/
static bool popProxyTrace = false ; /∗ Should POP3 server write trace to cerr ? ∗/

§242 ANNOYANCE-FILTER HEADER INCLUDE FILES 187

242. Procedure usage prints how-to-call information. This serves as a reference for the option
processing code which follows. Don’t forget to update usage when you add an option!
〈Global functions 184 〉 +≡

static void usage (void)
{

cout � PRODUCT � " −− Annoyance Filter. Call" � endl ;
cout � " with " � PRODUCT � " [options]" � endl ;
cout � "" � endl ;
cout � "Options:" � endl ;
cout � " −−annotate options Specify optional annotations in −−transcript" �

endl ;
cout � " −−autoprune n Automatically prune unique words\

 when dictionary exceeds n bytes" � endl ;
cout � " −−biasmail n Set frequency bias for words and\

 phrases in legitimate mail to n" � endl ;
cout � " −−binword n Scan binary streams for words >=\

 n characters (0 = none)" � endl ;
cout � " −−bsdfolder Next −−mail or −−junk folder use\

s BSD \"From \" separator" � endl ;
cout � " −−classify fname Classify first message in fname" � endl ;
cout � " −−clearjunk Clear junk counts in dictionary" � endl ;
cout � " −−clearmail Clear mail counts in dictionary" � endl ;
cout � " −−copyright Print copyright information" � endl ;
cout � " −−csvread fname Import dictionary from fname in CSV format" �

endl ;
cout � " −−csvwrite fname Export dictionary to fname in CSV format" � endl ;
cout � " −−fread fname Load fast dictionary from fname" � endl ;
cout � " −−fwrite fname Write fast dictionary to fname" � endl ;
cout � " −−help, −u Print this message" � endl ;

#ifdef Jig
cout � " −−jig Test component in temporary jig" � endl ;

#endif
cout � " −−junk, −j folder Add folder contents to junk mail dictionary" �

endl ;
cout � " −−list Print dictionary on standard output" � endl ;
cout � " −−mail, −m folder Add folder contents to legitimat\

e mail dictionary" � endl ;
cout � " −−newword n Set probability for words not in\

 dictionary to n" � endl ;
cout � " −−pdiag fname Print parser diagnostics to fname" � endl ;
cout � " −−phraselimit n Set phrase maximum length to n characters" �

endl ;
cout � " −−phrasemax n Set phrase maximum to n words" � endl ;
cout � " −−phrasemin n Set phrase minimum to n words" � endl ;

#ifdef HAVE_PLOT_UTILITIES

cout � " −−plot fname Plot histogram of word probabili\
ties in dictionary" � endl ;

#endif
#ifdef POP3_PROXY_SERVER

cout � " −−pop3port n Listen for POP3 proxy requests o\
n port n (default 9110)" � endl ;

188 HEADER INCLUDE FILES ANNOYANCE-FILTER §242

cout � " −−pop3server serv[:p] Operate POP3 proxy for server, p\
ort p (default 110)" � endl ;

cout � " −−pop3trace Trace POP3 proxy traffic on standard error" �
endl ;

#endif
cout � " −−prune Prune infrequently used words from dictionary" �

endl ;
cout � " −−ptrace Include detailed trace in −−pdiag output" � endl ;
cout � " −−read, −r fname Import dictionary from fname" � endl ;
cout � " −−sigwords n Classify message based on n most\

 significant words" � endl ;
cout � " −−statistics Print statistics of dictionary" � endl ;
cout � " −−test, −t fname Test first message in fname" � endl ;
cout � " −−threshjunk n Set junk threshold to n" � endl ;
cout � " −−threshmail n Set mail threshold to n" � endl ;
cout � " −−transcript fname Write annotated message transcript to fname" �

endl ;
cout � " −−verbose, −v Print processing information" � endl ;
cout � " −−version Print version number" � endl ;
cout � " −−write fname Export dictionary to fname" � endl ;
cout � "" � endl ;
cout � "by John Walker" � endl ;
cout � "http://www.fourmilab.ch/" � endl ;

}

§243 ANNOYANCE-FILTER HEADER INCLUDE FILES 189

243. We use getopt long to process command line options. This permits aggregation of single letter
options without arguments and both −darg and −d arg syntax. Long options, preceded by −−, are
provided as alternatives for all single letter options and are used exclusively for less frequently used
facilities.
〈Process command-line options 243 〉 ≡

static const struct option long options [] = {
{"annotate", 1,Λ, 222},
{"autoprune", 1,Λ, 232},
{"biasmail", 1,Λ, 225},
{"binword", 1,Λ, 221},
{"bsdfolder", 0,Λ, 231},
{"classify", 1,Λ, 209},
{"clearjunk", 0,Λ, 215},
{"clearmail", 0,Λ, 216},
{"copyright", 0,Λ, 200},
{"csvread", 1,Λ, 205},
{"csvwrite", 1,Λ, 207},
{"fread", 1,Λ, 228},
{"fwrite", 1,Λ, 229},
{"help", 0,Λ, ’u’},

#ifdef Jig
{"jig", 0,Λ, 206},

#endif
{"junk", 1,Λ, ’j’},
{"list", 0,Λ, 202},
{"mail", 1,Λ, ’m’},
{"newword", 1,Λ, 220},
{"pdiag", 1,Λ, 212},
{"phraselimit", 1,Λ, 224},
{"phrasemax", 1,Λ, 223},
{"phrasemin", 1,Λ, 217},

#ifdef HAVE_PLOT_UTILITIES

{"plot", 1,Λ, 211},
#endif
#ifdef POP3_PROXY_SERVER

{"pop3port", 1,Λ, 226},
{"pop3server", 1,Λ, 227},
{"pop3trace", 0,Λ, 230},

#endif
{"prune", 0,Λ, 203},
{"ptrace", 0,Λ, 213},
{"purge", 0,Λ, 203}, /∗ For compatibility, it’s −−prune now ∗/
{"read", 1,Λ, ’r’},
{"sigwords", 1,Λ, 219},
{"statistics", 0,Λ, 210},
{"test", 1,Λ, ’t’},
{"threshjunk", 1,Λ, 208},
{"threshmail", 1,Λ, 214},
{"transcript", 1,Λ, 204},
{"verbose", 0,Λ, ’v’},
{"version", 0,Λ, 201},
{"write", 1,Λ, 218},

190 HEADER INCLUDE FILES ANNOYANCE-FILTER §243

{0, 0, 0, 0}
};
int option index = 0;
bool lastOption = false ; /∗ Set true to exit command line processing after option ∗/
int exitStatus = 0; /∗ Program exit status ∗/
while ((¬lastOption) ∧ (opt = getopt long (argc , argv , "j:m:r:t:uv", long options ,

&option index)) 6= −1) {
switch (opt) {
case 222: /∗ −−annotate options Add annotation options to −−transcript output ∗/

while ((∗optarg) 6= 0) {
unsigned int ch = (∗optarg ++) & #FF;
if (isascii (ch) ∧ isalpha (ch) ∧ isupper (ch)) {

ch = islower (ch);
}
annotations .set(ch);

}
break;

case 232:
/∗ −−autoprune n Automatically prune unique words when dictionary exceeds n bytes ∗/

autoPrune = atoi (optarg);
if (verbose) {

cerr � "Unique words will be automatically pruned from dictionary w\
hen it exceeds " � autoPrune � " bytes." � endl ;

}
break;

case 225: /∗ −−biasmail n Set frequency bias of words in legitimate mail to n ∗/
mailBias = atof (optarg);
if (verbose) {

cerr � "Frequency bias for words and phrases in legitimate mail set to " �
mailBias � "." � endl ;

}
break;

case 221: /∗ −−binwords n Parse binary streams for words of n characters or more ∗/
streamMinTokenLength = atoi (optarg);
if (verbose) {

if (streamMinTokenLength > 0) {
cerr � "Binary streams will be parsed for words of " � streamMinTokenLength �

" characters or more." � endl ;
}
else {

cerr � "Binary streams will not be parsed for words." � endl ;
}

}
break;

case 231: /∗ −−bsdfolder Next −−mail or −−junk folder uses BSD “From ” separator ∗/
bsdFolder = true ;
break;

case 209: /∗ −−classify fname Classify message in fname ∗/
{

if (optind < argc) {

§243 ANNOYANCE-FILTER HEADER INCLUDE FILES 191

cerr � "Warning: command line arguments after \"−−classify " � optarg �
" will be ignored." � endl ;

}
double score = classifyMessages (optarg);
if (score ≥ junkThreshold) {

cout � "JUNK" � endl ;
exitStatus = 3;

}
else if (score ≤ mailThreshold) {

cout � "MAIL" � endl ;
exitStatus = 0;

}
else {

cout � "INDT" � endl ; /∗ “INDeTerminate” ∗/
exitStatus = 4;

}
lastOption = true ; /∗ Bail out, ignoring any (erroneous) subsequent options ∗/
break;

}
case 215: /∗ −−clearjunk Clear junk counts in dictionary ∗/

dict .resetCat (dictionaryWord ::Junk);
messageCount [dictionaryWord ::Junk] = 0;
break;

case 216: /∗ −−clearmail Clear mail counts in dictionary ∗/
dict .resetCat (dictionaryWord ::Mail);
messageCount [dictionaryWord ::Mail] = 0;
break;

case 200: /∗ −−copyright Print copyright information ∗/
cout � "This program is in the public domain.\n";
return 0;

case 205: /∗ −−csvread fname Import dictionary from CSV fname ∗/
{

ifstream is (optarg);
if (¬is) {

cerr � "Cannot open CSV dictionary file " � optarg � endl ;
return 1;

}
dict .importCSV (is);
if (¬singleDictionaryRead) {

updateProbability ();
}
singleDictionaryRead = false ;
is .close ();

}
break;

case 207: /∗ −−csvwrite fname Export dictionary to CSV fname ∗/
{

ofstream of (optarg);
if (¬of) {

cerr � "Cannot create CSV export file " � optarg � endl ;

192 HEADER INCLUDE FILES ANNOYANCE-FILTER §243

return 1;
}
updateProbability ();
dict .exportCSV (of);
of .close ();

}
break;

case 228: /∗ −−fread fname Load fast dictionary from fname ∗/
if (¬fDict .load (optarg)) {

cerr � "Unable to load fast dictionary file." � endl ;
return 1;

}
break;

case 229: /∗ −−fwrite fname Export dictionary to fast dictionary fname ∗/
if (dict .size () ≡ 0) {

cerr � "No dictionary loaded when −−fwrite command issued." � endl ;
return 1;

}
fastDictionary ::exportDictionary (dict , optarg);
break;

case ’u’: /∗ −u, −−help Print how-to-call information ∗/
case ’?’: /∗ −? Indication of error parsing command line ∗/

usage ();
return 0;

#ifdef Jig
case 206: /∗ −−jig Test component in temporary jig ∗/
{
〈Test component in temporary jig 252 〉;

}
break;

#endif

case ’j’: /∗ −j, −−junk folder Add folder contents to junk mail dictionary ∗/
addFolder (optarg ,dictionaryWord ::Junk);
updateProbability ();
break;

case 202: /∗ −−list Print dictionary on standard output ∗/
printDictionary ();
break;

case ’m’: /∗ −m, −−mail folder Add folder contents to legitimate mail dictionary ∗/
addFolder (optarg ,dictionaryWord ::Mail);
updateProbability ();
break;

case 220: /∗ −−newword n Set probability for words not in dictionary to n ∗/
novelWordProbability = atof (optarg);
if (verbose) {

cerr � "Probability for words not in dictionary set to " � novelWordProbability �
"." � endl ;

}
break;

case 212: /∗ −−pdiag fname Write parser diagnostic log to fname ∗/

§243 ANNOYANCE-FILTER HEADER INCLUDE FILES 193

pDiagFilename = optarg ;
break;

case 224: /∗ −−phraselimit n Set phrase maximum length to n characters ∗/
phraseLimit = atoi (optarg);
if (verbose) {

cerr � "Phrase maximum length set to " � phraseLimit � " characters." � endl ;
}
break;

case 223: /∗ −−phrasemax n Set phrase maximum to n words ∗/
phraseMax = atoi (optarg);
if (verbose) {

cerr � "Phrase maximum length set to " � phraseMax � " word" � (phraseMax ≡ 1 ?
"" : "s") � "." � endl ;

}
break;

case 217: /∗ −−phrasemin n Set phrase minimum to n words ∗/
phraseMin = atoi (optarg);
if (verbose) {

cerr � "Phrase minimum length set to " � phraseMin � " word" � (phraseMin ≡ 1 ?
"" : "s") � "." � endl ;

}
break;

#ifdef HAVE_PLOT_UTILITIES

case 211: /∗ −−plot fname Plot dictionary histogram as fname.png ∗/
updateProbability ();
dict .plotProbabilityHistogram (optarg);
break;

#endif

#ifdef POP3_PROXY_SERVER

case 226: /∗ −−pop3port p Listen for POP3 proxy requests on port n (default 9110) ∗/
popProxyPort = atoi (optarg);
if (verbose) {

cerr � "POP3 proxy server will listen on port " � popProxyPort � endl ;
}
break;

#endif

#ifdef POP3_PROXY_SERVER

case 227:
/∗ −−pop3server serv:p Operate POP3 proxy for server serv:p. Port p defaults to 110 ∗/

{
if (optind < argc) {

cerr � "Warning: command line arguments after \"−−pop3server " � optarg �
" will be ignored." � endl ;

}
string sarg = optarg ;
string ::size typepind = sarg .find last of (’:’);
if (pind 6= string ::npos) {

if ((pind < (sarg .length ()− 1)) ∧ (pind > 0) ∧ isdigit (sarg [pind + 1])) {
popProxyServerPort = atoi (sarg .substr (pind + 1).c str ());

}

194 HEADER INCLUDE FILES ANNOYANCE-FILTER §243

else {
cerr � "Invalid port number specification in −−pop3server argument." � endl ;
return 1;

}
sarg = sarg .substr (0, pind);

}
popProxyServer = sarg ;
if (verbose) {

cerr � "POP3 server will act as proxy for " � popProxyServer � ":" �
popProxyServerPort � endl ;

}
lastOption = true ; /∗ Bail out, ignoring any (erroneous) subsequent options ∗/
break;

}
#endif

#ifdef POP3_PROXY_SERVER

case 230: /∗ −−pop3trace Trace POP3 proxy server operations on cerr ∗/
popProxyTrace = true ;
break;

#endif

case 203: /∗ −−prune Purge dictionary of infrequently used words ∗/
updateProbability ();
dict .purge ();
break;

case 213: /∗ −−ptrace Include token by token trace in −−pdiag output ∗/
pTokenTrace = true ;
break;

case ’r’: /∗ −r, −−read fname Read dictionary from fname ∗/
{

#ifdef HAVE_MMAP

int fileHandle = open (optarg , O_RDONLY);
if (fileHandle ≡ −1) {

cerr � "Cannot open dictionary file " � optarg � endl ;
return 1;

}
long fileLength = lseek (fileHandle , 0, 2);
lseek (fileHandle , 0, 0);
char ∗dp = static cast〈char ∗〉(mmap((caddr t)0,fileLength , PROT_READ,

MAP_SHARED | MAP_NORESERVE,fileHandle , 0));
istrstream is (dp ,fileLength);

#else
ifstream is (optarg , ios ::binary);
if (¬is) {

cerr � "Cannot open dictionary file " � optarg � endl ;
return 1;

}
#endif

dict .importFromBinaryFile (is);
#ifdef HAVE_MMAP

munmap(dp ,fileLength);

§243 ANNOYANCE-FILTER HEADER INCLUDE FILES 195

close (fileHandle);
#else

is .close ();
#endif

if (¬singleDictionaryRead) {
updateProbability ();

}
singleDictionaryRead = false ;

}
break;

case 219: /∗ −−sigwords n Classify message based on n most significant words ∗/
significantWords = atoi (optarg);
if (verbose) {

cerr � "Significant words set to " � significantWords � "." � endl ;
}
break;

case 210: /∗ −−statistics Print statistics of dictionary ∗/
updateProbability ();
dict .printStatistics ();
break;

case ’t’: /∗ −t, −−test fname Test message in fname ∗/
{

double score = classifyMessages (optarg);
if (transcriptFilename 6= "−") {

cout � "Junk probability " � score � endl ;
}

}
break;

case 208: /∗ −−threshjunk n Set junk threshold to n ∗/
junkThreshold = atof (optarg);
if (verbose) {

cerr � "Junk threshold set to " � setprecision (5) � junkThreshold � "." � endl ;
}
break;

case 214: /∗ −−threshmail n Set mail threshold to n ∗/
mailThreshold = atof (optarg);
if (verbose) {

cerr � "Mail threshold set to " � setprecision (5) � mailThreshold � "." � endl ;
}
break;

case 204: /∗ −−transcript fname Write annotated message transcript to fname ∗/
transcriptFilename = optarg ;
break;

case ’v’: /∗ −v, −−verbose Print processing information ∗/
verbose = true ;
break;

case 201: /∗ −−version Print version information ∗/
{
〈Print program version information 245 〉;

}

196 HEADER INCLUDE FILES ANNOYANCE-FILTER §243

return 0;
case 218: /∗ −−write fname Write dictionary to fname ∗/
{

ofstream of (optarg , ios ::binary);
if (¬of) {

cerr � "Cannot create dictionary file " � optarg � endl ;
return 1;

}
updateProbability ();
dict .exportToBinaryFile (of);
of .close ();

}
break;

default:
cerr � "***Internal error: unhandled case " � opt � " in option processing." �

endl ;
return 1;

}
}
〈Check for inconsistencies in option specifications 244 〉;

This code is used in section 223.

244. Some combinations of option specifications make no sense or indicate the user doesn’t understand
how they’re processed. Check for such circumstances and issue warnings to point out the error of the
user’s ways.
〈Check for inconsistencies in option specifications 244 〉 ≡

if (pTokenTrace ∧ (pDiagFilename ≡ "")) {
cerr � "Warning: −−ptrace requested but no −−pdiag file specified." � endl ;

}
if ((transcriptFilename 6= "") ∧ (nTested ≡ 0)) {

cerr � "Warning: −−transcript requested but no message −−test or −−\
classify done." � endl ;

}
if ((pDiagFilename 6= "") ∧ (nTested ≡ 0)) {

cerr � "Warning: −−pdiag requested but no message −−test or −−classify done." �
endl ;

}
if (annotations .count () > 0 ∧ (transcriptFilename ≡ "")

#ifdef POP3_PROXY_SERVER

∧ (popProxyServer ≡ "")
#endif

) {
cerr � "Warning: −−annotate requested but no −−transcript or −−pop3\

proxy requested." � endl ;
}

This code is used in section 243.

§245 ANNOYANCE-FILTER HEADER INCLUDE FILES 197

245. Print a primate-readable message giving the version of the program, source and contact infor-
mation, and optional features compiled in.
〈Print program version information 245 〉 ≡

cout � PRODUCT " " VERSION � endl ;
cout � "Last revised: " REVDATE � endl ;
〈List optional capabilities configured in this build 247 〉;
cout � "The latest version is always available from:" � endl ;
cout � " http://www.fourmilab.ch/annoyance−filter/" � endl ;
cout � "Please report bugs to:" � endl ;
cout � " bugs@fourmilab.ch" � endl ;

This code is used in section 243.

246. This little utility function worries about printing the label before the first optional capability
and keeping track of how many we’ve printed in order to say “none” if that’s the case.
〈Utility functions 219 〉 +≡

static unsigned int nOptionalCaps = 0;
static void printOptionalCapability (const string &s)
{

if (nOptionalCaps ≡ 0) {
cout � "Optional capabilities configured:" � endl ;
nOptionalCaps ++;

}
cout � " " � s � "." � endl ;

}

247. Show which optional features detected by configure were built into the program.
〈List optional capabilities configured in this build 247 〉 ≡
#ifdef HAVE_PDF_DECODER

printOptionalCapability ("Decoding strings in PDF attachments");
#endif
#ifdef HAVE_DIRECTORY_TRAVERSAL

printOptionalCapability ("Directory traversal in the −−mail and −−junk options");
#endif
#ifdef HAVE_MMAP

printOptionalCapability ("Memory mapped access to dictionary and fast dictionary files");
#endif
#ifdef HAVE_PLOT_UTILITIES

printOptionalCapability ("Plotting distribution histogram (−−plot option)");
#endif
#ifdef POP3_PROXY_SERVER

printOptionalCapability ("POP3 proxy server");
#endif

if (nOptionalCaps ≡ 0) {
cout � "Optional capabilities configured: none." � endl ;

}
This code is used in section 245.

198 CHARACTER SET DEFINITIONS AND TRANSLATION TABLES ANNOYANCE-FILTER §248

248. Character set definitions and translation tables.
The following sections define the character set used in the program and provide translation tables

among various representations used in formats we emit.

249. Define the various kinds of tokens we parse from the input stream.
〈Master dictionary 225 〉 +≡

static tokenDefinition isoToken ; /∗ ISO-8859 token definition ∗/
static tokenDefinition asciiToken ; /∗ US-ASCII token definition ∗/

§250 ANNOYANCE-FILTER ISO 8859-1 CHARACTER TYPES 199

250. ISO 8859-1 character types.
The following definitions provide equivalents for ctype.h macros which work for ISO-8859 8 bit

characters. They require that ctype.h be included before they’re used.
〈Global variables 226 〉 +≡
#define ISOch (x) (static cast〈unsigned char〉((x) & #FF))
#define isISOspace (x) (isascii (ISOch (x)) ∧ isspace (ISOch (x)))
#define isISOalpha (x) ((isoalpha [ISOch (x)/8] & (#80� (ISOch (x) % 8))) 6= 0)
#define isISOupper (x) ((isoupper [ISOch (x)/8] & (#80� (ISOch (x) % 8))) 6= 0)
#define isISOlower (x) ((isolower [ISOch (x)/8] & (#80� (ISOch (x) % 8))) 6= 0)
#define toISOupper (x) (isISOlower (x) ? (isascii (((unsigned

char)(x))) ? toupper (x) : (((ISOch (x) 6= #DF)∧(ISOch (x) 6= #FF)) ? (ISOch (x)−#20) : (x))) : (x))
#define toISOlower (x) (isISOupper (x) ? (isascii (ISOch (x)) ? tolower (x) : (ISOch (x) + #20)) : (x))

251. The following tables are bit vectors which define membership in the character classes tested for
by the preceding macros.
〈Global variables 226 〉 +≡

const unsigned char isoalpha [32] = {0, 0, 0, 0, 0, 0, 0, 0, 127, 255, 255, 224, 127, 255, 255, 224, 0, 0, 0, 0,
0, 0, 0, 0, 255, 255, 254, 255, 255, 255, 254, 255};

const unsigned char isoupper [32] = {0, 0, 0, 0, 0, 0, 0, 0, 127, 255, 255, 224, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
255, 255, 254, 254, 0, 0, 0, 0};

const unsigned char isolower [32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 127, 255, 255, 224, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 255, 255, 254, 255};

252. To perform component tests during the development process we provide a test jig in which
the component may be figuratively mounted and exercised. When compiled with Jig defined, a −−jig

option (without argument) is included to activate the test.
〈Test component in temporary jig 252 〉 ≡
#ifdef Jig
#endif
This code is used in section 243.

253. The component in the temporary test jig may require some items declared in global context.
Here’s where you can put such declarations.
〈Global declarations used by component in temporary jig 253 〉 ≡
#ifdef Jig
#endif
This code is used in section 223.

200 OVERALL PROGRAM STRUCTURE ANNOYANCE-FILTER §254

254. Overall program structure.
Here we put all the pieces together in the order required by the digestive tract of the C++ compiler.

Like programmers, who must balance their diet among the four basic food groups: sugar, salt, fat,
and caffeine, compilers require a suitable mix of definitions, declarations, classes, and functions to get
along. Compilers are rather more picky than programmers in the order in which these delectations are
consumed.
〈Preprocessor definitions 〉
〈 Include header files 232 〉
〈Global variables 226 〉
〈Class definitions 10 〉
〈Command line arguments 239 〉
〈Class implementations 11 〉
〈Master dictionary 225 〉
〈Global functions 184 〉
〈Utility functions 219 〉
〈Main program 223 〉

§255 ANNOYANCE-FILTER RELEASE HISTORY 201

255. Release history.

Release 0.1: November 2002

Initial release.

Release 1.0: February 2003

First production release.

202 DEVELOPMENT LOG ANNOYANCE-FILTER §256

256. Development log.

2002 August 28

Created development tree and commenced implementation.

2002 September 1

Release 0.1 circulated for review.

2002 September 6

Added the ability to compute descriptive statistics of the dictionary built by parsing the −−mail and
−−junk folders, using the facilities of the statlib.w program. Statistics are written to standard output.

Added a −−plot option to plot a histogram of words in a newly parsed dictionary (not a lookup
dictionary loaded with −−read). Creating the plot requires the GNUPLOT and PBMPlus utilities to be
installed.

2002 September 7

Well, after a huge amount of hunkering down and twiddling, parsing of MIME multi-part messages and
decoding of parts encoded in Base64 and Quoted−Printable encoding now seems to be working. This
drastically improves the quality of parsing, particularly for junk where these forms of encoding are used
as “stealth” to evade other content-based filters.

2002 September 8

Added the ability to read mail folders compressed with gzip or other compressors detected by the
Autoconf script. This saves a lot of space when you’re keeping large training archives around. This will
work only on systems with suitable decompressors and the popen facility.

2002 September 9

Added the −−pdiag option to write the parser diagnostics to a designated file. Previously this was
controlled by a gnarly # define.

Added a “X−Annoyance−Filter−Decoder” line to the −−pdiag output to indicate the activation of
decoders (including the sink) for MIME parts in the message. These lines are not seen by the token
parser.

Fixed a bug in parsing of tokens including ISO accented characters. . .signed characters strike again.

2002 September 10

Added a −−ptrace option to include the actual tokens parsed as indented, quoted lines following each
line of parser input in the −−pdiag file.

Added code to classifyMessage which appends lines to the message header in the −−pdiag file giving
the aggregate junk probability and the most significant words and their individual probabilities.

Separated the mail and junk thresholds, which may now be set independently by the −−threshjunk

and −−threshmail options. The −−classify command now writes “INDT” (for “indeterminate”) if a
message falls between the two thresholds and exits with a return status of 4.

Added the −−binwrite and −−binread options to export and import a dictionary as a portable
(assuming IEEE floating point on all platforms) binary file. This will permit easier distribution of
dictionary databases and may be faster to load than the lookupDictionary .

§256 ANNOYANCE-FILTER DEVELOPMENT LOG 203

Added the −−clearjunk and −−clearmail options to clear counts of junk and mail. This can be used,
in conjunction with the binwrite option, to prepare databases for use by folks who do not wish to
prepare their own.

2002 September 11

Added the ability to enforce minimum and maximum length constraints on tokens returned by tokenParser.
The limits are set to accept tokens from 1 to 255 characters in the tokenParser constructor, and may
be changed at any time with the setTokenLengthLimits method. Note that the length limits are not
reset by a call to setSource .

Set the default token parser length limits to accept tokens between 1 and 64 characters. This will
doubtless be the subject of yet more command line options before long.

Modified the code which decides whether a mail folder is compressed to check for the argument being a
symbolic link. If so, the link target is tested for the extension indicating a compressed file. I only follow
links one level—if this poses a problem, your life is probably too complicated.

Fixed computation of probability to avoid crashes if no words are present in a category. Probabilities
don’t make any sense in such circumstances, but you may wish to create such a database for use with
−−binread.

Added logic to dictionary ::exportToBinaryFile and dictionary ::exportToBinaryFile to save and
restore the count of messages contributing to the dictionary in the messageCount array in a pseudo-word
called “ COUNTS ” (obligatorily) at the start of the dictionary. These counts are required should we
need to recompute the probability subsequent to loading the dictionary.

Added the −−newword and.–sigwords options to specify the probability given to words in a message
which don’t appear in the dictionary and the number of “most significant” words whose probabilities
are used to determine the aggregate probability a given message is junk.

2002 September 12

Added logic to cope with the body of a message being encoded in a Content−TransferEncoding.
While processing the header, this and the Content−Type are parsed as in MIME headers, with their
arguments saved in bodyContentType , bodyContentTypeCharset , and bodyContentTransferEncoding . At
the end of the header, if a bodyContentTransferEncoding has been specified, the values are transferred
to the corresponding mime . . . variables and multiPart is set with an end terminator of the null string.
The latter disables the decoder’s test for a part end sentinel and the warning for an unterminated part.

Messages with Subject lines which contain ISO 8859 encoded characters employ a form of Quoted−Printable
encoding to permit these characters to appear in a mail header where only 7 bit ASCII is permit-
ted. I added code to mailFolder to detect these lines and call a new decodeEscapedText method of
quotedPrintableMIMEdecoder to decode them if properly formed. This will permit parsing of ISO
subject lines, which may prove critical in discriminating among messages with very short body copy.

Yikes! As far as I can determine from the RFCs, what we’re supposed to do with continued header
lines is just concatenate them, discarding all white space on the continuation even if this runs together
tokens on adjacent lines. At least, if you don’t do this, encoded words split across continued Subject

lines end up with nugatory white space in the middle. So, I fixed 〈Check for continuation of mail header
lines 143 〉 to “work this way”. Given our definition of tokens, it’s likely to fix more things than it breaks
anyway.

Added documentation to the CWEB file for yesterday’s new options.

2002 September 13

204 DEVELOPMENT LOG ANNOYANCE-FILTER §256

Subject lines can, of course, also contain sequences encoded in Base64, tagged with a “?B?” following
the charset specification. Added decoding of these sequences, along with the requisite decodeEscapedText
method of base64MIMEdecoder.

Made a slight revision to the definition of tokens in the tokenParser. While “−” and “’” continue to
be considered part of a token if embedded within it, they can no longer be the first or last characters of
a token. This improves recognition of words in typical text, based on tests against the big collection. A
new not at ends array of bool is used to define which characters may not begin or end a token.

Completely rewrote how the tokenParser determines character types in parsing for tokens. Previously,
characters were classified by looking them up in a collection of global arrays of bool. To permit changing
the definition of a token on the fly, I defined a new class, tokenDefinition, which collects together the
lookup tables which determine which characters constitute a token and indicate the sets of characters
(if any) which cannot exclusively make up a token and which cannot be the first or last character of a
token. In addition, the minimum and maximum acceptable length for tokens are stored and methods
permit testing all of these quantities. You can initialise the values as you with the methods provided,
or use pre-defined initialiser functions for ISO-8859 and ASCII alphanumeric sets.

Well, let’s declare this a red banner day for the annoyance−filter! No, you’re not dreaming. . .we’re
actually ending this day with fewer command line options than those which greeted the dawn, and
the whole concept of the “lookup dictionary” has been banished, along with snowdrifts of prose in
the documentation explaining the difference between a “dictionary” and a ‘lookup dictionary” and the
things you could or couldn’t do with, or to, them respectively. The original idea was that you work with
dictionary objects when assembling the database of mail and junk, and then export the results as a
lean and mean lookup dictionary which could be loaded like lightning to classify subsequent messages.
Well, it turns out that if you use binary I/O for the dictionary, it’s just as fast as loading the lookup
dictionary, and all of the confusion is eliminated. Further, the user is thereby encouraged to keep a
dictionary on hand which can be updated at any time to incorporate new examples of mail and junk.
This is all much more the Bayesian spirit of eternal refinement than settling on a probability set without
subsequent refinement.

Since the lookup dictionary is no more, there’s no need to distinguish the dictionary read and write
commands as binary. Hence, the −−binread and −−binwrite options have been renamed −−read and
−−write, freed up by the lookup dictionary elimination.

2002 September 14

The direct concatenation of multiple-line header items added a couple of days ago broke 〈Process
multipart MIME header declaration 150 〉 thanks to fat-fingered character counting in the recognition of
sentinels. I fixed this, and modified the code to perform all parsing on a canonicalised string to avoid
case sensitivity problems. Note that the boundary itself is and must remain case sensitive.

Fixed some gcc −Wall natters which had crept in since the option was accidentally removed by
autoconf.

Added the ability to read a mailFolder from standard input. If the fname argument to the constructor
is “-” cin is used as the input stream.

Renamed the −−csv option −−csvwrite in keeping with nefarious plans soon to be disclosed, and added
a pseudo “ COUNTS ” word to the start of the CSV file giving the number of mail and junk messages in
the dictionary as is done in binary dictionary dumps. Changed the sort order for the CSV file so that
words with identical probabilities are sorted into lexical order.

Added a −−csvread option to import a dictionary from a CSV file in the format created by −−csvwrite.
The CSV file is added to the existing in-memory dictionary; multiple −−csvread and −−read command
may be used to assemble a dictionary. The CSV file imported need not be sorted in any particular order
and may contain comments whose first nonblank character is “;” or “#”. In the process, I found and

§256 ANNOYANCE-FILTER DEVELOPMENT LOG 205

fixed a bug in updating the message counts which applied to both −−csvread and the existing −−read

code, but which only manifested itself when loading multiple dictionaries.

Wheels within wheels. . .MIME multipart messages can, of course, be nested. You can be blithely pars-
ing your way through a message when you trip over a part with a Content−type of “multipart/alternative”,
which pushes a new part boundary onto the stack, to be popped when the end sentinel of that nested
section is encountered. What fun. We consequently introduce a new partBoundaryStack to keep track
of the nested part boundary sentinels, along with all of the defensive code needed to cope with the
realities of real world mail.

2002 September 15

Loosened up the test for multipart Content−type so that “multipart/related” types will be recog-
nised.

Added the long-awaited −−transcript option. (Thanks, Kern, for suggesting it!) A transcript of the in-
put message for a −−test or −−classify operation is written to the argument file name (standard output
if the argument is “−”, with X−Annoyance−Filter−Junk−Probability and X−Annoyance−Filter−Classification

items appended to the header indicating the calculated junk probability and classification according to
the thresholds.

Finished the first cut of multiple byte character set decoders and interpreters. A decoder scans the mail
body (encoded or not), and parses the byte stream into logical characters up to 32 bits in width. An
interpreter expresses these characters in a form suitable for analysis. Ideographic languages are typically
interpreted as one word per character, other languages as one letter per character. These components
must, of course, be utterly bullet-proof as they will be subjected to every possibly kind of garbage in the
course of parsing real-world mail. At the moment, we have decoders for EUC and Big5, and interpreters
for GB2312 and Big5.

Added a decoder for EUC-encoded Korean (euc−kr) as an example of how to handle an alphabetic
language with a non-Western character set.

2002 September 16

Modified EUC MBCSdecoder to discard the balance of any encoded line in which an invalid EUC
second byte is encountered. After encountering such garbage, the rest of the line is usually junk and
there’s no profit in blithering through it.

Added logic to scan application binary byte streams for possible embedded tokens. The new −−binword

option sets the shortest sequence of contiguous ASCII alphanumeric characters or dollar signs (with pos-
sible embedded hyphens and apostrophes, but not permitting these character at the start or end of a
token—the default is 5 characters, which is a tad more discriminating than the UNIX strings which
defaults to 4 printable characters. You can disable the scanning of binary streams entirely by setting
−−binword to zero. Scanning binary streams might seem to be a curious endeavour, but it’s highly
effective at percolating text embedded in viruses and worm attachments to junk mail to the top of the
junk probability hit parade, then screening them out when the arrive in incoming mail.

Although the Subject line is the most important, any line in a mail header may actually contain quoted
sequences specifying a character set and Quoted−Printable or Base64 encoded characters. I modified
〈Check for encoded header line and decode 147 〉 to no longer restrict decoding to the subject line.

Once decoded, if the charset specification in a header line quoted sequence is a character set we
understand, it is not decoded and interpreted. ISO−8859 sets of all flavours are decoded but not
processed further.

Fixed a few gcc −Wall quibbles in tokenDefinition which popped up on Solaris compiler but didn’t
seem to perturb the almost identical version of gcc on Linux.

206 DEVELOPMENT LOG ANNOYANCE-FILTER §256

Modified the −−test option so that if the −−transcript option has been previously specified with
standard output as the destination (“−”), the junk probability is not written to standard output at the
end of the transcript.

2002 September 17

The Base64 decoder could hang if one of the lines it was decoding contained white space. Fixed.

Added logic to detect and discard header items which begin with our own Xfile sentinel. This shouldn’t
happen in the normal course of things, but somebody may try to spoof a downstream filter by sending
mail which contains a sentinel purporting to be a classification by of of its legitimacy. Deleting our
own header items also allow us to process our own transcripts containing them and reproduce the same
results as if they hadn’t been added.

Cleaned up the horrific 〈Activate MIME decoder if required 153 〉 section which “jes’ grew” in mailFolder ::nextLine
as more and more complexities were cranked in to MIME part decoding, multiple byte character sets,
parsing ASCII strings out of binary data streams, etc.

2002 September 18

Cleaned up documentation of command line options, clarifying that they are logically commands which
must be specified in the order in which they are to be executed. In the process, I added an example
of invoking annoyance−filter as a pre-processor for a mail sorting program such as Procmail to the
“Quick and dirty user guide”.

Added a new annoyance−filter−run shell script to execute the program in default filter mode with
the executable and dictionary installed in the default “$HOME/.annoyance−filter” directory. Oh, you
haven’t hear about that. . .well, stay tuned. . .details in the next episode.

Incremental refinement of the README and INSTALL files, with many keystrokes to go before we put these
documents to sleep.

Added −−verbose tell-tales for the −−plot and −−statistics options.

Replaced the annoyance−filter.1 manual page with a cop-out which directs the esteemed reader to
the PDF program documentation. This thing is changing so rapidly that the last thing I need is to
maintain four copies of the bloody command line option documentation. Four? Think about it: the
program (CWEB), its embedded −−help option text, a Web page (nonexistent at the moment, thank
Bob), and a manual page. Keeping all four simultaneously in sync is something which could appeal
only to an accountant. I’m a programmer, not an accountant—I drink their blood, but I don’t do their
work.

The code which discards header lines we’ve generated attempted to remove lines from the transcript
even when no transcript was being generated, for example, when adding a message we’d previously
processed to the −−mail or −−junk database. This caused a Λ pointer reference in 〈Check for lines with
our sentinel already present in the header 144 〉—fixed.

Hours of patient, unremunerated toil cleaning up Makefile.in to bash things into a distributable
form. I added an install target which installs the program in the default $HOME/.annoyance−filter
directory, creating a customised run program (annoyance−filter−run in the build directory) which
supplies the home directory which sendmail doesn’t. Massive clean-up of Makefile.in, yielding a
template which is far more generic for our next foray into software land.

2002 September 19

Further testing revealed that the segmentation fault in dictionary ::purge which I thought I fixed a
week or so ago was still lurking to bite the unwary soul whose dictionary contained a large number of
words eligible for purging. As far as I can determine, when you erase an item from a set, not only does

§256 ANNOYANCE-FILTER DEVELOPMENT LOG 207

the iterator argument to the erase become invalid, in certain cases (but not always), an iterator to the
previous item—not erased, becomes invalid, leading to perdition when you attempt to pick up the scan
for purgable words from that point. After a second tussle with remove if , no more fruitful than the last
(for further detail, see the dictionary ::purge implementation, I gave up and rewrote purge to resume
the scan from the start of the set every time it erases a member. This may not be efficient, but at least
it doesn’t crash! In circumstances where a large percentage of the dictionary is going to be purged, it
would probably be better to scan for contiguous groups of words eligible for purging, then erase them
with the flavour of the method which takes a start and end iterator, but given how infrequently −−purge

is likely to be used, I don’t think it’s worth the complication.

In a fit of false economy, I accidentally left the door open to the possibility that with an improbable albeit
conceivable sequence of options we might try to classify a message without updating the the probabilities
in the dictionary to account for words added in this run. I added calls on updateProbability () in the
appropriate places to guarantee this cannot happen. The only circumstances in which this will result in
redundant computation of probabilities is while building dictionaries, and the probability computation
time is trivial next to the I/O and parsing in that process.

In the normal course of events the vast majority of runs of the program will load a single dictionary and
use it to classify a single message. Since we’ve guaranteed that the probabilities will always be updated
before they’re written to a file, there’s no need to recompute the probabilities when we’re only importing
a single dictionary. I added a check for this and optimised out the probability computation. When
merging dictionaries with multiple −−read and/or −−csvread commands, the probability is recomputed
after adding words to the dictionary.

If you used a dictionary in which rare words had not been removed with −−purge to classify a message,
you got screwball results because the −1 probability used to flag rare words was treated as if it were
genuine. It occurred to me that folks building a dictionary by progressive additions might want to keep
unusual words around on the possibility they’d eventually be seen enough times to assign a significant
probability. I fixed 〈Classify message tokens by probability of significance 188 〉 to treat words with
a probability of −1 as if they had not been found, this simulating the effect of a −−purge. Minor
changes were also required to CSV import to avoid confusion between rare words and the pseudo-word
used to store message counts. Note that it’s still more efficient to −−purge the dictionary you use on
classification runs, but if you don’t want to keep separate purged and unpurged dictionaries around,
you don’t need to any more.

Added a new −−annotate option, which takes an argument consisting of one or more single character
flags (case insensitive) which request annotations to be added to the −−transcript. The first such flag
is “w”, which adds the list of words and probabilities used to rank the message in the same form as
included in the −−pdiag report. To avoid duplication, I broke the code which generates the word list
out into a new addSignificantWordDiagnostics method of classifyMessage.

Added a “p” annotation which causes parser diagnostics to be included in the −−transcript. This gets
rid of all the conditional compilation based on PARSE_DEBUG and automatically copies the diagnostics
to standard error if verbose is set. Parser diagnostics are reported with the reportParserDiagnostic
method of mailFolder; other classes which report errors do so via a pointer to the mailFolder they’re
acting on behalf of.

Well, my sleazy reset to the beginning trick for dictionary purge really was intolerably slow for real
world dictionaries. I pitched the whole mess and replaced it with code which makes a queue of the words
we wish to leave in the dictionary, then does a clear on the dictionary and re-insert s the items which
survived. This is simple enough to entirely avoid map iterator hooliganism and runs like lightning,
albeit using more memory.

Break out the champagne! The detestable MIME_DEBUG conditional compilation is now a thing of the
past, supplanted by a new “d” −−annotate flag. No need to recompile every time you’re inclined to
psychoanalyse a message the parser spit up.

208 DEVELOPMENT LOG ANNOYANCE-FILTER §256

Added a name method to MIMEdecoder and all its children, then took advantage of that to dispense
with the horrific duplication of decoder diagnostic code in 〈Verify Content-Transfer-Encoding and
activate decoder if necessary 160 〉. What was previously dispersed among the several branches of the
decoder activation is now collected together in a single case after the decoder has been chosen.

Modified Makefile.in to delete the fussy core.process files Linux has taken to produce.

Fixed configure.in to specify −Wall if we’re building with GCC.

2002 September 20

On Solaris, GCC is prone to hang if invoked with −O2 (at least as of version 2.95.3). I twiddled the
configure.in to change the compile option to −O for Solaris builds.

ctangle and cweave spewed copious warnings on a GCC −Wall build. To avoid modifying these
programs, which are prefectly compliant ANSI C, I changed Makefile.in to suppress the −Wall option
for them when the compiler is detected as GCC.

make dist didn’t do a make distclean before generating the distribution archive, which could result
in build-specific files being included in the archive. Fixed.

2002 September 21

Added documentation on how to integrate annoyance−filter into a .forward pipeline to Procmail,
and build a .procmailrc rule set for a typical user-level filtering. It’s 03:40 and I’m going to get some
sleep before proofing this text—at the moment it’s something between a random scribble and a first
draft.

Okay, I just couldn’t stand it. . .I just had to take another crack at the infernal dictionary ::purge
method. One of the many bees in my bonnet buzzed the idea into my ear that I could avoid both the
extra memory consumption of yesterday’s scheme and the risk of instability in the container by testing
the probability of the first item in the map, adding it to the queue of survivors if its probability is
significant, then performing an erase (begin ()). Cool, huh? No iterators, no mess, no two copies of any
word in memory.

The hits just keep on coming. . .the stupid built-in purge in dictionary ::resetCat also ran afoul of the
“stale iterator” problem. I blew it away—henceforth, it’s up to you to do a −−purge after a −−clearmail

or −−clearjunk. With the new tolerance for un-purged dictionaries, no great harm will be done if you
forget.

Added a \subsection macro to create subheads within documentation sections. The section number
is automatically grabbed from the cwebmac.tex definition, but lower level numbering is manual, per-
mitting you to add additional levels of hierarchy with a specification like:
\subsection{4.2.1}{Twiddling little details}.

It turns out that all the cheesy mess I put in to patch the user’s home directory into the annoyance−filter−run
script wasn’t necessary after all since sendmail is kind enough to change to the user’s home directory
before piping a message to a program. This means we can just cd to .annoyance−filter relative to
the home directory. This also means one can remove the absolute path name from the .forward file,
which cleans up the documentation on integration with Procmail.

Added a rather tacky check target to the Makefile.in to serve as a “sanity check” that doesn’t
require an extensive training databases. The scheme is to train the program with the source code
for annoyance−filter.w serving as the mail collection and statlib.w the junk bucket. Then those
programs themselves are tested, and the transcripts verified to confirm they were correctly classified.
Astute observers will ask where I get off using something which isn’t a well-formed mail folder to train
the program. Well, it works thanks to a gimmick I put into the probability calculation to keep it from
dividing by zero if one or both of the message counts were zero. That keeps anything untoward from

§256 ANNOYANCE-FILTER DEVELOPMENT LOG 209

happening when we’re missing message headers, and the difference in the word content of the two files
is so extreme that they reliably score correctly.

Added a new Perl gizmo, TestFolder/testfolder.pl, which walks through a mail folder, breaks out
each message, and passes it through annoyance−filter to obtain the probability and classification.
(The annoyance−filter command is defined by a string within the Perl program, so you can modify
as you wish to evaluate the effects of other settings.) At the end of the folder, the total message count,
number of messages scored as junk and mail, and the mean probability of messages in the folder are
printed.

Added a “back” command to SplitMail/splitmail.pl. As you walk through a mail folder, the start
address of each message you’ve seen is kept in a stack. The “b” command pops the stack and backs up
to the previous message. This should reduce the pain when your sorting a folder and accidentally hit
“d” when you meant to save the message somewhere. You can even go back after a search operation.

Moved the splitmail.pl and testfolder.pl from their own dedicated directories into a new utilities

directory which Makefile.in includes in the archive. If and when these utilities require common code,
such as the CSV parser, it will be easier to manage them all in the same directory.

Added help, requested by the “?” key, to splitmail.pl at both the disposition and the “more” prompt
while viewing message text. If you assign additional folder destinations to disposition keys, they are
automatically included in the help output.

Now that splitmail.pl is equipped with a “back” mechanism, there’s no reason not to interpret a
void disposition as a request to advance to the next message—if it’s a fat-finger, just go back. Trolling
through a target-sparse folder can now be done at the expense of only one keystroke per message.

2002 September 22

Went ahead and added code to dereference symbolic links up to 50 deep when deciding whether files are
gzip compressed in mailFolder. What the heck, it’s the solstice (well, it was a couple of hours ago)
and the full Moon to boot—better to write silly code than trying to balance eggs on their little ends!

Much work on the documentation today, but little on the code. Slowly the python peristalsis moves us
toward release.

2002 September 23

We’re off to see the lizard, the wonderful lizard of WIN32! Naturally, all of our carefully crafted code
to set up pipelines to decompress dictionaries evaporated under the harsh sun of WIN32. I added
conditional compilation to disable everything that incompetent empire self-defined by its own limes and
rusty Gates doesn’t comprehend.

Building for WIN32 with DJGPP resulted in a natter about comparison of the size type of a multimap
to an unsigned int. The Linux compiler accepted this without a quibble. I added a static cast to
clear up the confusion.

OK, it built on WIN32 with DJGPP 2.953 and even passed the rudimentary tests I threw at it. So,
I copied the executable back to the development directory, then discovered and fixed numerous bugs
in the archive creation code in Makefile.in when the WIN32 distribution is enabled. Got better. A
Zipped WIN32 build is now posted in the Web directory and linked to from the home page.

The configure.in script didn’t check for the −lm math library. This somehow managed to work on
Linux and Solaris, but failed on FreeBSD. I added the necessary AC_CHECK_LIB macro. (Reported by
Neil Darlow).

Fixed several typos in the documentation of computeJunkProbability and reformatted the formula as a
stacked fraction so it fits better on the page.

210 DEVELOPMENT LOG ANNOYANCE-FILTER §256

Added logic to configure.in to test for the presence of the system function and the gnuplot and
ppmtogif utilities required by the −−plot option. If any of them is missing, the option will be disabled
when the program is compiled.

Added a test to configure.in for the presence of readlink and disabled the code that chases symbolic
links in file name arguments if it’s absent. I also added a “probable loop” warning if this code exceeds
the maximum link depth limit.

Added a configurator test for the presence of popen and code to disable the ability to read compressed
files if it’s not present. This allowed me to remove the special case for WIN32 I added last night to build
on DJGPP—it’s now subsumed into the test for popen.

Designed this version as “Release Candidate 1” and indicated this by setting VERSION to "0.1−RC1".

Proofed the program documentation and the formatting of the code listing and fixed numerous typos
and infelicitous layout.

Defined −t as a shortcut single-letter option for −−test and −r as a shortcut for −−read.

Release 0.1-RC1.

2002 September 24

Hugh Daniel took a look at the program and had many comments and suggestions. Until otherwise
noted, the following items result from them.

Corrected “vertical interlace” terminology in the document to “vertical retrace”. I’m forever screwing
that one up.

Renamed −−purge to −−prune, which is a more precise (and less intimidating) description of what it
does. For the moment, −−purge is still accepted to ease the transition. Fixed the check target in
Makefile.in to use −−prune.

Added the hideous logic to Makefile.in to report overall pass/fail status for the check target.

Clarified the infectuous nature of the GPL in COPYING. While I was at it, I added information about
the public domain status of DCDFlib.

Okay, back to self-generated items. . . . Changed the −−plot option to use pnmtopng to generate the
plot in PNG format instead of GIF.

Release 0.1-RC2.

2002 September 26

Added the ability to treat a directory as a mail folder consisting of messages in individual files in the
directory. The contents of the directory are simply logically concatenated and are not restricted to one
message per file–they may be UNIX mail folders in their own right.

After a huge amount of wasted effort trying to do this in an ultra-clean C++ fashion by defining an
idirstream flavour of istream which returns the concatenated contents of files in a directory (I got that
close, but couldn’t make it work with the getline function for string without stooping to ugliness and
making assumptions about the guts of the iostream package I believed unwarranted. This dead end is
why you see no log entries for yesterday.

So, I ripped all that out and simply added logic to mailFolder to detect when it’s passed a directory
and wrap a loop traversing the directory around the main input loop; when end of file is encountered and
we’re traversing a directory, we look for the next file and commence processing it, declaring a genuine
end of file only at the end of the directory.

This interacts in an interesting way with the MIME decoders. Recall that they are passed the actual
istream from which the mailFolder normally reads and take charge of it until the end of the encoded

§256 ANNOYANCE-FILTER DEVELOPMENT LOG 211

section is reached. I added no logic to them specific to directory traversal—when they hit the end of the
stream, they declare a missing terminator at the end of the section and bail out. But that’s good—we
don’t want a missing terminator to gobble up the contents of a subsequent file in the directory folder.
(Although if each file begins with a “From ” line, it will cause the detector to bail out. This way, it’s
only after arriving back from the decoder that we detect we’re at the end of a file in the directory and
progress to the next item, if any, in the directory.

Yes, all of this is conditional on the presence of opendir and stat , which are required to detect and
traverse the directory; the whole mess goes away if configure.in doesn’t detect them. Yes, files in the
directory may be compressed. And, yes, files in the directory may be symbolic links to compressed. But
no, you can’t recursively traverse directories; directories within a directory folder are simply ignored,
which nicely avoids a special case for “.” and “..”.

In the process of putting in all this junk, I discovered that the existing code for decompressing mail
folders failed to call pclose to close out the pipeline, which is unkind. I added a destructor which makes
sure it’s called when necessary.

Added a new fragmail.pl program to the utilities directory. It splits up a monolithic mail folder
into a directory with one message per file, making up file names from the message sequence in the input
folder.

Added a new signatures target to Makefile.in which creates GnuPG signatures for each of the
downloadable files and added a command to the publish target which copies them to the distribution
directory.

Added code to configure.in to test for the presence of pdftotext, which we will eventually use to
crack PDF files. Let’s be realistic, however. This is cool (and will open the door to a general application
specific binary file cracker, which I’ve been itching to do), but in terms to the mission statement of
annoyance−filter and present day junk mail, is far from important. I’ve found precisely one PDF file
in each of my mail and junk archives, so with a plane to catch tomorrow, I’m not going to stay up any
later tonight worrying about refinements of this kind.

Release 0.1-RC3.

2002 September 29

Added logic to Makefile.in to prepare an HTML version of man page automatically from the annoyance−filter.1
troff file. The output will require fixup since it is intended to be run from a CGI script, but should
eliminate much of the duplication of labour inherent in maintaining parallel documentation in HTML
and man page format.

2002 October 1

Expanded documentation of command line options in conjunction with preparation of a manual page
using the docutil/options.pl translator.

Added “USAGE”, “EXIT STATUS”, and “FILES” sections to the manual page; all of these are specific
to the man page and are not derived from annoyance−filter.w.

2002 October 2

Much work yesterday and today on automating the generation of documentation from the CWEB source
file. I wrote a Perl program, docutil/options.pl to compile the options documentation from annoyance−filter.w

into troff format with the −man macros. Actually, although containing special cases for the options,
this is reasonably general and may be deployed for other common documentation in the future.

The output from man2html has some infelicitous links and formatting for HTML intended to be shipped
with the product and included on its Web page. I wrote a Perl hack, docutil/fixman2html.pl,

http://www.gnupg.org/

212 DEVELOPMENT LOG ANNOYANCE-FILTER §256

to correct these items, and modified the Makefile.in targets to generate a first draft HTML in
annoyance−filter_man_raw.html, which is post-processed by the fixup program into the final annoyance−filter_man.html
file, which is now included in the distribution by the dist target and copied to the Web directory by
publish, both of which targets generate it if necessary.

Added a mantroff target to Makefile.in to preview the troff format manual page using “groff −X”
(if available on the system—if not, don’t do that).

Wrote a docutil/cwebextract.pl Perl program which searches a CWEB file for a named section (which
can be a regular “@” section, so long as the search target appears on the same line as the “@”. If the
section is found (matching is case insensitive and the search target given on the command line matches
the first line containing a substring which it matches), the contents of the documentation section is
written to standard output, trimming leading and trailing blank lines. The end of the documentation
section is the next line which begins with an at sign or the end of file.

Moved the TEX definitions used to generate the options list to the top of annoyance−filter.w so they
don’t confuse the automatic extraction and translation process.

Modified docutil/cwebtex2man.pl to ignore TEX \bigskip commands, carefully avoiding generating
a nugatory .PP in the troff output due to two consecutive blank lines once the command has been
ignored.

Added the docutil directory and its contents to the distribution generation target in Makefile.in.

Generation of the “OPTIONS” section of the annoyance−filter.1 manual page from the correspond-
ing section of annoyance−filter.w is now completely Turbo DigitalTM. The invariant parts of
the manual page are now defined in the “manual page macro” file annoyance−filter.manm. The
Makefile.in now understands that annoyance−filter.1 is generated by processing this file with
docutil/manm_expand.pl which expands \"%include statements in the macro file by extracting the
specified section from the named CWEB file with docutil/cwebextract.pl, translating it into manual
page troff with docutil/cwebtex2man.pl, and inserting it in the output file in place of the include
statement. This completely eliminates all manual labour when updating the options in the manual page
and guarantees that changes to the option documentation in annoyance−filter.w are propagated to
the manual page document. The same mechanism can be used for other common documentation as the
need arises.

2002 October 3

Subtly obfuscated the E-mail address to which bugs should be reported in the manual page so the
process of transforming it into HTML won’t result in a deadly mailto: link or a sniffable address in
the page. Visual fidelity for human readers is maintained.

Updated the Web document to reflect the existence of the HTML manual page and added links to it.

Added a reference to the PDF document to the “SEE ALSO” section of annoyance−filter.manm.
Fixed an embarrassing hyphenation of a file name by prefixing the offending word with the troff

“don’t hyphenate” escape “\%”. (Apparently, even in nh mode, troff will hyphenate a word which
contains an embedded hyphen unless you explicitly forbid it.)

Added the .w files to the winarch.zip archive used to transfer files to build for Win32. While they
aren’t strictly required, they’re awfully handy to have should you encounter compile errors, which are
reported with line numbers from the CWEB file. Looking it up while on Windows and patching the C++

file is a lot quicker than booting back into a real operating system to explore the problem.

In 〈Check whether folder is a directory of messages 135 〉 there was an erroneous reference to dirFolder
not conditional on HAVE_DIRECTORY_TRAVERSAL—fixed.

The mailFolder constructor which accepts a file name in a string re-used the ifstream isc , which was
previously used only when reading compressed files. This caused compile errors on systems where

§256 ANNOYANCE-FILTER DEVELOPMENT LOG 213

COMPRESSED_FILES was not defined. We now unconditionally define isc in the mailFolder class
definition.

With these fixes, the makew32.bat build on Win32 now works once again.

Added a testw32.bat file which runs a rudimentary test of the Win32 build similar to the check

target in Makefile.in. I added this file to both the dist and winarch archive generation targets in
Makefile.in.

Modified Makefile.in to replace the hard-coded /ftp/annoyance−filter destination with a PUBDEST

declaration at the top of the file which defaults to the same directory. This permits overriding the default
publication destination for use at another site or for nondestructive testing of new releases simply by
editing the Makefile. Some day, it might make sense to permit overriding this with an option at
./configure time, but this is not that day.

Release 0.1-RC4.

2002 October 11

Integrated the application string parsers for Flash and PDF formats, which were developed in a
separate stand-alone test program. These include the classes applicationStringParser (mother of all
application parsers), flashStream, flashTextExtractor, and pdfTextExtractor, the latter compiled
in only if all the utilities it needs to decode PDF via a pipe to pdftotext are present. At the moment,
these aren’t hooked up to the mail folder, but are merely exercised by code in the −−jig.

Integrated Knuth and Levy’s CWEB version 3.64 in the cweb directory. The CWEAVE and CTANGLE

programs are built with a change file, common−bigger.ch which increases the input line length limit to
400 characters as I did in the earlier 3.63 release.

Added plumbing to invoke Flash and PDF parsers for attachments with those application types. Thanks
to the inability to take a class member function as an unqualified function pointer, this is somewhat
tacky, requiring a pointer to the mailFolder to obtain decoded data.

2002 October 12

Added decoders and interpreters for Shift-JIS and Unicode (UCS-2, UTF-8, and UTF-16 encodings).
These are used to decode and interpret these character sets in Flash animations whose fonts are so
tagged.

Added logic to invoke the new Unicode UTF-8 decoder when a MIME part’s charset= designates it so
encoded.

2002 October 13

In the process of testing UTF-8 decoding of Unicode messages, I stumbled over a bug in ignoring HTML
comments embedded within tokens, a common trick in junk mail to evade näıve filters, for example,
“remo<!−−−−>ve your<!−−−−>self”. (Yes, I know a valid HTML comment is supposed to contain a
space after the initial and before the final sentinel, but junk mail often violates this rule, counting on
sloppy browsers not to enforce the standard, so we must comply in the interest of “seeing what the user
would”.) HTML comments are now completely discarded, even when embedded within tokens.

The dist target in Makefile.in failed to clean the cweb directory before including it in the source
archive, which could have the result of leaving objects and binaries not compatible with the system on
which the user is installing. I modified the target to descend into the cweb directory and make clean.
This promptly ran into another problem because the CWEB Makefile deletes the C source for CWEAVE,
using the bootstrapped CTANGLE to re-build it. This is clean, but runs afoul of my rebuilding both
programs directly in the outer Makefile. I saved the original CWEB makefile as Makefile.ORIG and

214 DEVELOPMENT LOG ANNOYANCE-FILTER §256

modified the clean target in the actual Makefile to leave cweave.c around. I also modified our own
clean target to clean the cweb directory as well.

Attempting to build .dvi or pdf targets after you’d cleaned the cweb directory failed for lack of cweave;
I added a dependency to Makefile.in to ensure it’s rebuilt when needed.

Since certain recent versions of gcc libraries have begun to natter if C++ include files specify the .h

extension (which, for years, was required by those self-same libraries), I eliminated them from our list
of includes, which finally seems to work on gcc 2.96. Doubtless this will torpedo somebody using an
earlier version.

Broke up the unreadably monolithic list of include files into sections which explain what’s what.

Dooooh! Forgot to disable the declaration of the pdfTextExtractor in mailFolder when HAVE_PDF_DECODER

was not defined, which was the undoing of the Win32 build; fixed.

Release 0.1-RC5.

2002 October 19

Added a check in classifyMessages to verify that a dictionary has been loaded before attempting to
classify a message. If no dictionary is present, a warning is written to standard error and the junk
probability is returned as 0.5.

Added a warning if command line are specified after a −−classify command. Since this command
always exits with an exit code indicating the classification, specifying subsequent arguments is always
an error.

Added a bunch of consistency checking for combinations of options which don’t make any sense and
suggest the user doesn’t understand in which order they should be specified. To facilitate this, I modified
the code for the −−classify option to set a new lastOption flag to bail out of the option processing
loop and set exitStatus to the classification rather than exiting directly before the option consistency
checks are performed. This cleans up the control structure in any case.

In the process of adding the above code, I discovered that the any () method of bitset seems to be
broken in the glibc which accompanies gcc 2.96. I tested count () against zero and that seems to work
OK.

Implemented phrase tokens. You can consider phrases of consecutive tokens as primitive tokens by
specifying the minimum and maximum words composing a phrase with the −−phrasemin and phrasemax

options. These default to 1 and 1, which suppresses all phrase-related flailing around. If set otherwise,
tokens are assembled into a queue and all phrases within the length bounds are emitted as tokens. How
well this works is a research question we may now address with the requisite tool in hand.

2002 October 20

Added code to import a binary dictionary file with the −−read option using memory-mapped I/O if
./configure detects that facility and defines HAVE_MMAP. This isn’t a big win on individual runs of
the program, but if you’re installing it on a high volume server, multiple read-only references to the
dictionary file (be sure to make the file read-only, by the way) can simply bring the file into memory
where it is re-used by multiple instances of the program. (Of course, if the system has an efficient file
system cache, that may work just as well, but there’s no harm in memory mapping in any case.) Thanks
to the C++ theologians who deprecated the incredibly useful strstream facility, which is precisely what
you need to efficiently access a block of memory mapped data as a stream, I included a copy of the
definition of this facility in mystrstream.h so we don’t have to depend on the C++ library providing it.

I was a little worried about writing phrases in CSV format without quoting the fields, but I did an
experiment with Excel and discovered it doesn’t quote such fields either—it only uses quotes if the cell

§256 ANNOYANCE-FILTER DEVELOPMENT LOG 215

contains a comma or a quote (in which case it forces the quote by doubling it). Since our token definition
doesn’t permit either a comma or a quote within a token, we’re still safe.

2002 October 21

Added a −−phraselimit option to discard phrases longer than the specified limit on the fly. This
prevents dictionary bloat due to “phrases” generated by concatenation of gibberish from headers and
strings decoded from binary attachments. These will usually be eliminated by a −−prune, but that
doesn’t help if the swap file’s already filled up with garbage phrases before reaching the end of the mail
folder. The default −−phraselimit is 0, which imposes no limit on the length of phrases.

2002 October 22

When the default getNextEncodedLine of a MIMEdecoder encountered the “From ” line of the next
message in a mail folder, it failed to store the line as the part boundary, which in turn caused mailFolder
to mis-count the number of messages in a folder being parsed when training. I fixed this, and in the
process re-wrote an archaic C string test used in 〈Check for start of new message in folder 139 〉 to use
a proper C++ string comparison.

Corrected some ancient URLs in README, and added information on the SourceForge project there and
in annoyance−filter.manm.

Release 0.1-RC6.

2002 October 23

Modified docutil/fixman2html.pl to include an absolute URL for the “Fourmilab Home Page” link.
This gets people back to the site when the resulting manual page is posted on SourceForge.

Updated the distclean target in Makefile.in to get rid of several intermediate files which had crept
in since the last housecleaning. These made it more difficult to detect any new files which required
adding to the CVS repository.

Added the utilities/maildir_filter.pl utility contributed by Travis Groth. This has been added
with CVS but not yet committed.

2002 October 26

Added a −−biasmail option to set the frequency bias for words and phrases found in legitimate mail.
Previously this was fixed at 2, which remains the default.

Added autoconf plumbing to detect all the myriad stuff required to support POP3 proxying. We
attempt to distill all of these detections down to a POP3_PROXY_SERVER definition which controls all
code related to that capability.

2002 October 27

Integrated the stand-alone POP3 test article as a new POP3Proxy class with a hard-coded exerciser
in the −−jig. At the moment, it’s purely a proxy—it doesn’t interpose the filter.

2002 October 30

After much struggling, the POP3 procy now seems to be working, so it’s time to integrate it fully into
the program.

Added a −−pop3port option to specify the port on which the POP3 proxy listens for connections. If no
specified, the port number defaults to 9110.

216 DEVELOPMENT LOG ANNOYANCE-FILTER §256

Added a −−pop3server option to specify the server and optionally, port (which defaults to 110 if not
given) to which the POP3 proxy server will connect. This must be the last option (a warning is given
if it isn’t), and causes the server to immediately begin operation. I removed the server test code from
the −−jig and physically moved it to a subsection within the “POP3 proxy server” section, following
the class definition.

2002 October 31

Disabled the −−jig, since there’s nothing in it at the moment.

Added proper conditional setting of POP3_PROXY_SERVER based on the capabilities sensed by autoconf

and fixed one compile problem if the proxy server is disabled. At the moment, we assume that if socket
and signal are defined, everything else we’ll need will also be defined

2002 November 1

Cleaned up POP3 proxy code and added documentation of the related command line options. I still
need to add a main document section on how to install and operate a proxy server.

2002 November 2

We weren’t activating the byte stream parser for spoofed mail worm attachments which trick Microsoft
Outlook into executing an attachment through the incredibly subtle strategem of declaring the at-
tachment as an innocuous file type such as audio or image, but with an extension which denotes an
executable file. Brain-dead Outlook decides whether to block or confirm executable content based upon
the former, but then actually executes the file based upon the latter. Can you say “duh”?

Well, thanks to this particular piece of Redmond rot, tens of millions of these worms continue to
pollute the net since, even though the hole has been plugged, millions of the bottom-feeders who use
such software continue to use unpatched versions and/or run machines which are already infected and
actively propagating the worm.

All right, enough polemic. What this means for annoyance−filter is that when we see an attachment
with a Content−Type which usually denotes something we’re not interested in parsing, but then discover
its file name is one of the suspicious executable Microsoft file types, we need to feed it through the byte
stream parser just as if it were tagged with an “application” file type. Doing so will extract the
inevitable embedded strings, which will act as a signature for subsequent encounters with the same or
similar worm. (SourceForge bug 631503, reported by Neil Darlow.)

Improved diagnostics for parser errors by saving the “From line and Message−ID (if any) from the
header and then labeling any parser diagnostics written to standard error with the −−verbose option
with them. The labels are written only before the first diagnostic for each message in a folder, and
diagnostics are now indented to better diatinguish them from the labels.

Diagnostics from MBCSdecoder objects were written to standard error without any identification
of the message in which they occurred. I added the ability to link an MBCSdecoder to its parent
mailFolder with the new setMailFolder method. If linked, diagnostics from the decoder are emitted via
the reportDecoderDiagnostic method of the linked folder, permitting them to be labeled with the message
identification as described in the previous paragraph. It’s still possible to use an MBCSdecoder
without linking it to a mailFolder—if the link is Λ, diagnostics are sent to standard error as before.

Improved diagnostics from the various MBCSdecoder classes. All reports of invalid two-byte sequences
now report both hexadecimal bytes, and other invalid value diagnostics report the offending hexadecimal
value.

Added the ability to search for a literal substring as well as a regular expression in utilities/splitmail.pl.
If the search target begins with “+” (which is invalid in a regular expression), the balance of the pattern
is searched for with case-insensitive comparison. Since so many of the message headers you’re likely

§256 ANNOYANCE-FILTER DEVELOPMENT LOG 217

to be looking for contain regular expression meta-characters, it’s a lot more convenient to specify an
explicit target than remember what they all are and quote them.

Corrected the diagnostic for an unknown character set in a header line string to say “Header line” rather
than the obsolete and misleading “Subject line” it used to say.

Added “us−ascii” to the list of character sets which require no multi-byte decoding or interpretation
when they appear in header line quoted strings. Junk mail sometimes encodes even ASCII subject lines
(and sometimes other headers) as Base64 or Quoted-Printable to hide the text from näıve filters.

Added a script to build under Cygwin, makew32.sh. Attempting to link in our own copies of getopt.c
and getopt1.c runs afoul of the Cygwin linker (why?), so I removed them from the compiles and link
done by this script.

Building on Cygwin failed because the library I was using didn’t define in_addr_t. I’d seen this earlier
on Solaris, but had inadvertently added a new reference since I’d last tested there. I changed the
offending reference (in a static_cast of all places), to our cop-out type u_int32_t, which autoconf

guarantees will always be there. With that fix, the program built and worked on Cygwin, including
POP3 proxying!

The check for non-white space following a soft line break in a Quoted-Printable MIME part failed for a
POP3 proxy message containing CR/LF line terminators. I broadened the definition of white space in
〈Character is white space 62 〉 to include carriage return.

2002 November 3

Scribbled a first cut README.WIN file to be included in the Win32 executable archive which explains the
issues involving the included Cygwin DLL. I modified Makefile.in to include this file, the DLL, and
COPYING.GNU (the GPL) in the Win32 archive.

Tested the Win32 archive on a Cygwin-free machine. Seems to work OK, including POP3 proxy from
another machine on the LAN.

Verified that POP3 proxy on a Cygwin-free machine running Windows 98 works with the version of
Outlook furnished with that system, which can be configured to retrieve messages from ”localhost” on
our default port of 9110. Note, however, that one must first configure the account (defaulting to port
110), then edit the properties of the account, using the “Advanced” tab to specify the POP3 port of
9110.

Messages embedded within other messages with the Content−Type specification of message/rfc822 did
not have their own MIME parts correctly decoded because mailFolder failed to scan the header of the
embedded message for its own Content−Type and boundary specifications. Fixed. This should get rid
of the previously mysterious long gibberish strings which decoded out of forwarded messages with image
and other binary attachments. The strings were due to the Base64 decoder not being activated for the
embedded message’s attachments.

2002 November 5

Implemented the first cut of fast dictionary support. Having created a dictionary in memory, you can
export it to a file in fast dictionary format with the −−fwrite option. The −−fread option loads such a
dictionary and, if loaded, it takes precedence over a regular dictionary. This permits fast classification
of messages without all the overhead of creating a full-fledged in-memory dictionary.

Added memory-mapping of the fast dictionary when HAVE_MMAP is defined. In the interest of code
commonality, the header fields are read from an istrstream bound to the memory mapped block, but
access to the hash and word tables are pure pointer-whack.

Fixed a typo in configure.in which caused a harmless but ugly warning when running the script.

218 DEVELOPMENT LOG ANNOYANCE-FILTER §256

Disabled static linking for SunOS systems in configure.in due to GCC’s inability to find the networking
libraries when static linking.

Added a list of optional capabilities detected by configure to the −−version output. This makes
long-distance diagnosis of configuration problems easier.

The check for attempting to start a POP3 proxy server without having loaded a dictionary didn’t test
for a fast dictionary’s having been loaded. Fixed.

The destructor for fastDictionary attempted to delete the in-memory dictionary even when it was,
in fact, memory mapped from a file. I added conditional code to replace the delete with a munmap
and close of the file. In addition, I added logic to unmap and close the file if an error was detected
while reading its header.

Modified the “check” target in the Makefile.in to use a fast dictionary for the junk test. This
guarantees the fast dictionary code will be exercised in the normal course of building and installation.

Added the −x option to the invocation of the shell in the Cygwin makew32.sh script so we can see
what’s going on during the build.

2002 November 6

Created a pop3proxy.pif file as a skeleton PIF the user can edit (with “Properties” from the right
click menu) to set up an auto-start POP3 proxy server,

Discovered that README.WIN (the description of Cygwin related issues for the Windows executable
archive) was missing from the comprehensive source archive. It was also missing from the CVS tree.
Both fixed.

Added confirmation messages for exporting and loading fast dictionary files when −−verbose is set.

Added an option to the tar command used to create the source archive to exclude the CVS subdirec-
tories. This works only with Gnu tar, but that should be OK, since we only create distributions on
systems so equipped.

Release 1.0-RC1.

2003 January 22

Added code to the POPDEBUG output to echo both status replies from the server and the body of multi-line
reply messages.

Eliminated some obsolete disabled code in 〈Read status line from server 209 〉 in POP3 proxy support.

Promoted the POP3 trace facility from conditional compilation to a full-fledged option, −−pop3trace,
which causes the trace output to be written to cerr , tagged with a prefix of “POP3: ”. Added trace
output to show replies sent to the client, both status lines and multi-line bodies.

Removed the disables (got that?) of HAVE_DIRENT_H and HAVE_POPEN for WIN32 builds, permitting
directory traversal when building dictionaries and expansion of compressed files (if gzip is installed on
the system). These were previously disabled when we built with DJGPP, which didn’t support these
features; Cygwin does.

2003 January 23

Made the writeMessageTranscript methods of mailFolder const, as they don’t change any member of
the class.

Added a new sizeMessageTranscript method to mailFolder which computes the size of the file written
by writeMessageTranscript . If you intend to export the transcript with a different per-line overhead
than the one byte added by writeMessageTranscript , you can pass a lineOverhead argument to specify
the overhead; the default value is one.

§256 ANNOYANCE-FILTER DEVELOPMENT LOG 219

I finally figured out what was causing “hangs” when transferring large messages as a POP3 filter on
WIN32 platforms (Cygwin builds). Well, it wasn’t hung—it had just slowed down by several factors of
a thousand and nobody noticed the difference. “Why?”, you ask. Well, it turns out that after all the
real work is done, popFilter called writeMessageTranscript with an ostringstream to create the reply
message body to be returned to the POP3 client. This apparently trivial operation, which is essentially
instantaneous on a Linux or Solaris box with GCC and its libraries, runs a tad slower under the Cygwin
version of the very same compiler and libraries. How much slower? Well, for a half-megabyte file, about
1500 times slower! Worse, the slow-down grows much faster than linearly with the size of the file; I tested
a one megabyte file and gave up after several hours of watching it. Presumably there is some idiocy in
the allocator used to expand the string within the ostringstream which is causing it to take longer
and longer as the string grows. I rewrote the code in question to use a trusty ostrstream directed
at a dynamically allocated buffer (that’s what sizeMessageTranscript , discussed above, is for), and the
whole thing runs too fast to measure under both Linux and Cygwin now. Ain’t “source compatibility”
fun?

Moved the include of mystrstream.h outside the conditional for HAVE_MMAP, as it is now needed by the
popFilter code as well.

Added mystrstream.h to the files included in the WIN32 transfer archive by the winarch target in
Makefile.in.

To avoid possible copying of the string containing a large message body and to make the code consistent,
modified 〈Create mail folder to read reply from POP3 server 220 〉 to use an istrstream directed at
the data of the reply string rather than an istringstream. Given the adventures we’ve had with
ostringstream, the less I have to do with these beasts the better.

Added the ability to limit the size of single send calls writing a multi-line reply body back to a POP3
client in 〈Relay multi-line reply, if any, to the client 213 〉. If POP3_MAX_CLIENT_WRITE is defined,
multiple sends no larger than that value will be used. Otherwise, all the data will be sent in a single
monolithic send as before. This was added in the process of chasing down the Cygwin “hang” problem,
and for the moment I’ve left the code in place in case it should be needed in the future.

The mailFolder constructor which takes an istream argument did not clear dirFolder when built with
HAVE_DIRECTORY_TRAVERSAL. This ran the risk that, at the end of the folder, we would erroneously
call readdir to look for the next file in a nonexistent directory. This was particularly a risk for POP3
proxying, where the mail folder is created on the stack and static initialisation doesn’t occur. I added
an explicit clear of dirFolder in the istream constructor of mailFolder.

Added a program, fromtest.pl, to the utilities directory, which scans a mail folder and checks for
occurrences of the initial string “From ” not preceded by the start of file or a blank line. Most Unix mail
folders obey this convention, but the original definition of BSD mail folders required every occurrence
of “From ” at the start of a line to be quoted (traditionally with “>”). You can use this program to
test your mail folders and determine which kind your mail system creates.

2003 January 24

Modified the winarch target in Makefile.in to exclude any CVS directories it may encounter.

Added strstream, istrstream, and ostrstream to the C++ library type list in cweb/c++lib.w.

2003 February 15

Started to dig into compile incompatibilities in the “new and improved” libraries which accompany
gcc 3.2.2. In the language lawyering verbiage below, “Stroustrup” refers to “The C++ Programming
Language, Special Edition” by Bjarne Stroustrup, ISBN 0-201-70073-5.

First of all, my local copy of strstream in mystrstream.h ran afoul of other changes in the “standard”
library. I merged the backward/strstream and backward/strstream.h files from the 3.2.2 library and

220 DEVELOPMENT LOG ANNOYANCE-FILTER §256

installed them as mystrstream−GCC3.h, which is included if GCC3 is defined. I have yet to add the
autoconf logic to detect this; at the moment I’m specifying this when I invoke the Makefile.

An include of the now verboten iostream.h remained in statlib.w; I pulled the “.h”.

In addition, statlib.w ran afoul of the dreaded “implicit typename is deprecated” warning in GCC
3.2. I added the required typename qualifier before constructs such as dataTable < T > :: iterator p
in the methods of dataTable . See section C.13.5 in Stroustrup for details.

Previously, gcc treated the buffer argument of ostream ::write like a C void ∗ pointer. Now one must
explicitly coerce it with a reinterpret cast〈const char ∗〉. The same goes for istream ::read , where
the argument must be coerced with reinterpret cast〈const char ∗〉. This played havoc with our
binary I/O code in dictionaryWord and fastDictionary, requiring ugly casts all around. I may go
back and prettify these with a macro, but not before I get the sucker past all the other compile problems.

In days of yore, when everybody knew that an STL vector was just a dynamically sized array, you
were allowed to treat an iterator of the vector as a C pointer to access the contents of the object, as
long as you made sure all references were within bounds: no more. No longer can you, for example,
write the entire contents of a vector〈char〉 to a stream with a single write . Instead, you must painfully
iterate over every element in the vector, doing I/O on each one individually. This is potentially a huge
performance hit which may motivate abandonment of the STL vector in favour of a C array which can
be written in one swell foop. Fortunately, all the cases where this occurs in annoyance−filter are in
exporting fastDictionary objects, which happens so infrequently we don’t care how fast it runs.

Gcc 3.2 also complains if you declare the values of default arguments in a method within a class,
then repeat them in the implementation declared subsequently. I’ve always written code this way,
considering it to better document what’s going on, particularly since the poor sucker who has to fix
the code later on is probably going to be looking at the implementation and may be unaware of the
default argument values declared back in the class definition. Well, it turns out that one can read
section 7.5 of Stroustrup as prohibiting this pursuant to the “default argument cannot be repeated or
changed in a subsequent declaration in the same scope” prescription and, indeed, the example of default
arguments in class methods in section 10.2.3 is coded this way. Okay, what can I do but “fix” it, but to
my mind this reduces the maintainability of the code. I think you should be able to use precisely the
same declaration of the function in its definition and implementation, including default arguments and
attributes such as const. The compiler should verify that they’re identical, but then both the definition
and implementation serve as stand-alone descriptions of the calling sequence and method properties.

Oh, come on, guys! Now you’re telling me I have to do a reinterpret cast〈char ∗〉 to istream ::read
into a bloody unsigned char! You can imagine what this did to dictionaryWord :: importFromBinaryFile .
Unfortunately, I not only had to imagine it, I had to do it.

2003 February 16

With gcc 2.96, when you include math.h, it doesn’t define abs for double, as it’s supposed to do
according to section 22.3 of Stroustrup. Consequently, I defined my own abs (double) in the global
context to get the job done. Well, on 3.2.2, the existence of this function creates an overloading ambiguity
against the built-in one, which has now been added to math.h. It turns out that if you include cmath

in 2.96, you do get abs (double), although that file and math.h are documented as being identical. So,
I replaced the include of math.h with cmath and eliminated my private copy of abs . Now it compiles
on both of ’em.

They’ve gone and eliminated fstream ::attach (int fd) from the standard—just try and plumb a pipe
into your input or output stream the way you effortlessly used to! As a first cut attempt to detour past
this off-ramp to oblivion, I tried building with HAVE_POPEN undefined, and promptly fell into a self-dug
abyss: bad conditional declaration of the file handle used to read compressed mail folders and messages
in mailFolder. I fixed that, and for the first time, we actually built and passed “make check” under
3.2.2! Just don’t try it with compressed mail folders quite yet. . . .

§256 ANNOYANCE-FILTER DEVELOPMENT LOG 221

Now, of course, we must deal with this. I installed the fdstream.hpp package developed by Nicolai
M. Josuttis in the source directory, extending it to permit declaration of fdistream and fdostream
objects with a default file descriptor of zero, which can be specified later by a new attach method, thus
requiring fewer changes to existing code which uses the fstream ::attach mechanism. There is little or
no error checking—you can screw things up mightily by swapping file descriptors on the fly, but then
you could before with fstream ::attach !

To test this class and dip my toe into the acid bath of post-fstream ::attach plumbing, I modified
pdfTextExtractor to use fdistream to read the pipe from pfdtotext, which is a simpler case than
the tangle associated with compressed file decoding. This worked the first time, meaning I should
look over my shoulder when migrating the attach references in the compressed file code to the new
mechanism. Note that the existing code has lots of ad hoc tweaks, all tagged with OLDWAY, to enable
the currently-working code. Before we’re ready to ship, all of the OLDWAY dust-bunnies should be
cleaned up and a clean build and regression test run on 2.96 and 3.2.2 parameterised exclusively by the
configure script.

Added code to mailFolder to use a new fdistream to read the pipe when decompressing mail folder
files and compressed files in mail directories.

In the gcc 3.2.2 library, closing and opening an ifstream does not clear ios ::eofbit in the descriptor as
it used to. (I consider this a stone bug—when you close one file and open another, only an idiot would
consider the end of file condition from the previous file still asserted.) In any case, I added a clear () of
the ifstream we use while traversing a directory in 〈Advance to next file if traversing directory 138 〉
so this doesn’t sabotage reading messages in a directory.

Re-tested directory traversal, with and without compressed files in the directory, on gcc 2.96 and 3.2.2
to verify the modified code works on both. It does.

2003 February 18

Added logic to configure.in to test whether the C++ library is compatible with the fdstream.hpp

package. If so, we use it; otherwise we assume it’s an old library which supports the attach method for
fstream I/O. The config.h.in variable HAVE_FDSTREAM_COMPATIBILITY will be defined if fdstream.hpp
is to be used.

Added a test to configure.in which determines whether the C++ library is compatible with the new
mystrstream_new.h. If so, it’s included. Otherwise, the earlier mystrstream.h is used as before. If
the new strstream package works, HAVE_NEW_STRSTREAM is defined in config.h.in.

With these changes, the source configures and builds correctly on gcc 2.96 and 3.2.2 without any tweaks
or changes.

As suggested by Kern Sibbald, I changed the default −−phraselimit to 48 characters.

As reported by Jim Hamilton, some mail systems which store individual messages as separate files in
folder directories do not prefix each message file with the “From ” sentinel we were counting to mark
message boundaries. This resulted in bad message counts, affecting probability computation and, worse,
failure to reset decoder modes, etc. after a mailformed message. I added a new expectingNewMessage
flag, which is set at the start of every new file mailFolder reads (whether a composite mail folder or
a file within a directory). When expectingNewMessage is set, the first line of the file with a nonblank
character in the leftmost character position is considered the start of a new message regardless of its
contents.

2003 February 19

Added the ability to parse a composite mail folder file using either pure BSD (“From ” always denotes
start of message and is quoted in every other case) from “consensus UNIX” format, where “From ” only
marks the start of a new message when it appears after a blank line. Sun “Content−Length:” folders

http://www.josuttis.com/
http://www.josuttis.com/

222 DEVELOPMENT LOG ANNOYANCE-FILTER §256

are not supported, as they were a disastrously poor idea—you can generally treat them as usual UNIX

folders. By default, folders are parsed using UNIX semantics. A new −−bsdfolder option marks the
following −−mail or −−junk folder as following BSD rules. Note that you must specify −−bsdfolder

before each BSD-style folder; it is not modal. This is a change in default behaviour: folders were
previously parsed using BSD rules, while UNIX is now the default.

The very large case statement which processes command line options ran afoul of CWEAVE’s maximum
token per scrap capacity limit. I added a cweb/cweave−bigger.ch file to increase the limit to 5000
tokens (from 2000), and modified cweb/Makefile to apply the change file when building CWEAVE. I
probably ought to break the option processing case into one piece for each option, but as there’s little
or nothing to be said about each one, that really wouldn’t improve the readability of the code.

2003 February 20

Completed the implementation of −−autoprune. This new option permits you to specify a memory
size, in bytes, at which a dictionary to which words are being added with the −−mail or −−junk

options will be automatically be pruned by discarding all words which appear only once. A new
dictionaryWord ::estimateMemoryRequirement method estimates the memory occupied by an in-
memory word, and this is used to compute the total dictionary size. dictionary ::purge has been
extended to accept an optional argument which, if nonzero, causes the pruning of the dictionary to be
based on the number of occurrences of the word rather than our ability to compute its probability.

If the user sets −−autoprune too low, we can fall into a trashing situation when the non-unique words
in the dictionary exceed the pruning threshold. To keep this from happening, whenever the dictionary
size after an automatic prune exceeds 90% of the −−autoprune threshold, the threshold is increased by
25%.

2003 February 21

Modified the makew32.sh script to build with gcc 3.x rather than 2.x. Note that this means the
source should be ./configured for a gcc 3.x build before creating winarch to transport to the Cygwin
machine.

When building on Cygwin with gcc 3, getopt.h managed to get included twice for some reason. I
changed the condition around our local copy to __GETOPT_H__ to agree with the symbol in the library
include to prevent this from happening.

Updated the cygwin.dll included in the Win32 executable distribution to the January 24, 2003 version
we’re currently using on Ovni.

Release 1.0.

2003 June 24

As reported by and fixed by Wolfgang Schnerring, utilities/splitmail.pl had an assignment state-
ment in the dispose_of_message subroutine which was missing the dollar sign before the variable
name. I integrated his fix. Thank you!

2003 August 27

A pdfTextExtractor was not restartable—once instantiated, it could only be used once; calling close
and then re-initialising with the parent applicationStringParser class setMailFolder left the extractor
at end of file. This required fixes both in pdfTextExtractor, where the close method failed to reset
initialised to false , and in applicationStringParser, whose close method did not reset the eof and
error flags.

2003 August 28

§256 ANNOYANCE-FILTER DEVELOPMENT LOG 223

Added a parser diagnostic to mailFolder ::nextLine to indicate when an applicationStringParser is
closed.

The close method of pdfTextExtractor failed to close the input stream it used to read the output
from the pipe connected to pdftotext, which caused (for some bizarre reason), the raw binary PDF
file to be returned, not the decoded text. I added the requisite close of the stream.

When pdfTextExtractor was transcribing the decoded attachment to the temporary file to be read
by pdftotext, it checked for end of file but not error conditions. I modified it to use isOK () to govern
the copy loop.

The flashTextExtractor and its parent flashStream were not restartable because they did not
propagate the close up to the applicationStringParser from which all are derived, and because
flashTextExtractor did not reset its own initialised and textOnly at end of file. Fixed.

Because the flashStream decoder usually terminates upon seeing a stagEnd tag in the input stream,
it failed to read from the MIME decoder until end of file was encountered. This caused an extraneous
blank line to be inserted in the transcript at the end of the MIME-encoded data and before the part
end sentinel. I added logic to flashTextExtractor ::nextString to call get8 () until an end of file is
reported before returning the logical end of file for the flash stream.

The input stream close I added to pdfTextExtractor ::close ran afoul of the fdistream logic used
to cope with gcc 3 which, helpfully, does not define a close method. I made the close conditional on
HAVE_FDSTREAM_COMPATIBILITY not being defined.

This time, our attempt to rebuild the Win32 version was torpedoed by getopt in yet another innovative
way. This time, the care we took to avoid including our own getopt.h stabbed us in the back, because
the library’s version (which I still haven’t figured out the reason it’s being included) doesn’t define the
long version of getopt , and wants a different symbol to do so than our include file. So, I added WIN32

conditional code before the include of our version to force it to be included and define the long option
version of getopt . This GCC/Cygwin “compatibility” is turning out to be a running bad joke.

Release 1.0a.

2003 September 23

A file whose name contained the string “.gz” (or whatever other compressed file extension was config-
ured) would be fed through the decompressor even if the sequence was embedded in the middle of the
file name. I modified the tests to deem a file compressed only if the Compressed file type string appears
at the end of the file name. This applies both to files named directly on the command line and files
within directories.

A PDF file which has been marked by its creator as view-only will not be processed by pdftotext—
no output is generated and the message “Error: Copying of text from this document is not
allowed.” is sent to standard output. There’s nothing we can do about this, absent making a version
of pdftotext which bypasses the PDF file security mechanisms. While there’s something to be said for
this, it’s well beyond the mandate of annoyance−filter.

An assertion added to flashStream :: ignoreTag in the process of debugging problems due to multiple
flash attachments could fail when −−bsdfolder mode was used to scan a mail or junk folder. I
commented out the assertion.

2003 September 24

Phil Karn (KA9Q) reported that on the latest Debian distribution, compilations failed due to a missing
definition of assert. As far as I can determine, assert.h was pulled in by other includes in earlier
libraries, but now must be included explicitly. I added the requisite includes to annoyance−filter.w

and statlib.w.

Release 1.0b.

224 INDEX ANNOYANCE-FILTER §257

257. Index. The following is a cross-reference table for annoyance−filter. Single-character
identifiers are not indexed, nor are reserved words. Underlined entries indicate where an identifier
was declared.

__GETOPT_H__: 232, 256.
__GNU_LIBRARY__: 232.
a: 11, 32, 38, 50, 113, 120.
abort : 196.
abs : 186, 188, 256.
absentPlumber : 197, 216.
ac : 124.
accept : 199.
acceptConnections : 194, 197, 215.
actionCode: 111, 124.
add : 10, 19, 20, 227.
addFolder : 227, 243.
addSignificantWordDiagnostics : 183, 190,

191, 192, 256.
AF_INET: 197, 202.
Annotate : 41, 130, 131, 150, 154, 155, 156,

157, 159, 160, 161, 169, 185, 191, 239.
annotations : 239, 243, 244.
any : 256.
applicationStringParser: 98, 99, 100,

125, 129, 256.
arg : 129, 145, 146, 149, 150, 164, 165.
argc : 223, 243.
argument : 194, 200, 208, 210, 211, 219.
argv : 223, 243.
asciiToken : 184, 224, 227, 249.
asp : 129, 130, 142, 155, 156, 157, 158.
aspFlash : 129, 155.
aspPdf : 129, 155.
assembleAllPhrases : 173, 180, 181.
assemblePhrases : 173, 179, 180.
assert: 10, 12, 16, 31, 34, 41, 47, 69, 88, 89,

94, 97, 99, 129, 131, 133, 136, 137, 147,
153, 160, 167, 168, 170, 173, 181, 198, 256.

atEnd : 40, 41, 46, 47, 173, 174.
atEndOfLine : 58, 61.
atof : 15, 243.
atoi : 15, 243.
attach : 128, 134, 137, 256.
autoPrune : 228, 241, 243.
b: 11, 50, 69, 113, 120, 178.
back : 167, 168, 182.
bad alloc : 33.
base64MIMEdecoder: 48, 49, 56, 57,

129, 147, 256.
bcl : 213.
begin : 10, 22, 24, 25, 26, 28, 30, 31, 35, 37,

114, 167, 168, 182, 188, 190, 191, 230, 256.
bigEndian : 81, 82, 85.

Big5 MBCSdecoder: 73, 74, 129, 148.
Big5 MBCSinterpreter: 92, 129, 148.
bin : 28.
binary : 33, 35, 127, 243.
bind : 197.
bitBuf : 100, 109.
bitPos : 100, 109.
bitset: 239, 256.
bll : 210.
blMax : 173.
blMin : 173.
bmd : 129, 160.
bodyContentTransferEncoding : 129, 139, 141,

146, 256.
bodyContentType : 129, 139, 141, 146, 256.
bodyContentTypeCharset : 129, 139, 141,

146, 256.
bodyContentTypeName : 129, 139, 141, 146.
bp : 32, 210.
BSD_DIAG: 139.
BSDfolder : 129, 139.
bsdFolder : 227, 239, 243.
bt : 173.
btd : 173, 178.
bucket : 34.
buf : 32, 98, 108.
bufl : 32.
byProbability : 22.
byteOrderMark : 32, 33, 35.
byteStream : 129, 131, 142, 156, 158, 161.
c: 10, 16, 17, 18, 51, 113, 122, 129, 131,

170, 171, 172.
c str : 15, 27, 33, 35, 45, 128, 129, 133, 134,

135, 136, 137, 168, 185, 201, 202, 243.
caddr t : 33, 243.
cat : 10, 129, 227.
category : 19, 20, 25, 129, 227.
categoryName : 10, 25, 129, 227.
cend : 170.
centralMoment : 26.
cerr : 22, 23, 24, 25, 26, 27, 31, 32, 33, 35,

45, 65, 70, 101, 115, 119, 120, 127, 128,
129, 133, 135, 136, 137, 139, 169, 179, 189,
196, 201, 202, 205, 208, 209, 210, 211, 212,
213, 214, 216, 218, 219, 221, 227, 228,
231, 241, 243, 244, 256.

cfName : 129, 136, 137, 138.
ch : 42, 43, 44, 58, 59, 60, 64, 99, 105, 208, 243.
charset : 147, 148.

§257 ANNOYANCE-FILTER INDEX 225

CHECK_FOR_GIBBERISH_CHARACTER_SETS: 159.
ChIx : 174, 178.
chn : 84.
cht : 43.
ch1 : 60, 62, 63.
ch2 : 60.
cin : 10, 19, 129, 256.
cl : 173, 174, 176, 177.
classifyMessage: 183, 184, 185, 192, 221,

231, 256.
classifyMessages : 231, 243, 256.
classifyThis : 183, 185, 221, 231.
clear : 114, 128, 129, 137, 170, 171, 172,

173, 182, 256.
clearMessageQueue : 173, 182.
clearMessageTranscript : 129, 219.
clientBuffer : 200, 205, 206, 207, 208.
clientLength : 200, 203, 205, 207, 208, 212,

213.
clientSocket : 198, 199, 200, 201, 203, 205,

212, 213, 214.
close : 27, 32, 33, 35, 45, 98, 100, 114, 115,

125, 126, 127, 130, 138, 168, 185, 194,
197, 201, 214, 243, 256.

closedir : 136.
clp : 173, 174, 176, 177.
cm : 221, 231.
cmd : 134, 137.
cMultiLine : 194, 195, 210.
command : 27, 194, 200, 204, 208, 210,

211, 219.
compareHeaderField : 129, 145, 146, 149,

150, 164.
Compressed file type : 129, 132, 137, 256.
COMPRESSED_FILES: 129, 132, 137, 256.
computeHashValue : 32, 34, 35, 39.
computeJunkProbability : 10, 12, 19, 30,

229, 256.
connect : 202.
const iterator : 26, 28, 35.
const reverse iterator : 181, 189, 192.
count : 244, 256.
cout : 10, 13, 19, 27, 32, 100, 102, 115, 117,

118, 119, 120, 122, 124, 129, 168, 176, 177,
199, 230, 242, 243, 245, 246, 247.

createTranscript : 183, 185.
cstart : 170.
cstat : 200, 201, 202.
cword : 34.
c1 : 72, 74, 76, 77, 79, 82, 84, 85.
c2 : 72, 74, 77, 82, 85.
d: 32, 33, 35, 88, 113, 173, 174, 181, 183.

d name : 136.
dat : 27, 29.
data : 16, 34, 37, 213, 220, 222.
dataTable : 26, 256.
dblock : 32, 33, 34.
dc : 57, 89, 94, 97.
dchar : 57.
de : 136.
dec : 89, 94, 97, 122, 124.
decoded : 65.
decodedBytes : 48, 49, 50, 54.
decodeEscapedText : 48, 57, 58, 65, 147, 256.
decodeLine : 88, 90, 121, 148, 152.
decoderEOF : 130.
deque: 48, 173, 181.
describe : 10, 13, 32, 100, 102, 129, 230.
dh : 129, 135, 136, 137.
dict : 218, 221, 225, 227, 228, 229, 230,

231, 243.
dictionary: 19, 20, 21, 22, 23, 24, 25, 26,

27, 30, 31, 32, 35, 183, 184, 188, 189,
192, 225, 230, 256.

dictionaryWord: 10, 11, 12, 13, 14, 15,
16, 17, 19, 20, 21, 22, 23, 24, 25, 30,
31, 37, 129, 173, 174, 181, 185, 220, 227,
229, 231, 243, 256.

dictionaryWordProb less : 24.
DIR: 129.
dirent : 136.
dirFolder : 129, 135, 136, 137, 138, 256.
dirName : 129, 135, 136.
discardLine : 68, 72.
dlen : 124.
dlist : 129, 157, 160.
doubleSize : 32, 33, 35.
dp : 22, 32, 33, 88, 89, 94, 97, 188, 189,

192, 230, 243.
drt : 147, 148.
dt : 26, 183, 184.
dtable : 48, 51, 56.
dv : 22.
dw : 23, 24, 31, 185, 187, 227.
editTextFlags: 112.
EINTR: 199, 202.
empty : 24, 78, 114, 115, 116, 130, 139, 140,

175, 191, 218, 231.
encodedLineCount : 40, 41.
end : 10, 20, 21, 22, 24, 25, 26, 28, 30, 31,

35, 119, 120, 182, 188, 189, 190, 191,
192, 210, 230.

endBoundary : 40, 41.

226 INDEX ANNOYANCE-FILTER §257

endl : 13, 14, 22, 23, 24, 25, 26, 27, 29, 31,
32, 33, 35, 45, 65, 70, 101, 102, 115, 117,
118, 119, 120, 122, 124, 127, 128, 129, 133,
135, 136, 137, 139, 153, 168, 169, 176, 177,
179, 182, 189, 196, 199, 201, 202, 205,
208, 209, 210, 211, 212, 213, 214, 216,
218, 219, 221, 227, 228, 230, 231, 242,
243, 244, 245, 246, 247.

endLine : 183, 192.
eof : 98, 99, 100, 108, 127, 128, 256.
EOF: 53, 99.
eofbit : 137, 256.
eofHit : 40, 41.
erase : 24, 114, 140, 143, 174, 178, 219, 256.
errno : 199, 202.
estimateMemoryRequirement : 10, 19, 20, 24,

227, 228, 256.
etype : 147.
EUC MBCSdecoder: 71, 72, 129, 148, 256.
exit : 129, 135.
exitStatus : 223, 243, 256.
expectingNewMessage : 129, 137, 139, 256.
exportCSV : 10, 14, 15, 19, 22, 23, 243.
exportDictionary : 32, 35, 243.
exportToBinaryFile : 10, 16, 19, 31, 243, 256.
ext : 166.
f : 98, 100, 114, 125.
false : 15, 17, 33, 40, 42, 46, 55, 58, 61, 65,

98, 103, 114, 115, 125, 126, 127, 128, 129,
130, 131, 135, 136, 137, 139, 141, 142, 144,
159, 161, 164, 165, 166, 170, 173, 174, 176,
177, 179, 183, 194, 197, 199, 201, 203, 215,
226, 227, 229, 239, 241, 243, 256.

fastDictionary: 32, 33, 34, 35, 38, 39, 183,
184, 225, 243, 256.

fastDictionaryFloatingTest : 32, 33, 35.
fastDictionarySignature : 32, 33, 35.
fastDictionaryVersionNumber : 32.
fastDictionaryVoidLink : 32, 34, 35, 36, 37.
fb : 17.
fd : 183, 184, 188, 189, 256.
fDict : 218, 221, 225, 231, 243.
fdistream: 125, 129, 256.
fdlbail : 33.
fdostream: 256.
fdsize : 33.
fdt : 183, 184.
ff : 194.
fFlags : 119, 120, 121.
fgcp : 120.
fGlyphs : 120.
fileHandle : 32, 33, 243.

fileLength : 32, 33, 100, 101, 102, 243.
fileName : 19, 27.
fileno : 128, 134, 137.
filler : 33.
filterF : 194.
filterFunction : 194, 211.
find : 15, 20, 21, 32, 34, 119, 120, 147, 150,

165, 188, 189, 192, 210.
find last of : 15, 243.
findNextFileInDirectory : 129, 135, 136,

137, 138.
first : 20, 24, 35.
flags : 122.
FLASH_PARSE_DEBUG: 115, 117, 118, 119,

120, 122, 124.
flashStream: 100, 101, 102, 103, 104, 105,

106, 107, 109, 114, 256.
flashTextExtractor: 100, 114, 115, 129,

256.
flush : 24, 120.
fname : 32, 33, 35, 40, 45, 129, 133, 134, 135,

136, 137, 168, 227, 231, 256.
fontANSI : 112.
fontBold : 112.
fontChars : 120.
fontFlags: 112, 114, 119, 120.
fontFlyphCount : 117.
fontGlyphCount : 114, 117, 118, 119, 120.
fontId : 120.
fontID : 117, 118, 119.
fontInfoBits : 114, 119, 120.
fontItalic : 112.
fontMap : 114, 119, 120.
fontName : 118, 119.
fontNameLen : 118, 119.
fontp : 120.
fontShiftJIS : 112, 121.
fontUnicode : 112, 121.
fontWideCodes : 112, 119, 120.
forceInHeader : 129, 162, 220.
fp : 16, 17, 119.
frameCount : 100, 101, 102.
frameRate : 100, 101, 102.
frameSize : 100, 101, 102.
from : 198, 199, 214.
fromlen : 198, 199.
fromLine : 129, 139, 169.
front : 24, 116, 175, 191.
fs : 135, 136.
fstream: 256.
g: 119, 120.
GB2312 MBCSinterpreter: 91, 129, 148.

§257 ANNOYANCE-FILTER INDEX 227

geometricMean : 26.
get : 10, 11, 20, 21, 22, 23, 24, 31, 37, 187.
getBits : 100, 106, 107, 109, 120.
getBSDmode : 129.
getCategory : 129, 227.
getchar : 40.
getDecodedChar : 40, 42, 43, 44, 46, 47, 48,

49, 57, 58, 59, 131.
getDecodedLine : 40, 42, 43, 46, 47, 130.
getDecodeErrors : 40.
getEncodedLineCount : 40, 130.
gethostbyname : 201.
getJunkProbability : 10, 22, 23, 24, 26, 28,

37, 188, 189, 192.
getLengthMax : 170, 173.
getLengthMin : 170, 173.
getline : 15, 41, 126, 130, 143, 191, 256.
getLineCount : 129, 227.
getMatrix : 100, 107, 120.
getMessageCount : 129, 227.
getNextChar : 58, 59, 60, 61, 63.
getNextDecodedChar : 68, 71, 72, 73, 74, 75,

76, 80, 81, 82, 83, 84, 85, 86, 88, 89,
90, 93, 94, 96, 97.

getNextEncodedByte : 68, 69, 72, 74, 76, 77,
82, 84, 85.

getNextEncodedChar : 55.
getNextEncodedLine : 40, 41, 46, 47, 52,

55, 61, 256.
getNextNBytes : 68, 69.
getNextUTF 16Word : 85, 86.
getNext2Bytes : 68.
getNext3Bytes : 68.
getNext4Bytes : 68.
getopt : 232, 256.
getopt long : 232, 243.
getRect : 100, 101, 106, 120, 122.
getSaveMessage : 182, 185.
getSignedBits : 100, 106, 107, 109.
getString : 100, 105, 118, 119, 122, 123, 124.
getTagDataLength : 100, 115.
getTagType : 100, 115.
getTerminatorSentinel : 40, 130.
getTextOnly : 114.
getTokenLengthMax : 173.
getTokenLengthMin : 173.
get16 : 101, 103, 108, 117, 118, 119, 120,

122, 124.
get16n : 108.
get32 : 101, 103, 108.
get32n : 108.

get8 : 98, 99, 100, 101, 104, 105, 108, 109,
115, 118, 119, 120, 122, 124, 127, 256.

get8n : 98.
gibberish : 159, 160.
gp : 27.
h: 200.
h addr : 201.
harmonicMean : 26.
hash : 39.
hashSize : 35.
hashTable : 32, 33, 34, 35, 36.
hashTableBuckets : 32, 33, 34.
hashTableOffset : 32, 33.
HAVE_COMPRESS: 132.
HAVE_DIRECTORY_TRAVERSAL: 129, 135, 136,

137, 138, 237, 247, 256.
HAVE_DIRENT_H: 235, 237, 256.
HAVE_FDSTREAM_COMPATIBILITY: 125, 129,

134, 137, 233, 256.
HAVE_GNUPLOT: 237.
HAVE_GUNZIP: 132.
HAVE_GZCAT: 132.
HAVE_GZIP: 132.
HAVE_MKSTEMP: 125, 127, 237.
HAVE_MMAP: 32, 33, 235, 238, 243, 247, 256.
HAVE_NETPBM: 237.
HAVE_NEW_STRSTREAM: 233, 256.
HAVE_PDF_DECODER: 125, 126, 129, 155,

237, 247.
HAVE_PDFTOTEXT: 237.
HAVE_PLOT_UTILITIES: 19, 27, 237, 242,

243, 247.
HAVE_POPEN: 132, 237, 256.
HAVE_READLINK: 133.
HAVE_SIGNAL: 236.
HAVE_SOCKET: 236.
HAVE_STAT: 235, 237.
HAVE_SYSTEM: 237.
HAVE_TMPNAM: 237.
HAVE_UNCOMPRESS: 132.
HAVE_UNISTD_H: 235.
HAVE_ZCAT: 132.
haveStrings : 115.
headerSize : 35.
hex : 72, 77, 84, 86, 89, 94, 97, 122, 124.
hex to nybble : 58, 60, 64, 65.
hist : 28, 29.
hostent : 200.
howMany : 10.
hte : 35.
HTML_COMMENT_DEBUG: 176, 177.
HTMLCommentBegin : 176.

228 INDEX ANNOYANCE-FILTER §257

HTMLCommentEnd : 176.
htons : 197, 202.
htp : 35.
i: 10, 16, 17, 32, 39, 40, 51, 56, 69, 98, 100,

104, 108, 120, 129, 163, 164, 167, 168, 170,
177, 181, 189, 192, 208.

iAdvance : 120.
ibyte : 17.
identityMIMEdecoder: 46, 129.
idirstream : 256.
ifcdir : 129, 137.
ifdir : 129, 137, 138.
iFontHeight : 120.
ifstream: 33, 125, 129, 243, 256.
ignoreTag : 100, 104, 115, 117, 118, 119, 256.
iIndex : 120.
iMaxLength : 122.
imd : 129, 160.
importCSV : 10, 15, 19, 23, 243.
importFromBinaryFile : 10, 17, 19, 21, 31,

243, 256.
in : 33.
INADDR_ANY: 197.
inet addr : 201.
inet ntoa : 199, 202, 214.
inHeader : 129, 139, 141, 143, 144, 145, 146,

147, 150, 151, 152.
inHTML: 173, 176, 177.
inHTMLcomment : 173, 174, 176.
initBits : 100, 106, 107, 109, 120.
initialised : 114, 115, 125, 126, 256.
initialiseDecodingTable : 48, 56.
inPartHeader : 129, 130, 139, 141, 143, 149,

151, 152.
inputLine : 40, 41, 46, 52, 61.
insert : 20, 21, 24, 117, 118, 119, 187, 188,

190, 191, 192, 195, 256.
iNumber : 17.
ios : 33, 35, 72, 77, 84, 86, 89, 94, 97, 127,

137, 189, 192, 243, 256.
iostream: 256.
ip : 40, 41, 46, 52, 61, 125, 126, 128, 129,

134, 137, 138.
is : 10, 15, 17, 19, 23, 31, 33, 40, 41, 125,

126, 128, 129, 130, 134, 135, 137, 143,
157, 160, 220, 243.

is open : 137.
isalpha : 172, 208, 243.
isascii : 171, 243, 250.
isBigEndian : 81, 85.
isByteStream : 129, 174, 178.
isc : 129, 134, 256.

iscc : 129, 134.
isDictionaryLoaded : 32, 188, 189, 218, 231.
isdigit : 15, 171, 172, 201, 243.
isEndOfFile : 40, 130.
isEOF : 98, 101, 115.
isError : 98, 115.
isISOalpha : 171, 250.
isISOlower : 250.
isISOspace : 15, 139, 140, 143, 164, 165, 250.
isISOupper : 163, 250.
islower : 177, 243.
isNewMessage : 129, 173, 182.
isoalpha : 250, 251.
ISOch : 250.
isOK : 98, 103, 104, 115, 124, 127, 256.
isolower : 250, 251.
isoToken : 184, 224, 227, 249.
isoupper : 250, 251.
iss : 57.
isspace : 206, 208, 250.
isSpoofedExecutableFileExtension : 129, 156,

166.
isSpoofedHeader : 143, 144.
isTextControl : 112, 120.
isToken : 170, 171, 172.
isTokenLengthAcceptable : 170, 174, 178.
isTokenMember : 170, 174, 178.
isTokenNotAtEnd : 170, 174, 178.
isTokenNotExclusively : 170, 174, 178.
istream: 10, 15, 17, 19, 23, 31, 40, 129, 256.
istringstream: 57, 129, 219, 220, 256.
istrstream: 33, 220, 243, 256.
isupper : 208, 243.
iterator : 20, 21, 22, 25, 30, 31, 119, 120,

167, 168, 182, 183, 188, 189, 190, 191,
192, 230, 256.

iXOffset : 120.
iYOffset : 120.
j: 29, 50.
Jig : 242, 243, 252, 253.
jname : 129, 133, 137.
jp : 34, 37, 191, 221, 231.
jProb : 10.
Junk : 10, 12, 14, 15, 17, 21, 22, 23, 31,

229, 243.
junkProb : 185, 189, 190, 191.
junkProbability : 10, 12, 13, 14, 15, 16, 17,

22, 188.
junkThreshold : 191, 239, 243.
k: 50.
kp : 17.
KR MBCSinterpreter: 95, 129, 148.

§257 ANNOYANCE-FILTER INDEX 229

kurtosis : 26.
k1 : 16, 17.
l: 103, 183, 192.
L tmpnam : 125.
lal : 143.
lastFromLine : 129, 139, 169.
lastLineBlank : 129, 139.
lastMessageID : 129, 139, 145, 169.
lastOption : 243, 256.
left : 189, 192.
length : 10, 15, 16, 34, 37, 39, 41, 42, 46, 52,

61, 65, 68, 129, 130, 137, 139, 140, 143,
144, 147, 150, 151, 159, 160, 163, 164, 165,
166, 167, 170, 174, 176, 177, 178, 181, 184,
190, 191, 210, 213, 219, 220, 222, 227, 243.

lineOverhead : 129, 167, 256.
list: 40, 129, 167, 168, 173, 182, 183, 190,

191, 192, 226.
listen : 197.
listenSocket : 194, 197, 198, 199.
lmax : 170, 171, 172.
lMax : 173.
lmin : 170, 171, 172.
lMin : 173.
lnk : 34.
load : 32, 33, 243.
long options : 243.
lookAhead : 40, 42, 43, 55.
lookAheadLine : 129, 130, 143.
lookChar : 40, 42, 43, 55.
lookedAhead : 100, 104, 129, 130, 143.
lookupDictionary : 256.
lp : 129.
lseek : 33, 243.
m: 40, 48, 57, 58, 65, 68, 183, 184.
Mail : 10, 12, 14, 15, 17, 21, 22, 23, 31, 220,

229, 231, 243.
mailBias : 10, 12, 19, 30, 229, 239, 243.
mailCategory: 10, 19, 20, 25, 129, 227.
mailFolder: 40, 48, 57, 58, 65, 68, 98, 100,

114, 125, 129, 130, 131, 136, 137, 163, 164,
165, 166, 167, 168, 169, 173, 178, 183, 184,
191, 220, 221, 227, 231, 256.

mailThreshold : 191, 239, 243.
main : 223.
make pair : 20, 21, 24, 117, 118, 119, 188.
map: 11, 19, 24, 114, 119, 120, 160, 188, 256.
MAP_NORESERVE: 33, 243.
MAP_SHARED: 33, 243.
mat : 100, 107.
matrix: 100, 107, 113, 120.
max : 12.

maxBacklog : 194, 197, 215.
maxSlinks : 133.
maxTokenLength : 170, 184, 224, 227, 241.
MBCSdecoder: 66, 68, 69, 70, 71, 73,

75, 80, 88, 256.
MBCSinterpreter: 66, 88, 89, 90, 91, 92,

93, 95, 96, 129.
mbd big5 : 129, 148, 159.
mbd euc : 129, 148, 159.
mbd sjis : 121.
mbd ucs : 121.
mbd utf 8 : 129, 148, 159.
mbi : 129, 142, 152, 159.
mbi big5 : 129, 148, 159.
mbi gb2312 : 129, 148, 159.
mbi kr : 129, 148, 159.
mbi sjis : 121.
mbi ucs : 121.
mbi unicode : 129, 148, 159.
mdp : 129, 130, 131, 142, 153, 157, 160, 161.
mdump : 185.
mean : 26.
median : 26.
memcmp : 33, 34, 101.
memcpy : 34, 36, 37, 201, 202, 222.
memoryRequired : 19, 20, 24.
memset : 224.
messageCount : 22, 23, 31, 224, 226, 227,

229, 243, 256.
messageID : 129, 139, 145, 169.
messageQueue : 173, 174, 175, 178, 182, 190.
messageSentinel : 41, 139, 167, 168, 182.
messageTranscript : 185, 190, 191, 221, 226.
mf : 40, 41, 51, 53, 60, 63, 68, 70, 98, 99, 173,

183, 184, 185, 219, 220, 221, 227, 231.
mime : 256.
MIME_DEBUG: 256.
mimeContentDispositionFilename : 129, 142,

149, 156.
mimeContentTransferEncoding : 129, 141,

142, 149, 151, 153, 157, 159, 160, 161.
mimeContentType : 129, 141, 142, 149, 151,

153, 154, 155, 156, 157, 158, 159, 160,
161, 162.

mimeContentTypeBoundary : 129, 142, 149,
151, 154.

mimeContentTypeCharset : 129, 141, 142,
149, 151, 153, 157, 159, 160, 161.

mimeContentTypeName : 129, 141, 142,
149, 156.

MIMEdecoder: 40, 41, 42, 44, 45, 46, 47,
48, 58, 129, 160, 256.

230 INDEX ANNOYANCE-FILTER §257

min : 12, 189, 192, 213.
minOccurrences : 10, 12, 19, 30, 229, 239.
minTokenLength : 170, 184, 224, 227, 241.
mkstemp : 127.
mmap : 33, 243.
mode : 26, 129.
mp : 25, 26, 28.
mtbuf : 219.
mtl : 219.
multiLine : 194, 195, 210.
multimap: 183, 188, 189, 192, 256.
multiPart : 129, 139, 141, 149, 150, 151,

153, 256.
munmap : 32, 33, 243, 256.
n: 38, 68, 69, 98, 100, 105, 108, 109, 164,

165, 167, 168, 189, 192.
n junk : 10, 13, 16, 23, 31.
n mail : 10, 13, 16, 23, 31.
n occurrences : 10, 24.
name : 40, 46, 47, 48, 58, 68, 71, 72, 73,

74, 75, 77, 80, 81, 82, 83, 84, 85, 86, 88,
89, 91, 92, 93, 95, 96, 98, 114, 125, 130,
155, 160, 197, 256.

nBins : 19, 27, 28, 29.
nBits : 106, 107.
nbytes : 84.
nCategories : 10.
NDEBUG: 196.
nDecodeErrors : 40, 51, 53, 60, 63.
ndecodes : 147.
necount : 174, 178.
newMessage : 129, 139.
nExt : 183, 184.
nextByte : 98, 99, 129, 131, 178.
nextGreaterPrime : 32, 35, 38.
nextLine : 129, 130, 173, 174, 178, 256.
nExtremal : 183, 184, 189, 192.
nextString : 98, 100, 114, 115, 125, 126,

130, 256.
nextTag : 100, 103, 115.
nextToken : 173, 174, 178, 187, 227.
nGlyphs : 118, 119, 120.
nJunk : 12.
nJunkMessages : 10, 12, 19, 30.
nLines : 129, 130.
nMail : 12.
nMailMessages : 10, 12, 19, 30.
nMessages : 129, 139.
nOptionalCaps : 246, 247.
not at ends : 256.
not entirely : 174.
not POPFILTER TRACE : 219.

notAtEnd : 170, 171, 172.
notExclusively : 170, 171, 172.
novelWordProbability : 221, 231, 239, 243.
npos : 15, 147, 150, 165, 243.
nTested : 231, 240, 244.
ntohs : 202.
ntokens : 227.
nullstream : 129, 135.
numTokenChars : 170.
nwydes : 86.
n1 : 60, 65.
n2 : 60, 65.
o: 10, 32, 35, 50.
O_RDONLY: 33, 243.
occurrences : 10, 12, 14, 15, 17, 19, 21, 24.
of : 35, 45, 168, 243.
off : 32.
offsetTable : 117.
ofstream: 27, 35, 45, 127, 168, 185, 241, 243.
ok : 200, 203, 204.
OLDWAY: 35, 37, 186, 219.
open : 33, 129, 137, 243.
opendir : 135, 256.
opened : 194, 196, 197, 198.
openNextFileInDirectory : 129, 136, 137.
operateProxyServer : 194, 215, 218.
opt : 223, 243.
optarg : 243.
optind : 243.
option : 243.
option index : 243.
os : 10, 13, 14, 16, 19, 22, 26, 31, 32, 40, 41,

44, 51, 60, 63, 68, 70, 72, 74, 77, 82, 84, 85,
86, 89, 94, 97, 100, 102, 129, 130, 131, 139,
143, 148, 150, 154, 155, 156, 157, 159, 160,
161, 168, 169, 182, 190, 191, 192, 219, 230.

ostream: 10, 13, 14, 16, 19, 22, 26, 31, 32, 35,
40, 44, 100, 102, 129, 168, 182, 230, 256.

ostringstream: 41, 51, 60, 63, 68, 70, 72, 74,
77, 82, 84, 85, 86, 89, 94, 97, 129, 130, 131,
139, 143, 148, 150, 154, 155, 156, 157, 159,
160, 161, 169, 190, 191, 192, 219, 222, 256.

ostrstream: 219, 256.
out : 35, 127.
outCount : 16.
outNumber : 16.
p: 24, 181, 189, 194.
pair: 24.
par : 146, 149.
PARSE_DEBUG: 256.
parseHeaderArgument : 129, 146, 149, 165.
parserDiagnostics : 169, 191, 226.

§257 ANNOYANCE-FILTER INDEX 231

partBoundary : 40, 41, 129, 130, 141, 150,
151, 154, 157, 160.

partBoundaryStack : 129, 130, 139, 154, 256.
partHeaderLines : 129, 139, 149.
pathSeparator : 129, 135, 136.
pb : 40.
pc : 78.
pcl : 213.
pclose : 125, 129, 138, 256.
pdfcmd : 128.
pdfstr : 127.
pdfTextExtractor: 125, 126, 129, 256.
pDiagFilename : 184, 185, 227, 241, 243, 244.
pdiff : 188.
pdw : 22, 31.
pending : 75, 78, 79.
pendingPhrases : 173, 175, 181.
percentile : 26.
perror : 197, 199, 202, 203, 207, 209, 210,

212, 213.
phrase : 181.
phraseLimit : 179, 181, 241, 243.
phraseMax : 179, 181, 241, 243.
phraseMin : 179, 181, 241, 243.
phraseQueue : 173, 181.
pind : 243.
PLOT_DEBUG: 27.
plotProbabilityHistogram : 19, 27, 243.
pop : 24, 114, 116, 130, 139, 191.
pop back : 144.
POP_BUFFER: 194, 200, 210.
pop front : 49, 175, 181.
POP_MAX_MESSAGE: 194, 203, 205, 209, 210,

213.
POPDEBUG: 256.
popen : 128, 129, 134, 137, 256.
popFilter : 218, 219, 256.
POPFILTER_TRACE: 219.
popProxyPort : 194, 197, 218, 239, 243.
popProxyServer : 218, 223, 239, 243, 244.
popProxyServerPort : 218, 239, 243.
popProxyTrace : 202, 205, 208, 209, 210, 211,

212, 213, 216, 241, 243.
POP3_MAX_CLIENT_WRITE: 213, 256.
POP3_PROXY_SERVER: 194, 197, 198, 215, 219,

223, 236, 239, 242, 243, 244, 247, 256.
POP3_TRACE_TRANSFER_DETAIL: 210, 213.
POP3Proxy: 191, 193, 194, 197, 198, 215,

217, 218, 256.
POP3ProxyFilterFunction : 194.
pp : 218.
pq : 24.

pre : 88.
prefix : 88, 89, 94, 97.
printDictionary : 230, 243.
printf : 122.
printOptionalCapability : 246, 247.
printStatistics : 19, 26, 243.
probP : 189.
probQ : 189.
PRODUCT: 242, 245.
PROT_READ: 33, 243.
proxyPort : 194.
pseudoCountsWord : 22, 23, 31.
pt : 24.
pTokenTrace : 174, 175, 178, 241, 243, 244.
purge : 19, 24, 26, 27, 228, 243, 256.
PURGE_USES_REMOVE_IF: 24.
push : 24, 118, 119, 120, 122, 123, 124,

154, 169.
push back : 22, 26, 41, 54, 130, 143, 157, 160,

173, 174, 175, 178, 181, 182.
put : 16, 35, 44.
p1 : 15, 147, 150, 165.
p2 : 15, 147.
p3 : 147.
p4 : 147.
qmd : 129, 160.
quartile : 26.
queue: 24, 114, 226, 256.
quotedPrintableMIMEdecoder: 58, 59,

61, 64, 65, 129, 147, 256.
r: 57, 65, 89, 90, 94, 97, 120.
rbegin : 181, 189, 192.
rBounds : 122.
read : 17, 33, 256.
readdir : 129, 136, 256.
readHeader : 100, 101, 115.
readlink : 133.
rect: 100, 106, 113, 120, 122.
recv : 203, 205, 209, 210.
regen : 32, 33.
remainder : 38.
remove : 27, 125.
remove if : 24, 256.
replace : 147.
reply : 194, 200, 210, 211, 213, 219, 220,

222, 256.
replyBuffer : 194, 219, 222.
replyLength : 194, 219, 222.
reportDecoderDiagnostic : 68, 70, 72, 74, 77,

82, 84, 85, 86, 256.
reportParserDiagnostic : 41, 51, 53, 60, 63, 70,

129, 130, 131, 139, 143, 145, 148, 150, 154,

232 INDEX ANNOYANCE-FILTER §257

155, 156, 157, 159, 160, 161, 169, 173, 256.
reset : 68, 173, 177, 179.
resetCat : 10, 19, 25, 243, 256.
resetDecodeErrors : 40.
resize : 37.
result : 84, 86.
RETSIGTYPE: 216.
REVDATE: 1, 245.
reverse iterator: 188.
rfind : 129, 137.
right : 189, 192.
rl : 209.
RMS: 26.
rp : 189, 192.
rpl : 213.
rs : 222.
rtokens : 183, 188, 189, 190, 191, 192.
s: 10, 15, 32, 39, 40, 42, 46, 48, 57, 58, 65,

68, 70, 88, 90, 98, 100, 103, 105, 109, 114,
115, 120, 122, 123, 125, 126, 129, 130, 163,
164, 165, 166, 169, 173, 182, 194, 246.

s addr : 197, 202.
S_ISDIR: 135.
S_ISREG: 136.
s Junk : 10.
s Mail : 10.
sactionAdd : 111.
sactionBranchAlways : 111.
sactionBranchIfTrue : 111.
sactionCallFrame : 111.
sactionChr : 111.
sactionDivide : 111.
sactionDuplicateClip : 111.
sactionEqual : 111.
sactionEval : 111.
sactionGetProperty : 111.
sactionGetTimer : 111.
sactionGetURL: 111, 124.
sactionGetURL2 : 111.
sactionGotoExpression : 111.
sactionGotoFrame : 111.
sactionGotoLabel : 111.
sactionHasLength : 111.
sactionInt : 111.
sactionLessThan : 111.
sactionLogicalAnd : 111.
sactionLogicalNot : 111.
sactionLogicalOr : 111.
sactionMBChr : 111.
sactionMBLength : 111.
sactionMBOrd : 111.
sactionMBSubString : 111.

sactionMultiply : 111.
sactionNextFrame : 111.
sactionNone : 111, 124.
sactionOrd : 111.
sactionPlay : 111.
sactionPrevFrame : 111.
sactionPushData : 111.
sactionRandom : 111.
sactionRemoveClip : 111.
sactionSetProperty : 111.
sactionSetTarget : 111.
sactionSetTargetExpression : 111.
sactionSetVariable : 111.
sactionStartDragMovie : 111.
sactionStop : 111.
sactionStopDragMovie : 111.
sactionStopSounds : 111.
sactionStringConcat : 111.
sactionStringEqual : 111.
sactionStringLength : 111.
sactionStringLessThan : 111.
sactionSubString : 111.
sactionSubtract : 111.
sactionToggleQuality : 111.
sactionTrace : 111.
sactionWaitForFrame : 111.
sactionWaitForFrameExpression : 111.
sarg : 243.
saveDecodedStream : 40, 44, 45.
saveMessage : 173, 174, 175, 178, 182.
saveParserDiagnostics : 185, 226.
sc : 144, 147, 150, 164, 165, 166.
score : 243.
scx : 144.
second : 20, 21, 22, 24, 25, 26, 28, 30, 31, 37,

114, 119, 120, 188, 189, 192, 230.
seditTextFlagsBorder : 112.
seditTextFlagsHasFont : 112, 122.
seditTextFlagsHasLayout : 112, 122.
seditTextFlagsHasMaxLength : 112, 122.
seditTextFlagsHasText : 112, 122.
seditTextFlagsHasTextColor : 112, 122.
seditTextFlagsMultiline : 112.
seditTextFlagsNoSelect : 112.
seditTextFlagsPassword : 112.
seditTextFlagsReadOnly : 112.
seditTextFlagsUseOutlines : 112.
seditTextFlagsWordWrap : 112.
send : 203, 207, 212, 213, 256.
serverBuffer : 200, 203, 209, 210, 211, 212.
serverHost : 202.
serverIP : 200, 201, 202.

§257 ANNOYANCE-FILTER INDEX 233

serverLength : 200, 203, 207, 209, 211, 212.
serverN : 194.
serverName : 194, 201, 202.
serverP : 194.
serverPort : 194, 202.
serverSocket : 200, 202, 203, 207, 209, 210,

214.
serviceConnection : 194, 198, 215.
set: 10, 19, 22, 31, 40, 57, 129, 157, 160, 174,

175, 178, 187, 188, 194, 195, 243, 256.
setBigEndian : 81, 85.
setBSDmode : 129, 227.
setCategory : 129.
setDecoder : 88, 121, 148, 159.
setDiagnosticList : 129, 182.
setf : 89, 94, 97.
setFilterFunction : 194.
setiosflags : 72, 77, 84, 86, 189, 192.
setISO 8859defaults : 170, 171, 224.
setLengthLimits : 170, 171, 172, 173.
setMailFolder : 68, 98, 148, 155, 159, 256.
setNewMessageEligiblity : 41, 129, 137, 140.
setPopProxyPort : 194.
setprecision : 13, 14, 102, 189, 190, 191, 192,

221, 231, 243.
setPrefixSuffix : 88, 91, 92, 93, 96.
setSaveMessage : 182, 184, 227.
setServerName : 194.
setServerPort : 194.
setSource : 68, 88, 90, 173, 179, 184, 227, 256.
setTextOnly : 114.
setTokenDefinition : 173, 184, 227.
setTokenLengthLimits : 173, 184, 227, 256.
setTokenMember : 170.
setTokenNotAtEnd : 170.
setTokenNotExclusively : 170.
setTranscriptList : 129, 185.
setUS ASCIIdefaults : 170, 172, 224.
setw : 189, 192.
Shift JIS MBCSdecoder: 75, 76, 121.
Shift JIS MBCSinterpreter: 93, 94, 121.
sig : 100, 101.
SIG_DFL: 194.
signal : 194, 197, 216, 256.
signature : 33.
significantWords : 221, 231, 239, 243.
SIGPIPE: 194, 197, 216.
sin addr : 197, 199, 202, 214.
sin family : 197, 202.
sin port : 197, 202.
singleDictionaryRead : 229, 241, 243.
sinkMIMEdecoder: 47, 129.

size : 24, 35, 36, 37, 49, 167, 168, 181, 182,
189, 192, 227, 230, 243.

size type : 10, 15, 32, 37, 40, 65, 68, 84, 86,
143, 147, 150, 165, 170, 173, 174, 182,
189, 192, 243, 256.

sizeMessageTranscript : 129, 167, 219, 256.
skewness : 26.
skip8n : 100, 120, 122, 124.
slbuf : 133.
sll : 133.
slot : 35, 36.
smd : 129, 157, 160.
SOCK_STREAM: 197, 202.
sockaddr : 197, 199, 202.
sockaddr in : 197, 198, 202.
socket : 197, 202, 256.
socklen t : 198.
sOffset : 34.
sort : 22.
source : 173, 174, 178, 182.
sqlim : 38.
sqrt : 38.
src : 68, 88.
st mode : 135, 136.
stack: 129.
stagDefineBits : 110.
stagDefineBitsJPEG2 : 110.
stagDefineBitsJPEG3 : 110.
stagDefineBitsLossless : 110.
stagDefineBitsLossless2 : 110.
stagDefineButton : 110.
stagDefineButtonCxform : 110.
stagDefineButtonSound : 110.
stagDefineButton2 : 110.
stagDefineEditText : 110, 115.
stagDefineFont : 110, 115.
stagDefineFontInfo : 110, 115.
stagDefineFont2 : 110, 115.
stagDefineMorphShape : 110.
stagDefineShape : 110.
stagDefineShape2 : 110.
stagDefineShape3 : 110.
stagDefineSound : 110.
stagDefineSprite : 110.
stagDefineText : 110, 115.
stagDefineText2 : 110, 115.
stagDoAction : 110, 111, 115.
stagEnd : 103, 110.
stagFrameLabel : 110, 115.
stagFreeCharacter : 110.
stagJPEGTables : 110.
stagNameCharacter : 110.

234 INDEX ANNOYANCE-FILTER §257

stagPlaceObject : 110.
stagPlaceObject2 : 110.
stagProtect : 110.
stagRemoveObject : 110.
stagRemoveObject2 : 110.
stagSetBackgroundColor : 110.
stagShowFrame : 110.
stagSoundStreamBlock : 110.
stagSoundStreamHead : 110.
stagSoundStreamHead2 : 110.
stagStartSound : 110.
stat : 129, 135, 136, 256.
state : 129.
std: 233.
stdev : 26.
str : 51, 60, 63, 70, 89, 94, 97, 130, 135, 143,

148, 157, 169, 190, 191, 192, 219, 222.
strcpy : 127.
streamMaxTokenLength : 184, 224, 227, 241.
streamMinTokenLength : 156, 184, 224, 227,

241, 243.
string: 1, 10, 15, 17, 19, 24, 27, 32, 33, 34,

35, 39, 40, 42, 45, 46, 47, 48, 57, 58, 65,
68, 70, 71, 73, 75, 80, 81, 83, 84, 85, 86,
88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,
100, 105, 114, 115, 118, 119, 120, 122, 123,
124, 125, 126, 128, 129, 130, 133, 134, 136,
137, 143, 144, 145, 146, 147, 149, 150, 160,
163, 164, 165, 166, 167, 168, 169, 170, 173,
174, 175, 177, 178, 181, 182, 183, 187, 188,
189, 190, 191, 192, 194, 200, 208, 210, 219,
226, 239, 241, 243, 246, 256.

stringCanonicalise : 129, 144, 146, 147, 149,
150, 163, 164, 165, 166.

strings : 114, 115, 116, 118, 119, 120, 122,
123, 124.

strstream: 256.
substr : 15, 41, 46, 65, 78, 130, 139, 143, 144,

147, 148, 150, 151, 156, 157, 158, 159, 160,
164, 165, 166, 167, 168, 176, 182, 210, 243.

suf : 88.
suffix : 88, 89, 94, 97.
sval : 17.
system : 27.
t: 90, 170, 173.
tag : 177.
tagType : 100, 103, 110.
target : 32, 34, 124, 129, 164, 165.
td : 35, 173, 174.
tDataLen : 100, 103, 104.
tellg : 33.
tellp : 219.

tempfn : 125, 127, 128.
test : 239.
text : 10, 11, 13, 14, 15, 16, 17, 174, 175,

178, 181.
textAdvanceBits : 120.
textFlags: 112.
textGlyphBits : 120.
textHasColor : 112, 120.
textHasFont : 112, 120.
textHasXOffset : 112, 120.
textHasYOffset : 112, 120.
textID : 120.
textOnly : 114, 118, 119, 122, 123, 124, 256.
textRecordType : 120.
tf : 114.
tl : 40.
tlist : 40, 41, 129, 130, 143, 144, 157, 160,

167, 168.
tm : 120.
tmpnam : 127.
to iso lower : 10, 18.
to iso upper : 18.
toISOlower : 18, 163, 250.
toISOupper : 18, 250.
token : 174, 175, 178.
tokenDefinition: 170, 171, 172, 173, 178,

249, 256.
tokenParser: 98, 131, 170, 173, 174, 181,

183, 227, 256.
toLower : 10, 174, 175, 178.
tolower : 208, 250.
top : 130, 139.
totalSize : 32, 33, 35.
totsize : 167.
toupper : 177, 250.
tp : 183, 184, 185, 187, 190, 227.
tr : 120.
transcriptFilename : 185, 241, 243, 244.
transEndl : 191.
transform : 10.
true : 15, 17, 33, 34, 36, 38, 41, 42, 43, 46, 52,

59, 61, 65, 81, 85, 99, 101, 109, 115, 116,
118, 120, 122, 126, 127, 128, 129, 130, 135,
136, 137, 139, 141, 143, 144, 150, 151, 156,
159, 160, 164, 165, 170, 171, 172, 173, 174,
175, 176, 177, 178, 179, 182, 184, 185, 197,
198, 200, 209, 221, 227, 241, 243.

tType : 100, 103, 115.
tx : 107, 113.
ty : 107, 113.
TYPE_LOG: 153, 241.
typeLog : 153, 241.

§257 ANNOYANCE-FILTER INDEX 235

u int16 t : 32, 33, 34, 35, 37.
u int32 t : 32, 33, 34, 35, 36, 37, 39, 200, 201.
UCS 2 Unicode MBCSdecoder: 81,

82, 121.
uFontHeight : 122.
uFontId : 122.
unary function : 24.
Uncompress command : 132, 134, 137.
Unicode MBCSdecoder: 80, 81, 83, 85.
Unicode MBCSinterpreter: 96, 97, 121,

129, 148.
Unknown : 10, 129.
unknownWordProbability : 183, 184, 188,

189, 192.
updateProbability : 229, 230, 243, 256.
uppercase : 72, 77, 84, 86, 89, 94, 97.
url : 124.
usage : 242, 243.
UTF 16 Unicode MBCSdecoder: 85,

86.
UTF 8 Unicode MBCSdecoder: 83, 84,

129, 148.
utokens : 187, 188.
uwp : 183, 184.
u16 : 108.
u32 : 108.
v: 32, 49, 69, 109, 119, 170, 182.
variance : 26.
variant : 115, 120.
varname : 122.
vector: 22, 28, 32, 35, 37, 114, 119, 120, 256.
verbose : 22, 23, 24, 25, 26, 27, 31, 33, 35,

45, 65, 70, 101, 115, 119, 120, 135, 136,
137, 169, 189, 199, 214, 218, 221, 227,
228, 231, 241, 243, 256.

version : 100, 101, 102.
VERSION: 245, 256.
versionNumber : 32, 33, 35.
vl : 37.
Vmemcpy : 32, 37.
void: 194.
w: 19, 20, 21.
wc : 120.
where : 183, 192.
WIN32: 232, 238, 256.
wl : 34, 37.
wlen : 34, 37.
word : 37.
words : 35, 36, 37.
wordTable : 32, 33, 34.
wordTableSize : 32, 33, 35.
wp : 181, 192.

write : 16, 35, 256.
writeMessageQueue : 182, 185.
writeMessageTranscript : 129, 168, 185,

219, 256.
wtp : 35.
w1 : 22, 86.
w2 : 22, 86.
x: 186.
Xfile : 1, 144, 157, 160, 190, 191, 192, 256.
xMax : 102, 106, 113.
xMin : 102, 106, 113.
yMax : 102, 106, 113.
yMin : 102, 106, 113.

236 NAMES OF THE SECTIONS ANNOYANCE-FILTER

〈Activate MIME decoder if required 153 〉 Cited in section 256. Used in section 141.

〈Add annotation to message transcript 191 〉 Used in section 185.

〈Add classification diagnostics to parser diagnostics queue 190 〉 Used in section 185.

〈Add new word to word table 37 〉 Used in section 35.

〈Advance to next file if traversing directory 138 〉 Cited in section 256. Used in section 130.

〈Assemble the decoded bits into bytes and place on decoded queue 54 〉 Used in section 50.

〈Build histogram of word probabilities 28 〉 Used in section 27.

〈Build set of unique tokens in message 187 〉 Used in section 185.

〈C library include files 234 〉 Used in section 232.

〈C++ standard library include files 233 〉 Used in section 232.

〈Cancel byte stream interpretation for non-binary encoded parts 161 〉 Used in section 158.

〈Character is white space 62 〉 Cited in section 256. Used in section 63.

〈Check for HTML comments and ignore them 176 〉 Used in section 174.

〈Check for MIME part sentinel 151 〉 Used in section 130.

〈Check for Macintosh-specific single byte characters and translate 79 〉 Used in section 76.

〈Check for POP3 connection already opened 196 〉 Used in section 194.

〈Check for Shift-JIS two byte character and assemble as required 77 〉 Used in section 76.

〈Check for and process end of line sequence 43 〉 Used in section 42.

〈Check for application file types for which we have a decoder 155 〉 Used in section 153.

〈Check for assembled phrases in queue and return next if so 175 〉 Used in section 174.

〈Check for blank request and discard 206 〉 Used in section 204.

〈Check for change of sentinel within message 154 〉 Used in section 153.

〈Check for continuation of mail header lines 143 〉 Cited in section 256. Used in section 141.

〈Check for encoded header line and decode 147 〉 Cited in section 256. Used in section 141.

〈Check for end of file in base64 stream 53 〉 Used in section 51.

〈Check for inconsistencies in option specifications 244 〉 Used in section 243.

〈Check for lines with our sentinel already present in the header 144 〉 Cited in section 256. Used in

section 143.

〈Check for look ahead character 55 〉 Used in sections 49 and 59.

〈Check for pending characters and return if so 78 〉 Used in section 76.

〈Check for phrase assembly and generate phrases as required 180 〉 Used in sections 174 and 178.

〈Check for start of new message in folder 139 〉 Cited in section 256. Used in section 130.

〈Check for strings in the queue and return first if queue not empty 116 〉 Used in section 115.

〈Check for symbolic link to compressed file 133 〉 Used in sections 129 and 137.

〈Check for within HTML content 177 〉 Used in section 174.

〈Check phrase assembly parameters and activate if required 179 〉 Used in section 173.

〈Check whether folder is a directory of messages 135 〉 Cited in section 256. Used in section 129.

〈Class definitions 10, 19, 32, 40, 46, 47, 48, 58, 68, 71, 73, 75, 80, 81, 83, 85, 88, 91, 92, 93, 95, 96, 98, 100, 114, 125,

129, 170, 173, 183, 186, 194 〉 Used in section 254.

〈Class implementations 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 33, 34, 35, 38, 39, 41, 42, 44,

45, 49, 56, 57, 59, 61, 64, 65, 69, 70, 72, 74, 76, 82, 84, 86, 89, 90, 94, 97, 99, 101, 102, 103, 104, 105, 106, 107, 109,

115, 126, 130, 131, 136, 137, 163, 164, 165, 166, 167, 168, 169, 171, 172, 174, 181, 185, 192, 197, 198, 215 〉 Used

in section 254.

〈Classify message tokens by probability of significance 188 〉 Cited in section 256. Used in section 185.

〈Classify the message, generating an in-memory transcript of the results 221 〉 Used in section 219.

〈Close the connection to the client and server 214 〉 Used in section 200.

〈Command line arguments 239, 240 〉 Used in section 254.

〈Compute probability message is junk from most significant tokens 189 〉 Used in section 185.

〈Conditional C library include files 235 〉 Used in section 232.

〈Conduct client/server dialogue 204 〉 Used in section 200.

〈Conduct dialogue with client 200 〉 Used in section 198.

〈Configuration of conditional capabilities 237 〉 Used in section 232.

ANNOYANCE-FILTER NAMES OF THE SECTIONS 237

〈Configure compression suffix and command 132 〉 Used in section 129.

〈Create mail folder to read reply from POP3 server 220 〉 Cited in section 256. Used in section 219.

〈Create pipe to pdftotext decoder 128 〉 Used in section 126.

〈Declare signal handler function for broken pipes 216 〉 Used in section 194.

〈Decode equal sign escape 60 〉 Used in section 59.

〈Decode multiple byte character set 152 〉 Used in section 130.

〈Decode next four characters from input stream 51 〉 Used in section 50.

〈Decode non-ANSI Flash text 121 〉 Used in section 120.

〈Define multi-line and conditional multi-line commands 195 〉 Used in section 194.

〈Detect binary parts worth parsing for embedded ASCII strings 156 〉 Used in section 153.

〈Eliminate any trailing space from line 140 〉 Used in section 130.

〈Fiddle with the reply from the server as required 211 〉 Used in section 204.

〈Flash file action codes 111 〉 Used in section 100.

〈Flash file data structures 113 〉 Used in section 100.

〈Flash file tag values 110 〉 Used in section 100.

〈Flash text field mode definitions 112 〉 Used in section 100.

〈Forward request to server 207 〉 Used in section 204.

〈Get next significant character from input stream 52 〉 Used in section 51.

〈Global declarations used by component in temporary jig 253 〉 Used in section 223.

〈Global functions 184, 229, 230, 231, 242 〉 Used in section 254.

〈Global variables 226, 241, 250, 251 〉 Cited in section 241. Used in section 254.

〈 Ignore white space after soft line break 63 〉 Used in section 60.

〈 Include header files 232 〉 Used in section 254.

〈 Initialise global variables 224 〉 Used in section 223.

〈 Interpret header quoted string if character set known 148 〉 Used in section 147.

〈Link new word to hash table chain 36 〉 Used in section 35.

〈List optional capabilities configured in this build 247 〉 Used in section 245.

〈Look up address of server 201 〉 Used in section 200.

〈Main program 223 〉 Used in section 254.

〈Master dictionary 225, 249 〉 Used in section 254.

〈Message queue utilities 182 〉 Used in section 173.

〈Modify POP3 reply message to reflect change in text length 222 〉 Used in section 219.

〈Network library include files 236 〉 Used in section 232.

〈Open connection to server 202 〉 Used in section 200.

〈Open pipe to read compressed file 134 〉 Used in section 129.

〈Operate POP3 proxy server, filtering replies 218 〉 Used in section 223.

〈Parse Flash DefineEditText tag 122 〉 Used in section 115.

〈Parse Flash DefineFont tag 117 〉 Used in section 115.

〈Parse Flash DefineFont2 tag 118 〉 Used in section 115.

〈Parse Flash DefineFontInfo tag 119 〉 Used in section 115.

〈Parse Flash DefineText tags 120 〉 Used in section 115.

〈Parse Flash DoAction tag 124 〉 Used in section 115.

〈Parse Flash FrameLabel tag 123 〉 Used in section 115.

〈Parse MIME part header 149 〉 Used in section 130.

〈Parse plausible tokens from byte stream 178 〉 Used in section 174.

〈Parse request and argument into canonical form 208 〉 Used in section 204.

〈Print program version information 245 〉 Used in section 243.

〈Process Content-Types we are interested in parsing 158 〉 Used in section 153.

〈Process body content type declarations 146 〉 Used in section 141.

〈Process command-line options 243 〉 Used in section 223.

〈Process message header lines 141 〉 Used in section 130.

〈Process multipart MIME header declaration 150 〉 Cited in section 256. Used in section 141.

238 NAMES OF THE SECTIONS ANNOYANCE-FILTER

〈Prune unique words from dictionary if autoPrune threshold is exceeded 228 〉 Used in section 227.

〈Read 16 and 32 bit quantities from Flash file 108 〉 Used in section 100.

〈Read multi-line reply from server if present 210 〉 Used in section 204.

〈Read request from client 205 〉 Used in section 204.

〈Read status line from server 209 〉 Cited in section 256. Used in section 204.

〈Read the greeting from the server and relay to the client 203 〉 Used in section 200.

〈Refill decoded bytes queue from input stream 50 〉 Used in section 49.

〈Relay multi-line reply, if any, to the client 213 〉 Cited in section 256. Used in section 204.

〈Relay the status line from the server to the client 212 〉 Used in section 204.

〈Reset MIME decoder state 142 〉 Used in sections 129, 130, 139, and 162.

〈Save Message-ID for diagnostics 145 〉 Used in section 141.

〈Test component in temporary jig 252 〉 Used in section 243.

〈Test for Content-Types we always ignore 157 〉 Used in section 153.

〈Test for message/rfc822 embedded as part 162 〉 Used in section 158.

〈Test for multiple byte character sets and activate decoder if available 159 〉 Used in section 158.

〈Transcribe PDF document to temporary file 127 〉 Used in section 126.

〈Transformation functions for algorithms 18 〉 Used in section 10.

〈Tweak configuration when building for Win32 238 〉 Used in section 232.

〈Utility functions 219, 227, 246 〉 Used in section 254.

〈Verify Content-Transfer-Encoding and activate decoder if necessary 160 〉 Cited in section 256. Used

in section 158.

〈Wait for next client connection and accept it 199 〉 Used in section 198.

〈Write GNUPLOT data table for probability histogram 29 〉 Used in section 27.

ANNOYANCE-FILTER

Section Page
Introduction . 1 1
User Guide . 2 2

Getting started . 3 3
Options . 4 5
Phrase-based classification . 5 9
Integrating with Procmail . 6 10
Operating a POP3 proxy server . 7 13
To-do list . 8 14
A Brief History of annoyance-filter . 9 15

Dictionary Word . 10 18
Dictionary . 19 25
Fast dictionary . 32 34
MIME decoders . 40 43

Identity MIME decoder . 46 48
Sink MIME decoder . 47 49
Base64 MIME decoder . 48 50
Quoted-Printable MIME decoder . 58 55

Multiple byte character set decoders and interpreters . 66 60
Decoders . 67 61

Decoder parent class . 68 62
EUC decoder . 71 64
Big5 decoder . 73 65
Shift-JIS decoder . 75 66
Unicode decoders . 80 68

UCS-2 Unicode decoder . 81 69
UTF-8 Unicode decoder . 83 70
UTF-16 Unicode decoder . 85 72

Interpreters . 87 74
Interpreter parent class . 88 74
GB2312 Interpreter class . 91 76
Big5 Interpreter class . 92 76
Shift-JIS Interpreter class . 93 76
Korean Interpreter class . 95 77
Unicode Interpreter class . 96 78

Application string parsers . 98 79
Flash stream decoder . 100 81

Flash text extractor . 114 92
PDF text extractor . 125 104

Mail folder . 129 107
Token definition . 170 140
Token parser . 173 143
Classify message . 183 154

ANNOYANCE-FILTER TABLE OF CONTENTS 1

POP3 proxy server . 193 161
POP3 proxy server class definition . 194 162
POP3 proxy server implementation . 217 176

Main program . 223 179
Header include files . 232 183

Character set definitions and translation tables . 248 198
ISO 8859-1 character types . 250 199

Overall program structure . 254 200
Release history . 255 201
Development log . 256 202
Index . 257 224

	Introduction
	User Guide
	Getting started
	Options
	Phrase-based classification
	Integrating with {�am �ffam 	enbf Procmail}
	Operating a POP3 proxy server
	To-do list
	A Brief History of {�am 	tfam 	entt annoyance-filter}
	Dictionary Word
	Dictionary
	Fast dictionary
	MIME decoders
	Identity MIME decoder
	Sink MIME decoder
	Base64 MIME decoder
	Quoted-Printable MIME decoder
	Multiple byte character set decoders and interpreters
	Decoders
	Decoder parent class
	EUC decoder
	Big5 decoder
	Shift-JIS decoder
	Unicode decoders
	UCS-2 Unicode decoder
	UTF-8 Unicode decoder
	UTF-16 Unicode decoder

	Interpreters
	Interpreter parent class
	GB2312 Interpreter class
	Big5 Interpreter class
	Shift-JIS Interpreter class
	Korean Interpreter class
	Unicode Interpreter class

	Application string parsers
	Flash stream decoder
	Flash text extractor

	PDF text extractor
	Mail folder
	Token definition
	Token parser
	Classify message
	POP3 proxy server
	POP3 proxy server class definition
	POP3 proxy server implementation
	Main program
	Header include files
	Character set definitions and translation tables
	ISO 8859-1 character types
	Overall program structure
	Release history
	Development log
	Index
	Names of the sections
	Activate MIME decoder if required
	Add annotation to message transcript
	Add classification diagnostics to parser diagnostics queue
	Add new word to word table
	Advance to next file if traversing directory
	Assemble the decoded bits into bytes and place on decoded queue
	Build histogram of word probabilities
	Build set of unique tokens in message
	C library include files
	C++ standard library include files
	Cancel byte stream interpretation for non-binary encoded parts
	Character is white space
	Check for HTML comments and ignore them
	Check for MIME part sentinel
	Check for Macintosh-specific single byte characters and translate
	Check for POP3 connection already opened
	Check for Shift-JIS two byte character and assemble as required
	Check for and process end of line sequence
	Check for application file types for which we have a decoder
	Check for assembled phrases in queue and return next if so
	Check for blank request and discard
	Check for change of sentinel within message
	Check for continuation of mail header lines
	Check for encoded header line and decode
	Check for end of file in base64 stream
	Check for inconsistencies in option specifications
	Check for lines with our sentinel already present in the header
	Check for look ahead character
	Check for pending characters and return if so
	Check for phrase assembly and generate phrases as required
	Check for start of new message in folder
	Check for strings in the queue and return first if queue not empty
	Check for symbolic link to compressed file
	Check for within HTML content
	Check phrase assembly parameters and activate if required
	Check whether folder is a directory of messages
	Class definitions
	Class implementations
	Classify message tokens by probability of significance
	Classify the message, generating an in-memory transcript of the results
	Close the connection to the client and server
	Command line arguments
	Compute probability message is junk from most significant tokens
	Conditional C library include files
	Conduct client/server dialogue
	Conduct dialogue with client
	Configuration of conditional capabilities
	Configure compression suffix and command
	Create mail folder to read reply from POP3 server
	Create pipe to pdftotext decoder
	Declare signal handler function for broken pipes
	Decode equal sign escape
	Decode multiple byte character set
	Decode next four characters from input stream
	Decode non-ANSI Flash text
	Define multi-line and conditional multi-line commands
	Detect binary parts worth parsing for embedded ASCII strings
	Eliminate any trailing space from line
	Fiddle with the reply from the server as required
	Flash file action codes
	Flash file data structures
	Flash file tag values
	Flash text field mode definitions
	Forward request to server
	Get next significant character from input stream
	Global declarations used by component in temporary jig
	Global functions
	Global variables
	Ignore white space after soft line break
	Include header files
	Initialise global variables
	Interpret header quoted string if character set known
	Link new word to hash table chain
	List optional capabilities configured in this build
	Look up address of server
	Main program
	Master dictionary
	Message queue utilities
	Modify POP3 reply message to reflect change in text length
	Network library include files
	Open connection to server
	Open pipe to read compressed file
	Operate POP3 proxy server, filtering replies
	Parse Flash DefineEditText tag
	Parse Flash DefineFont tag
	Parse Flash DefineFont2 tag
	Parse Flash DefineFontInfo tag
	Parse Flash DefineText tags
	Parse Flash DoAction tag
	Parse Flash FrameLabel tag
	Parse MIME part header
	Parse plausible tokens from byte stream
	Parse request and argument into canonical form
	Print program version information
	Process Content-Types we are interested in parsing
	Process body content type declarations
	Process command-line options
	Process message header lines
	Process multipart MIME header declaration
	Prune unique words from dictionary if autoPrune threshold is exceeded
	Read 16 and 32 bit quantities from Flash file
	Read multi-line reply from server if present
	Read request from client
	Read status line from server
	Read the greeting from the server and relay to the client
	Refill decoded bytes queue from input stream
	Relay multi-line reply, if any, to the client
	Relay the status line from the server to the client
	Reset MIME decoder state
	Save Message-ID for diagnostics
	Test component in temporary jig
	Test for Content-Types we always ignore
	Test for message/rfc822 embedded as part
	Test for multiple byte character sets and activate decoder if available
	Transcribe PDF document to temporary file
	Transformation functions for algorithms
	Tweak configuration when building for Win32
	Utility functions
	Verify Content-Transfer-Encoding and activate decoder if necessary
	Wait for next client connection and accept it
	Write GNUPLOT data table for probability histogram

